TW201121895A - Near infrared absorbing agent and near infrared absorbing film - Google Patents

Near infrared absorbing agent and near infrared absorbing film Download PDF

Info

Publication number
TW201121895A
TW201121895A TW98145525A TW98145525A TW201121895A TW 201121895 A TW201121895 A TW 201121895A TW 98145525 A TW98145525 A TW 98145525A TW 98145525 A TW98145525 A TW 98145525A TW 201121895 A TW201121895 A TW 201121895A
Authority
TW
Taiwan
Prior art keywords
infrared absorbing
film
trioxide
tungsten trioxide
polyacrylic acid
Prior art date
Application number
TW98145525A
Other languages
Chinese (zh)
Other versions
TWI409222B (en
Inventor
Chao-Ching Chang
Ying-Shiou Chen
Kwo-Hwa Fang
Original Assignee
Taiwan Textile Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Textile Res Inst filed Critical Taiwan Textile Res Inst
Priority to TW98145525A priority Critical patent/TWI409222B/en
Publication of TW201121895A publication Critical patent/TW201121895A/en
Application granted granted Critical
Publication of TWI409222B publication Critical patent/TWI409222B/en

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Disclosed herein is a method for preparing a near infrared absorbing agent. The method includes admixing tungsten trioxide and a reducing agent in water and allowing for a partial reduction of the tungsten trioxides to yield the near infrared absorbing agent.

Description

201121895 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種近紅外線(near infrared,NIR ) 吸收劑。 【先前技術】 已知青銅鶴(Tungsten bronzes,其化學式為MjWC^, 其中M = Li+,Na+,K+,Rb+,Cs+)具有不錯的近紅外線 I (波長範圍約750 nm至約1400 nm)吸收能力,且同時具 有較高的可見光(波長範圍約380 nm至約750 nm)。 然而,結晶型的青銅鶴才具有較佳的NIR吸收率;而 習知的青銅鎢製備方法通常都必須進行約300°C以上的燒 結處理,方能產生具有適當結晶型態的產物。但是,高溫 燒結步處理會增加製造成本與製程的複雜性,因此這樣的 製造方法並不理想。 • 【發明内容】 發明内容旨在提供本揭示内容的簡化摘要,以使閱讀 者對本揭示内容具備基本的理解。此發明内容並非本揭示 内容的完整概述,且其用意並非在指出本發明實施例的重 要/關鍵元件或界定本發明的範圍。 本發明之一態樣係有關於一種近紅外線(NIR)吸收 劑。 根據本發明一具體實施例,上述方法包含以下步驟。 201121895 在水中混合三氧化鶴與還㈣,以使得三氣化鶴被部分還 原而得到上述近紅外線吸收劑。 在任選的具體實施例中,上述氧化鶴為帶結晶水的三 氧化鎢。此外,上述三氧化鎢和/或帶結晶水的三氧化鎢可 任選地為粉末狀,且其粒徑大小為約50nm至約5〇〇nm。 在任選的具體實施例中,當利用帶結晶水的三氧化鎢 來實施以上方法時,所用的帶結晶水的三氧化鎢可以是利 用以下方法所製成的。首先,在充滿氮氣的容器中混合約 0.2-0.5 Μ之NazWO4 · 2H2〇水溶液以及鹽酸以形成反應系 統,其中鹽酸的添加量使得反應系統的pH值為約i至約 7,並將反應系統的溫度保持在約-⑺❹匚至約1〇〇c之間, 以使得該反應系統中生成帶結晶水的三氧化鶴。 在任選的具體實施例中,利用上述方法來製備近紅外 線吸收劑時,不需進行溫度大於約100°C的燒結步驟。 在本發明各具體實施例中,可使用的還原劑為氫硼化 鈉、氫硼化鋰、氫硼化鉀、氫硼化鋅、氫硼化鋼、氫化鋰 銘、乙醇或乙二醇。 在任選的具體實施例中,當使用氫硼化鈉作為還原劑 時’三氧化鎢與氫硼化鈉的重量比為約5:1至20::!。 在另一些任選的具體實施例中,當使用乙醇作為還原 劑時,三氧化鎢與乙醇的重量比為約1:3至1:5。 本發明的另一態樣係有關於一種製備近紅外線吸收薄 膜的方法。 根據本發明一具體實施例,上述方法包含以下步驟。 首先將’根據本發明上述態樣/具體實施例所製備的近紅外 201121895 線吸收劑溶解於聚丙烯酸水溶液中。其後,將上述聚丙烯 酸水溶液塗佈於一基材上,並允許該塗層形成一薄膜,以 得到該近紅外線吸收薄膜。 在任選的具體實施例中,利用上述方法來製備近紅外 線吸收薄膜時,不需進行溫度大於約100°c的燒結步驟。 在任選的具體實施例中,利用上述各具體實施例所述 的方法來製備近紅外線吸收薄膜時,所使用的聚丙烯酸水 溶液並未包含任何用以溶解這些近紅外線吸收劑的其他有 機化合物。 本發明又一態樣係有關於一種近紅外線吸收薄膜。 根據本發明一具體實施例,上述薄膜至少包含一聚丙 烯酸基質與分散於其中的多個近紅外線吸收劑。上述多個 近紅外線吸收劑係根據本發明上述態樣/具體實施例製備 而得。上述薄膜的近紅外線吸收率大於其可見光吸收率。 在任選的具體實施例中,上述薄膜的紫外線吸收率大 於其可見光吸收率。 在參閱下文實施方式後,本發明所屬技術領域中具有 通常知識者當可輕易瞭解本發明之基本精神及其他發明目 的,以及本發明所採用之技術手段與實施態樣。 【實施方式】 為了使本揭示内容的敘述更加詳盡與完備,下文針對 了本發明的實施態樣與具體實施例提出了說明性的描述; 但這並非實施或運用本發明具體實施例的唯一形式。實施 方式中涵蓋了多個具體實施例的特徵以及用以建構與操作 201121895 這些具體實施例的方法步驟與其順序。然而,亦可利用其 他具體實施例來達成相同或均等的功能與步驟順序。、 本發明之一態樣係有關於一種近紅外線(Nir)吸收 劑。 根據本發明一具體實施例,上述方法包含以下步驟。 在水中混合三氣化鎢與還原劑’以使得三氧化鎢被部分還 原而得到上述近紅外線吸收劑。 根據本發明具體實施例’所用的三氧化鎢可為帶結晶 水的三氧化鎢’其實施例包括包括但不限於:鎢華(tungstite W03.H20)、水鎢黃華(meymacite,W〇3.2H2〇)以及水鎢 華(hydrotungstite,H2W〇4) 〇 在任選的具體實施例中,所用三氧化鎢為粉末狀,其 粒徑大小約50至500 nm。舉例來說,三氧化鎢的粒徑大 小可為約 50、55、60、70、80、90、100、110、120、130、 140 ' 150 ' 160 ' 170 ' 180、190、200 ' 210 ' 220 ' 230、 240、250、260、270、280、290、300、310、320、330、 340 、 350 、 360 、 370 、 380 、 390 、 400 、 410 、 420 、 430 、 440、450、460、470、480、490 或 500 nm ° 在任選的具體實施例中,上述三氧化鎢為帶結晶水的 三氧化鎢,且係由至少包含以下步驟的方法所製成。在裝 滿氮氣的容器中,將約0.2-0.5M之Na2W04 · 2H2〇水溶液 與鹽酸混合以形成一反應系統,其中應控制鹽酸的添加量 以使得反應系統的pH值為約1至約7。將上述反應系統保 持在約_1〇。(:至約10。(:的條件下,以使得反應系統中形成 帶結晶水的三氧化鎢。 201121895 具體來說,可將反應系統的pH值保持在約^】 體實 2.5、3、3.5、4、4.5、5、5.5、6、6.5 岑 7 :: Μ、2、 4 7。在某也晨 施例中,可將pH值保持在約2.5-4.5之間。 、一、 '9、-8、-7、、 6、7、8、9 或 統的溫度保持在 反應系統的溫度則可以保持在約__ 1 Q、 -5、-4、-3、-2、-1、〇、1、2、3、4'5 l〇°C。在某些具體實施例中,可將反應系 約-5°C至約5°C之間 ' 濃度為約0.2、201121895 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a near infrared (NIR) absorber. [Prior Art] Tungsten bronzes (the chemical formula MjWC^, where M = Li+, Na+, K+, Rb+, Cs+) are known to have good near-infrared I (wavelength range from about 750 nm to about 1400 nm) absorption capacity. And at the same time have higher visible light (wavelength range from about 380 nm to about 750 nm). However, crystalline bronze cranes have a better NIR absorption rate; whereas conventional bronze tungsten preparation methods generally require a sintering treatment of about 300 ° C or higher to produce a product having a suitable crystalline form. However, high-temperature sintering step processing increases the manufacturing cost and complexity of the process, so such a manufacturing method is not ideal. The Summary of the Invention The Summary of the Invention The summary is intended to provide a basic understanding of the disclosure. This Summary is not an extensive overview of the disclosure, and is intended to be illustrative of the scope of the invention. One aspect of the invention pertains to a near infrared (NIR) absorber. According to an embodiment of the invention, the method comprises the following steps. 201121895 Mixing the trioxane with water (4) in water, so that the three gasified cranes are partially reduced to obtain the above-mentioned near-infrared absorbing agent. In an optional embodiment, the oxidized crane is tungsten trioxide with crystal water. Further, the above tungsten trioxide and/or tungsten trihydrate with crystal water may optionally be in the form of a powder having a particle size of from about 50 nm to about 5 Å. In an optional embodiment, when the above method is carried out using tungsten trioxide with water of crystallization, the tungsten trioxide with crystal water used may be produced by the following method. First, a solution of about 0.2-0.5 Torr of NazWO4·2H2 hydrazine and hydrochloric acid are mixed in a container filled with nitrogen to form a reaction system, wherein the amount of hydrochloric acid added is such that the pH of the reaction system is from about i to about 7, and the reaction system is The temperature is maintained between about -(7) Torr and about 1 〇〇c to produce a trioxane with crystal water in the reaction system. In an optional embodiment, when the near infrared absorbing agent is prepared by the above method, a sintering step having a temperature greater than about 100 ° C is not required. In various embodiments of the invention, the reducing agent that can be used is sodium borohydride, lithium borohydride, potassium borohydride, zinc borohydride, borohydride steel, lithium hydride, ethanol or ethylene glycol. In an optional embodiment, when sodium borohydride is used as the reducing agent, the weight ratio of tungsten trioxide to sodium borohydride is from about 5:1 to 20::!. In still other optional embodiments, when ethanol is used as the reducing agent, the weight ratio of tungsten trioxide to ethanol is from about 1:3 to 1:5. Another aspect of the invention relates to a method of preparing a near infrared absorbing film. According to an embodiment of the invention, the method comprises the following steps. First, the near-infrared 201121895 line absorbent prepared according to the above aspect/embodiment of the present invention was dissolved in an aqueous polyacrylic acid solution. Thereafter, the above aqueous polyacrylic acid solution is applied onto a substrate, and the coating is allowed to form a film to obtain the near-infrared absorbing film. In an optional embodiment, when the near-infrared ray absorbing film is prepared by the above method, a sintering step having a temperature of more than about 100 ° C is not required. In an optional embodiment, when the near infrared absorbing film is prepared by the method described in the above specific examples, the aqueous polyacrylic acid solution used does not contain any other organic compound for dissolving these near infrared absorbing agents. Still another aspect of the invention relates to a near infrared absorbing film. According to a specific embodiment of the invention, the film comprises at least a polyacrylic acid matrix and a plurality of near infrared absorbing agents dispersed therein. The above plurality of near infrared absorbing agents are prepared in accordance with the above aspects/embodiments of the present invention. The near-infrared absorption rate of the above film is greater than its visible light absorption rate. In an optional embodiment, the film has a UV absorbance greater than its visible light absorption. The basic spirit and other objects of the present invention, as well as the technical means and implementations of the present invention, will be readily apparent to those of ordinary skill in the art. The present invention has been described in detail with reference to the embodiments of the present invention. . The features of the various embodiments are described in the embodiments and the method steps and sequences thereof are used to construct and operate the specific embodiments. However, other specific embodiments may be utilized to achieve the same or equivalent functions and sequence of steps. One aspect of the present invention relates to a near infrared ray (Nir) absorber. According to an embodiment of the invention, the method comprises the following steps. The above-mentioned near-infrared absorbing agent is obtained by mixing tri-gulpized tungsten and a reducing agent ' in water so that the tungsten trioxide is partially reduced. The tungsten trioxide used in accordance with an embodiment of the present invention may be tungsten trioxide with water of crystallization. Examples thereof include, but are not limited to, tungsten (tungstite W03.H20), water tungsten (yymacite, W〇3.2). H2 〇) and hydrotungstite (H2W 〇 4) 任 In an optional embodiment, the tungsten trioxide used is in the form of a powder having a particle size of about 50 to 500 nm. For example, the particle size of tungsten trioxide may be about 50, 55, 60, 70, 80, 90, 100, 110, 120, 130, 140 '150 '160 '170 '180, 190, 200 ' 210 ' 220 '230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490 or 500 nm ° In an optional embodiment, the above tungsten trioxide is tungsten trioxide with water of crystallization and is produced by a method comprising at least the following steps. In a vessel filled with nitrogen, about 0.2-0.5 M of an aqueous solution of Na2W04 · 2H2 is mixed with hydrochloric acid to form a reaction system in which the amount of hydrochloric acid added is controlled so that the pH of the reaction system is from about 1 to about 7. The above reaction system was maintained at about 〇. (: to about 10. (In the condition of: to form tungsten trioxide with crystal water in the reaction system. 201121895 Specifically, the pH of the reaction system can be maintained at about ^] Body 2.5, 3, 3.5 , 4, 4.5, 5, 5.5, 6, 6.5 岑7 :: Μ, 2, 4 7. In a morning application, the pH can be maintained between about 2.5-4.5. The temperature of -8, -7, 6, 6, 7, 9, or singly maintained at the temperature of the reaction system can be maintained at about __ 1 Q, -5, -4, -3, -2, -1, 〇 1, 2, 3, 4'5 l〇 ° C. In some embodiments, the reaction system may have a concentration of between about -5 ° C and about 5 ° C of about 0.2.

NazWO4 · 2^0於水溶液中的莫耳體積 〇·25、0.3、0.35、0.4、0.45 或 0.5 Μ 〇 上述方法所得到切束的粒 此一粒徑大小與上文所述之任選ϋ 可利用此種粉末來製備此處所提出的 一般而言,利用 約50至約500 nm。 實施例相符;因此, 近紅外線吸收劑。 在本揭示内容中,「部分還原」一詞係指僅將其中 份的三氧化鎢還原成氧化鶴,而其餘部分的三氧化嫣則= 經還原。在此種情形中,未還原的三氧化轉之價數爪為6+, 而經還原之氧化鎢的價數η為5免<6。舉例來說,經還原 之氧化鎢的價數η可為約5、5卜52、5.3、5.4、5.5、5 6、 ^7、5.8或5.9。在某些具體實施例中,經還原之氧化鎢的 價數 η 可為約 5、5.25、5.33、5.5、5.66 或 5.75。 在本揭示内容中,三氧化鎢之部分還原反應所得到的 產物疋二氧化嫣(VI)(或簡稱為三氧化鶴)與經還原氧化 鎢的混合物。在此種情形下,本揭示内容中亦將此一混合 物稱為混價氧化鎢(VI/V)。 已知二氧化鎢(VI)具有理想的紫外線(波長範圍約 201121895 280 nm至約380 nm)吸收率,且其可見光吸收率與近紅外 線吸收率分別小於10%。事實上,三氧化鎢(VI)對於可 將光與近紅外線幾乎是透明的。另一方面,經還原的氧化 鎢則具有和青銅鎢(Μ Λ W03,其中M = U+,Na+,K+, Rb+ ’ Cs+)類似的近紅外線吸收能力。因此,此處所述的 混4貝氧化鎢(VI/V )同時具備了紫外線與近紅外線吸收能 力。 因此,根據本發明的原理與精神,藉由控制還原反應 以得到同時具備紫外線與近紅外線吸收能力之近紅外線吸 收劑是非常重要的。一般而言,有多種因素會影響還原情 況,包括但不限於:還原劑的種類、體積與濃度、反應pH、 欲還原之三氧化鎢的濃度等等。 舉例來說’適當的還原劑實施例包括但不限於:氫蝴 化鈉、風硼化鐘、氫硼化卸、氫硼化辞、氫蝴化銅、氫化 經鋁、乙醇與乙二醇。 在一例示具體實施例中’使用了氫硼化鈉作為還原 劑’其中三氧化鎢與氫硼化鈉的重量比約為5:1至20:1。 舉例來說,上述二者的重量比可為約5:1、6:1、7:1、8:1、 9-1 ' 10:1 ' 11:1 > 12:1 ' 13:1 >14:1 '15:1 Μ6:1 > Π: 1 > 18:1 ' 19:1 或 20:1。 在另一例示具體實施例中,則使用乙醇作為還原劑, 其中三氧化鎢與乙醇的重量比為約1:3至1:5。詳言之,上 述二者的重量比可為約 、1:3.2、1:3.3、1:3.4、1:3.5、 1:3.6、1:3.7、1:3.8、1:3.9、1:4、1:4.卜 1:4.2、1:4.3、1:4.4、 1:4.5、1:4.6、1:4.7、1:4.8、1:4.9 或 1:5。 201121895 一般來說’可在室溫下進行本態樣所提出的方法。所 謂室溫係指約23-27°C。應注意到,此處提出的反應系統利 用水作為主要的溶液;因此,可在水的作用範圍(即, 0-100°C)下來進行此處提出的方法。 更有甚者’根據本態樣的方法係在不施加額外電場的 情形下所進行。也就是說,此處所提出的方法並未涉及電 化學反應。 亦可注意到’即便未進行習知的高溫燒結步驟,利用 此種方法所得到的混價氧化鎢(VI/V)仍兼具了近紅外線 吸收與紫外線吸收的能力。習知燒結步驟通常需要約3 〇 〇。c 以上的高溫,方能得到具有結晶型產物。在本發明某些具 體實施例中,混價氧化鎢(VI/V)不需經過高於1〇〇〇c的 加熱處理。 利用此種方法所得到的近紅外線吸收劑(即,混價氧 化鎮(VI/V))可直接溶解於水巾,而不需先溶於其他有機 溶劑。因此,此種近紅外線吸收劑可用以製備此處提出的 近紅外線吸收薄膜。 有鑑於此,本發明又一係有關於一種製備近紅外線吸 收薄膜的方法。 根據本發明一具體實施例,上述方法包含以下步驟。 首先,將根據本發明上述態樣/具體實施例所製得之近紅外 =吸收劑溶解於聚㈣酸水溶液卜其後,將聚丙稀酸水 ’合液塗佈於基材上,並允許該塗層形成—薄骐,因而得到 該近紅外線吸收薄膜。 應可注意到,本發明上述態樣所提出的近紅外線吸收 201121895 劑可直接溶於水中而不需先溶於有機溶劑中。因此,在本 發明某些具體實施例中’聚丙烯酸水溶液中並未包含任何 用以溶解該多個近紅外線吸收劑的有機溶劑(此處聚丙烯 酸並非用以溶解近紅外線吸收劑的溶劑)。然而,本發明所 屬技術領域中具有通常知識者當可輕易對上述具體實施例 進行各種修改,而在聚丙烯酸水溶液中加入其他的有機化 合物;不過,只要這些有機化合物並不是用來促使紅外線 吸收劑溶解於聚兩烯酸水溶液之中,則含有此類有機化合 鲁 物的變形並未條離本發明的精神與範圍。 如上文所述,此處提出的近紅外線吸收劑本身就能夠 同時展現近紅外線與紫外線吸收能力,而不需依賴習知的 燒結處理。因此,利用此種方法所形成的近紅外線吸收亦 可排除習知的燒結步驟。然而’在形成薄膜的過程中,可 能可以進行一加熱處理(加熱溫度低於約100oC),以利移 除塗層中的溶劑。 本發明的又一態樣係有關於一種近紅外線吸收薄膜。 鲁 根據本發明一具體實施例,上述薄膜至少包含一聚丙 歸酸基質與分散於其中的多個近紅外線吸收劑。該些近紅 外線吸收劑係根據本發明上述態樣/具體實施例所製成。此 薄骐的近紅外線吸收率高於其可見光吸收率。 在本揭示内容中,玎利用一薄膜之近紅外線吸收率與 可見光穿透率的總和還表示該薄膜的光學性質;上述兩個 數值的總和又稱為「總值」(total value )。 ^ —般而言,可利用光譜儀來測得在特定波長範圍中的 光線穿透率(T 〇/〇),而利用100%減去所測得之穿透率, 201121895 即可得到在同一波長範圍中光線的吸收率。因此,舉例來 說,一薄膜的可見光吸收率(VIS Abs.%)是利用100%減 去其可見光穿透率(VIST%)的差值。 因此,當薄膜的近紅外線吸收率大於可見光吸收率 時,可將近紅外線吸收率與可見光吸收率表示成以下的不 等式(方程式1): NIR Abs. % > VIS Abs. % 方程式 1 ; 可在方程式1的不等號兩邊分別加上100%,而將方程式1 改寫為方程式2 : 100% + NIR Abs. % > 100% + VIS Abs. % 方程式 2 ; 在方程式2的不等號兩邊各加上(-VIS Abs. %),可得到以 下方程式3 : (100% - VIS Abs. %) + NIR Abs. % > 100% 方程式 3 ; 整理方程式3即可得到方程式4 : VIS T % + NIR Abs. % > ι〇〇〇/0 方程式 4。 因此’可以得知當薄膜的近紅外線吸收率大於其可見 光吸收率時,該薄膜的可見光穿透率與近紅外線吸收率的 總值會大於100。 任選地,在某些具體實施例中,薄膜的紫外線吸收率 可大於薄膜的可見光吸收率。 下文提出了根據本發明具體實施例的某些實驗例。這 些實驗例中所使用的二氧化鎢為根據上文所述之方法所製 備的帶結晶水的三氧化鎢。 201121895 具體來說,在充滿氮氣的容器中,將約0.03莫耳的 NazWO4 · 2H2〇與約2.5毫升的鹽酸混合於約1〇〇毫升的水 中以形成一反應系統。將上述反應系統保持在約_5〇c至約 5°C之間,以,得反應系統中產生白色的析出物,此即為 帶結晶水的三氧化鎢。收集上述白色析出物,並以約4〇毫 升的冰水沖洗’以得到產物。 在某些實驗例中’可將上述產物重新懸浮於水中,以 用於後續的部勿還原步驟。或者是,在其他實驗例中,可 在真空下乾燥該產物,以得到三氧化鎢粉末,其後再將該 粉末懸浮於水竹中,以用於後續的部分還原步驟。 根據本發明上述態樣/具體實施例所述的方法將此一 帶結晶水的二氧化鎢部分還原,以得到此處所述的近紅外 線吸收劑。進一步根據上文所述的態樣/具體實施例,利用 此近紅外線吸收劑來製備近紅外線吸收薄膜。 利用光譜儀(型號:mtachi U-41〇〇 spectrometer)來 測量每一薄膜對於波長範圍280_110〇 nm之光線的穿透 率,以分別決定其紫外線(波長約280-380 nm)穿透率、 可見光(波長約380-750 nm)穿透率以及近紅外線(波長 約750-1100 nm)穿透率。 下文表格中摘要整理了每一實驗例中所用的還原劑和 /或聚丙烯酸的用量以及其光線穿透率的分析結果。 比較例 比較例1:將根據上述方法所製備的帶結晶水的三氧 化鎢重新懸浮於約5毫升的水中。之後,將懸浮液(未經 12 201121895 過還原反應)溶解於約2.86克之約35 wt%之聚丙烯酸 (PAA)溶液中。在約75〇c下攪拌上述溶液約6〇分鐘。 其後,將約1毫升的上述溶液塗佈於玻璃基材上,並將上 述基材以約60°C烘烤約60分鐘以使得塗佈層形成薄膜。 利用光譜儀來分析該薄膜,第!圖即為比較例丨之薄 膜的吸收光譜圖。由第丨圖可以看出,此薄膜的近紅外線 穿透率幾乎為1〇〇〇/0 ;也就是說,比較例j之薄膜幾乎沒有 近紅外線吸收能力。分析結果亦顯示出此一未經還原之薄 膜的紫外線吸收率約為73%,且其可見光穿透率約為99%。 比較例2 :將W〇3粉末(約hl6 g,5職〇1)和約隱 克的NaOH ( 15 mmol ) —起經過適當研磨以 Na2W04/Na〇H混合物。將上述混合物和約5〇 二 水一起加入容器中,並利用磁攪拌器持續攪拌。其?,、、 約0.47克(15mmol)的NaBH4溶解於上述溶液中'此 反應系統的pH值約為13.5,此一 pH信处热心Α u. j. ττ+^ . ^ ^ Ρ 值月匕夠抑制 NaBH4 失去Η的速率且使得Na2W〇4不會被還原1 $The molar volume of NazWO4 · 2^0 in aqueous solution 25·25, 0.3, 0.35, 0.4, 0.45 or 0.5 〇 切 The size of the granules obtained by the above method is the same as that described above. The use of such a powder to prepare the compositions set forth herein generally utilizes from about 50 to about 500 nm. The examples are consistent; therefore, a near infrared absorbing agent. In the present disclosure, the term "partial reduction" means that only a portion of the tungsten trioxide is reduced to an oxidized crane, and the remaining portion of the antimony trioxide is reduced. In this case, the valence pin of the unreduced trioxide is 6+, and the valence η of the reduced tungsten oxide is 5 liters <6. For example, the valence η of the reduced tungsten oxide can be about 5, 5, 52, 5.3, 5.4, 5.5, 5 6, ^ 7, 5.8, or 5.9. In some embodiments, the valence η of the reduced tungsten oxide can be about 5, 5.25, 5.33, 5.5, 5.66, or 5.75. In the present disclosure, a partial reduction reaction of tungsten trioxide results in a mixture of cerium cerium (VI) oxide (or simply a trioxide crane) and reduced tungsten oxide. In this case, the mixture is also referred to as a mixed tungsten oxide (VI/V) in the present disclosure. It is known that tungsten dioxide (VI) has an ideal absorption rate of ultraviolet rays (wavelength ranging from about 201121895 to 280 nm to about 380 nm), and its visible light absorption rate and near-infrared absorption rate are less than 10%, respectively. In fact, tungsten trioxide (VI) is almost transparent to light and near-infrared light. On the other hand, the reduced tungsten oxide has a near infrared absorbing ability similar to that of bronze tungsten (Μ Λ W03, where M = U+, Na+, K+, Rb+ 'Cs+). Therefore, the mixed tungsten oxide (VI/V) described here has both ultraviolet and near-infrared absorption capabilities. Therefore, in accordance with the principles and spirit of the present invention, it is very important to control the reduction reaction to obtain a near-infrared absorbing agent having both ultraviolet and near-infrared absorbing ability. In general, there are a number of factors that can affect the reduction, including but not limited to: the type, volume and concentration of the reducing agent, the pH of the reaction, the concentration of the tungsten trioxide to be reduced, and the like. For example, suitable examples of reducing agents include, but are not limited to, sodium hydrogen halide, a wind boronization clock, hydroboration, hydroboration, copper hydrogenation, hydrogenation, aluminum, ethanol, and ethylene glycol. In an exemplary embodiment, 'sodium borohydride is used as a reducing agent' wherein the weight ratio of tungsten trioxide to sodium borohydride is from about 5:1 to about 20:1. For example, the weight ratio of the above two may be about 5:1, 6:1, 7:1, 8:1, 9-1 '10:1 ' 11:1 > 12:1 ' 13:1 &gt ;14:1 '15:1 Μ6:1 > Π: 1 > 18:1 ' 19:1 or 20:1. In another exemplary embodiment, ethanol is used as the reducing agent, wherein the weight ratio of tungsten trioxide to ethanol is from about 1:3 to 1:5. In detail, the weight ratio of the above two may be about 1:3.2, 1:3.3, 1:3.4, 1:3.5, 1:3.6, 1:3.7, 1:3.8, 1:3.9, 1:4, 1:4. Bu 1:4.2, 1:4.3, 1:4.4, 1:4.5, 1:4.6, 1:4.7, 1:4.8, 1:4.9 or 1:5. 201121895 Generally speaking, the method proposed in this aspect can be carried out at room temperature. The term "room temperature" means about 23-27 °C. It should be noted that the reaction system proposed herein utilizes water as the main solution; therefore, the method proposed herein can be carried out under the action range of water (i.e., 0-100 ° C). What is more, the method according to this aspect is carried out without applying an additional electric field. That is to say, the method proposed here does not involve an electrochemical reaction. It is also noted that the mixed-valent tungsten oxide (VI/V) obtained by this method has both near-infrared absorption and ultraviolet absorption ability even without the conventional high-temperature sintering step. Conventional sintering steps typically require about 3 〇. Above the high temperature of c, a crystalline product can be obtained. In some embodiments of the invention, the mixed tungsten oxide (VI/V) does not require a heat treatment above 1 〇〇〇c. The near-infrared absorbing agent (i.e., mixed oxidized town (VI/V)) obtained by this method can be directly dissolved in a water towel without first being dissolved in other organic solvents. Therefore, such a near-infrared absorbing agent can be used to prepare the near-infrared absorbing film proposed herein. In view of the above, the present invention is further directed to a method of preparing a near-infrared absorbing film. According to an embodiment of the invention, the method comprises the following steps. First, the near-infrared-absorbing agent prepared according to the above aspect/embodiment of the present invention is dissolved in a poly(tetra) acid aqueous solution, and then the polyacrylic acid water mixture is applied onto the substrate, and the solution is allowed. The coating is formed into a thin crucible, thereby obtaining the near-infrared absorbing film. It should be noted that the near-infrared absorption 201121895 agent proposed in the above aspect of the present invention can be directly dissolved in water without first being dissolved in an organic solvent. Therefore, in some embodiments of the present invention, the polyacrylic acid aqueous solution does not contain any organic solvent for dissolving the plurality of near-infrared absorbing agents (here, polyacrylic acid is not a solvent for dissolving the near-infrared absorbing agent). However, those having ordinary skill in the art to which the present invention pertains can easily modify various specific embodiments to add other organic compounds to the polyacrylic acid aqueous solution; however, as long as these organic compounds are not used to promote the infrared absorbing agent Decomposition of such an organic compound without dissolving in the aqueous solution of poly (poly) acid does not depart from the spirit and scope of the present invention. As described above, the near-infrared ray absorbing agent proposed herein can simultaneously exhibit near-infrared ray and ultraviolet absorbing ability without relying on a conventional sintering treatment. Therefore, the near-infrared absorption by such a method can also eliminate the conventional sintering step. However, in the process of forming a film, it may be possible to carry out a heat treatment (heating temperature lower than about 100 ° C) to remove the solvent in the coating. Still another aspect of the invention relates to a near infrared absorbing film. According to a specific embodiment of the invention, the film comprises at least a polyacrylic acid matrix and a plurality of near infrared absorbing agents dispersed therein. The near infrared absorbers are made in accordance with the above aspects/embodiments of the invention. The near-infrared absorption rate of this thin crucible is higher than its visible light absorption rate. In the present disclosure, the sum of the near-infrared absorption rate and the visible light transmittance of a film using a film also indicates the optical properties of the film; the sum of the above two values is also referred to as a "total value". ^ In general, the spectrometer can be used to measure the light transmittance (T 〇 / 〇) in a specific wavelength range, and by using 100% minus the measured transmittance, 201121895 can be obtained at the same wavelength. The rate of absorption of light in the range. Thus, for example, the visible light absorption (VIS Abs.%) of a film is a difference of 100% minus its visible light transmittance (VIST%). Therefore, when the near-infrared absorption rate of the film is greater than the visible light absorption rate, the near-infrared absorption rate and the visible light absorption rate can be expressed as the following inequalities (Equation 1): NIR Abs. % > VIS Abs. % Equation 1; Available in the equation Add 100% to the inequality of 1 respectively, and rewrite Equation 1 to Equation 2: 100% + NIR Abs. % > 100% + VIS Abs. % Equation 2; add in the inequality of Equation 2 On (-VIS Abs. %), the following equation 3 is obtained: (100% - VIS Abs. %) + NIR Abs. % > 100% Equation 3; Equation 3 is obtained to obtain Equation 4: VIS T % + NIR Abs. % > ι〇〇〇/0 Equation 4. Therefore, it can be known that when the near-infrared absorption rate of the film is greater than the visible light absorption rate, the total value of the visible light transmittance and the near-infrared absorption rate of the film may be more than 100. Optionally, in some embodiments, the film may have an ultraviolet absorbance greater than the visible light absorbance of the film. Some experimental examples in accordance with specific embodiments of the present invention are set forth below. The tungsten dioxide used in these experimental examples is a tungsten trioxide with crystal water prepared according to the method described above. In particular, in a nitrogen-filled vessel, about 0.03 moles of NazWO4·2H2® was mixed with about 2.5 ml of hydrochloric acid in about 1 mL of water to form a reaction system. The above reaction system is maintained at a temperature of from about _5 〇 c to about 5 ° C to obtain a white precipitate in the reaction system, which is tungsten trioxide with crystal water. The above white precipitate was collected and washed with about 4 liters of ice water to give a product. In some experimental examples, the above product can be resuspended in water for subsequent partial reduction steps. Alternatively, in other experimental examples, the product may be dried under vacuum to obtain a tungsten trioxide powder, which is then suspended in water bamboo for subsequent partial reduction steps. A portion of the tungsten dioxide with water of crystallization is reduced in accordance with the method of the above aspects/embodiments of the invention to provide the near infrared absorbing agent described herein. Further, according to the aspect/embodiment described above, the near-infrared absorbing film is prepared by using the near-infrared absorbing agent. A spectrometer (model: mtachi U-41 〇〇spectrometer) was used to measure the transmittance of each film for light in the wavelength range of 280-110 〇 nm to determine its ultraviolet (wavelength about 280-380 nm) transmittance, visible light ( The transmittance is about 380-750 nm) and the transmittance of near-infrared (wavelength is about 750-1100 nm). The amounts in the amount of reducing agent and/or polyacrylic acid used in each of the experimental examples and the analysis of the light transmittance thereof are summarized in the table below. Comparative Example Comparative Example 1: The tungsten oxide with crystal water prepared according to the above method was resuspended in about 5 ml of water. Thereafter, the suspension (overreduced by 12 201121895) was dissolved in about 2.86 grams of a about 35 wt% polyacrylic acid (PAA) solution. The solution was stirred at about 75 ° C for about 6 minutes. Thereafter, about 1 ml of the above solution was applied onto a glass substrate, and the above substrate was baked at about 60 ° C for about 60 minutes to form a coating layer. Use a spectrometer to analyze the film, first! The figure is an absorption spectrum of a thin film of a comparative example. As can be seen from the figure, the near-infrared transmittance of this film is almost 1 〇〇〇 / 0; that is, the film of Comparative Example j has almost no near infrared absorbing ability. The analysis also showed that the unreduced film had an ultraviolet absorption of about 73% and a visible light transmittance of about 99%. Comparative Example 2: W〇3 powder (about hl6 g, 5 job 1) and about cryptic NaOH (15 mmol) were suitably ground to a mixture of Na2W04/Na〇H. The above mixture was added to the vessel together with about 5 Torr of dihydrate, and stirring was continued using a magnetic stirrer. About 0.47 g (15 mmol) of NaBH4 was dissolved in the above solution. The pH of the reaction system was about 13.5, and the pH was enthalpy uj ττ+^ ^ ^ Ρ 匕 匕 匕 抑制 抑制 抑制 抑制 抑制 抑制Lose the rate of Η and make Na2W〇4 not be restored 1 $

滴的速率緩慢地將鹽酸(1.5m〇1/1)重新加入反應系統中., 以使得反應溶液的pH值逐漸降低,當pH 反應系統中開始進行還原反應。此一反應會使得反應系統 成為其中帶有雜色膠體的藍色溶液。將反應系統靜置約 3小時’以使得顯色膠體沈殿,並以溫的蒸餾水沖洗三 次。最後’過滤該固態的產物,並以乙醇沖洗,而後將其 置於真空烘箱中於常溫下乾燥,以得到約Q 58克的粉末。 將所得到的粉末加人約2.86克之約35鳩的聚丙稀酸水 溶液中。 13 201121895 ''' 试驗過程中發現到,此一粉末幾乎不溶於聚丙 稀酸水溶液中。因此,無法利用此一產物並根據此處提出 的方,來製備近紅外線吸收薄膜。此外,針對所得到的粉 末進订XRD分析,結果顯示該粉末為非晶形粉末。 實驗1 實驗例1A:將根據上述方法所製備的帶結晶水的三 化鎢重新懸浮於約5毫升的水中。將約〇 5毫升的約^ wt〇/〇 之NaBH4水溶液加入上述懸浮液中,並將該懸浮液以4〇〇 rpm的速率渦漩處理約1〇分鐘,而使得三氧化鎢被部分還 原°其後’將約8.22克的聚丙烯酸與約22毫升的水加入 該溶液中’並將該溶液在約75。〇下攪拌約約60分鐘。形 成薄膜之步驟與上文參照比較例1所述之方式相似。 實驗例1B:將根據上述方法所製備的帶結晶水的三氧 化鎢重新懸浮於約5毫升的水中,並以約2000 rpm的速率 渴旋處理約10分鐘。其後’移除上層的水份,並加入約 40毫升的冰水,之後再以約2000 rpm的速率渦旋處理約 ® 10分鐘。將所得到的析出物置於真空烘箱中乾燥一日,以 得到粉末狀產物。將〇·1克的所得粉末加入約1毫升的約1 wt%之NaBH4水溶液中,並將反應系統以約4〇〇 rpm的速 率授拌約10分鐘’而使得三氧化鶴被部分還原。其後,將 約8.22克的聚丙烯酸與約22毫升的水加入該溶液中,並 將該溶液在約75°C下授拌約約60分鐘。形成薄膜之步驟 與上文參照比較例1所述之方式相似。 第2圖與第3圖分別為實驗例1A與1B所得之薄膜的 201121895 吸收光譜圖;此外,此二實驗例的光吸收特性摘錄於表卜 表1 uv吸收率(%) vis穿透率(%) 近紅外線吸收率(%> 蟪值 實鹼例ΙΑ • 83 62 "v - ,.· - !Γ· i?l ..(.. 63 125 實驗例IB 72 65 77 142 實驗2 實驗例2A-2I的製備方式和實驗例1B相似,最主要的 差異在於其中所使用的約1 wt%之還原劑(NaBH4)與水的 添加量不同;此外,在薄膜形成步驟中,係加入約2.86克 之約35 wt%的聚丙稀酸溶液。另外,在實驗例2A、2D與 2G中,利用約〇.3毫升的溶液來形成薄膜;而實驗例2B、 2E與2H中則利用了約約〇.5毫升的溶液來形成薄膜;在 實驗例2C、2F與21中則利用約1.0毫升的溶液來形成薄 膜。 表2中摘要整理了各實驗例中還原劑的用量以及薄膜 的光吸收特性。第4圖、第5圖與第6圖則分別為實驗例 2A-2C、實驗例2D-2F以及實驗例2G-2I之薄膜的吸收光 譜圖。 _表2______ 還原劑/水 υν吸收 vis穿透率近紅外線吸收 總值 率(%) (%) 率(%)The rate of the dropwise addition of hydrochloric acid (1.5 m〇1/1) was slowly added to the reaction system so that the pH of the reaction solution was gradually lowered, and the reduction reaction was started in the pH reaction system. This reaction causes the reaction system to be a blue solution with a variegated colloid. The reaction system was allowed to stand for about 3 hours to allow the chromogenic colloid to settle and rinse three times with warm distilled water. Finally, the solid product was filtered and rinsed with ethanol, which was then dried in a vacuum oven at room temperature to obtain a powder of about 58 g. The resulting powder was added to about 2.86 grams of an aqueous solution of about 35 Torr in polyacrylic acid. 13 201121895 ''' It was found during the test that this powder was almost insoluble in aqueous polyacrylic acid solution. Therefore, it is impossible to use this product and prepare a near-infrared absorbing film according to the method proposed herein. Further, with respect to the obtained powders subjected to XRD analysis, the results showed that the powder was an amorphous powder. Experiment 1 Experimental Example 1A: The tungsten carbide with crystal water prepared according to the above method was resuspended in about 5 ml of water. About 5 ml of an aqueous solution of about 2 wt%/〇 of NaBH4 was added to the above suspension, and the suspension was vortexed at a rate of 4 rpm for about 1 minute to partially reduce the tungsten trioxide. Thereafter 'about 8.22 grams of polyacrylic acid and about 22 milliliters of water were added to the solution' and the solution was at about 75. Stir under the arm for about 60 minutes. The procedure for forming a film is similar to that described above with reference to Comparative Example 1. Experimental Example 1B: Tungsten oxide with crystal water prepared according to the above method was resuspended in about 5 ml of water and thirsty at a rate of about 2000 rpm for about 10 minutes. Thereafter, the upper layer of water was removed, and about 40 ml of ice water was added, followed by vortexing at a rate of about 2000 rpm for about 10 minutes. The obtained precipitate was dried in a vacuum oven for one day to obtain a powdery product. The obtained powder of 〇·1 g was added to about 1 ml of an aqueous solution of about 1 wt% of NaBH4, and the reaction system was stirred at a rate of about 4 rpm for about 10 minutes to make the sulfur trioxide partially reduced. Thereafter, about 8.22 grams of polyacrylic acid and about 22 milliliters of water were added to the solution, and the solution was stirred at about 75 ° C for about 60 minutes. The steps of forming a film are similar to those described above with reference to Comparative Example 1. Fig. 2 and Fig. 3 are the 201121895 absorption spectra of the films obtained in Experimental Examples 1A and 1B, respectively. In addition, the light absorption characteristics of the two experimental examples are summarized in Table 1. uv absorption rate (%) vis penetration rate ( %) Near-infrared absorption rate (%> 蟪 实 实 83 • 83 62 "v - ,.· - !Γ· i?l ..(.. 63 125 Experimental example IB 72 65 77 142 Experiment 2 Experiment The preparation of Examples 2A-2I is similar to that of Experimental Example 1B, the most important difference being that about 1% by weight of the reducing agent (NaBH4) used is different from the amount of water added; moreover, in the film forming step, it is added 2.86 g of a 35 wt% polyacrylic acid solution. Further, in Experimental Examples 2A, 2D and 2G, a solution of about 3 ml was used to form a film; and in Experimental Examples 2B, 2E and 2H, an approx. 5 ml of the solution was used to form a film; in Experimental Examples 2C, 2F and 21, about 1.0 ml of the solution was used to form a film. Table 2 summarizes the amount of reducing agent in each experimental example and the light absorption characteristics of the film. Fig. 4, Fig. 5 and Fig. 6 are experimental examples 2A-2C, experimental examples 2D-2F and experimental examples 2G-2I, respectively. Absorption spectrum of a thin film. 2______ reducing Table _ / vis absorption of water υν total transmittance near-infrared absorption rate (%) (%) rate (%)

1 r 1 .....- my * j~ -- · ·ν * .... ,. ’__i. 實驗例 2B 0.5/2.045 75 50 79 1291 r 1 .....- my * j~ -- · ·ν * .... ,. ’__i. Experimental example 2B 0.5/2.045 75 50 79 129

實驗例 2D 1.0/1.55 65 65 63 128 15 201121895 實驗例2E 1.0/1.55 91 25 91 116 實驗例2F 1.0/1.55 95 12 98 110 實驗例2G 2.0/0.56 88 21 90 111 實驗例2H 2.0/0.56 91 16 92 108 實驗例21 2.0/0.56 76 2 99 101 實驗3 實驗例3A-3I的製備方式和實驗例1B相似,最主要的 差異在於其中所使用之約35 wt°/〇的聚丙烯酸溶液和水的添 • 加量不同。另外,在實驗例3A、3D與3D中,利用約0.3 毫升的溶液來形成薄膜;而實驗例3B、3E與3H中則利用 了約約0.5毫升的溶液來形成薄膜;在實驗例3C、3F與 31中則利用約1.0毫升的溶液來形成薄膜。 表3中摘要整理了各實驗例中聚丙烯酸溶液的用量以 及薄膜的光吸收特性。第7圖、第8圖與第9圖則分別為 實驗例3A-3C、實驗例3D-3F以及實驗例3G-3I之薄膜的 吸收光譜圖。 表3 聚丙烯酸溶液 UV吸收率 VIS穿透率 近紅外線吸收 總值 / 水(g/ml) (%) (%) 率(%) 鱗雜Ά 91.0 - - . 24.9 95·2· * | ' 120.1 1 實驗例3B 1.43/0.48 93.5 12.0 99.2 111.2 .罗Ή: 實驗例3D 4.29/2.62 74 62 67 129 條例砰. ,:货·. 實驗例3F 4.29/2.62 88 40 89 129 201121895 實驗例3G 5.72/3.69 67 70 59 129 實驗例3Η 5.72/3.69 69 61 72 133 實驗例31 1.43/0.48 91.0 24.9 95.2 120.1 實驗4 實驗例4A-4D使用乙醇作為還原劑。更舉體而言,在 充滿氮氣的容器中將約0.03莫耳之Na2W04 · 2H20與約 2.5毫升的鹽酸和約75毫升的水與約25毫升的乙醇混合, 以得到反應系統。將反應系統的問度維持在約-5°C至約 > 5°C之間,以使得反應系統中產生部分還原之三氧化鎢白 色析出物。收集所得到的析出物,並以約40毫升的冰水沖 洗以得到產物。將約8.22克的聚丙烯酸溶解於約22.8毫升 的水中,之後再與上述產物混合。將反應系統置於約l〇〇°C 的水浴中震盪約1小時。其後,分別將約0.5毫升(實驗 例4A與4B )以及1毫升(實驗例4C與4D )的溶液塗佈 於玻璃基材上,並將該基材在約60°C下烘烤約60分鐘, 以使得該塗佈層形成薄膜。在實驗例4B與4D中,進一步 • 以UV燈(波長約365 nm)照射薄膜約60分鐘。表4中摘 要整理了各實驗例的光吸收特性。 表4 UV吸收率(%) VIS穿透率(%) 近紅外線吸收率(%) 總值 實驗例 rr ·;841;2^:Γ • 9-4 :: * ^ **:: • ^ - * --*1; ^ 1 "、 …9\η 實驗例4Β 82 75.8 52.1 127.9 資·例犯:’ ..毛磨 * 8.2 … ' 98:2 實驗例4D 85 76.3 48.4 124.7 ί S! 17 201121895 雖然上文實施方式中揭露了本發明的具體實缺 其並非践限定本發明,本㈣所屬技術領域中具有通當、 知識者,在不㈣本發明之原理與精神的情形下,告可 動與修飾’因此本發明之保護範圍當二隨 申睛專利範圍所界定者為準。 现 【圖式簡單說明】 優點與實施例 為讓本發明的上述與其他目的、特徵 能更明顯易懂,所附圖式之說明如下: 第1圖為根據本發明—比較例的吸收光譜圖; 第2圖為根據本發明一實驗例1A的吸收光譜圖; 第3圖為根據本發明一實驗例⑺的吸收光譜圖; 第4圖為根據本發明一實驗例2a_2c #吸收光譜圖; 第5圖為根據本發明一實驗例2d_2d的吸收光譜圖; 第6圖為根據本發明一實驗例2G-2I的吸收光譜圖; 第7圖為根據本發明一實驗例3A-3C的吸收光譜圖; 第8圖為根據本發明一實驗例3D_3F的吸收 以及 圖 第9圖為根據本發明—實驗例3G_3I的吸收光譜 【主要元件符號說明】 無 18Experimental Example 2D 1.0/1.55 65 65 63 128 15 201121895 Experimental Example 2E 1.0/1.55 91 25 91 116 Experimental Example 2F 1.0/1.55 95 12 98 110 Experimental Example 2G 2.0/0.56 88 21 90 111 Experimental Example 2H 2.0/0.56 91 16 92 108 Experimental Example 21 2.0/0.56 76 2 99 101 Experiment 3 Experimental Example 3A-3I was prepared in a similar manner to Experimental Example 1B, the most important difference being the polyacrylic acid solution and water of about 35 wt ° / 其中 used therein. Tim • The amount is different. Further, in Experimental Examples 3A, 3D and 3D, a film of about 0.3 ml was used to form a film; and in Experimental Examples 3B, 3E and 3H, about 0.5 ml of a solution was used to form a film; in Experimental Examples 3C, 3F In the case of 31, about 1.0 ml of the solution was used to form a film. The amounts in Table 1 are summarized in the amounts of the polyacrylic acid solution in each of the experimental examples and the light absorption characteristics of the film. Fig. 7, Fig. 8 and Fig. 9 are absorption spectra of the films of Experimental Examples 3A-3C, Experimental Examples 3D-3F and Experimental Examples 3G-3I, respectively. Table 3 UV absorption rate of polyacrylic acid solution VIS transmittance near total infrared absorption / water (g / ml) (%) (%) rate (%) scorpion 91.0 - - . 24.9 95·2· * | ' 120.1 1 Experimental Example 3B 1.43/0.48 93.5 12.0 99.2 111.2. Luo Wei: Experimental Example 3D 4.29/2.62 74 62 67 129 Regulation 砰. ,: Goods ·. Experimental Example 3F 4.29/2.62 88 40 89 129 201121895 Experimental Example 3G 5.72/3.69 67 70 59 129 Experimental Example 3 5.72/3.69 69 61 72 133 Experimental Example 31 1.43/0.48 91.0 24.9 95.2 120.1 Experiment 4 Experimental Example 4A-4D used ethanol as a reducing agent. More specifically, about 0.03 mole of Na2W04 2H20 was mixed with about 2.5 ml of hydrochloric acid and about 75 ml of water with about 25 ml of ethanol in a nitrogen-filled vessel to obtain a reaction system. The degree of reaction system is maintained between about -5 ° C and about > 5 ° C to produce a partially reduced tungsten trioxide white precipitate in the reaction system. The resulting precipitate was collected and washed with about 40 ml of ice water to give a product. About 8.22 grams of polyacrylic acid was dissolved in about 22.8 ml of water and then mixed with the above product. The reaction system was shaken in a water bath at about 10 ° C for about 1 hour. Thereafter, about 0.5 ml (Experimental Examples 4A and 4B) and 1 ml (Experimental Examples 4C and 4D) were respectively applied to a glass substrate, and the substrate was baked at about 60 ° C for about 60. Minutes, so that the coating layer forms a film. In Experimental Examples 4B and 4D, further • The film was irradiated with a UV lamp (wavelength of about 365 nm) for about 60 minutes. The light absorption characteristics of each experimental example are summarized in Table 4. Table 4 UV absorption rate (%) VIS penetration rate (%) Near-infrared absorption rate (%) Total value Experimental example rr ·; 841; 2^: Γ • 9-4 :: * ^ **:: • ^ - * --*1; ^ 1 ", ...9\η Experimental Example 4Β 82 75.8 52.1 127.9 Capital: Example: '..Mammary* 8.2 ... ' 98:2 Experimental Example 4D 85 76.3 48.4 124.7 ί S! 17 201121895 Although the above embodiments disclose the specifics of the present invention, which are not intended to limit the present invention, and the skilled person in the technical field of the present invention has no circumstance, and in the case of the principle and spirit of the present invention, And the modifications are therefore intended to be within the scope of the invention as defined by the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects and features of the present invention will become more apparent and understood from the following description. FIG. 1 is an absorption spectrum diagram according to the present invention - a comparative example. 2 is an absorption spectrum chart of an experimental example 1A according to the present invention; FIG. 3 is an absorption spectrum chart according to an experimental example (7) of the present invention; and FIG. 4 is an absorption spectrum chart of an experimental example 2a_2c according to the present invention; 5 is an absorption spectrum diagram of an experimental example 2d_2d according to the present invention; FIG. 6 is an absorption spectrum diagram of an experimental example 2G-2I according to the present invention; and FIG. 7 is an absorption spectrum diagram of an experimental example 3A-3C according to the present invention. Fig. 8 is an absorption of an experimental example 3D_3F according to the present invention, and Fig. 9 is an absorption spectrum according to the present invention - Experimental Example 3G_3I [Explanation of main component symbols] No. 18

Claims (1)

201121895 七、申請專利範圍: 1. 一種用以製備一近紅外線吸收劑的方法,至少包 含: 在水中混合三氧化鎢與一還原劑,以及使得該三氧化 鎢被部分還原以得到該近紅外線吸收劑。 2. 如申請專利範圍第1項所述的方法,其中該三氧 化鶴為帶結晶水的二氧化鶴。 3. 如申請專利範圍第1項所述的方法,其中該三氧 化鶴為粉末狀且其粒徑大小為約50 nm至約500 nm。 4. 如申請專利範圍第1項所述的方法,其中該還原 劑為氫硼化鈉、氫硼化鋰、氫硼化鉀、氳硼化鋅、氫硼化 銅、氫化鋰鋁、乙醇或乙二醇。 • 5. 如申請專利範圍第1項所述的方法,其中該還原 劑為氫硼化鈉,且該三氧化鎢與該氫硼化鈉之一重量比為 約 5:1 至 20:1。 6. 如申請專利範圍第1項所述的方法,其中該還原 劑為乙醇,且該三氧化鎢與該乙醇之一重量比為約1:3至 1:5 ° 19 201121895 7. 如申請專利範圍第1項所述的方法,其中該三氧 化鎢為帶結晶水的三氧化鎢,其係由至少包含以下步驟的 一方法所製成: 在充滿氮氣的一容器中混合約〇.2-0.5 Μ之 Na2W〇4 · 2Η2〇水溶液以及鹽酸以形成一反應系統’其中 該鹽酸的添加量使得該反應系統的pH值為約1至約7’並 將該反應系統之一溫度保持在約-l〇〇c至約l〇°C ’以使得 該反應系統中生成帶結晶水的三氧化鶴。 8. 如申請專利範圍第1項所述的方法,其中該方法 的特徵在於並未進行一溫度大於約的燒結步驟。 9. 一種用以製備一近紅外線吸收薄膜的方法,至少 包含: 將多個近紅外線吸收劑溶解於一聚丙烯酸水溶液中, 其中該些近紅外線吸收劑係利用如申請專利範圍第丨 述的方法所製成;以及 汀 將該聚丙烯酸水溶液塗佈於一基材上以形成一塗層, 以及使得該塗層形成該近紅外線吸收薄膜。 10. 如申請專利範圍第9項所述的方法,其中該方法 的特徵在於並未進行一溫度大於約1〇〇〇c的燒結步驟。/ 11. 如申請專利範圍第9項所述的方法,其中該聚丙 烯酸水溶液並未包含任何㈣溶解該些近紅外線吸^劑的 201121895 其他有機化合物。 12. —種近紅外線吸收薄膜,至少包含: 一聚丙烯酸基質;以及 多個近紅外線吸收劑,其係分散於該聚丙烯酸基質中, 其中該些近紅外線吸收劑係利用如申請專利範圍第1 項所述的方法所製成,且 該薄膜具有一近紅外線吸收率與一可見光吸收率,其 中該近紅外線吸收率大於該該可見光吸收率。 13. 如申請專利範圍第12項所述的薄膜,其中該薄膜 具有一紫外線吸收率,其大於該薄膜的該可見光吸收率。201121895 VII. Patent application scope: 1. A method for preparing a near-infrared absorbing agent, comprising at least: mixing tungsten trioxide with a reducing agent in water, and partially reducing the tungsten trioxide to obtain the near-infrared absorption Agent. 2. The method of claim 1, wherein the trioxide crane is a dioxide crane with crystal water. 3. The method of claim 1, wherein the trioxide crane is in the form of a powder and has a particle size of from about 50 nm to about 500 nm. 4. The method of claim 1, wherein the reducing agent is sodium borohydride, lithium borohydride, potassium borohydride, zinc borohydride, copper borohydride, lithium aluminum hydride, ethanol or Ethylene glycol. 5. The method of claim 1, wherein the reducing agent is sodium borohydride and the weight ratio of the tungsten trioxide to the sodium borohydride is from about 5:1 to 20:1. 6. The method of claim 1, wherein the reducing agent is ethanol, and the weight ratio of the tungsten trioxide to the ethanol is about 1:3 to 1:5 ° 19 201121895 7. The method of claim 1, wherein the tungsten trioxide is tungsten trioxide with crystal water, which is prepared by a method comprising at least the following steps: mixing in a vessel filled with nitrogen. 0.5 Μ of Na 2 W 〇 4 · 2 Η 2 〇 aqueous solution and hydrochloric acid to form a reaction system 'wherein the hydrochloric acid is added in an amount such that the pH of the reaction system is from about 1 to about 7' and the temperature of one of the reaction systems is maintained at about - l 〇〇 c to about l 〇 ° C ' to cause the formation of crystallized water in the reaction system of the trioxide crane. 8. The method of claim 1, wherein the method is characterized in that a sintering step having a temperature greater than about is not performed. 9. A method for preparing a near-infrared absorbing film, comprising: dissolving a plurality of near-infrared absorbing agents in an aqueous solution of polyacrylic acid, wherein the near-infrared absorbing agents are used in a method as described in the scope of the patent application And preparing the polyacrylic acid aqueous solution on a substrate to form a coating, and causing the coating to form the near-infrared absorbing film. 10. The method of claim 9, wherein the method is characterized in that a sintering step having a temperature greater than about 1 〇〇〇c is not performed. 11. The method of claim 9, wherein the aqueous polyacrylic acid solution does not comprise any (d) other organic compounds of 201121895 which dissolve the near infrared absorbing agents. 12. A near infrared absorbing film comprising: at least: a polyacrylic acid matrix; and a plurality of near infrared absorbing agents dispersed in the polyacrylic acid matrix, wherein the near infrared absorbing agents are utilized as claimed in claim 1 The method of the present invention, wherein the film has a near-infrared absorption rate and a visible light absorption rate, wherein the near-infrared absorption rate is greater than the visible light absorption rate. 13. The film of claim 12, wherein the film has an ultraviolet absorptivity which is greater than the visible light absorptivity of the film. 21twenty one
TW98145525A 2009-12-29 2009-12-29 Near infrared absorbing agent and near infrared absorbing film TWI409222B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98145525A TWI409222B (en) 2009-12-29 2009-12-29 Near infrared absorbing agent and near infrared absorbing film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98145525A TWI409222B (en) 2009-12-29 2009-12-29 Near infrared absorbing agent and near infrared absorbing film

Publications (2)

Publication Number Publication Date
TW201121895A true TW201121895A (en) 2011-07-01
TWI409222B TWI409222B (en) 2013-09-21

Family

ID=45045860

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98145525A TWI409222B (en) 2009-12-29 2009-12-29 Near infrared absorbing agent and near infrared absorbing film

Country Status (1)

Country Link
TW (1) TWI409222B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110407255A (en) * 2019-07-17 2019-11-05 中国科学院上海硅酸盐研究所 A kind of carbon coating caesium tungsten bronze composite granule and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100590154C (en) * 2003-10-20 2010-02-17 住友金属矿山株式会社 Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110407255A (en) * 2019-07-17 2019-11-05 中国科学院上海硅酸盐研究所 A kind of carbon coating caesium tungsten bronze composite granule and preparation method thereof

Also Published As

Publication number Publication date
TWI409222B (en) 2013-09-21

Similar Documents

Publication Publication Date Title
Zhang et al. Formation of hollow upconversion rare-earth fluoride nanospheres: nanoscale kirkendall effect during ion exchange
Hartlen et al. Facile preparation of highly monodisperse small silica spheres (15 to> 200 nm) suitable for colloidal templating and formation of ordered arrays
Xu et al. Ln3+ (Ln= Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties
JP6004528B2 (en) Method for producing porous silica-encapsulated particles and porous silica
JP2016041808A (en) Production method of complex fluoride phosphor
WO2006128988A1 (en) Inorganic material comprising metal nanoparticles trapped in a mesostructured matrix
JP2008013846A (en) Method for producing metal nanoparticle, and metal nanoparticle
JP5209130B2 (en) Tungsten oxide photocatalyst and method for producing the same
US20120305864A1 (en) Near Infrared Absorbing Agent and Near Infrared Absorbing Film
TW201136835A (en) Novel method of preparing vanadosilicate molecular sieve and novel vanadosilicate molecular sieve
JP6004418B2 (en) VO2-containing composition and method for producing VO2-dispersed resin layer
Zaharescu et al. Relevance of thermal analysis for sol–gel-derived nanomaterials
TW201511826A (en) Formation of surface modified metal colloids
Grandhi et al. Recent advances and challenges in obtaining stable CsPbX3 (X= Cl, Br, and I) nanocrystals toward white light-emitting applications
JP2010138020A (en) Organic solvent dispersion of titanium oxide fine powder and process of producing the same
TW201121895A (en) Near infrared absorbing agent and near infrared absorbing film
JP2010534609A (en) Solutions of particles containing titanium dioxide and peroxotitanium complexes and their preparation
CN110124658B (en) Controllable preparation method of cerium-aluminum oxide solid solution nanocubes
JP2001048538A (en) Titanium oxide-forming solution and its production
KR20180088102A (en) Chalcogenized organic-inorganic hybrid perovskites compound and Fabrication Method thereof
JP2007246334A (en) Titanium dioxide-alkaline earth metal titanate composite fine particle, method for producing the same and high-refractive-index material
CN106953103B (en) A kind of monocrystalline gold@platinum nucleocapsid octahedron nanoparticle controllable method for preparing based on seed epitaxial growth
US20160207021A1 (en) Method of encapsulating particulate material
JP4120007B2 (en) Method for producing copper powder
KR20030017201A (en) Mesoporous transition metal oxide thin film and powder and preparation thereof