TW201120988A - Electrostatic chuck and method of manufacturing the same - Google Patents

Electrostatic chuck and method of manufacturing the same Download PDF

Info

Publication number
TW201120988A
TW201120988A TW099127625A TW99127625A TW201120988A TW 201120988 A TW201120988 A TW 201120988A TW 099127625 A TW099127625 A TW 099127625A TW 99127625 A TW99127625 A TW 99127625A TW 201120988 A TW201120988 A TW 201120988A
Authority
TW
Taiwan
Prior art keywords
layer
dielectric layer
dielectric
electrostatic chuck
insulating layer
Prior art date
Application number
TW099127625A
Other languages
Chinese (zh)
Other versions
TWI459500B (en
Inventor
Jin-Il Sung
Kyung-Hwan Ye
Chi-Won Oh
Chung-Ryoul Yu
Original Assignee
Komico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komico Ltd filed Critical Komico Ltd
Publication of TW201120988A publication Critical patent/TW201120988A/en
Application granted granted Critical
Publication of TWI459500B publication Critical patent/TWI459500B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Abstract

In an electrostatic chuck for a plasma-applied apparatus, a base body is prepared and a first insulation layer having an amorphous structure is arranged on the base body. An electrode layer for generating an electrostatic force is arranged on the first insulation layer. A dielectric layer is positioned on the electrode layer. Accordingly, the leakage current and the electric arc caused by the leakage current are minimized at the electrostatic chuck, thereby improving endurance limit and electric characteristics of the electrostatic chuck.

Description

201120988 TW6493PA 六 ,發明,說明: 【發明所屬之技術領域】 本發明是有關於一種靜電卡盤與製、生苴 別是有關於一種用於電漿裝置以絮碎其之方法’且特 卡盤與製造其之方法。 導體裝置的靜電 【先前技術】 用以製造半導體裝置之電漿施加 板可固定半導體基板,且因此在電漿施=置通常包括支撐 處理的氣體來源被轉換成電漿且基板二裝置中用於電漿 已經被廣泛的應用在支撲板上。藉=程序。靜電卡盤 靜電卡盤。 评電力基板係固定於 傳統靜電卡盤通常包括位於介 此’電力可施加於電極層且靜電力產“二的電,層二 避免靜電卡盤在電漿施加裝置 於靜電卡盤之熱噴塗層可藉由使用包括 乳化紀與氧化Is之喊底粉末的熱塗佈程序來塗佈。 熱喷塗層以陶級末為基底通常具有結晶結構,且因 此當熱噴塗層料靜電卡盤之介電料 性係相對好。 屯曰心;丨电特 然而,結晶熱喷塗層係多孔隙的且具有相對低的體積 ::二此漏電流就從熱喷塗層產生,且因此電弧常常 在在fr電卡盤。由於這些原因,以填充物填充熱喷塗 θ之孔隙率的填充程序被建議,從而增加體積電阻、然201120988 TW6493PA VI, invention, description: [Technical field of the invention] The present invention relates to an electrostatic chuck and system, and is related to a method for pulverizing a plasma device. And the method of making it. Electrostatics of Conductor Devices [Prior Art] A plasma application plate for fabricating a semiconductor device can fix a semiconductor substrate, and thus is used in a plasma to convert a gas source that generally includes a support process into a plasma and in a substrate two device Plasma has been widely used on the support board. Borrow = program. Electrostatic chuck Electrostatic chuck. The evaluation of the power substrate system fixed to the conventional electrostatic chuck usually includes the electric power layer which can be applied to the electrode layer and the electrostatic force is produced, and the second layer avoids the thermal chucking of the electrostatic chuck in the plasma application device on the electrostatic chuck. It can be coated by using a thermal coating procedure including a emulsified powder and an oxidized Is. The thermal spray layer usually has a crystalline structure based on the ceramic grade, and thus when the thermal spray coating is electrostatic chuck The electric material system is relatively good. 屯曰心; 丨电特 However, the crystallization thermal spray layer is porous and has a relatively low volume: two leakage current is generated from the thermal spray layer, and therefore the arc is often In the fr electric chuck. For these reasons, the filling procedure of filling the thermal spray θ porosity with the filler is recommended, thereby increasing the volume resistance,

S 3 201120988S 3 201120988

TW6493PA 而,介電層之體積電阻仍隨著靜電卡盤之操作時·間增·加而 減小,且因此電弧仍產生在靜電卡盤中,且基板不穩定的 被吸附或不穩定的被固定於靜電卡盤。也就是說,因熱喷 塗層之孔隙率造成體積電阻的減少以及電弧常造成靜電 卡盤之吸附品質之衰退。 此外,隨著近來基板的增大,施加至電極層之電力需 要增加。當高電壓電力施加於靜電卡盤之電極層,破裂便 產生於熱喷塗層之基體與介電層之間,因為基體與介電層 之間不同的熱膨脹係數。且因此電極層與介電層將不或不 足以使彼此電性絕緣,此被知為絕緣破裂。結果,靜電卡 盤之吸附品質趨向更退化,當基板尺寸變大。 因此,有強烈的需求用以改善靜電卡盤,其中介電層 具有充足的體積電阻與穩定的介電常數用於靜電力並具 有最小的漏電流。 【發明内容】 本發明係有關於一種靜電卡盤與製造其之方法,靜電 卡盤具有改善之體積電阻,且無發生介電層之介電常數之 退化,因此避免從介電層因漏電流造成之電弧。 根據本發明之一些實施例,提供一種靜電卡盤。靜電 卡盤包括一基體、一第一絕緣層、一電極層以及一介電 層。第一絕緣層設置於基體上且第一絕緣層具有非晶形結 構。電極層設置於第一絕緣層上且電極層產生一靜電力。 介電層位於電極層上。 在一實施例中,介電層包括一第一介電層以及一第二 201120988TW6493PA, the volume resistance of the dielectric layer still decreases with the increase and increase of the operation of the electrostatic chuck, and therefore the arc is still generated in the electrostatic chuck, and the substrate is unstable and adsorbed or unstable. Fixed to the electrostatic chuck. That is to say, the reduction in volume resistance due to the porosity of the thermal spray coating and the arc often cause the deterioration of the adsorption quality of the electrostatic chuck. Further, as the substrate is recently increased, the power applied to the electrode layer needs to be increased. When high voltage power is applied to the electrode layer of the electrostatic chuck, cracking occurs between the substrate and the dielectric layer of the thermal spray layer because of the different coefficients of thermal expansion between the substrate and the dielectric layer. And therefore the electrode layer and the dielectric layer will not be sufficient or electrically insulated from each other, which is known as insulation cracking. As a result, the adsorption quality of the electrostatic chuck tends to be more degraded as the substrate size becomes larger. Therefore, there is a strong need to improve electrostatic chucks in which the dielectric layer has sufficient volume resistance and a stable dielectric constant for electrostatic forces and minimal leakage current. SUMMARY OF THE INVENTION The present invention relates to an electrostatic chuck having an improved volume resistance and no degradation of a dielectric constant of a dielectric layer, thereby avoiding leakage current from a dielectric layer. The arc caused. According to some embodiments of the invention, an electrostatic chuck is provided. The electrostatic chuck includes a substrate, a first insulating layer, an electrode layer, and a dielectric layer. The first insulating layer is disposed on the substrate and the first insulating layer has an amorphous structure. The electrode layer is disposed on the first insulating layer and the electrode layer generates an electrostatic force. The dielectric layer is on the electrode layer. In an embodiment, the dielectric layer includes a first dielectric layer and a second 201120988

TW6493PA ::,層。I第-介電層覆蓋電極層且第一介電層具有非結晶 二介電層位於第—介電層上且第二介電層具有- 在-實施例中’第-介電層具有之厚度介於大約100 :米到大約300微米,第二介電層*有之厚度介於大約2〇〇 微米到大約400微米。 在一實施例中,第一介電層具有之孔隙率介於大約 •5、到大約2%,第二介電層具有之孔隙率介於大約 到大約7%。 在一實施例中,第一介電層具有之表面粗糙度介於大 約4微米到大約8微米,第二介電層具有之表面粗糙度介 於大約3微米到大約5微米。 在一實施例中,第一介電層及第二介電層具有之硬度 至少大約650Hv,第一介電層及第二介電層具有之黏著強 度至少大約14MPa。 在一實施例中,第一介電層及第二介電層一起具有之 體積電阻(volume resistance)介於大約1〇14歐姆公分 (acm)到大約1015微米歐姆公分。電極層被第一介電層覆 蓋’第一介電層被第二介電層覆蓋。第一絕緣層具有之厚 度介於大約400微米到大約600微米。 在一實施例中,一第二絕緣層設置於基體與電極層之 間。第一絕緣層具有之厚度介於大約1〇〇微米到大約300 微米’第二絕緣層具有之厚度介於大約200微米到大約400 微米。 在一些其他實施例中,提供一種靜電卡盤。靜電卡盤 5 201120988TW6493PA ::, layer. The first dielectric layer covers the electrode layer and the first dielectric layer has an amorphous dielectric layer on the first dielectric layer and the second dielectric layer has - in the embodiment the 'first dielectric layer has The thickness is between about 100: meters and about 300 microns, and the second dielectric layer* has a thickness of between about 2 microns and about 400 microns. In one embodiment, the first dielectric layer has a porosity of between about 5% and about 2%, and the second dielectric layer has a porosity of between about 7% and about 7%. In one embodiment, the first dielectric layer has a surface roughness of from about 4 microns to about 8 microns and the second dielectric layer has a surface roughness of from about 3 microns to about 5 microns. In one embodiment, the first dielectric layer and the second dielectric layer have a hardness of at least about 650 Hv, and the first dielectric layer and the second dielectric layer have an adhesion strength of at least about 14 MPa. In one embodiment, the first dielectric layer and the second dielectric layer together have a volume resistance of between about 1 〇 14 ohm centimeters (acm) to about 1015 micrometers ohm centimeters. The electrode layer is covered by the first dielectric layer 'the first dielectric layer is covered by the second dielectric layer. The first insulating layer has a thickness of between about 400 microns and about 600 microns. In one embodiment, a second insulating layer is disposed between the substrate and the electrode layer. The first insulating layer has a thickness of between about 1 Å and about 300 Å. The second insulating layer has a thickness of between about 200 microns and about 400 microns. In some other embodiments, an electrostatic chuck is provided. Electrostatic chuck 5 201120988

TW6493PA 一基體、一絕緣層、一電極層、一第一介電層以I及一,第二 介電層。絕緣層位於基體上。電極層設置於絕緣層上且電 極層產生一靜電力。第一介電層設置於電極層上且具有一 非晶形結構。第二介電層設置於第一介電層上且具有一結 晶結構。 在一些實施例中,提供一種製造靜電卡盤之方法。首 先,準備一基體且形成一第一絕緣層於基體上。第一絕緣 層具有非晶形結構。然後,形成一電極層於第一絕緣層 上,電極層產生一靜電力。接著,形成一介電層於電極層 上。 在一實施例中,形成介電層之步驟如下。形成一第一 介電層於該電極層上以使該第一介電層具有非晶形結 構。然後,形成一第二介電層於第一介電層上以使第二介 電層具有結晶結構。 在一實施例中,電極層可被第一介電層包覆,且第二 介電層可形成於第一介電層、第一絕緣層以及基體上,以 使第一介電層、第一絕緣層以及基體被第二介電層包覆。 在一實施例中,第一絕緣層、第一介電層以及第二介 電層藉由一大氣電漿噴霧塗佈製程(atmospherical ly plasma spray coating process)、一快速氧燃燒熱喷霧 塗佈製程(rapid oxygen-fuel thermal spray coating Pr〇cess)、一真空電漿霧塗佈製程(vacuum plasma spray coating process)與一動力喷霧塗佈製程其中之一形成。 在一實施例中’更執行填充程序以填充複數個填充物 於該第一絕緣層、該第一介電層與該二介電層至少其中之TW6493PA is a substrate, an insulating layer, an electrode layer, a first dielectric layer, and a second dielectric layer. The insulating layer is on the substrate. The electrode layer is disposed on the insulating layer and the electrode layer generates an electrostatic force. The first dielectric layer is disposed on the electrode layer and has an amorphous structure. The second dielectric layer is disposed on the first dielectric layer and has a crystalline structure. In some embodiments, a method of making an electrostatic chuck is provided. First, a substrate is prepared and a first insulating layer is formed on the substrate. The first insulating layer has an amorphous structure. Then, an electrode layer is formed on the first insulating layer, and the electrode layer generates an electrostatic force. Next, a dielectric layer is formed on the electrode layer. In one embodiment, the steps of forming a dielectric layer are as follows. A first dielectric layer is formed on the electrode layer such that the first dielectric layer has an amorphous structure. Then, a second dielectric layer is formed on the first dielectric layer to have the second dielectric layer have a crystalline structure. In an embodiment, the electrode layer may be covered by the first dielectric layer, and the second dielectric layer may be formed on the first dielectric layer, the first insulating layer, and the substrate to enable the first dielectric layer, An insulating layer and the substrate are covered by the second dielectric layer. In one embodiment, the first insulating layer, the first dielectric layer, and the second dielectric layer are coated by an atmospheric ly plasma spray coating process, a rapid oxy-combustion thermal spray coating A process (rapid oxygen-fuel thermal spray coating Pr〇), a vacuum plasma spray coating process, and a dynamic spray coating process are formed. In an embodiment, a filling process is further performed to fill a plurality of fillers in the first insulating layer, the first dielectric layer and the second dielectric layer.

S 6 201120988S 6 201120988

TW6493PA 一的•内部空間。 在一實施例中,形成電極層之前更包括形成一第二絕 緣層於第一絕緣層與該基體其中之一上。 在一實施例中,更執行一填充程序用以填充複數個填 充物於第一絕緣層、第二絕緣層、第一介電層與第二介電 層至少其中之一的内部空間。第二絕緣層藉由一大氣電漿 喷霧塗佈製程(atmospherically plasma spray coating process)、一快速氧燃燒熱喷霧塗佈製程(rapid oxygen-fuel thermal spray coating process)、一真空 電梁霧塗佈製程(vacuum plasma spray coating process) 與一動力噴霧塗佈製程其中之一形成。 在一些實施例中,提供一種製造靜電卡盤之方法。準 備一基體且形成一絕緣層於基體上。形成一電極層於絕緣 層上’電極層產生一靜電力。形成一第一介電層於電極層 上以使該第一介電層具有非晶形結構。形成一第二介電層 於第一介電層上以使第二介電層具有結晶結構。 在一些實施例中’靜電卡盤之介電體可包括多層,多 層包括非晶形熱喷塗層與結晶熱噴爹層,藉以在介電常數 沒有任何衰退下增加介電體之體積電p且。因此,漏電流可 在靜電卡盤最小化,且因此在靜電卡盤中因漏電流造成的 破損可最小化。所以’靜電卡盤之整體電性特性可重大的 因多層介電體改善。 此外’靜電卡盤之絕緣體亦可包括多層’多層包括非 晶形熱噴塗層與結晶熱噴塗層’因补晶形熱喷塗層以及改 善在靜電卡盤中基體與電極層之間的絕緣電阻從而增加 7 201120988TW6493PA One • Internal space. In one embodiment, forming the electrode layer further includes forming a second insulating layer on one of the first insulating layer and the substrate. In one embodiment, a filling process is further performed to fill a plurality of fillings in the inner space of at least one of the first insulating layer, the second insulating layer, the first dielectric layer and the second dielectric layer. The second insulating layer is coated by an atmospheric plasma spray coating process, a rapid oxygen-fuel thermal spray coating process, and a vacuum beam spray coating. A vacuum plasma spray coating process is formed with one of a power spray coating process. In some embodiments, a method of making an electrostatic chuck is provided. A substrate is prepared and an insulating layer is formed on the substrate. An electrode layer is formed on the insulating layer. The electrode layer generates an electrostatic force. A first dielectric layer is formed on the electrode layer such that the first dielectric layer has an amorphous structure. A second dielectric layer is formed on the first dielectric layer such that the second dielectric layer has a crystalline structure. In some embodiments, the dielectric of the electrostatic chuck may include a plurality of layers including an amorphous thermal spray layer and a crystalline thermal spray layer, thereby increasing the volumetric electrical power of the dielectric without any deterioration of the dielectric constant. . Therefore, leakage current can be minimized in the electrostatic chuck, and thus damage due to leakage current in the electrostatic chuck can be minimized. Therefore, the overall electrical characteristics of the electrostatic chuck can be significantly improved by the multilayer dielectric. In addition, the insulator of the electrostatic chuck may also include multiple layers 'multilayer including amorphous thermal spray coating and crystalline thermal spray coating' due to the complementary crystalline thermal spray coating and improved insulation resistance between the substrate and the electrode layer in the electrostatic chuck. 7 201120988

TW6493PA 絕緣體之體積電阻。 t- 更進一步,緩衝層可形成於接頭之接觸面積,一電力 之高電财施加於接頭之接觸面積,且因此因在接頭之接 觸面積之熱應力的破裂可被避免。因此,靜電卡盤可改善 其持久限制與操作壽命,且因此靜電卡盤之 二 大幅減少。 & + 所以,本實施例所提出之靜電卡盤可應用在不同的電 聚應用褒置,例如是改善電力特性與持久限制之電漿㈣ 裝置與電漿沈積裝置。 為了對本發明之上述及其他方面有更佳的瞭解,下文 特舉較佳實施例,並配合所附圖式,作詳細說明如下: 【實施方式】 請參考所附圖式,本發明在本文中更完整的說明,其 中所附圖式顯示本發明之多個實施例。本發明可具有多種 不同之實施例,且不以以下所述之實施例為限。以下所述 之實施例係用以完整地揭露本發明,使得本發明所屬技術 領域中具有通f知識者可完全了解本發明。為了更清楚說 明本發明’圖式之層及區域之尺寸及㈣尺寸可能被誇張 當出現 當出現「一元件位於於另一元件之上」、「一元件連接 於另一S件」丨件柄接於另—元件」之敘述時,一 =件可直触置於另-元件之上,或直接連接或輕接於另 H或有再-元件或中間層介於兩者之間。相對地, -元件直接位於另-元件之上」、「_元件直接連Volume resistance of TW6493PA insulator. Further, the buffer layer can be formed in the contact area of the joint, and a high electric power is applied to the contact area of the joint, and thus the crack of the thermal stress due to the contact area of the joint can be avoided. Therefore, the electrostatic chuck can improve its long-term limitation and operational life, and thus the electrostatic chuck is greatly reduced. & + Therefore, the electrostatic chuck proposed in this embodiment can be applied to different electrical polymerization applications, such as plasma (4) devices and plasma deposition devices which improve power characteristics and long-term limitations. In order to better understand the above and other aspects of the present invention, the preferred embodiments of the present invention are described in detail below with reference to the accompanying drawings in which: FIG. A more complete description in which the figures illustrate various embodiments of the invention. The invention may be embodied in a variety of different embodiments and is not limited to the embodiments described below. The embodiments described below are intended to fully disclose the present invention, and the invention may be fully understood by those skilled in the art. For the sake of clarity, the dimensions and (4) dimensions of the layers and regions of the present invention may be exaggerated when appearing as "one component is on top of another component" and "one component is connected to another component". In the description of the "component", a member can be placed directly on the other component, or directly connected or lightly connected to another H or has a re-element or an intermediate layer in between. In contrast, - the component is directly on the other component."

S 8S 8

201120988 1W6493PA ί於件」或「一元件直接輕接於另一元件」之敘述 二Γ無其他元件或中間層。相似之元件係以相似 之符號標示。,士 + i ^「 此處所使用且/或」之敘述係包括所列出 項目之全部住意魬合。 b處可用第一、第二、第三或其他敘述描述不同 元、、刀、區域、層且/或部分,然而這些元件、成分、 區域、、層且/或部分並不受限於此些敘述,此些敘述僅用 以區刀、不同的元件、成分、區域、層且/或部分。因此, 在t脫=本發明<精神τ,第—元件、成分、區域、層或 心可田述為第二^件、成分、區域、層或部分。 「此,之空間相對用詞,例如是「在…下方」、「下面」、 =」上面」或「上」或其他類似用詞,可用於簡單地 描述如所附圖式中所繪示之元件,或某特徵與另一元件或 特徵之關係。可了解岐,此些空間相對用詞係包括其他 方位之描述,並非受限於圖式中之方向。舉例來說,當圖 式中之裝置上下_時’「―元件位於另—元件或特徵之 下」之敘述則變為「―元件位於另—元件或特徵之上」。 因此,Τ」之用詞係包括「上」和「下」兩種方位。元 件可朝向其他方向(旋轉90度或朝向其他方向),而此處 使用之空間相對用詞係被對應地解釋。 此處之用詞僅用以敘述本發明之實施例,並非用以限 制本發明。除非特別註明,否則此處所用之「一」及「此」 之單數形式之敘述’亦包括複數之形式。此處所用之「包 含」及「包括」所述之特徵、整數、步驟、操作、元件或 成份’並非排除其他之特徵、整數、步驟、操作、元件、 201120988201120988 1W6493PA 于" or "One component is directly connected to another component" Description There are no other components or intermediate layers. Similar components are labeled with similar symbols. , 士 + i ^ "The term used herein and / or" includes all the meanings of the listed items. The first, second, third or other descriptions may be used at b to describe different elements, knives, regions, layers and/or portions, however these elements, components, regions, layers and/or portions are not limited thereto. It is to be understood that the description is only intended to be a singular singer, a different element, component, region, layer and/or portion. Therefore, in the present invention, the "element", "component", "region", "layer" or "layer" may be described as a second element, component, region, layer or portion. "This space-relative term, such as "below", "below", "upper" or "upper" or other similar terms, may be used to simply describe as depicted in the drawings. A component, or a relationship of a feature to another component or feature. It can be understood that these spatially relative terms include descriptions of other orientations and are not limited by the orientation in the drawings. For example, when the device in the drawing is up and down, the phrase "the component is located under another component or feature" becomes "the component is located on the other component or feature." Therefore, the term "Τ" is used in both "upper" and "lower" directions. The elements can be oriented in other directions (rotated 90 degrees or toward other directions), and the space used herein is interpreted correspondingly to the words. The words used herein are merely illustrative of the embodiments of the invention and are not intended to limit the invention. The singular forms "a" and "the" are used in the s The features, integers, steps, operations, components or components described in the "including" and "including" are used to exclude the other features, integers, steps, operations, components, 201120988

TW6493PA 成份或其組合。 * - 本說明書描述的實施例與參照截面圖說明係概要說 明理想化的實施例(和中間架構)。就其本身而言,說明形 狀的變動結果(例如是製造技術或誤差)係可預期的。因 此,實施例不應被理解為用以限制某區域為特定形狀’而 是應包括從該特定形狀所衍生的變形,例如是製造上的誤 差。例如’圖示為矩形的植入區域,基本上其邊角總是會 具有圓角或曲角的特徵,及/或植入濃度的梯度並不是非 黑即白地從植入區域改變成非植入區域。同樣的,由植入 形成的埋設區域可能在介於埋設區域和進行植入的表面 之間的區域會產生一些植入。因此於圖式中說明的區域係 本質上的概要且它們的形狀不被預期為說明裝置範圍的 真實形狀,也不被預期為限制本發明的範圍。 除非另外定義’此處所使用之所有用詞(包括技術及 科學用詞)’係與本發明所屬技術領域中具有通常知識者 所了解之意義相同。此外,除非特別定義,此處所使用之 普通字典所定義之用詞,當與相關技藝中之此用詞之意義 一致,而#指理想化或過度正式之音思。 在本文仵中,實施例將伴隨著參照圖式詳細說明實 例。特別地,本發明之以下實施例可揭露單極 有單一電極。然而,技術特徵,賴教轉本實施之好 亦可應用於雙極靜電卡盤,此係改領域之通常 知。 第1圖繪示依照本發明 面圖。 之一實施例之靜電卡盤的剖TW6493PA ingredients or a combination thereof. * - The embodiments described in the specification and the reference cross-sectional illustrations are illustrative of idealized embodiments (and intermediate architectures). For its part, it is expected that the result of the change in shape (for example, manufacturing techniques or errors) will be expected. Thus, embodiments are not to be understood as limiting a certain region to a particular shape' but should include variations derived from the particular shape, such as manufacturing tolerances. For example, 'illustrated as a rectangular implanted area, basically its corners will always have the characteristics of rounded corners or curved corners, and / or the gradient of the implant concentration is not black or white changed from implanted to non-planted Into the area. Similarly, a buried region formed by implantation may result in some implantation between the buried region and the surface being implanted. The regions illustrated in the drawings are therefore in the nature of the invention, and are not intended to be construed as limiting the scope of the invention. Unless otherwise defined, all terms (including technical and scientific terms) used herein are the same as those of ordinary skill in the art. Moreover, unless otherwise defined, the terms defined by the ordinary dictionary used herein are consistent with the meaning of the terms used in the related art, and # refers to an idealized or overly formalized sound. In the present specification, the embodiments will be described in detail with reference to the drawings. In particular, the following embodiments of the invention may disclose a single electrode with a single pole. However, the technical characteristics, the implementation of the Laijiao transfer can also be applied to the bipolar electrostatic chuck, which is commonly known in the field. Figure 1 is a plan view of the invention in accordance with the present invention. Section of the electrostatic chuck of one embodiment

201120988 1W6493PA .請參照第1圖,依照本發明之一實施例之 100可包括一基體110、一第一絕緣層12〇、一電極層⑽、 一第一介電層150、一第二介電層16〇以及一連接^丨7〇。 在一實施例中,第一絕緣層12〇及第一介電芦包括一 熱喷塗層(thermal spray-coated layer),此熱;=層具 有-非晶形結構。第二介電層⑽可包括—熱喷塗層^ 熱噴塗層具有—結晶結構。因此,靜電卡盤 ^ H〇可被多層覆蓋’此多層包括非晶形熱錢層以 熱噴塗層。在多層中非晶形與結晶熱喷塗層之组合可 電卡盤1GG之靜電力提供充足的介電常數以及高體積電阻 (volume reSlst繼),從而改善靜電卡盤⑽的電性特 性。特別地,用以電性絕緣基體11〇與電極層14〇的第一 絕緣層12〇可包括非晶形齡㈣,從而因非晶形結構改 善體積電阻並增加電性絕緣特性。 基體110可具有平板或圓柱形狀,且可具有對應於被 加工之物體的大小,物體可例如是基b也就是說,基體 110可具有相等或大於用在半導體裝置或平板顯示裝置之 基板的大小。舉例來說,基體110可包括金屬,例如是鋁 (A1)。此外,基體110可更包括一金屬層塗佈於基體11〇 上。 第一絕緣層120可位於基體11〇上。舉例來說,第一 絕緣層120可位於基體11〇之上表面的一部分上。舉例來 說,第一絕緣層120可具有非晶形結構,且可藉由使用第 一粉末的熱噴塗程序形成。也就是說,第一粉末可提供用 以形成非晶形熱喷塗層。舉例來說,第一粉末可包括氧化201120988 1W6493PA. Referring to FIG. 1, a 100 according to an embodiment of the present invention may include a substrate 110, a first insulating layer 12, an electrode layer (10), a first dielectric layer 150, and a second dielectric. Layer 16〇 and a connection ^丨7〇. In one embodiment, the first insulating layer 12 and the first dielectric reed comprise a thermal spray-coated layer, and the layer has an amorphous structure. The second dielectric layer (10) may comprise a thermal spray layer and a thermal spray layer having a crystalline structure. Therefore, the electrostatic chuck can be covered by multiple layers. This multilayer includes an amorphous hot money layer to thermally spray the layer. The combination of amorphous and crystalline thermal spray coatings in multiple layers allows the electrostatic force of the electrical chuck 1GG to provide sufficient dielectric constant and high volume resistance (volume reslst) to improve the electrical characteristics of the electrostatic chuck (10). In particular, the first insulating layer 12A for electrically insulating the substrate 11 and the electrode layer 14A may include an amorphous age (four), thereby improving the volume resistance and increasing the electrical insulating properties due to the amorphous structure. The base 110 may have a flat or cylindrical shape and may have a size corresponding to the object to be processed, and the object may be, for example, a base b. That is, the base 110 may have an equal or larger size than a substrate used in a semiconductor device or a flat panel display device. . For example, the substrate 110 may comprise a metal such as aluminum (A1). Further, the substrate 110 may further include a metal layer coated on the substrate 11A. The first insulating layer 120 may be located on the substrate 11A. For example, the first insulating layer 120 may be located on a portion of the surface above the substrate 11'. For example, the first insulating layer 120 may have an amorphous structure and may be formed by a thermal spraying process using the first powder. That is, the first powder can be provided to form an amorphous thermal spray coating. For example, the first powder can include oxidation

S 11 201120988S 11 201120988

TW6493PA 釔或氧化鋁之粗粒粒子,其具有大約2〇微米至大約6〇微 米的平均直徑。特別地,第一粉末可包括粗粒粒子,粗粒 粒子從第一漿液與第二榮·液之漿液混合物取得。第一漿液 可包括多個具有大約0. 01微米至大約2微米直徑之氧化 釔(Y203)粒子,用以均勻分散氧化釔粒子之第一分散劑, 用以黏合氧化釔粒子之第一黏合劑與一第一溶劑。氧化釔 粒子、弟一分散劑與第一黏合劑溶於此第一溶劑。第二漿 液可包括多個具有大約〇. 5微米至大約2微米直徑之氧化 鋁(A1203)粒子,用以均勻分散氧化鋁粒子之第二分散 劑,用以黏合氧化鋁粒子之第二黏合劑與一第二溶劑。氧 化鋁粒子、第二分散劑與第二黏合劑溶於此第二溶劑。漿 液混合物中的氧化釔與氧化鋁之重量比的範圍介在大約 1 · 0.4到1 · 1。第一粉末將在本文中詳細說明。 第一絕緣層120可具有大約4〇〇微米到大約600微米 的厚度,且可使基體110與電極層14〇彼此電性絕緣。如 果第一絕緣層120可具有小於4〇〇微米之厚度,儘管有足 夠的體積電阻’第一絕緣層12〇之介質耐壓特性 (withstanding voltage)可顯著退化,此將導致基體11〇 與電極層140之間的電性絕緣退化。第一絕緣層12〇可因 非晶形結構具有高體積電阻。舉例來說,藉由額外的填充 程序用以填充熱喷塗層之孔隙率(p〇r〇si ty)可改善第一 絕緣層120之體積電阻至大約1〇h歐姆.公分(Q.cm)到大約 1015歐姆.公分(Ω.cm)。而傳统之體積電阻大約為1〇13歐姆 .公分(Ω.cm)。更進一步,第〜絕緣層12〇可具有非晶形結 構,且因此第一絕緣層120中的孔隙空間可相對較小。因 12 201120988TW6493PA Crude or alumina coarse particles having an average diameter of from about 2 microns to about 6 microns. In particular, the first powder may comprise coarse particles obtained from a slurry of the first slurry and the second slurry. The first slurry may include a plurality of yttria (Y203) particles having a diameter of about 0.01 μm to about 2 μm for uniformly dispersing the first dispersant of the cerium oxide particles, and bonding the first binder of the cerium oxide particles. With a first solvent. The cerium oxide particles, the first dispersing agent and the first binder are dissolved in the first solvent. The second slurry may include a plurality of alumina (A1203) particles having a diameter of about 0.5 μm to about 2 μm, a second dispersant for uniformly dispersing the alumina particles, and a second binder for adhering the alumina particles. With a second solvent. The aluminum oxide particles, the second dispersing agent and the second binder are dissolved in the second solvent. The weight ratio of cerium oxide to aluminum oxide in the slurry mixture ranges from about 1 · 0.4 to 1.1. The first powder will be described in detail herein. The first insulating layer 120 may have a thickness of about 4 Å to about 600 μm, and the substrate 110 and the electrode layer 14 电 may be electrically insulated from each other. If the first insulating layer 120 can have a thickness of less than 4 Å, although there is sufficient volume resistance, the dielectric withstanding voltage of the first insulating layer 12 可 can be significantly degraded, which will result in the substrate 11 〇 and the electrode The electrical insulation between layers 140 is degraded. The first insulating layer 12 can have a high volume resistance due to the amorphous structure. For example, the volume resistance of the first insulating layer 120 can be improved to about 1 〇h ohm by centimeter (Q.cm) by an additional filling procedure for filling the porosity of the thermal sprayed layer (p〇r〇si ty). ) to approximately 1015 ohms. centimeters (Ω.cm). The conventional volume resistance is approximately 1 〇 13 ohms and centimeters (Ω.cm). Further, the first insulating layer 12A may have an amorphous structure, and thus the void space in the first insulating layer 120 may be relatively small. Because 12 201120988

TW6493PA 此’.第〜絕緣層120可具有相對小的孔隙率。舉例來說, 第一絕緣層12 0的孔隙率可小於大約2%,且較佳地,小 於大約1%。在本實施例中’第一絕緣層120可具有大約 0. 5%到大約2%的孔隙率,較佳地,大約0. 5%到大約1 %的孔隙率。此外,第一絕緣層120亦可具有大約4微米 到大約8微米的表面粗糙度(Ra),因此具有大約UMPa的 附著強度且亦可具有大約650Hv的硬度。 黏合層115可進一步設置於基體110與第一絕緣層 120之間,且可做為於基體110與第一絕緣層12〇之間的 黏合劑。黏合層115的熱膨脹比(thermal expansion ratio) 可為基體110與第一絕緣層120之熱膨脹比的平均值。因 此黏合層115可做為具有不同熱膨脹比之基體11〇與第一 絕緣層120的熱緩衝(thermal buffer)。舉例來說,黏合 層115可包括一金屬合金例如為鎳紹合金且可具有大約3〇 微米到大約50微米的厚度’並具有小於或相等於大約5 %的孔隙率。 電極層140可設置於第一絕緣層12〇上並產生一靜電 力。舉例來說,電極層140可位於第一電極層12〇之上表 面的一部分。特別地,電極層140可在第一與第二介電層 150與160的介電體中產生靜電力。因此,靜電力可施^ 於第二介電層160之上表面,且藉由靜電力使基板固定於 第二介電層160的上表面。電極層14〇可包括導電材料例 如為鎢,且可藉由熱噴塗程序或網版印刷程序(screen printing process)形成。 在本實施例中’電極層140可具有大約3〇微米到大 13 201120988TW6493PA This '.th insulating layer 120' may have a relatively small porosity. For example, the first insulating layer 120 may have a porosity of less than about 2%, and preferably less than about 1%. In the present embodiment, the first insulating layer 120 may have a porosity of from about 0.5% to about 2%, preferably from about 0.5% to about 1%. Further, the first insulating layer 120 may have a surface roughness (Ra) of about 4 μm to about 8 μm, and thus has an adhesion strength of about UMPa and may also have a hardness of about 650 Hv. The adhesive layer 115 can be further disposed between the base 110 and the first insulating layer 120, and can be used as an adhesive between the base 110 and the first insulating layer 12A. The thermal expansion ratio of the adhesive layer 115 may be an average value of the thermal expansion ratio of the base 110 and the first insulating layer 120. Therefore, the adhesive layer 115 can be used as a thermal buffer of the substrate 11A and the first insulating layer 120 having different thermal expansion ratios. For example, the adhesive layer 115 can comprise a metal alloy such as a nickel-sand alloy and can have a thickness of from about 3 Å to about 50 microns and have a porosity of less than or equal to about 5%. The electrode layer 140 may be disposed on the first insulating layer 12 and generate an electrostatic force. For example, electrode layer 140 can be located on a portion of the surface above first electrode layer 12A. In particular, the electrode layer 140 can generate an electrostatic force in the dielectric of the first and second dielectric layers 150 and 160. Therefore, an electrostatic force can be applied to the upper surface of the second dielectric layer 160, and the substrate is fixed to the upper surface of the second dielectric layer 160 by electrostatic force. The electrode layer 14A may include a conductive material such as tungsten, and may be formed by a thermal spray process or a screen printing process. In the present embodiment, the 'electrode layer 140 may have a size of about 3 〇 to a large 13 201120988

TW6493PA 約50微米之厚度。當雷炻爲 电極層140可具有小於大約go料乎 之厚度,電極層140之& 大約川·微木 m ^ 了因電極層140之缺陷與孔隙 率而非承回’因此靜電卡般. 14Π -ra 卞盤1〇〇之卡盤品質顯著惡化。當 電極層140可具有大於大 田 js ιαπ ^ ^ 約50微未之厚度’可能在電極 層140造成電弧。因此,鲂杜 較佳地電極層14〇可具有大約3〇 微米到大約50微米之厚度。 」,、頁大η川 Π0施加於電極層140。 一絕緣層120連接到電極 一高電壓電力可經由連接器 連接器170可經過基體11〇與第 層 140 〇 问第2圖繪示第1圖中之連接器的第-實施例的剖面 圖。 清參照弟2圖,根據笛 像弟一實施例之連接器170可包括 一接頭(terminal) 171、—銥丛 、、邑緣體172以及一緩衝層173。 接頭171可貫穿基濟ιΐΛ 土聪110與第一絕緣層120並與電極 層140接觸目此從-外部電源(未顯示)可使電力經由接 頭171施加於電極層140。因此,基體11〇與第一絕緣層 120可包括貫孔(未顯示),接頭m可通過貫孔。舉例來 說,接頭171可包括導電材料,例如鎢、鉬與鈦。 絕緣體172可電性絕緣接頭ι71於環境並可包覆接頭 171。因此,絕緣體172可設置於接頭171與基體110以 及接頭171與第一絕緣層12〇之間。更進一步,當接頭171 的中央部分可接觸電極層140時,絕緣層172可設置於電 極層140與接頭171的周邊部分之間。舉例來說,絕緣體 172可包括具有小孔隙率與良好絕緣性質的燒結陶瓷體 (sintered ceramic body)。此外,絕緣體172可具有大TW6493PA is approximately 50 microns thick. When the Thunder electrode layer 140 can have a thickness less than about go, the electrode layer 140 & about the micro-methane m ^ due to the defect and porosity of the electrode layer 140 instead of bearing back 'is therefore an electrostatic card . 14Π -ra The chuck quality of the 1st plate has deteriorated significantly. When the electrode layer 140 may have a thickness greater than about 50 micrometers of the field js ιαπ ^ ^, an arc may be caused in the electrode layer 140. Accordingly, the electrode layer 14 can preferably have a thickness of from about 3 Å to about 50 microns. The page η 川 Π 0 is applied to the electrode layer 140. An insulating layer 120 is coupled to the electrodes. A high voltage power can be passed through the connector 11 through the substrate 11 and the first layer 140. Fig. 2 is a cross-sectional view showing the first embodiment of the connector of Fig. 1. Referring to Figure 2, the connector 170 according to an embodiment of the flute can include a terminal 171, a ridge, a rim 172, and a buffer layer 173. The joint 171 can extend through the base and the first insulating layer 120 and in contact with the electrode layer 140. The external power source (not shown) can apply power to the electrode layer 140 via the joint 171. Therefore, the base 11 and the first insulating layer 120 may include through holes (not shown) through which the joint m may pass. For example, the joint 171 can include a conductive material such as tungsten, molybdenum, and titanium. The insulator 172 can electrically insulate the connector ι 71 to the environment and can cover the connector 171. Therefore, the insulator 172 can be disposed between the joint 171 and the base 110 and between the joint 171 and the first insulating layer 12A. Further, when the central portion of the joint 171 can contact the electrode layer 140, the insulating layer 172 can be disposed between the electrode layer 140 and the peripheral portion of the joint 171. For example, insulator 172 can include a sintered ceramic body having a small porosity and good insulating properties. In addition, the insulator 172 can have a large

201120988 1 W64y^FA 微米的厚度且大約01微_大約2微 粗糙度,以減少電弧。 一在-程序巾於靜電卡们Qq上執行於基板,在此 商溫下-熱應力可施加於靜電卡盤1()()。靜電卡盤剛可 在電漿程序中熱膨脹’且基體110、第一絕緣層12〇盥絕 緣體172的熱膨脹比可彼此不,樣,因此熱應力可施:於 各基體110、第-絕緣層12〇與絕緣體172。特別地,敎 應力可在絕緣體Π2與基龍〇以及絕緣體172與第1 緣層120之間的邊緣表面之邊界部分最大。因絕緣體μ 相對小的力,熱應力可傳至第一絕緣们2〇因而產生破 裂。接著,破裂可延續至第一介電層15〇與第二介電層 160 ’因此靜電卡盤1〇〇會破裂。 提供緩衝層173使熱應力造成靜電卡盤1〇〇之傷害變 緩衝層173可包覆絕緣體172之上部。舉例來說,緩 衝層173可位於絕緣體172與基體11〇之間的邊界表面的 一部伤上、絕緣體172與第一絕緣層12〇之間的邊界表面 上以及絕緣體172與電極層14〇之間的邊界表面上。緩衝 層173可包括陶瓷。舉例來說,陶瓷可包括氧化鋁 (A1203)、氧化紀(Y203)、氧化铭/氧化紀(A1203/Y203)、 氧化錯(Zr02)、碳化鋁(A1C)、氮化鈦(TiN)、氮化鋁 (A1N)、碳化鈦(TiC)、氧化鎂(Mg〇)、氧化鈣(ca〇)、氧化 鈽(Ce02)、氧化鈦(Ti02)、碳化硼(BxCy)、氮化硼(BN)、 氧化矽(Si02)、碳化矽(SiC)、釔鋁石榴石(yag)、莫來石 (Mullite)、亂化銘(A1F3)等等。上述化合物可單獨或組 15 201120988201120988 1 W64y^FA The thickness of the micron and approximately 01 micro_about 2 micro roughness to reduce arcing. A process towel is applied to the substrate on the electrostatic card Qq, at which temperature - thermal stress can be applied to the electrostatic chuck 1 (). The electrostatic chuck can be thermally expanded in the plasma program and the thermal expansion ratios of the substrate 110, the first insulating layer 12, and the insulator 172 can be different from each other, so thermal stress can be applied to each of the substrate 110 and the first insulating layer 12. 〇 and insulator 172. In particular, the 敎 stress may be the largest at the boundary portion between the insulator Π 2 and the kelong 〇 and the edge surface between the insulator 172 and the first edge layer 120. Due to the relatively small force of the insulator μ, thermal stress can be transmitted to the first insulation and thus rupture. Then, the rupture can continue to the first dielectric layer 15A and the second dielectric layer 160' so that the electrostatic chuck 1 ruptures. The buffer layer 173 is provided to cause thermal stress to cause damage to the electrostatic chuck 1 . The buffer layer 173 can cover the upper portion of the insulator 172. For example, the buffer layer 173 may be located on a portion of the boundary surface between the insulator 172 and the substrate 11A, the boundary surface between the insulator 172 and the first insulating layer 12A, and the insulator 172 and the electrode layer 14 On the boundary surface between. The buffer layer 173 may include ceramic. For example, ceramics may include alumina (A1203), oxidized (Y203), oxidized/oxidized (A1203/Y203), oxidized (Zr02), aluminum carbide (A1C), titanium nitride (TiN), nitrogen Aluminum (A1N), titanium carbide (TiC), magnesium oxide (Mg〇), calcium oxide (ca〇), cerium oxide (Ce02), titanium oxide (Ti02), boron carbide (BxCy), boron nitride (BN) , yttrium oxide (SiO 2 ), tantalum carbide (SiC), yttrium aluminum garnet (yag), mullite (Mullite), chaotic Ming (A1F3) and so on. The above compounds can be used alone or in groups 15 201120988

TW6493PA 合使用。緩衝層173可藉由熱喷塗程序形成。' . 緩衝層173可具有大約100微米到大約250微米的厚 度,較佳地,大約150微米到大約200微米。當緩衝層173 可具有超過250微米的厚度,緩衝層173之孔隙空間可相 對大,因此破裂趨向產生於缓衝層173中。更進一步,當 缓衝層173可具有小於100微米,熱應力無法充分的被缓 衝層173吸收。因此,較佳地緩衝層173可具有大約100 微米到大約250微米的厚度。此外,緩衝層173可具有大 約0. 1微米到大約2微米的表面粗糙度,藉以減少緩衝層 173中的表面電阻與電弧。 靜電卡盤100中的熱應力係在電漿程序中的高溫下 產生,熱應力可充分的被緩衝層173吸收以使靜電卡盤100 不會因熱應力造成損傷。舉例來說,當靜電卡盤100可被 加熱且基體110可在電漿程序中熱膨脹,緩衝層173可替 代絕緣體172吸收基體110中的熱應力。 舉例來說,緩衝層172的孔隙率可等於或多餘基體 110、第一絕緣層120、第一介電層150與第二介電層160 的孔隙率,因此改善緩衝層173的應力吸收效率。緩衝層 173可具有大約2%到大約10%的孔隙率,較佳地,大約 2%到大約7%。如果緩衝層173的孔隙率可大於大約10 %,緩衝層173的力可能會不足且緩衝層173可從絕緣體 172、基體110與絕緣層120分離開來。當緩衝層173之 孔隙率可小於大約2%,緩衝層173中可能產生破裂。 更進一步,當緩衝層173具有指出邊緣部分,缓衝層 173的邊緣部分可形成為圓弧或倒角,因為熱應力可集中 201120988TW6493PA is used together. The buffer layer 173 can be formed by a thermal spray process. The buffer layer 173 may have a thickness of from about 100 microns to about 250 microns, preferably from about 150 microns to about 200 microns. When the buffer layer 173 may have a thickness exceeding 250 μm, the void space of the buffer layer 173 may be relatively large, and thus the crack tends to be generated in the buffer layer 173. Further, when the buffer layer 173 may have less than 100 μm, thermal stress is not sufficiently absorbed by the buffer layer 173. Accordingly, it is preferred that the buffer layer 173 can have a thickness of from about 100 microns to about 250 microns. Further, the buffer layer 173 may have a surface roughness of about 0.1 μm to about 2 μm, thereby reducing surface resistance and arcing in the buffer layer 173. The thermal stress in the electrostatic chuck 100 is generated at a high temperature in the plasma program, and the thermal stress can be sufficiently absorbed by the buffer layer 173 so that the electrostatic chuck 100 is not damaged by thermal stress. For example, when the electrostatic chuck 100 can be heated and the substrate 110 can be thermally expanded in a plasma program, the buffer layer 173 can absorb the thermal stress in the substrate 110 instead of the insulator 172. For example, the porosity of the buffer layer 172 may be equal to or excess of the porosity of the substrate 110, the first insulating layer 120, the first dielectric layer 150, and the second dielectric layer 160, thus improving the stress absorption efficiency of the buffer layer 173. Buffer layer 173 can have a porosity of from about 2% to about 10%, preferably from about 2% to about 7%. If the porosity of the buffer layer 173 may be greater than about 10%, the force of the buffer layer 173 may be insufficient and the buffer layer 173 may be separated from the insulator 172, the substrate 110, and the insulating layer 120. When the porosity of the buffer layer 173 may be less than about 2%, cracking may occur in the buffer layer 173. Further, when the buffer layer 173 has the pointed edge portion, the edge portion of the buffer layer 173 can be formed into a circular arc or a chamfer because the thermal stress can be concentrated 201120988

TW6493PA 於緩衝層‘ 173的邊緣部分。應力集中於緩衝層i73之邊緣 部分通常造成緩衝層173的破裂。 第3圖繪示第丨圖中之連接器的第二實施例的剖面 圖。 除了元件之形狀跟設置之外,第二實施例之連接器 170實質上可具有與第2圖中之第一實施例之連接器ι7〇 的組態與結構相同。因此,第3圖中具有相同功能相同的 元件之說明可參照第2圖’任何進一步關於相同功能與組 態之詳細說明將在本文中刪除。 請參照第3圖,根據第二實施例之連接器170可包括 接頭177、絕緣體178與緩衝層179。 接頭177可貫穿基體110與第一絕緣層120並接觸電 極層140 ’因此藉由一外部電源使電力可經由接頭177施 加於電極層140。 絕緣體178可設置於基體110與接頭177之間,且可 使基體110與接頭177彼此電性絕緣。特別地,絕緣體178 可僅設置於基體110與接頭177之間,非設置於第二絕緣 層120與接頭177之間。 提供缓衝層179可減少因熱應力造成靜電卡盤1〇〇之 損害,緩衝層179包括第一緩衝179a與第二缓衝179b。 第一緩衝179a可沿絕緣體178與接頭177之上部的 表面延伸。因此第一緩衝179a可位於絕緣體178與基體 110之間的邊緣表面的一部分上,絕緣體178與第一絕緣 層120之間的邊緣表面上,以及接頭177與第一絕緣層120 之間的邊緣表面上。因此,靜電卡盤100中的熱應力可藉 201120988TW6493PA is at the edge of the buffer layer '173. Stress concentration on the edge portion of the buffer layer i73 generally causes cracking of the buffer layer 173. Figure 3 is a cross-sectional view showing a second embodiment of the connector in the second diagram. The connector 170 of the second embodiment may have substantially the same configuration and structure as the connector ι7 of the first embodiment of Fig. 2 except for the shape and arrangement of the components. Therefore, the description of the elements having the same functions in Fig. 3 can be referred to in Fig. 2, and any further details regarding the same functions and configurations will be deleted herein. Referring to Fig. 3, the connector 170 according to the second embodiment may include a joint 177, an insulator 178, and a buffer layer 179. The connector 177 can extend through the base 110 and the first insulating layer 120 and contact the electrode layer 140' so that power can be applied to the electrode layer 140 via the connector 177 by an external power source. The insulator 178 can be disposed between the base 110 and the joint 177, and can electrically insulate the base 110 and the joint 177 from each other. In particular, the insulator 178 may be disposed only between the base 110 and the joint 177, and not between the second insulating layer 120 and the joint 177. The buffer layer 179 is provided to reduce the damage of the electrostatic chuck 1 caused by thermal stress, and the buffer layer 179 includes the first buffer 179a and the second buffer 179b. The first buffer 179a extends along the surface of the insulator 178 and the upper portion of the joint 177. Therefore, the first buffer 179a may be located on a portion of the edge surface between the insulator 178 and the substrate 110, on the edge surface between the insulator 178 and the first insulating layer 120, and the edge surface between the joint 177 and the first insulating layer 120. on. Therefore, the thermal stress in the electrostatic chuck 100 can be borrowed 201120988

TW6493PA 由第一緩衝179a吸收。如果熱應力無法被第一缓衝.179a 充分吸收,第二緩衝179b可補充吸收靜電卡盤1〇〇中的 熱應力。舉例來說,當熱應力無法完整被第一緩衝l79a 吸收,破裂可能會產生於基體110與絕緣體178之間的邊 緣表面’且成長至第一與第一介電層150與160。第二缓 衝179b可吸收未被第一緩衝179a吸收的剩餘熱應力,因 此由剩餘熱應力造成的破裂可避免成長至第一與第二介 電層150與160。 舉例來說’第' —緩衝179b可位於絕緣體1 μ之上部 的周遭。在本實施例中,第二緩衝l79b可位於絕緣體178 與第一絕緣層120之間的邊緣表面上,以及基體HQ與第 二絕緣層120之間的邊緣表面之一部份。結果,第一與第 二緩衝179a與179b兩者可位於絕緣體178與第二絕緣層 120之間的邊緣表面上。僅除了在靜電卡盤丨⑽中的位置, 第二緩衝179b實質上可具有與第一緩衝179a之相同結構 組態,例如是組成、厚度、表面粗縫度。 因此,熱應力可集中於絕緣體178與基體11()之間的 邊緣表面,且第一與第二緩衝179&與179b可位於絕緣體 178與基體no之間的邊緣表面上。因此,靜電卡盤 中的熱應力可被吸收兩次,特別在絕緣體178與基體11〇 之間的邊緣表面,從而避免應力集中造成因熱應力產生破 裂擴展。因此,靜電卡盤100的持久性可大幅改善,且靜 ,卡盤1〇〇的維持費用可減少。第二緩衝179b可為補充 提供於靜電卡盤1〇〇,因此該領域之通常知識者可知第二 緩衝179b可根據程序需求而被刪除。 201120988The TW6493PA is absorbed by the first buffer 179a. If the thermal stress is not sufficiently absorbed by the first buffer .179a, the second buffer 179b can supplement the thermal stress in the electrostatic chuck 1吸收. For example, when thermal stress is not completely absorbed by the first buffer 179a, cracking may occur at the edge surface ' between the substrate 110 and the insulator 178' and grow to the first and first dielectric layers 150 and 160. The second buffer 179b can absorb the residual thermal stress that is not absorbed by the first buffer 179a, so that the crack caused by the residual thermal stress can be prevented from growing to the first and second dielectric layers 150 and 160. For example, 'the' - the buffer 179b can be located around the upper portion of the insulator 1 μ. In the present embodiment, the second buffer 179b may be located on an edge surface between the insulator 178 and the first insulating layer 120, and a portion of the edge surface between the substrate HQ and the second insulating layer 120. As a result, both the first and second buffers 179a and 179b can be located on the edge surface between the insulator 178 and the second insulating layer 120. The second buffer 179b may have substantially the same structural configuration as the first buffer 179a except for the position in the electrostatic chuck 10 (10), such as composition, thickness, and surface roughness. Therefore, thermal stress can be concentrated on the edge surface between the insulator 178 and the base 11 (), and the first and second buffers 179 & 179b can be located on the edge surface between the insulator 178 and the substrate no. Therefore, the thermal stress in the electrostatic chuck can be absorbed twice, particularly at the edge surface between the insulator 178 and the substrate 11〇, thereby avoiding stress concentration and causing crack propagation due to thermal stress. Therefore, the durability of the electrostatic chuck 100 can be greatly improved, and the maintenance cost of the static chuck can be reduced. The second buffer 179b can be supplementally provided to the electrostatic chuck 1A, so those skilled in the art will recognize that the second buffer 179b can be deleted according to program requirements. 201120988

1W6493FA 在本實施例中’基體110在上邊緣部分可包括第一傾1W6493FA In the present embodiment, the base 110 may include a first tilt at the upper edge portion.

斜部分 > 如+ A —來絕緣體178的上表面可低於基體110的 此’基體110可比絕緣體178設置的更靠近電 極層140,且键 且弟一絕緣層120的厚度可在第一區域A大於 第二區域B。笛 弟一絕緣層120的第一區域A可定義為介於 絕緣體17 8斑雷搞s^ 一、晃極層140之間的區域,且第一絕緣層120 的第二區域— —β 1疋義為基體之上表面之間,除了第一絕緣 層120之傾斜部分。雖然第一絕緣層120 #密度可在第-區域Α小於當- Λ 、乐一£域Β,但第一絕緣層120的厚度可在第 了區域Α大於第二區域Β,從而補償在第一絕緣層120之 第一區域A的較小密度。因此,第一絕緣層120的第一區 域A的漏電流可充分因其較厚之厚度而避免,從而避免基 體110與電極層140之間的電弧。此外,因為熱應力在基 體110與絕緣體178之邊緣部分周遭,第一絕緣層120可 充分地避免破損,從而避免基體11〇與電極層14〇之間的 電弧。 在一實施例中,電極層140亦可包括對應於基體no 之第一傾斜部分的第二傾斜部分,因此對應於接頭177之 電極層140可凹陷。如此一來,電極層14〇在基體11〇上 的第一上表面可高於電極層H0在接頭177上的第二上表 面。因此’第一與第二介電層15〇與⑽之總厚度在第三 區域C大於第四區域D。第一與第二介電層15〇與⑽之 第三區域C可定義接頭m上總介電層之區域,且第一與 第二介電層150與160之第四區域D可定義基體11〇上總 ”電層之區域因此’當高電壓電力可經由接頭177施加The inclined portion > such as + A - the upper surface of the insulator 178 may be lower than the base 110 of the substrate 110 may be disposed closer to the electrode layer 140 than the insulator 178, and the thickness of the key and the insulating layer 120 may be in the first region A is larger than the second area B. The first region A of the inner layer 120 of the flute can be defined as a region between the insulator 17 8 and the sapole layer 140, and the second region of the first insulating layer 120 — β 1疋Between the upper surfaces of the substrate, except for the inclined portion of the first insulating layer 120. Although the first insulating layer 120# density may be smaller than the first-region Α, the thickness of the first insulating layer 120 may be greater than the second region 第 in the first region, thereby compensating for the first The smaller density of the first region A of the insulating layer 120. Therefore, the leakage current of the first region A of the first insulating layer 120 can be sufficiently avoided due to its thick thickness, thereby avoiding an arc between the substrate 110 and the electrode layer 140. Further, since thermal stress is surrounded by the edge portions of the substrate 110 and the insulator 178, the first insulating layer 120 can sufficiently avoid breakage, thereby avoiding arcing between the substrate 11 and the electrode layer 14A. In an embodiment, the electrode layer 140 may also include a second inclined portion corresponding to the first inclined portion of the base no, so that the electrode layer 140 corresponding to the joint 177 may be recessed. As such, the first upper surface of the electrode layer 14 on the substrate 11A can be higher than the second upper surface of the electrode layer H0 on the joint 177. Therefore, the total thickness of the first and second dielectric layers 15A and (10) is greater in the third region C than the fourth region D. The first and second dielectric layers 15A and (10) of the third region C may define a region of the total dielectric layer on the joint m, and the fourth region D of the first and second dielectric layers 150 and 160 may define the substrate 11 The area of the total "electric layer" is therefore 'when high voltage power can be applied via connector 177

S 19 201120988S 19 201120988

TW6493PA 於電極層140,靜電卡盤loo上的基板在第三區域c,比第 四區域D與電極層140間隔的更開,從而避免接頭I??與 基板之間放電。 請再次參照第1圖,第一介電層150可位於電極層 140上,如此使電極層140可埋於第一介電層15〇中。因 此,電極層140可藉由第一介電層150包覆。舉例來說, 第一介電層150可設置於電極層140之表面輪廓上以位於 第一絕緣層120上’所以第一介電層150可位於電極層140 上與第一絕緣層120上。舉例來說,第一介電層15〇可使 用第一粉末進行熱喷塗程序,且因此第一介電層可具 有非晶形結構。也就是說,可使用相同粉末進行熱喷塗程 序以形成第一介電層150與第一絕緣層120。 舉例來說’第一介電層150可具有大約100微米到大 約300微米的厚度。此外,第一介電層150可具有相對低 的孔隙率’因為第一介電層15〇的内部空間可因非晶形結 構變小。第一介電層15〇的孔隙率可大約小於2%,更佳 地’小於大約1 %。在本實施例中,第一介電層丨5〇的孔 隙率可在大約0. 5%到大約2%的範圍,更佳地,大約0. 5 %到大約1%。更進一步,第一介電層150可具有表面粗 糙度(Ra)大約4微米到大約8微米,藉以具有大約超過 14MPa的吸附強度。第一絕緣層15〇亦可具有超過大約 650Hv的硬度》 第二介電層160可位於第一介電層150上,且被傳輸 的基板可位於第二介電層16〇上。舉例來說,第二介電層 160可僅位於第一介電層15〇之表面上,或可位於基體TW6493PA is on the electrode layer 140. The substrate on the electrostatic chuck loo is spaced apart from the electrode layer 140 in the third region c, thereby avoiding discharge between the connector I and the substrate. Referring again to FIG. 1, the first dielectric layer 150 may be disposed on the electrode layer 140 such that the electrode layer 140 may be buried in the first dielectric layer 15A. Therefore, the electrode layer 140 can be covered by the first dielectric layer 150. For example, the first dielectric layer 150 may be disposed on the surface contour of the electrode layer 140 to be located on the first insulating layer 120. Therefore, the first dielectric layer 150 may be located on the electrode layer 140 and the first insulating layer 120. For example, the first dielectric layer 15 can be subjected to a thermal spray process using the first powder, and thus the first dielectric layer can have an amorphous structure. That is, the same powder can be used for the thermal spraying process to form the first dielectric layer 150 and the first insulating layer 120. For example, the first dielectric layer 150 can have a thickness of from about 100 microns to about 300 microns. Further, the first dielectric layer 150 may have a relatively low porosity' because the internal space of the first dielectric layer 15A may become smaller due to the amorphous structure. The porosity of the first dielectric layer 15 can be less than about 2%, more preferably less than about 1%. 5%至约1%。 In the present embodiment, the first dielectric layer 丨5 〇 of the aperture ratio may be in the range of about 0.5% to about 2%, more preferably, about 0.5% to about 1%. Still further, the first dielectric layer 150 may have a surface roughness (Ra) of from about 4 microns to about 8 microns, thereby having an adsorption strength of greater than about 14 MPa. The first insulating layer 15 can also have a hardness of more than about 650 Hv. The second dielectric layer 160 can be on the first dielectric layer 150, and the transferred substrate can be on the second dielectric layer 16A. For example, the second dielectric layer 160 may be located only on the surface of the first dielectric layer 15 or may be located on the substrate.

S 20 201120988S 20 201120988

TW6493PA 110、第一絕緣層120所暴露的表面上以及第·一介電層150 之表面。因此,當第一絕緣層丨2〇與第一介電層15〇可堆 疊於基體110上時’第二介電層16〇可設置於基體11〇上。 所以,第一介電層150、第一絕緣層120與基體110可被 第二介電層160覆蓋,從而減少因電漿造成第一介電層 150、第一絕緣層120與基體11〇的傷害。舉例來說,藉 由使用第二粉末之熱噴塗程序可形成第二介電層16〇,因 此弟二介電層160可具有結晶結構。第二介電層可包 括陶瓷。舉例來說,陶瓷可包括氧化鋁(A1203)、氧化釔 (Y203)、氧化鋁/氧化釔(A1203/Y203)、氧化鍅(Zr02)、 石反化銘(A1C)、氮化鈦(TiN)、氮化銘(A1N)、碳化鈦(Tic)、 氧化鎂(MgO)、氧化鈣(CaO)、氧化鈽(ce〇2)、氧化鈦 (Ti02)、碳化硼(BxCy)、氮化硼(BN)、氧化矽(si〇2)、碳 化矽(SiC)、釔鋁石榴石(YAG)、莫來石(Muliite)、氟化 鋁(A1F3)等等。上述化合物可單獨或組合使用β 舉例來說’第二介電層160可具有大約2〇〇微米到大 約400微米的厚度。此外,第二介電層ι6〇可具有高於第 一介電層150的孔隙率,因為其結晶結構。第二介電層16〇 的孔隙率可在大約3 %到大約7 %的範圍。更進一步,第 二介電層160可具有表面粗糖度(Ra)大約3微米到大約5 微米,藉以具有大約超過14MPa的吸附強度。第二絕緣層 160亦可具有超過大約650Hv的硬度。 第一與第二介電層150與160可分別具有大約1〇〇微 米到大約300微米與大約200微米到400微米的厚度,係 以第一與第二介電層150與160之總介電常數之觀點,總 S. 21 201120988The TW6493PA 110, the surface on which the first insulating layer 120 is exposed, and the surface of the first dielectric layer 150. Therefore, when the first insulating layer 丨2 〇 and the first dielectric layer 15 〇 can be stacked on the substrate 110, the second dielectric layer 16 〇 can be disposed on the substrate 11 。. Therefore, the first dielectric layer 150, the first insulating layer 120 and the substrate 110 may be covered by the second dielectric layer 160, thereby reducing the first dielectric layer 150, the first insulating layer 120 and the substrate 11 caused by the plasma. hurt. For example, the second dielectric layer 16 can be formed by a thermal spraying process using a second powder, so the second dielectric layer 160 can have a crystalline structure. The second dielectric layer can comprise ceramic. For example, ceramics may include alumina (A1203), yttrium oxide (Y203), alumina/yttria (A1203/Y203), yttrium oxide (Zr02), stone resolving (A1C), titanium nitride (TiN) Niobium (A1N), titanium carbide (Tic), magnesium oxide (MgO), calcium oxide (CaO), cerium oxide (ce〇2), titanium oxide (Ti02), boron carbide (BxCy), boron nitride ( BN), cerium oxide (si 〇 2), cerium carbide (SiC), yttrium aluminum garnet (YAG), mullite (Muliite), aluminum fluoride (A1F3), and the like. The above compounds may be used singly or in combination. For example, the second dielectric layer 160 may have a thickness of from about 2 Å to about 400 μm. Further, the second dielectric layer ι6 〇 may have a higher porosity than the first dielectric layer 150 because of its crystalline structure. The porosity of the second dielectric layer 16A may range from about 3% to about 7%. Still further, the second dielectric layer 160 may have a surface roughness (Ra) of from about 3 microns to about 5 microns, thereby having an adsorption strength of greater than about 14 MPa. The second insulating layer 160 may also have a hardness of more than about 650 Hv. The first and second dielectric layers 150 and 160 can each have a thickness of between about 1 micron to about 300 microns and about 200 microns to 400 microns, with a total dielectric of the first and second dielectric layers 150 and 160. Constant view, total S. 21 201120988

TW6493PA 體積電阻例如是第一與第二介電層150與160的·絕緣電阻 以及用以固定基板至靜電卡盤100的吸附力。當第一介電 層與第二介電層150與160之總厚度,也就是說,介電體 之厚度可大於大約500微米,基板與電極層彼此過度的分 開,因此基板無法良好的固定於靜電卡盤100上,所以較 佳地第一與第二介電層150與160之總厚度可大約小於 500微米。此外,當第二介電層160可具有大約小於200 微米之厚度時,介電體之介電常數不足以使靜電力用以吸 住(chuck)基板,因為介電常數決定性的被具有結晶結構 的第二介電層160決定。更進一步,當第一介電層150可 具有大約小於100微米的厚度,介電體的體積電阻不足以 使靜電力用以吸住基板,因為體積電阻決定性的被具有非 晶形結構的第一介電層150決定。因此,以第一介電層150 可具有大於大約100微米之厚度,以及第二介電層160可 具有大於大約200微米之厚度為條件下,第一與第二介電 層150與160的總厚度不可大於大約500微米。由於這些 原因,第一介電層150可具有大約100微米到大約300微 米的厚度範圍,且第二介電層160可具有大約200微米到 大約400微米的厚度範圍。 因此,靜電卡盤100的介電體可包括具有一非晶形喷 塗層與一結晶喷塗層的一多層(multilayer),因此在沒有 減少任何介電常數下增加靜電卡盤100的體積電阻。舉例 來說,第一介電層150可具有大約109歐姆公分(Ω·αη)到 大約1011歐姆公分(Ω·αη)之體積電阻,此係傳統結晶熱喷 塗層之體積電阻;第二介電層160可具有大約1〇13歐姆公 22 201120988The TW6493PA volume resistance is, for example, an insulation resistance of the first and second dielectric layers 150 and 160 and an adsorption force for fixing the substrate to the electrostatic chuck 100. When the total thickness of the first dielectric layer and the second dielectric layers 150 and 160, that is, the thickness of the dielectric body may be greater than about 500 micrometers, the substrate and the electrode layer are excessively separated from each other, so the substrate cannot be well fixed to The electrostatic chuck 100 is preferably so that the total thickness of the first and second dielectric layers 150 and 160 can be less than about 500 microns. In addition, when the second dielectric layer 160 may have a thickness of less than about 200 microns, the dielectric constant of the dielectric is insufficient to cause an electrostatic force to chuck the substrate because the dielectric constant is decisively crystalline. The second dielectric layer 160 is determined. Further, when the first dielectric layer 150 may have a thickness of less than about 100 micrometers, the volume resistance of the dielectric body is insufficient to cause an electrostatic force to attract the substrate because the volume resistance is decisively determined by the first medium having an amorphous structure. The electrical layer 150 determines. Thus, with the first dielectric layer 150 having a thickness greater than about 100 microns and the second dielectric layer 160 having a thickness greater than about 200 microns, the total of the first and second dielectric layers 150 and 160 The thickness cannot be greater than about 500 microns. For these reasons, the first dielectric layer 150 can have a thickness ranging from about 100 microns to about 300 microns, and the second dielectric layer 160 can have a thickness ranging from about 200 microns to about 400 microns. Therefore, the dielectric of the electrostatic chuck 100 can include a multilayer having an amorphous sprayed layer and a crystalline sprayed layer, thereby increasing the volume resistance of the electrostatic chuck 100 without reducing any dielectric constant. . For example, the first dielectric layer 150 may have a volume resistance of about 109 ohm centimeters (Ω·αη) to about 1011 ohm centimeters (Ω·αη), which is a volume resistance of a conventional crystalline thermal spray coating; The electrical layer 160 can have approximately 1 〇 13 ohms 22 201120988

TW6493PA 分(Ω.cm)之體積電阻,此係傳統非晶形熱喷塗層之體積電 阻。此外,靜電卡盤100之介電體可具有大約1013歐姆公 分之總體積電阻。因此,靜電卡盤100之介電體可包括具 有結晶層與非晶形層之多層,此介電體可在介電常數不退 化下增加介電體的體積電阻。體積電阻的改善可引導介電 體之絕緣特性的增加,從而改善介電體之整體電性特性。 另外,第一絕緣層120可包括具有良好體積電阻的非晶形 熱噴塗層,從而改善介電體之整體體積電阻與電性特性。 在第一絕緣層120與包括第一與第二介電層150與 160的介電體上可執行一後處理。舉例來說,以填充物填 充不同之内部空間的程序可執行於第一絕緣層120與介電 體上,且因此第一絕緣層120與介電體中的孔隙空間與裂 痕可充分的被填充物填滿。填充程序可同時執行於整個第 一絕緣層120、第一介電層150與第二介電層160上。此 外,填充程序亦可單獨地分別執行於各個第一絕緣層 120、第一介電層150與第二介電層160上。填充物可包 括一樹酯,例如是基於>5夕的丙烯酸樹醋。 絕緣層120與介電體的體積電阻可藉由填充程序增 加。舉例來說,具有結晶結構之第二介電層160的體積電 阻藉由填充程序可從大約1〇9歐姆公分到大約1011歐姆公 分之範圍增加到大約1013歐姆公分。此外,具有非晶形結 構之第一介電層150與第一絕緣層120之體積電阻藉由填 充程序可由1013歐姆公分增加至大約10u歐姆公分到大約 1015歐姆公分之範圍。更進一步,介電體之總體積電阻藉 由填充程序亦可由大約1013歐姆公分增加至大約1014歐姆 23 201120988Volume resistance of TW6493PA (Ω.cm), which is the volume resistance of a conventional amorphous thermal spray coating. Additionally, the dielectric of electrostatic chuck 100 can have a total volume resistance of approximately 1013 ohms. Therefore, the dielectric of the electrostatic chuck 100 may include a plurality of layers having a crystalline layer and an amorphous layer, which may increase the volume resistance of the dielectric without degrading the dielectric constant. The improvement in volume resistance can lead to an increase in the dielectric properties of the dielectric, thereby improving the overall electrical properties of the dielectric. In addition, the first insulating layer 120 may include an amorphous thermal sprayed layer having a good volume resistance to improve the overall volume resistance and electrical properties of the dielectric. A post-treatment can be performed on the first insulating layer 120 and the dielectric including the first and second dielectric layers 150 and 160. For example, a procedure of filling a different inner space with a filler may be performed on the first insulating layer 120 and the dielectric, and thus the void spaces and cracks in the first insulating layer 120 and the dielectric may be sufficiently filled. Filled up. The filling process can be performed simultaneously on the entire first insulating layer 120, the first dielectric layer 150, and the second dielectric layer 160. In addition, the filling process can also be separately performed on each of the first insulating layer 120, the first dielectric layer 150, and the second dielectric layer 160. The filler may comprise a resin such as acrylic vinegar based on > The volume resistance of the insulating layer 120 and the dielectric can be increased by a filling procedure. For example, the volume resistivity of the second dielectric layer 160 having a crystalline structure can be increased from about 1 〇 9 ohm centimeters to about 1011 ohm centimeters to about 1013 ohms by the filling procedure. Further, the volume resistance of the first dielectric layer 150 and the first insulating layer 120 having an amorphous structure can be increased from 1013 ohm centimeters to about 10 u ohm centimeters to about 1015 ohm centimeters by a filling procedure. Furthermore, the total volume resistance of the dielectric can also be increased from approximately 1013 ohms to approximately 1014 ohms by the filling procedure. 23 201120988

TW6493PA 公分到大約1015歐姆公分之範圍。 t . 因此,具有一非晶形層與一結晶層之多層結構之靜電 卡盤100,此靜電卡盤之介電體之體積電阻在介電常數沒 有退化下體積電阻可充分的增加,從而減少從介電體之漏 電流與電弧。此外,絕緣層之絕緣特性亦可因非晶形熱喷 塗層之高體積電阻而充分的改善。 如果第一介電層150可包括結晶熱喷塗層且第二介 電層160可包括非晶形熱喷塗層相反於上述介電體之組 態,介電體之總體積電阻亦可在無任何介電常數之退化下 改善。然而,非晶形結構可具有更多破裂的機會,因為非 晶形熱喷塗層之熱膨脹係數相對較小,儘管其有高體積電 阻。此外,非晶形結構亦可具有更多電弧的機會,因為介 電常數的增加。由於這些原因,較佳地,結晶熱噴塗層而 非非晶形熱喷塗層可位於靜電卡盤100之頂部。因此,包 括結晶熱喷塗層之第二介電層160可位於包括非晶形熱喷 塗層之第一介電層150上,且因此結晶熱喷塗層可設置在 靜電卡盤100之頂部。 第4圖繪示依照本發明之另一實施例之靜電卡盤的 剖面圖。繪示於第4圖中的靜電卡盤200與第1圖中的靜 電卡盤100具有相似之結構與組態,第4圖中與第1圖中 相同的符號表示相同之元件。 請參照第4圖,依照本發明之另一實施例之靜電卡盤 200可包括一基體110、一第一絕緣層220、一第二絕緣層 230、一電極層140、一第一介電層150、一第二介電層160 與一連接器170。TW6493PA centimeters to approximately 1015 ohm centimeters. Therefore, the electrostatic chuck 100 having a multilayer structure of an amorphous layer and a crystalline layer, the volume resistance of the dielectric of the electrostatic chuck can be sufficiently increased under the dielectric constant without degradation, thereby reducing Leakage current and arc of the dielectric. Further, the insulating properties of the insulating layer can be sufficiently improved by the high volume resistance of the amorphous thermal spray coating. If the first dielectric layer 150 can include a crystalline thermal spray coating and the second dielectric layer 160 can include an amorphous thermal spray coating opposite to the configuration of the dielectric described above, the total volume resistance of the dielectric can also be Any deterioration in dielectric constant is improved. However, the amorphous structure may have more chance of cracking because the amorphous thermal spray coating has a relatively small coefficient of thermal expansion despite its high volume resistance. In addition, the amorphous structure may also have more chance of arcing due to an increase in dielectric constant. For these reasons, preferably, a crystalline thermal spray coating, rather than an amorphous thermal spray coating, can be placed on top of the electrostatic chuck 100. Accordingly, the second dielectric layer 160 including the crystalline thermal spray coating can be located on the first dielectric layer 150 including the amorphous thermal spray coating, and thus the crystalline thermal spray coating can be disposed on top of the electrostatic chuck 100. Fig. 4 is a cross-sectional view showing an electrostatic chuck in accordance with another embodiment of the present invention. The electrostatic chuck 200 shown in Fig. 4 has a similar structure and configuration to the electrostatic chuck 100 of Fig. 1, and the same reference numerals in Fig. 4 as those in Fig. 1 denote the same elements. Referring to FIG. 4, an electrostatic chuck 200 according to another embodiment of the present invention may include a substrate 110, a first insulating layer 220, a second insulating layer 230, an electrode layer 140, and a first dielectric layer. 150. A second dielectric layer 160 and a connector 170.

S 24 201120988S 24 201120988

TW6493PA 1基體110可具有平板或圓柱形狀,且可具有對應於被 加工之物體的大小,物體可例如是基板。舉例來說,基體 110可包括金屬,例如是鋁(A1) ^此外,基體11〇可更包 括一金屬層塗佈於基體11〇上。 第一絕緣層220可位於基體11〇上。舉例來說,第一 絕緣層220可位於基體ι1〇之上表面的一部分上。第一絕 緣層220可具有非晶形結構,且可藉由使用第一粉末的熱 喷塗程序形成。第一絕緣層220可具有大約大於1〇〇微米 的厚度’較佳地,具有大約1〇〇微米至300微米的厚度且 可使基體110與電極層14〇彼此電性絕緣。如果第一絕緣 層220可具有小於大約ι00微米之厚度,第一絕緣層22〇 ‘ 之體積電阻會太小以使基體11〇與電極層140之間的無法 彼此電性絕緣。因此’第一絕緣層220可具有至少大約1〇〇 微米之厚度。此外’第一絕緣層220的孔隙率可小於大約 2%,且較佳地,小於大約1%。在本實施例中,第一絕緣 層220可具有大約〇. 5%到大約2%的孔隙率,較佳地, 大約0.5%到大約1%的孔隙率。更進一步,第一絕緣層 220亦可具有大約4微米到大約8微米的表面粗糙度 (Ra) ’因此具有大約l4MPa的附著強度且亦可具有大約 650Hv的硬度。 第二絕緣層230可位於第一絕緣層220上。舉例來 說’第二絕緣層230可藉由使用第二粉末之熱喷塗程序僅 塗佈於第一絕緣層220之上表面,且因此第二絕緣層230 可具有結晶結構。第二絕緣層220可包括陶瓷。舉例來說, 陶瓷可包括氧化鋁(A1203)、氧化釔(Y203)、氧化鋁/氧化 5 25 201120988The TW6493PA 1 substrate 110 may have a flat or cylindrical shape and may have a size corresponding to the object being processed, and the object may be, for example, a substrate. For example, the substrate 110 may comprise a metal, such as aluminum (A1). Further, the substrate 11 may further comprise a metal layer coated on the substrate 11A. The first insulating layer 220 may be located on the substrate 11A. For example, the first insulating layer 220 may be located on a portion of the surface above the substrate ι1〇. The first insulating layer 220 may have an amorphous structure and may be formed by a thermal spraying process using the first powder. The first insulating layer 220 may have a thickness of more than about 1 〇〇 micron. Preferably, it has a thickness of about 1 〇〇 to 300 μm and the substrate 110 and the electrode layer 14 电 may be electrically insulated from each other. If the first insulating layer 220 may have a thickness of less than about 10,000 μm, the volume resistance of the first insulating layer 22 ‘ ' may be too small to electrically insulate the substrate 11 〇 from the electrode layer 140 from each other. Thus, the first insulating layer 220 can have a thickness of at least about 1 微米 microns. Further, the porosity of the first insulating layer 220 may be less than about 2%, and preferably, less than about 1%. In the present embodiment, the first insulating layer 220 may have a porosity of about 5% to about 2%, preferably about 0.5% to about 1%. Further, the first insulating layer 220 may also have a surface roughness (Ra) of about 4 to about 8 μm and thus have an adhesion strength of about 14 MPa and may also have a hardness of about 650 Hv. The second insulating layer 230 may be located on the first insulating layer 220. For example, the second insulating layer 230 may be applied only to the upper surface of the first insulating layer 220 by a thermal spraying process using the second powder, and thus the second insulating layer 230 may have a crystalline structure. The second insulating layer 220 may include ceramic. For example, ceramics may include alumina (A1203), yttrium oxide (Y203), alumina/oxidation 5 25 201120988

TW6493PA 釔(A1203/Y203)、氧化鍅(Zr〇2)、碳化鋁(A1C)、氮化鈦 (TiN)、氮化鋁(A1N)、碳化鈦(TiC)、氧化鎂(Mg〇)、氧化 鈣(CaO)、氧化鈽(Ce〇2)、氧化鈦(Ti〇2)、碳化硼(BxCy)、 氮化硼(BN)、氧化矽(Si〇2)、碳化矽(SiC)、釔鋁石榴石 (YAG)、莫來石(Mullite)、氟化鋁(A1F3)等等。上述化合 物可單獨或組合使用。 第一絕緣層230可具有大約2〇〇微米到大約4〇〇微米 之厚度’且因第二絕緣層230之孔隙率大於第一絕緣層22〇 之孔隙率,因為第二絕緣層具有結晶結構。舉例來說,第 一絕緣層230可具有大約3%到大約7%的孔隙率。第二 絕緣層230亦可具有大約3微米到大約5微米的表面粗糙 度(Ra)’具有大約l4MPa的附著強度且亦可具有大約65〇Hv 的硬度。 當本實施例可揭露第二絕緣層230在靜電卡盤200中 可位於第一絕緣層220上,第二絕緣層230可被修改為位 於基體110上’特別地,設置於基體110與第一絕緣層22〇 之間。也就是說,第一與第二絕緣層220與230可一起形 成一絕緣體並位於基體110與電極層14〇之間,且在絕緣 體中第一與第二絕緣層之堆疊順序係可交換。因此,用以 在靜電卡盤200中電性絕緣的基體11〇與電極層14〇之絕 緣體可包括多層,此多層中可堆疊一結晶結構層與一非晶 形結構層’從而改善靜電卡盤200之體積電阻與絕緣特性。 電極層140可設置於第二絕緣層230上,且產生靜電 力。舉例來說,電極層140可位於第二絕緣層23〇之上表 面的一部份上《電極層140可包括導電材料,例如是鎢(w)e 26 201120988TW6493PA 钇(A1203/Y203), yttrium oxide (Zr〇2), aluminum carbide (A1C), titanium nitride (TiN), aluminum nitride (A1N), titanium carbide (TiC), magnesium oxide (Mg〇), oxidation Calcium (CaO), cerium oxide (Ce〇2), titanium oxide (Ti〇2), boron carbide (BxCy), boron nitride (BN), yttrium oxide (Si〇2), tantalum carbide (SiC), yttrium aluminum Garnet (YAG), mullite (Mullite), aluminum fluoride (A1F3), and the like. The above compounds may be used singly or in combination. The first insulating layer 230 may have a thickness of about 2 μm to about 4 μm and because the porosity of the second insulating layer 230 is greater than the porosity of the first insulating layer 22 because the second insulating layer has a crystalline structure. . For example, the first insulating layer 230 can have a porosity of from about 3% to about 7%. The second insulating layer 230 may also have a surface roughness (Ra) of from about 3 microns to about 5 microns having an adhesion strength of about 14 MPa and may also have a hardness of about 65 〇 Hv. When the second insulating layer 230 can be located on the first insulating layer 220 in the electrostatic chuck 200, the second insulating layer 230 can be modified to be located on the substrate 110, in particular, disposed on the substrate 110 and the first Between the insulating layers 22〇. That is, the first and second insulating layers 220 and 230 may together form an insulator between the substrate 110 and the electrode layer 14A, and the stacking order of the first and second insulating layers may be exchanged in the insulator. Therefore, the insulator for electrically insulating the substrate 11 〇 and the electrode layer 14 静电 in the electrostatic chuck 200 may include a plurality of layers in which a crystalline structure layer and an amorphous structural layer may be stacked to improve the electrostatic chuck 200. Volume resistance and insulation properties. The electrode layer 140 may be disposed on the second insulating layer 230 and generate an electrostatic force. For example, the electrode layer 140 may be located on a portion of the surface above the second insulating layer 23" "The electrode layer 140 may comprise a conductive material, such as tungsten (w) e 26 201120988

^ 一介電層16〇 因llh,田1'丨Jr K w電層150與160可連續地位於電極層 w電體之功能,藉由電極層140可產生 第〜介電層150可藉由使用第一粉末之 且第二介電層160可藉由使用第二粉末 & ’因此第一介電層150可具有非晶形結 160可具有結晶結構。^ A dielectric layer 16 〇 llh, the field 1 ' 丨 Jr K w electrical layer 150 and 160 can be continuously located in the electrode layer w electrical function, the electrode layer 140 can be produced by the dielectric layer 150 can be The first powder is used and the second dielectric layer 160 can have a crystalline structure by using the second powder & 'so the first dielectric layer 150 can have an amorphous junction 160.

電卡盤200中產生靜電力的介電體以 與非曰曰形熱喷塗層8介電體的結晶層可充分地改善介電 常數用以產生靜電力,且介電體的非晶形層可改善靜電卡 ^ 20^之體積電阻與絕緣特性。靜電卡盤2〇〇在沒有任何 ;丨電吊數之減少下具有改善的體積電阻,且具有極佳的絕 緣特性。因此’靜電卡盤200可充分的避免因漏電流產生 的傷害’從而改善靜電卡盤200的電性特性。 舉例來說’連接器170可貫穿基體110、第一絕緣層 220與第二絕緣層23〇,且因此接觸電極層ι4〇。高電壓電 力可從一外部電源施加於電極層14〇。 ★ 在本實施例中的連接器17〇實質上可具有與第2圖及 第3圖說明之連接器相同之結構與組態,除了第二絕緣層 230可額外較置於基體i1G與電極層14()之間。因此, 任何關於連接器170詳細的說明將被省略。 以下’本實施例之靜電卡盤之絕緣電阻與較佳的實驗 可與傳統之靜電卡盤相比較。 實施之實驗所用之條件在傳統之靜電卡盤與本實施 例之靜電卡盤所用的是一樣的。靜電卡盤之尺寸係大約 27 201120988 TW6493PA 300φ與 45T,且絶 大約1050微米的範圍内,在介電;2 950微米到 大約_微米的條件下。施加微米到 常從大約500 *特到大約 】卡::電極層電力通 特之單位部級(unit step)。 特,藉由一大約500伏 第5圖繪示靜電卡盤之絕 之電力間的關係示意圖。 電阻/、施加於靜電卡盤 在第5圖中,本實施例之 緣電阻具有至少大約為傳卡盤1::介電體的絕 一結晶層的傳統介電體。 延大於匕括單 因為絕緣電阻的改善,從靜 分的減少’且因此在靜雷卡们盤100之漏電流可充 弧亦可避免。 +藉由漏電流產生之電 特別地,傳統靜電卡盤之絕 特到大約2500伏特之電力的雷厭:1對於從大約500伙 供之靜雷+般μ 、壓變化相對於本實施例提 盤之感。根據實驗結果,傳統靜電卡 約5530ΜΩ ’當大約_伏特之電力 二1層;絕緣電阻增加至至多大約5膽,當大 二::特之電力施加於在傳統靜電卡盤中的電極父 靜電卡盤之絕緣電阻量測為大約56娜、 約1000=65議’當電力施加於電極層之伏特分別在大 「 伏特與漏伏特。也歧說,越高之 電力的讀,在傳統靜電卡财的漏電流更多,在-樣的 28 201120988The dielectric body that generates an electrostatic force in the electric chuck 200 and the crystalline layer of the dielectric body of the non-曰曰-shaped thermal spray layer 8 can sufficiently improve the dielectric constant to generate an electrostatic force, and the amorphous layer of the dielectric body It can improve the volume resistance and insulation properties of the electrostatic card. The electrostatic chuck 2 has no reduction in volume, has an improved volume resistance, and has excellent insulation properties. Therefore, the "electrostatic chuck 200 can sufficiently avoid the damage caused by the leakage current" to improve the electrical characteristics of the electrostatic chuck 200. For example, the connector 170 can penetrate the base 110, the first insulating layer 220 and the second insulating layer 23, and thus contact the electrode layer ι4〇. High voltage power can be applied to the electrode layer 14 from an external power source. ★ The connector 17〇 in this embodiment may have substantially the same structure and configuration as the connector illustrated in FIGS. 2 and 3, except that the second insulating layer 230 may be additionally placed on the substrate i1G and the electrode layer. Between 14 (). Therefore, any detailed description about the connector 170 will be omitted. The insulation resistance of the electrostatic chuck of the present embodiment below and preferred experiments can be compared with conventional electrostatic chucks. The conditions used in the experiments carried out were the same as those used in the conventional electrostatic chucks of the present embodiment. The dimensions of the electrostatic chuck are approximately 27 201120988 TW6493PA 300φ and 45T, and in the range of approximately 1050 microns, in the dielectric; 2 950 microns to approximately _ microns. The application of micrometers is often from about 500 tex to about ** card:: the unit step of the electrode layer power. Specifically, a schematic diagram of the relationship between the power of the electrostatic chuck is shown by a picture of about 500 volts. Resistor /, applied to the electrostatic chuck In Fig. 5, the edge resistor of this embodiment has a conventional dielectric body which is at least approximately an absolute crystal layer of the chuck 1:: dielectric. The delay is greater than the singularity because the insulation resistance is improved, and the decrease from the static component is made, and therefore the leakage current of the static ram card 100 can be prevented. + Electricity generated by leakage current In particular, the traditional electrostatic chuck has a thunder of about 2,500 volts of power: 1 for a static mine + about μ from about 500 gangs, the pressure change is relative to this embodiment. The feeling of the disk. According to the experimental results, the traditional electrostatic card is about 5530 Ω Ω 'when the power of about _ volts is 2 layers; the insulation resistance is increased to at most about 5 biliary, when the sophomore:: special power is applied to the electrode electrostatic card in the traditional electrostatic chuck The insulation resistance of the disk is measured to be about 56 nautical, about 1000 = 65 volts when the power is applied to the electrode layer of volts in the large "volts and leaks volts. Also disagree, the higher the power of reading, in the traditional electrostatic card The leakage current is more, in the -like 28 201120988

TW6493PA 電阻下電流正比於電壓。因此,電力之電壓杉 靜電卡盤中因漏電流產生的電弧產傳統 高,電壓,傳統靜電卡盤之電力特=退:此’越 相反地’本實施例之靜電卡盤1〇〇絕緣 ί 到大約测伏特之電力的電壓變化相對於^ 實施例k供之靜電卡盤刚㈣感。 一 約500伏特之電力施加於電極層,靜電卡::大 阻起始大約149_;當大約测伏特之電力施== 靜電卡盤100 +的電極層,絕緣電阻大幅增加至大 24600ΜΩ,增加達起始絕緣電阻大約啊之多 二 靜電卡盤1〇〇之絕緣電阻量測為大約182_ 與㈣嶋,當電力施加於電極層之伏特分別在大約= 伏特、聊伏特與簡伏特。也就是說,儘管電力的電 壓增加’漏電流仍最小化,因為當電力之電壓增加,絕緣 電阻仍連續地增加。因此,雖然電力之電壓在靜電卡盤剛 中增加,仍可充分的避免因為漏電流產生電弧。 因此’根據本發明之實施例的靜電卡盤1〇〇或2〇〇可 包括具有堆疊之結晶層與非晶形層的多層之介電體或絕 緣體,從而增加介電體或絕緣體之絕緣電阻。因此,在靜 電卡盤1GG或2GG中的漏電流可被充分的減少,且因漏電 流造成之電弧可在靜電卡盤1〇〇或2〇〇中大幅的減少。 第6圖繪示當操作傳統之靜電卡盤與本發明構思之 靜電卡盤時,漏電流與操作時間以及氦氣洩漏與操作時間 的關係示意圖。 第6圖更清楚的顯示在同一操作時間,靜電卡盤The current under the TW6493PA resistor is proportional to the voltage. Therefore, the arc generated by the leakage current in the voltage chuck of the electric power is conventionally high, and the voltage, the power of the conventional electrostatic chuck is special: this is the opposite of the electrostatic chuck of the present embodiment. The voltage change to the power of approximately volts is relative to the electrostatic chuck just described in Example k. A power of about 500 volts is applied to the electrode layer, and the electrostatic card:: the large resistance starts at about 149_; when the voltage of the voltage is about == electrostatic chuck 100 + electrode layer, the insulation resistance is greatly increased to 24600 Ω, which increases The initial insulation resistance is about two. The insulation resistance of the two electrostatic chucks is about 182_ and (iv) 嶋, when the power is applied to the electrode layer, the volts are about volts, volts and volts. That is, although the voltage of the electric power increases, the leakage current is minimized because the insulation resistance continuously increases as the voltage of the electric power increases. Therefore, although the voltage of the electric power is increased in the electrostatic chuck, the arc due to the leakage current can be sufficiently avoided. Therefore, the electrostatic chuck 1 or 2 according to the embodiment of the present invention may include a plurality of dielectric bodies or insulators having a stacked crystal layer and an amorphous layer, thereby increasing the insulation resistance of the dielectric or insulator. Therefore, the leakage current in the electrostatic chuck 1GG or 2GG can be sufficiently reduced, and the arc due to the leakage current can be greatly reduced in the electrostatic chuck 1 or 2〇〇. Fig. 6 is a view showing the relationship between leakage current and operation time, and leakage of helium and operation time when a conventional electrostatic chuck and an electrostatic chuck of the present invention are operated. Figure 6 shows more clearly at the same operating time, electrostatic chuck

S 29 201120988S 29 201120988

TW6493PA 中的漏電流低於傳統靜電卡盤的漏電流。 ,. 基板的溫度一般因用以製造半導體裝置之施加電漿 設備的電漿源而升高,且基板之高溫會造成許多不同的程 序缺陷。因此,冷卻氣體例如氦氣係常透過貫孔提供於基 板之背面,且因此基板可冷卻至預期之溫度。在此狀況 下,貫孔通過靜電卡盤中的基體、絕緣體與/或介電體。 冷卻氣體之用量常決定地藉由靜電卡盤之吸附品質 (chuck quiality)決定。靜電卡盤之吸附品質意指靜電卡 盤對於基板之緊附程度。當靜電卡盤具有良好的吸附品 質,介於基板與靜電卡盤之間的間隙空間係充分的密封並 隔絕環境,且氦氣不會從基板與靜電卡盤之間的間隙空間 漏出。也就是說,越佳的吸附品質,就會越少的氦氣漏出 量。相反地,當靜電卡盤具有退化的吸附品質,介於基板 與靜電卡盤100之間的間隙空間便無法充足的密封並隔絕 環境,且氦氣容易會從基板與靜電卡盤之間的間隙空間漏 出。也就是說,越差的吸附品質,就會越多的氦氣漏出量。 第6圖的實驗結果顯示靜電卡盤100中的氦氣漏出的 量遠小於傳統靜電卡盤,且結果顯示靜電卡盤100的吸附 品質可遠優於傳統的靜電卡盤。此外,傳統靜電卡盤中氣 氣的量隨著操作時間的經過係跳動的,而靜電卡盤100中 氦氣的量隨著操作時間的經過係一致的。也就是說,氦氣 漏出的量在靜電卡盤100遠比傳統靜電卡盤要一致。 因此,第5圖與第6圖中的實驗結果顯示在靜電卡盤 100中漏電流與氦氣漏出皆遠較傳統靜電卡盤減少,此顯 示靜電卡盤100之吸附品質可遠優於傳統靜電卡盤之吸附The leakage current in the TW6493PA is lower than the leakage current of the conventional electrostatic chuck. The temperature of the substrate is generally increased by the plasma source used to fabricate the semiconductor device to apply the plasma device, and the high temperature of the substrate causes many different process defects. Therefore, a cooling gas such as helium gas is often supplied through the through holes to the back surface of the substrate, and thus the substrate can be cooled to a desired temperature. In this case, the through holes pass through the substrate, insulator and/or dielectric in the electrostatic chuck. The amount of cooling gas is often determined by the chuck quiality of the electrostatic chuck. The adsorption quality of the electrostatic chuck means the degree of adhesion of the electrostatic chuck to the substrate. When the electrostatic chuck has good adsorption quality, the gap space between the substrate and the electrostatic chuck is sufficiently sealed and the environment is isolated, and the helium gas does not leak from the gap space between the substrate and the electrostatic chuck. In other words, the better the adsorption quality, the less the amount of helium leaks. Conversely, when the electrostatic chuck has degraded adsorption quality, the gap space between the substrate and the electrostatic chuck 100 cannot be sufficiently sealed and insulated from the environment, and the helium gas is likely to be separated from the gap between the substrate and the electrostatic chuck. Space leaks out. That is to say, the worse the adsorption quality, the more the amount of helium leaks. The experimental results of Fig. 6 show that the amount of helium leakage in the electrostatic chuck 100 is much smaller than that of the conventional electrostatic chuck, and the results show that the adsorption quality of the electrostatic chuck 100 can be much superior to that of the conventional electrostatic chuck. In addition, the amount of gas in the conventional electrostatic chuck jumps with the passage of the operation time, and the amount of helium in the electrostatic chuck 100 is consistent with the passage of the operation time. That is to say, the amount of helium leakage is much higher in the electrostatic chuck 100 than in the conventional electrostatic chuck. Therefore, the experimental results in FIGS. 5 and 6 show that the leakage current and the helium gas leakage in the electrostatic chuck 100 are far less than those of the conventional electrostatic chuck, which shows that the adsorption quality of the electrostatic chuck 100 can be far superior to the conventional static electricity. Chuck adsorption

201120988 IW6493PA 品:,。更‘進-步15圖與第6圖中的 電卡盤_的吸附品f之均勻性遠優於傳統靜電2 第7Α圖繪示包括第i圖盥篦 电卞盜 知雷詩番祕m ^與第圖中之靜電卡盤的施 加電漿裝置的侧鱗示意mB輯 靜電卡盤的施加電裝裝置的蝕刻量示意圖。栝傳統之 具有靜電卡盤100之第一雷丨壯啦 〈弟電漿蝕刻裝置與具有傳統 靜電卡盤之第m刻裝置設定相同的程序條件。基板 分別在第一與第二電漿蝕刻裝置中操作。接著,各基板的 蝕刻面積區分成多個矩陣,且基板的每個矩陣的蝕刻量被 量測並繪製於第7A與7B圖。電漿空間(plasna space)之 高度大約120釐米(mm)且内部壓力大約250 mTorr於各第 一與第二電漿餘刻裝置。電力大約5000瓦施加於各電漿 蝕刻裝置以產生電漿蝕刻源。此外,六氟化硫(SF6)氣體 大約400mTorr、氧氣大約7000mTorr分別提供於電漿钱刻 裝置兩者作為氣體源用於電漿蝕刻程序。 第一電漿蝕刻裝置的蝕刻量。 表一 1 2 3 4 5 1 12308 12975 13450 13667 12831 2 12434 13071 13942 13887 14205 3 12563 13219 13675 13950 14085 4 12332 13212 13788 13634 13809 5 12448 13004 13242 13510 13016 平均银刻量 钱刻程序的均勻性(Uniformity) λ 31 201120988201120988 IW6493PA Product:,. The uniformity of the adsorbent f of the 'in step 15 and the electric chuck _ in the figure 6 is much better than the traditional static electricity. The 7th drawing includes the i-th image, the electric thief, the thief, the secret m ^ The side scale of the electrostatic plasma application device with the electrostatic chuck in the figure shows a schematic diagram of the etching amount of the application electric device of the mB electrostatic chuck.栝Traditional The first thunder of the electrostatic chuck 100 The young plasma etching device has the same program conditions as the mth device with a conventional electrostatic chuck. The substrates are operated in first and second plasma etching apparatus, respectively. Next, the etching area of each substrate is divided into a plurality of matrices, and the etching amount of each matrix of the substrate is measured and plotted in Figs. 7A and 7B. The plasna space has a height of about 120 cm (mm) and an internal pressure of about 250 mTorr for each of the first and second plasma remnant devices. Approximately 5,000 watts of power is applied to each of the plasma etching devices to produce a plasma etch source. Further, sulfur hexafluoride (SF6) gas of about 400 mTorr and oxygen of about 7000 mTorr are respectively supplied to the plasma etching apparatus as a gas source for the plasma etching process. The amount of etching of the first plasma etching apparatus. Table 1 1 3 3 4 5 1 12308 12975 13450 13667 12831 2 12434 13071 13942 13887 14205 3 12563 13219 13675 13950 14085 4 12332 13212 13788 13634 13809 5 12448 13004 13242 13510 13016 The uniformity of the average silver engraving program (Uniformity) λ 31 201120988

TW6493PATW6493PA

13290.7 7.15% J 第二電漿蝕刻裝置的蝕刻量。 表二 1 2 3 4 5 1 10261 11557 12407 11961 11856 2 8851 9824 10942 9505 11956 3 10254 10077 10649 10717 12766 4 8729 9047 10450 8953 11930 5 10269 11262 12165 11694 12032 平均银刻量 蚀刻程序的均勻性(Uni formi ty) 10804.7 18.8% 蝕刻程序的均勻性以方程式(1)計算。 钱刻程序的均勻性=(最大银刻量-最小钱刻量) /(最大钱刻量+最小钮刻量)—方程式(1)。 上述表一與表二之實驗結果直觀的繪製於第7Α與第 7Β圖。 請參照第7Α圖與第7Β圖,在第一電漿蝕刻裝置中的 平均蝕刻量大約13290.7,而在第二電漿蝕刻裝置中的平 均蝕刻量大約10840. 7。因此,包括靜電卡盤100之第一 電漿蝕刻裝置的實驗結果顯示比包括傳統靜電卡盤之第 二電漿蝕刻裝置有優越的表現。 此外,在第二電漿蝕刻裝置中蝕刻程序的均勻性大約 18.8%,而在第一電漿蝕刻裝置中蝕刻程序的均勻性大約 ««% 32 20112098813290.7 7.15% J Etching amount of the second plasma etching apparatus. Table 2 1 2 3 4 5 1 10261 11557 12407 11961 11856 2 8851 9824 10942 9505 11956 3 10254 10077 10649 10717 12766 4 8729 9047 10450 8953 11930 5 10269 11262 12165 11694 12032 Uniformity of the average silver engraving etching procedure (Uni forty ty ) 10804.7 18.8% The uniformity of the etching procedure is calculated by equation (1). The uniformity of the money engraving program = (maximum silver engraving - minimum money engraving) / (maximum amount of money + minimum button engraving) - equation (1). The experimental results in Tables 1 and 2 above are visually drawn in Figures 7 and 7. Referring to Figures 7 and 7, the average etching amount in the first plasma etching apparatus is about 13290.7, and the average etching amount in the second plasma etching apparatus is about 10840. Therefore, the experimental results of the first plasma etching apparatus including the electrostatic chuck 100 show superior performance to the second plasma etching apparatus including the conventional electrostatic chuck. Furthermore, the uniformity of the etching process in the second plasma etching apparatus is about 18.8%, and the uniformity of the etching procedure in the first plasma etching apparatus is about ««% 32 201120988

i W04yjFA 7. 15% 〇.因此,包括靜電卡盤100之第一電漿鞋刻裝置的 實驗結果亦顯示比包括傳統靜電卡盤之第二電漿餘刻裝 置有優越的#刻均勻性。 因此’在電漿蝕刻裝置中藉由使用靜電卡盤基板可被 蝕刻的更有均勻性’從而改善蝕刻程序的可靠性。 以下’用於非晶形熱喷塗層之第一粉末將被詳細說 明。 第8圖繪示用以形成第1圖中之非晶形熱喷塗層的第 一粉末之分子結構的照片。 請參照第8圖,第一粉末可從第一與第二聚液之混合 物得到。以下’漿液的量可基於重量百分比描述。 第一漿液可包括多個氧化釔(Y203)粒子、第一分散 劑、第一結合劑與第一溶劑。 氧化紀粒子可具有大約0. 〇 1微米到大約2微米的直 徑。當氧化釔粒子具有之直徑小於大約〇.〇丨微米,第一 粉末的平均直徑太小以致於第一粉末之粒子具有粗粒 (coarse-grained)粒子’難以具有球形。相反地,當氧化 釔粒子具有之直徑大於大約2微米’氧化釔粒子的平均直 徑太大以致於結塊’且因此第一粉末之粗粒粒子之平均直 徑極度地增加。 第一分散劑可在第一襞液中均勻分散氧化紀粒子。舉 例來說’第一分散劑可包括基本材料。基本材料例如是可 包括碳基(carboxy卜based)材料、酯基(ester_based)材 料、氨基材料(amide-based)等。此些可單獨或組合使用。 第一分散劑之pH值可為大約1〇到大約丨2,更佳地,大約 33i W04yjFA 7. 15% 〇. Therefore, the experimental results of the first plasma shoe engraving device including the electrostatic chuck 100 also show superior uniformity than the second plasma remnant device including the conventional electrostatic chuck. Therefore, the reliability of the etching process can be improved by using a more uniformity in which the electrostatic chuck substrate can be etched in the plasma etching apparatus. The following 'first powder for the amorphous thermal spray coating layer' will be described in detail. Fig. 8 is a photograph showing the molecular structure of the first powder used to form the amorphous thermal sprayed layer of Fig. 1. Referring to Figure 8, the first powder can be obtained from a mixture of the first and second liquids. The amount of "slurry" below may be described on a weight percent basis. The first slurry may include a plurality of yttria (Y203) particles, a first dispersant, a first binder, and a first solvent. The oxidized particles may have a diameter of from about 0.1 to about 2 microns. When the cerium oxide particles have a diameter of less than about 〇.〇丨micrometer, the average diameter of the first powder is too small that the particles of the first powder have coarse-grained particles, which are difficult to have a spherical shape. Conversely, when the cerium oxide particles have a diameter greater than about 2 microns, the average diameter of the cerium oxide particles is too large to cause agglomeration' and thus the average diameter of the coarse particles of the first powder is extremely increased. The first dispersant uniformly disperses the oxidized particles in the first mash. For example, the first dispersant may comprise a base material. The base material may include, for example, a carboxy-based material, an ester-based material, an amide-based, or the like. These can be used singly or in combination. The pH of the first dispersant may range from about 1 Torr to about 丨2, and more preferably, about 33

201120988 TW6493PA 為10 :第★分散劑可包括基本材料,氧化釔粒子具有負 —漿液中之第一分散劑的量可在大約〇.3% 大於1約的範圍。當第—分散劑的量在第—漿液中可 process)形成球形“日/㈣乾噴務程序(的聊町 ^ ^ ^才反地,當第一分散劑的量在第一漿 第入約0.3〇/〇’第一衆液可具有過度的黏度。 -锻液财在第—㈣+化學鍵結氧化絲子。第 圍:第結合,量可在大約2%到大約3%的範 紀粒;難以; '劑的S在第一漿液中可小於大約2%,氧化 結且因此第-粉末難以形成球形,當第 ;結:=夏大於大約3%,第一裝液可具有過度的黏度。 =其^劑可包括乙豨為基礎(vinylbased)的材料、丙 烯為基礎(acryl-based)的材料等。 第漿液可包括第一溶劑的剩餘量(residual 氧化峰子、第-分㈣與第—結合劑溶解於 八中。當第-結合劑可包括一乙烯為基礎的材料,第一溶 劑可包括有機底材料,例如是乙醇。相反地,當第一结合 劑可包括-丙稀為基礎的材料,第—溶劑可包括水相底材 料°乙烯為基礎的㈣可包括乙烯醋酸乙㈣㈣价阳 vinyl acetate)樹酯、 聚氣乙烯(polyvinyl chloride)樹酯、聚乙烯吡咯烷酮 (polyvinyl pyrr〇lidine)、聚乙烯醇樹脂(p〇lyvinyi alcohol)樹酯、聚乙烯醇縮丁醛(p〇lyvinyl ^七汀“)、 聚醋酸乙烯酯(polyvinyi acetate)、聚氯乙烯醚 (polyvinyl ether)等。此些可單獨或組合使用。此外, 34 201120988201120988 TW6493PA is 10: The second dispersant may comprise a base material, and the amount of the first dispersant in the negative-slurry of the cerium oxide particles may range from about 3%.3% to more than about 1. When the amount of the first-dispersant can be processed in the first slurry, a spherical "day/(four) dry jetting procedure is formed (the Liaomachi ^ ^ ^ is reversed, when the amount of the first dispersant is in the first slurry) 0.3〇/〇' The first public liquid may have excessive viscosity. - Forging liquid is in the first - (four) + chemical bonding oxide filament. The first: the first combination, the amount can be from about 2% to about 3% of the granules Difficult; 'The S of the agent may be less than about 2% in the first slurry, the oxidized knot and thus the first powder is difficult to form a sphere, when the first; the knot: = summer is greater than about 3%, the first liquid may have an excessive viscosity The agent may include a vinyl-based material, an acryl-based material, etc. The first slurry may include a residual amount of the first solvent (residual oxidation peak, first-minute (four) and - the binder is dissolved in 8. When the first binder can comprise an ethylene based material, the first solvent can comprise an organic base material, such as ethanol. Conversely, when the first binder can comprise - propylene based Material, the first solvent can include the aqueous phase bottom material ° ethylene based (four) can include ethylene vinyl acetate (four) (4) valence vinyl acetate) resin, polyvinyl chloride resin, polyvinyl pyrr〇lidine, polyvinyl alcohol resin (p〇lyvinyi alcohol) resin, polyvinyl butyral (p) 〇lyvinyl ^ statin "), polyvinyi acetate, polyvinyl ether, etc. These may be used singly or in combination. In addition, 34 201120988

1 W5493FA 丙稀·為基礎的材料可包括異丁稀酸醋(methacry 1)樹醋、 聚甲基丙烯酸曱酯(poly methyl methacrylate)樹酯、聚 丙烯腈(poly acrylonitrile)樹酯、丙烯酸正丁酯(normai butylacryl)樹酯、聚苯乙烯聚曱基丙烯酸曱酯 (polystyrene polymethyl methacryl)樹酯等。此些可單 獨或組合使用。 第一漿液可藉由球磨機(ball mill)形成。在第一漿 液中乾組成的量可正比於第一分散劑的量。當乾組成的量 在第一漿液中可小於大約20%,在第一漿液中氧化釔粒子 很缺乏以使第一粉末之粗粒粒子之直徑極小。相反的,當 乾組成的量在第一漿液中可大於大約30%,在第一漿液可 具有高黏度使得難以正確控制製造第一粉末的程序,且第 一粉末可形成非球形。因此,第一漿液中的乾組成之量可 在大約20%到大約30%的範圍。 第二漿液可包括多個氧化銘粒子、第二分散劑、第二 結合劑與第二溶劑。 氧化铭粒子可具有大約0. 5微米到大約2微米的直 徑。當氧化紹粒子具有之直徑小於大約〇. 5微米,第一粉 末的平均直徑太小且第一粉末難以形成球形粗粒粒子。相 反地’當氧化鋁粒子具有之直徑大於大約2微米,氧化鋁 粒子的平均直徑太大以致於氧化鋁結塊,且因此第一粉末 之粗粒粒子之平均直徑極度地增加。 第二分散劑可在第二漿液中均勻分散氧化鋁粒子。舉 例來說’第二分散劑可包括酸材料(acid materials)。基 本材料例如疋可包括碳基(carb〇Xyl-baSe(J)材料、酯基1 W5493FA propylene-based materials may include methacry 1 vinegar, polymethyl methacrylate resin, polyacrylonitrile resin, butyl acrylate Normai butylacryl resin, polystyrene polymethyl methacryl resin, and the like. These can be used individually or in combination. The first slurry can be formed by a ball mill. The amount of dry composition in the first slurry can be proportional to the amount of the first dispersant. When the amount of the dry composition is less than about 20% in the first slurry, the cerium oxide particles are scarce in the first slurry so that the diameter of the coarse particles of the first powder is extremely small. Conversely, when the amount of dry composition can be greater than about 30% in the first slurry, the first slurry can have a high viscosity such that it is difficult to properly control the procedure for making the first powder, and the first powder can form a non-spherical shape. Thus, the amount of dry composition in the first slurry can range from about 20% to about 30%. The second slurry may include a plurality of oxidized particles, a second dispersant, a second binder, and a second solvent. The oxidized particles may have a diameter of from about 0.5 microns to about 2 microns. When the oxidized particles have a diameter of less than about 0.5 μm, the average diameter of the first powder is too small and the first powder is difficult to form spherical coarse particles. In contrast, when the alumina particles have a diameter larger than about 2 μm, the average diameter of the alumina particles is so large that the alumina agglomerates, and thus the average diameter of the coarse particles of the first powder is extremely increased. The second dispersant can uniformly disperse the alumina particles in the second slurry. For example, the second dispersant may include acid materials. A basic material such as ruthenium may include a carbon-based (carb〇Xyl-baSe(J) material, an ester group)

S 35 201120988S 35 201120988

TW6493PA (ester-based)材料、氨基材料(amide_based)等。此些可 單獨或組合使用。第二分散劑之pH值可為大約2到大約 4,更佳地,大約為2^當第二分散劑可包括酸材料,氧化 鋁粒子具有正表面電荷。第二漿液中之第二分散劑的量可 在大約0.3%到大約2%的範圍。當第二分散劑的量在第 一漿液中可大於大約0· 5%,第二漿液難以藉由乾射出程序 (dry injection process)形成球形。相反地,當第二分 散劑的量可小於大約0.3%,第二漿液可具有過度的黏度。 第二結合劑可在第二漿液中化學鍵結氧化鋁粒子。第 一漿液中之第二結合劑的量可在大約2 %到大約3 %的範 圍。當第·一結合劑的量在第二聚液中可小於大約2%,氧化 鋁粒子難以彼此鍵結且因此第一粉末難以形成球形,當第 二結合劑的量大於大約3% ’第二漿液可具有過度的黏度。 弟一結合劑實質上可具有與第一結合劑相同的結構與組 第一漿液可包括第二溶劑的剩餘量(residual amount),氧化鋁粒子、第二分散劑與第二結合劑溶解於 其中。第一溶劑可實質上可具有與第一溶劑相同之結構與 組態,且因此更進一步關於第二漿液的詳細說明將會省 略0 第二漿液可藉由球磨機(ball mill)形成。在第二聚 液中乾組成的量可正比於第二分散劑的量。當乾組成的量 在第二漿液中可小於大約20%,在第二漿液中氧化鋁粒子 ί艮缺乏以使第一粉末之粗粒粒子之尺寸可極小。相反的, 當乾組成的量在第二漿液中可大於大約30%,在第二聚液 36TW6493PA (ester-based) material, amino material (amide_based), etc. These can be used individually or in combination. The second dispersant may have a pH of from about 2 to about 4, and more preferably, about 2, when the second dispersant may include an acid material, and the aluminum oxide particles have a positive surface charge. The amount of the second dispersant in the second slurry may range from about 0.3% to about 2%. When the amount of the second dispersant may be greater than about 0.5% in the first slurry, it is difficult for the second slurry to form a spherical shape by a dry injection process. Conversely, when the amount of the second dispersant can be less than about 0.3%, the second slurry can have an excessive viscosity. The second binder can chemically bond the alumina particles in the second slurry. The amount of the second binder in the first slurry may range from about 2% to about 3%. When the amount of the first binder is less than about 2% in the second liquid, the alumina particles are difficult to bond to each other and thus the first powder is difficult to form a sphere, when the amount of the second binder is greater than about 3% 'second The slurry can have an excessive viscosity. The binder-substrate may have substantially the same structure and group as the first binder, and the first slurry may include a residual amount of the second solvent in which the alumina particles, the second dispersant and the second binder are dissolved. . The first solvent may have substantially the same structure and configuration as the first solvent, and thus the further description of the second slurry will be omitted. The second slurry may be formed by a ball mill. The amount of dry composition in the second polymer can be proportional to the amount of the second dispersant. When the amount of the dry composition is less than about 20% in the second slurry, the alumina particles are lacking in the second slurry so that the size of the coarse particles of the first powder can be extremely small. Conversely, when the amount of dry composition can be greater than about 30% in the second slurry, in the second liquid 36

201120988 TW6493PA 可具.有高,黏度使得難以正確控制製造第一粉 第一粉末可形成非球形。因此,第二漿液中的,,序,且 可在大約20%到大約30%的範圍。 、t組成之量 第一與第二漿液之混合物中氧化釔與氧 比大約1 : 9到大約4 : 6的範圍,在第一粉末中、的重量 粒子可多於氧化釔粒子。因此,氧化鋁之材料特性,化鋁 使用第一粉末之熱喷塗層中,且因此使用第一於=可主導 塗層具有高機械強度且低吸附強度之特性。相1地之 一與第二漿液之混合物中氧化釔與氧化鋁的重量比二= 8 : 2到大約9 : 1的範圍,在第一粉末中,氧化釔粒子^ 多於氧化鋁粒子。因此,氧化釔之材料特性可主導使用第 一粉末之熱喷塗層中’且因此使用第一粉末之熱喷塗層具 有低機械強度且低吸附強度之特性。因此,第一與第二聚 液之混合物中氧化釔與氧化鋁的重量比大約5: 5到大約 7 : 3的範圍,更佳地,大約5 : 5。 第一粉末可包括粗粒粒子,粗粒粒子可從第一與第二 漿液的混合物取得’粗粒粒子平均直徑大約20微米到大 約60微米’更佳地’大約30微米到大約4〇微米。當第 一粉末的平均直徑可小於大約20微米,第一粉末的尺寸 太小以使第一粉末難以在施加電漿裝置中達到一物體 (article) ^相反地’當第一粉末的平均直徑可大於大約 60微米,第一粉末的尺寸太大以使第一粉末彼此結塊且因 此第一粉末難以均勻的在施加電漿裝置中灑於物體上。 第9圖繪示用以形成第8圖中的第一粉末的方法之單 元程序步驟的流程圖。 201120988201120988 TW6493PA can be made with high viscosity, making it difficult to properly control the manufacture of the first powder. The first powder can form a non-spherical shape. Thus, the order in the second slurry can range from about 20% to about 30%. The amount of t composition The mixture of the first and second slurries has a cerium oxide to oxygen ratio of from about 1:9 to about 4:6, and the weight of the particles in the first powder may be more than that of the cerium oxide particles. Therefore, the material properties of alumina, the aluminum is used in the thermal sprayed layer of the first powder, and thus the first to be dominant coating has the characteristics of high mechanical strength and low adsorption strength. The weight ratio of cerium oxide to aluminum oxide in the mixture of the first phase and the second slurry is in the range of 2 = 8:2 to about 9:1, and in the first powder, the cerium oxide particles are more than the alumina particles. Therefore, the material properties of cerium oxide can dominate the use of the thermal sprayed layer of the first powder and thus the thermal spray coating using the first powder has the characteristics of low mechanical strength and low adsorption strength. Therefore, the weight ratio of cerium oxide to aluminum oxide in the mixture of the first and second liquids is in the range of about 5:5 to about 7:3, more preferably about 5:5. The first powder may comprise coarse particles, and the coarse particles may be obtained from a mixture of the first and second slurries' coarse particles having an average diameter of from about 20 microns to about 60 microns, more preferably from about 30 microns to about 4 microns. When the average diameter of the first powder may be less than about 20 microns, the size of the first powder is too small to make it difficult for the first powder to reach an object in the application of the plasma device. Conversely, when the average diameter of the first powder is Above about 60 microns, the size of the first powder is too large to cause the first powders to agglomerate with one another and thus the first powder is difficult to evenly sprinkle onto the object in the application of the plasma device. Figure 9 is a flow chart showing the unit procedure steps of the method for forming the first powder in Figure 8. 201120988

TW6493PA 請參照第9圖,第一漿液可藉由球磨機以形成第.一粉 末(步驟S110)。第一漿液可包括多個氧化釔粒子,其具有 大約0.01微米到大約2微米的直徑,第一分散劑用以均 勻分散氧化釔粒子,第一結合劑用以結合氧化釔粒子,且 在氧化紀粒子、第一分散劑與第一結合劑溶解於第一溶劑 中。如果氧化記粒子可充足的彼此鍵結,第一結合劑可不 包括在第一漿液中,此為該領域具有通常知識者所知。 第10圖繪示用以形成第9圖中的第一漿液之方法的 流程圖。 請參照第10圖,準備第一溶劑(步驟S111)且氧化釔 粒子具有大約0. 01微米到大約2微米之直徑可提供至第 一溶劑(步驟S112)。之後,第一分散劑可提供至第一溶 劑,在第一漿液中第一分散劑的量之濃度大約為0.3%到 大約0. 5%的範圍(步驟S113),且第一結合劑可提供至第 一溶劑,在第一漿液中第一結合劑的量之濃度大約為2% 到大約3%的範圍(步驟S114)。氧化釔粒子可因第一分散 劑具有負表面電荷。氧化釔粒子的提供順序,第一分散劑 與第一結合劑提供至第一溶劑的順序可交換,此為該領域 具有通常知識者所知。 之後,氧化釔粒子、第一分散劑與第一結合劑可藉由 球磨機在第一溶劑中與另一混合,從而形成第一漿液。 請再次參照第9圖,第二漿液可藉由球磨機形成。(步 驟 S120) 第二漿液可包括多個氧化鋁粒子,其具有大約0. 5微 米到大約2微米的直徑,第二分散劑用以均勻分散氧化鋁 38 201120988 TW6493PA 粒子,’宽1、/ t a n〜結合劑用以結合氧化鋁粒子,且氧化鋁粒子、 散鄞]與第一結合劑溶解於第二溶劑中。如果氧化銘 粒子可充足的彼此鍵結,第二結合劑可不包括在第二漿液 中’此為韃領域具有通常知識者所知。 芳程| U圖繪示用以形成第9圖中的第二漿液之方法的 :參照第11圖,準備第二溶劑(步驟8121)且氧化鋁 =子八有大約〇· 5微米到大約2微米之直徑可提供至第二 +劑C一步綠S122)。之後,第二分散劑可提供至第二溶劑, 1第^液中第二分散劑的量之濃度大約為0.3%到大約 %的範圈(步驟S123),且第二結合劑可提供至第二溶 齊 |J,τξρ 〜 么、〇 〜^聚液中第一結合劑的量之濃度大約為2 %到大 勺3%的範圍(步驟S124)。氧化鋁粒子可因第二分散劑具 有正表面電荷。氧化絲子的提供順序,第二分散劑與第 、、Ό 5劑提供至第二溶劑的順序可交換,此為該領域具有 通常知識者所知。 接著,氧化鋁粒子、第二分散劑與第二結合劑可藉由 球磨機在第二溶劑中與另一混合,從而形成第二漿液。 咕再次參照第9圖,第一漿液與第二漿液彼此混合, 氧化釔與氧化鋁的重量比大約7 : 3到大約5 : 5,也就是 說1 : 0.4到1,從而形成漿液混合物。(步驟sl3〇)。 第12圖繪示用以形成第9圖中的漿液混合物之方法 的示意圖。 清參照第12圖,氧化紀粒子具有負表面電荷可藉由靜 電力吸引具有正表面電荷氧化鋁粒子,從而結合氧化釔粒 201120988TW6493PA Referring to Fig. 9, the first slurry can be formed by a ball mill to form a first powder (step S110). The first slurry may comprise a plurality of cerium oxide particles having a diameter of from about 0.01 micron to about 2 microns, the first dispersing agent for uniformly dispersing the cerium oxide particles, the first binding agent for binding the cerium oxide particles, and The particles, the first dispersant and the first binder are dissolved in the first solvent. If the oxidized particles are sufficiently bonded to each other, the first binder may not be included in the first slurry, as is known in the art. Figure 10 is a flow chart showing the method for forming the first slurry in Figure 9. Referring to Fig. 10, a first solvent is prepared (step S111) and the cerium oxide particles having a diameter of about 0.01 μm to about 2 μm are supplied to the first solvent (step S112). Thereafter, the first dispersant may be supplied to the first solvent, and the concentration of the first dispersant in the first slurry is in a range of about 0.3% to about 0.5% (step S113), and the first binder may provide To the first solvent, the concentration of the first binder in the first slurry is in the range of about 2% to about 3% (step S114). The cerium oxide particles may have a negative surface charge due to the first dispersant. The order in which the cerium oxide particles are supplied, the order in which the first dispersing agent is supplied to the first solvent is interchangeable, as is known in the art. Thereafter, the cerium oxide particles, the first dispersing agent and the first binder may be mixed with the other in a first solvent by a ball mill to form a first slurry. Referring again to Figure 9, the second slurry can be formed by a ball mill. (Step S120) The second slurry may include a plurality of alumina particles having a diameter of about 0.5 μm to about 2 μm, and a second dispersant for uniformly dispersing the alumina 38 201120988 TW6493PA particles, 'width 1, / tan The ~ binder is used to bind the alumina particles, and the alumina particles, the bulk metal, and the first binder are dissolved in the second solvent. If the oxidized particles are sufficiently bonded to each other, the second binder may not be included in the second slurry, which is known to those of ordinary skill in the art.芳程| U diagram shows the method for forming the second slurry in Fig. 9: Referring to Fig. 11, preparing a second solvent (step 8121) and alumina = sub-eight has about 〇 5 μm to about 2 The diameter of the micron can be supplied to the second + agent C step green S122). Thereafter, the second dispersant may be supplied to the second solvent, and the concentration of the second dispersant in the first liquid is about 0.3% to about % of the range (step S123), and the second binder may be supplied to the first The concentration of the first binding agent in the poly-liquid is approximately in the range of 2% to 3% (step S124). The alumina particles may have a positive surface charge due to the second dispersant. The order in which the oxidized filaments are supplied, the order in which the second dispersant is supplied to the second solvent, and the second agent are exchangeable, as is well known in the art. Next, the alumina particles, the second dispersing agent and the second binder may be mixed with the other by a ball mill in a second solvent to form a second slurry. Referring again to Fig. 9, the first slurry and the second slurry are mixed with each other, and the weight ratio of cerium oxide to aluminum oxide is about 7:3 to about 5:5, that is, 1:0.4 to 1, thereby forming a slurry mixture. (Step sl3〇). Fig. 12 is a schematic view showing a method for forming the slurry mixture in Fig. 9. Referring to Figure 12, the oxidized particles have a negative surface charge that can be attracted to the oxidized cerium particles by electrostatically attracting alumina particles with positive surface charge.

TW6493PA 子與氧化鋁粒子彼此》 .. 請再次參照第9圖,漿液混合物可藉由乾噴霧程序形 成具有氧化記粒子與氧化銘粒子的粗粒粒子(步驟 S14 0 )。漿液混合物可在高溫下喷灑,舉例來說,大約8 〇 〇。c 到大約1500°C之噴霧室(Spray chamber)。在高溫下喷麗 可增加第一粉末的粗粒粒子之硬度。 舉例來說’漿液混合物可包括具有氧化釔與氧化鋁之 粗粒粒子且可具有大約20微米到大約60微米的平均粒子 直徑。 步驟S110到步驟S140之單元步驟用以形成於第9圖 中顯示之第一粉末,可執行於常壓空氣下,氫氣、氧氣、 氮氣以及混合物。 之後,根據本實施例製造靜電卡盤之方法將被詳細說 明。第4圖中的靜電卡盤包括第3圖中之連接器可為本文 中之關於製造靜電卡盤之較佳描述。 第13圖繪示依照本發明之一實施例之製造靜電卡盤 的方法之單元程序步驟的流程圖。 明參照第3、4與14圖,準備基體11〇(步驟821〇) 用以製造第4圖中的靜電卡盤2〇(^基體11〇彳具有平板 或圓柱形狀。基體110可包括貫孔,連接器17〇可穿透貫 接著,可準備連接器17〇(步驟S22〇),獨立於基體 110。準備之連接器170之組態可為接頭177被包覆於絕 緣體178且第一緩衝179a可設置於絕緣體178之上部上。 之後連接器170可插入於基體HQ之貫孔(步驟$230) 201120988 i w〇4yjm 亡基體11G與連接^ 170可在貫孔中彼此自我對準。接 著第一緩衝179b可形成在第一絕緣層22〇與絕緣體丄78 之間的第-邊緣區域,且在第一絕緣層22〇與基體ιι〇之 間的第二邊緣區域。 然後,黏合層115可形成於基體11〇之上表面上,除 了連接器170與第二緩衝(步驟S24〇)。黏合層115 可具有在基體110與第一絕緣層22〇之間的黏合功能,且 可包括金屬合金例如是鎳鋁合金。 第一絕緣層220可形成於基體11〇上且可塗佈黏合層 115(步驟S250)。舉例來說,第一絕緣層22〇可藉由使用 第一粉末之熱喷塗程序形成,且因此非晶形熱喷塗層可形 成於基體110上作為第一絕緣層220。第一絕緣層220可 形成於基體110之上表面之整個表面或一部份上,其上可 塗佈黏合層115。第一粉末可包括與第8與12圖所說明之 相同結構與組態,因此任何進一步的在第一粉末上的詳細 說明將被省略。熱喷塗程序可包括大氣電漿喷霧 (atmospherically plasma spray)塗佈程序、快速的氧氣 燃料的熱喷塗程序(rapid oxygen-fuel thermal spray coating process)、真空電漿喷霧塗佈程序(vacuum plasma spray coating process)以及動力喷霧塗佈程序 (kinetic spray coating process)。 然後’第二絕緣層230可藉由使用第二粉末熱喷塗程 序形成於第一絕緣層220上(步驟S260)。因此,第二絕緣 層230可形成於第一絕緣層220的整個表面,且結晶熱喷 塗層可形成於第一絕緣層220上作為第二絕緣層230。舉 201120988TW6493PA Sub-alumina and alumina particles "." Referring again to Figure 9, the slurry mixture can be formed into coarse particles having oxidized particles and oxidized particles by a dry spray process (step S14 0 ). The slurry mixture can be sprayed at elevated temperatures, for example, about 8 〇. c to a spray chamber of approximately 1500 °C. Spraying at a high temperature increases the hardness of the coarse particles of the first powder. For example, the slurry mixture can include coarse particles having cerium oxide and aluminum oxide and can have an average particle diameter of from about 20 microns to about 60 microns. The unit steps of steps S110 through S140 are used to form the first powder shown in Figure 9, which can be carried out under atmospheric air, hydrogen, oxygen, nitrogen, and a mixture. Hereinafter, a method of manufacturing an electrostatic chuck according to the present embodiment will be described in detail. The electrostatic chuck of Fig. 4, including the connector of Fig. 3, can be a preferred description herein for making an electrostatic chuck. Figure 13 is a flow chart showing the steps of a unit procedure of a method of manufacturing an electrostatic chuck in accordance with an embodiment of the present invention. Referring to Figures 3, 4 and 14, the substrate 11〇 is prepared (step 821〇) for fabricating the electrostatic chuck 2 of Figure 4 (the base 11 has a flat or cylindrical shape. The base 110 may include a through hole) The connector 17 can be penetrated and the connector 17 can be prepared (step S22A), independent of the base 110. The configuration of the prepared connector 170 can be such that the connector 177 is wrapped around the insulator 178 and the first buffer 179a may be disposed on the upper portion of the insulator 178. Thereafter, the connector 170 may be inserted into the through hole of the base HQ (step $230) 201120988 iw〇4yjm The dead base 11G and the connection ^ 170 may self-align with each other in the through hole. The buffer 179b may be formed in a first edge region between the first insulating layer 22 and the insulator 78, and in a second edge region between the first insulating layer 22 and the substrate ιι. Then, the adhesive layer 115 may be formed. On the upper surface of the substrate 11 , except for the connector 170 and the second buffer (step S24 〇), the adhesive layer 115 may have an adhesive function between the substrate 110 and the first insulating layer 22 , and may include a metal alloy such as Is a nickel aluminum alloy. The first insulating layer 220 can be formed on The body 11 is coated with an adhesive layer 115 (step S250). For example, the first insulating layer 22 can be formed by a thermal spraying process using the first powder, and thus the amorphous thermal spray layer can be formed. As the first insulating layer 220 on the substrate 110, the first insulating layer 220 may be formed on the entire surface or a portion of the upper surface of the substrate 110, and the adhesive layer 115 may be coated thereon. The first powder may be included with the eighth The same structure and configuration as explained in Fig. 12, therefore any further detailed description on the first powder will be omitted. The thermal spray procedure may include an atmospherically plasma spray coating procedure, fast A rapid oxygen-fuel thermal spray coating process, a vacuum plasma spray coating process, and a kinetic spray coating process. The second insulating layer 230 may be formed on the first insulating layer 220 by using a second powder thermal spraying process (step S260). Therefore, the second insulating layer 230 may be formed on the entire surface of the first insulating layer 220, and Crystal thermal spray coating may be formed on the first insulating layer 230. For the second insulating layer 201 120 988 220

TW6493PA 例來说’第一絕緣層230可包括陶曼。舉例來說,,陶.究可 包括氧化鋁(A1203)、氧化釔(Y203)、氧化鋁/氧化釔 (A1203/Y203)、氧化锆(Zr02)、碳化鋁(A1C)、氮化鈦 (TiN)、氮化鋁(A1N)、碳化鈦(TiC)、氧化鎂(MgO)、氧化 #5(Ca0)、氧化鈽(Ce02)、氧化鈦(Ti02)、碳化硼(BxCy)、 氮化硼(BN)、氧化矽(Si〇2)、·碳化矽(SiC)、釔鋁石榴石 (YAG)、莫來石(Mullite)、氟化鋁(A1F3)等等。上述化合 物可單獨或組合使用。 第一與第二絕緣層220與230可藉由熱喷塗程序例如 是大氣電漿喷霧(atmospherically plasma spray)塗佈程 序、快速的氧氣燃料的熱喷塗程序(rapid 〇Xygen_fuel thermal spray coating process)、真空電漿喷霧塗佈程 序(vacuum plasma spray coating process)以及動力喷 霧塗佈程序(kinetic spray coating process),除了用 以形成各自的熱喷塗層之粉末。 因此,第二絕緣層230的上表面可進一步藉由平坦化 製程平坦。此外’對應連接器170之第二絕緣層230可部 分在平坦化製程中被移除’且因此連接器170之上表面可 被暴露。如果第1圖中的靜電卡盤1〇〇,僅第一絕緣層120 不含第二絕緣層可形成於基體110與電極層140之間,連 接器170亦可在用以平坦第一絕緣層12〇之平坦化程序中 被暴露。 電極層140可形成於第二絕緣層230上(步驟S270)。 電極層140可形成於第二絕緣層230之上表面之一部份 上’且可包括導電材料,例如是鎢。也就是說,電極層140 42 201120988 1 W64y3m 可堆疊於第二絕緣層230上且具有小於第二絕緣層230之 尺寸。 第一介電層150可形成於第二絕緣層230與電極層 140上,藉由使用第一粉末之熱喷塗程序,且因此非晶形 熱喷塗層可形成於電極層140上做為第一介電層150(步驟 S280)。第一介電層150可塗佈於第二絕緣層之整個表面 上,第二絕緣層上可形成電極層140,且因此電極層140 可完全被第一介電層150覆蓋。第一介電層150可藉由與 形成第一絕緣層220使用相同之第一粉末的熱喷塗程序來 形成。 之後,第二介電層160可藉由使用第二粉末之熱喷塗 程序形成於第一介電層150上,且因此結晶熱喷塗層可形 成於介電層150上做為第二介電層160(步驟S290)。特別 地,第二介電層160可形成於靜電卡盤200之上部與第一 介電層150上。也就是說,基體110之邊緣部分無法被塗 佈第一介電層150,基體110之上側部分、第一與第二絕 緣層220與230之側表面與第一介電層150之側表面可塗 佈第二介電層160。因此,基體110、第一與第二絕緣層 220與230以及第一介電層150所有暴露的表面可被第二 介電層160覆蓋。在如此之狀況下,介於基體110與第二 介電層160之間、介於第一與第二絕緣層220與230以及 第二介電層160之間、與介於第一介電層150與第二介電 層160之間的喷霧邊界表面可產生破裂與電弧。出於這些 原因,第一與第二絕緣層220與230以及第一介電層150 的侧表面與基體110之侧表面亦可被第二介電層160覆 43 201120988TW6493PA For example, the first insulating layer 230 may include Tauman. For example, the ceramics may include alumina (A1203), yttrium oxide (Y203), alumina/yttria (A1203/Y203), zirconia (Zr02), aluminum carbide (A1C), titanium nitride (TiN). ), aluminum nitride (A1N), titanium carbide (TiC), magnesium oxide (MgO), oxidation #5 (Ca0), cerium oxide (Ce02), titanium oxide (Ti02), boron carbide (BxCy), boron nitride ( BN), yttrium oxide (Si〇2), lanthanum carbide (SiC), yttrium aluminum garnet (YAG), mullite (Mullite), aluminum fluoride (A1F3), and the like. The above compounds may be used singly or in combination. The first and second insulating layers 220 and 230 can be thermally sprayed by, for example, an atmospherically plasma spray coating process, a rapid oxyfuel spray process (rapid 〇Xygen_fuel thermal spray coating process) ), a vacuum plasma spray coating process, and a kinetic spray coating process, except for the powder used to form the respective thermal spray coating. Therefore, the upper surface of the second insulating layer 230 can be further flattened by the planarization process. Further, the second insulating layer 230 of the corresponding connector 170 may be partially removed in the planarization process' and thus the upper surface of the connector 170 may be exposed. If the electrostatic chuck 1 in FIG. 1 is used, only the first insulating layer 120 does not include the second insulating layer and may be formed between the substrate 110 and the electrode layer 140. The connector 170 may also be used to flatten the first insulating layer. The 12-inch flattening procedure was exposed. The electrode layer 140 may be formed on the second insulating layer 230 (step S270). The electrode layer 140 may be formed on a portion of the upper surface of the second insulating layer 230 and may include a conductive material such as tungsten. That is, the electrode layer 140 42 201120988 1 W64y3m may be stacked on the second insulating layer 230 and have a size smaller than that of the second insulating layer 230. The first dielectric layer 150 may be formed on the second insulating layer 230 and the electrode layer 140 by using a thermal spraying procedure of the first powder, and thus the amorphous thermal spray layer may be formed on the electrode layer 140 as a A dielectric layer 150 (step S280). The first dielectric layer 150 may be coated on the entire surface of the second insulating layer, and the electrode layer 140 may be formed on the second insulating layer, and thus the electrode layer 140 may be completely covered by the first dielectric layer 150. The first dielectric layer 150 can be formed by a thermal spray process using the same first powder as the first insulating layer 220. Thereafter, the second dielectric layer 160 can be formed on the first dielectric layer 150 by a thermal spraying process using the second powder, and thus the crystalline thermal spray layer can be formed on the dielectric layer 150 as a second dielectric layer. The electric layer 160 (step S290). In particular, the second dielectric layer 160 may be formed on the upper portion of the electrostatic chuck 200 and the first dielectric layer 150. That is, the edge portion of the base 110 cannot be coated with the first dielectric layer 150, and the side surface of the base 110, the side surfaces of the first and second insulating layers 220 and 230, and the side surface of the first dielectric layer 150 may be A second dielectric layer 160 is applied. Therefore, all exposed surfaces of the substrate 110, the first and second insulating layers 220 and 230, and the first dielectric layer 150 may be covered by the second dielectric layer 160. In such a situation, between the substrate 110 and the second dielectric layer 160, between the first and second insulating layers 220 and 230 and the second dielectric layer 160, and between the first dielectric layer The spray boundary surface between 150 and the second dielectric layer 160 can create cracks and arcs. For these reasons, the side surfaces of the first and second insulating layers 220 and 230 and the first dielectric layer 150 and the side surface of the substrate 110 may also be covered by the second dielectric layer 160.

TW6493PA 蓋。 ‘. 第二介電層160可藉由使用相同粉末相同熱喷塗程 序形成為第二絕緣層230。此外,用以形成第二介電層160 之熱喷塗程序亦可包括大氣電漿喷霧(atmospherical ly plasma spray)塗佈程序、快速的氧氣燃料的熱喷塗程序 (rapid oxygen-fuel thermal spray coating process)、 真空電漿喷霧塗佈程序(vacuum plasma spray coating process)以及動力喷霧塗佈程序(kinetic spray coating process),除了用以形成各自的熱喷塗層之粉末,例如是 用以形成第一絕緣層220之熱喷塗程序。 第二介電層160亦可藉由平坦化程序平坦,且因此第 二介電層之上表面地凸起物可被移除。 然後,填充程序可執行於包括第一與第二介電層150 與160之介電體上,且在絕緣體上包括第一與第二絕緣層 220與230(步驟S300)。因此,介電體與絕緣體的多種内 部空間可被填充物填充。舉例來說,介電體與絕緣體中的 孔隙空間與破裂可被填充物填充,從而增加介電體與絕緣 體的體積電阻。填充物可包括樹酯,例如是矽的丙烯酸樹 脂° 當本實施例揭露填充程序可在介電體與絕緣體形成 後執行’依據程序條件與需求填充程序的順序與時間以及 ”電體與絕緣體的形成係可交換,此為該領域具通常知識 者所知。舉例來說’第一填充程序可執行於絕緣體上,在 第一與第二絕緣層220與230之後;且第二填充程序執行 於介電體上,在第一與第二介電層15〇與16〇之後。不然, 44 201120988TW6493PA cover. The second dielectric layer 160 may be formed as the second insulating layer 230 by the same thermal spraying process using the same powder. In addition, the thermal spray process for forming the second dielectric layer 160 may also include an atmospheric ly plasma spray coating process and a rapid oxygen-fuel thermal spray process. a coating process), a vacuum plasma spray coating process, and a kinetic spray coating process, except for forming a powder of a respective thermal spray coating, for example, A thermal spray process is performed to form the first insulating layer 220. The second dielectric layer 160 can also be planarized by a planarization process, and thus the bumps on the surface above the second dielectric layer can be removed. Then, a filling process can be performed on the dielectric including the first and second dielectric layers 150 and 160, and the first and second insulating layers 220 and 230 are included on the insulator (step S300). Therefore, various internal spaces of the dielectric body and the insulator can be filled with the filler. For example, the void spaces and ruptures in the dielectric and insulator can be filled by the filler, thereby increasing the volume resistance of the dielectric and insulator. The filler may include a resin such as an acrylic resin. When the present embodiment discloses that the filling procedure can be performed after the dielectric and the insulator are formed, the sequence and time according to the program conditions and the required filling procedure and the "electric body and the insulator" Forming systems are interchangeable, as is known to those of ordinary skill in the art. For example, 'the first filling procedure can be performed on the insulator after the first and second insulating layers 220 and 230; and the second filling procedure is performed on On the dielectric body, after the first and second dielectric layers 15 and 16 。. Otherwise, 44 201120988

I WMWHA 填充.程序·可在第一絕緣層220、第二絕緣層230、第一介 電層150與第二介電層160之間執行三到四次。也就是 說,填充程序可各自的於各第一與第二絕緣層以及第一與 第二介電層之間執行,或各種第一與第二絕緣層以及第一 與第二介電層之組合上執行。 此外,平坦化程序亦可執行於各黏合層115、第一絕 緣層220、電極層140、第一介電層150與第二介電層160 以及第二絕緣層230上,此為該領域具通常知識者所知。 上述較佳實施例所揭露之製造靜電卡盤200之方 法,其中絕緣體可包括多層,多層具有第一與第二絕緣層 220與230。如第4圖所示。 然而,靜電卡盤100中絕緣體可包括如第1圖所示單 一第一絕緣層,除了形成第二絕緣層260之程序步驟S260 之外,可以上述之相同製成製造,為該領域具通常知識者 所知。 根據本發明之實施例,靜電卡盤之介電體可包括多 層,包括非晶形熱喷塗層以及結晶熱喷塗層,從而在沒有 因為非晶形熱噴塗層使任何介電常數衰退之情形下,增加 介電體之體積電阻。因此,靜電卡盤之漏電流可最小化且 因此因為漏電流造成的破裂亦可在靜電卡盤中最小化。因 此,靜電卡盤之整體電性特性可因多層介電體而大幅改 善。 此外,靜電卡盤之絕緣體亦可包括非晶形熱喷塗層, 因為非晶形熱喷塗層與改善靜電卡盤中基體與電極層之 間的絕緣電阻,從而增加絕緣體之體積電阻。The I WMWHA filling process can be performed three to four times between the first insulating layer 220, the second insulating layer 230, the first dielectric layer 150, and the second dielectric layer 160. That is, the filling process may be performed between each of the first and second insulating layers and the first and second dielectric layers, or the first and second insulating layers and the first and second dielectric layers. Executed on the combination. In addition, the planarization process can also be performed on each of the adhesive layer 115, the first insulating layer 220, the electrode layer 140, the first dielectric layer 150 and the second dielectric layer 160, and the second insulating layer 230. Usually known to the knowledge. The method of manufacturing the electrostatic chuck 200 disclosed in the above preferred embodiments, wherein the insulator may comprise a plurality of layers having first and second insulating layers 220 and 230. As shown in Figure 4. However, the insulator in the electrostatic chuck 100 may include a single first insulating layer as shown in FIG. 1 except that the process step S260 of forming the second insulating layer 260 may be manufactured in the same manner as described above, which is a common knowledge in the field. Known. According to an embodiment of the present invention, the dielectric of the electrostatic chuck may include a plurality of layers including an amorphous thermal spray coating layer and a crystalline thermal spray coating layer so that no dielectric constant is degraded due to the amorphous thermal spray coating layer. Increase the volume resistance of the dielectric. Therefore, the leakage current of the electrostatic chuck can be minimized and thus the crack due to the leakage current can also be minimized in the electrostatic chuck. Therefore, the overall electrical characteristics of the electrostatic chuck can be greatly improved by the multilayer dielectric. In addition, the insulator of the electrostatic chuck may also include an amorphous thermal spray coating because the amorphous thermal spray coating improves the insulation resistance between the substrate and the electrode layer in the electrostatic chuck, thereby increasing the volume resistance of the insulator.

S 45 201120988S 45 201120988

TW6493PA 更進步’緩衝層可形成於接頭之電力之高電壓施加 的接觸面積’且因此因熱應力之破裂可發生於接頭之接觸 面積。^此,靜電卡盤可具有改善之持久力與操作壽命, 且因此靜電卡盤之維持費可大幅減少。 因此,本發明所提供之靜電卡盤可使用在不同 施加裝置’例如是電漿蝕刻裝置與電漿沈積裝置 : 電性特性與持久性。 咬善 、,上所述’雖然本發明已以較佳實施例揭露如上 知識者,在不脱離屬技術領域中具有通常 更—因:==範圍内’當可作〜 利範圍所界定者鱗發^辆範㈣視_之申讀粵 【圖式簡單說明】 第1圖綠示依照本發明 _ ^ 面圖。 月之-貫施例之靜電卡盤的刮 圖。 第3 圖繪示第1圖中之連接 圖。 第4 圖%示依照本發明之另 剖面圖。 第5 圖繪示靜電卡盤之絕緣 第2圖'會不第1圖中之連接器的第-實施例的刮面 器的第二實施例的1雨 第6圖繪示當操作傳統之 靜電卡盤與本發明構甲之 46 201120988The TW6493PA is more advanced. The buffer layer can be formed at the high voltage applied contact area of the power of the joint and thus the crack due to thermal stress can occur in the contact area of the joint. ^This, the electrostatic chuck can have improved durability and operational life, and thus the maintenance cost of the electrostatic chuck can be greatly reduced. Accordingly, the electrostatic chuck provided by the present invention can be used in different application devices such as plasma etching devices and plasma deposition devices: electrical characteristics and durability. 。 。 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Scale hair ^ Fan Fan (four) view _ of the application of Guangdong [schematic description of the simple] Figure 1 green display according to the invention _ ^ surface. The shaving diagram of the electrostatic chuck of the month-by-example. Figure 3 shows the connection diagram in Figure 1. Figure 4 is a cross-sectional view showing another aspect of the present invention. Fig. 5 is a view showing the insulation of the electrostatic chuck. Fig. 2 is a view showing the second embodiment of the scraper of the first embodiment of the connector of Fig. 1. Fig. 6 is a view showing the operation of the conventional static electricity. Chuck and the armor of the present invention 46 201120988

TW6493PA =圖漏電流與操作時—漏與操作時間 加』===與第2財之靜電卡盤的施 第7β圖繪示包括傳統之 置的 韻刻量示意圖。 電卡盤的施加電漿裝 第8圖繪示用以形成第⑶ -粉末之分子結構的照片。 #日4熱喷塗層的第 第9圖繪示用以形成第8圖 元程序步驟的流程圖。 干的第泰末的方法之單 第1〇圖繪示用以形成第9圖中的第一漿液之方法的 流程圖。 幻 第11圖繪示用以形成第9圖中的第二漿液之方法 流程圖。 第12圖繪示用以形成第9圖中的漿液混合物之方法 的不意圖。 第13圖繪示依照本發明之一實施例之製造靜電卡盤 的方法之單元程序步驟的流程圖。 【主要元件符號說明】 100、200 :靜電卡盤 110 :基體 115 :黏合層 120、220 :第一絕緣層 140 .電極層TW6493PA = graph leakage current and operation time - leakage and operation time plus "=== and the second fiscal electrostatic chuck. The 7β diagram shows the traditional rhyme diagram. Electrostatic Applicator of Electric Chuck Figure 8 depicts a photograph of the molecular structure used to form the (3)-powder. Fig. 9 of the #4 thermal spray layer shows a flow chart for forming the steps of the eighth embodiment. The method of the dry method of the first stage is shown in the first drawing to show a flow chart of the method for forming the first slurry in Fig. 9. Fig. 11 is a flow chart showing a method for forming the second slurry in Fig. 9. Fig. 12 is a schematic view showing a method for forming the slurry mixture in Fig. 9. Figure 13 is a flow chart showing the steps of a unit procedure of a method of manufacturing an electrostatic chuck in accordance with an embodiment of the present invention. [Main component symbol description] 100, 200: electrostatic chuck 110: base 115: adhesive layer 120, 220: first insulating layer 140. electrode layer

47 S 20112098847 S 201120988

TW6493PA 150 :第一介電層 160 :第二介電層 170 :連接器 171、 177 :接頭 172、 178 :絕緣體 173、 179 :缓衝層 179a :第一緩衝 179b :第二缓衝 230:第二絕緣層TW6493PA 150: first dielectric layer 160: second dielectric layer 170: connectors 171, 177: joints 172, 178: insulators 173, 179: buffer layer 179a: first buffer 179b: second buffer 230: Two insulation layers

Claims (1)

201120988 i w〇4yjm 七、,申請專利範圍: 1. 一種靜電卡盤,包括: 一基體; 一第一絕緣層,設置於該基體上且該第一絕緣層具有 非晶形結構; 一電極層,設置於該第一絕緣層上且該電極層產生一 靜電力;以及 一介電層,位於該電極層上。 2. 如申請專利範圍第1項所述之靜電卡盤,其中該 介電層包括: 一第一介電層,覆蓋該電極層且該第一介電層具有非 結晶結構,以及 一第二介電層,位於該第一介電層上且該第二介電層 具有一結晶結構。 3. 如申請專利範圍第2項所述之靜電卡盤,其中該 第一介電層具有之厚度介於大約100微米到大約300微 米,該第二介電層具有之厚度介於大約200微米到大約400 微米。 4. 如申請專利範圍第2項所述之靜電卡盤,其中該 第一介電層具有之孔隙率介於大約0.5%到大約2%,該 第二介電層具有之孔隙率介於大約3%到大約7%。 5. 如申請專利範圍第2項所述之靜電卡盤,其中該 第一介電層具有之表面粗糙度介於大約4微米到大約8微 米,該第二介電層具有之表面粗糙度介於大約3微米到大 約5微米。 49 201120988 TW6493PA 6. 如申請專利範圍第2項所述之靜電卡盤1,其中該 第一介電層及該第二介電層具有之硬度至少大約650Hv, 該第一介電層及該第二介電層具有之黏著強度至少大約 14MPa。 7. 如申請專利範圍第2項所述之靜電卡盤,其中該 第一介電層及該第二介電層一起具有之體積電阻(volume resistance)介於大約1014歐姆公分(Ω·αη)到大約1015微 米歐姆公分。 8. 如申請專利範圍第2項所述之靜電卡盤,其中該 電極層被該第一介電層覆蓋,該第一介電層被該第二介電 層覆蓋。 9. 如申請專利範圍第1項所述之靜電卡盤,其中該 第一絕緣層具有之厚度介於大約400微米到大約600微 米。 10. 如申請專利範圍第1項所述之靜電卡盤,更包括 一第二絕緣層,設置於該基體與該電極層之間。 11. 如申請專利範圍第10項所述之靜電卡盤,其中 該第一絕緣層具有之厚度介於大約100微米到大約300微 米,該第二絕緣層具有之厚度介於大約200微米到大約400 微米。 12. —種靜電卡盤,包括: 一基體; 一絕緣層,位於該基體上; 一電極層,設置於該絕緣層上且該電極層產生一靜電 力; S 50 201120988 1 W04WA ,一第一介電層,設置於該電極層上且具有一非晶形結 構;以及 一第二介電層,設置於該第一介電層上且具有一結晶 結構。 13. —種製造靜電卡盤之方法,包括: 準備一基體; 形成一第一絕緣層於該基體上,該第一絕緣層具有非 晶形結構; 形成一電極層於該第一絕緣層上,該電極層產生一靜 電力;以及 形成一介電層於該電極層上。 14. 如申請專利範圍第13項所述之方法,其中形成 該介電層之步驟包括: 形成一第一介電層於該電極層上以使該第一介電層 具有非晶形結構,以及 形成一第二介電層於該第一介電層上以使該第二介 電層具有結晶結構。 15. 如申請專利範圍第14項所述之方法,其中該電 極層可被該第一介電層包覆,且該第二介電層可形成於該 第一介電層、該第一絕緣層以及該基體上,以使該第一介 電層、該第一絕緣層以及該基體被該第二介電層包覆。 16. 如申請專利範圍第14項所述之方法,其中該第 一絕緣層、該第一介電層以及該第二介電層藉由一大氣電 漿喷霧塗佈製程(atmospherically plasma spray coating process)、一快速氧燃燒熱喷霧塗佈製程(rapid 51 201120988 TW6493PA oxygen-fuel thermal spray coating process)1、·真空 電漿霧塗佈製程(vacuum plasma spray coating process) 與一動力喷霧塗佈製程其中之一形成。 17. 如申請專利範圍第14項所述之方法,更包括填 充複數個填充物於該第一絕緣層、該第一介電層與該二介 電層至少其中之一的内部空間。 18. 如申請專利範圍第14項所述之方法,其中形成 該電極層之前更包括形成一第二絕緣層於該第一絕緣層 與該基體其中之一上。 19·如申請專利範圍第18項所述之方法,更包括執 行一填充程序用以填充複數個填充物於該第一絕緣層、該 第二絕緣層、該第一介電層與該第二介電層至少其中之一 的内部空間; 其中該第二絕緣層藉由一大氣電漿喷霧塗佈製程 (atmospherically plasma spray coating process)、 一 快速氧燃燒熱喷霧塗佈製程(rapid oxygen-fuel thermal spray coating process)、一 真空電漿霧塗佈製程(vacuum plasma spray coating process)與一動力喷霧塗佈製程 其中之一形成。 20. —種製造靜電卡盤之方法,包括: 準備一基體; 形成一絕緣層於該基體上; 形成一電極層於該絕緣層上,該電極層產生一靜電 力; 形成一第一介電層於該電極層上以使該第一介電層 52 201120988 I W64y3FA 具有.非晶,形結構;以及 形成一第二介電層於該第一介電層上以使該第二介 電層具有結晶結構。201120988 iw〇4yjm VII, the scope of application for patents: 1. An electrostatic chuck, comprising: a substrate; a first insulating layer disposed on the substrate and the first insulating layer has an amorphous structure; an electrode layer, set And forming an electrostatic force on the first insulating layer; and a dielectric layer on the electrode layer. 2. The electrostatic chuck of claim 1, wherein the dielectric layer comprises: a first dielectric layer covering the electrode layer and the first dielectric layer has an amorphous structure, and a second a dielectric layer is disposed on the first dielectric layer and the second dielectric layer has a crystalline structure. 3. The electrostatic chuck of claim 2, wherein the first dielectric layer has a thickness of between about 100 microns and about 300 microns, and the second dielectric layer has a thickness of between about 200 microns. To about 400 microns. 4. The electrostatic chuck of claim 2, wherein the first dielectric layer has a porosity of between about 0.5% and about 2%, and the second dielectric layer has a porosity of between about 3% to about 7%. 5. The electrostatic chuck of claim 2, wherein the first dielectric layer has a surface roughness of between about 4 microns and about 8 microns, and the second dielectric layer has a surface roughness It is from about 3 microns to about 5 microns. The electrostatic chuck 1 of claim 2, wherein the first dielectric layer and the second dielectric layer have a hardness of at least about 650 Hv, the first dielectric layer and the first The two dielectric layers have an adhesion strength of at least about 14 MPa. 7. The electrostatic chuck of claim 2, wherein the first dielectric layer and the second dielectric layer together have a volume resistance of about 1014 ohms (Ω·αη) To approximately 1015 micrometers ohm centimeters. 8. The electrostatic chuck of claim 2, wherein the electrode layer is covered by the first dielectric layer, the first dielectric layer being covered by the second dielectric layer. 9. The electrostatic chuck of claim 1, wherein the first insulating layer has a thickness of between about 400 microns and about 600 microns. 10. The electrostatic chuck of claim 1, further comprising a second insulating layer disposed between the substrate and the electrode layer. 11. The electrostatic chuck of claim 10, wherein the first insulating layer has a thickness of between about 100 microns and about 300 microns, and the second insulating layer has a thickness of between about 200 microns and about 400 microns. 12. An electrostatic chuck comprising: a substrate; an insulating layer on the substrate; an electrode layer disposed on the insulating layer and the electrode layer generating an electrostatic force; S 50 201120988 1 W04WA, a first a dielectric layer disposed on the electrode layer and having an amorphous structure; and a second dielectric layer disposed on the first dielectric layer and having a crystalline structure. 13. A method of manufacturing an electrostatic chuck, comprising: preparing a substrate; forming a first insulating layer on the substrate, the first insulating layer having an amorphous structure; forming an electrode layer on the first insulating layer, The electrode layer generates an electrostatic force; and a dielectric layer is formed on the electrode layer. 14. The method of claim 13, wherein the forming the dielectric layer comprises: forming a first dielectric layer on the electrode layer such that the first dielectric layer has an amorphous structure, and Forming a second dielectric layer on the first dielectric layer such that the second dielectric layer has a crystalline structure. 15. The method of claim 14, wherein the electrode layer is coated by the first dielectric layer, and the second dielectric layer is formed on the first dielectric layer, the first insulation And a layer on the substrate such that the first dielectric layer, the first insulating layer, and the substrate are covered by the second dielectric layer. 16. The method of claim 14, wherein the first insulating layer, the first dielectric layer, and the second dielectric layer are subjected to an atmospheric plasma spray coating process. Process), a rapid oxythermal combustion spray coating process (rapid 51 201120988 TW6493PA oxygen-fuel thermal spray coating process) 1, vacuum plasma spray coating process and a power spray coating One of the processes is formed. 17. The method of claim 14, further comprising filling a plurality of fillers in an interior space of the first insulating layer, the first dielectric layer, and at least one of the two dielectric layers. 18. The method of claim 14, wherein forming the electrode layer further comprises forming a second insulating layer on one of the first insulating layer and the substrate. The method of claim 18, further comprising performing a filling process for filling a plurality of fillers on the first insulating layer, the second insulating layer, the first dielectric layer, and the second An internal space of at least one of the dielectric layers; wherein the second insulating layer is subjected to an atmospheric plasma spray coating process, a rapid oxygen combustion thermal spray coating process (rapid oxygen- A fuel thermal spray coating process, a vacuum plasma spray coating process, and a power spray coating process are formed. 20. A method of manufacturing an electrostatic chuck, comprising: preparing a substrate; forming an insulating layer on the substrate; forming an electrode layer on the insulating layer, the electrode layer generating an electrostatic force; forming a first dielectric Laminating on the electrode layer such that the first dielectric layer 52 201120988 I W64y3FA has an amorphous structure; and forming a second dielectric layer on the first dielectric layer to make the second dielectric layer Has a crystalline structure.
TW099127625A 2009-08-21 2010-08-18 Electrostatic chuck and method of manufacturing the same TWI459500B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090077369A KR100997374B1 (en) 2009-08-21 2009-08-21 Electrode static chuck and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TW201120988A true TW201120988A (en) 2011-06-16
TWI459500B TWI459500B (en) 2014-11-01

Family

ID=43410233

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099127625A TWI459500B (en) 2009-08-21 2010-08-18 Electrostatic chuck and method of manufacturing the same

Country Status (5)

Country Link
JP (1) JP5421460B2 (en)
KR (1) KR100997374B1 (en)
CN (1) CN203055886U (en)
TW (1) TWI459500B (en)
WO (1) WO2011021824A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103325725A (en) * 2012-03-21 2013-09-25 高美科株式会社 Static chuck
CN103794445A (en) * 2012-10-29 2014-05-14 中微半导体设备(上海)有限公司 Electrostatic chuck assembly used for plasma processing chamber and manufacturing method of electrostatic chuck assembly
TWI497640B (en) * 2012-03-12 2015-08-21
TWI552261B (en) * 2013-09-16 2016-10-01 品維斯有限公司 Electrostatic chuck and manufacturing method of the same
TWI663681B (en) * 2014-02-07 2019-06-21 美商恩特葛瑞斯股份有限公司 Electrostatic chuck and method of making same
TWI704644B (en) * 2019-03-29 2020-09-11 大陸商瀋陽拓荊科技有限公司 Substrate carrier with electrical force suppression
TWI782819B (en) * 2020-12-24 2022-11-01 日商東華隆股份有限公司 Electrostatic chuck and processing device

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120069069A (en) * 2010-12-20 2012-06-28 (주)제니스월드 Method of processing of pecvd tray for solar cell
JP2014522572A (en) * 2011-06-02 2014-09-04 アプライド マテリアルズ インコーポレイテッド Method for repairing aluminum nitride dielectric in electrostatic chuck
EP2948818B1 (en) * 2013-01-22 2020-07-01 ASML Netherlands B.V. Electrostatic clamp
US20140318455A1 (en) * 2013-04-26 2014-10-30 Varian Semiconductor Equipment Associates, Inc. Low emissivity electrostatic chuck
JP6120702B2 (en) * 2013-06-28 2017-04-26 日本特殊陶業株式会社 Vacuum adsorption apparatus and method for manufacturing the same
JP6104075B2 (en) * 2013-06-28 2017-03-29 日本特殊陶業株式会社 Vacuum adsorption apparatus and method for manufacturing the same
CN105448794B (en) * 2014-08-13 2019-07-19 北京北方华创微电子装备有限公司 A kind of pallet and bogey
US10325800B2 (en) * 2014-08-26 2019-06-18 Applied Materials, Inc. High temperature electrostatic chucking with dielectric constant engineered in-situ charge trap materials
US10020218B2 (en) 2015-11-17 2018-07-10 Applied Materials, Inc. Substrate support assembly with deposited surface features
CN107768300B (en) * 2016-08-16 2021-09-17 北京北方华创微电子装备有限公司 Chuck, reaction chamber and semiconductor processing equipment
KR101694754B1 (en) * 2016-09-08 2017-01-11 (주)브이앤아이솔루션 eletectrostatic chuck and manufacturing method for the same
CN108346611B (en) * 2017-01-24 2021-05-18 中微半导体设备(上海)股份有限公司 Electrostatic chuck, manufacturing method thereof and plasma processing device
KR102066271B1 (en) * 2017-04-18 2020-01-14 단국대학교 천안캠퍼스 산학협력단 Sealing method of electrostatic chuck
JP6967944B2 (en) * 2017-11-17 2021-11-17 東京エレクトロン株式会社 Plasma processing equipment
JP7401266B2 (en) 2018-12-27 2023-12-19 東京エレクトロン株式会社 Substrate mounting table and substrate processing equipment
CN111383986A (en) * 2018-12-27 2020-07-07 东京毅力科创株式会社 Substrate mounting table and substrate processing apparatus
WO2020182637A1 (en) * 2019-03-13 2020-09-17 Asml Holding N.V. Electrostatic clamp for a lithographic apparatus
KR102130442B1 (en) * 2019-09-16 2020-07-06 주식회사 제스코 Method of manufacturing mobile glass chuck, mobile glass chuck using the same and method of attaching mobile glass to mobile panel of smartphone
KR102332730B1 (en) * 2020-01-13 2021-12-01 (주)티티에스 Regeneration method of electrostatic chuck
US11646216B2 (en) * 2020-10-16 2023-05-09 Applied Materials, Inc. Systems and methods of seasoning electrostatic chucks with dielectric seasoning films
CN116262666A (en) * 2022-12-29 2023-06-16 浙江省冶金研究院有限公司 Preparation method of aluminum nitride-based ceramic composite material and application of aluminum nitride-based ceramic composite material to electrostatic chuck

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW236709B (en) * 1993-03-09 1994-12-21 Toto Ltd
JP3348140B2 (en) * 1996-04-08 2002-11-20 住友大阪セメント株式会社 Electrostatic chuck
JP4256483B2 (en) * 1996-07-19 2009-04-22 アプライド マテリアルズ インコーポレイテッド Electrostatic chuck, apparatus for manufacturing integrated circuit device, and manufacturing method of electrostatic chuck
JPH10154745A (en) * 1996-11-26 1998-06-09 Hitachi Ltd Electrostatic attracting device
US6529362B2 (en) * 1997-03-06 2003-03-04 Applied Materials Inc. Monocrystalline ceramic electrostatic chuck
US6215640B1 (en) * 1998-12-10 2001-04-10 Applied Materials, Inc. Apparatus and method for actively controlling surface potential of an electrostatic chuck
US6678143B2 (en) * 2000-12-11 2004-01-13 General Electric Company Electrostatic chuck and method of manufacturing the same
KR20020064508A (en) * 2001-02-02 2002-08-09 삼성전자 주식회사 Electrostatic chuck
TW502368B (en) * 2001-11-06 2002-09-11 Duratek Inc Electrostatic chuck and method for manufacturing the same
TWI236084B (en) * 2003-03-20 2005-07-11 Duratek Inc Method for manufacturing an electrostatic chuck
JP4369765B2 (en) * 2003-07-24 2009-11-25 京セラ株式会社 Electrostatic chuck

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI497640B (en) * 2012-03-12 2015-08-21
CN103325725A (en) * 2012-03-21 2013-09-25 高美科株式会社 Static chuck
CN103794445A (en) * 2012-10-29 2014-05-14 中微半导体设备(上海)有限公司 Electrostatic chuck assembly used for plasma processing chamber and manufacturing method of electrostatic chuck assembly
TWI488260B (en) * 2012-10-29 2015-06-11
CN103794445B (en) * 2012-10-29 2016-03-16 中微半导体设备(上海)有限公司 For electrostatic chuck assembly and the manufacture method of plasma process chamber
US9633884B2 (en) 2012-10-29 2017-04-25 Advanced Micro-Fabrication Equipment Inc, Shanghai Performance enhancement of coating packaged ESC for semiconductor apparatus
TWI552261B (en) * 2013-09-16 2016-10-01 品維斯有限公司 Electrostatic chuck and manufacturing method of the same
TWI663681B (en) * 2014-02-07 2019-06-21 美商恩特葛瑞斯股份有限公司 Electrostatic chuck and method of making same
US10497598B2 (en) 2014-02-07 2019-12-03 Entegris, Inc. Electrostatic chuck and method of making same
TWI704644B (en) * 2019-03-29 2020-09-11 大陸商瀋陽拓荊科技有限公司 Substrate carrier with electrical force suppression
TWI782819B (en) * 2020-12-24 2022-11-01 日商東華隆股份有限公司 Electrostatic chuck and processing device

Also Published As

Publication number Publication date
JP2013502721A (en) 2013-01-24
JP5421460B2 (en) 2014-02-19
KR100997374B1 (en) 2010-11-30
TWI459500B (en) 2014-11-01
CN203055886U (en) 2013-07-10
WO2011021824A2 (en) 2011-02-24
WO2011021824A3 (en) 2011-07-07

Similar Documents

Publication Publication Date Title
TW201120988A (en) Electrostatic chuck and method of manufacturing the same
US7416793B2 (en) Electrostatic chuck and manufacturing method for the same, and alumina sintered member and manufacturing method for the same
TW200816364A (en) Electrostatic chuck with heater and manufacturing method thereof
CN103681432B (en) Electrostatic chuck
JP2007173596A (en) Electrostatic chuck
JP2008160097A (en) Electrostatic chuck and manufacturing method thereof, and substrate-treating device
JP2000077508A (en) Electrostatic chuck
KR101122709B1 (en) Electrode static chuck
TW200935555A (en) Electrostatic chuck and method of forming
JP6881676B2 (en) Electrostatic chuck device and its manufacturing method
JP2003282688A (en) Electrostatic chuck
CN111868913B (en) Electrostatic chuck device and method for manufacturing electrostatic chuck device
US20210335644A1 (en) Ceramics substrate , method of manufacturing the same, electrostatic chuck, substrate fixing device, and semiconductor device package
TWI401768B (en) Electrostatic chuck containing buffer layer for reducing thermal stress
JPH09283606A (en) Electrostatic chuck
TWI379380B (en) Electrostatic chuck containing double buffer layer for reducing thermal stress
JPH09283607A (en) Electrostatic chuck
TWI359473B (en) Electrostatic chuck heater
JP4043219B2 (en) Electrostatic chuck
JP2009302518A (en) Electrostatic chuck
JP4052343B2 (en) Electrostatic chuck
JP4510358B2 (en) Electrostatic chuck and manufacturing method thereof
JP2003168726A (en) Electrostatic chuck for semiconductor manufacturing device and its manufacturing method
JPH10189698A (en) Electrostatic chuck
JP2006120847A (en) Bipolar electrostatic chuck and its manufacturing method