TW201122080A - Organic material and organic electroluminescence devices adopting the same. - Google Patents

Organic material and organic electroluminescence devices adopting the same. Download PDF

Info

Publication number
TW201122080A
TW201122080A TW98146373A TW98146373A TW201122080A TW 201122080 A TW201122080 A TW 201122080A TW 98146373 A TW98146373 A TW 98146373A TW 98146373 A TW98146373 A TW 98146373A TW 201122080 A TW201122080 A TW 201122080A
Authority
TW
Taiwan
Prior art keywords
layer
compound
organic
electron
lithium
Prior art date
Application number
TW98146373A
Other languages
Chinese (zh)
Other versions
TWI616512B (en
Inventor
Yong Qiu
yin-kui Li
Jing Xie
Original Assignee
Bejing Visionox Technology Co Ltd
Kunshan Visionox Display Co Ltd
Univ Tsinghua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bejing Visionox Technology Co Ltd, Kunshan Visionox Display Co Ltd, Univ Tsinghua filed Critical Bejing Visionox Technology Co Ltd
Priority to TW098146373A priority Critical patent/TWI616512B/en
Publication of TW201122080A publication Critical patent/TW201122080A/en
Application granted granted Critical
Publication of TWI616512B publication Critical patent/TWI616512B/en

Links

Abstract

The invention relates to an organic material and organic electroluminescence devices adopting the same. The general structural formula of the material is shown as the following, wherein Ar is a residue selected from polycyclic aromatic hydrocarbon having 6 to 30 carbon atoms. Ar.sub.1 and Ar.sub.2 are respectively selected from hydrogen, an aromatic group having 6 to 24 carbon atoms, and heterocyclic aryl having 6 to 24 carbon atoms; n is an integer selected from 2 to 3. The organic material of the invention can be taken as an electron transport layer in an organic electroluminescence device.

Description

201122080 六、發明說明: 【發明所屬之技術領域】 本發明有關-種新型有機枯料,才采用該類新型有機材 料的有機電致發光器件’屬於有機電致發光顯示技術領域。 【先前技術】 田今,隨者多媒體技術的發展和資訊社會的來臨,對 籲平板顯示器性的要求越來越冑。有機電致發光顯示器具 有自主發光、低電壓直流驅動、全固化、視角寬、顏色豐 画等一系列的優點,回應速度為液晶顯示器的1〇〇〇倍,其 製造成本卻低於同等解析度的液晶顯示器,因此,有機電 致發光顯示器具有廣闊的應用前景。 有機電致發光顯示器(又稱有機發光二極體,〇LED)的 研究始於上世紀60年代,pope等人(p〇pe M , Kallmann肝 和 Magnante R. J·,chem. Phys.,1963,38,2042)首次 鲁報導了葱單晶的電致發光現象,揭開了有機固體電致發光 的序幕。1 987年,美國柯達公司的研究人員(:$1^即等 (C. W. Tang ’ S. A. Vansiyke , Appi. PhyS· Lett. , 1987 , 51,913)在總結前人工作的基礎上,提出了雙層結構的設 計思想’ €擇具有較好成膜性能的三芳胺類化合物和8_輕 基喹啉鋁配合物(A1q〇分別作為空穴傳輸層和發光層(兼 電子傳輸層),得到了高量子效率(1 %)、高效率(1. 5 lm/W)、尚焭度(&gt;i〇0〇cd/m2)和低驅動電壓(〈1〇v)的有機電 致發光益件。1 990年,劍橋大學Cavendish實驗室的R. H. 201122080201122080 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a novel organic organic material, and an organic electroluminescent device using the novel organic material is a field of organic electroluminescence display technology. [Prior Art] Tian Jin, with the development of multimedia technology and the advent of the information society, is increasingly demanding the demand for flat panel display. The organic electroluminescent display has a series of advantages such as autonomous illumination, low voltage DC drive, full curing, wide viewing angle, and rich color painting. The response speed is 1 times that of the liquid crystal display, and the manufacturing cost is lower than the equivalent resolution. Liquid crystal displays, therefore, organic electroluminescent displays have broad application prospects. The study of organic electroluminescent displays (also known as organic light-emitting diodes, 〇LEDs) began in the 1960s, pope et al. (p〇pe M, Kallmann Liver and Magnante R. J., chem. Phys., 1963). , 38, 2042) For the first time, Lu reported the electroluminescence of onion single crystals, which unveiled the prelude of organic solid electroluminescence. In 1987, the researchers of Kodak Company of the United States (CW Tang 'SA Vansiyke, Appi. PhyS· Lett., 1987, 51, 913) proposed a two-layer structure based on the work of the predecessors. The design idea is to select a triarylamine compound with good film-forming properties and an aluminum complex of 8_light quinolate (A1q〇 as a hole transport layer and a light-emitting layer (both electron transport layer), respectively, to obtain high quantum Efficiency (1%), high efficiency (1.5 lm/W), stillness (&gt;i〇0〇cd/m2), and low electro-luminescence (<1〇v) organic electroluminescence. 990, RH 201122080, Cavendish Laboratory, University of Cambridge

Friend 等(Burroughes :,以如巧 D d c 士咖 A R,Friend et al. (Burroughes:, by the way D d c 士咖 A R,

Friend R H’ Nature’ 199〇’ 347 ’ 539)以㈣笨撐乙稀(間 為發光層材料製成了聚合物電致發光器件,開闢了發光器 件的又-個新領域――聚合物薄膜電致發光器件。這兩個 突破性進展使人們看到了有機電致發光器件作為新一代平 板顯示器件的潛在希望。 有機電致發光器件由兩個相對的電極和位於電極之間 的有機介質組成,有機介質層包括空穴注Λ層、^專輸 層、發光層、電子傳輸層、電荷阻擋層等。研究普遍認為, 0LED器件中空穴往往多於電子,造成複合介面處兩種載流 子的不平衡,降低了器件的亮度和效率。同時,多餘的空 穴容易進入電子傳輸層’甚至陰極’加速器件的老化,降 低了 0LED壽命。所以,提高電子的注入和傳輸成為了業界 廣泛關注和研究的課題。除了高效和穩定的陰極之外,位 於發光層和陰極之間通常設置有空穴阻擋層、電子傳輸 層、電子注入層,分別起到阻擋空穴限制激子在發光區域、 輸送電子、注入電子的作用。 在有機電致發光器件中傳統使用的電子傳輸材料是 Alqs,但Alqa的電子遷移率比較低(大約在1〇-6cm2/Vs)。為 了提高有機電致發光器件的電子傳輸性能’研究人員做了 大量的探索性研究工作。Yang Yang等人在有機電致發光 器件中用納米級碳酸鎚作為電子傳輸和注入材料,提高了 器件的發光效率(AdvancedFunctional Materials,2007, 17,1 966 - 1 973)。LG化學株式會社報導,將笨並咪唑、 201122080 苯並嗟哇或苯並嗓崎彳卜人此&amp; &amp; 坐化D物作為電子傳輸材料用於有機電Friend R H' Nature' 199〇' 347 ' 539) is a new type of polymer light-emitting device made of (4) stupid ethylene (a new light-emitting device) Electroluminescent devices. These two breakthroughs have led to the potential of organic electroluminescent devices as a new generation of flat panel display devices. The organic electroluminescent device consists of two opposing electrodes and an organic medium between the electrodes. The organic medium layer includes a hole injection layer, a special transmission layer, a light-emitting layer, an electron transport layer, a charge blocking layer, etc. It is generally believed that the 0LED device tends to have more holes than electrons, resulting in two carriers at the composite interface. The imbalance reduces the brightness and efficiency of the device. At the same time, the excess holes easily enter the electron transport layer 'even the cathode' to accelerate the aging of the device and reduce the lifetime of the OLED. Therefore, increasing the injection and transmission of electrons has become a widespread concern in the industry. And research topics. In addition to efficient and stable cathodes, a hole blocking layer, electron transport is usually provided between the light-emitting layer and the cathode. The layer and the electron injecting layer respectively function to block hole-limited excitons in the light-emitting region, transport electrons, and inject electrons. The electron-transporting material conventionally used in organic electroluminescent devices is Alqs, but the electron mobility of Alqa is compared. Low (about 1〇-6cm2/Vs). In order to improve the electron transport performance of organic electroluminescent devices, researchers have done a lot of exploratory research work. Yang Yang et al. used nanoscale carbonic acid in organic electroluminescent devices. Hammer as an electron transport and injection material improves the luminous efficiency of the device (Advanced Functional Materials, 2007, 17, 1 966 - 1 973). LG Chemical Co., Ltd. reported that it will be stupid imidazole, 201122080 benzopyrazine or benzoxazaki彳卜人 this &amp;&amp; sitting D object as an electron transport material for organic electricity

致發光器件(中國專利申請號20_0041587.4,公開號CN 1013Ώ5071Α),改善了哭处以而 了器件的電子注入性能,降低了起亮電 壓,曰鏞等人合成出三聯芴的衍生物銨鹽(簡稱 FFF-Blm4)(J. Am. Chem. Soc. &gt;2008 - 1 30(1 1 )&gt; 3282-3283)The electroluminescent device (Chinese Patent Application No. 20_0041587.4, publication No. CN 1013Ώ5071Α) improves the electron injecting performance of the device due to the crying, reduces the starting voltage, and synthesizes the derivative ammonium salt of the triterpenoid ( Referred to as FFF-Blm4) (J. Am. Chem. Soc. &gt; 2008 - 1 30 (1 1 )&gt; 3282-3283)

作為電子注入層材料 I丄L ^ 何枓大大地改善了器件的電子注入和傳 輸,提高了電發光树座. 尤效旱,曹鏞等人也用對空氣及各種化學As the material of the electron injecting layer, I丄L ^ greatly improved the electron injection and transmission of the device, and improved the electroluminescence tree block. The special effect drought, Cao Yu et al. also used air and various chemicals.

腐钱都穩定的金作&amp;古47 a 」隻邗馮间效電子注入型陰極材料提高了有 電致發光器件的電子注入能力(〇_ _〇_, 2005 6 1 18 - 128)。開發穩定高效的電子傳輸材料和/ 或電子,人材料,從而降低起亮電壓,提高器件效率 長器件壽命,具有很重要的實際應用價值。 理想的電子傳輸材料,應該具有以下幾方面的特性. 具有可逆的電化學還原反應;職〇請〇能級合適.雷 子遷移率高;成膜性好;Tg高;最好能夠阻擋空 合物結構方面,要龙八 化 要^子構型接近平面,增加分子堆疊時 刀子之間的h相互作用,同時要求分子結構不能 平面,防止因為分子結晶影響成膜性能;要求分子含= 電子結構單元’具有良好的接受電子能力;分子量足夠有缺 保證具有較高,從而具有良好的熱穩定性,同時, 量不能太大,以利於真空蒸鍍成膜。 【發明内容】 是典型的缺電子體系,具有良 含有°比啶基的化合物 201122080 好的接受電子能力;葙搭* 裒方烴的平面規整性較好,稠環體 系越大,平面性越好,越八 形成電子通道。但太大_/刀子的^軌道堆疊和 不… 大的稠㈣系則易使分子形成結晶而 不易成膜,因此本發明在 子的吼絲相連,在空門立;基礎上?丨人笨環與缺電 “ 間立體上形成-定程度曲扭,增加 其成膜性。考慮到真空蒸錄的難易及實 電子傳輸材料其分子量-般不超過_。本發明的 基於以上考慮’本發明開發出一類新型有機材料,該 材料具有良好的數穩宕^ 光…… 局電子遷移率,在有機電致發 “件中可作為電子傳輸能力較強的一類材料。 本發明提供-種有機材料,其結構通式如下所示: Δη 迤The gold-burning &amp; ancient 47 a ” 间 间 间 效 电子 电子 电子 电子 电子 电子 电子 电子 提高 提高 提高 提高 提高 提高 提高 提高 提高 提高 提高 提高 提高 提高 提高 提高 提高 提高 提高 提高 提高 提高 提高 。 。 。 。 。 。 。 。 。 。 。 Development of stable and efficient electron transport materials and / or electronics, human materials, thereby reducing the brightening voltage, improving device efficiency Long device life, has important practical application value. The ideal electron transport material should have the following characteristics. It has a reversible electrochemical reduction reaction; the 〇 energy level is suitable for the job. The mine has high mobility; the film formation is good; the Tg is high; In terms of the structure of the material, it is necessary to make the sub-configuration close to the plane, increase the h interaction between the knives during the molecular stacking, and at the same time require that the molecular structure cannot be planar, to prevent the film formation performance due to molecular crystallization; The unit 'has good electron accepting ability; the molecular weight is sufficient to ensure that it has a high thermal stability, and the amount is not too large to facilitate vacuum evaporation to form a film. [Summary of the Invention] It is a typical electron-deficient system, which has a good acceptability of electrons with a compound containing pyridine group 201122080. The planarity of the ruthenium hydrocarbon is better. The larger the condensed ring system, the better the planarity. The more eight forms an electronic channel. But too large _ / knife ^ track stack and not ... large thick (four) system is easy to make the crystals formed and not easy to form a film, so the present invention is connected to the filaments, in the empty door; on the basis? The stupid ring and the lack of electricity are formed in a three-dimensional manner to increase the film forming property. Considering the difficulty of vacuum steaming and the molecular weight of the solid electron transporting material, the molecular weight does not exceed _. The present invention is based on the above considerations. The invention develops a new type of organic material which has good number stability and light. The local electron mobility can be used as a kind of material with strong electron transport capability in organic electroluminescence. The invention provides an organic material whose structural formula is as follows: Δη 迤

^和^ 碳原子數為6至30的稠環芳煙的殘基 ^和b分別獨立地選自氫原子、碳原子數為&amp; 香基團、碳原子數為6至24的雜環 的整數。 n選自2至, 本發明還提供上述有機材料 中的電子傳輸材料的用途。在作為有機電致發光器件 本發明還提供-種有機電致發光器件, 電極和設置在該對電極之間 :. 介質中上述有機材料。 質該有機發光 201122080 實施方式 本發明 有機材料的結構通式如下 所示:^ and ^ The residues ethane and b of the condensed aromatic aryl group having 6 to 30 carbon atoms are each independently selected from a hydrogen atom, a heterocyclic group having a carbon number of &amp; a fragrant group and a carbon number of 6 to 24. Integer. n is selected from 2 to, and the present invention also provides the use of the electron transporting material in the above organic material. In the present invention as an organic electroluminescent device, the present invention also provides an organic electroluminescent device having an electrode disposed between the pair of electrodes: the above organic material in the medium. The organic light emission 201122080 Embodiment The structural formula of the organic material of the present invention is as follows:

NN

Ar-Ar-

其中,紅選自碳原子 An和An分別獨立地 ’&quot;、至3〇的祠環芳烴的殘基; 香基團、碳原子數為“風原子、碳原子數為6至24的芳 的整數 24的雜環芳香基,、選自2至3 本發明的化合物結構 襌通式具體如下所示:Wherein, red is selected from the residues of the anthracene aromatic hydrocarbons of the carbon atoms An and An, respectively, which are independently '&quot; to 3 ;; the fragrant group, the number of carbon atoms is "the wind atom, the aryl group having 6 to 24 carbon atoms" The heterocyclic aryl group of the integer 24, which is selected from the group consisting of 2 to 3, is as follows:

^ 4;2 A 4? (2)^ 4;2 A 4? (2)

(4)(4)

(6)(6)

其中,Ar選自碳原子數 (7) 藏马6至30的雜Wherein, Ar is selected from the group consisting of carbon atoms (7) Tibetan horses 6 to 30

An和An分別獨立地選 稠每方烴的殘基’·An and An independently select the residue of each hydrocarbon in each case.

^ % 9風原子、碳原子I π于數為6至24的芳 7 201122080 香基團、碳原子數為6至24的雜環芳香基;η選自2至3 的整數。 為了更清楚說明本發明内容,下面具體畫出了本發明 有關到的化合物類型中的優選結構: (1)當η = 2時,一些主要電子傳輸材料結構如下:^ % 9 wind atom, carbon atom I π in the number 6 to 24 aryl 7 201122080 fragrant group, a heterocyclic aryl group having 6 to 24 carbon atoms; n is selected from an integer of 2 to 3. In order to more clearly illustrate the present invention, the preferred structures of the types of compounds to which the present invention pertains are specifically drawn below: (1) When η = 2, some of the major electron transporting materials are structured as follows:

2-7 2-82-7 2-8

8 2011220808 201122080

2-92-9

2-102-10

2-112-11

2-122-12

2-132-13

2-142-14

2-152-15

2—162-16

2-172-17

2-18 9 2011220802-18 9 201122080

2-242-24

2-262-26

2-292-29

2-30 ίο 2011220802-30 ίο 201122080

(2)當n=3時,典型的電子傳輸材料結構如下:(2) When n=3, the typical electron transport material structure is as follows:

11 20112208011 201122080

本發明還有關一 器件。 種具有更高性能的新型有機 電致發光 本發明的有機電致逾:#哭 電子傳輪㈣1: 上述新型化合物作The invention is also related to a device. Novel organic electroluminescence with higher performance The organic electroluminescence of the present invention: #哭电子传轮(四)1: The above novel compound

…/適的卿和L_能級,具有較 的電子注入能力和電子值士 電子的能力,進而明二增強了向發光區域提' 件的亮度和發光效率。 0 #驅動電提高了i 本發明的有機電致發 拉發U件㈣上述新型化合物 時可選取其他合適的 明 電子傳輸層和空穴阻擋層 、的材枓、優化器件的結 能層一一雷早稂私应/. 稱貫現兩/ 的合併,保證1 有效傳輸㈣時防以g “货’保.../ Appropriate Qing and L_ level, with better electron injection capability and electronic value of electrons, and thus enhance the brightness and luminous efficiency of the light-emitting area. 0 #驱动电增强 i The organic electroluminescent U-piece of the present invention (4) The above novel compound can be selected from other suitable electron-transporting layers and hole-blocking layers, materials, and the device layer of the optimized device. Lei early privately should be /. It is said that the merger of the two /, to ensure that 1 effective transmission (four) when the defense against the "goods"

可獲得”… 陰極引起的加速裂化, 獲…且穩定的有機電致發光器件。 本發明的有機雷&amp;|, %nr 電致發光器件同時選取盥上述新型 物匹配的還原性物質作 …新i 入勢叠1高電子的注入夠進一步降低電 化合物主體材料之中,能夠=時推雜劑分散在本 到提高器件穩定性, 刀子之間的相互作用 ^ ^ = 〇裔件哥命的作用。另一方面 發先層和電子注入傳輸功能 … 料選用具有電子傳輪性的有機:Α緩衝層’緩衝 有機材料,能夠從空間上分 12 201122080 發光層和還原摻雜劑, 形成發光淬滅中心二了摻雜劑擴散遷移到發光區域 古 因而緩衝層有利於器件穩定性的進_ =選,Γ的壽命。而電子傳輪性的材料作為緩衝 求,不舍广保證15件驅動電壓和效率等達到實用化要 求不會給益件性能帶來新的負擔。It is possible to obtain "...the accelerated cracking caused by the cathode, the stable and stable organic electroluminescent device. The organic thunder &amp;|, %nr electroluminescent device of the invention simultaneously selects the reductive substance matched by the above novel substance for...new i Injecting high-injection of high-electron electrons is enough to further reduce the main material of the electro-chemical compound, and the interfering agent can be dispersed to improve the stability of the device, and the interaction between the knives ^ ^ = the role of the scorpion On the other hand, the first layer and the electron injection transmission function... The material is selected to have an electron-transporting organic: Α buffer layer 'buffer organic material, which can be spatially divided into 12 201122080 luminescent layer and reducing dopant to form luminescence quenching. At the center of the second, the dopant diffuses and migrates to the light-emitting region. Therefore, the buffer layer is beneficial to the stability of the device. The electron-transfer material is used as a buffer to ensure that 15 driving voltages are guaranteed. Achieving practical requirements such as efficiency will not impose a new burden on the performance of the benefit piece.

㈣有機電致發光11件制上述新型化合物摻雜 =屬作為連接層中的Ν型層,優選Ν/ρ連接層將二 或兩個^的發先單元連接起來,作為電荷生成層。叠加 固發光單7L的态件的電流效率是單個發光器件電流效率 的Ώ倍,而驅動電虔小於等於單個發光器件的η倍,則本 發明的器件功率效率也獲得一定提高。 古.此外’本發明的材料玻璃化轉變溫度較高,穩定性較 南;材料具有較低的分子量和較低的薄膜沉積溫度,有利 於熱蒸鍍形成均勻、緻密的薄膜,製備工藝相對簡單。 本發明同時提出一種有機電致發光器件,其中包含一 對^極和設置在該對電極之間的有機發光介質,該有機發 光71質中包含選自上述通式中本發明的新材料。 上述本發明的有機器件中的發光介質中包括發光層和 電子傳輪層功能層,上述本發明的新材料用在上述的電子 傳輸功能層中。 上述電子傳輸功能層中還包含另一種電子傳輸材料, 該材料選自以類化合物、金屬螯合物、三唾類化合物、 米。圭類化合物、二氮菲類化合物或惹類化合物。 上述°惡嗤類化合物、金屬螯合物、三唑類化合物、咪 13 201122080 —物一氮菲類化合物或蒽類化合物包括:2-(4_ ' ^ ) 5 (4~聯苯基)-1,3, 4-噁二唑、三(8_羥基喹 啉)紹3 (4耳葬笨基)苯基_5_(4_丁基苯基三 唑、4, 7-二苯基〜]] ,10-鄰菲咯啉、2, 9-二甲基_4, 7-二苯基 _1’1〇=嘻嘛、2-苯基-9,10-二萘葱。 v 兩種電子傳輸材料的電子傳輸功能層中還摻 雜有鹼金屬、鹼金Μ条几此 屬氧化物、鹼金屬函化物、鹼金屬氮化 物、驗金屬鹽。 上述摻雜劑選自鐘、絶、氮化鐘、氣化鐘、録酸經、 氧化鐘8經基嗤琳鐘、碳酸錐、删氣化卸、鄉氣化鐘、 氟化鈉、氣化鈉、氟化鉋、氯化鉋、氧化铷。 上述換雜劑名Φ J2. a* 電子傳輸功此層中的摻雜濃度為 U~4W,基於主體材料的重量。 上述本發明的有機器件中的發光介質中包 電子注入和傳輪功能屉甘士备 發先層和 得輸力能層’其中電子注入和傳輸功能 3上述本發明的新型化合物,同時還包含有摻雜劑,上 摻雜劑選自驗金屬、驗A凰备 ^ 驗金屬氧化物、鹼金屬函化物、鹼金 屬氮化物、驗金屬鹽。 1 上述推雜劑選自鐘、铯、氣化鐘、氣化鐘、 氧化經、8,基啥琳鐘、碳酸铯、蝴氣化钟、哪氣化鐘 氟化鈉、氯化鈉、氟化鉋、氣化鉋、氧化铷。 上述電子注入和傳輸功能層厚度為2nm〜4〇nm, 厚度為5nin 25mn ’電子注人和傳輸功能層中摻雜推雜 比例為重量百分比〇魯49%,優選的摻雜 :雜 S百分 14 201122080 比 0.5%~30% 。 上述本發明的有機電致發光器件中,電子注入和傳輸 功能層與發光層之間還包括緩衝層,上述緩衝層的材料選 自上述本發明的新型化合物,或者選自噁唑類化合物、金 屬配合物、二唑類化合物、咪唑類化合物、喹啉類化合物、 喔啉類化合物、二氮蒽類化合物、二氮菲類化合物。(IV) Organic electroluminescence 11-pieces The above-mentioned novel compound doping = is a quinoid layer in the connection layer, and preferably the Ν/ρ connection layer connects two or two priming units as a charge generation layer. The current efficiency of the state in which the solid-state single 7L is superimposed is twice the current efficiency of a single light-emitting device, and the driving power is less than or equal to n times the single light-emitting device, and the power efficiency of the device of the present invention is also improved. In addition, the material of the invention has a higher glass transition temperature and a higher stability; the material has a lower molecular weight and a lower film deposition temperature, which is favorable for forming a uniform and dense film by thermal evaporation, and the preparation process is relatively simple. . The present invention also proposes an organic electroluminescent device comprising a pair of electrodes and an organic luminescent medium disposed between the pair of electrodes, the organic light-emitting substance 71 comprising a novel material selected from the above-mentioned general formula. The luminescent medium in the above organic device of the present invention comprises a light-emitting layer and an electron-transport layer functional layer, and the above novel material of the present invention is used in the above-mentioned electron-transporting functional layer. The electron transport functional layer further comprises another electron transporting material selected from the group consisting of a compound, a metal chelate compound, a trisalt compound, and rice. a compound, a phenanthroline compound or a stimulating compound. The above-mentioned oxime compound, metal chelate compound, triazole compound, imi 13 201122080 - phenanthroline compound or steroid compound includes: 2-(4_ ' ^ ) 5 (4~biphenyl)-1 , 3, 4-oxadiazole, tris(8-hydroxyquinoline) Shao 3 (4 ears buried base) phenyl _5_(4_butylphenyltriazole, 4, 7-diphenyl~]] , 10-phenanthroline, 2, 9-dimethyl-4, 7-diphenyl_1'1〇=嘻, 2-phenyl-9,10-naphthalene. v Two electron transport The electron transport functional layer of the material is also doped with an alkali metal, an alkali metal lanthanum, an oxide, an alkali metal complex, an alkali metal nitride, and a metal salt. The dopant is selected from the group consisting of a clock, a nitriding, and a nitriding. Clock, gasification clock, acid recording, oxidation clock 8 by 嗤 嗤 钟 clock, carbonate cone, degassing and unloading, town gasification clock, sodium fluoride, sodium gasification, fluorination planer, chlorination planer, bismuth oxide The above-mentioned dopant name Φ J2. a* Electron transporting work The doping concentration in this layer is U~4W, based on the weight of the host material. The electron injection and transfer function of the luminescent medium in the organic device of the present invention described above. The drawers are ready for the first layer and the power layer Electron injection and transport function 3 The novel compound of the present invention described above further comprises a dopant selected from the group consisting of metallurgical inspection, metal oxide, alkali metal complex, alkali metal nitride, Metal salt is tested. 1 The above-mentioned dopant is selected from the group consisting of bell, bismuth, gasification clock, gasification clock, oxidized chemistry, 8, 啥 啥 钟 clock, cesium carbonate, 气 gasification clock, which gasification clock sodium fluoride, chlorine Sodium hydride, fluorinated planer, gasification planer, yttrium oxide. The thickness of the above electron injection and transport functional layer is 2nm~4〇nm, thickness is 5nin 25mn 'Doping ratio of doping in the electron injection and transmission functional layer is weight percentage 49%, preferably doping: impurity S percentage 14 201122080 is more than 0.5% to 30%. In the above organic electroluminescent device of the present invention, a buffer layer is further included between the electron injecting and transporting functional layer and the light emitting layer. The material of the buffer layer is selected from the above novel compounds of the present invention, or is selected from the group consisting of an oxazole compound, a metal complex, a diazole compound, an imidazole compound, a quinoline compound, a porphyrin compound, and a diazonium compound. Diazophenan Compound.

上述緩衝層的材料優選選自本發明上述2_ι至2_38和 3-1至3-3的化合物,或者選自2__(4_叔丁基苯基)_5_(4_ 聯苯基)-1,3,4-噁二唑、三(8_羥基喹啉)鋁、3_(4_聯苯 基)-4-苯基-5-(4-丁基苯基)_〗,2, 4_三唑、4, 7_二苯基 -ι’ιο-鄰菲咯啉、2,9-二甲基_4 7_二苯基_11〇_鄰菲咯 琳、和2-苯基-9, 10-二萘蒽。 上述緩衝層的厚度為2nm〜20nm。 上述本發明的有機電致發光器件中,有機發光介質中 包含至少兩個發光單元,發光單元間設置連接層,上述連 接層中包含上述本發明的新型化合物。 -上述連接層中還摻雜有選自鹼金屬、鹼金屬氧化物、 金屬南化物、驗金屬氮化物、和驗金屬鹽的摻雜劑。摻 雜劑優選自鐘、鉋、氮化經 '氟㈣、錢鐘、氧化經、 8-羥基喹啉鋰、碳酸铯、硼氫化鉀 '棚氫化鋰、氟化鈉、 氯化鈉、氟化絶、氯化铯、氧化麵。 材料的合成方法實施例: 本發明中所用的各種吡啶基硼酸、苯基吡啶基硼酸、 15 201122080 吡啶基苯基硼酸、各種溴代某、 埜廿贫 a /臭代茈、溴代萘、苜酿、 本並蒽醌、二苯並蒽等基礎化 心-昆 方便買到,久錄#且' 在化工產品市場 更貝到各種本基吡啶基硼酸 ^.^aa , 普通有機方法合成。 本發明中所用的各種溴代攀 从 * 代比咬、蒽醌、苯並質、醞、 一本並蒽等基礎化工K料的 〜 原科均可在國内化工產品市場方便買 到,各種溴代蒽、溴代茈、各 種本基°比咬基硼酸均可用普 通有機方法合成。 j j «曰 實施例 下面闡述本發明中部分主要化合物的合成方法 合成例1化合物2-1的合成 (1)第一步反應The material of the above buffer layer is preferably selected from the above compounds of the above 2_ι to 2_38 and 3-1 to 3-3 of the present invention, or selected from 2__(4-tert-butylphenyl)-5-(4-diphenyl)-1,3. 4-oxadiazole, tris(8-hydroxyquinoline)aluminum, 3-(4-diphenyl)-4-phenyl-5-(4-butylphenyl)-, 2,4-triazole, 4, 7_Diphenyl-ι'ιο-phenanthroline, 2,9-dimethyl-4-7-diphenyl_11〇_phenanthroline, and 2-phenyl-9, 10- Naphthoquinone. The buffer layer has a thickness of 2 nm to 20 nm. In the above organic electroluminescence device of the present invention, the organic light-emitting medium contains at least two light-emitting units, and a connection layer is provided between the light-emitting units, and the above-mentioned connection layer contains the above-described novel compound of the present invention. The above connecting layer is further doped with a dopant selected from the group consisting of an alkali metal, an alkali metal oxide, a metal hydride, a metal nitride, and a metal salt. The dopant is preferably self-clocked, planed, nitrided by 'fluorine (tetra), Qian Zhong, oxidized, 8-hydroxyquinoline lithium, cesium carbonate, potassium borohydride 'sodium hydride lithium, sodium fluoride, sodium chloride, fluorinated Absolute, bismuth chloride, oxidation surface. Materials Synthesis Method Examples: Various pyridyl boronic acids, phenylpyridylboronic acids, 15 201122080 pyridylphenylboronic acid, various brominated, wild scorpion a/odor oxime, brominated naphthalene, anthracene used in the present invention The basic heart of brewing, Benzo, dibenzopyrene and so on is easy to buy, and the long-term recording and long-term recording in the chemical product market is more common in various organic pyridyl boric acid ^.^aa. The various bromines used in the present invention can be easily purchased in the domestic chemical product market from the base chemical materials such as 咬 蒽醌, 蒽醌, benzo, 酝, and 本 〜. Bromoanthracene, brominated hydrazine, various base groups and bite-based boric acid can be synthesized by common organic methods. j j «曰 Examples The following describes the synthesis of some of the main compounds in the present invention. Synthesis of Compound 2-1 of Synthesis Example 1 (1) First step reaction

500毫升三口瓶,配磁力攪拌,氬氣置換後依次加入 2-峨-5-漠、比啶 I3.4g(純度 99%,0.0473mol)、THF200ml。 在-83°C下滴加正丁基鋰i9ml(濃度2· 5M,0. 0475mol), 然後立即加入蒽醌4· 8g(純度99%,〇_ 023m〇1)。加完後, 自然升溫至室溫’溶液呈亮黃色。加入2〇〇ml水水解,用 乙酸乙酯提取’蒸幹溶劑’加入乙酸3〇〇ml,18g的KI和 18g的次亞磷酸鈉,回流,反應1小時,降溫,蒸幹乙酸, 16 201122080 用水洗之,得到5. 05g黃色化合物’純度87. 42%,產率 39.19%。 (2)第二步反應A 500-mL three-necked flask was magnetically stirred. After argon replacement, 2-峨-5-mo, pyridinium I3.4g (purity 99%, 0.0473 mol) and THF 200 ml were added in that order. N-butyllithium i9 ml (concentration 2·5 M, 0. 0475 mol) was added dropwise at -83 ° C, and then 蒽醌 4·8 g (purity 99%, 〇 _ 023 m 〇 1) was immediately added. After the addition was completed, the solution was naturally warmed to room temperature and the solution was bright yellow. Add 2 ml of water to hydrolyze, extract 'Evaporation dry solvent' with ethyl acetate, add 3 〇〇ml of acetic acid, 18 g of KI and 18 g of sodium hypophosphite, reflux, react for 1 hour, cool down, and evaporate dry acetic acid, 16 201122080 The product was washed with water to give 5.05 g of a yellow compound, a purity of 87.42%, and a yield of 39.19%. (2) The second step reaction

N2氣保護下,在500 mL三口瓶中加入9,10-二(5__壤 吡啶-2-基)蒽6. Og(分子量 490,純度 87. 42%, 0. 0106mol),苯硼酸 3. 73g(純度 98%,0. 03m〇l),氯化絶 〇. 21g(純度 AR ’ 0. 00124mol) ’ 三苯基膦 〇. 63g(純度 AR, 0. 0024mol),碳酸鉀 5. 3g(純度 AR,0. 〇486mol),甲笨 86ml’’乙醇60ml,水72rol。將上述物料加熱回流,補加_ 次苯棚酸(每次1 g)。4小時後停止反應,放冷,過渡,背 鲁 餅用甲苯熱煮過遽,除去催化劑’蒸掉甲笨,固體用 的水/THF煮沸,放冷濾出,重複二遍。得到4 白灰色 化合物2-1,純度99_ 14%,產率77. 97%。 產物質譜(MS)(m/e) : 484 ;元素分析(c^』2):理論 值 C: 89.23%,H:4.99%,N:5.78%;h^c:89 i’〇 %,Η : 5. 08%,N : 5· 82%。 合成例2化合物2 - 3的合成 經與實施例1相 選用葱酿2 -蛾_ 4 - 臭0比0定,苯侧酸, 同的二步反應,得到淡黃色化合物2-3。 17 201122080 產物MS(m/e) : 484 ;元素分析(C36H24N〇 :理論值C : 89.23%,H: 4.99%,N: 5.78% ;實測值 C: 89.21%,H: 5. 05%,N : 5. 74%。 合成例3化合物2 - 5的合成 (1)第一步反應Under the protection of N2 gas, 9,10-di(5__Pyridin-2-yl)phosphonium 6. Og (molecular weight 490, purity 87.42%, 0. 0106 mol), phenylboronic acid 3.克 (5. Purity AR, 0. 〇 486 mol), A stupid 86 ml ''ethanol 60 ml, water 72 rol. The above materials were heated to reflux, and _ benzene succinic acid (1 g each time) was added. After 4 hours, the reaction was stopped, allowed to cool, and the mixture was poured. The back cake was boiled with toluene hot, and the catalyst was removed. The catalyst was distilled off, and the water/THF of the solid was boiled, and the mixture was filtered off with cold and repeated twice. Obtained as a white-gray compound 2-1, purity 99-1%, yield 77.97%. Product mass spectrum (MS) (m/e): 484; Elemental analysis (c^2): Theoretical value C: 89.23%, H:4.99%, N: 5.78%; h^c: 89 i'〇%, Η : 5. 08%, N: 5·82%. Synthesis of Compound 2 - 3 of Synthesis Example 2 The same procedure as in Example 1 was carried out to select 2 - moth 4 - odor 0 to 0, benzene acid, and the same two-step reaction gave a pale yellow compound 2-3. 17 201122080 Product MS (m/e): 484; Elemental analysis (C36H24N 〇: Theory C: 89.23%, H: 4.99%, N: 5.78%; found C: 89.21%, H: 5. 05%, N : 5. 74%. Synthesis of compound 2 - 5 of Synthesis Example 3 (1) First step reaction

500毫升三口瓶’配磁力搜拌,氬氣置換後依次加入 2-碘-5-溴吡啶8.26g(純度99%,0.0288mol),苯硼酸 3.58g(純度 98%,0.0292mol),Pd(PPh3) 4 1.79g(AR, 〇· 〇〇155mol) ’ 碳酸鈉水溶液 175ml(濃度 2M),苯 175ml, 乙醇175ml。回流,反應2小時,降溫,分出有機層,蒸 幹,用1/20的乙酸乙酯/石油醚進行柱分離,得到6. 75g 產品’純度95. 45%,產率94. 43%。 (2)第二步反應500 ml three-necked bottle was mixed with magnetic force. After argon replacement, 8.26 g of 2-iodo-5-bromopyridine (purity of 99%, 0.0288 mol) and 3.58 g of phenylboronic acid (purity of 98%, 0.0292 mol) were added. Pd( PPh3) 4 1.79g (AR, 〇·〇〇155mol) 'Sodium carbonate aqueous solution 175ml (concentration 2M), benzene 175ml, ethanol 175ml. 5%。 The yield was 94.43%. The product was purified by a column. (2) The second step reaction

5 00毫升三口瓶’配磁力攪拌,氮氣置換後依次加入 201122080 2-苯基-5-溴咄啶 6 75g(純度 95 45%,〇 〇274m〇1)、 THFllOmol。在-7(Tc下滴加正丁基鋰13ml(濃度2 5M, 〇. 0325m〇1) ’搜拌10分鐘後,加入蒽醌2. 6g(純度99%, 0.0124mol)。加完後,自然升溫至室溫,溶液呈亮黃色。 加入200ml水水解’用乙酸乙酯提取,蒸幹溶劑。加入乙 酸220ml,KI和次亞麟酸納各22g,回流。反應1小時, 降溫,冷卻濾出,得2. 8g淡黃色產物。用ιν10〇的水/THF φ 煮沸1小時’放冷濾出,反復多次,得到2 · 1 g淡白色化合 物 2-5,純度 99. 0%,產率 20. 48%。 產物MS(m/e): 484;元素分析(C36HuN2):理論值C : 89. 23%,Η : 4. 99% ’ N : 5. 78% ;實測值 C : 89. 30%,Η : 5. 01%,Ν : 5. 69%。 合成例4化合物2-7的合成 選用2-苯基蒽醌,3,5-溴吡啶’經與實施例3相同 的二步反應’得到淡黃色化合物2-7。產物MS(m/e) : 560 ; •元素分析(C42M2):理論值 c : 89. 97%,Η : &quot;5. 03%,N : 5· 00% ;實測值 C : 89. 91%,Η : 5. 06%,Ν : 5. 03%。 合成例5化合物2-9的合成 選用蒽醒,2 -苯基_ 4 -漠D比咬,經與實施例3相同的反 應’得到淡黃色化合物產物MS(m/e): 560;元素分 析(C42H28N2):理論值 C : 89. 97% ’ H : 5. ’ N : 5. 00% ; 實測值 C : 89. 98%,Η : 5. 05%,N : 4. 97%。 合成例6化合物2-11的合成 選用2,6 -二(3 _ °比0定基)蒽醒,2 -硬-5 -溴0比咬’經與 19 201122080 實施例1相同的反應’得到黃色化合物2-i 1 ^產物 MS(m/e): 638,元素分析(C46H):理論值 C: 86.49%, Η : 4. 73% ’ N : 8· 77% ;實測值 c : 86. 40%,Η : 4. 79%, Ν : 8. 81%。 合成例7化合物2-13的合成 選用2,6 - —本基蒽酿’ 2 -蛾-5 -溴吼唆,經與實施 例3相同的反應’得到淡黃色化合物2-13。產物MS(m/e): 636 ;元素分析(C48H):理論值 c: 90.53%,H: 5.07%, N: 4.40% ;實測值 C: 90.50%,H: 5.12%,N: 4.38%。籲 合成例8化合物2 -15的合成 選用苯並蒽醌’ 4 -苯基-2 -溴吡啶,經與實施例3第二 步相同的反應,得到黃色化合物2-15。產物MS(m/e): 534 ; 元素分析(C4«H26N2):理論值 c: 89.86%,Η: 4.90%,N: 5.24% ;實測值 C : 89.80%,Η : 4.91%,Ν : 5.29%。 合成例9化合物2-18的合成 選用苯並蒽醌,2-碘-5-溴吡啶,經與實施例3相同的籲 反應,得到黃色化合物2-18。產物MS(m/e) : 534 ;元素分 析(C4〇H26N2):理論值 C: 89.86%,H: 4.90%,N: 5_24% ; 貫測值 C: 89.85%,H: 4.82%,N: 5,33%。 合成例10化合物2-19的合成 選用一本並蒽酿,2 -蛾-5 -溴°比咬,經與實施例3相同 的反應’得到黃色化合物2-19。產物MS(m/e) : 584 ;元素 分析(C44H28N2):理論值 C : 90. 38%,Η : 4. 83%,N ·· 4. 79 % ;實測值 C : 90. 34%,Η : 4. 90%,Ν : 4. 76%。 20 201122080 合成例11化合物2-21的合成 選用二苯並蒽醌,2 -換-5 -溴。比咬,經與實施例1相同 的反應’得到黃色化合物2-21。產物MS(m/e) : 584 ;元素 分析(C44H28N2):理論值 C: 90.38%,H: 4.83%,N: 4.79 % ;實測值 C : 90. 46%,Η : 4. 70%,N : 4. 84%。 合成例12化合物2-23的合成 選用菲醌,2-碘-5-溴吡啶’經與實施例1相同的反 應’得到黃色化合物2-23。產物MS(m/e) : 484 ;元素分析 (CaH):理論值 c: 89.23%,H: 4.99%,N: 5.78% ; 實測值 C: 89.40%,H: 4.85%,N: 5.75%。 合成例13化合物2 - 2 5的合成The 5 00 ml three-neck bottle was magnetically stirred, and after nitrogen substitution, 201122080 2-phenyl-5-bromoacridine 6 75 g (purity 95 45%, 〇 〇 274 m 〇 1), THF 11 mol. 6克(纯度纯度99%, 0.0124摩尔) was added after -7 (Tc was added dropwise 13 ml of n-butyllithium (concentration: 2 5 M, 〇. 0325 m 〇 1). After the addition, 加 2. 6 g (purity 99%, 0.0124 mol). Naturally warm to room temperature, the solution is bright yellow. Add 200ml of water to hydrolyze 'extract with ethyl acetate, and evaporate the solvent. Add 220ml of acetic acid, 22g of KI and sub-linalic acid, reflux. React for 1 hour, cool down, cool filter The yield is 2. 8g of pale yellow product. It is boiled for 1 hour with water of ιν 10 / / THF φ, and it is filtered off with a few times to obtain 2 · 1 g of pale white compound 2-5. The yield was 20.48%. Product MS (m/e): 484. Elemental analysis (C36HuN2): Theory C: 89. 23%, Η: 4.99% 'N: 5.78%; found C: 89 30%, Η: 5. 01%, Ν: 5. 69%. The synthesis of the compound 2-7 of Synthesis Example 4 was carried out using 2-phenylindole, 3,5-bromopyridine as the same as in Example 3. Step reaction 'to give pale yellow compound 2-7. Product MS (m/e): 560; • Elemental analysis (C42M2): Theoretical value c: 89. 97%, Η: &quot;5. 03%, N: 5· 00%; measured value C: 89. 91%, Η: 5. 06%, Ν: 5. 03%. Synthesis Example 5 compound 2-9 Awake, 2-phenyl-4-di-D-bite, the same reaction as in Example 3 was obtained to give a pale yellow compound product MS (m/e): 560; Elemental analysis (C42H28N2): Theory C: 89 97% ' H : 5. ' N : 5. 00% ; Found C : 89. 98%, Η : 5. 05%, N : 4. 97%. Synthesis of compound 6-11 for synthesis of compound 2 , 6 - 2 (3 _ ° vs. 0 base) awake, 2 - hard-5 - bromine 0 than bite 'by the same reaction as 19 201122080 Example 1 'to obtain yellow compound 2-i 1 ^ product MS (m/ e): 638, elemental analysis (C46H): theoretical value C: 86.49%, Η: 4. 73% 'N: 8·77%; measured value c: 86. 40%, Η: 4. 79%, Ν: 8. 81%. Synthesis of compound 2-13 of Synthesis Example 7 2,6--the base was used to brew '2-moth-5-bromoindole, and the same reaction as in Example 3 was obtained to give a pale yellow compound 2- 13. Product MS (m/e): 636; Elemental Analysis (C48H): Theory: C: 90.53%, H: 5.07%, N: 4.40%; found C: 90.50%, H: 5.12%, N: 4.38 %. Synthesis of Compound 2-15 of Synthesis Example 8 Benzopyrene&apos;-phenyl-2-bromopyridine was used in the same manner as in the second step of Example 3 to give yellow compound 2-15. Product MS (m/e): 534 ; Elemental analysis (C4 «H26N2): Theory: C: 89.86%, Η: 4.90%, N: 5.24%; found C: 89.80%, Η: 4.91%, Ν: 5.29 %. Synthesis of Compound 2-18 of Synthesis Example 9 Benzoindole, 2-iodo-5-bromopyridine was used, and the same compounding procedure as in Example 3 was used to give yellow compound 2-18. Product MS (m/e): 534; Elemental analysis (C4 〇 H26N2): Theory C: 89.86%, H: 4.90%, N: 5_24%; Measured C: 89.85%, H: 4.82%, N: 5,33%. Synthesis of Compound 2-19 of Synthesis Example 10 A yellow compound 2-19 was obtained by the same reaction as in Example 3, using one and brewing, 2 - moth-5 -bromo ratio. Product MS (m/e): 584; Elemental analysis (C44H28N2): Theory C: 90. 38%, Η: 4. 83%, N ·· 4. 79 %; found C: 90. 34%, Η : 4. 90%, Ν: 4. 76%. 20 201122080 Synthesis of compound 2-21 of Synthesis Example 11 Dibenzopyrene, 2-substituted-5-bromo was used. The same reaction as in Example 1 was carried out to give a yellow compound 2-21. Product MS (m/e): 584; Elemental analysis (C44H28N2): Theory C: 90.38%, H: 4.83%, N: 4.79 %; found C: 90. 46%, Η: 4. 70%, N : 4. 84%. Synthesis of Compound 2-23 of Synthesis Example 12 Using phenanthrenequinone, 2-iodo-5-bromopyridine, the same reaction as in Example 1 gave yellow compound 2-23. Product MS (m/e): 484; Elemental Analysis (CaH): Theory: C: 89.23%, H: 4.99%, N: 5.78%; Found C: 89.40%, H: 4.85%, N: 5.75%. Synthesis of Synthesis Example 13 Compound 2 - 2 5

鲁 N2氣保護下,在500 mL三口瓶中加入3, 9-二-溴茈 4. 32g(純度 95% ’ 〇. 〇im〇i),6-苯基吡啶-3-硼酸 5. lg(純 度 98% ’ 〇. 〇25mol),氣化鈀 〇. 21g(純度 AR,0. 0012mol), 二苯基膦0· 63g(純度AR,0. 0024mol),碳酸鉀5. 3g(純度 AR ’ 0. 0486mol) ’甲苯86m卜乙醇60m卜水72ie卜將上 述物料加熱回流。4小時後停止反應’放冷,過濾’濾餅 用甲笨熱煮過濾,除去催化劑,蒸掉曱苯,固體用1/1〇的 水/THF煮沸,放冷濾出,重複二遍。得到4 2g米黃色產 物’純度99. 10%,產率75. 26%。 21 201122080 產物MS(m/e): 558;元素分析(C42H26N2):理論值C: 90.29%,Η: 4.69%,N: 5.01% ;實測值 C: 90.11%,Η: 4· 88%,Ν : 5. 01%。 合成例14化合物2-28的合成 選用3, 9-二-溴茈,5-苯基吡啶-3-硼酸,經與實施例 13相同的反應,得到黃色化合物2-28。產物MS(m/e) : 558 ; 元素分析(C42H26N2):理論值 C : 90. 29%,Η : 4. 69%,N : 5. 01% ;實測值 C : 90. 11%,Η : 4. 88%,Ν : 5. 01%。 合成例1 5化合物2 - 31的合成 @ 選用6,12-二-溴屈,6-苯基吡啶-3-硼酸,經與實施 例13相同的反應,得到黃色化合物2-31。產物MS(m/e): 534 ;元素分析(C4〇H26N2):理論值 C: 89.86%,Η: 4.90%, Ν : 5. 24% ;實測值 C : 90. 01%,Η : 4. 86%,Ν : 5. 13%。 合成例16化合物2-33的合成 選用6,12-二-溴屈,5-苯基吡啶-3-硼酸,經與實施 例13相同的反應,得到黃色化合物2-33。產物MS(m/e) : ^ 534 ;元素分析(CoL):理論值 C: 89.86%,H: 4.90%, N : 5. 24% ;實測值 C : 89. 80%,Η : 4· 93%,N : 5. 27%。 合成例17化合物2-35的合成 選用1,6-二-溴芘,4-苯基吡啶-2-硼酸,經與實施 例13相同的反應,得到黃色化合物2 - 3 5。產物M S (m / e): 508 ;元素分析(C — O :理論值 C: 89.74%,Η: 4.76%, Ν : 5. 51% ;實測值 C : 89· 81%,Η : 4. 70%,Ν : 5· 49%。 合成例1 8化合物2 - 3 7的合成 22 201122080 選用1 ’ 6-二-溴芘,2-苯基吡啶-4-硼酸,經與實施 例13相同的反應’得到黃色化合物2-37。產物MS(m/e): 508 ;元素分析(C38H24N2):理論值 C: 89. 74%,Η : 4. 76% ’ Ν : 5. 51妬;實測值 C : 89. ’ Η : 4. 81%,Ν : 5. 49%。 合成例19化合物3-1的合成 選用2, 9, 10-三溴蒽,6-苯基吡啶-2-硼酸,經與實施 例13相同的反應’得到淡黃色化合物3-1。產物MS(m/e): 637 ;元素分析(C47H3lN3):理論值 C:88.51%,H:4.90%, N : 6. 59% ;實測值 C : 88. 49%,Η: 4,95%,N: 6.56%。 合成例20化合物3-3的合成 選用2,9, 10 -二溴蒽’ 6 -苯基0比交-3-棚酸,經與實施 例13相同的反應’得到淡黃色化合物3-3。產物MS(m/e): 637 ;元素分析(C47H31N3):理論值 c:88.51%,H:4.90%, N : 6. 59% ;實測值 C : 88. 55%,Η : 4. 93%,N : 6. 52%。 有機電致發光器件的實施例: 本發明提出的有機電致發光器件中的基本結構包括: 基板,一對電極,和設置在電極之間的有機介質,包括空 電子傳輸層、電子注入 穴注入層、空穴傳輸層、發光層、 層以及阻擋層等。。 可以是玻璃或是柔性基片,柔性基 基體為透明基體, 片採用聚酯類、聚醯亞胺類化合物中的一種材料;第一電Under the protection of N2 gas, 3,9-di-bromoindole 4.32g (purity 95% ' 〇. 〇im〇i), 6-phenylpyridine-3-boronic acid 5. lg (in a 500 mL three-necked flask) The purity of 98% ' 〇. 〇 25mol), gasified palladium ruthenium. 21g (purity AR, 0. 0012mol), diphenylphosphine 0 · 63g (purity AR, 0. 0024mol), potassium carbonate 5. 3g (purity AR ' 0. 0486mol) 'Toluene 86m, ethanol, 60m, water, 72ie, the above materials were heated to reflux. After 4 hours, the reaction was stopped. The mixture was allowed to cool, and the filter cake was filtered. The catalyst was removed by hot boiling. The catalyst was removed, and the benzene was distilled off. The solid was boiled with 1/1 Torr of water/THF, and then filtered, and then evaporated. The yield was 75.1%, and the yield was 75.26%. 21 201122080 Product MS (m/e): 558; Elemental analysis (C42H26N2): Theory C: 90.29%, Η: 4.69%, N: 5.01%; found C: 90.11%, Η: 4·88%, Ν : 5. 01%. Synthesis of Compound 2-28 of Synthesis Example 14 Using 3,9-di-bromoindole, 5-phenylpyridine-3-boronic acid, the same reaction as in Example 13 gave yellow compound 2-28. Product MS (m/e): 558 ; Elemental analysis (C42H26N2): Theory C: 90. 29%, Η: 4. 69%, N: 5. 01%; found C: 90.11%, Η: 4. 88%, Ν: 5. 01%. Synthesis Example 1 Synthesis of Compound 2 - 31 @6-di-bromo-bromo, 6-phenylpyridine-3-boronic acid was used, and the same procedure as in Example 13 to give a yellow compound 2-31. Product MS (m/e): 534; Elemental analysis (C4 〇 H26N2): Theory C: 89.86%, Η: 4.90%, Ν: 5. 24%; found C: 90. 01%, Η: 4. 86%, Ν: 5. 13%. Synthesis of Compound No. 3-33 of Synthesis Example 16 Using the same procedure as in Example 13 using 6,12-di-bromo-bromo, 5-phenylpyridine-3-boronic acid, a yellow compound 2-2-3 was obtained. Product MS (m/e): 534; Elemental Analysis (CoL): Theory C: 89.86%, H: 4.90%, N: 5. 24%; found C: 89. 80%, Η: 4·93 %, N : 5. 27%. Synthesis of Compound 2-35 of Synthesis Example 17 Using 1,6-di-bromoindole, 4-phenylpyridine-2-boronic acid, the same reaction as in Example 13 afforded yellow compound 2 - 3 5 . Product MS (m / e): 508; elemental analysis (C - O: theory C: 89.74%, Η: 4.76%, Ν: 5. 51%; found C: 89.81%, Η: 4. 70 %, Ν : 5 · 49%. Synthesis Example 1 Synthesis of Compound 2 - 3 7 22 201122080 The same reaction as in Example 13 was carried out using 1 '6-di-bromoindole, 2-phenylpyridine-4-boronic acid. 'Yellow compound 2-37. Product MS (m/e): 508; Elemental analysis (C38H24N2): Theory C: 89. 74%, Η: 4. 76% ' Ν : 5. 51 妒; measured value C : 89. ' Η : 4. 81%, Ν : 5. 49%. Synthesis of compound 3-1 of compound 19 is selected from 2, 9, 10-tribromo fluorene, 6-phenylpyridine-2-boronic acid, The same reaction of Example 13 was carried out to give a pale-yellow compound 3-1. Product MS (m/e): 637; Elemental analysis (C47H3lN3): Theory C: 88.51%, H: 4.90%, N: 6.59%; Found C: 88. 49%, Η: 4, 95%, N: 6.56%. The synthesis of compound 3-3 of Synthesis Example 20 was carried out using 2,9,10-dibromoindole ' 6 -phenyl 0 than cross-3 - shed acid, the same reaction as in Example 13 to give a pale-yellow compound 3-3. Product MS (m/e): 637; Elemental analysis (C47H31N3): Theory C: 88.51%, H: 4.90%, N : 6. 59%; measured value C: 88. 55%, Η: 4.93%, N: 6. 52%. Embodiments of Organic Electroluminescent Device: The basic structure in the organic electroluminescent device proposed by the present invention includes: a substrate, a pair of electrodes, and an organic medium disposed between the electrodes, including an empty electron transport layer, an electron injection hole injection layer, a hole transport layer, a light emitting layer, a layer, a barrier layer, etc. may be glass or a flexible base a flexible base body is a transparent substrate, and the sheet is made of one of a polyester type and a polyamidide compound;

極層(陽極層),可 機材料一般為ΙΤΟ、 23 201122080 銅、銀等功函數較高的金屬,最優化的選揠 4ΙΤ0 ’有機 導電聚合物優選為聚噻吩/聚乙烯基笨磺酸納(以下簡, PED0T:PSS)、聚苯胺(以下簡稱PANI)中的—種材料;第稱 電極層(陰極層、金屬層),一般採用鋰、鎂 、 巧、錄、叙、 姻等功函數較低的金屬或它們與銅、金、銀的合金,咬 屬與金屬氟化物交替形成的電極層,本發明優選為依次的 Mg:Ag合金層、Ag層和依次的LiF層、A1層。The electrode layer (anode layer), the machine material is generally ΙΤΟ, 23 201122080 copper, silver and other metals with higher work function, the optimal choice of ΙΤ 4 ΙΤ 0 'organic conductive polymer is preferably polythiophene / polyvinyl sulfonate (Simplified below, PED0T: PSS), polyaniline (hereinafter referred to as PANI) - the first electrode layer (cathode layer, metal layer), generally using lithium, magnesium, Qiao, recorded, Syrian, marriage and other work functions Lower metals or alloys thereof with copper, gold, silver, and electrode layers alternately formed with metal fluorides, the present invention is preferably a sequential Mg:Ag alloy layer, an Ag layer, and a sequential LiF layer, A1 layer.

有機發光介質主要包括有機電致發光層(EML),一般採 用小分子材料,可以為螢光材料,如金屬有機配合物(如The organic luminescent medium mainly comprises an organic electroluminescent layer (EML), generally using a small molecular material, and may be a fluorescent material such as a metal organic complex (such as

Alq3、Gaq3、Al(Saph-q)或 Ga(Saph-q))類化合物,該小分 子材料中可摻雜有染料,摻雜濃度為小分子材料的“伐 〜2〇Wt%,染料一般為芳香稠環類(如紅熒烯(rubrene))、 香豆素類(如DMQA、C545T)或雙吡喃類(如DCJTB、DCM)化 合物中的一種材料,發光層材料也可採用唔唑類化合物如 4,4 _N’ N -二17弄唑-聯苯(CBP)、聚乙烯哜唑(ρνκ),該Alq3, Gaq3, Al(Saph-q) or Ga(Saph-q)) compounds, the small molecule material may be doped with a dye, and the doping concentration is "?2" Wt% of the small molecule material, and the dye is generally For a material of aromatic fused ring (such as rubrene), coumarin (such as DMQA, C545T) or dipyran (such as DCJTB, DCM), the luminescent layer material can also be carbazole. a compound such as 4,4 _N' N - hexa-17 azole-biphenyl (CBP), polyvinyl carbazole (ρνκ),

材料中可摻雜磷光染料, nr(ppy)3) ’ 二(2 —苯基 如三(2 —苯基》比啶)銀 吡啶)(乙醯丙酮)銥 (Ir(ppy)2(acac)),八乙基卟啉鉑(pt〇Ep)等; 上述器件結構中還可以包括空穴注入層和空穴傳輸 層’空穴注入層(HIL)的基質材料可以採用銅酞菁(CuPc)、 4,4 4 -三(N-3-甲基苯基-N_笨基—氨基)_三苯基胺 (m MTDATA)、4’4 4” -三(N-2-蔡基-N_苯基-氣基)-三苯 基胺(2-TNATA)。 空穴傳輸層的材料可以選用Ν,Ν,_雙-(卜萘基)-N, 24 201122080 〜胺(ΝΡΒ)、TPD 等。 的枒料使用本發明中的 Ν’ -二苯基-1,Γ -聯笨基_4,4, 器件中電子注入和傳輸功能層 材料。 本發明中用的幾種材料見下The material may be doped with a phosphorescent dye, nr(ppy)3) 'bis(2-phenyl such as tris(2-phenyl)pyridyl)pyridinium)(acetamidineacetone)iridium (Ir(ppy)2(acac) , octaethyl porphyrin platinum (pt〇Ep), etc.; the above device structure may further include a hole injection layer and a hole transport layer 'Hole injection layer (HIL) matrix material may be copper phthalocyanine (CuPc) , 4,4 4 -tris(N-3-methylphenyl-N_phenyl-amino)_triphenylamine (m MTDATA), 4'4 4" -tris(N-2-Caichi-N _Phenyl-gas-based)-triphenylamine (2-TNATA) The material of the hole transporting layer may be selected from the group consisting of ruthenium, osmium, bis-(p-naphthyl)-N, 24 201122080 〜amine (ΝΡΒ), TPD and the like. The material used in the present invention is Ν'-diphenyl-1, fluorene- phenyl- 4,4, electron injecting and transporting functional layer materials in the device. Several materials used in the present invention are as follows.

ΕΤ-11 ΕΤ-22 下面將給出若干實施例並結合附圖,具體解釋本發明ΕΤ-11 ΕΤ-22 Several embodiments will be given below and the present invention will be specifically explained with reference to the accompanying drawings.

的技術方案。應當注意到.,下面的實施例僅用於幫助理解 發明’而不是對本發明的限制。 益件設計:為了方便比較這些電子傳輸材料的傳輸性 能,本發明設言十了-簡單電發光器件(基片/陽極/空穴傳輸 層(HTL)/有機發光層(EML)/電子傳輸層(etl)/陰極),發光 層採用9 10 —(2-奈基)蒽(棚)作為發光材料的例證(謂 是主體材# ’並非發光材料,目的不是追求高效率,而是 驗證這些材料實用的可能性)。 25 201122080 實施例1 : 器件結構:IT〇/NPB(40nm)/ADN(30nm)/ 化合物 2-1(20nm)/LiF(〇.5nm) /Al(150nm) 將塗布了 ΙΤ0透明導電層的玻璃板在商用清洗劑中超 聲處理,在去離子水中沖洗,在丙酮:乙醇混合溶劑中超 聲除油,在潔淨環境下烘烤至完全除去水份,用紫外光和 臭氧清洗’並用低能陽離子束轟擊表面; 把上述帶有陽極的玻璃基片置於真空腔内,抽真空至 lxl(T5〜9xl(T3pa,在上述陽極層膜上真空蒸鍍ΝρΒ作為_ 空穴傳輸層,蒸鍍速率為〇.lnm/s,蒸鍍膜厚為5〇nm; 在空穴傳輸層之上真空蒸鍍ADN作為器件的發光層, 蒸鐘速率為0. lnm/s ’蒸鍍總膜厚為3〇nm ; 在發光層之上真空蒸鐘本發明化合物2-1作為器件的 電子傳輸層,其蒸鍍速率為〇. lnm/s,蒸鍍總膜厚為2〇⑽; 在電子傳輸層上真空蒸鍍厚度〇511111的LiF為電子注 入層,最後熱蒸鍍覆蓋金屬A1為陰極,厚度l5〇nm。 實施例2 : 器件結構:IT〇/NPB(4〇nm)/ADN(30nm)/ 化合物 2-3(30nm)/LiF(0. 5nm) /Al(150nm) 按照實施例1的方式製備上述器件,區別在於電子傳 輸層採用本發明的化合物2_3,厚度是3〇nm。其上沉積厚 度0.5 nm的LiF為電子注入層,最後熱蒸鐘覆蓋金屬為 陰極’厚度150nm。 對比例1 : 26 201122080 器件結構:IT〇/NPB(40run)/ADN(30nm)/Alq3(20nm)/ LiF(0.5nm) /Al(150nm) 按照實施例1的方式製備上述器件,區別在於電子傳 輸層採用A1q3,厚度是20nm 〇 對比例2 : 器件結構:ITO/NPB(40nm)/ADN(30nm)/Alq3(30nm)/ LiF(0.5nm) /Al(150nm) φ 按照實施例1的方式製備上述器件,區別在於電子傳 輸層採用Alq3,厚度是30nm。 對比例3 : 器件結構:ITO/NPB(40mn)/ADN(30mn)/ET-ll(20mn)/ LiF(0.5nm) /Al(150nm) 按照實施例1的方式製備上述器件,區別在於電子傳 輸層材料採用ET-11,厚度是2〇nm。Technical solution. It should be noted that the following examples are only intended to aid the understanding of the invention and are not intended to limit the invention. Benefits Design: In order to facilitate the comparison of the transmission properties of these electron transport materials, the present invention is a tenth-simple electroluminescent device (substrate/anode/hole transport layer (HTL)/organic light-emitting layer (EML)/electron transport layer (etl) / cathode), the luminescent layer uses 9 10 - (2-Nyliden) 蒽 (shed) as an example of luminescent materials (that is, the main material # ' is not a luminescent material, the purpose is not to pursue high efficiency, but to verify these materials Practical possibilities). 25 201122080 Example 1: Device structure: IT〇/NPB (40 nm)/ADN (30 nm) / Compound 2-1 (20 nm) / LiF (〇.5 nm) / Al (150 nm) Glass coated with ΙΤ0 transparent conductive layer The plate is sonicated in commercial detergent, rinsed in deionized water, ultrasonically degreased in acetone:ethanol mixed solvent, baked in a clean environment to completely remove water, cleaned with ultraviolet light and ozone' and bombarded with low energy cation beam The glass substrate with the anode is placed in a vacuum chamber, and evacuated to lxl (T5~9xl (T3pa, vacuum evaporation of ΝρΒ on the anode film as _ hole transport layer, evaporation rate is 〇 Lnm / s, the thickness of the vapor deposition film is 5 〇 nm; ADN is vacuum-evaporated on the hole transport layer as a light-emitting layer of the device, the steaming rate is 0. lnm / s 'the total film thickness of the vapor deposition is 3 〇 nm; The compound 2-1 of the present invention is vacuum-dried over the luminescent layer as an electron transport layer of the device, and the evaporation rate is 〇. lnm/s, and the total thickness of the deposited film is 2 〇 (10); vacuum evaporation on the electron transport layer The LiF of the thickness 〇511111 is an electron injection layer, and finally the thermal evaporation coating metal A1 is a cathode with a thickness of l5 〇 nm. Example 2: Device structure: IT〇/NPB (4〇nm)/ADN (30 nm) / compound 2-3 (30 nm) / LiF (0.5 nm) / Al (150 nm) The above device was prepared in the same manner as in Example 1. The difference is that the electron transport layer adopts the compound 2_3 of the present invention and has a thickness of 3 〇 nm. LiF having a thickness of 0.5 nm is deposited as an electron injection layer, and finally the hot steam cover metal is a cathode having a thickness of 150 nm. Comparative Example 1: 26 201122080 Device structure: IT 〇 / NPB (40 run) / ADN (30 nm) / Alq3 (20 nm) / LiF (0.5 nm) / Al (150 nm) The above device was prepared in the same manner as in Example 1, except that the electron transport layer was made of A1q3, thickness. 20 nm 〇 Comparative Example 2: Device structure: ITO/NPB (40 nm) / ADN (30 nm) / Alq3 (30 nm) / LiF (0.5 nm) / Al (150 nm) φ The above device was prepared in the same manner as in Example 1, except that The electron transport layer was Alq3 and had a thickness of 30 nm. Comparative Example 3: Device structure: ITO/NPB (40mn) / ADN (30mn) / ET - 11 (20mn) / LiF (0.5 nm) / Al (150 nm) According to Example 1 The above device was prepared in the same manner, except that the electron transport layer material was ET-11 and the thickness was 2 〇 nm.

選用材料 在 1000 cd/m2 時的電壓V 在 1000 cd/W 時的電流效率 cd/A X y 實施例1 化合物2-l(20nm) 8.14 0.97 0.1997 0 2525 實施例2 化合物2-3(30nm) 9.95 1.02 0.1858 〇 2620 對比例1 Α1φ(20ηπ〇 10. 76 0.82 0.1927 0 對比例2 Alq3(30nm) 11.58 0.78 0.1951 0. 2611 對比例3 ET-11(20nm) 8.16 0.90 0.1920 J. 2565 由表1可以看出,與A1 相比,在電子傳輸層採用化 27 201122080 合物2-1或化合物2-3時,;^存、去si ιλλ 吁度達到1 000cd/m2時的電壓 較低’電流效率、流明效率和 、 双早和外量子效率都較高,色座標 $又有發生紅移。實施例2的雷+值# @ + w电于得輸層的厚度雖然增加了 1 Onm ’但是對器件性能的影鲤 J心s較小。而對比例2的電子傳 輸層同樣增加1 〇nm後,器侔的聰也發藤.ηη β ^窃1千的驅動電壓明顯升高,效率也 下降。對比例3採用了㈣作為電子傳輸層,與實施例 1相比,驅動電壓高’而效率低。以上結果表明,本發明 的新型有機材料在有機電致發光器件中可以優選用作電子 傳輸層。 籲 實施例3 : 器件結構:ITO/NPB(40mn)/ADN (30nm):7%TBPe/化合 物 2-9(30nm)/LiF /A1 按照實施例1的方式處理好IT〇基板,放入蒸鍍腔室 中依次蒸鍍空穴注入層、空穴傳輸層、發光層、電子傳輸 層、電子注入層、陰極結構,蒸鍍過程中腔室壓強低於 5. 0x10 3pa。本實施例中,有機層首先蒸鍍4〇nm厚Νρβ作鲁 為空穴傳輸層;以雙源共蒸的方法蒸鍍3〇nm厚的ADN和 2,5’8,1卜四叔丁基茈(TBPe)作為發光層,通過速率控制 TBPe在ADN中的比例為7%;蒸鐘20nm的化合物2-9作為 電子傳輸層;蒸鍍0. 5nm的LiF作為電子注入層和15〇nm 的A1作為陰極。 實施例4 : 器件結構:ITO/NPB(40nm)/ADN(30mn) : 7%TBPe/化合物 2-9 (20nm) /Alq3(l〇nm)/LiF/Al 28 201122080 按照實施例3的方式製備上述器件,區別在於發光層 之上依次蒸鍍20nm的化合物.2-9和l〇nm的Alq3作為電子 傳輸層;最後蒸鍍0· 5nm的LiF作為電子注入層和i50nm 的A1作為陰極。 實施例5 : 器件結構:ITO/NPB(40nm)/ADN(30nm):7%TBPe/化合物 2-9(20nm)/化合物 3_l(10nm)/LiF/Al 按照實施例3的方式製備上述器件,區別在於發光層 之上依次蒸鍵20nm的化合物2-9和10nm的化合物3-1作 為電子傳輸層;最後蒸鍵0.5 nm的Li F作為電子注入層和 150nm的A1作為陰極。 對比例4 : 器件結構:ITO/NPB(40nm)/ADN(30nm):7%TBPe/Alq3 (30nm)/LiF/Al 按照實施例3的方式製備上述器件,區別在於發光層 之上蒸鍍30nm的Alqs作為電子傳輸層;最後蒸鍍〇.5nm 的LiF作為電子注入層和ΐ5〇η!Π的A1作為陰極。 對比例5 : 器件結構:ITO/NPB(40nm)/ADN(30nm):7%TBPe/ET-12 (30nm)/LiF/Al 按照實施例3的方式製備上述器件,區別在於發光層 之上蒸鍍30nm的ET-12作為電子傳輸層;最後蒸鍍〇. 5nm 的LiF作為電子注入層和i5〇nm的A1作為陰極。 29 201122080 表2 條件 在8V時的 亮度 (cd/m2) 在8V時的 效率 (cd/A) 在8V時的電 流密度 (A/mz) 實施例3 化合物2-9 (30nm) 15,320 7.3 2, 099 實施例4 化合物 2-9 (20nm)/AlQ3(10nra) 11,350 6.4 1,773 實施例5 化合物2-9 (20nm)/化合物3-1 (10nm) 15, 660 7.2 2,175 對比例4 AlqaOOnm) 10,070 6.0 1, 678 對比例5 ET-12 13, 850 6.8 2,036 由表2 ’實施例3採用本發明的化合物2 - 9為電子傳 輸層’在藍光摻雜層體系中獲得了較高的亮度和效率。實 施例4〜5的電子傳輸層採用雙層結構,不同是兩層電子傳 輸材料的不同’從器件來看,實施例4~5仍然獲得了較高 的亮度和效率。比起對比例4只有Alqs電子傳輸層的器件 而言,實施例3〜5在亮度、效率以及電流密度方面均有很 大的提高。說明本發明之化合物能夠與其他電子傳輸材料 (如Alqa)相匹配,獲得較高的器件性能。 實施例6 : 器件結構:IT〇/NPB(4〇nm)/PADN(30nm):l%C545T/化合 物 2-13 (30nm) /Mg:Ag/Ag 按照實施例3的方式製備上述器件,區別在於本實施 例的發光層為雙源共蒸3〇nm厚的pAM和2, 3, 6,卜四氫 -1’ 1’ 7’ 7,-四甲基-1H,5H,uh_1〇_(2_苯並噻唑基)喹嗪並 香丑素(C545T),通過速率控制C545T在pADN中的比例為 1/〇,在發光層之上蒸鍍3〇nm的化合物2_13作為電子傳輸 30 201122080 層;以雙源共蒸的方法蒸鍍1 〇Οηπι的Mg : Ag作為陰極,比 例為10 :1 ’最後覆蓋5Onm的Ag作為保護層。 實施例7 : 器件結構:IT0/NPB(40nn〇/:PADN(30mnh 1%C545T/化合 物 2-13 (20nm) /3-3(l〇nm)/Mg:Ag/Ag 按照實施例6的方式製備上述器件,區別在於發光層 之上依次蒸鐘20nm的化合物2-13和1 Onm的化合物3-3作 φ 為電子傳輸層;以雙源共蒸的方法蒸鍍1 OOnm的Mg: Ag作 為陰極,比例為1 0 :1,最後覆蓋50ηιπ的Ag做為保護層。 對比例6 : 器件結構:ITO/NPB(40nm)/PADN(30nm):l%C545T/Alci3 (30nm)/Mg:Ag /Ag 按照實施例6的方式製備上述器件,區別在於發光層 之上蒸鍍30nm的Alqa作為電子傳輸層;以雙源共蒸的方 法蒸錄10Onm的Mg: Ag作為陰極,比例為1〇 : 1,最後覆蓋 _ 50nm的Ag做為保護層。 對比例7 : 器件結構:ITO/NPB(40nm)/PADN(30nm):l%C545T/ ET-11 (3〇Tim)/Mg : Ag /Ag 按照實施例6的方式製備上述器件,區別在於發光層 之上蒸鍍30nm的ET-11作為電子傳輸層;以雙源共蒸的方 法蒸鍍lOOnm的Mg: Ag作為陰極,比例為1〇 : 1,最後覆蓋 5Onm的Ag做為保護層。 31 201122080 表3 : 條件 在8V時的 亮度 (cd/m2) 在8.V時的 效率 (cd/ΑΊ 在8V時的電 流密度 實施例6 化合物 2-13 (30nm) 25, 780 19.6 vA/m ; 1 οι η 實施例7 化合物2-13(2Qnm)/化合物 3-3〇0nm) 27, 880 18.7 l y Ui ϋ 1,488 對比例6 Alq3(30nm) 20, 350 11.8 1 7〇C 對比例7 ET-11 23, 890 17.9 1 &gt; 1 £ιϋ 1,334 由表3,實施例6~7發光層採用了常見的綠光體系 PADN:C545T,目的是驗證本發明之化合物作為電子傳輸層 在綠光中的應用前景。從器件結果對比來看,採用的電子 傳輸層無論是雙層結構還是單層結構,都能夠有效的降低 驅動電壓,提高器件亮度和效率。實施例6~7與對比例6 相比,在亮度、效率以及電流密度方面均有很大的提高。 實施例8 器件結構:ITO/NPB(4〇nm)/AlQ3(50⑽)/化合物 2-21:CsC〇3(20nm, 10%) /Al(i5〇nm) 以刻姓好特定圖形的IT〇導電玻璃基片作為襯底將 基片放在含清洗液的去離子水中超聲波清洗,洗液溫度約 為60 C ’然後用紅外烤燈將清洗完的基片烤幹放入蒸鏡 腔至中依次蒸鐘空穴注人層、空穴傳輸層、發光層、電子 傳輸層、電子注人層、陰極結構,蒸鐘過程中腔室壓強低 於 5. Οχ1〇-3ρ3。 32 201122080 實施例中,ΙΤ0陽極上首先熱蒸鍍沉積4〇nm的NPB作 為空穴傳輸層;繼續蒸鍍50nm厚的8_羥基喹啉鋁(Alq3) 作為發光層,採用共条鐘的方法蒸鍵的電子注入和傳 輸功能層,其中化合物CsCCh在本發明化合物2_21中的摻 雜濃度為ίο%(重量百分比);最後蒸鍍15〇nm的A1作為陰 〇 實施例9 • 器件結構:ITO/NPB(40nm)/Alq3(50nm)/ 化合物 2-25:CsF(20nm, 10%) /Al(150nm) 按照實施例8的方法製備上述結構器件,區別僅在於 採用本發明化合物2-25中摻雜1〇%(重量百分比)的csf作 為器件的電子注入和傳輸功能層。 實施例10 器件結構:ITO/NPB(40nm)/Alq3(50nm)/ 化合物 2~28:KBH(20nm, 10%) /Al(150nra) •按照實施例8的方法製備上述結構器件’區別僅在於 採用化合物2-28中摻雜ι〇%(重量百分比)的〇H作為器件 的電子注入和傳輸功能層。 實施例11 器件結構:ITO/NPB(40nm)/Alq3(30nm)/ 化合物 2-18(20nm)/化合物 2-3:Li3N(20nm,10%)/Al(150nm) 按照實施例8的方法製備上述結構器件,區別僅在於 發光層為30nm的Alqp其上先沉積2〇nm的化合物2-18作 為器件的緩衝層’然後採用化合物2_3中摻雜丨〇%(重量百 33 201122080 分比)的L i3 N作為器件的雷早,、古λ J电千注入和傳輸功能層。 對比例8 器件結構:ITO/NPB(4〇nm)/Ak3(5〇nm)/LiF(〇 5nnm) /Al(150nm) 按照實施例8的方法锄供μ,+. # J力凌製備上:4結構器件,區別在於該 器件中沒有本發明的電子洼人u奋认丄 主入和傳輸功能層,僅有採用L i F 的電子注入層。 對比例9 益件、構.ITO/NPB(40nm)/Alq3(50nm)/A1q3:KBH(20nm, 10°/〇) /Al(150nm) 按照實施例8的方法盤借μ、+,从讲 古裒備上述結構器件,區別在於該 器件中沒有本發明的電子注人去Jβ 电卞,王入和傳輪功能層,僅有採用 AlqrKBH的電子注入層。 對比例1 0器件結構:ITO/NPB(40nm)/Alq3(50nm)/ET_12:Li3N (20ηπι, 10%) /Al(150nm) 按照實施例8的方法製備上述結構器件,區別在於該 器件中沒有本發明的電子注入和傳輸功能層,僅有採用 ET-12:Li3N的電子注入層。 上述實施例的器件性能資料見下表4 .表4 :Current efficiency cd/AX y at a voltage V of 1000 cd/m at 1000 cd/m2 Example 1 Compound 2-l (20 nm) 8.14 0.97 0.1997 0 2525 Example 2 Compound 2-3 (30 nm) 9.95 1.02 0.1858 〇2620 Comparative Example 1 Α1φ(20ηπ〇10. 76 0.82 0.1927 0 Comparative Example 2 Alq3(30nm) 11.58 0.78 0.1951 0. 2611 Comparative Example 3 ET-11(20nm) 8.16 0.90 0.1920 J. 2565 It can be seen from Table 1. When the electron transport layer is used in the electron transport layer 27 201122080 2-1 or compound 2-3, the voltage at the time of the storage and de-si λλ λ reaches 1 000 cd/m 2 is lower. Lumen efficiency, double early and external quantum efficiency are higher, and the color coordinate $ is red-shifted. The lightning value of Example 2 is increased by 1 Onm ', but the thickness of the obtained layer is increased. The effect of the performance of the J heart s is smaller. While the electron transport layer of the comparative example 2 is also increased by 1 〇 nm, the driving voltage of the device is also increased. The driving voltage is significantly increased and the efficiency is also lowered. In Comparative Example 3, (4) was used as the electron transport layer, and the driving voltage was high as compared with Example 1, and the efficiency was low. It is shown that the novel organic material of the present invention can be preferably used as an electron transport layer in an organic electroluminescence device. Embodiment 3: Device structure: ITO/NPB (40mn) / ADN (30 nm): 7% TBP / compound 2 9 (30 nm) / LiF / A1 The IT substrate was processed in the same manner as in Example 1, and the hole injection layer, the hole transport layer, the light-emitting layer, the electron transport layer, and the electron injection layer were sequentially deposited in the vapor deposition chamber. The cathode structure, the chamber pressure during the evaporation process is less than 5.0×10 3pa. In this embodiment, the organic layer is first vapor-deposited with 4〇nm thick Νρβ as a hole transport layer; evaporation by double source co-steaming method 3〇nm thick ADN and 2,5'8,1 tetra-tert-butyl fluorene (TBPe) as the luminescent layer, the ratio of TBPe in ADN by rate control is 7%; the compound 2-9 of steaming 20nm as electron The transport layer; 0.5 nm of LiF as an electron injection layer and 15 〇nm of A1 as a cathode. Example 4: Device structure: ITO/NPB (40 nm) / ADN (30mn): 7% TBP / compound 2-9 (20 nm) /Alq3(l〇nm)/LiF/Al 28 201122080 The above device was prepared in the same manner as in Example 3 except that the 20 nm layer was sequentially vapor-deposited on the light-emitting layer. Alq3 of 2-9 and 10 nm was used as an electron transport layer; finally, LiF of 0.5 nm was vapor-deposited as an electron injection layer and A1 of i50 nm was used as a cathode. Example 5: Device structure: ITO/NPB (40 nm) / ADN (30 nm): 7% TBP / compound 2-9 (20 nm) / compound 3-1 (10 nm) / LiF / Al The above device was prepared in the same manner as in Example 3. The difference was that the compound 2-9 and the 10 nm compound 3-1 which were successively vaporized on the light-emitting layer were successively used as an electron transport layer; finally, Li F of 0.5 nm was vapor-bonded as an electron injection layer and A1 of 150 nm was used as a cathode. Comparative Example 4: Device structure: ITO/NPB (40 nm) / ADN (30 nm): 7% TBPe/Alq3 (30 nm) / LiF / Al The above device was prepared in the same manner as in Example 3 except that an evaporation of 30 nm was performed on the light-emitting layer. Alqs is used as the electron transport layer; finally, LiF of .5 nm is vapor-deposited as the electron injecting layer and A1 of ΐ5〇η!Π is used as the cathode. Comparative Example 5: Device structure: ITO/NPB (40 nm) / ADN (30 nm): 7% TBPe/ET-12 (30 nm) / LiF / Al The above device was prepared in the same manner as in Example 3 except that it was steamed on the light-emitting layer. 30 nm of ET-12 was plated as an electron transport layer; finally, 5 nm of LiF was used as an electron injection layer and A5 〇nm A1 was used as a cathode. 29 201122080 Table 2 Brightness at 8 V (cd/m2) Efficiency at 8 V (cd/A) Current density at 8 V (A/mz) Example 3 Compound 2-9 (30 nm) 15,320 7.3 2, 099 Example 4 Compound 2-9 (20 nm) / AlQ3 (10 nra) 11, 350 6.4 1,773 Example 5 Compound 2-9 (20 nm) / Compound 3-1 (10 nm) 15, 660 7.2 2, 175 Comparative Example 4 Alqa OOnm) 10,070 6.0 1 , 678 Comparative Example 5 ET-12 13, 850 6.8 2,036 From Table 2 'Example 3 using the compound 2 - 9 of the present invention as an electron transport layer', high brightness and efficiency were obtained in the blue doped layer system. The electron transporting layers of Examples 4 to 5 have a two-layer structure, and the difference is that the two layers of electron transporting materials are different. From the viewpoint of the devices, Examples 4 to 5 still obtain higher brightness and efficiency. In Examples 3 to 5, the brightness, efficiency, and current density were greatly improved as compared with the device of Comparative Example 4 having only the Alqs electron transport layer. It is indicated that the compounds of the present invention can be matched to other electron transport materials such as Alqa to achieve higher device performance. Example 6: Device structure: IT〇/NPB (4〇nm)/PADN (30nm): 1% C545T/compound 2-13 (30 nm) / Mg: Ag/Ag The above device was prepared in the same manner as in Example 3, and the difference was made. The luminescent layer of the present embodiment is a dual source co-evaporated 3 〇 nm thick pAM and 2, 3, 6, tetrahydro-1' 1' 7' 7, 4-tetramethyl-1H, 5H, uh_1 〇 _ ( 2_benzothiazolyl) quinolizin (C545T), the rate of C545T in pADN is 1/〇, and 3〇nm of compound 2_13 is evaporated on the luminescent layer as electron transport 30 201122080 A method of vapor deposition of 1 〇Οηπι of Mg: Ag as a cathode with a ratio of 10:1 'finally covers 5 nm of Ag as a protective layer. Example 7: Device structure: IT0/NPB (40 nn /: PADN (30 mnh 1% C545T / compound 2-13 (20 nm) / 3-3 (l 〇 nm) / Mg: Ag / Ag in the manner of Example 6 The above device was prepared, except that the compound 2-13 and the 1 nm compound 3-3 were sequentially vaporized on the light-emitting layer as φ as an electron transport layer; and 1.0 nm of Mg: Ag was vapor-deposited by a dual source co-evaporation method. The cathode has a ratio of 10:1, and finally covers 50ηιπ of Ag as a protective layer. Comparative Example 6: Device structure: ITO/NPB (40 nm)/PADN (30 nm): 1% C545T/Alci3 (30 nm)/Mg: Ag /Ag The above device was prepared in the same manner as in Example 6, except that 30 nm of Alqa was vapor-deposited on the light-emitting layer as an electron transport layer; 10 nm of Mg was vaporized by a dual source co-evaporation method: Ag was used as a cathode, and the ratio was 1 : 1. Finally, cover _ 50 nm of Ag as a protective layer. Comparative Example 7 : Device structure: ITO/NPB (40 nm) / PADN (30 nm): 1% C545T / ET-11 (3〇Tim) / Mg : Ag / Ag The above device was prepared in the same manner as in Example 6, except that 30 nm of ET-11 was vapor-deposited on the light-emitting layer as an electron transport layer; and 100 nm of Mg:Ag was vapor-deposited by a two-source co-evaporation method, and the ratio was 1〇: 1 Finally, Ag covering 5Onm is used as a protective layer. 31 201122080 Table 3: Brightness at 8 V (cd/m2) Efficiency at 8. V (cd/ΑΊ Current density at 8 V Example 6 Compound 2-13 (30 nm) 25, 780 19.6 vA/m ; 1 οι η Example 7 Compound 2-13 (2Qnm) / compound 3-3 〇 0 nm) 27, 880 18.7 ly Ui ϋ 1,488 Comparative Example 6 Alq3 (30 nm) 20, 350 11.8 1 7〇C Comparative Example 7 ET-11 23, 890 17.9 1 &gt; 1 £ιϋ 1,334 From Table 3, the light-emitting layers of Examples 6-7 employ the common green light system PADN: C545T for the purpose of verifying the present invention. The application prospect of compounds as electron transport layers in green light. From the comparison of device results, the electron transport layer used can effectively reduce the driving voltage and improve the brightness and efficiency of the device, whether it is a two-layer structure or a single-layer structure. Examples 6-7 have a significant improvement in brightness, efficiency, and current density compared to Comparative Example 6. Example 8 Device Structure: ITO/NPB (4〇nm)/AlQ3(50(10))/Compound 2-21 :CsC〇3(20nm, 10%) /Al(i5〇nm) The IT〇 conductive glass substrate with a specific pattern will be used as the substrate. The film is ultrasonically cleaned in deionized water containing a cleaning solution, the temperature of the washing liquid is about 60 C', and then the cleaned substrate is baked and dried in an infrared baking lamp to be placed in the steaming mirror cavity to sequentially flow into the liquid layer. Οχ1〇-3ρ3。 The hole transport layer, the luminescent layer, the electron transport layer, the electron injection layer, the cathode structure, the chamber pressure during the steaming process is less than 5. Οχ1〇-3ρ3. 32 201122080 In the embodiment, 〇0 anode is first hot deposited by vapor deposition of 4 〇nm NPB as a hole transport layer; 50 nm thick 8 hydroxyquinoline aluminum (Alq3) is continuously evaporated as a light-emitting layer, and a total clock method is used. The electron injecting and transporting functional layer of the evaporated bond, wherein the compound CsCCh has a doping concentration of ίο% (% by weight) in the compound 2-21 of the present invention; finally, 15 〇nm of A1 is evaporated as a haze Example 9 • Device structure: ITO /NPB (40 nm) / Alq3 (50 nm) / Compound 2-25: CsF (20 nm, 10%) / Al (150 nm) The above structural device was prepared by the method of Example 8, except that the compound of the present invention 2-25 was used. The csf doped with 1% by weight is used as the electron injection and transport functional layer of the device. Example 10 Device structure: ITO/NPB (40 nm) / Alq3 (50 nm) / Compound 2-28: KBH (20 nm, 10%) / Al (150 nra) • The above structural device was prepared according to the method of Example 8 The 〇H doped with 〇% by weight in the compound 2-28 was used as the electron injection and transport functional layer of the device. Example 11 Device structure: ITO/NPB (40 nm) / Alq3 (30 nm) / Compound 2-18 (20 nm) / Compound 2-3: Li3N (20 nm, 10%) / Al (150 nm) Prepared according to the method of Example 8. The above structural device differs only in that the light-emitting layer is 30 nm of Alqp on which 2 nm of the compound 2-18 is first deposited as a buffer layer of the device' and then the doping 丨〇% (weight: 33, 2011,220,080) in the compound 2_3 is used. L i3 N acts as a device for the early, early, λ J electric thousand injection and transmission functional layer. Comparative Example 8 Device structure: ITO/NPB (4 〇 nm) / Ak3 (5 〇 nm) / LiF (〇 5 nnm) / Al (150 nm) According to the method of Example 8, 锄μ, +. : 4 structural device, the difference is that there is no electronic intrusion and transmission functional layer of the present invention in the device, and only the electron injection layer of L i F is used. Comparative Example 9 Benefits, structure, ITO/NPB (40 nm) / Alq3 (50 nm) / A1q3: KBH (20 nm, 10 ° / 〇) / Al (150 nm) According to the method of Example 8, the μ, +, from the ancient The above structural device is prepared, except that the electronic injection layer of the present invention is not included in the device, and the electron injection layer of AlqrKBH is used only for the functional layer of the king and the transfer wheel. Comparative Example 10 Device structure: ITO/NPB (40 nm) / Alq3 (50 nm) / ET_12: Li3N (20ηπι, 10%) / Al (150 nm) The above structural device was prepared according to the method of Example 8, except that there was no such device. In the electron injecting and transporting functional layer of the present invention, only the electron injecting layer of ET-12:Li3N is used. The device performance data of the above embodiment is shown in Table 4 below. Table 4:

實施例 8 化合物 2-21: CsC〇3 (20nm, 10%)/A1 電流密 度 A/m2 ---—_ 2000 6.78 539.94Example 8 Compound 2-21: CsC〇3 (20 nm, 10%)/A1 Current Density A/m2 ----_ 2000 6.78 539.94

電流效 率 cd/A 3. 70 T70*(小時) @2000cd/m2 358 34 201122080 實施例 9 化合物2-25: CsF (20nm, 10%)/A1 2000 6.86 628. 54 3.18 216 實施例 10 化合物2-28: ΚΒΗ (20nm, 10%)/A1 2000 7.52 554. 56 3.61 455 實施例 11 化合物 2-18(20nm)/ 化合物2-3:LiaN (20nm, 10%)/A1 2000 6.48 662. 71 3.02 558 對比例 8 LiF(0.5nnm)/Al(150 nm) 2000 6.58 645.16 3.10 120 對比例 9 Alq3:KBH(20nm, 10%)/Al(150nm) 2000 7.55 692. 04 2.89 169 對比例 10 ET-12:Li3N(20nm, 10%)/Al(150nm) 2000 7.21 653. 59 3.06 187Current efficiency cd/A 3. 70 T70* (hours) @2000cd/m2 358 34 201122080 Example 9 Compound 2-25: CsF (20 nm, 10%) / A1 2000 6.86 628. 54 3.18 216 Example 10 Compound 2 28: ΚΒΗ (20 nm, 10%) / A1 2000 7.52 554. 56 3.61 455 Example 11 Compound 2-18 (20 nm) / Compound 2-3: LiaN (20 nm, 10%) / A1 2000 6.48 662. 71 3.02 558 Comparative Example 8 LiF (0.5 nnm) / Al (150 nm) 2000 6.58 645.16 3.10 120 Comparative Example 9 Alq3: KBH (20 nm, 10%) / Al (150 nm) 2000 7.55 692. 04 2.89 169 Comparative Example 10 ET-12: Li3N (20nm, 10%) / Al (150nm) 2000 7.21 653. 59 3.06 187

由表4,實施例8~11為NPB/Alq3經典的雙層器件,選 取化合物2-21、化合物2-25、化合物_2-28混合不同的推 雜劑,對比它們的驅動電壓、效率和穩定性。在2000cd/m2 亮度下,驅動電壓從6.48V〜7. 5.2 V都有分佈,效率最高達 到3.7cd/A。穩定性取亮度衰減到70%的壽命進行平行對 φ 比,壽命從200小時到56〇小時均有可能。 實施例11在發光層和摻雜的電子傳輸注入層之間還 插入了一層緩衝層,為20nm的化合物2-18。增加緩衝層 能夠將發光層和無機摻雜劑分隔開來,可以防止無機摻雜 劑擴散遷移到發光層,因而能夠更加有效的提高器件壽 命,亮度衰減70%的時候,時間為558小時,明顯高於其 他實施例和對比例。 對比例8是傳統的NPB/Alq3/LiF/Al雙層器件,沒有 本發明所用的摻雜結構,由於該器件有機層總厚度比實施 35 201122080 例1~4都要薄(少20nm),故而驅動電壓較低位元6. 58V, 效率達到了 3. 1 〇cd/A ’但是壽命僅120小時。而對比例9 為常用的A1 q3 ’對比例1 0為ET-12材料,混合摻雜劑後, 由於Alqa和BAlq的電子遷移率不如本發明的有機材料, 則對比例的驅動電壓偏高、效率偏低。對比例9和1 0的壽 命雖然比對比例8有提高’但是比實施例要少2 〇 %以上, 這與A1Q3和ET-12的玻璃化溫度較低有關係。From Table 4, Examples 8 to 11 are NPB/Alq3 classical double-layer devices. Compounds 2-21, 2-25, and 2-28 are mixed with different dopants to compare their driving voltage, efficiency and stability. At a luminance of 2000 cd/m2, the driving voltage is distributed from 6.48 V to 7. 5.2 V, and the efficiency is up to 3.7 cd/A. The stability is attenuated to a 70% lifetime with a parallel to φ ratio and a lifetime of from 200 hours to 56 hours. In Example 11, a buffer layer was further interposed between the light-emitting layer and the doped electron transport injection layer to be a compound 2-18 of 20 nm. The addition of the buffer layer can separate the luminescent layer from the inorganic dopant, and can prevent the inorganic dopant from diffusing and migrating to the luminescent layer, thereby improving the lifetime of the device more effectively, and the time is 558 hours when the brightness is attenuated by 70%. Significantly higher than other examples and comparative examples. Comparative Example 8 is a conventional NPB/Alq3/LiF/Al bilayer device, which has no doping structure used in the present invention, since the total thickness of the organic layer of the device is thinner (20 nm less) than that of the implementation of 35 201122080, Examples 1 to 4, The drive voltage is lower at 6.58V, and the efficiency reaches 3.1 〇cd/A 'but the lifetime is only 120 hours. Comparative Example 9 is a commonly used A1 q3 'Comparative 10 is an ET-12 material. After the dopant is mixed, since the electron mobility of Alqa and BAlq is not as good as the organic material of the present invention, the driving voltage of the comparative example is high, The efficiency is low. Although the lifespan of Comparative Examples 9 and 10 was higher than that of Comparative Example 8, it was less than 2 % by more than the example, which was related to the lower glass transition temperature of A1Q3 and ET-12.

實施例12 器件結構: ITO/m-MTDATA:F4-TCNQ(150nm, 2%)/NPB(20mn)/MADN:TBPe(3〇nm, 5%)/Alq3(l〇nni)/化合物 2-33:CsF(10nm, 5%)/Α1(150nm) 按照實施例1的方法製備上述結構器件,纟IT〇陽極 表面沉積空穴注入層,空穴注入層為15〇nm厚的 m-MTDATA,其中摻雜2%的F4_TCNQe其上再沉積2_的猶 作為空穴傳輸層。發光層為藍光主體2-甲基-9,10_二(2_ 萘基)-蒽(MADN)摻雜5%比例的藍光染料2, 5, 8, 四叔 丁基花(TBPe),發光層厚度為3Gnm。發光層和電子傳輸注 入層之間的緩衝層晟厣&amp; τ η * 士 可嘈厚度為l〇nm,沉積材料為Μ。。電子、主 入和傳輸功能層採用化合物㈣與W通過共蒸工 備,且W的推雜濃度為5%,厚度為1〇咖。最後再㈣ 15〇nm厚度的金屬M作為陰極。 36 201122080 實施例1 3 器件結構: ITO/m-MTDATA:F4-TCNQ(150nm, 2%)/NPB(20nm)/MADN:TBPe(30nin,59〇/BCP(2nin)/ 化合物 2-33:Li3N(10nm, 25%)/Α1(150nm) 按照實施例12的方法製備上述結構器件,區別在於發 光層和電子傳輸注入層之間的緩衝層厚度為2nm ’沉積材 •料為2 ’ 9_二甲基-4,7-二苯基],10-菲羅啉(BCP)。電 子注入和傳輸功能層採用化合物卜”與“州通過共蒸工 藝製備,且LhN的摻雜濃度為25%,厚度為1〇nm。 實施例14 器件結構: ITO/m-MTDATA:F4-TCNQ(15〇nm, 2%)/NPB(2 0mn)/MADN:TBPe(30nm,5%)/PBD(20nm)/化合物 籲 2-33:LiF(10nm, 50%)/Al(i5〇nm) 按照實施例丨2的方法製備上述結構器件’區別在於發 光層和電子傳輸注人層之間的緩衝層厚度為2Gnm,沉積材 料為2-(4-二苯基)-5-(4_叔丁基苯卜i,3,4一惡二唾 刪。電子注入和傳輸功能層採用化合物&quot;3與W通 過共热工藝製備’且UF的摻雜濃度為5〇%,厚度為ι〇⑽。 對比例11 器件結構: 37 201122080 ITO/m-MTDATA:F4-TCNQ(150nm, 2%)/NPB(20nm)/MADN:TBPe(30nm, 5%)/Alq3(20nm)/LiF(〇. 5nm)/Al(150nm) 按照實施例12的方法製備上述結構器件,區別在於沒 有電子傳輸和注入的摻雜層,而是在發光層上直接沉積 20nm厚度的Alq3作為電子傳輸層,最後沉積〇.5nm的LiF 為電子注入層和150nm的AI為陰極。 對比例12 器件結構: ITO/m-MTDATA:F4-TCNQ(150nm, 2%)/NPB(20nm)/MADN:TBPe(30nm, 5%)/ 化合物 2-33(20nm)/LiF(0.5nm)/Al(150nm) 按照實施例12的方法製備上述結構器件,區別在於沒 有電子傳輸和注入的摻雜層,而是在發光層上直接沉積 20ηπι厚度的化合物2-33作為電子傳輸層,最後沉積〇.5nm 的LiF為電子注入層和15 Onm的A1為陰極。 上述實施例12-14和對比例1卜12的器件性能資料見 下表5 : 器件結構 亮度 cd/m2 電壓 V 電流密度 A/m2 電流效 率 cd/A x(5V) y(5V) 實施 例12 Alq3(10nm)/化合物 2-33:CsF(10nm, 5%) 5000 8.06 722. 07 6.92 0.1434 0.1901 實施 例13 BCP(2nm)/化合物 2 -33:Li3N(10nra, 25%) 5000 8. 52 762. 84 6.55 0.1419 〇.1892 38 201122080 實施 例14 PBD(20nn〇/化合物 2-33 :LiF(lOmii, 50%) 5000 8.35 813.71 6. 14 0.1415 ---- ο. 1874 對比 例11 Alq3(20nm)/LiF/Al 5000 9. 85 915.39 5.46 0.1417 〇. 1879 對比 例12 化合物2-33 (20nm)/LiF/Al 5000 5, 90 751.57 6.65 0.1417 ------ 0.1810 實施例12~14採用化合物2_33混合不同比例的摻雜劑 (濃度為5%~ 50%),同時緩衝層採用不同的具有電子傳輸性 • 的材料’得到的器件性能較好。與對比例11相比,具有較 低的驅動電壓’驅動電壓最多降低了 18V。化合物2—33 摻雜器件的效率也較高,相比較對比例]i的5.46cd/A, 摻雜器件的效率提高0.5〜I.5cd/A不等,提高幅度最高達 到27%。同時,從穩定性對比來看,化合物2_33摻雜後, 器件的半衰期壽命(初始亮度MOOcd、2)全都延長了,相對 對比例11的提高幅度可以達到5_上。緩衝層的使用, 將無機摻雜劑與發光層分隔開,避免了發光泮滅現象,有 讚利於器件穩定性的提高。 另外,對比例12採用了不摻雜的化合物2-33,與實 施例1 2 ~ 14比較,對·比例1 9山 由於沒有遷移率較低的A1 q3, 故而驅動電壓非常低,僅5 γ曰 ,^ . 9V。但是對比例12的壽命不 如實施例12〜14 ’究其原因庫异 碼疋沒有摻雜導致。 可見’通過匹配ETL和換施如,, th ^ ^ 摻雜劑材料,設計合理的摻雜 比例和盗件結構,能夠在驅 尥$丨丨τ 電壓、效率以及穩定性之間 找到一個平衡點,獲得性能 ^ 〇TFTs , 0 ^ 優、實甩.性較高的器件,提 阿0LED產品的性能。 39 201122080 實施例1 5 器件結構: ITO/NPB(40nm)/Alq3(30nm)/ 化合物 2-5(20nm) /化合 物 2_5:Li3N(10nm, 10%) /V2〇5(10nni)/NPB(40nin)/Alq3(30nni)/化合物 2-5 (20nm) /LiF(0. 5nm)/Al(150nm) 以刻#好特定圖形的ITO導電玻璃基片作為襯底,將 基片放在含清洗液的去離子水中超聲波清洗,洗液溫度約 為60°C,然後用紅外烤燈將清洗完的基片烤幹,放入蒸鍍 腔室中依次熱蒸鍍沉積各功能層,蒸鍍過程中腔室壓強低 於 5. 0xl(T3pa。 本實施例中,ΙΤ0 必阳,丨, 1叫货7U平7L 1 先沉積4〇nm厚度的NPB’作為空穴傳輸層,然後在其上$ X積Alq3厚度3〇nm ’作為發光層,之後沉積2〇nm ^ 度的電子傳輸層,選用本發明之化合物2七然後在第 個發先早元之上製備連接層。蒸鍍㈣連接層,以共蒸海 厂方式沉積化合物2-5和1〇%重量百分比的咖,厚心 ⑽’接著沉積p型連接層,⑽,厚度^。再在連有 之:沉積製備第二個發光單元,其結構和 第一個發光單元。最後熱蒸 、 層 、暇/儿槓〇_ 5nm厚度的電子注Λ ’-上覆蓋陰極金屬層A1,厚度i5Qnm。 實施例16 器件結構: 201122080 ITO/NPB(40nm)/Alq3(30nin)/化合物 2-35 (20nm)/化人 物 2~35:Li3N(10nm, 1 0%)/Vz〇5( 1 0nm)/NPB(40nm)/Alq3(30nm)/ 化合物 2-35(20nm)/LiF(0.5nm)/Al (150nm) 按照實施例15的方式製備上述器件結構,區別在於電 子傳輸層和連接層中N型層所採用的材料改為化合物 2-35 ° 實施例17 器件結構: ITO/NPB(40nm)/Alq3(30nm)/化合物 3-3 (20nm)/化合 物 2-13 : Li 3N(1Onm, 100/〇/V2〇5U〇rnn)/NPB(40nm)/Alq3(3(him)/ 化合物 3_3 (20nm)/LiF(0. 5nm)/Al &lt;150nm) 按照實施例15的方式製備上述器件結構,區別在於電 籲 子傳輸層材料改為化合物3-3,連接層中N型層所採用的 材料改為化合物2-13。 對比例8 器件結構:ITO/NPB(40nm)/Alq3(30nm)/Alq3(20nm)/ LiF(0.5nm) /Al(150nm) 製備方法如上所述。 對比例1 3 ITO/NPB(40nm)/Alq3(30nm)/Alq3(20nni)/Alq3:Li3N(l 201122080Example 12 Device Structure: ITO/m-MTDATA: F4-TCNQ (150 nm, 2%) / NPB (20mn) / MADN: TBPe (3 〇 nm, 5%) / Alq3 (l〇nni) / Compound 2-33 : CsF (10 nm, 5%) / Α 1 (150 nm) The above structure device was prepared according to the method of Example 1, and a hole injection layer was deposited on the surface of the 〇IT〇 anode, and the hole injection layer was 15 nm thick m-MTDATA, wherein The 2% doped F4_TCNQe is further deposited as a hole transport layer. The luminescent layer is a blue light body 2-methyl-9,10_bis(2-naphthyl)-fluorene (MADN) doped with 5% ratio of blue dye 2, 5, 8, tetra-tert-butyl flower (TBPe), luminescent layer The thickness is 3Gnm. The buffer layer between the light-emitting layer and the electron-transporting layer is 晟厣&amp; τ η * 嘈 嘈 thickness is l 〇 nm, and the deposited material is Μ. . The electronic, primary, and transport functional layers are co-distilled with compound (iv) and W, and the push concentration of W is 5% and the thickness is 1 〇. Finally, (4) a metal M having a thickness of 15 〇 nm is used as a cathode. 36 201122080 Example 1 3 Device structure: ITO/m-MTDATA: F4-TCNQ (150 nm, 2%) / NPB (20 nm) / MADN: TBPe (30 nin, 59 〇 / BCP (2nin) / compound 2-33: Li3N (10 nm, 25%) / Α 1 (150 nm) The above structural device was prepared in the same manner as in Example 12 except that the thickness of the buffer layer between the light-emitting layer and the electron transport injection layer was 2 nm 'deposited material was 2' 9_2 Methyl-4,7-diphenyl], 10-phenanthroline (BCP). The electron injecting and transporting functional layer is prepared by the co-evaporation process of the compound and the state, and the doping concentration of LhN is 25%. The thickness is 1 〇 nm. Example 14 Device structure: ITO/m-MTDATA: F4-TCNQ (15 〇 nm, 2%) / NPB (20 mn) / MADN: TBPe (30 nm, 5%) / PBD (20 nm) / compound calls 2-33: LiF (10 nm, 50%) / Al (i5 〇 nm) The above structural device was prepared according to the method of Example ' 2, except that the thickness of the buffer layer between the light-emitting layer and the electron-transporting layer was 2Gnm, the deposition material is 2-(4-diphenyl)-5-(4_tert-butylbenzene i,3,4-dioxin. The electron injection and transport functional layer adopts the compound &quot;3 and W Co-heating process preparation 'and UF doping concentration is 5〇%, thickness For ι〇(10). Comparative Example 11 Device structure: 37 201122080 ITO/m-MTDATA: F4-TCNQ (150 nm, 2%) / NPB (20 nm) / MADN: TBPe (30 nm, 5%) / Alq3 (20 nm) / LiF (〇5nm)/Al(150nm) The above structural device was prepared according to the method of Example 12, except that there was no doping layer for electron transport and implantation, but a thickness of 20 nm of Alq3 was directly deposited on the light-emitting layer as an electron transport layer. Finally, Li.5nm LiF was deposited as electron injection layer and 150nm AI was used as cathode. Comparative Example 12 Device structure: ITO/m-MTDATA: F4-TCNQ (150nm, 2%)/NPB (20nm)/MADN: TBPe (30nm , 5%) / Compound 2-33 (20 nm) / LiF (0.5 nm) / Al (150 nm) The above structural device was prepared according to the method of Example 12, except that there was no doping layer for electron transport and implantation, but light was emitted. On the layer, a compound of 2 to 3 μm thick was deposited as an electron transport layer, and finally LiF of 5 nm was deposited as an electron injection layer and A1 of 15 Onm was used as a cathode. Device performance of the above Examples 12-14 and Comparative Example 1 The data is shown in Table 5 below: Device Structure Brightness cd/m2 Voltage V Current Density A/m2 Current Efficiency cd/A x(5V) y(5V) Example 12 Alq3(10nm)/Chemical 2-33: CsF (10 nm, 5%) 5000 8.06 722. 07 6.92 0.1434 0.1901 Example 13 BCP (2 nm) / compound 2 - 33: Li 3 N (10 nra, 25%) 5000 8. 52 762. 84 6.55 0.1419 〇. 1892 38 201122080 Example 14 PBD (20 nn / compound 2-33 : LiF (lOmii, 50%) 5000 8.35 813.71 6. 14 0.1415 ---- ο. 1874 Comparative Example 11 Alq3 (20 nm) / LiF / Al 5000 9 85 915.39 5.46 0.1417 〇. 1879 Comparative Example 12 Compound 2-33 (20 nm) / LiF / Al 5000 5, 90 751.57 6.65 0.1417 ------ 0.1810 Examples 12 to 14 were mixed with compounds 2_33 in different proportions. The agent (concentration is 5% to 50%), and the buffer layer uses different materials with electron transport properties to obtain better performance. Compared with Comparative Example 11, the drive voltage has a lower driving voltage of up to 18V. The efficiency of the compound 2-23 doped device is also higher. Compared with the comparative example i of 5.46 cd/A, the efficiency of the doped device is increased by 0.5 to 1.5 cd/A, and the increase is up to 27%. At the same time, from the stability comparison, after the compound 2_33 is doped, the half-life lifetime (initial brightness MOOcd, 2) of the device is all extended, and the relative improvement of the comparative example 11 can reach 5_. The use of the buffer layer separates the inorganic dopant from the luminescent layer to avoid luminescence quenching, which is beneficial to the improvement of device stability. In addition, Comparative Example 12 employed undoped compound 2-33, which was compared with Examples 1 2 to 14, and the ratio of 1 9 mountain was not as low as A1 q3, so the driving voltage was very low, only 5 γ曰, ^ . 9V. However, the life of Comparative Example 12 was not as good as that of Examples 12 to 14' because the library was not doped. It can be seen that 'matching ETL and changing the like, th ^ ^ dopant material, well-designed doping ratio and thief structure can find a balance between driving voltage, efficiency and stability. , to obtain performance ^ 〇 TFTs, 0 ^ excellent, real, high-performance devices, the performance of the TiA 0LED products. 39 201122080 Example 1 5 Device structure: ITO/NPB (40 nm) / Alq3 (30 nm) / Compound 2-5 (20 nm) / Compound 2_5: Li3N (10 nm, 10%) / V2 〇 5 (10nni) / NPB (40nin /Alq3(30nni)/Compound 2-5 (20nm) /LiF(0.5 nm)/Al(150nm) The substrate is placed in a cleaning solution with a ITO conductive glass substrate with a specific pattern as the substrate. Ultrasonic cleaning in deionized water, the temperature of the washing liquid is about 60 ° C, then the cleaned substrate is baked with an infrared baking lamp, placed in the evaporation chamber, and the functional layers are deposited by thermal evaporation in sequence, during the evaporation process. The chamber pressure is lower than 5.0 xl (T3pa. In this embodiment, ΙΤ0 必阳, 丨, 1 is 7U flat 7L 1 first deposits 4 〇nm thickness of NPB' as a hole transport layer, and then on it $ X The thickness of Alq3 is 3〇nm' as the light-emitting layer, and then the electron transport layer of 2〇nm ^ degree is deposited, and the compound layer of the present invention is used, and then the connection layer is prepared on the first precursor. The vapor deposition (four) connection layer, The compound 2-5 and 1% by weight of the coffee were deposited in a co-steamed sea way, and the thick core (10)' was then deposited with a p-type tie layer, (10), thickness ^. and then connected: deposition preparation second The illuminating unit, the structure and the first illuminating unit. Finally, the thermal evaporation, the layer, the 电子/儿 〇 _ 5 nm thickness of the electron Λ '- covers the cathode metal layer A1, the thickness i5Qnm. Example 16 Device structure: 201122080 ITO/NPB (40 nm) / Alq3 (30 nin) / compound 2-35 (20 nm) / character 2 ~ 35: Li3N (10nm, 10%) / Vz 〇 5 (10 nm) / NPB (40nm) / Alq3 ( 30 nm) / Compound 2-35 (20 nm) / LiF (0.5 nm) / Al (150 nm) The above device structure was prepared in the same manner as in Example 15 except that the material used for the N-type layer in the electron transport layer and the tie layer was changed to Compound 2-35 ° Example 17 Device Structure: ITO/NPB (40 nm) / Alq3 (30 nm) / Compound 3-3 (20 nm) / Compound 2-13: Li 3N (1 Onm, 100 / 〇 / V2 〇 5U 〇rnn / NPB (40 nm) / Alq3 (3 (him) / compound 3_3 (20 nm) / LiF (0.5 nm) / Al &lt; 150 nm) The above device structure was prepared in the same manner as in Example 15, except that the electron transfer layer was The material was changed to compound 3-3, and the material used for the N-type layer in the tie layer was changed to compound 2-13. Comparative Example 8 Device structure: ITO/NPB (40 nm) / Alq3 (30 nm) / Alq3 (20 nm) / LiF ( 0.5 nm) / Al (150 nm) The preparation method is as described above. Comparative Example 1 3 ITO/NPB (40 nm) / Alq3 (30 nm) / Alq3 (20nni) / Alq3: Li3N (l 201122080

Onm,10%)/V2〇5(1 0nm)/NPB(40nm)/Alq3(30nm)/Alq3(20nm) /LiFCO.5nra)/Al(150nm) 按照實施例15的方式製備上述器件結構,區別在於電 子傳輸層和連接層中N型層所採用的材料改為Alq3。 在 2000cd/m2 時 在2000cd/m2時的電 在2000加/〇12時的流 的電壓V 流效率cd/A 明效率lm/W 實施例15 13.0 6.1 1.2 實施例16 13.2 5.8 1.1 實施例17 12.8 6.4 ---------- 1.2 對比例8 6.6 3,1 1.2 對比例13 13.8 5.3 1.1 對比例8為單個發光單元的器件,採用20nm厚度的 AW料電子傳輸層。實施例15〜17和對比例η為兩個 發光早元疊加的器件, 件不同在於對比例採用了 Alq3作為電 子傳輸層和連接層的N型層, ’‘’ 明之化合物。 實施们5〜17採用了本發 從上表的性能對比可以看出,採用兩個發光單 結構的Is件,電流效率比單個 高了-倍左右。太絡先早凡盗件的電流效率提 门了倍左右本發明之化合物㈠、2 為電子傳輸層,還作A M/D、$ μ 2 13不僅作 N/P連接層“&quot;型連接層主μ 料。且實施例15〜17的電流效率也明…:層:體材 對比實施例和對比例8, f Η 13。 貫施例15〜17雖㈣ 42 201122080 個,但是驅動電壓增加的幅度小於對比例8的兩倍,可見 本發明化合物作為連接層的N型層具有更高效的電子生成 和注入能力,能夠明顯降低驅動電壓和提高效率。 實施例18 器件結構: ITO/HAT(5nm)/NPB(20nm)/Alq3:C545T(30nin, 1%)/Alq3Onm, 10%) / V2 〇 5 (10 nm) / NPB (40 nm) / Alq3 (30 nm) / Alq3 (20 nm) / LiFCO. 5 nra) / Al (150 nm) The above device structure was prepared in the same manner as in Example 15, and the difference was made. The material used in the N-type layer in the electron transport layer and the connection layer was changed to Alq3. Voltage of the stream at 2000 cd/m2 at 2000 cd/m2 V flow efficiency cd/A efficiency lm/W Example 15 13.0 6.1 1.2 Example 16 13.2 5.8 1.1 Example 17 12.8 6.4 ---------- 1.2 Comparative Example 8 6.6 3,1 1.2 Comparative Example 13 13.8 5.3 1.1 Comparative Example 8 is a single light-emitting unit device using a 20 nm thick AW material electron transport layer. Examples 15 to 17 and Comparative Example η are two devices in which the luminescence is superimposed, and the difference is that Alq3 is used as the electron transport layer and the N-type layer of the connection layer, and the compound of the '''. The implementations 5 to 17 adopt the present invention. From the performance comparison of the above table, it can be seen that the current efficiency is about - times higher than that of a single one using two light-emitting single structures. The current efficiency of the thief is as early as possible. The compound (1) and 2 of the present invention are electron transport layers, and the AM/D and $μ 2 13 are not only used as the N/P connecting layer "&quot; The current efficiencies of Examples 15 to 17 are also as follows: Layer: Body Comparative Example and Comparative Example 8, f Η 13. Although Examples 15 to 17 (4) 42 201122080, the magnitude of the increase in driving voltage Less than twice as large as Comparative Example 8, it can be seen that the N-type layer of the compound of the present invention as a connection layer has more efficient electron generation and injection ability, can significantly lower the driving voltage and improve efficiency. Example 18 Device structure: ITO/HAT (5 nm) /NPB(20nm)/Alq3:C545T(30nin, 1%)/Alq3

(20nm)/ 化合物 2-28:Li3N(20nm,5%)/Mo〇3(15nm)/NPB(20nm)/Alq3: C545T( 30nm * 1%)/Alq3(20 nm)/LiF(0. 5nm)/Al(150nm) 按照實施例15的方式製備上述器件結構,區別在於 IT0上首先沉積了 5nm厚度的空穴注入層HAT,空穴傳輸層 NPB的厚度為20nm,發光層為Alq3摻雜C545T的體系,發 光層厚度30nm’綠光染料濃度1%,電子傳輸層改為Aiq” 連接層中N型層為化合物2-28,摻雜5%比例的Li 3N,N 型連接層厚度為20nm’ P型連接層為m〇〇3,厚度15nm。 實施例19 器件結構: ITO/HAT(5nm)/NPB(20nm)/Alq3:C545T(30nm, 1%)/Alq3 (2〇nm)/ 化合物 2-28:Li3N(15nm,20%)/m-MTDATA: F4-TCNQ(20nm, 2°/〇)/NPB(20nm)/Al q3 : C545T(30nm, l%)/Alq3(20nm)/LiF(0. 5nm)/Al(150nm) 按照實施例18的方式製備上述器件結構,區別在於連 43 201122080 接層N型層厚度1 5nm,摻雜比20%,P型層為m-MTDATA摻 雜2%比例的F4-TCNQ’厚度20nm。 實施例2 0 器件結構: ITO/HAT(5nm)/NPB(20nm)/Alq3:C545T(30nni, 1%)/Alq3 C2〇nm)/ 化合物 2-28:Li3N(5nm, 1〇%)/HAT(5nm)/NPB(20nm)/A 1 q3:C545T(3 0 nm, 1%)/Alq3(20 nm)/LiF(〇. 5nm)/Al(150nm) 按照實施例1 8的方式製備上述器件結構,區別在於連 接層N型層厚度5nm,摻雜比1〇%,p型層為 HAT(hexanitrile hexaazatriphenylene,六氰基六氮三亞 苯),厚度5nm。 實施例21 器件結構: ITO/HAT(5nm)/NPB(20nm)/Alq3:C545T(30nm, l°/〇)/Alq3 (20nm)/ 化合物 2-28:70 %(20nm) / Compound 2-28: Li3N (20nm, 5%) / Mo 〇 3 (15nm) / NPB (20nm) / Alq3: C545T (30nm * 1%) / Alq3 (20 nm) / LiF (0. 5nm /Al (150 nm) The above device structure was prepared in the same manner as in Example 15, except that the hole injection layer HAT having a thickness of 5 nm was first deposited on the IT0, the thickness of the hole transport layer NPB was 20 nm, and the light-emitting layer was Alq3 doped C545T. The thickness of the luminescent layer is 30 nm, the concentration of the green dye is 1%, and the electron transport layer is changed to Aiq. The N-type layer in the connection layer is compound 2-28, and the 5% ratio of Li 3N is doped. The thickness of the N-type connection layer is 20 nm. 'P-type connection layer is m〇〇3, thickness 15 nm. Example 19 Device structure: ITO/HAT (5 nm) / NPB (20 nm) / Alq3: C545T (30 nm, 1%) / Alq3 (2 〇 nm) / compound 2-28: Li3N (15 nm, 20%) / m-MTDATA: F4-TCNQ (20 nm, 2 ° / 〇) / NPB (20 nm) / Al q3 : C545T (30 nm, l%) / Alq3 (20 nm) / LiF (0. 5 nm) / Al (150 nm) The above device structure was prepared in the same manner as in Example 18 except that the thickness of the N-type layer of the layer of 2011 20112080 was 15 nm, the doping ratio was 20%, and the p-type layer was m-MTDATA doped. The 2% ratio of F4-TCNQ' is 20 nm thick. Example 2 0 Device structure: ITO/HAT (5 nm) / NPB (20 nm) / Alq3: C545T (3 0nni, 1%)/Alq3 C2〇nm) / Compound 2-28: Li3N (5nm, 1〇%) / HAT (5nm) / NPB (20nm) / A 1 q3: C545T (3 0 nm, 1%) / Alq3 (20 nm) / LiF (〇. 5 nm) / Al (150 nm) The above device structure was prepared in the same manner as in Example 18 except that the thickness of the N-type layer of the connection layer was 5 nm, the doping ratio was 1%, and the p-type layer was HAT (hexanitrile hexaazatriphenylene, hexacyanohexaatritriene), thickness 5 nm. Example 21 Device structure: ITO/HAT (5 nm) / NPB (20 nm) / Alq3: C545T (30 nm, l ° / 〇) / Alq3 (20 nm ) / Compound 2-28: 70 %

Li3N(5nm, 10%)/HAT(5nm)/NPB(20nra)/Alq3:C545T(30nm, 1%)/Alq3 (20nm)/LiF(〇. 5nm)/A1(150nm) 按照實施例20的方式製備上述器件結構,區別在於連 接層N型層中LisN的摻雜比例為。 對比例14 44 201122080 器件結構: ITO/HAT(5nm)/NPB(20nm)/Alq3 : C545T(3 0nm, l%)/Alq3(20nm)/LiF(0. 5 nm)/A1(15Onm) 按照實施例18的方式製備上述器件結構,區別在於本 器件只有一個發光單元,沒有連接層。 對比例1 5 器件結構:Li3N (5 nm, 10%) / HAT (5 nm) / NPB (20 nra) / Alq3: C545T (30 nm, 1%) / Alq3 (20 nm) / LiF (〇. 5 nm) / A1 (150 nm) In the manner of Example 20. The above device structure was prepared except that the doping ratio of LisN in the N-type layer of the connection layer was. Comparative Example 14 44 201122080 Device structure: ITO/HAT(5nm)/NPB(20nm)/Alq3: C545T(3 0nm, l%)/Alq3(20nm)/LiF(0.5 nm)/A1(15Onm) The device structure described above was prepared in the manner of Example 18 except that the device had only one light-emitting unit and no connection layer. Comparative Example 1 5 Device Structure:

ITO/HAT(5nm)/NPB(20nm)/Alq3:C545T(3 0nm, 1%)/Alq3 (2 0nni)/Alq3:Li(10nm, 10%)/ΗΑΤ( 1 Onm)/NPB(20nm)/Alq3: C 545T(30nm, l%)/Alq3(2〇nm)/LiF (0.5nm)/Al(150nm) 按照實施例18的方式製備上述器件結構,區別在於連 接層N型層為Alq3摻雜1〇%比例的Li,厚度i〇nm,P型 層為厚度10nm的HAT。 • 對比例1 6 器件結構: ITO/HAT(5nm)/NPB(20nm)/Alq3:C545T(30nni) l°/〇)/Alq 3(20nm)/ET-ll:Li (10nm, l〇°/〇)/HAT(10nm)/NPB(20nm)/Alq3:C545T(3 0nm, l%)/Alq3(20nra)/LiF (〇. 5nm)/Al(150nm) 按照實施例18的方式製備上述器件結構,區別在於連 接層N型層為ET-11摻雜1〇%比例的u,厚度10nm,p型 層為厚度l〇nm的HAT。 45 201122080 在 1000cd/m2 時 在1000cd/m2時的電 在1000cd/m2時的流 的電壓V 流效率cd/A 明效率lm/W 實施例18 8. 0 15.0 5. 89 實施例19 8.5 14.8 5.47 實施例20 7.5 16.2 6. 78 實施例21 9,2 14.5 4. 95 對比例14 4.2 8.0 5.9 對比例15 8.9 14.6 5.16 對比例16 8.8 14.8 5.21ITO/HAT (5 nm) / NPB (20 nm) / Alq3: C545T (30 nm, 1%) / Alq3 (2 0nni) / Alq3: Li (10 nm, 10%) / ΗΑΤ (1 Onm) / NPB (20 nm) / Alq3: C 545T (30 nm, 1%) / Alq3 (2 〇 nm) / LiF (0.5 nm) / Al (150 nm) The above device structure was prepared in the same manner as in Example 18 except that the N-type layer of the connection layer was Alq3 doped. Li in a ratio of 1% by weight, thickness i〇nm, and a P-type layer is a HAT having a thickness of 10 nm. • Comparative Example 1 6 Device Structure: ITO/HAT(5nm)/NPB(20nm)/Alq3:C545T(30nni) l°/〇)/Alq 3(20nm)/ET-ll:Li (10nm, l〇°/ 〇) / HAT (10 nm) / NPB (20 nm) / Alq3: C545T (30 nm, 1%) / Alq3 (20nra) / LiF (〇. 5nm) / Al (150nm) The above device structure was prepared in the same manner as in Example 18. The difference is that the N-type layer of the connection layer is ET-11 doped with a ratio of 1% by weight of u, the thickness is 10 nm, and the p-type layer is HAT having a thickness of 10 nm. 45 201122080 Voltage of the flow at 1000 cd/m2 at 1000 cd/m2 V flow efficiency cd/A efficiencies lm/W Example 18 8. 0 15.0 5. 89 Example 19 8.5 14.8 5.47 Example 20 7.5 16.2 6. 78 Example 21 9,2 14.5 4. 95 Comparative Example 14 4.2 8.0 5.9 Comparative Example 15 8.9 14.6 5.16 Comparative Example 16 8.8 14.8 5.21

對比例14為單個發光單元的器件,對比例丨5和實施 例18〜21為兩個發光單元疊加的器件,不同在於對比例 15的N型連接層材料採用的是Alq3,實施例18〜21的n 5連接層材料選用本發明之化合物2_28 ,匹配了不同的p 型連接層。對比例16的N型連接層選用了 ET_u,器件的 驅動電壓略间於實施例,效率略低。證明本發明之化合物 傳輸性能要好於ET-11材料。 從上表的性能資料對比來看,連接層 2-28: 10%Li3N/HAT % έ A1為該糸列優選結構,實施例2 0與其他 件相比’電流效率和gn 双手和抓明效率方面均有很大的提高。和 個發光單元的對士你丨! 4 匕例14相比較,實施例2 〇的驅動電壓 器 單Comparative Example 14 is a device of a single light-emitting unit, and Comparative Example 5 and Examples 18 to 21 are devices in which two light-emitting units are superimposed, except that the N-type tie layer material of Comparative Example 15 is Alq3, and Examples 18 to 21 The n 5 tie layer material was selected from the compound 2_28 of the present invention to match different p-type tie layers. The N-type connection layer of Comparative Example 16 was ET_u, and the driving voltage of the device was slightly lower than that of the embodiment, and the efficiency was slightly lower. It was demonstrated that the compound of the present invention has better transmission properties than the ET-11 material. From the comparison of the performance data in the above table, the connecting layer 2-28: 10%Li3N/HAT % έ A1 is the preferred structure of the array, and the embodiment 20 is compared with other parts' current efficiency and gn hands and grasping efficiency There have been great improvements in terms. And the light-emitting unit of the taxi you! 4 Example 14 comparison, Example 2 〇 drive voltage single

於對比例電壓的2倍, 載流子生成注入性能: 小 說明實施例20的連接層具有極佳 &amp;兩了疊層器件的效率。 的 【圖式簡單說明】 圖1疋說明實施例 114和對比例11 -12的發光器件 46 201122080 的亮度-電壓的圖; 圖2是說明實施例12-14和對比例u_12的發光器件 的電流密度-電壓的圖; 圖3是說明實施例12-14和對比例π-12的發光器件 的電流效率-電流密度的圖;及 圖4是說明實施例12-14和對比例11-12的發光器件的壽 命的圖。2 times the comparative voltage, carrier generation injection performance: Small The connection layer of Example 20 is shown to have excellent &amp; BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a graph showing the luminance-voltage of the light-emitting device 46 201122080 of Example 114 and Comparative Example 11-12; and Figure 2 is a graph showing the currents of the light-emitting devices of Examples 12-14 and Comparative Example u_12 A graph of density-voltage; FIG. 3 is a graph illustrating current efficiency-current density of light-emitting devices of Examples 12-14 and Comparative Examples π-12; and FIG. 4 is a view illustrating Examples 12-14 and Comparative Examples 11-12 A diagram of the lifetime of a light emitting device.

【主要元件符號說明】 無[Main component symbol description] None

4747

Claims (1)

201122080 七、申請專利範圍: 1、一種有機材料,其由下式1所示:201122080 VII. Patent application scope: 1. An organic material, which is shown by the following formula 1: 其中,Ar選自碳原子數為6至30的稠環芳烴的殘基; An和Αγ2分別獨立地選自氫原子、碳原子數為6至24的芳 香基團、碳原子數為6至24的雜環芳香基;η選自2至3 · 的整數。 2.如申請專利範圍第1項所述之有機材料,其中,式Wherein Ar is selected from the group consisting of residues of a fused ring aromatic hydrocarbon having 6 to 30 carbon atoms; and An and Αγ2 are each independently selected from a hydrogen atom, an aromatic group having 6 to 24 carbon atoms, and 6 to 24 carbon atoms. a heterocyclic aromatic group; n is selected from an integer of 2 to 3 ·. 2. The organic material as described in claim 1 of the patent scope, wherein 48 201122080 3.如申請專利範圍第1或2項所述之有機材料,其中,48 201122080 3. The organic material as described in claim 1 or 2, wherein 4.如申請專利範圍第1或2項所述之有機材料’其中’ 與Ar基相連的基團為:4. The organic material as described in claim 1 or 2, wherein the group attached to the Ar group is: 5.如申請專利範圍第1或2項所述之有機材料’其中’ 該有機材料如下結構式所示:5. The organic material as described in claim 1 or 2, wherein the organic material is represented by the following structural formula: 49 20112208049 201122080 2-21 2-232-21 2-23 50 20112208050 201122080 material 一 口 巧电蚀和設罝 在該對電極之間的有機發光介質兮古 ;「負,該有機發光介質令包含 如申請專利範圍第1 -5項中任__箱所 項所述之材科。 8.如申請專利範圍第7項所'+,— 士 i 器件 ,所述之有機電致發光 51 201122080 上述有機發光介質包括發光層和電子傳輸功能層 申請專利範圍第1i 5項中任_項所述之材料包含在 傳輸功能層中。 如甲請專利範㈣7項所述之有機電致發光器件 上述電子傳輸功能層還包含另—種電子傳輸材料,該材才: 選自。惡㈣化合物、金屬螯合物、三錢化合物、料舞 化合物、二氮菲類化合物或蒽類化合物。a galvanic galvanic corrosion and an organic luminescent medium disposed between the pair of electrodes; "negative, the organic luminescent medium is included in the material section of the __ box according to the scope of claims 1-5. 8. The organic electroluminescence of the above-mentioned organic light-emitting medium including the light-emitting layer and the electron-transporting functional layer, as claimed in item 7 of the patent application, the above-mentioned organic light-emitting device 51 201122080 The material described in the item is included in the transmission function layer. The organic electroluminescence device described in the above paragraph (4) of claim 7 further comprises another electron transporting material, which material is selected from: (4) a compound, a metal chelate compound, a trivalent compound, a compounding compound, a phenanthroline compound or an anthraquinone compound. ίο.如申請專利範圍第9項所述之有機電致發光器 件,其中,上述噁唑類化合物、金屬螯合物、三唑類化合 物、咪唑類化合物、二氮菲類化合物或蒽類化合物為:2_(4一 叔丁基苯基)-5- ( 4-聯苯基)4 ’ 3,4_噁二唑、三(8_ 羥基喹啉)鋁、3-(4-聯笨基)_4_笨基_5_(4_ 丁基笨 基)1,2, 4 一。坐、4,7 - 一笨基- l,i〇 -鄰菲哈琳、2,9_二甲 基-4’ 7-二苯基-1,1〇_鄰菲咯啉、或2_苯基_9, 1〇_二萘蒽。The organic electroluminescent device according to claim 9, wherein the oxazole compound, metal chelate compound, triazole compound, imidazole compound, phenanthroline compound or anthraquinone compound is : 2_(4-tert-butylphenyl)-5-(4-biphenyl)4' 3,4-oxadiazole, tris(8-hydroxyquinoline)aluminum, 3-(4-linked stylyl)_4 _ Stupid _5_(4_ butyl stupid) 1,2, 4 one. Sit, 4,7 - a stupid base - l, i〇-phenanthrene, 2,9-dimethyl-4' 7-diphenyl-1,1 〇 phenanthroline, or 2 benzene Base _9, 1 〇 dinaphthoquinone. 11_如申請專利範圍第7項所述之有機電致發光器 件’上述有機發光介質包括發光層和電子注入和傳輸功能 層,其中如申請專利範圍第1至5項中任一項所述之材料 包含在上述電子注入和傳輪功能層,且上述電子注入和傳 輸功3b層還包含有摻雜劑’上述掺雜劑選自驗金屬、驗金 屬氧化物、鹼金屬_化物 '鹼金屬氮化物、和鹼金屬鹽。 12.如申請專利範圍第11項所述之有機電致發光器 件’上述摻雜劑選自鋰、绝、氮化鋰、氟化鋰、鈷酸鋰、 氧化經、8-羥基喹啉鋰、碳酸铯、硼氫化鉀、硼氫化鋰、 氟化鈉、氣化鈉、氟化絶' 氣化鉋、和氧化铷。 52 201122080 23.如申請專利範圍第u項 件,其中,上述電子注入和傳 述之有機電致發光器 電子注入和傳輸功月層厚度為2nm〜40nm, 。_,= 劑的摻雜比例為重量百分比 U· Η 49/β,基於如申請專利範圍 之材料。 1至5項中任一項所述 14·如申請專利範圍第13 # ^ t , ^+· ^ ^ 項所述之有機電致發光器 電子傳輪功能層厚度為― 輸功能層中換雜劑的摻雜比例為重量百分比 材料 絲如中請專圍第Β項中ρ項所述之 件,其Φ申請專利範^第U項所述之有機電致發光器 勺妊姐,在上述電子注入和傳輪功能層與發光層之間還 ::衝層’上述緩衝層的材料選自申請專利範圍丄或2 _ ^的化口物,或者選自°惡°坐類化合物、金屬配合物、 2唑類化合物、咪唑類化合物、喹啉類化合物、喔啉類化 物一氮蒽類化合物、和二氮菲類化合物。 .如申明專利範圍第15項所述之有機電致發光器 牛’、中’上述緩衝層的材料選自申請專利範圍5中上述 勺化。物’或者選自2-(4-叔丁基苯基)-5- ( 4-聯苯基) 3 惡二嗤、三(8-羥基喹啉)鋁、3-(4-聯苯基)-4-j 基 ~5~(4~ 丁基苯基)-1,2,4-三唑、4,7-二苯基-l,l〇-鄰 菲洛琳、2,9-二曱基-4,7-二苯基-1,1〇-鄰菲咯啉、和2-笨基-9, 1〇__二萘蒽。 17·如申請專利範圍第15項所述之有機電致發光器 53 201122080 件,其中,上述緩衝層的厚度為2n計2〇nm。 18. 如申凊專利範圍第7項所述之有機電致發光器 件,上述有機發光介質中包含至少兩個發光單元,發光單 疋間設置連接層,如申請專利範圍帛卜5項中任一項所述 之材料包含在上述連接層中。 19. 如申請專利範圍第18項所述之有機電致發光器 件’其中’連接層中還摻雜有選自鹼金屬、鹼金屬氧化物、 驗金屬鹵化物、鹼金屬氮化物、和鹼金屬鹽的摻雜劑。 20. 如申請專利範圍第19頊所述之有機電致發光器 件,其中’上述摻雜劑選自鋰、铯、氮化链、氟化鋰、鈷 酸鐘、氧化鋰、8-羥基喹啉鋰、破酸铯、硼氫化鉀、硼氫 化鋰、氟化鈉、氣化鈉、氟化铯、氯化鉋、和氧化铷。The organic electroluminescent device of claim 7, wherein the organic light-emitting medium comprises a light-emitting layer and an electron injecting and transporting functional layer, wherein the method of any one of claims 1 to 5 is The material is included in the above-mentioned electron injection and transfer function layer, and the electron injection and transmission work 3b layer further comprises a dopant. The dopant is selected from the group consisting of metal, metal oxide, alkali metal-alloy metal alkali nitrogen. And alkali metal salts. 12. The organic electroluminescent device according to claim 11, wherein the dopant is selected from the group consisting of lithium, lithium, lithium nitride, lithium fluoride, lithium cobalt oxide, oxidized hydride, lithium quinolate, Barium carbonate, potassium borohydride, lithium borohydride, sodium fluoride, sodium gasification, fluorination, gasification planing, and cerium oxide. 52 201122080 23. The scope of claim 5, wherein the electron injection and transmission electron injection and transmission electron layer of the above electron injection and transmission layer has a thickness of 2 nm to 40 nm. The doping ratio of _, = agent is a weight percentage U· Η 49/β, based on the material as claimed in the patent application. The thickness of the functional layer of the organic electroluminescent device of the organic electro illuminator as described in any one of items 1 to 5, as described in claim 13# ^, ^+· ^ ^ is ― change in the functional layer The doping ratio of the agent is the weight percentage of the material wire. For example, please refer to the item described in item ρ of the item Φ, and the Φ application for the patent method is the organic electroluminescent device spoon of the pregnant woman, in the above electronic Between the injection and transfer function layer and the light-emitting layer:: the punch layer 'the material of the buffer layer is selected from the patent application range 丄 or 2 _ ^, or selected from the group of compounds, metal complexes And a azole compound, an imidazole compound, a quinoline compound, a porphyrin compound, a guanidinium compound, and a phenanthroline compound. The material of the above-mentioned buffer layer of the organic electroluminescent device of the invention of claim 15 is selected from the above-mentioned spooning in the scope of claim 5. 'or selected from 2-(4-tert-butylphenyl)-5-(4-biphenyl) 3 oxadiazine, tris(8-hydroxyquinoline)aluminum, 3-(4-biphenylyl) -4-j base ~5~(4~ butylphenyl)-1,2,4-triazole, 4,7-diphenyl-l,l〇-phenanthroline, 2,9-di Base-4,7-diphenyl-1,1〇-phenanthroline, and 2-phenyl-9,1〇__naphthoquinone. The organic electroluminescent device 53 201122080 according to claim 15, wherein the buffer layer has a thickness of 2 n 2 nm. 18. The organic electroluminescent device according to claim 7, wherein the organic luminescent medium comprises at least two illuminating units, and a connecting layer is disposed between the illuminating units, as in any one of the five patent claims. The material described in the item is contained in the above connecting layer. 19. The organic electroluminescent device according to claim 18, wherein the connecting layer is further doped with an alkali metal, an alkali metal oxide, a metal halide, an alkali metal nitride, and an alkali metal. A dopant for the salt. 20. The organic electroluminescent device according to claim 19, wherein the above dopant is selected from the group consisting of lithium, ruthenium, nitridium chain, lithium fluoride, cobalt acid clock, lithium oxide, and 8-hydroxyquinoline. Lithium, barium sulphate, potassium borohydride, lithium borohydride, sodium fluoride, sodium vapor, barium fluoride, chlorinated planer, and cerium oxide. 5454
TW098146373A 2009-12-31 2009-12-31 Organic material and organic electroluminescent device using the same TWI616512B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098146373A TWI616512B (en) 2009-12-31 2009-12-31 Organic material and organic electroluminescent device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098146373A TWI616512B (en) 2009-12-31 2009-12-31 Organic material and organic electroluminescent device using the same

Publications (2)

Publication Number Publication Date
TW201122080A true TW201122080A (en) 2011-07-01
TWI616512B TWI616512B (en) 2018-03-01

Family

ID=45045907

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098146373A TWI616512B (en) 2009-12-31 2009-12-31 Organic material and organic electroluminescent device using the same

Country Status (1)

Country Link
TW (1) TWI616512B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700775A (en) * 2013-12-31 2014-04-02 北京维信诺科技有限公司 Organic electroluminescence device and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4790260B2 (en) * 2004-12-22 2011-10-12 出光興産株式会社 Organic electroluminescence device using anthracene derivative
KR100961781B1 (en) * 2007-09-17 2010-06-07 에스에프씨 주식회사 n-type organic semiconductor compound and organic electroluminescent device using the same
CN101412907A (en) * 2007-10-17 2009-04-22 中国科学院理化技术研究所 Electroluminescent organic material, synthetic method and use thereof
CN101364636A (en) * 2008-09-28 2009-02-11 清华大学 Organic electroluminescent device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700775A (en) * 2013-12-31 2014-04-02 北京维信诺科技有限公司 Organic electroluminescence device and preparation method thereof
TWI580686B (en) * 2013-12-31 2017-05-01 北京維信諾科技有限公司 Organic electroluminescent device and preparation method thereof
US10256417B2 (en) 2013-12-31 2019-04-09 Beijing Visionox Technology Co., Ltd. Organic electroluminescent and preparation method thereof

Also Published As

Publication number Publication date
TWI616512B (en) 2018-03-01

Similar Documents

Publication Publication Date Title
Singh et al. Electroluminescent materials: Metal complexes of 8-hydroxyquinoline-A review
JP5231188B2 (en) Organic electroluminescence device
US7598381B2 (en) Near-infrared emitting organic compounds and organic devices using the same
TWI413287B (en) Electron impeding layer for high efficiency phosphorescent oleds
JP5883548B2 (en) OLED using direct injection into triplet state
KR101688317B1 (en) Organic light emitting diode having low operating voltage and method for fabricating the same
KR101694487B1 (en) Quinoxaline derivative compound, pyridopyrazine derivative compound and organic electroluminescent devices using the sames
KR102187252B1 (en) Anthracene composite and organic light emitting diode device comprising the same
US20060222886A1 (en) Arylpyrene compounds
JP5498580B2 (en) ORGANIC MATERIAL AND ORGANIC EL DEVICE USING THE MATERIAL
JP4364201B2 (en) Organic electroluminescence device
KR100752383B1 (en) Organic light emitting display and fabricating method of the same
US7018723B2 (en) Materials and structures for enhancing the performance of organic light emitting devices
TW200540245A (en) Improved electroluminescent stability
TWI354694B (en) Materials and structures for enhancing the perform
US7198859B2 (en) Materials and structures for enhancing the performance of organic light emitting devices
CN102074655B (en) Organic light-emitting diode device
US8941099B2 (en) Organic light emitting device and materials for use in same
KR101415730B1 (en) Aromatic compound derivatives and organic electroluminescent device using the same
TW201121359A (en) Organic electroluminescence element
TW201122080A (en) Organic material and organic electroluminescence devices adopting the same.
He Organic Semiconductor Electroluminescent Materials
KR101641351B1 (en) Isoquinoline derivative compound and organic electroluminescent device using the same
KR20180032998A (en) Organic light emitting device
Pode et al. Efficient red light phosphorescence emission in simple bi-layered structure organic devices with fluorescent host-phosphorescent guest system