TW201126145A - Fixture and method for vibration or shock testing of MEMS component - Google Patents

Fixture and method for vibration or shock testing of MEMS component Download PDF

Info

Publication number
TW201126145A
TW201126145A TW99102470A TW99102470A TW201126145A TW 201126145 A TW201126145 A TW 201126145A TW 99102470 A TW99102470 A TW 99102470A TW 99102470 A TW99102470 A TW 99102470A TW 201126145 A TW201126145 A TW 201126145A
Authority
TW
Taiwan
Prior art keywords
test
fixture
mems
vibration
cube
Prior art date
Application number
TW99102470A
Other languages
Chinese (zh)
Other versions
TWI400435B (en
Inventor
Yung-Sheng Sung
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW99102470A priority Critical patent/TWI400435B/en
Publication of TW201126145A publication Critical patent/TW201126145A/en
Application granted granted Critical
Publication of TWI400435B publication Critical patent/TWI400435B/en

Links

Landscapes

  • Micromachines (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

A testing fixture of MEMS component for vibration test or shock test is disclosed. The testing fixture of MEMS component includes a cubic fixture, which includes a first surface and a second surface opposite to each other, a third surface and a fourth surface opposite to each other, and a fifth surface and a sixth surface opposite to each other. The testing fixture further includes plural slots disposed on the first surface, the third surface, and the fifth surface. The MEMS components are fixed in the slots. A vibration testing method and a shock testing method for MEMS component with the testing fixture is also disclosed.

Description

201126145 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種試驗治具及方法,且特別是有關 於一種用於微機電系統元件之振動或衝擊試驗治具及方 法。 【先前技術】 微機電系統(Micro-electromechanical System ; MEMS) • 是目前科技界公認相當具有未來發展潛力及前瞻的研究領 域,它是一種可將光、機、電、控制、化學等微元件整合 於單一晶片,並應用於光電影像、生化醫療、資訊儲存與 消費性電子等領域的高科技技術。 為了有效控管微機電系統元件的品質,微機電系統元 件需進行多道試驗工序,以檢驗微機電系統元件的品質是 否符合設定的標準。其中’振動試驗(vibration test)以及衝 擊試驗(shock test)為微機電系統元件相當重要的一道試驗。 • 由於現在的微機電系統元件對於高強度的振動或是衝 擊的要求越來越高,有些規格的微機電系統元件的衝擊要 求甚至高達30000G,以現有的試驗治具難以進行大量且古 試驗強度的試驗。因此,如何提高微機電系統元件振動 擊試驗效率,尤其是在高G值的振動/衝擊試驗中的效率, 便成為一個重要的課題。 【發明内容】 因此本發明的目的就是在提供一種微機電系統元件之 201126145 用以提供微機電系統元件進行振動 依照本發明一實施例,提出一種微機電系統元件之 驗治具’應用於振動試驗或衝擊試驗,微機 試驗治具包含立方體治具,立方體治具包含】201126145 VI. Description of the Invention: [Technical Field] The present invention relates to a test fixture and method, and more particularly to a vibration or impact test fixture and method for a microelectromechanical system component. [Prior Art] Micro-electromechanical System (MEMS) is a research field that is recognized by the scientific and technological community as having considerable future potential and forward-looking research. It is a kind of integration of micro-components such as light, machine, electricity, control and chemistry. It is used in a single chip and is used in high-tech technologies such as photoelectric imaging, biochemical medical, information storage and consumer electronics. In order to effectively control the quality of MEMS components, MEMS components require multiple test procedures to verify that the MEMS component quality meets the set criteria. Among them, the vibration test and the shock test are important tests for MEMS components. • Due to the increasing requirements for high-intensity vibration or shock of current MEMS components, the impact requirements of some MEMS components are as high as 30,000 G. It is difficult to carry out a large number of ancient test strengths with existing test fixtures. Test. Therefore, how to improve the vibration test efficiency of MEMS components, especially in the high G value vibration/impact test, has become an important issue. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a microelectromechanical system component of 201126145 for providing microelectromechanical system components for vibration. In accordance with an embodiment of the present invention, an MEMS device component inspection tool is applied to a vibration test. Or impact test, the microcomputer test fixture includes a cube fixture, and the cube fixture includes

面及第二表面、相對之第三表面及第四表面,以及相對之 第五表面及第六表面。試驗治具包含多個設置於第—表 面、第三表面及第五表面之凹槽,每—凹槽容置至 機電系統元件。試驗治具更包含多個定位元件 機電系統元件於凹槽之中。 u疋微 凹槽包3多個第一凹槽,第一凹槽為矩形凹槽一 凹槽之側邊為平行於立方體治具之側邊。凹槽可更包含 個第二凹槽’第二凹槽為矩形凹槽,第二凹槽與第一凹槽 t間夾有角度。定位元件可包含黏著膠,微機電系心 藉由黏者膠固定於凹#之中。定位元件可包含 絲:蓋板蓋合於第一表面、第三表面及第五表:及 治具更包含設置於第機電i統元件之試驗 螺絲孔、轉接板及以r面及第六表面之多個 夕個螺絲。立方體治具之第二表面、第 ί面其中之—與轉接板鎖合’轉接板再固定 於振動試驗或衝擊試驗之機A。 驗態樣為一種應用此微機電系統元件之試 胃★驗方法,包含固定微機電系統元件於立方 ^^ 钱者,固定立方體治具於振動試驗機 、表面朝上,再進行振動試驗。之後,再次 201126145 固定立方體治具於振動試驗機台上,此時第三表面朝上, 並再次進純動試驗4方法更包含再次固定立仏且 試驗機台’此時第五表面朝上’接著,再次進;;振 本發月之又一態樣為一種應用此微機電系統元件之試 驗治具的衝擊試驗方法,包含固定微機 r::rr,接著固定立方體治具於衝擊=And a second surface, an opposite third surface and a fourth surface, and opposite fifth and sixth surfaces. The test fixture includes a plurality of recesses disposed on the first surface, the third surface, and the fifth surface, each recess being received to the electromechanical system component. The test fixture further includes a plurality of positioning elements, the electromechanical system components, in the recess. The 疋 micro groove includes 3 first grooves, and the first groove is a rectangular groove. The side of the groove is parallel to the side of the cube fixture. The groove may further comprise a second groove. The second groove is a rectangular groove, and the second groove is angled with the first groove t. The positioning component may comprise an adhesive, and the microelectromechanical core is fixed in the recess # by the adhesive. The positioning component may comprise a wire: the cover is applied to the first surface, the third surface and the fifth table: and the fixture further comprises a test screw hole, an adapter plate and a r-face and a sixth surface disposed on the electromechanical component Multiple eve screws on the surface. The second surface of the cube fixture, the y-face of the cube, and the adapter plate are attached to the adapter plate and then fixed to the vibration test or impact test machine A. The test sample is a test method for applying the MEMS component, including fixing the MEMS component to the cube, fixing the cube fixture to the vibration tester, and facing the surface, and then performing the vibration test. After that, again, 201126145 fixes the cube fixture on the vibration test machine, at which time the third surface faces upward, and again enters the pure motion test. 4 The method further includes fixing the vertical and the test machine 'the fifth surface is facing upwards'. , again;; another aspect of the vibration of the month is a shock test method for the test fixture using the MEMS component, including a fixed microcomputer r::rr, then fixed cube fixture in the impact =

衝擊試驗機台上,此時第三表面朝= =機ϊ::試驗。最後,再次固定立方體治具於衝擊 本發明料五表面朝上’以及再:欠進行衝擊試驗。 不赞月之微機電系統元件之試驗治具一 ==是衝擊試驗,並藉由翻轉及定 二向二::試驗’而:到微機電系統元件於至少三 元件進行据:如此一來’可大幅地提高微機電系統 件進丁振動或是衝擊試驗的效率。On the impact test machine, the third surface is facing == machine:: test. Finally, the cube fixture is again fixed to the impact. The surface of the material of the invention is five upwards and again: the impact test is underway. Test fixtures for MEMS components that do not like the moon == is the impact test, and by flipping and fixing the two-way two:: test 'and: to the MEMS components in at least three components: so one' It can greatly improve the efficiency of MEMS vibration or impact test of MEMS parts.

【實施方式】 ΐ下將以圖式及詳細說明清楚說明本發明之精神,任 何斤,技,領域中具有通常知識者在瞭解本發明之較佳實 施例後,當可由本發明所教示之技術,加以改變及修飾, 其並不脫離本發明之精神與範圍。 參照第1Α圖與第1Β圖,其係繪示本發明之微機電系 統元件之試驗治具第一實施例的立體視圖及展開圖。微機 電系統元件之試驗治具100可應用在振動(vibration)試驗 201126145 或是衝擊(shock)試驗中。試驗治具10〇包含有立方體治具 11〇與複數個凹槽120。立方體治具11〇包含有相對之第一 表面111及第二表面112、相對之第三表面ι13及第四表面 114、以及相對之第五表面n5及第六表面116。 凹槽120為設置在第一表面m、第三表面n3及第五 表面115上。每一凹槽12〇為用以容置至少一微機電系統 元件。本實施例中之凹槽120呈棋盤式排列,凹槽12〇之 尺寸與微機電系統元件相匹配,以一對一地容置微機電系 統元件。試驗治具100可以使用黏著劑作為定位元件,以 將微機電系統元件黏貼於凹槽12〇之中而固定。試驗治具 100更包含有設置於第二表面112、第四表面114及第六表 面116上之複數個螺絲孔130,以藉由螺絲孔13〇固定於 振動或是衝擊試驗機台上。 參照第2圖,其係繪示本發明之微機電系統元件之試 驗治具第二實施例之示意圖。微機電系統元件之試驗治具 200包含立方體治具21〇、設置於立方體治具21〇之第一表 面21卜第二表面213及第五表面(圖中未繪示)上之多個凹 槽220 '以及多個定位元件23〇。其中第一表面211、第三 表面213及第五表面上更設置有多個螺絲孔24〇〇微機電 系統元件250為裝置在凹槽22〇之中。定位元件23〇包含 有蓋板232及螺絲234 ’蓋板232為蓋合在第一表面211、 第三表面213及第五表面(圖中未繪示)上,並透過螺絲234 鎖附於第-表面21卜第三表面213及第五表面(圖中未繪 示)上之螺絲孔240,以將微機電系統元件25〇固定在凹槽 220之中。凹槽220可以同第1圖中所繪示之棋盤式排列, 201126145 或者,如本實施例所繪示之長條形凹槽,以在一個凹槽220 中放置多個微機電系統元件250。 參照第3圖,其係繪示本發明之微機電系統元件之試 驗治具第三實施例的示意圖。微機電系統元件之試驗治具 300包含有立方體治具310、設置於立方體治具310之第一 表面311、第三表面313與第五表面(圖中未繪示)之凹槽 320、設置於立方體治具310之第二表面(圖中未繪示)、第 四表面(圖中未繪示)及第六表面316上之多個螺絲孔3 3 0、 具有螺絲孔330之轉接板340,及多個螺絲350。 轉接板340之面積較立方體治具310的底面積為大。 轉接板340可以先利用螺絲350鎖固在立方體治具310之 第二表面(圖中未繪示)、第四表面(圖中未繪示)或第六表面 316上的螺絲孔330,接著,轉接板340再鎖附於試驗機台 380上,使得立方體治具310透過轉接板340固定在試驗 機台380上。 參照第4A圖至第4C圖,其係分別繪示應用本發明之 微機電系統元件之試驗治具進行振動或衝擊試驗之不同階 段的示意圖。微機電系統元件(圖中未繪示)被固定在立方 體治具410的第一表面411、與第四表面414相對之第三 表面413、第五表面415上。立方體治具410再被固定在 振動或是衝擊試驗機台上,以進行振動或是衝擊試驗。BRIEF DESCRIPTION OF THE DRAWINGS The spirit of the present invention will be clearly described in the drawings and the detailed description, and those skilled in the art will understand the preferred embodiments of the present invention. Changes and modifications may be made without departing from the spirit and scope of the invention. Referring to Figures 1 and 1 , there are shown perspective and expanded views of a first embodiment of a test fixture for a microelectromechanical system component of the present invention. The test fixture 100 of the microcomputer electrical system component can be used in a vibration test 201126145 or a shock test. The test fixture 10〇 includes a cube fixture 11〇 and a plurality of grooves 120. The cube fixture 11 includes an opposing first surface 111 and a second surface 112, opposing third surface ι13 and fourth surface 114, and opposing fifth surface n5 and sixth surface 116. The groove 120 is disposed on the first surface m, the third surface n3, and the fifth surface 115. Each recess 12 is configured to receive at least one MEMS component. The grooves 120 in this embodiment are arranged in a checkerboard pattern, and the size of the grooves 12 is matched with the MEMS components to accommodate the MEMS components one-to-one. The test jig 100 may use an adhesive as a positioning member to fix the MEMS component by being stuck in the recess 12〇. The test fixture 100 further includes a plurality of screw holes 130 disposed on the second surface 112, the fourth surface 114, and the sixth surface 116 to be fixed to the vibration or impact test machine by the screw holes 13〇. Referring to Figure 2, there is shown a schematic view of a second embodiment of a test fixture for a MEMS component of the present invention. The test fixture 200 of the MEMS component includes a cube fixture 21A, a plurality of grooves disposed on the first surface 21 of the cube fixture 21, the second surface 213, and the fifth surface (not shown). 220 'and a plurality of positioning elements 23 〇. The first surface 211, the third surface 213 and the fifth surface are further provided with a plurality of screw holes 24, and the MEMS element 250 is disposed in the recess 22 。. The positioning component 23 includes a cover 232 and a screw 234. The cover 232 is attached to the first surface 211, the third surface 213, and the fifth surface (not shown), and is locked by the screw 234. A surface 21 is provided with a screw hole 240 on the third surface 213 and a fifth surface (not shown) to fix the MEMS element 25 in the recess 220. The grooves 220 may be arranged in a checkerboard pattern as depicted in FIG. 1, 201126145 or an elongated groove as illustrated in this embodiment to place a plurality of MEMS components 250 in a recess 220. Referring to Fig. 3, there is shown a schematic view of a third embodiment of the test fixture of the MEMS element of the present invention. The test fixture 300 of the MEMS component includes a cube fixture 310, a groove 320 disposed on the first surface 311 of the cube fixture 310, a third surface 313 and a fifth surface (not shown), and is disposed on the a second surface (not shown) of the cube fixture 310, a fourth surface (not shown), and a plurality of screw holes 303 on the sixth surface 316, the adapter plate 340 having the screw hole 330 , and multiple screws 350. The area of the adapter plate 340 is larger than the bottom area of the cube fixture 310. The adapter plate 340 can be firstly fastened to the second surface (not shown) of the cube fixture 310, the fourth surface (not shown) or the screw hole 330 on the sixth surface 316 by using the screw 350. The adapter plate 340 is then locked to the testing machine 380 so that the cube fixture 310 is fixed to the testing machine 380 through the adapter plate 340. Referring to Figures 4A through 4C, there are shown schematic diagrams of different stages of vibration or impact testing of test fixtures to which the MEMS components of the present invention are applied. A MEMS component (not shown) is attached to the first surface 411 of the cube fixture 410, the third surface 413, and the fifth surface 415 opposite the fourth surface 414. The cube fixture 410 is then attached to a vibration or impact test machine for vibration or impact testing.

第4A圖中,立方體治具410的第二表面(圖中未繪示) 固定於試驗機台(圖中未繪示)上,此時,立方體治具410 的第一表面411朝上。接著,進行第一次振動或是衝擊試 驗。此時位於第一表面411上的微機電系統元件會進行Z 201126145 軸方向的振動或是衝擊試驗,位於第三表面413以及第五 表面415上之微機電系統元件則是分別進行X軸方向及Y 軸方向的振動或是衝擊試驗。上述三軸向的方向定義以個 別微機電系統元件為基準進行定義,其中以個別微機電系 統元件之厚度方向作為Z軸方向。 進行完第一次試驗之後,立方體治具410可被翻轉, 如第4B圖所示。此時,立方體治具410的第四表面414 固定在振動或是衝擊試驗機台上,立方體治具410的第三 表面413朝上。接著進行第二次的振動或是衝擊試驗。此 時,位於第三表面413上的微機電系統元件進行Z軸方向 的振動或是衝擊試驗,而第一表面411及第五表面415上 的微機電系統元件則是分別進行Y軸方向與X軸方向的振 動或衝擊試驗。 進行完第二次試驗之後,立方體治具410可再一次被 翻轉,如第4C圖所示。此時,立方體治具的410第六表面 416固定在試驗機台上,立方體治具410的第五表面415 朝上。接著,進行第三次的振動或是衝擊試驗。此時,位 於第五表面415上的微機電系統元件會進行Z軸方向的振 動或是衝擊試驗,而位於第一表面411及第三表面413上 的微機電系統元件則是分別進行X軸方向及Y軸方向的振 動或是衝擊試驗。 換言之,當翻轉立方體治具410分別進行三次的振動 或是衝擊試驗之後,位於第一表面411、第三表面413及 第五表面415上的微機電系統元件亦分別完成了三個轴向 的振動或是衝擊試驗。相較於習知技術一次僅能針對單一 201126145 軸向進行試驗,本發明所提供的立方體治具410可以同時 進行三軸向的試驗,並經由翻轉立方體治具410,使得其 上之微機電系統元件可以完成三個軸向的振動或是衝擊試 驗,有效地提高微機電系統元件之振動或是衝擊試驗的效 率。 參照第5圖,其係繪示本發明之微機電系統元件試驗 治具之凹槽配置一實施例的示意圖。設置於立方體治具500 上以容置微機電系統元件之凹槽510包含有第一凹槽512 及第二凹槽514。其中第一凹槽512與第二凹槽512均為 形凹槽。第一凹槽510的侧邊為平行於立方體治具500的 側邊,使得進行振動或是衝擊試驗時,第一凹槽510中的 微機電系統元件可以進行正對於立方體治具500之三個軸 向之其中之一的振動或是衝擊試驗。而第二凹槽514與第 一凹槽512之間可以夾有特定角度,舉例而言,若是進一 步地需要微機電系統元件於45度斜角方向的試驗結果,則 第二凹槽514可以設計為與第一凹槽512夾45度角,以在 進行振動或是衝擊試驗時,得到三軸向以及夾有特定角 度,如45度角的試驗結果。 本發明所提供之微機電系統元件適用於進行大量的且 高強度的微機電系統元件的振動或是衝擊試驗。立方體治 具的材料為重量輕,彈性係數和密度比值(E/p)大,阻尼值 高的金屬材料,如皱/銘/鎂(Be/Al/Mg)的合金,鋼鐵或是鈦 合金等。此立方體治具能承受的試驗強度可由1G起至 30000G。 參照第6圖,其係繪示應用本發明之微機電系統元件 201126145 之試驗治具的振動試驗方法。步驟610為固定微機電系統 元件於立方體治具之凹槽之中。接著,步驟620為固定立 方體治具於振動試驗機台上,其中立方體治具的第一表面 朝上,接著,步驟630為進行振動試驗。完成第一次振動 試驗後,步驟640為翻轉立方體治具,並再一次將立方體 治具固定在振動試驗機台上,此時,立方體治具的第三表 面朝上。接著,步驟650為再次進行振動試驗。完成第二 次振動試驗之後,翻轉立方體治具,步驟660為再一次固 定立方體治具於振動試驗機台上,其中立方體治具的第五 表面朝上,接著,步驟670為再次進行振動試驗。 參照第7圖,其係繪示應用本發明之微機電系統元件 之試驗治具的衝擊試驗方法。步驟710為固定微機電系統 元件於立方體治具之凹槽之中。接著,步驟720為固定立 方體治具於衝擊試驗機台上,其中立方體治具的第一表面 朝上,接著,步驟730為進行衝擊試驗。完成第一次衝擊 試驗後,步驟740為翻轉立方體治具,並使立方體治具再 一次固定在衝擊試驗機台上,此時,立方體治具的第三表 面朝上。接著,步驟750為再次進行衝擊試驗。完成第二 次衝擊試驗之後,翻轉立方體治具,步驟760為再一次固 定立方體治具於衝擊試驗機台上,其中立方體治具的第五 表面朝上,接著,步驟770為再次進行衝擊試驗。 由上述本發明較佳實施例可知,應用本發明具有下列 優點。本發明之微機電系統元件之試驗治具可以同時進行 三個軸向的振動或是衝擊試驗,並藉由翻轉及定位立方體 治具進行振動或衝擊試驗,而得到微機電系統元件於至少 201126145 三個軸向的試驗結果。如此一來,可大幅地提高微機電系 統元件進行振動或是衝擊試驗的效率。 雖然本發明已以一較佳實施例揭露如上,然其並非用 . 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 神和範圍内,當可作各種之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 • 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之詳細說明如下: 第1A圖與第1B圖係繪示本發明之微機電系統元件之 試驗治具第一實施例的立體視圖及展開圖。 第2圖係繪示本發明之微機電系統元件之試驗治具第 二實施例之示意圖。 第3圖係繪示本發明之微機電系統元件之試驗治具第 •三實施例的示意圖。 第4A圖至第4C圖係分別繪示應用本發明之微機電系 統元件之試驗治具進行振動或衝擊試驗之不同階段的示意 圖。 第5圖係繪示本發明之微機電系統元件試驗治具之凹 槽配置一實施例的示意圖。 第6圖係繪示應用本發明之微機電系統元件之試驗治 具的振動試驗方法。 第7圖係繪示應用本發明之微機電系統元件之試驗治 m 12 201126145 具的衝擊試驗方法。In Fig. 4A, the second surface (not shown) of the cube fixture 410 is fixed to a testing machine (not shown), and at this time, the first surface 411 of the cube fixture 410 faces upward. Next, perform the first vibration or impact test. At this time, the MEMS element on the first surface 411 performs the vibration or impact test of the Z 201126145 axis direction, and the MEMS components on the third surface 413 and the fifth surface 415 are respectively in the X-axis direction and Vibration in the Y-axis direction or impact test. The above three axial direction definitions are defined on the basis of individual MEMS components, with the thickness direction of the individual MEMS components being the Z-axis direction. After the first test, the cube fixture 410 can be flipped as shown in Figure 4B. At this time, the fourth surface 414 of the cube jig 410 is fixed to the vibration or impact test machine, and the third surface 413 of the cube jig 410 faces upward. Then a second vibration or impact test is performed. At this time, the MEMS element on the third surface 413 performs vibration or impact test in the Z-axis direction, and the MEMS components on the first surface 411 and the fifth surface 415 are respectively in the Y-axis direction and X. Vibration or impact test in the axial direction. After the second test, the cube fixture 410 can be flipped again, as shown in Figure 4C. At this time, the 410 sixth surface 416 of the cube fixture is fixed on the testing machine, and the fifth surface 415 of the cube fixture 410 faces upward. Next, a third vibration or impact test is performed. At this time, the MEMS element on the fifth surface 415 performs a vibration or impact test in the Z-axis direction, and the MEMS components on the first surface 411 and the third surface 413 are respectively in the X-axis direction. And vibration in the Y-axis direction or impact test. In other words, after the flipping of the cube fixture 410 for three vibrations or impact tests, the MEMS components on the first surface 411, the third surface 413, and the fifth surface 415 respectively perform three axial vibrations. Or impact test. Compared with the prior art, only the single 201126145 axial test can be performed at a time, and the cube fixture 410 provided by the present invention can simultaneously perform the triaxial test and turn the cube fixture 410 to make the MEMS thereon. The component can perform three axial vibration or impact tests, effectively improving the vibration of the MEMS components or the efficiency of the impact test. Referring to Fig. 5, there is shown a schematic view of an embodiment of a groove arrangement of a MEMS component test fixture of the present invention. The recess 510 disposed on the cube fixture 500 to receive the MEMS component includes a first recess 512 and a second recess 514. The first groove 512 and the second groove 512 are both shaped grooves. The side of the first groove 510 is parallel to the side of the cube fixture 500 so that the MEMS element in the first groove 510 can be made to face the cube fixture 500 when performing a vibration or impact test. Vibration or impact test of one of the axial directions. The second groove 514 and the first groove 512 may be sandwiched by a specific angle. For example, if the test result of the MEMS element in the 45 degree oblique direction is further required, the second groove 514 may be designed. In order to form a 45 degree angle with the first groove 512, when the vibration or impact test is performed, the triaxial direction and the test result with a specific angle, such as a 45 degree angle, are obtained. The MEMS components provided by the present invention are suitable for performing vibration or impact testing of a large number of high strength MEMS components. The cube fixture is made of a metal material with a light weight, a large modulus of elasticity and a density ratio (E/p), and a high damping value, such as an alloy of wrinkle/ming/magnesium (Be/Al/Mg), steel or titanium alloy. . The test strength that this cube fixture can withstand can range from 1G to 30000G. Referring to Fig. 6, there is shown a vibration test method for a test fixture to which the MEMS element 201126145 of the present invention is applied. Step 610 is to secure the MEMS component to the recess of the cube fixture. Next, in step 620, the fixed cube is mounted on the vibration testing machine, wherein the first surface of the cube fixture faces upward, and then step 630 is a vibration test. After completing the first vibration test, step 640 is to flip the cube fixture and again fix the cube fixture to the vibration test machine, with the third surface of the cube fixture facing up. Next, in step 650, the vibration test is performed again. After the second vibration test is completed, the cube fixture is turned over, and step 660 is to fix the cube fixture again on the vibration test machine with the fifth surface of the cube fixture facing up, and then step 670 is to perform the vibration test again. Referring to Fig. 7, there is shown an impact test method of a test fixture to which the MEMS element of the present invention is applied. Step 710 is to secure the MEMS component to the recess of the cube fixture. Next, step 720 is to mount the fixed cube on the impact test machine with the first surface of the cube fixture facing up, and then step 730 for the impact test. After completing the first impact test, step 740 is to flip the cube fixture and fix the cube fixture to the impact test machine again, with the third surface of the cube fixture facing up. Next, step 750 is to perform the impact test again. After the second impact test is completed, the cube fixture is turned over, and step 760 is to fix the cube fixture again on the impact test machine with the fifth surface of the cube fixture facing up, and then step 770 is to perform the impact test again. It will be apparent from the above-described preferred embodiments of the present invention that the application of the present invention has the following advantages. The test fixture of the MEMS component of the present invention can simultaneously perform three axial vibration or impact tests, and perform vibration or impact test by flipping and positioning the cube fixture to obtain MEMS components at least 201126145. Axial test results. As a result, the efficiency of vibration or impact testing of MEMS components can be greatly improved. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and various modifications and refinements may be made without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; A perspective view and a development view of a first embodiment of a test fixture for a MEMS component. Figure 2 is a schematic view showing a second embodiment of the test fixture of the MEMS element of the present invention. Figure 3 is a schematic view showing a third embodiment of the test fixture of the MEMS element of the present invention. 4A to 4C are schematic views respectively showing different stages of vibration or impact test of the test fixture to which the microelectromechanical system component of the present invention is applied. Figure 5 is a schematic view showing an embodiment of a groove configuration of a MEMS component test fixture of the present invention. Fig. 6 is a view showing a vibration test method of a test fixture to which the MEMS element of the present invention is applied. Fig. 7 is a view showing the impact test method of the test for the application of the MEMS element of the present invention to m 12 201126145.

【主要元件符號說明】 100 : 試驗治具 300 :試驗治具 110 : 立方體治具 310 :立方體治具 111 : 第一表面 311 :第一表面 112 : 第二表面 313 :第三表面 113 : 第三表面 316 :第六表面 114 : 第四表面 330 :螺絲孔 115 : 第五表面 340 :轉接板 116 : 第六表面 350 :螺絲 120 : 凹槽 380 :試驗機台 130 : 螺絲孔 410 :立方體治具 200 : 試驗治具 411 :第一表面 210 : 立方體治具 413 :第三表面 211 : 第一表面 414 :第四表面 213 : 第三表面 415 :第五表面 220 : 凹槽 416 :第六表面 230 : 定位元件 500 :立方體治具 232 : 蓋板 510 :凹槽 234 : 螺絲 512 :第一凹槽 240 : 螺絲孔 514 :第二凹槽 250 : 微機電系統元件 610' 、770 :步驟[Major component symbol description] 100: Test fixture 300: Test fixture 110: Cube fixture 310: Cube fixture 111: First surface 311: First surface 112: Second surface 313: Third surface 113: Third Surface 316: Sixth surface 114: Fourth surface 330: Screw hole 115: Fifth surface 340: Adapter plate 116: Sixth surface 350: Screw 120: Groove 380: Test machine 130: Screw hole 410: Cube rule 200: test fixture 411: first surface 210: cube fixture 413: third surface 211: first surface 414: fourth surface 213: third surface 415: fifth surface 220: groove 416: sixth surface 230: positioning element 500: cube fixture 232: cover 510: groove 234: screw 512: first groove 240: screw hole 514: second groove 250: MEMS element 610', 770: steps

Claims (1)

201126145 七、申請專利範圍: 1.一種微機電系統元件之試驗治具,應用於一振動試 驗或一衝擊試驗,包含: 一立方體治具,包含相對之一第一表面及一第二表 面、相對之一第三表面及一第四表面,以及相對之一第五 表面及一第六表面; 複數個凹槽,設置於該第一表面、該第三表面及該第 五表面,每一該些凹槽容置至少一微機電系統元件;以及 複數個定位元件,用以固定該些微機電系統元件於該 些凹槽之中。 么2.如申請專利範圍第1項所述之微機電系統元件之試 驗治具,其中該些凹槽包含複數個第一凹槽,該些第一凹 槽為矩形凹槽’該些第―凹槽之侧邊為平行於㈣方體治 具之側邊。 3.如申請專利範圍第2項所述之微機電系統元件之試 具,其中該些凹槽更包含複數個第二凹槽,該些第二 二槽為矩形凹槽,該些第二凹槽與該些第-凹槽之^夾有 一角度。 驗、、二如申請專利範圍第1項所述之微機電系統元件之試 〜〃,該些定位元件包含黏著膠,該些微機電系統元件 201126145 藉由黏著膠固定於該些凹槽之中。 5, 如申請專利範圍第1項所述之微機電系統元件之試 驗治具,其中該些定位元件包含複數個蓋板及複數個螺 絲,該些蓋板蓋合於該第一表面、該第三表面及該第五表 面,該些螺絲用以鎖固該些蓋板於該立方體治具。 6. 如申請專利範圍第丨項所述之微機電系統元件之試 驗治具,更包含複數個螺絲孔,設置於該第二表面、該第 四表面及該第六表面上。 、7.如申請專利範圍第丨項所述之微機電系統元件之試 驗治具,t包含一轉接板及複數個螺絲,該第二表面、該 ^表面或該第六表面其中之—與該轉接板鎖合,= 再固定於該振動試驗或該衝擊試驗之機台。201126145 VII. Patent application scope: 1. A test fixture for MEMS components, applied to a vibration test or an impact test, comprising: a cube fixture comprising a first surface and a second surface, opposite a third surface and a fourth surface, and a first fifth surface and a sixth surface; a plurality of grooves disposed on the first surface, the third surface, and the fifth surface, each of the plurality The recess houses at least one MEMS component; and a plurality of locating components for securing the MEMS components in the recesses. 2. The test fixture of the MEMS component of claim 1, wherein the grooves comprise a plurality of first grooves, and the first grooves are rectangular grooves. The sides of the groove are parallel to the sides of the (four) square fixture. 3. The test piece of the MEMS component of claim 2, wherein the grooves further comprise a plurality of second grooves, the second two grooves being rectangular grooves, and the second concaves The groove is at an angle to the first groove. In the case of the MEMS device described in claim 1, the locating elements comprise adhesives, and the MEMS components 201126145 are fixed in the grooves by adhesive. 5. The test fixture of the MEMS component of claim 1, wherein the positioning component comprises a plurality of cover plates and a plurality of screws, the cover covers the first surface, the first The three surfaces and the fifth surface are used to lock the cover plates to the cube fixture. 6. The test fixture of the MEMS component of claim 2, further comprising a plurality of screw holes disposed on the second surface, the fourth surface and the sixth surface. 7. The test fixture for a MEMS component according to the scope of the patent application, wherein t comprises an adapter plate and a plurality of screws, wherein the second surface, the surface or the sixth surface - The adapter plate is locked, and is fixed to the vibration test or the machine of the impact test. 件之試驗種 第=所述之微機電系統元 之中 固定該些微機電系統元件於該立方體治具之該些凹槽 其中該第一 固定該立方體治具於該振動試驗機台上, 表面朝上; 進行一振動試驗; 其中該 定該立方體治具於該振動試驗機, 弟二表面朝上;以及 m 15 201126145 再次進行該振動試驗。 9. 如申請專利範圍第8項所述之振動試驗方法,更包 . 含:再次固定該立方體治具於該振動試驗機台,其中該第 五表面朝上;以及 再次進行該振動試驗。 10. —種應用申請專利範圍第1項所述之微機電系統元 • 件之試驗治具的衝擊試驗方法,包含; 固定該些微機電系統元件於該立方體治具之該些凹槽 之中; 固定該立方體治具於該衝擊試驗機台上,其中該第一 表面朝上; 進行一衝擊試驗; 再次固定該立方體治具於該衝擊試驗機台上,其中該 第三表面朝上;以及 • 再次進行該衝擊試驗。 11. 如申請專利範圍第10項所述之衝擊試驗方法,更 包含:再次固定該立方體治具於該衝擊試驗機台,其中該 第五表面朝上;以及 再次進行該衝擊試驗。 m 16Fixing the MEMS components in the recesses of the cube, the first fixing of the cube fixture on the vibration testing machine, the surface facing Performing a vibration test; wherein the cube is fixed on the vibration testing machine, the second surface is upward; and m 15 201126145 is again subjected to the vibration test. 9. The vibration test method according to claim 8 of the patent application, further comprising: re-fixing the cube fixture to the vibration test machine, wherein the fifth surface faces upward; and performing the vibration test again. 10. An impact test method for a test fixture of a MEMS element according to claim 1 of the application scope, comprising: fixing the MEMS components in the grooves of the cube fixture; Fixing the cube fixture on the impact test machine, wherein the first surface faces upward; performing an impact test; fixing the cube fixture to the impact test machine again, wherein the third surface faces upward; and The impact test was performed again. 11. The impact test method of claim 10, further comprising: re-fixing the cube fixture to the impact test machine, wherein the fifth surface faces upward; and performing the impact test again. m 16
TW99102470A 2010-01-28 2010-01-28 Fixture and method for vibration or shock testing of mems component TWI400435B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99102470A TWI400435B (en) 2010-01-28 2010-01-28 Fixture and method for vibration or shock testing of mems component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99102470A TWI400435B (en) 2010-01-28 2010-01-28 Fixture and method for vibration or shock testing of mems component

Publications (2)

Publication Number Publication Date
TW201126145A true TW201126145A (en) 2011-08-01
TWI400435B TWI400435B (en) 2013-07-01

Family

ID=45024412

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99102470A TWI400435B (en) 2010-01-28 2010-01-28 Fixture and method for vibration or shock testing of mems component

Country Status (1)

Country Link
TW (1) TWI400435B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181329A (en) * 2014-09-04 2014-12-03 中国兵器工业集团第二一四研究所苏州研发中心 Miniature three-axis vibration sensor assembled three-dimensionally through flexible circuit board
CN109406080B (en) * 2018-12-12 2020-09-15 广州广电计量检测股份有限公司 Clamp and finite element simulation test method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037765A1 (en) * 1995-05-22 1996-11-28 Analog Devices, Inc. Integrated accelerometer test system
US6834154B2 (en) * 2001-07-24 2004-12-21 3M Innovative Properties Co. Tooling fixture for packaged optical micro-mechanical devices
US7104116B2 (en) * 2003-09-25 2006-09-12 Rockwell Automation Technologies, Inc. Fluid sensor fixture for dynamic fluid testing
JP2008166588A (en) * 2006-12-28 2008-07-17 Tokyo Electron Ltd Chip logging method and jig
TWI368280B (en) * 2007-06-08 2012-07-11 Advanced Semiconductor Eng Wafer lever fixture and method for packaging microelectromechanical system device
TW200907374A (en) * 2007-08-09 2009-02-16 Liang-An Lai Testing fixture for MEMS microphone device

Also Published As

Publication number Publication date
TWI400435B (en) 2013-07-01

Similar Documents

Publication Publication Date Title
JP5148665B2 (en) Elastic unit that applies force components with two angles to the contact part of the alignment fixture
KR20170048642A (en) Bi-Directional Folding Type Bending Test Apparatus For Flexible Display
CN110440798A (en) Integrated micro inertial measurement unit and inertial navigation system in high precision
US20150228517A1 (en) Universal process carrier for substrates
JP2011039058A (en) Elastic unit for clamping electronic component extended under electronic component receiving volume of alignment fixture
Li et al. Electromagnetic vibrational energy harvester with microfabricated springs and flexible coils
Gerson et al. Meso scale MEMS inertial switch fabricated using an electroplated metal-on-insulator process
TW201126145A (en) Fixture and method for vibration or shock testing of MEMS component
TW200809214A (en) Sawing tile corners on probe card substrates
TW200305723A (en) Electroconductive contact probe holder
JP2010122057A (en) Probe unit
TW201300756A (en) Impact generating unit and impact generation assembly comprising the same
Li et al. Reliability assessment of a MEMS microphone under shock impact loading
TW200916749A (en) Improved vibrator table frame
JP6523555B2 (en) Planar positioning device and positioning table
Chou et al. Investigation of mechanics properties of an awl-shaped serpentine microspring for in-plane displacement with low spring constant-to-layout area
JP4807730B2 (en) Bending fatigue testing machine and bending fatigue testing method
Singh et al. Design, analysis and testing of multi-axis vibration fixture for electronic devices
JP2005077176A (en) Drop impact testing machine and clamping device of jig used therein
Zhang et al. An electro-thermal SU-8 cantilever micro actuator based on bimorph effect
Battaglia et al. Dynamic response of equivalent orthotropic plate model for stiffened plate: numerical-experimental assessment
Morozov et al. Mechanical strength study of SiO2 isolation blocks merged in silicon substrate
Fang et al. A study of the mechanical reliability of a MEMS microphone
Derakhshani et al. A MEMS-scale vibration energy harvester based on coupled component structure and bi-stable states
JP2019117697A (en) Grid for transmission electron microscope, jig for compression test and analysis unit