TW201125633A - Flue gas desulfurizer - Google Patents

Flue gas desulfurizer Download PDF

Info

Publication number
TW201125633A
TW201125633A TW100111413A TW100111413A TW201125633A TW 201125633 A TW201125633 A TW 201125633A TW 100111413 A TW100111413 A TW 100111413A TW 100111413 A TW100111413 A TW 100111413A TW 201125633 A TW201125633 A TW 201125633A
Authority
TW
Taiwan
Prior art keywords
liquid column
liquid
nozzle
desulfurization
flue gas
Prior art date
Application number
TW100111413A
Other languages
Chinese (zh)
Other versions
TWI430832B (en
Inventor
Keisuke Sonoda
Shozo Nagao
Yoshihiko Tsuchiyama
Tomoo Akiyama
Original Assignee
Mitsubishi Heavy Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Ind Ltd filed Critical Mitsubishi Heavy Ind Ltd
Publication of TW201125633A publication Critical patent/TW201125633A/en
Application granted granted Critical
Publication of TWI430832B publication Critical patent/TWI430832B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • B01D53/185Liquid distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/504Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Nozzles (AREA)

Abstract

A liquid-column flue gas desulfurizer capable of flexibly coping with the change of conditions such as desulfurization performance, field adjustment, and so on, by which the increase of cost and construction time can be minimized. In the liquid-column flue gas desulfurizer for performing desulfurization by bringing absorbing liquid which is jetted upward from a liquid column nozzle (20) and falls in a desulfurization tower and combustion exhaust gas which rises from the bottom of the desulfurization tower into gas-liquid contact with each other, an outlet chip (30) having a different jet flow rate or jet pattern of the absorbing liquid is removably attached to the tip of the liquid column nozzle (20). By attaching a liquid column dispersing mechanism to the tip of the liquid column nozzle, the dispersion of a liquid column can be accelerated and the area of the absorbing liquid brought into contact with the combustion exhaust gas can be increased. Consequently, the desulfurization efficiency can be improved and the size of the desulfurization tower can be reduced, which is very effective in reducing the installation space and cost of the device.

Description

201125633 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種可適用於煤炭燃料、原油燃料及重油 燃料等的發電廠之排煙脫硫裝置,尤其係關於一種使用吸 收液(海水與石灰水等)而脫硫之液柱方式之排煙脫硫裝 置。 【先前技術】 先前,以煤炭或原;由等作為燃料之發電廢+,自鍋爐排 出之燃燒排氣(以下稱「鍋爐排氣」)係將鍋爐排氣中所包 含之二氧化硫(S〇2)等硫氧化物(s〇x)去除後而向大氣中釋 放。作為實施此種脫硫處理之排煙脫硫裝置之脫硫方式, 眾所周知有如下液柱方式之排煙脫硫裝置,即於脫硫塔 之内部使海水或石灰水等吸收液與銷爐排氣進行氣液接觸 而脫硫。 液柱方式之排煙脫硫裝置係藉由於脫硫塔之内部設置複 數個液柱嗔嘴而噴出吸收液,使落下之吸收液與鋼爐排氣 進行氣液接觸而脫硫之裝置。 先刖之液柱方式中,例如圖17、圖18A及圖18B所示, 使用有大致呈圓筒形狀之液柱喷嘴丨。該液柱喷嘴丨自設置 於脫硫塔内之水平方向的頭座2向上而安裝有多個。自該 液柱噴嘴1流出之吸收液成為大致呈圓形剖面之棒狀水 柱,並噴出至按照噴嘴1所設定之特性而規定的液柱高度H 為止,同時,於頂點附近向圓周方向分散至分散幅寬(直 徑)W的程度為止㈣下。再者,液柱分散之分散幅寬職 154694.doc 201125633 大,則吸收液越分散為細小之液滴,從而可增加氣液接觸 之面積。 因而,於液柱方式之排煙脫硫裝置中,除了形成液柱之 吸收液流量之外,對氣液接觸之時間產生影響之液柱高度 Η及對氣液接觸之液滴面積產生影響之吸收液之分散性(分 散幅寬W之直徑及液滴之大小)對於提高脫硫效率較為重 要。 又,上述排煙脫硫裝置之其他先前技術中,存在一種揭 示了以提咼脫硫效果為目的而將吸收水喷霧裝置彼此上下 相異配置之構成者。(例如參照專利文獻;^ [專利文獻1] 2002-1 19827號公報 【發明内容】 然而,於上述排煙脫硫裝置中,作為在使吸收液之流量 為固定之條件下使脫硫率提高之方法,可以考慮增加自液 柱喷嘴喷出之吸收液之液柱高度Η或增加分散性。然而, 由於先前之液柱喷嘴無法進行特性之變更,故對諸條件之 變更進行靈活應對較為困難。 即,為了增加吸收液之流量,必須變更泵等吸收液供給 設備,必須進行大幅增加成本與工期等變更。然而,於無 法變更吸收液之流量之情.形時,必須採用更換多數之液柱 喷嘴而增加液柱高度Η等對策,此種液柱喷嘴之更換亦須 花費成本與時間。 又’自將排煙脫硫裝置之吸收塔小型化而實現成本削減 之觀點考慮,業者期望增加自液柱噴嘴喷出之吸收液之分 154694.doc -4- 201125633 散性從而提高脫硫性能。 根據上述背景’於液柱方式之排煙脫硫裝置中,當實施 脱硫條件等諸條件變更或現場調整等時,業者期^成^ 與工期之增加抑制為最小限度之靈活應對成為可能。 本發明係鑒於上述情形而完成者,其目的在於提供一種 :柱方式之排煙脫硫裝置,該液柱方式之排煙脫硫裝置於 實施脫硫性能等諸條件變更或現場調整時,將成本與工期 之增加抑制為最小限度之靈活應對成為可能…本發明 之目的在於,於液柱方式之排煙脫硫裝置中,冑自液时 嘴喷出之吸收液之分散性提高。 本發明為了解決上述課題,採用以下方法。 本發明之排煙脫硫裝置係一種液柱方式之排煙脫硫裝 置,其於脫硫塔之内部使自液㈣嘴喷出而落下之吸收液 ”自脫〆:之下方上升之燃燒排氣進行氣液接觸而脫硫, 於上述液柱噴嘴之前端部可裝卸地安裝有吸收液之喷出流 速或喷出圖案不同之出口片。 根據此種排煙脫硫裝置,於液柱噴嘴之前端部可裝卸地 安裝有吸收液之噴出流速或喷出圖案不同之出口 [因 此’無須更換全體液柱喷嘴,僅藉由“片之更換便可變 更液柱噴嘴之液柱高度與分散性。 本發月之排煙脫硫裝置係—種液柱方式之排煙脫硫裝置 中,其於脫硫塔之内部使自液柱喷嘴喷出而落下之吸收液 ”自脫之下方上升之燃燒排氣進行氣液接觸而脫硫, 於上述液㈣嘴之前端安裝有液柱分散機構。 154694.doc 201125633 根據此種排煙脫硫裝置,藉由於液柱喷嘴之前端安裝有 液柱分散機構,而可促進液柱之分散以增加吸收液之液 =而可使與燃燒排氣接觸之吸收液之表面積(氣液接 觸面積)增加。再者,液柱分散機構亦可安裝於液 之出口片。 根據上述之本發明’藉由可裝卸地安裝於液柱喷嘴之前 端部的出口片之更換,而可容易變更吸收液之嘴出流速或 喷出圖案。因& ’無須更換全體液柱喷嘴,僅藉由出口片 之更換便可變更液柱喷嘴之液柱高度與分散性。因而,於 實施脫硫性能等諸條件之變更之情形時及必須實施現場調 等之情形時,僅更換出口片即可,因此與更換全體噴嘴之 情形相t匕’將《本與工期之增加抑制為最小限度之靈活 對成為可能。 % 又,藉由於液柱噴嘴之前端安裝液柱分散機構,而可促 進液柱之分散以使與燃燒排氣接觸之吸收液之表面積增 加,因此,藉由脫硫效率之提高,脫硫塔之小型化成為可 能,對裝置之設置空間與成本之降低起到較大效果。 【實施方式】 以下基於圖式對本發明之排煙脫硫裝置之一實施形態進 行說明。 於圖〗6所示之排煙脫硫裝置1〇中,脫硫塔〗〗係如下液杈 方式之裝置,即,於將自以例如煤炭或原油等作為燃料之 發電廠之鍋爐排出之燃燒排氣(以下稱作「鍋爐排氣」)所 含之二氧化硫(S〇2)等硫氧化物(SOx)向大氣釋放之前,使 154694.doc 201125633 之與呈柱狀喷出之海水與石灰水等吸收液進行氣液接觸而 去除。 圖不之排煙脫硫裝置1 〇係按照如下方式而構成者:藉由 向將例如矩形剖面之筒形狀縱向放置之脫硫塔i丨之内部供 給吸收液及鋼爐排氣,使自液柱噴嘴20噴出之吸收液與銷 爐排氣之間產生氣液接觸而去除硫氧化物。 已供給於脫硫塔11之鍋爐排氣,自設置於脫硫塔n之下 部之排氣導入口 1 2而流入至脫硫塔〖丨之内部並上升。已供 給於脫硫塔11之吸收液自配設於脫硫塔n内之頭座13上所 安裝的多數之液柱喷嘴20向上喷出,並於脫硫塔n之内部 上升至液柱之頂點為止後自然落下。 於脫硫塔11之内部,設置特定之間隔而於水平方向排列 複數個頭座13,各頭座13連接於未圖示之吸收液之供給 官。又’多數之液柱噴嘴20等間距地安裝於各頭座13之上 部。該液柱喷嘴20藉由使吸收液向上喷出而形成大致呈圓 柱形狀之液柱。以下’就液柱喷嘴2〇之構成進行具體說 明。 <第1實施形態> 圖1A、圖1B所示之液柱噴嘴2〇係具備喷嘴本體21與可 裝卸地安裝於噴嘴本體21之上端部之出口片30而構成。圖 1A、圖1B所示之構成例中,嘴嘴本體21與出口片3〇之間 藉由喷嘴本體21之外螺紋22與出口片3〇之内螺紋31之旋接 而可裝卸地一體化。再者,雖圖示省略,但於必要部位藉 由襯墊或Ο形環等而實施密封。 154694.doc 201125633 喷嘴本體21係含有頭座安裝用之凸緣23之大致呈圓筒形 狀的部件,於上端部安裝規定喷嘴特性之出口片3〇,藉此 成為含有所希望之特性的液柱喷嘴2〇。 出口片30係規定吸收液之喷出流速或喷出圖案等之部 分,根據必要而準備出σ拟# , $狀及出口尺寸不同之複數個種 ·*員圖1A所不之出口片3〇為圓形剖面,所喷出之吸收液形 成大致呈圓柱狀之液柱,因此,藉由變更吸收液之通道出 口直徑而調整液柱高度。 若為此種構成’則藉由準備複數個出口片30之出口剖面 形狀不同者、或即便為相同剖面形狀而通道出口直徑之尺 寸不同者’而可使吸收液之喷出流速或喷出圖案變化。因 此,液柱喷嘴20藉由更換安裝於前端部之裝卸自如之出口 片30而了谷易變更吸收液之喷出流速或喷出圖案。 圖2Α、圖2Β、圖2C所示之第1變形例之液柱喷嘴20Α之 構造不同,該構造為:使喷嘴本體21A、插入至喷嘴本體 21A之上端部之出口片3〇八可裝卸地一體化。亦即,代替 上述實施形態之旋接構造,而採用使用一對固定帶4〇而將 出口片30八固定於喷嘴本體21A之構造。於該情形時,亦 於必要部位藉由省略圖示之襯墊或〇形環等而實施密封。 再者,圖2A、圖2B、圖2C所示之固定帶4〇係將例如含 有彈性之線材彎曲成形者,藉由將兩端部插入至喷嘴本體 21A之卡止孔(未圖示),而可將處於僅自上方插入而嵌合 之狀態的出口片30A之上端面壓入而固定。 圖3A、圖3B所示之第2變形例之液柱喷嘴2〇]6係自喷嘴 154694.doc 201125633 本體21B之上端部插人出 片3 I诩入出口月30B後,自外周部藉由固定 螺检4 1而固定之禮;生 闰+夕/丨山 構&圖不之例中,3根固定螺栓以120度 間距配設,貫通噴嘴本體21B而到達出口片細之中途, 從而阻止轴方向之蔣私 ]卜卜士 θ (移動以此方式而固定。再者,較好的 疋固定螺检41之使用赵__奶发<5 4β > / , 用数兩又為3根或4根,但並未特別限 定。 圖A圖4B所示之第3變形例之液柱噴嘴2〇c係於 出口片30C設置凸緣部32,自嘴嘴本體21(:之上端部插入 出口片30C後,自上方藉由固定螺栓“而固定之構造。圖 示之例中,3根固定螺栓以12G度間距配設,貫通凸緣部^ 而到達至喷嘴本體21C,藉此形成阻止出口片抓向轴方 向移動之較構造。再者,較好的是該情料之固定螺栓 4 1之使用數一般為3根或4根,但並未特別限定。 <第2實施形態> 圖5A、圖5B所示之液柱喷嘴5〇作為促進形成液柱之吸 收液之刀放的液柱分散機構,係於喷嘴前端部安裝有放射 狀出口60。於圖示之液柱喷嘴5〇中,設置於大致呈圓筒形 狀之喷嘴本體51之前端部的放射狀出口 60,於平面觀察時 含有使呈細長之矩形正交而成之十字狀的出口形狀。亦 P自液柱喷嘴50喷射之吸收液自使細長之矩形正交而成 之十字狀的出口噴出,藉此呈棒狀喷出之液柱因含有傾斜 P 0a而向圓周方向擴散,從而使液柱之分散幅寬^變 大’並於上升過程中捲人㈣之空氣而容易分散成液滴。 因此’當吸收液落下時為分散成比較細小之液滴的狀態, 154694.doc 201125633 從而可使與鍋爐排氣進行氣液接觸之表面積增加。 如此’於藉由吸收液之分散而增加吸收液之表面積(氣 液接觸面積)之狀態下,藉由吸收液而進行之效率較高之 脫硫成為可能,因此,若所使用之吸收液之流量相同,則 僅氣液接觸面積增加,便提高作為裝置全體之脫硫性能。 又,圖5B所示之構成例中,成為液柱分散機構之放射狀 出口 60與液柱喷嘴5〇之喷嘴本體51 一體化,而與上述第i 實施形態相同的是,於不同於喷嘴本體51之出口片上設置 液柱分散機構之放射狀出口 60,藉此亦可成為使放射狀出 口 60相對於喷嘴本體51而可裝卸之構成。 然而,上述實施形態之放射狀出口 6〇平面觀察為十字 狀’但例如圖6A、圖6B所示之放射狀出口 6〇,般,採用將 細長之矩形配置為45度間距之放射狀的出口形狀等,並未 限定為十字狀。 繼而’將上述液柱分散機構之第丨變形例圖示於圖7A、 圖7B而進行說明。該第1變形例中,藉由於液柱喷嘴5〇a 之前端部向圓周方向以特定之間距設置之矩形狀的缺口 61 而形成凹凸形狀部60A,該凹凸形狀部6〇A係作為液柱分 散機構而發揮功能。於此情形時,自缺口61被吸引至液柱 喷嘴5 0 A内之周圍的鋼爐排氣流入至由液柱喷嘴$ 〇 a喷出 之吸收液的液柱中,因此,藉由該鍋爐排氣,吸收液之液 柱之分散得以促進。 又,此情形時之凹凸形狀6〇A並未限定為矩形,例如圖 8A、圖8B所不,藉由三角形狀之缺口61,而形成凹凸形狀 154694.doc -10- 201125633 部60B等,各種變形例皆可。 繼而,將上述液柱分散機構之第2變形例圓示於圖9及圖 10而進行說明。該第2變形例中,於採用先前構造之液柱 喷嘴1之出口附近δ又置成為液柱分散機構之喷射器川、 7〇Α。藉由設置此種喷射器7〇、7〇Α,液柱通過喷射器内 而流動時積極地吸入周圍之鍋爐排氣,因&,該鍋爐排氣 促進液柱之分散。 再者’該變形例中,將噴射器7G、胤與先前構造之液 柱喷嘴1加以組合,而該噴射器70、7〇A當然可與上述第ι201125633 VI. Description of the Invention: [Technical Field] The present invention relates to a flue gas desulfurization device applicable to a power plant of coal fuel, crude oil fuel, heavy oil fuel, etc., in particular, to an absorption liquid (seawater and Lime water, etc.) and desulfurization liquid column type flue gas desulfurization device. [Prior Art] Previously, coal-fired or raw; waste gas generated by fuel, etc., and combustion exhaust gas discharged from the boiler (hereinafter referred to as "boiler exhaust") are sulfur dioxide contained in the boiler exhaust gas (S〇2). After the sulfur oxide (s〇x) is removed, it is released into the atmosphere. As a desulfurization method of the flue gas desulfurization apparatus for carrying out such desulfurization treatment, it is known that there is a liquid column type flue gas desulfurization apparatus, that is, an absorption liquid such as seawater or lime water and a pin grate in the interior of the desulfurization tower The gas is subjected to gas-liquid contact to desulfurize. The liquid column type flue gas desulfurization device is a device for desulfurizing by dropping a absorbing liquid by a plurality of liquid column boring nozzles inside the desulfurization tower, and allowing the falling absorbing liquid to be in gas-liquid contact with the steel furnace exhaust gas. In the liquid column method of the first step, for example, as shown in Fig. 17, Fig. 18A and Fig. 18B, a liquid column nozzle 大致 having a substantially cylindrical shape is used. The liquid column nozzle is mounted in a plurality of heads 2 disposed in the horizontal direction in the desulfurization tower. The absorbing liquid flowing out from the liquid column nozzle 1 is a rod-shaped water column having a substantially circular cross section, and is ejected to a liquid column height H defined according to the characteristics set by the nozzle 1, and is dispersed in the circumferential direction near the apex to Disperse the width (diameter) W to the extent of (four). Furthermore, the dispersion of the liquid column dispersion is 154694.doc 201125633, and the dispersion of the absorption liquid into fine droplets can increase the area of gas-liquid contact. Therefore, in the liquid column type flue gas desulfurization device, in addition to the flow rate of the absorption liquid forming the liquid column, the liquid column height 产生 which affects the gas-liquid contact time and the droplet area of the gas-liquid contact are affected. The dispersibility of the absorbing liquid (the diameter of the dispersion width W and the size of the droplets) is important for improving the desulfurization efficiency. Further, in the other prior art of the above-described flue gas desulfurization apparatus, there has been disclosed a configuration in which the water absorbing spray devices are arranged to be different from each other for the purpose of extracting the desulfurization effect. (For example, refer to the patent document; [Patent Document 1] 2002-1 19827 [Invention] However, in the above-described flue gas desulfurization apparatus, the desulfurization rate is improved under the condition that the flow rate of the absorption liquid is fixed. In this method, it is conceivable to increase the liquid column height Η or increase the dispersibility of the absorbing liquid ejected from the liquid column nozzle. However, since the previous liquid column nozzle cannot change the characteristics, it is difficult to flexibly respond to changes in conditions. In other words, in order to increase the flow rate of the absorbing liquid, it is necessary to change the absorbing liquid supply device such as a pump, and it is necessary to significantly increase the cost and the duration of the change. However, when the flow rate of the absorbing liquid cannot be changed, it is necessary to replace the majority of the liquid. The column nozzle increases the height of the liquid column, etc., and the replacement of the liquid column nozzle also requires cost and time. In view of the fact that the absorption tower of the flue gas desulfurization device is miniaturized to achieve cost reduction, the industry expects to increase The absorption liquid from the liquid column nozzle is divided into 154694.doc -4- 201125633 to improve the desulfurization performance. According to the above background 'in liquid column mode In the case of the flue gas desulfurization apparatus, when the conditions such as the desulfurization conditions are changed, or the on-site adjustment is performed, it is possible to minimize the increase in the period of the company and the increase in the construction period. The present invention has been made in view of the above circumstances. The purpose of the invention is to provide a column-type flue gas desulfurization device, which suppresses the increase of cost and construction period to a minimum when performing conditions such as desulfurization performance change or on-site adjustment. In order to solve the above problems, the present invention is to improve the dispersibility of the absorbing liquid discharged from the nozzle from the liquid in the liquid column type exhaust gas desulfurization apparatus. The invention relates to a flue gas desulfurization device which is a liquid column type flue gas desulfurization device, which is used in a desulfurization tower to discharge a liquid which is ejected from a liquid (four) nozzle and falls. Desulfurization by gas-liquid contact, and an outlet piece having a discharge flow rate or a different discharge pattern of the absorption liquid is detachably attached to the front end of the liquid column nozzle. The device is detachably mounted at the front end of the liquid column nozzle with an outlet flow rate of the absorption liquid or an outlet having a different discharge pattern [so that there is no need to replace the entire liquid column nozzle, and the liquid column nozzle can be changed only by the replacement of the sheet. The height and dispersion of the liquid column. The exhaust gas desulfurization device of the present month is a liquid-column-type flue gas desulfurization device, which is an absorption liquid that is ejected from the liquid column nozzle and dropped in the interior of the desulfurization tower. The combustion exhaust gas rising from the lower side is desulfurized by gas-liquid contact, and a liquid column dispersion mechanism is installed at the front end of the liquid (4) nozzle. 154694.doc 201125633 According to the exhaust gas desulfurization device, by the liquid column nozzle The front end is equipped with a liquid column dispersion mechanism, which can promote the dispersion of the liquid column to increase the liquid of the absorption liquid = and increase the surface area (gas-liquid contact area) of the absorption liquid in contact with the combustion exhaust gas. Further, the liquid column dispersion mechanism It can also be installed in the liquid outlet piece. According to the present invention described above, the flow rate of the nozzle of the absorbent or the discharge pattern can be easily changed by replacing the outlet piece which is detachably attached to the end portion before the liquid column nozzle. Since & ' does not need to replace the entire liquid column nozzle, the liquid column height and dispersion of the liquid column nozzle can be changed only by the replacement of the outlet piece. Therefore, when the conditions such as the desulfurization performance are changed and the on-site adjustment is necessary, only the outlet piece can be replaced, so that the change of the present and the construction period is caused by the replacement of the entire nozzle. It is possible to suppress the flexibility to a minimum. %. By installing the liquid column dispersion mechanism at the front end of the liquid column nozzle, the dispersion of the liquid column can be promoted to increase the surface area of the absorption liquid in contact with the combustion exhaust gas. Therefore, the desulfurization tower is improved by the desulfurization efficiency. The miniaturization is made possible, and the installation space and cost of the device are greatly reduced. [Embodiment] Hereinafter, an embodiment of the flue gas desulfurization apparatus of the present invention will be described based on the drawings. In the flue gas desulfurization apparatus 1 shown in Fig. 6, the desulfurization tower is a device of the following liquid helium type, that is, a combustion which is discharged from a boiler of a power plant using, for example, coal or crude oil as a fuel. Before the sulphur oxide (SOx) such as sulfur dioxide (S〇2) contained in the exhaust gas (hereinafter referred to as "boiler exhaust gas") is released into the atmosphere, the seawater and lime water sprayed in a column shape are 154694.doc 201125633 The absorption liquid is removed by gas-liquid contact. The exhaust gas desulfurization device 1 is constructed by supplying the absorption liquid and the steel furnace exhaust gas to the inside of the desulfurization tower i which is placed longitudinally, for example, in the shape of a cylinder having a rectangular cross section. The absorbing liquid sprayed from the column nozzle 20 generates gas-liquid contact with the pin furnace exhaust gas to remove sulfur oxides. The boiler exhaust gas which has been supplied to the desulfurization tower 11 flows into the desulfurization tower from the inside of the desulfurization tower n and flows into the desulfurization tower. The absorption liquid supplied to the desulfurization tower 11 is ejected upward from a plurality of liquid column nozzles 20 mounted on the headstock 13 disposed in the desulfurization tower n, and rises inside the desulfurization tower n to the liquid column. The apex naturally falls afterwards. Inside the desulfurization tower 11, a plurality of headers 13 are arranged in the horizontal direction at a predetermined interval, and each header 13 is connected to a supply of an absorbent (not shown). Further, a plurality of liquid column nozzles 20 are attached to the upper portions of the respective headers 13 at equal intervals. The liquid column nozzle 20 forms a liquid column having a substantially cylindrical shape by ejecting the absorption liquid upward. Hereinafter, the configuration of the liquid column nozzle 2 will be specifically described. <First Embodiment> The liquid column nozzle 2 shown in Figs. 1A and 1B includes a nozzle body 21 and an outlet piece 30 detachably attached to an upper end portion of the nozzle body 21. In the configuration example shown in FIG. 1A and FIG. 1B, the nozzle body 21 and the outlet piece 3 are detachably integrated by the screwing of the external thread 21 of the nozzle body 21 and the internal thread 31 of the outlet piece 3〇. . Further, although not shown in the drawings, the sealing is performed at a necessary portion by a spacer or a ring-shaped ring or the like. 154694.doc 201125633 The nozzle body 21 is a substantially cylindrical member including a flange 23 for mounting the headstock, and an outlet piece 3规定 having a predetermined nozzle characteristic is attached to the upper end portion, thereby forming a liquid column having desired characteristics. Nozzle 2 〇. The outlet sheet 30 defines a portion of the discharge flow rate or the discharge pattern of the absorbing liquid, and if necessary, prepares a plurality of types of σ # , $ $ 出口 出口 出口 出口 出口 出口 出口 出口 出口 出口 出口 出口 出口 出口 出口 出口 出口 出口 出口 出口 出口 出口 出口In the circular cross section, the ejected liquid forms a substantially cylindrical liquid column, and therefore the liquid column height is adjusted by changing the diameter of the passage outlet of the absorption liquid. In the case of such a configuration, the discharge flow rate or the discharge pattern of the absorbing liquid can be made by preparing a plurality of outlet segments 30 having different outlet cross-sectional shapes or different sizes of the channel outlet diameters even if they have the same cross-sectional shape. Variety. Therefore, the liquid column nozzle 20 changes the discharge flow rate or the discharge pattern of the absorbing liquid by replacing the detachable outlet piece 30 attached to the front end portion. The structure of the liquid column nozzle 20A of the first modification shown in FIG. 2A, FIG. 2B, and FIG. 2C is different in that the nozzle body 21A and the outlet piece inserted into the upper end portion of the nozzle body 21A are detachably attached. Integration. That is, instead of the screwing structure of the above-described embodiment, a structure in which the pair of fixing bands 4A is used to fix the outlet piece 30 to the nozzle body 21A is employed. In this case, the sealing is also performed at a necessary portion by omitting a gasket or a ring-shaped ring or the like as shown. Further, the fixing tape 4 shown in FIGS. 2A, 2B, and 2C is formed by bending a wire member having elasticity, for example, by inserting both end portions into a locking hole (not shown) of the nozzle body 21A. On the other hand, the upper end surface of the outlet piece 30A which is inserted and fitted only from the upper side can be press-fitted and fixed. The liquid column nozzle 2〇6 of the second modification shown in FIG. 3A and FIG. 3B is from the nozzle 154694.doc 201125633. The upper end of the main body 21B is inserted into the sheet 3I, and after the exit month 30B, the outer peripheral portion is used. Fixing the screw test 4 1 and fixing it; in the case of the 闰 闰 + 夕 / 丨 构 & amp amp 图 图 图 图 图 图 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Blocking the direction of the axis of the private] Bubq θ (moving in this way fixed. In addition, the better 疋 fixed thread check 41 use Zhao __ milk hair < 5 4β > /, with the number two again 3 or 4, but it is not particularly limited. The liquid column nozzle 2〇c of the third modification shown in FIG. 4B is provided with a flange portion 32 on the outlet piece 30C, and the nozzle body 32 (from the upper end) After the insertion portion 30C is inserted into the outlet piece 30C, the fixing member is fixed by a fixing bolt. In the illustrated example, the three fixing bolts are disposed at a pitch of 12 G degrees, and pass through the flange portion to reach the nozzle body 21C. The formation structure for preventing the movement of the outlet piece in the direction of the axis is further formed. Further, it is preferable that the number of the fixing bolts 4 1 used is generally 3 or 4 In the second embodiment, the liquid column nozzle 5 shown in FIG. 5A and FIG. 5B is a liquid column dispersion mechanism for facilitating the formation of the liquid column absorbing liquid, and is attached to the nozzle tip end portion. A radial outlet 60 is attached. The radial outlet 60 provided in the front end portion of the nozzle body 51 having a substantially cylindrical shape is shown in the liquid column nozzle 5 of the figure, and has a rectangular shape which is elongated in a plan view. The shape of the cross shape of the cross shape is also formed. The absorbing liquid sprayed from the liquid column nozzle 50 is ejected from the cross-shaped outlet which is formed by orthogonally forming the elongated rectangle, whereby the liquid column ejected in a rod shape contains the tilt P. 0a and diffuse in the circumferential direction, so that the dispersion width of the liquid column becomes larger and larger, and the air of the person (4) is easily dispersed into droplets during the ascending process. Therefore, when the absorption liquid falls, it is dispersed into a relatively small liquid. The state of the drop, 154694.doc 201125633, thereby increasing the surface area of the gas-liquid contact with the boiler exhaust gas. Thus, by increasing the surface area (gas-liquid contact area) of the absorbing liquid by dispersion of the absorbing liquid, Absorbing liquid Since the high-efficiency desulfurization is possible, if the flow rate of the absorption liquid to be used is the same, only the gas-liquid contact area is increased, and the desulfurization performance as the entire apparatus is improved. Further, in the configuration example shown in Fig. 5B, The radial outlet 60 serving as the liquid column dispersion mechanism is integrated with the nozzle body 51 of the liquid column nozzle 5, and the radiation of the liquid column dispersion mechanism is provided on the outlet sheet different from the nozzle body 51 as in the above-described first embodiment. The outlet 60 can be configured to detachably attach the radial outlet 60 to the nozzle body 51. However, the radial outlet 6 of the above-described embodiment is viewed in a cross shape as shown in Fig. 6A and Fig. 6B. In the same manner, a radial outlet such as a rectangular shape in which the elongated rectangular shape is arranged at a pitch of 45 degrees is used, and the shape is not limited to a cross shape. Next, a description will be given of a modification of the third embodiment of the liquid column dispersion mechanism described above with reference to Figs. 7A and 7B. In the first modification, the concave-convex portion 60A is formed by a rectangular notch 61 provided at a predetermined distance from the front end portion of the liquid column nozzle 5〇a in the circumferential direction, and the uneven portion 6A is used as a liquid column. Disperse the organization to function. In this case, the steel furnace exhaust gas sucked from the notch 61 to the periphery of the liquid column nozzle 50A flows into the liquid column of the absorption liquid discharged from the liquid column nozzle $〇a, and therefore, by the boiler Exhaust, the dispersion of the liquid column of the absorption liquid is promoted. Further, in this case, the uneven shape 6A is not limited to a rectangular shape. For example, as shown in FIGS. 8A and 8B, the concave-convex shape 154694.doc -10- 201125633 portion 60B or the like is formed by the triangular-shaped notch 61. Modifications are possible. Next, a second modification of the liquid column dispersion mechanism will be described with reference to Figs. 9 and 10 . In the second modification, the injector δ, which is a liquid column dispersion mechanism, is disposed near the outlet of the liquid column nozzle 1 of the prior structure. By providing such injectors 7〇, 7〇Α, the liquid column actively draws in the surrounding boiler exhaust when flowing through the injector, and the boiler exhaust promotes dispersion of the liquid column. Further, in this modification, the ejector 7G, 胤 is combined with the previously configured liquid column nozzle 1, and the ejector 70, 7A can of course be compared with the above ι

實施形態所示之液柱噴嘴2〇及其變形例組合,亦可與圖5A 至圖8B所示之含有液柱分散機構之液柱喷嘴及其變形例 組合。 繼而,將上述液柱分散機構之第3變形例圖示於圖11A、 圖11B及圖12而進行說明。該第3變形例中,於液柱喷嘴i 之適田位置a又置有成為液柱分散機構之旋流形成裝置。 圖11A、圖11B所示之旋流形成裝置係設置於液柱噴嘴【 之出口附近之旋流器8〇。藉由設置該旋流器8〇,自液柱喷 鳥1噴出之吸收液之液柱形成為旋流,因而,液柱向圓周 方向擴散而增加分散幅寬w之同時,一面旋轉一面上升之 過程中,將周圍之鍋爐排氣吸引至液柱。其結果,吸引至 液柱之鍋爐排氣受旋流之攪拌而促進液柱之分散。 又,作為將自液柱噴嘴1喷射之液柱形成為旋流之旋流 形成裝置,除上述旋流器80之外,有例如圖丨2所示之螺旋 狀L線81。該螺旋狀槽線81係形成於液柱噴嘴丨之内周面 154694.doc 201125633 之螺旋狀槽。因而,自設置有螺旋狀槽線81之液柱喷嘴i 喷射之吸收液之液柱通過噴嘴内時,藉由螺旋狀槽線81形 成旋流而流出,因此,周圍之鍋爐排氣被吸引至液柱,從 而促進液柱之分散。 再者,此種第3變形例亦未限定為與先前構造之液柱喷 嘴1之組合,上述第1實施形態所示之液柱喷嘴2〇及其變形 例當然可組合,亦可與圖5A至圖1〇所示之含有液柱分散機 構之液柱喷嘴50及其變形例組合。 最後,將上述液柱分散機構之第4變形例圖示於圖13八、 圖13B而進行說明。該第4變形例中,於液柱喷嘴丨之適當 位置設置有成為液柱分散機構之氣體吸引口 9〇。圖示之構 成例中,於液柱喷嘴1之出口附近,8個氣體吸引口 9〇呈放 射狀向斜上方穿設。 藉由設置有此種氣體吸引口 90,周圍之鍋爐排氣被吸引 至於喷嘴内流動之吸收液,因此,吸引至液柱之鍋爐排氣 促進液柱之分散。 然而,上述氣體吸引口 9〇之向斜上方之穿設方向與穿設 數量等受到上述圖13A、圖13B之構成例所限定。 又,此種第4變形例亦未限定為與先前構造之液柱喷嘴i 之組合,上述第1實施形態所示之液柱噴嘴20及其變形例 田然可組合,亦可與圖5A至圖12所示之含有液柱分散機構 之液柱喷嘴50及其變形例組合。 如此,根據上述之本發明,藉由可裝卸地安裝於液柱喷 嘴20之前端部之出口片3〇之更換,而可容易變更吸收液之 154694.doc -12· 201125633 喷出流速或噴出圖案。因此,無須更換全體液柱噴嘴 以出口片30之更換便可變更液柱喷嘴2〇之液柱高度η與分 散性W。 ’、刀 因而’即便未變更吸收液之流量,亦可例如圖14所示, 更換為出口直徑較小之噴嘴片30,從而將先前之液柱高度 Η增加至Ha。X ’即便未變更吸收液之流量,亦可例如圖 15所示,使之為安裝有柱狀分離機構之液柱喷嘴50,藉此 雖然液柱高度Hn較先前變低,但可增加分散幅寬 其結果’於實施脫硫性能等諸條件之變更之情形時或必 須實施現場調整等之情形時,僅更換並調整出口片3〇即 可,因此,與更換全體喷嘴之情形相丨,將成本與工期之 增加抑制為最小限度之靈活應對成為可能。 又,藉由於液柱喷嘴之前端安裝液柱分散機構,可促進 液柱之分散,從而可使與燃燒排氣接觸之吸收液之面積增 加,因此,藉由脫硫效率之提高,而可實現脫硫塔之小型 化’且可降低裝置之設置空間與成本。 再者,本發明並非限定於上述實施形態,於不脫離本發 明之要旨之範圍内可進行適當變更。 【圖式簡單說明】 圖1A係與本發明之液柱方式之排煙脫硫裝置的液柱喷嘴 相關之第1實施形態之出口形狀之平面圖。 圖1B係與本發明之液柱方式之排煙脫硫裝置的液柱喷嘴 相關之第1實施形態之剖面圖。 圖2A係表示與圖1 a、圖1B之液柱喷嘴相關之第1變形例 154694.doc •13- 201125633 之出口形狀之平面圖。 圖2B係表示與圖ία、圖1B之液柱噴嘴相關之第1變形例 之剖面圖。 圖2C係表示與圖1 a、圖1Β之液柱噴嘴相關之第1變形例 之正視圖。 圖3A係表示與圖ία、圖iB之液柱噴嘴相關之第2變形例 之出口形狀之平面圖。 圖3B係表示與圖ία、圖1B之液柱喷嘴相關之第2變形例 之剖面圖。 圖4A係表示與圖丨a、圖1B之液柱喷嘴相關之第3變形例 之出口形狀之平面圖。 圖4B係表示與圖ία、圖1B之液柱喷嘴相關之第3變形例 之剖面圖。 圖5 A係表示與本發明之液柱方式之排煙脫硫裝置的、含 有放射狀出口之液柱分散機構之液柱喷嘴相關之第2實施 形態之出口形狀之平面圖。 圖5B係表示與本發明之液柱方式之排煙脫硫裝置的、含 有放射狀出口之液柱分散機構之液柱喷嘴相關之第2實施 形態之剖面圖。 圖6A係表示與圖5A、圖沾所示之含有放射狀出口之液 柱分散機構之液柱喷嘴相關之變形例之出口形狀之平面 圖。 圖6B係表示與圖5A、圖沾所示之含有放射狀出口之液 柱分散機構之液柱喷嘴相關之變形例之剖面圖。 154694.doc 201125633 口之液柱分 之液柱分散 口之液柱分 圖7A係表示與圖5A、圖5]8所示之放射狀出 散機構相關之第1變形例的、含有凹凸形狀部 機構之液柱喷嘴之出口形狀之平面圖。 圖7B係表示與圖5A、圖沾所示之放射狀出 散機構之液柱喷嘴相關之第1變形例之剖面圖。 散 圖8A係與圖7A、圖7輯示之含有凹凸形狀部之液柱分 機構之液柱喷嘴相關之變形例之出口形狀之平面圖。 圖8B係與圖7A、圖冗所示之含有凹凸形狀部 散機構之液柱喷嘴相關之變形例之剖面圖。 之液柱分 圖9係與圖5A、圖5B所示之放射狀出口之液柱分散機構 相關之第2變形例的、含有噴射器之液柱分散機構之液柱 喷嘴之剖面圖。 圖10係表示與圖9所示之含有喷射器之&柱分散機構之 液柱噴嘴相關之變形例的剖面圖。 圖11A係表示與圖5A、圖53所示之放射狀出口之液柱分 政機構相關之第3變形例的' 含有旋流形成裝置之液柱分 散機構之液柱喷嘴之出口形狀的平面圖。 圖11B係與圖5A、圖5B所示之放射狀出口之液柱分散機 構相關之第3變形例的剖面圖。 圖12係表示與圖丨丨所示之含有旋流形成裝置之液柱分散 機構之液柱喷嘴之變形例的剖面圖。 圖13A係表示與圖5A、圖5B所示之放射狀出口之液柱分 散機構相關之第4變形例的、含有氣體吸引口之液柱分散 機構之液柱喷嘴之出口形狀的平面圖。 154694.doc -15· 201125633 圖13B係與圖5A、圖5B所示之放射狀出口之液柱分散機 構相關之第4變形例的剖面圖。 圖Μ係說明與液柱之液柱高度相關之效果的圖。 圖15係說明與液柱之分散幅寬相關之效果的圖。 圖16係表示液柱方式之排煙脫硫裝置之構成概要的圖。 圖17係表示先前之液柱喷嘴之液柱高度及分散幅寬之 圖。 圖1 8A係表示液柱方式之排煙脫硫裝置之先前之液柱噴 嘴之出口形狀的平面圖。 圖18B係表示液柱方式之排煙脫硫裝置之先前之液柱喷 嘴的剖面圖》 【主要元件符號說明】 10 排煙脫硫裝置 11 脫硫塔 13 頭座The combination of the liquid column nozzle 2A and its modification shown in the embodiment may be combined with the liquid column nozzle including the liquid column dispersion mechanism shown in Figs. 5A to 8B and a modification thereof. Next, a third modification of the liquid column dispersion mechanism will be described with reference to FIGS. 11A, 11B and 12. In the third modification, a swirling flow forming device serving as a liquid column dispersion mechanism is further disposed at the field position a of the liquid column nozzle i. The swirl forming device shown in Figs. 11A and 11B is provided in a cyclone 8A near the outlet of the liquid column nozzle. By providing the cyclone 8 〇, the liquid column of the absorbing liquid ejected from the liquid column blasting bird 1 is formed into a swirling flow, so that the liquid column is diffused in the circumferential direction to increase the dispersion width w while rising while rotating. During the process, the surrounding boiler exhaust is attracted to the liquid column. As a result, the boiler exhaust gas sucked into the liquid column is stirred by the swirling flow to promote the dispersion of the liquid column. Further, as the swirling flow forming device that forms the liquid column ejected from the liquid column nozzle 1 as a swirling flow, in addition to the above-described cyclone 80, there is a spiral L line 81 as shown in Fig. 2, for example. The spiral groove line 81 is formed in a spiral groove of the inner circumferential surface of the liquid column nozzle 154694.doc 201125633. Therefore, when the liquid column of the absorption liquid sprayed from the liquid column nozzle i provided with the spiral groove line 81 passes through the nozzle, the spiral flow line 81 forms a swirl flow and flows out, so that the surrounding boiler exhaust gas is attracted to The liquid column promotes dispersion of the liquid column. Further, the third modification is not limited to the combination with the liquid column nozzle 1 of the prior art, and the liquid column nozzle 2 所示 and the modification thereof shown in the first embodiment may of course be combined, or may be combined with FIG. 5A. The liquid column nozzle 50 including the liquid column dispersion mechanism shown in FIG. 1A and a combination thereof are combined. Finally, a fourth modification of the liquid column dispersion mechanism will be described with reference to FIGS. 13A and 13B. In the fourth modification, a gas suction port 9〇 serving as a liquid column dispersion mechanism is provided at an appropriate position of the liquid column nozzle 丨. In the configuration example shown in the figure, in the vicinity of the outlet of the liquid column nozzle 1, the eight gas suction ports 9〇 are laid obliquely upward in a radiating manner. By providing such a gas suction port 90, the surrounding boiler exhaust gas is attracted to the absorption liquid flowing in the nozzle, so that the boiler exhaust gas sucked into the liquid column promotes the dispersion of the liquid column. However, the direction in which the gas suction port 9 is obliquely upward and the number of the piercing and the like are limited by the configuration examples of Figs. 13A and 13B described above. Further, the fourth modification is not limited to the combination with the liquid column nozzle i of the prior art, and the liquid column nozzle 20 and the modification thereof shown in the first embodiment can be combined, and can be combined with FIG. 5A. The liquid column nozzle 50 including the liquid column dispersion mechanism shown in Fig. 12 and a modification thereof are combined. As described above, according to the present invention described above, the discharge flow rate or the discharge pattern of the absorbing liquid can be easily changed by the replacement of the outlet piece 3 that is detachably attached to the end portion of the liquid column nozzle 20. . Therefore, it is possible to change the liquid column height η and the dispersion W of the liquid column nozzle 2 without replacing the entire liquid column nozzle with the replacement of the outlet piece 30. If the flow rate of the absorbing liquid is not changed, for example, as shown in Fig. 14, the nozzle piece 30 having a small outlet diameter can be replaced, thereby increasing the previous liquid column height Ha to Ha. X ' even if the flow rate of the absorption liquid is not changed, for example, as shown in FIG. 15, the liquid column nozzle 50 to which the columnar separation mechanism is attached can be used, whereby the liquid column height Hn can be increased as compared with the previous one, but the dispersion width can be increased. When the conditions of the desulfurization performance are changed, or when it is necessary to perform on-site adjustment, etc., it is only necessary to replace and adjust the outlet piece 3, and therefore, contrary to the case of replacing the entire nozzle, It is possible to suppress the increase in cost and duration to a minimum of flexible response. Moreover, by installing the liquid column dispersion mechanism at the front end of the liquid column nozzle, the dispersion of the liquid column can be promoted, and the area of the absorption liquid in contact with the combustion exhaust gas can be increased, so that the desulfurization efficiency can be improved. The miniaturization of the desulfurization tower' can reduce the installation space and cost of the device. The present invention is not limited to the above-described embodiments, and can be appropriately modified without departing from the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a plan view showing an outlet shape of a first embodiment relating to a liquid column nozzle of a liquid column type flue gas desulfurization apparatus according to the present invention. Fig. 1B is a cross-sectional view showing a first embodiment relating to a liquid column nozzle of a liquid column type flue gas desulfurization apparatus according to the present invention. Fig. 2A is a plan view showing an exit shape of a first modification 154694.doc • 13 to 201125633 relating to the liquid column nozzle of Figs. 1a and 1B. Fig. 2B is a cross-sectional view showing a first modification relating to the liquid column nozzle of Fig. 1B and Fig. 1B. Fig. 2C is a front elevational view showing a first modification of the liquid column nozzle of Figs. 1a and 1B. Fig. 3A is a plan view showing an outlet shape of a second modification relating to the liquid column nozzles of Fig. and Fig. iB. Fig. 3B is a cross-sectional view showing a second modification relating to the liquid column nozzle of Fig. 1B and Fig. 1B. Fig. 4A is a plan view showing an outlet shape of a third modification relating to the liquid column nozzle of Fig. 1A and Fig. 1B. Fig. 4B is a cross-sectional view showing a third modification relating to the liquid column nozzle of Fig. 1B and Fig. 1B. Fig. 5A is a plan view showing the shape of the outlet of the second embodiment relating to the liquid column nozzle of the liquid column dispersion mechanism including the radial outlet of the liquid column type flue gas desulfurization apparatus of the present invention. Fig. 5B is a cross-sectional view showing a second embodiment relating to a liquid column nozzle of a liquid column dispersion mechanism including a radial outlet of the liquid column type flue gas desulfurization apparatus of the present invention. Fig. 6A is a plan view showing an outlet shape of a modification relating to the liquid column nozzle of the liquid column dispersion mechanism including the radial outlet shown in Fig. 5A. Fig. 6B is a cross-sectional view showing a modification relating to the liquid column nozzle of the liquid column dispersion mechanism including the radial outlet shown in Fig. 5A. 153694.doc 201125633 The liquid column of the liquid column dispersion port of the liquid column is shown in Fig. 7A, which shows the first modification of the radial dispersion mechanism shown in Fig. 5A and Fig. 5] A plan view of the exit shape of the liquid column nozzle of the mechanism. Fig. 7B is a cross-sectional view showing a first modification relating to the liquid column nozzle of the radial dispersing mechanism shown in Fig. 5A. Fig. 8A is a plan view showing an outlet shape of a modification relating to the liquid column nozzle of the liquid column dividing mechanism including the uneven portion shown in Figs. 7A and 7 . Fig. 8B is a cross-sectional view showing a modification of the liquid column nozzle including the uneven shape dispersing mechanism shown in Fig. 7A and Fig. 7A. Fig. 9 is a cross-sectional view showing a liquid column nozzle including a liquid column dispersion mechanism of an ejector according to a second modification of the liquid column dispersion mechanism of the radial outlet shown in Figs. 5A and 5B. Fig. 10 is a cross-sectional view showing a modification relating to the liquid column nozzle of the & column dispersion mechanism of the ejector shown in Fig. 9. Fig. 11A is a plan view showing the outlet shape of the liquid column nozzle of the liquid column dispersing mechanism including the swirl forming device according to the third modification of the liquid column dividing mechanism of the radial outlet shown in Figs. 5A and 53. Fig. 11B is a cross-sectional view showing a third modification relating to the liquid column dispersion mechanism of the radial outlet shown in Figs. 5A and 5B. Fig. 12 is a cross-sectional view showing a modification of the liquid column nozzle of the liquid column dispersing mechanism including the swirl forming device shown in Fig. 。. Fig. 13A is a plan view showing an outlet shape of a liquid column nozzle of a liquid column dispersion mechanism including a gas suction port according to a fourth modification of the liquid column dispersing mechanism of the radial outlet shown in Figs. 5A and 5B. 154694.doc -15· 201125633 Fig. 13B is a cross-sectional view showing a fourth modification relating to the liquid column dispersion mechanism of the radial outlet shown in Figs. 5A and 5B. The figure shows the effect of the liquid column height correlation with the liquid column. Fig. 15 is a view for explaining the effect associated with the dispersion width of the liquid column. Fig. 16 is a view showing the outline of the configuration of a liquid column type flue gas desulfurization apparatus. Figure 17 is a graph showing the liquid column height and dispersion width of the prior liquid column nozzle. Fig. 1 is a plan view showing the shape of the outlet of the liquid column nozzle of the liquid column type flue gas desulfurization apparatus. Figure 18B is a cross-sectional view showing the liquid column nozzle of the liquid column type flue gas desulfurization apparatus. [Explanation of main components] 10 Exhaust gas desulfurization apparatus 11 Desulfurization tower 13 head holder

20、 20A、B、C20, 20A, B, C

21、 21A、B、C 30、30A、B、C 40 4121, 21A, B, C 30, 30A, B, C 40 41

50 ' 50' ' 50A 51 液柱喷嘴 喷嘴本體 出口片(喷嘴片) 固定帶 固定螺栓 液柱喷嘴 喷嘴本體 60、60,50 ' 50' ' 50A 51 liquid column nozzle nozzle body outlet piece (nozzle piece) fixing band fixing bolt liquid column nozzle nozzle body 60, 60,

60A、60B 放射狀出口(液柱分散機構) 凹凸形狀部(液柱分散機構) 154694.doc •16· 201125633 61、61' 缺口 70 > 70A 喷射器(液柱分散機構) 80 旋流器(液柱分散機構) 81 螺旋狀槽線(液柱分散機構) 90 氣體吸引口(液柱分散機構) 154694.doc -17-60A, 60B Radial outlet (liquid column dispersion mechanism) Concave-convex shape section (liquid column dispersion mechanism) 154694.doc •16· 201125633 61,61' Notch 70 > 70A Ejector (liquid column dispersion mechanism) 80 Cyclone ( Liquid column dispersion mechanism) 81 Spiral groove line (liquid column dispersion mechanism) 90 Gas suction port (liquid column dispersion mechanism) 154694.doc -17-

Claims (1)

201125633 七、申請專利範圍: 1' 一種排煙脫硫裝置,其係於脫硫塔之内部使自液柱嘴嘴 喷出而落下之吸收液與自脫硫塔之下方上升之燃燒排氣 進行氣液接觸而脫硫之液柱方式之排煙脫硫裝置, 其係於上述液柱喷嘴之前端安裝有液柱分散機構,以 使上述吸收液分散於上述燃燒排氣之方式所構成。 2.如請求項1之排煙脫硫裝置,其中於上述液柱嗔嘴之前 端安裝有放射狀出口。 3·如請求項2之排煙脫硫裝置,其中上述放射狀出口係形 成為使細長之矩形正交而成之十字狀或將上述細長之矩 形配置為45度間距之放射狀的出口形狀。 4. 如請求項丨之排煙脫硫裝置,其中於上述液柱喷嘴之前 端形成有凹凸形狀部。 5. 如請求項4之排煙脫硫裝置,其中上述凹凸形狀部係藉 由於上述液柱喷嘴之前端向圓周方向以特定之間距設置 之矩形狀或三角形狀之缺口所形成。 6·如請求項丨之排煙脫硫裝置,其中於上述液柱喷嘴之前 端安裝有噴射器。 其中於上述液柱喷嘴之出 其中於上述液柱噴嘴之出 7.如請求項i之排煙脫硫裝置, 口附近安裝有旋流器。 8.如請求項丨之排煙脫硫裝置, 口附近安裝有氣體吸引口。 154694.doc201125633 VII. Patent application scope: 1' A flue gas desulfurization device, which is connected to the inside of the desulfurization tower to cause the absorption liquid falling from the nozzle of the liquid column to fall and the combustion exhaust gas rising from the bottom of the desulfurization tower A liquid column type flue gas desulfurization device which is desulfurized by gas-liquid contact, and is provided with a liquid column dispersing mechanism at a front end of the liquid column nozzle to disperse the absorption liquid in the combustion exhaust gas. 2. The flue gas desulfurization apparatus of claim 1, wherein a radial outlet is installed at a front end of the liquid column nozzle. 3. The flue gas desulfurization apparatus according to claim 2, wherein the radial outlet is formed in a cross shape in which the elongated rectangles are orthogonal to each other or a radial outlet shape in which the elongated rectangular shape is arranged at a pitch of 45 degrees. 4. The apparatus according to claim 1, wherein the front end of the liquid column nozzle is formed with a concavo-convex shape. 5. The flue gas desulfurization apparatus according to claim 4, wherein the concavo-convex shape portion is formed by a rectangular or triangular-shaped notch provided at a predetermined interval in the circumferential direction by the front end of the liquid column nozzle. 6. The apparatus of claim 1, wherein the injector is mounted at a front end of the liquid column nozzle. Wherein the liquid column nozzle is out of the liquid column nozzle. 7. If the smoke desulfurization device of claim i is installed, a cyclone is installed near the mouth. 8. If the smoke removal and desulfurization device of the request item is installed, a gas suction port is installed near the mouth. 154694.doc
TW100111413A 2007-11-09 2008-06-20 Flue gas desulfurization device TWI430832B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007292389A JP5254597B2 (en) 2007-11-09 2007-11-09 Flue gas desulfurization equipment

Publications (2)

Publication Number Publication Date
TW201125633A true TW201125633A (en) 2011-08-01
TWI430832B TWI430832B (en) 2014-03-21

Family

ID=40625547

Family Applications (2)

Application Number Title Priority Date Filing Date
TW100111413A TWI430832B (en) 2007-11-09 2008-06-20 Flue gas desulfurization device
TW097123258A TW200920469A (en) 2007-11-09 2008-06-20 Flue gas desulfurizer

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW097123258A TW200920469A (en) 2007-11-09 2008-06-20 Flue gas desulfurizer

Country Status (6)

Country Link
JP (1) JP5254597B2 (en)
IN (1) IN2014DN06945A (en)
MY (1) MY154532A (en)
SA (2) SA111320375B1 (en)
TW (2) TWI430832B (en)
WO (1) WO2009060642A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6162051B2 (en) 2014-01-31 2017-07-12 三菱重工業株式会社 Gas-liquid contact device and CO2 recovery device provided with the same
CN106999889A (en) * 2014-12-04 2017-08-01 埃克森美孚研究工程公司 Fluid injection nozzle for fluidized-bed reactor
KR101793983B1 (en) * 2017-06-27 2017-12-01 한국발전기술(주) Equipment for automatically removing impurities of absorber in flue gas desulferization system and driving method thereof
CN107983545A (en) * 2018-01-04 2018-05-04 中国华电集团科学技术研究总院有限公司 A kind of anti-blocking throttle type nozzle for SCR denitration system ammonia-spraying grid
JP2021065850A (en) * 2019-10-25 2021-04-30 株式会社徳重 Injection port formation member and sprayer using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953828U (en) * 1982-09-28 1984-04-09 三菱重工業株式会社 Gas-liquid contact device
JPH07241429A (en) * 1994-03-04 1995-09-19 Mitsubishi Heavy Ind Ltd Gas-liquid contacting device
JP3785659B2 (en) * 1995-10-26 2006-06-14 石川島播磨重工業株式会社 In-column circulation spray pipe structure

Also Published As

Publication number Publication date
IN2014DN06945A (en) 2015-04-10
TWI430832B (en) 2014-03-21
WO2009060642A1 (en) 2009-05-14
SA08290471B1 (en) 2011-10-03
TW200920469A (en) 2009-05-16
JP2009113016A (en) 2009-05-28
MY154532A (en) 2015-06-30
SA111320375B1 (en) 2014-11-30
JP5254597B2 (en) 2013-08-07
TWI347213B (en) 2011-08-21

Similar Documents

Publication Publication Date Title
TW201125633A (en) Flue gas desulfurizer
ES2875892T3 (en) Spray nozzle for fluidized catalytic cracking
WO2014098081A1 (en) Exhaust gas processing apparatus
ES2360558T3 (en) DEVICE FOR THE DESULFURATION BY WET OF COMBUSTION GASES, AND METHOD OF DESULFURATION BY WET OF COMBUSTION GAS.
US8092582B2 (en) Wet-type exhaust gas desulfurizer
CN1691992A (en) Descaling nozzle
EP1850067A3 (en) Ultra-low NOx burner assembly
WO2003095097A1 (en) Internal mix air atomizing spray nozzle assembly
TWI379703B (en)
TW201210677A (en) Wet-type flue-gas desulfurization device using three-way spray nozzle
TW201503949A (en) Desulfurizer
JP2006255629A (en) Flue gas desulfurization apparatus
US10888885B2 (en) Reductant nozzle with swirling spray pattern
US11534728B2 (en) Reductant nozzle with helical channel design
US20200156022A1 (en) Reductant nozzle with concave impinging surface
JP4434690B2 (en) Spray nozzle and spray method
JP5617892B2 (en) Fuel injection valve
ES2832849T3 (en) Reactor for cleaning gaseous effluents through a dry or near-dry adsorption process
JP5777651B2 (en) Flue gas desulfurization equipment
US10953373B2 (en) Reductant nozzle with radial air injection
JP3093744B2 (en) Flue gas desulfurization equipment
JP2010133652A (en) Burner
WO2018159557A1 (en) Marine vessel desulfurization device and ship having the marine vessel desulfurization device mounted thereto
JP2013158765A (en) Flue gas desulfurization apparatus
JPH08126813A (en) Absorber of wet flue gas desulfurizer

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees