TW201120953A - A through silicon via etching method. - Google Patents

A through silicon via etching method. Download PDF

Info

Publication number
TW201120953A
TW201120953A TW98142480A TW98142480A TW201120953A TW 201120953 A TW201120953 A TW 201120953A TW 98142480 A TW98142480 A TW 98142480A TW 98142480 A TW98142480 A TW 98142480A TW 201120953 A TW201120953 A TW 201120953A
Authority
TW
Taiwan
Prior art keywords
gas
etching
deep
hole
tsv
Prior art date
Application number
TW98142480A
Other languages
Chinese (zh)
Other versions
TWI416624B (en
Inventor
Jae-Woong Choi
Kevin Pears
Robert Wu
Li-Jun Yan
ben-liang Lei
Original Assignee
Advanced Micro Fab Equip Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Fab Equip Inc filed Critical Advanced Micro Fab Equip Inc
Priority to TW98142480A priority Critical patent/TWI416624B/en
Publication of TW201120953A publication Critical patent/TW201120953A/en
Application granted granted Critical
Publication of TWI416624B publication Critical patent/TWI416624B/en

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

This invention provides a through silicon via etching method, which is the field of semiconductor manufacturing technology. The invention relates to a method for using reactive ion etching steps and polymer deposition steps. The reactive ion etching steps and the polymer deposition steps are performed in alternating manner. The reactive ion etching steps use a first gas for plasma etching through chemical reactions and a second gas to react with silicon to form silicide protection film. In the above-mentioned etching method to form through silicon via (TSV), it can have good etching efficiency and smoothness of TSV through hole sidewalls.

Description

201120953 六、發明說明: 【發明所屬之技術領域】 本發明屬於半導體製造技術領域’具體涉及反應離子刻 蝕(Reactive Icon Etching,RIE)技術,尤其涉及一種深 矽通孔的(Through-Silic〇n-Via,TSV)刻钱方法。201120953 VI. Description of the Invention: [Technical Field] The present invention relates to the field of semiconductor manufacturing technology, specifically to Reactive Icon Etching (RIE) technology, and more particularly to a deep through hole (Through-Silic〇n) -Via, TSV) method of engraving money.

【先前技術J 半導體製造技術領域中’在MEMS (Micro-Electro-Mechanical Systems , 微機電 系統) 和 3D 封裝技術等領域, 通常需要對石夕等材料進行深通孔刻银。例如,在體石夕刻餘技 術中,深石夕通孔(Through-Silicon-Via,TSV)的深度達到幾 百微米、其深寬比甚至遠大於10,通常採用反應離子刻蝕方 法來刻蝕體矽形成。 圖1所示為現有技術的深石夕通孔的刻钱方法示意圖。現 有技術中,tsv的反應離子刻蝕通常採用美國專利US5501893 提出的Bosch工藝進行。如圖!所示,其中,12為襯底矽, 11為掩膜層,13為聚合物層;掩膜層11通常為Si〇2或者 ShN4,主要在刻蝕過程起掩膜作用。具體反應離子刻蝕方法 包括以下步驟:(1)刻蝕步驟,通常用Ar、SFe的混合氣體進 行等離子體刻钱’ ;(2)聚合物沉積步驟,通常用紅和C4F8 的混合氣體在孔洞内側面形成氟碳聚合物層,其厚度一般在 納米級,有時也稱作該聚合物層為純化層’(3)刻蝕步驟和 聚合物沉積步驟交替進行,直到深矽通孔刻蝕完成,在刻蝕 步驟中,由於孔洞的内表面、尤其是在孔洞内側面沉積聚合 物,垂直入射的等離子轟擊底部的聚合物,使得垂直方向的 201120953 刻娜續向下進行,而側由於聚合物的保㈣以職率 很低,從而保證了整個孔洞刻蝕過程的各向異性。特別是在 刻触過程中,採用電_合等離子體源(Inductive Coupled Plasma’ CCP)技術,可以加快在垂直方向的刻餘速度,各向 異性特性更好。 但是,採用圖1所示的方法刻钱Tsv時,在某一個刻钱 步驟時,在步驟中刻蝕形成的深度範圍内,其側壁是並沒有 φ 通過聚合物沉積步驟形成的聚合物祕制,因此,對於單 獨的-個刻歸驟内,其刻姓是各向同性的。現有技術的挪 刻餘方法中,-般通過設置每個刻姓步驟時間為比較短(例 如2心I里)’刻|虫深度也小於,因為刻姓步驟内是各向同 性刻# ’所以單個祕步驟的職深度越大則侧壁的凹口也 曰越大’為了使整體刻飯是各向異性的,在完成一次刻敍步 驟後’馬上切換進行一次聚合物沉積步驟,這樣,整體上使 ,勉雜表現為各向異性。這制絲存在的弊端是:⑴ • 母個刻姓步驟時間短,刻钮步驟和聚合物沉積步驟切換頻率 高,職步驟的時間常常少於整個TSV _過程的時間的一 半’刻勉的效率比較低,TSV聰的速率也相驗低,·⑵由 於每個單獨_歸驟是相料向·的,所以每個刻歸 ,形成的側i會%成弧形狀,細砂驟和聚合物沉積步驟的 交替處,會形成—個小突起(高度約為200-500埃),從而仿 DRIE刻韻形成、& tqv θ J鄉心成的TSV具有如圖】所示的“扇形 (Scalloping),側壁,降低深通孔的側壁的光滑度。 除了上述B〇sch刻蝕方法,現有技術還存在單步刻蝕方 201120953 法,在用刻純體如即6等實現刻钱的同時提供側壁保護氣體 如聚合物沉積氣體⑽或少量氧i採用單步刻财法由於 -次職步驟要職的抑的深度達職百微米,刻餘孔的 深寬比(aspect rati0)大於2〇甚至1〇〇,所以要在一個刻 餘步驟中實現深孔⑦的刻似'須要對側壁提供足夠的保護。 對側壁更多的賴就會顯著的降低__速度,同時側壁 保遵乱體如C4F8等會在側壁積累,刻辦間越久積累越多, • 會在刻餘石夕孔的開口部位形成很厚的堆積層影響反應氣體的 進入進-步降低了刻料率。科韻方法需要在一個刻餘 過程中同時實現祕要並錄證在很長的祕時間内對側壁 的保護,但是隨著職深度的增加聚合物的觀和義速度 的降低都會影響最終的表現’料步職法很難實現高速刻 韻又對側魏行足_賴。所以工料迫_要一種簡單 易行的既能實現快速刻敍深孔石夕又能保證刻餘石夕孔的側壁足 夠光滑的技術。 φ 【發明内容】 、本發明要解決的技術問題是’提高深石夕通孔的刻飯效率 並避免刻蝕所形成的深石夕通孔的“扇形,,側壁出現。 為解決以上技術問題,本發明提供的在電容耦合等離子 反應腔或電感耦合等離子反應腔令進行深矽通孔的刻蝕方 法包括採用反應離子刻钱的刻敍步驟和聚合物沉積步驟, 所述刻蝕步驟和聚合物沉積步驟交替進行,其特徵在於,所 述刻敍步驟採用的氣體中包括用於化學反應等離子刻餘石夕的 第一氣體和用於與矽反應形成矽化物保護膜的第二氣體。 201120953 根據本發明提供的深矽通孔的刻蝕方法,其中,所述聚 合物=積步驟朗喊财包括用於軒反應軸聚合物的 第三氣體。所述第一氣體為sf6、肌中的一種。所述第二氣 體為〇2、c〇2、N2中的一種,或者為〇2、c〇2、n2的任何組合。 所述苐二氣體為02時,石夕化物保護膜包括石夕碳化合物、石夕氧 化合物和%碳氧化合物。所述第二氣體為⑷和G2的混合氣體 時,N2和〇2的氣體流量比為1〇 :丨,矽化物保護膜包括矽氮化 φ 合物、矽氧化合物和矽氮氧化合物。 根據本發服供的深㈣孔_财法,作為一种技術 方案’其中’所述第-氣體和第二氣體的氣體流量比範圍為: SF6: 300-50〇sccm ’ C〇2: 400__sccm。刻蝕步驟的反應離子 刻储頻功率條件為:1500W,_MHz,所述聚合物沉積步驟 的射頻功率條件為15_,_Hz或者25晴,驗。刻钱步 驟的反應離子刻錄壓條件為:300mt〇rr或綱剛社阶, 所述聚合物沉積步_氣祕件為咖___。所述職 • 轉採用電容轉合等離子體源技術。所述韻步驟採用的氣 體還包括氬。 作為較佳技術方案’所述祕步驟_的氣體包括用於 離子反應形成聚合物的第三氣體。所述第—氣體、第二氣體 和第三氣體的氣體流量通過流量控制!!控制。所述第三氣體 為GF8、GF6、CHF3、C祕中的-種。所述聚合物沉積步驟 用的氣體還包括氬。 本發明的技術效果是’通過在刻姆射通人用於與石夕 反應形化物㈣_第二氣體,在第—缝化學反應離 201120953[Prior Art J. In the field of semiconductor manufacturing technology] In the fields of MEMS (Micro-Electro-Mechanical Systems) and 3D packaging technology, deep through-hole engraving of silver materials is often required. For example, in the body-rock etching technique, the depth of the Through-Silicon-Via (TSV) reaches several hundred micrometers, and its aspect ratio is even greater than 10, which is usually etched by reactive ion etching. Body formation. FIG. 1 is a schematic view showing a method for engraving money of a deep stone etch hole in the prior art. In the prior art, the reactive ion etching of tsv is usually carried out by the Bosch process proposed in U.S. Patent No. 5,501,893. As shown! As shown, 12 is the substrate 11, 11 is the mask layer, 13 is the polymer layer; the mask layer 11 is usually Si〇2 or ShN4, which acts as a mask mainly during the etching process. The specific reactive ion etching method comprises the following steps: (1) an etching step, usually using a mixed gas of Ar and SFe for plasma engraving; (2) a polymer deposition step, usually using a mixed gas of red and C4F8 in the hole The inner side forms a fluorocarbon polymer layer, the thickness of which is generally on the order of nanometers, sometimes referred to as the polymer layer as a purification layer' (3) etching step and polymer deposition step alternately until deep boring through hole etching Finishing, in the etching step, due to the deposition of the polymer on the inner surface of the hole, especially on the inner side of the hole, the vertically incident plasma bombards the polymer at the bottom, so that the vertical direction of 201120953 continues downward, while the side is due to polymerization. The protection of the object (4) has a low job rate, thus ensuring the anisotropy of the entire hole etching process. Especially in the process of incision, the Inductive Coupled Plasma (CCP) technology can speed up the residual velocity in the vertical direction, and the anisotropy is better. However, when the Tsv is engraved by the method shown in FIG. 1, in a certain engraving step, in the depth range formed by the etching in the step, the sidewall is not formed by the polymer deposition step formed by the polymer deposition step. Therefore, for a single-in-one return, the engraved name is isotropic. In the prior art method of stolen engraving, it is generally shorter by setting each engraving step time (for example, 2 cores I), and the insect depth is also smaller than that because the engraving step is isotropic engraving # ' The larger the depth of the single secret step, the larger the notch of the side wall is. 'In order to make the whole engraving is anisotropic, immediately after the completion of one engraving step, the polymer deposition step is switched immediately, so that the whole On the top, the noisy performance is anisotropic. The disadvantages of this silking are: (1) • The mother has a short step time, the frequency of the button step and the polymer deposition step is high, and the time of the job step is often less than half of the time of the entire TSV _ process. The ratio is relatively low, and the rate of TSV Cong is also low. (2) Since each individual _ return is the phase of the material, each side of the formation will form an arc shape, fine sand and polymerization. At the alternation of the deposition steps, a small protrusion (having a height of about 200-500 angstroms) is formed, so that the TSV of the DRIE engraving, & tqv θ J has the "fan" as shown in the figure ( Scalloping), the sidewall reduces the smoothness of the sidewall of the deep via. In addition to the above-mentioned B〇sch etching method, there is a single-step etching method 201120953 in the prior art, which realizes the engraving with the pure body such as 6 Providing a sidewall protective gas such as a polymer deposition gas (10) or a small amount of oxygen i using a single-step engraving method because the depth of the post-secondary step is up to a hundred micrometers, and the aspect ratio of the residual hole is greater than 2〇 or even 1〇〇, so you have to implement it in one step The hole 7's engraving 'needs to provide sufficient protection to the side wall. The more the side wall will significantly reduce the __ speed, while the side wall protection, such as C4F8, will accumulate on the side wall. The longer the engraving, the more accumulated , • It will form a thick layer at the opening of the carved stone hole to affect the entry of the reaction gas, which reduces the engraving rate. The method of the rhyme needs to realize the secret and record in a process of engraving. The protection of the side wall during the long secret time, but the decrease of the polymer's view and the speed of the sense will increase the final performance with the increase of the job depth. Forcing _ to be a simple and easy way to quickly describe the deep hole stone eve and to ensure that the sidewall of the carved stone hole is sufficiently smooth. φ [Invention] The technical problem to be solved by the present invention is to improve the depth The stone carving efficiency of Shi Xitong hole avoids the "fan shape" of the deep stone through hole formed by etching, and the side wall appears. In order to solve the above technical problems, the etching method for performing deep boring in a capacitively coupled plasma reaction chamber or an inductively coupled plasma reaction chamber provided by the present invention includes a engraving step using a reactive ion engraving step and a polymer deposition step, The etching step and the polymer deposition step are alternately performed, wherein the gas used in the engraving step includes a first gas for chemical reaction plasma etching and a reaction for forming a vaporized protective film with germanium. Second gas. 201120953 An etching method for a deep through hole according to the present invention, wherein the polymer = stacking step includes a third gas for the anode reaction axis polymer. The first gas is one of sf6 and muscle. The second gas is one of 〇2, c〇2, N2, or any combination of 〇2, c〇2, n2. When the ruthenium gas is 02, the ruthenium protective film includes a shixi carbon compound, a shixi oxygen compound, and a carbon oxide compound. When the second gas is a mixed gas of (4) and G2, the gas flow ratio of N2 and 〇2 is 1 〇: 丨, and the vaporized protective film includes yttrium nitride yttrium compound, cerium oxide compound, and cerium oxynitride. According to the deep (four) hole method of the present invention, as a technical solution, the gas flow ratio range of the first gas and the second gas is: SF6: 300-50〇sccm ' C〇2: 400__sccm . The reactive ion engraving power condition of the etching step is 1500 W, _MHz, and the RF power condition of the polymer deposition step is 15 _, _ Hz or 25 qing. The reaction ion burning pressure condition of the engraving step is: 300 mt 〇rr or Ganggang, the polymer deposition step _ gas secret is coffee ___. The role of the switch is to use a capacitor-converted plasma source technology. The gas used in the rhyme step also includes argon. The gas as a preferred embodiment of the present invention includes a third gas for ionic reaction to form a polymer. The gas flow rates of the first gas, the second gas, and the third gas are controlled by flow rate! !control. The third gas is a species of GF8, GF6, CHF3, and C secret. The gas used in the polymer deposition step also includes argon. The technical effect of the present invention is that the chemical reaction in the first-slit chemical reaction is carried out by the use of the chemist in the squirrel for the reaction with the stone (4) _ second gas, 201120953

子刻敍石夕的同時’形成的矽化物保護膜覆蓋於已經形成的TSV 的側壁’有利於提高刻蝕步驟中分別對底部和對側壁的刻蝕 速率比,使刻蝕步驟各向異性特性更好,從而可以延長每一 步刻蝕步驟的時間。因此,使用該方法刻蝕形成TSV時,具 有刻蝕效率高、TSV通孔側壁光滑度好的特點。 【實施方式] 為使本發明的目的、技術方案和優點更加清楚,下面結 Φ 合附圖對本發明作進一步的詳細描述。 =2所示為本發明提供的第一實施例TSV刻蝕方法的流 程示意11。該f TSV亥·方法中,用於對體石夕進行刻韻,具 體要求職形成的TSV通孔的深度、寬度、孔徑等形狀參數 不受本發明_,其可雜财同工#條件要求確定。在該 實施例中’用於刻触6()/zm深的TSV通 驟觸所示第-實施例TSV職方法進行詳細下綱口靡 步驟10卜難步驟:通入肌、_ Ar,對體石夕進行 反應離子刻姓。 在該步驟中,採用反應離子_對财進行舰,體石夕 上存在如圖丨的u所示的掩膜層,用於對TSV進行構圖。在 該具體實施例中,義反應腔採用電容輕合等離子體源技 術,由於電容麵合型反應腔(ccp)氣壓相比電_合型反應 腔(ICP)比較高,大約有幾百mt〇rr,而電感麵合型只有幾 十mtorr,所以在ccp反應腔中頻繁切換的亥m步驟和反應氣 體會花去更多時間來實現反應氣體的置換。該發明的著重點 之一在於_步驟的_氣體的選擇,因此,對於刻钱步驟 201120953At the same time, the formation of the germanium protective film covering the sidewall of the already formed TSV facilitates the improvement of the etching rate ratio of the bottom and the side walls in the etching step, and the anisotropic characteristics of the etching step. Better, so that the time of each step of etching can be extended. Therefore, when the TSV is formed by etching using the method, the etching efficiency is high and the sidewall smoothness of the TSV via hole is good. [Embodiment] In order to make the objects, technical solutions and advantages of the present invention more clear, the present invention will be further described in detail below with reference to the accompanying drawings. = 2 shows a flow chart 11 of the first embodiment TSV etching method provided by the present invention. In the f TSV Hai method, the shape parameters such as the depth, the width, the aperture, and the like of the TSV through-hole formed by the job are not required to be engraved, and the shape and the like are not required by the present invention. determine. In this embodiment, the TSV pass for the touch 6()/zm depth is shown in the first embodiment. The TSV method is described in detail. Step 10: Difficult steps: access to the muscle, _Ar, body Shi Xi carries out the reaction ion engraving. In this step, a reactive layer is used for the ship, and a mask layer as shown by u in the figure is used for patterning the TSV. In this embodiment, the positive reaction chamber adopts a capacitive light-converging plasma source technology, and the capacitance-combined reaction chamber (ccp) pressure is relatively high compared to the electro-combination reaction chamber (ICP), which is about several hundred mt. Rr, and the inductance surface is only a few tens of mtorr, so the step of frequently switching in the ccp reaction chamber and the reaction gas will take more time to achieve the replacement of the reaction gas. One of the focuses of the invention is the _step selection of the gas, therefore, for the step of engraving money 201120953

件不:二描述。我們定義SF6為用於化學反應 SF ’相7砍的々。在該實施例中選擇第一氣體為 離仔"ΓΓ限於此’第—氣體射以是肌等。⑴2氣體在等 離^作訂分解形就等離子體和◦等離子體,c等離子體 離子體會絲面㈣伽,在料面形财碳化合物 1石夕化合物(Sl0)和石夕碳氧化合物(SiCO)的石夕化 物保護膜,在該實施财,錢物保翻㈣主要成分妙 石反乳化合物。因此,我們定義__步驟中的用於形成石夕 化物保護膜的第二氣體。在該實施例中第二氣體選擇為· 但並不限於此,第二氣體還可以是C0、〇2、c〇2、N0,N2、的 =口例如’第一氣體選擇為%和α的混合氣體,队和&的 氣體流量比為1G :卜此時形成的魏物保護财包括石夕氮化 合物(SiN)、魏化合物(SiQ)和錢氧化合物(腿⑴。 在其他具體實施例巾,第二氣體―般不單獨選擇為◦”或者 般不選擇大里的〇2,這是因為〇2作為第二氣體時,其與石夕 反應的靈敏度高,其形成的魏物賴膜齡及厚度等難以 控制。韻過程中,由於c〇2這種第二氣體的存在,會在形成 的TSV的側壁形賴米級厚度的側壁保護^⑽成於顶底 部的石夕化物保護膜在垂直大功率等離子體的刻贿用下馬上 會去除掉)’即石夕化物保護膜。這種石夕化物保護膜能使第一氣 體產生的F等離子不會·_鼓生職效果、或者大大 減弱對側壁的軸效果,這是由於這射化物保護膜相對於 石夕不易於被第-氣體產生轉離子體所化學反個钱。例如 在該實施财,_步驟m方向和锻方向的刻餘速 201120953 率比可以達到刚:卜因此,c〇2等第二氣體的存在能大大降 低刻钱步驟中對側壁齡條,使該彡恤步驟區域各向異性, 每,m步驟形成TSV的側壁相對垂直而不呈弧形狀士氣 體疋y般反應離子聰過程中都通人的氣體,其具體流量範 圍不受本發明限制。在該實施例中,SF6的第-氣體與〇)2的 第-氣體的氣體流量泌為_,⑽為麵s娜,紅可以 為 300sccm ’ 氣壓參數為 200-500mtorr。 步驟102 ’停止通入SFe、c〇2,刻蝕步驟終止。 在該步驟中’可以通過MFC (Mass Flow C〇ntr◦卜流量 控制盗)分別控制SF6、C〇2、Ar的氣體流量’刻歸驟終止 刖,由於本發明實施例中刻蝕步驟具有很好的各向異性,所 、不A要像現有技術那樣頻繁的進行刻餘和聚合物沉積步驟 的父替,以保證側壁的扇形的深度在可接受的範圍内。所以 本發明的刻蝕步驟執行時間可以很長,刻蝕步驟維持的時間 (一般為5-30秒)’相較於現有技術的B〇sch工藝步驟中的 刻餘步驟時間(-般為卜5秒)大大延長,因此,在該實施 例中,一個刻蝕步驟可以完成TSV的10_15/zm的深度的刻 蝕。如圖4所示,刻蝕形成的空洞的側壁是垂直的,與掩膜 層110的垂直度基本一致,且由於對襯底矽120向下刻蝕的 速度遠大於向側壁的刻蝕速度(1〇〇 : 所以每個刻蝕步驟 可以完成比現有Bosch方法的1/zm更深的深度,比如大於 2. 5 或3//in。達到同等深度的刻蝕也可以用更少的刻蝕_ 沉積週期,減少氣體切換次數,同時還能滿足對側壁光滑度 的要求。每一步的刻蝕深度可以根據具體產品加工需要自行 201120953 選擇。 步驟103,判斷TSV刻敍是否結束,如果判斷為“是”, 則TSV刻餘過程結束,如果判斷為“否”,則進入步驟1〇4。 在該實知例中’以Tsv的深度是否達到預定的師m作為判 別TSV刻蝕是否結束的標準。 步驟104,聚合物沉積步驟:通人⑽和紅,在已職 形成的TSV部分的側壁沉積聚合物層薄膜。 • 在該步驟中,在TSV的内側面形成氟碳聚合物層,其厚 度-般在納米級’有時也稱作該聚合物層為純化層。我們定 義C4F8氣體為用來形成聚合物的第三氣體,在該實施例中第 三氣體選擇為⑽,但並不限於此,第三氣體還可以是c4Fe、 CHF3、CHzF2中的一種。通過聚合物沉積步驟,可以在了別的 内側面沉積形成聚合物薄層,在原有Si-0-C化合物側壁保護 層的基礎上添加另一層側壁保護,在後續的刻蝕步驟的垂直 等離子刻餘時,垂直方向的刻钱速度遠遠大於對側壁的刻钱 瞻 速度’從而進一步凸顯整個TSV刻蝕過程的各向異性的特點。 步驟105,停止通入c4F8,聚合物沉積步驟終止。 在該步驟中’可以通過MFC (Mass Flow Control,流量 控制器)分別控制C4Fs、Ar的氣體流量,GF8氣體流量終止, 則表示聚合物沉積步驟終止◊由於在後續的刻蝕步驟中還需 要使用Ar ’ Ar在此不立即終止’後續的刻敍步驟中,調節紅 的氣體流量即可。在該實施例_ ’聚合物沉積步驟的時間為 1~3秒,刻蝕步驟的時間是聚合物沉積步驟的時間的1〇倍或 者10倍以上’因此,該TSV的刻蝕方法中,更多比例的時間 201120953 用於矽的刻蝕,能大大提高TSV的刻蝕效率。同時,也減小 了刻蝕步驟和聚合物沉積步驟的切換頻率,相對易於控制。 步驟105之後,重複進入步驟,從而使刻钱步驟和聚 合物沉積步驟交替進行,大概經過6個迴圈以後,TSV的深度 可以達到預定的60//m,該實施例的TSV刻钱方法結束。 圖3所示為本發明提供的第二實施例TSV刻蝕方法的流 耘示思圖。戎TSV刻餘方法中,用於對體石夕進行刻钱,具體 要求刻_成的TSV通孔的深度、寬度、孔徑等形狀參數不 受本發明限制,其可以根據不同工藝條件要求確定。在該實 施例中’用於刻蝕60卵深的TSV通孔。以下結合具體步驟 對圖3所示第二實施例TSV刻|虫方法進行詳細說明。 步驟20卜刻蝕步驟:通入SFe、c〇2、(^和紅,對體矽 進行反應離子刻钱。 在該步驟中,採用反應離子刻蝕對體矽進行刻蝕,體矽 上存在如圖1的11所示的掩膜層,用於對TSV進行構圖。在 該具體實施例中,該發明的著重點在於刻蝕步驟的刻蝕氣體 的選擇,因此’對於刻蝕步驟的其他工藝條件不作詳細描述, 其與傳統的Bosch工藝刻蝕TSV的方法類似。我們定義Sp6 為用於化學反應等離子體刻蝕矽的第一氣體。在該實施例十 選擇第一氣體為SF6,但並不限於此,第一氣體還可以是CF4、 师3等。C〇2氣體在等離子體作用下分解形成c等離子體和◦ 等離子體,C等離子體和0等離子體會與表面的矽作用,在矽 表面形成矽碳化合物(SiC)、矽氧化合物(Si〇)和梦碳氧化 合物(SiCO)的矽化物保護膜,在該實施例中,矽化物保護 201120953 膜中的主要成分切碳氧化合物。因此’細定義⑺2為刻融 步驟=_於形成魏物保護膜的第二氣體。在該實施例中 =一乳體選擇為⑴2,但並稀於此,第二氣體可以是CO、〇2、 C〇2曰’ ’ n2的組合’由於前述用純氧氣存在關題,所以採 用=合氣體時’氧氣含量要遠低於碳或氮的含量,例如,第 氣體k擇為队和〇2的混合氣體,n2和〇2的氣體流量比為】〇: 1 時形成的矽化物保護膜中包括矽氮化合物(siN)、矽氧 • 化合物(si0)和矽氮氧化合物(SiNO)。在其他具體實施例 中’第=氣體一般不單獨選擇為02、或者一般不選擇大量的 〇2故是因為〇2作為第二氣體時,其與矽反應的靈敏度高, 4成的則t物銳賊成分及厚度等難以控制。該實施例與 圖2所示第_實施例_別是,在_步驟中加人聚合物沉 積步驟所採用的C4F8氣體。我們定義-氣體為用來形成聚合 物的第三氣體,在該實施例巾第三氣體選擇為c4p8,但並不限 槪’第三氣體還可以是C4F6、CHF3、C祕中的一種。刻㈣ i 財’由於c〇2這種第二氣體的存知會在形成的Tsv的侧壁 形成納米級厚度的側壁保護層(形成於TSV底部的魏物保 護膜在垂直大功率等離子體的轟擊作用下馬上會去除掉)。這 種側壁保護層能使第—氣體產生的F等離子不會對其内側= 產生刻餘效果、或者大大減弱對側壁賴贼果,這是由於 這種石夕化物保護膜相對神不易於被第—氣體產生的等離子 體所化學反應舰。例如在該實闕中,舰步驟中,垂直 方向和側壁方向的刻蝕速率比可以達到1000:5。因此, 等第二氣體的存在能大大降低刻飯步驟的各向同性職效 12 201120953 果’使該刻飯步驟區域各向異性,每個刻餘步驟形成Tsv的 ^壁相對垂直而不呈弧形狀。本實施例巾在刻倾段添加⑽ 氣體可以進-步提高側壁的保護能力,使祕步驟進行更長 時間再進入聚合物沉積步驟對侧壁進行保護。同時c爪在刻 財驟的加入,還可以使刻钮步驟和聚合物沉積步驟更容易 切換’轉子體在切換時更容轉持。Ar氣體是-般反麟 子刻钱過程巾都通人的氣體,其具體流量範圍不受本發明限 • 制。在該實施例中’ SFe的第-氣體為450sccm、C〇2的第二氣 體為60〇Sccm、C4F8的第三氣體為5〇_25〇_、Αγ流量為 300:CCin。在具體不同的反應腔中由於尺寸和氣壓的不同,以 上氣體流量參數會有不同,但是只要符合本發本思路都 屬於本發明保護範圍。 在該步驟中’可以通過MFC (Mass Flow⑽加,流量 控制裔)刀別控制SF6、C〇2、C4F8、Ar的氣體流量,刻齡驟 終止前’刻餘步驟維持的時間(一般為5_3〇秒),相對於現 _ 有技術的Bosch工藝步驟中的刻姆驟時間(一般為卜5秒) 大大延長’因此,在該實施例中,刻钱步驟可以完成N的 5 10/ζιπ的冰^度的刻名虫。 步驟203,判斷TSV刻钱是否結束,如果判斷為“是,,, 則TSV韻過程結束,如果判斷為“否”,則進入步驟. 在該實施例中,以TSV的深度是否達到縣的,m作為判 別TSV刻蝕是否結束的標準。 步驟204,聚合物沉積步驟:通人GM口 Ar,在已刻餘 形成的TSV部分的側壁沉積聚合物層薄膜。 201120953 在該步驟中,在TSV的内側面形成氟碳聚合物層,其厚 度一般在納米級,有時也稱作該聚合物層為鈍化層。我們定 義GF8氣體為用來形成聚合物的第三氣體,在該實施例中第 三氣體選擇為GF8,但並不限於此,第三氣體還可以是c4F6、 CHF3 ' CI^F2中的一種。在該實施例中,聚合物沉積步驟的氣Pieces are not: two descriptions. We define SF6 as a ruthenium for chemical reaction SF' phase 7 chopping. In this embodiment, the first gas is selected as the detachment " ΓΓ is limited to this ‘the first gas is a muscle or the like. (1) 2 gas in the plasma is divided into plasma and helium plasma, c plasma ion body surface (four) gamma, in the surface of the carbon compound 1 Shi Xi compound (S10) and Shixi carbon oxide (SiCO ) Shishi compound protective film, in the implementation of the financial, money to protect the (four) main ingredients of the wonderful stone anti-emulsion compound. Therefore, we define the second gas used to form the astaxantide protective film in the __ step. In this embodiment, the second gas is selected as, but not limited to, the second gas may also be C0, 〇2, c〇2, N0, N2, = port, for example, 'the first gas is selected as % and α. The gas flow ratio of the mixed gas, the team and the & is 1G: the Weiwu protection property formed at this time includes Shixia nitrogen compound (SiN), Wei compound (SiQ), and money oxygen compound (leg (1). In other specific embodiments The towel, the second gas is generally not selected as the ◦" or the 〇2 is not selected in the middle. This is because when 〇2 is used as the second gas, the sensitivity of the reaction with the shixi is high, and the formation of the Weishen film age It is difficult to control the thickness and the like. During the rhyme process, due to the presence of the second gas of c〇2, the side wall of the formed TSV is protected by the side wall thickness of the TSV. The vertical high-power plasma will be removed immediately after the bribe.] That is, the Shi Xi compound protective film. This Shi Xi compound protective film can make the F plasma generated by the first gas not be able to take effect, or greatly Attenuate the axial effect on the sidewall, which is due to this shot protection Compared with Shi Xi, it is not easy to be chemically reversed by the first gas-generating trans-ionic body. For example, in this implementation, the ratio of the step m direction and the forging direction of the engraving speed 201120953 can be as follows: b, therefore, c〇2 The presence of the second gas can greatly reduce the sidewall strip in the engraving step, so that the tanning step region is anisotropic, and the sidewall of the TSV forming the TSV is relatively vertical and does not have an arc shape. The specific flow range of the gas in the ion process is not limited by the present invention. In this embodiment, the gas flow of the first gas of the first gas of SF6 and the gas of 〇2 is _, (10) is the surface s Na, red can be 300sccm 'The air pressure parameter is 200-500mtorr. Step 102 'Stop access to SFe, c〇2, the etching step is terminated. In this step 'Mass Flow C〇ntr◦ flow control stolen The gas flow rate of the SF6, C2, and Ar is controlled to be singly terminated. Since the etching step in the embodiment of the present invention has a good anisotropy, the A is not as frequently as the prior art. Remaining and parenting of the polymer deposition step In order to ensure that the depth of the fan shape of the sidewall is within an acceptable range, the etching step of the present invention can be performed for a long time, and the etching step is maintained for a period of time (generally 5-30 seconds)' compared to the prior art B〇. The residual step time (usually 5 seconds) in the sch process step is greatly extended, and therefore, in this embodiment, one etching step can complete the etching of the depth of 10_15/zm of the TSV. The sidewall of the void formed by the etching is vertical, substantially perpendicular to the verticality of the mask layer 110, and the etching speed to the substrate 矽120 is much larger than the etching speed to the sidewall (1:: Each etching step can achieve a depth deeper than 1/zm of the existing Bosch method, such as greater than 2.5 or 3//in. Etching to the same depth can also reduce the number of gas switching times with fewer etching cycles, while still meeting the requirements for sidewall smoothness. The etching depth of each step can be selected according to the specific product processing needs of 201120953. In step 103, it is judged whether or not the TSV description is finished. If the determination is "YES", the TSV engraving process ends. If the determination is "NO", the process proceeds to step 1〇4. In this practical example, it is judged whether or not the depth of Tsv reaches the predetermined division m as a criterion for judging whether or not the TSV etching is finished. Step 104, a polymer deposition step: passing human (10) and red, depositing a polymer layer film on the sidewall of the already formed TSV portion. • In this step, a fluorocarbon polymer layer is formed on the inner side of the TSV, the thickness of which is generally on the nanometer scale. Sometimes the polymer layer is also referred to as a purification layer. We define C4F8 gas as the third gas used to form the polymer. In this embodiment, the third gas is selected to be (10), but is not limited thereto, and the third gas may be one of c4Fe, CHF3, CHzF2. Through the polymer deposition step, a thin layer of polymer can be deposited on the other inner side, and another layer of sidewall protection is added on the basis of the original Si-0-C compound sidewall protective layer, and the vertical plasma etching is performed in the subsequent etching step. In the rest of the day, the speed of engraving in the vertical direction is much greater than that of the sidewalls, which further highlights the anisotropy of the entire TSV etching process. In step 105, the passage of c4F8 is stopped and the polymer deposition step is terminated. In this step, the gas flow rate of C4Fs and Ar can be controlled separately by MFC (Mass Flow Control), and the flow of GF8 gas is terminated, indicating that the polymer deposition step is terminated, because it needs to be used in the subsequent etching step. Ar 'Ar does not immediately terminate this step in the subsequent engraving step, adjusting the red gas flow. In this embodiment, the time of the polymer deposition step is 1 to 3 seconds, and the time of the etching step is 1 time or more than 10 times the time of the polymer deposition step. Therefore, in the etching method of the TSV, The multi-proportion time 201120953 is used for the etching of germanium, which can greatly improve the etching efficiency of TSV. At the same time, the switching frequency of the etching step and the polymer deposition step is also reduced, which is relatively easy to control. After step 105, the step of entering is repeated, so that the engraving step and the polymer deposition step are alternated. After about 6 loops, the depth of the TSV can reach a predetermined 60/m, and the TSV engraving method of the embodiment ends. . Fig. 3 is a flow chart showing the TSV etching method of the second embodiment of the present invention. In the 戎TSV engraving method, it is used to engrave the body stone, and the shape parameters such as the depth, the width, the aperture, and the like of the TSV through hole are not limited by the present invention, and can be determined according to different process conditions. In this embodiment, it is used to etch 60 TS deep TSV vias. The TSV engraving method of the second embodiment shown in Fig. 3 will be described in detail below with reference to specific steps. Step 20: etching step: pass SFe, c〇2, (^ and red, and perform reactive ion engraving on the body 。. In this step, the body enthalpy is etched by reactive ion etching, and the body 矽 is present. A mask layer as shown in 11 of FIG. 1 is used to pattern the TSV. In this embodiment, the focus of the invention is on the selection of the etching gas in the etching step, thus 'others for the etching step The process conditions are not described in detail, which is similar to the conventional Bosch process for etching TSV. We define Sp6 as the first gas used for chemical reaction plasma etching. In this example, the first gas is selected as SF6, but Without limitation, the first gas may also be CF4, Division 3, etc. The C〇2 gas is decomposed by the plasma to form a c-plasma and a helium plasma, and the C-plasma and the zero-plasma may interact with the surface. A germanium surface forming a telluride protective film of a bismuth carbon compound (SiC), a germanium oxide compound (Si〇), and a dream carbon oxide compound (SiCO). In this embodiment, the telluride protects the main component of the 201120953 film by cutting carbon oxides. .therefore' The definition (7) 2 is a engraving step = _ in forming a second gas of the Wei material protective film. In this embodiment, = a milk body is selected as (1) 2, but is inferior thereto, and the second gas may be CO, 〇 2, C 〇 The combination of 2曰' 'n2' is due to the existence of pure oxygen, so the oxygen content is much lower than the carbon or nitrogen content when using the gas. For example, the gas k is selected as the mixed gas of the group and the 〇2. The gas flow ratio of n2 and 〇2 is 〇: 1 The bismuth compound protective film formed includes bismuth nitrogen compound (siN), argon oxide compound (si0), and cerium oxynitride (SiNO). In the example, the 'the first gas is not selected as 02 alone, or a large amount of 〇2 is generally not selected. Therefore, when 〇2 is used as the second gas, the sensitivity of the reaction with ruthenium is high, and 40% of the thief component is The thickness and the like are difficult to control. This embodiment is the same as the first embodiment shown in Fig. 2, in which the C4F8 gas used in the polymer deposition step is added. We define - the gas is the third used to form the polymer. The gas, in the embodiment, the third gas is selected as c4p8, but is not limited to 'The third gas can also be one of C4F6, CHF3, C secret. Engraving (4) i Cai's knowledge of the second gas of c〇2 will form a nano-thickness sidewall protective layer on the sidewall of the formed Tsv ( The Wei-wei protective film formed at the bottom of the TSV is immediately removed by the bombardment of the vertical high-power plasma. The sidewall protective layer enables the F-plasma generated by the first gas to not have a residual effect on the inner side. Or greatly weaken the side wall of the thief, which is due to the fact that the lithium protective film is relatively resistant to the chemical reaction of the plasma generated by the first gas. For example, in the actual step, the ship step, the vertical direction and The etching rate ratio in the sidewall direction can reach 1000:5. Therefore, the presence of the second gas can greatly reduce the isotropic effect of the rice-cutting step. 12 201120953 The result is an anisotropy of the stepping step, and each of the remaining steps forms a wall of Tsv that is relatively vertical without arcing. shape. The addition of (10) gas to the engraved section of the present embodiment can further enhance the protection of the sidewalls, allowing the secret step to be carried out for a longer period of time to enter the polymer deposition step to protect the sidewalls. At the same time, the addition of the c-claw in the engraving step can also make the button step and the polymer deposition step easier to switch. The rotor body is more versatile when switching. The Ar gas is a gas that is common to all, and the specific flow range is not limited by the present invention. In this embodiment, the first gas of 'SFe is 450 sccm, the second gas of C 〇 2 is 60 〇 Sccm, the third gas of C4F8 is 5 〇 25 〇 _, and the flow rate of Α γ is 300: CCin. The gas flow parameters may vary depending on the size and pressure in different reaction chambers, but it is within the scope of the present invention as long as it conforms to the present invention. In this step, the gas flow rate of SF6, C〇2, C4F8, and Ar can be controlled by MFC (Mass Flow (10) plus flow control), and the time before the aging is terminated (usually 5_3〇) Second), which is greatly extended compared to the current grammar process time (usually 5 seconds) in the Bosch process step. Therefore, in this embodiment, the engraving step can complete N 5 10/ζιπ ice. ^ degree of the famous insect. Step 203, it is judged whether the TSV engraving is over. If the judgment is "Yes," the TSV rhyme process ends. If the determination is "NO", the process proceeds to the step. In this embodiment, whether the depth of the TSV reaches the county, m is used as a criterion for judging whether or not the TSV etching is finished. Step 204, a polymer deposition step: depositing a polymer layer film on the sidewall of the TSV portion which has been formed by the GM port Ar. 201120953 In this step, in the TSV The inner side forms a fluorocarbon polymer layer, the thickness of which is generally on the order of nanometers, sometimes referred to as the passivation layer. We define GF8 gas as the third gas used to form the polymer, in this embodiment The third gas is selected as GF8, but is not limited thereto, and the third gas may also be one of c4F6, CHF3 'CI^F2. In this embodiment, the gas of the polymer deposition step

壓條件為200-600mtorr。通過聚合物沉積步驟,可以在TSV 的内侧面沉積形成聚合物薄層,在後續的刻餘步驟的垂直等The pressure condition is 200-600 mtorr. Through the polymer deposition step, a thin layer of polymer can be deposited on the inner side of the TSV, in the vertical of subsequent engraving steps, etc.

離子刻钱時形成側壁保護,垂直方向的刻钕速度遠遠大於對 側壁的刻蝕速度,從而進一步凸顯整個TSV刻蝕過程的各向 異性的特點。 步驟205 ’調整GF8和Ar的氣體流量,聚合物沉積步驟 終止。 在該步驟中,可以通過MFC (Mass Flow Contr〇l,流量 控=)分別控制C4F8、Ar的氣體流量’調整C4F+ Ar的氣 體狀里,接著開始通人職步_氣體,職示聚合物沉積 步驟終止。由於在後續的韻步射還需要使用C4F8、Ar,控 制W、Ar的氣體流量的戮不需要作開或者關的切換操作, 防止控制⑽氣體流量的肌在聚合物沉積步驟與刻姓步驟 3作開_換操作,降低祕驗備成本要求。在該實施 聚。物儿積步驟的時間為卜7秒,刻餘步驟的時間是 積步驟的時間的10錢者10倍以上,因此,該TSV 更多比例的時間用於石夕的刻钱,能大大提高 的切換頻/t °同時,也減小了聰步驟和聚合物沉積步驟 的切換頻率’相對易於控制。 201120953 步驟205之後,重複進入步驟2〇卜從而使刻餘步驟和聚 合物沉積步驟交替進行,大概經過6個迴圈以後,TSV的深度 可以達到預定的60 ,TSV刻蝕方法結束。該實施例相對於 圖2所示的第一實施例,TSV刻蝕方法的主要區別在於刻蝕步 驟中增加了 GF8這種第三氣體,因此,可以一方面增加操作 空間使每-刻ϋ倾可以刻铜更深,另一方面幫助刻敍步 驟和聚合物沉積步驟之_迅速轉換,使兩步驟之間的轉換 • 更加平滑,TSV趣的小突起相對更小,TSV _壁的光滑度 得到提高。 本發明相對現有技術,在保證綱纟速率的基礎上提高了 石夕孔侧壁的光滑度,由於制多個難迴圈,所以每個刻飯 迴圈中_財驟可以允許—定程度的㈣_(如上面所 說的1000 . 5)以保5}刻ϋ速率,最終多細恤迴圈的總體效 果域是非等向㈣。每個雜迴_包括—辣合物沉積 步驟’可以保證職完成部分的側壁在下—個職迴圈中不 釀會被伽掉。每_麵圈包括—個職步驟,可以清除側 多餘聚合物’防止聚合物在職到較深位置時在開 、以上實施例之描述巾,為便於綱,健述本發明之深 石夕通孔的纖方法類於電容柄合雜子反應腔之情形。應 石夕通孔的聰方法也可以運用於勸 或者’獅於騎制電容1¾合等離子 冑源技術和械私轉子體源技狀反應腔中。 在不偏離本發明的精神和範圍的情況下還可以構成許多 201120953 有,大差別的實施例。應當理解’除了如所附的權利要求所 限疋的’本發明不限於在說明書巾所述的具體實施例。 【圖式簡單說明】 圖1是現有技術的深矽通孔的刻蝕方法示意圖。 圖2是本發明提供的第一實施例TSV職方法的流程示 意圖。The side wall protection is formed when the ions are engraved, and the engraving speed in the vertical direction is much larger than the etching speed on the side walls, thereby further highlighting the anisotropy of the entire TSV etching process. Step 205' adjusts the gas flow rate of GF8 and Ar, and the polymer deposition step is terminated. In this step, MFC (Mass Flow Contr〇l, flow control =) can be used to control the gas flow rate of C4F8 and Ar, respectively, to adjust the gas state of C4F+Ar, and then start the special step_gas, job display polymer deposition The step is terminated. Since it is necessary to use C4F8, Ar in the subsequent rhythm shot, the gas flow rate of controlling W and Ar does not need to be switched on or off, and the muscle in the polymer deposition step and the step 3 are prevented from being controlled (10). Open _ change operation, reduce the cost of secret inspection. In this implementation, gather. The time of the product step is 7 seconds, and the time of the step is 10 times more than 10 times of the time of the step. Therefore, more time of the TSV is used for the engraving of Shi Xi, which can be greatly improved. Switching frequency /t ° also reduces the switching frequency of the Cong step and the polymer deposition step 'relatively easy to control. 201120953 After step 205, the process proceeds to step 2, so that the engraving step and the polymer deposition step are alternated. After about 6 cycles, the depth of the TSV can reach a predetermined 60, and the TSV etching process ends. Compared with the first embodiment shown in FIG. 2, the main difference of the TSV etching method is that the third gas of GF8 is added in the etching step, so that the operation space can be increased on the one hand to make each It can engrave copper deeper, on the other hand, it helps to quickly convert the engraving step and polymer deposition step, making the transition between the two steps smoother, TSV interesting small protrusions are relatively smaller, TSV _ wall smoothness is improved . Compared with the prior art, the invention improves the smoothness of the side wall of the Shixi hole on the basis of ensuring the rate of the skeleton. Because of the difficulty of making a plurality of difficult loops, each of the reeling loops can allow a certain degree of (4) _ (as mentioned above, 1000. 5) In order to guarantee the rate of engraving, the overall effect area of the final multi-tie loop is non-isotropic (four). Each of the miscellaneous _ including - the succulent deposition step can ensure that the side walls of the job completion portion are not glazed in the lower-partition loop. Each _ dough ring includes a personal step, which can remove the side excess polymer 'to prevent the polymer from being in the deep position, and to describe the towel in the above embodiment. For the sake of convenience, the deep stone eve hole of the present invention is described. The fiber method is similar to the case where the capacitor handle is combined with the reaction chamber. The Cong method of Shi Xitong Kong can also be used to persuade or the lion to ride the capacitor 13⁄4 combined with the plasma source technology and the mechanical rotor rotor source technology reaction cavity. Many embodiments of 201120953 having a large difference can be constructed without departing from the spirit and scope of the present invention. It is to be understood that the invention is not limited to the specific embodiments described in the specification. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a etching method of a deep boring through hole in the prior art. Fig. 2 is a flow chart showing the TSV method of the first embodiment provided by the present invention.

圖3是本發明提供的第二實施例TSV職方法的流程示 意圖。 圖4是本發明具體實施例的刻蝕效果示意圖。 【主要元件符號說明】 (習式) 掩膜層 襯底矽 聚合物層 (本發明) 101〜105步驟 201〜205步驟 110 120 掩膜層 襯底矽Fig. 3 is a flow chart showing the TSV method of the second embodiment provided by the present invention. 4 is a schematic view showing an etching effect of a specific embodiment of the present invention. [Main component symbol description] (Literary) Mask layer Substrate 矽 Polymer layer (Invention) 101 to 105 steps 201 to 205 steps 110 120 Mask layer Substrate 矽

1616

Claims (1)

201120953 七、申請專利範圍·· 舰!^種财軌_财法,包括採収子刻制 驟㈣合物赌步驟,所述職倾和聚合物沉積步 用^進仃’其特徵在於’所述刻歸驟採用的氣體中包括 罐腊从離Γ刻卿的第—氣體和用於細反應形成魏物保 5、的第二氣體,其中祕步驟是各向異性的。 2·如申請專利細第丨項所述之深_孔_财法, 其中,所述聚合物沉積步·賴賴财包括胁形成聚合 物的第三氣體。201120953 VII, the scope of application for patents · · ship! ^ kind of financial track _ financial method, including the harvesting sub-manufacturing step (four) compound gambling step, the job and polymer deposition step with ^ 仃 'characterized by ' The gas used in the above-mentioned process includes the first gas of the canal from the sputum and the second gas for the fine reaction to form the Weishen 5, wherein the secret step is anisotropic. 2. The deep_hole_financial method as described in the patent application, wherein the polymer deposition step comprises a third gas which forms a polymer. 3·如申請專利範圍第2項所述之深料孔_钱方法, 其中,所述職步驟的氣體還包括所朗於形成聚合物 的第三氣體。 4.如申料職圍第3項所述之神通孔的纖方法, 其中’所述第-氣體、第二氣體和第三氣體的氣體流量通過 流量控制器控制。 5. 如申請專利範圍第3項所述之深矽通孔的刻蝕方法, 其中,所述第三氣體為C—、(¾、CHF3、(:祕中的一種或任 意幾種的組合。 6. 如申請專利範圍第1項所述之深矽通孔的刻蝕方法, 其中,所述第一氣體為SFpNF3中的一種。 7. 如申請專利範圍第1項所述之深矽通孔的刻蝕方法, 其中,所述第二氣體包括C〇2、CO,N0,沁中的一種。彳 8. 如申請專利範圍第7項所述之深矽通孔的刻蝕方法, 其中’所述第二氣體為N2和〇2的混合氣體時,队和〇2的氣體 17 201120953 流量比為10 : 1,矽化物保護膜包括矽氮化合物、矽氧化合物 和矽氮氧化合物。 9. 如申請專利範圍第1項所述之深矽通孔的刻蝕方法, 其中,所述刻飯步驟的時間是所述聚合物沉積步驟 10倍或10倍以上。 B、 10. 如申請專利範圍第丨項所述之深矽通孔的刻蝕方法, 其中,所述第一氣體和第二氣體的氣體流量比小於i: i。3. The deep hole_money method of claim 2, wherein the gas of the step further comprises a third gas that is formed to form a polymer. 4. The fiber method of the Shentong hole according to Item 3 of the application, wherein the gas flow rates of the first gas, the second gas, and the third gas are controlled by a flow controller. 5. The etching method of the deep through hole according to claim 3, wherein the third gas is C-, (3⁄4, CHF3, (: one of the secrets or a combination of any of several). 6. The etching method of the deep through hole according to claim 1, wherein the first gas is one of SFpNF3. 7. The deep through hole according to claim 1 of the patent application. The etching method, wherein the second gas comprises one of C 〇 2, CO, N0, 沁. 彳 8. The etching method of the deep boring hole according to claim 7 of the patent application, wherein When the second gas is a mixed gas of N2 and 〇2, the flow ratio of the gas of the team and the 〇2 to the 201120953 is 10:1, and the bismuth compound protective film includes the cerium compound, the cerium compound and the cerium oxynitride. The etch method of the deep boring hole according to claim 1, wherein the time of the step of cutting is 10 times or more than 10 times of the polymer deposition step. B. 10. The method for etching a deep through hole according to the item, wherein the first gas and the second gas The gas flow ratio is less than i: i. 11. 如申請專利範圍第3項所述之深矽通孔的刻蝕方法, 其中’所述第二氣體和第三氣體的氣體流量比範圍大於2:卜 12. 如申請翻細第丨項所述之_通孔_银方法, 其中,瓶步驟的反應離子刻佩壓條件為:細―咖衡r。 13. 如申請專利範圍第丨項所述之料通孔的贿方法, 其中’所蘭财法運電_合等離子反應腔或電 合等離子反應財’或者,顧關時測電_合等離子 體源技術和電感輕合等離子||源技術之反應腔中。 14. 如申請專利範圍第丨項所述之深料孔的顺方法, 其中,所述·步驟採用的氣體還包括氬。 15·如申請專利範圍第i項所述之深料孔的刻姓方法, 八中所述刻兹步驟刻钱時間大於聚合物沉積步驟的時間3 、16.如申請專利範圍第15項所述之深石夕通孔的刻蝕 法’其中’所述刻歸驟時間為5_15秒。 17·如”專利範圍第丨項所述之深料孔_韻方法 /、中’所述母_歸驟刻麵度大於2.5_。 18 201120953 18.如申請專利範圍第17項所述之深矽通孔的刻蝕方 法,其中,所述每個刻蝕步驟刻蝕深度大於3#m。11. The etching method of the deep through hole according to claim 3, wherein the gas flow ratio range of the second gas and the third gas is greater than 2: b. The method of the through hole_silver method, wherein the reactive ion engraving pressure condition of the bottle step is: fine-barrage r. 13. For example, the bribe method of the through hole of the material mentioned in the scope of the patent application, in which the 'Lancai method of transporting electricity_combined plasma reaction chamber or electric plasma reaction finance' or Gu Guanshi electricity measurement-combined plasma Source technology and inductive light plasma || source technology in the reaction chamber. 14. The method of claim 1, wherein the gas used in the step further comprises argon. 15. The method for engraving the deep hole according to item i of the patent application scope, the time for engraving in the eighth step is greater than the time for the polymer deposition step. 3, 16. As described in claim 15 The deep etching method of the through hole is '5' and the return time is 5-15 seconds. 17. The deep hole _ rhyme method /, in the 'part of the patent scope, as described in the third paragraph of the patent range, is greater than 2.5_. 18 201120953 18. As described in claim 17 The etching method of the through holes, wherein the etching depth of each of the etching steps is greater than 3 #m.
TW98142480A 2009-12-11 2009-12-11 An etching method for deep - through - hole TWI416624B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98142480A TWI416624B (en) 2009-12-11 2009-12-11 An etching method for deep - through - hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98142480A TWI416624B (en) 2009-12-11 2009-12-11 An etching method for deep - through - hole

Publications (2)

Publication Number Publication Date
TW201120953A true TW201120953A (en) 2011-06-16
TWI416624B TWI416624B (en) 2013-11-21

Family

ID=45045376

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98142480A TWI416624B (en) 2009-12-11 2009-12-11 An etching method for deep - through - hole

Country Status (1)

Country Link
TW (1) TWI416624B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887164A (en) * 2012-12-20 2014-06-25 北京北方微电子基地设备工艺研究中心有限责任公司 Deep silicon etching method
TWI571921B (en) * 2013-12-31 2017-02-21 ICP plasma processing chamber and its gas injection device, silicon hole etching method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4241045C1 (en) * 1992-12-05 1994-05-26 Bosch Gmbh Robert Process for anisotropic etching of silicon
DE4317623C2 (en) * 1993-05-27 2003-08-21 Bosch Gmbh Robert Method and device for anisotropic plasma etching of substrates and their use
DE19706682C2 (en) * 1997-02-20 1999-01-14 Bosch Gmbh Robert Anisotropic fluorine-based plasma etching process for silicon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887164A (en) * 2012-12-20 2014-06-25 北京北方微电子基地设备工艺研究中心有限责任公司 Deep silicon etching method
TWI514470B (en) * 2012-12-20 2015-12-21 Beijing Nmc Co Ltd Deep silicon etching method
TWI571921B (en) * 2013-12-31 2017-02-21 ICP plasma processing chamber and its gas injection device, silicon hole etching method

Also Published As

Publication number Publication date
TWI416624B (en) 2013-11-21

Similar Documents

Publication Publication Date Title
TWI538049B (en) Method for achieving smooth side walls after bosch etch process
Jansen et al. The black silicon method II: The effect of mask material and loading on the reactive ion etching of deep silicon trenches
Owen et al. High aspect ratio deep silicon etching
US6284666B1 (en) Method of reducing RIE lag for deep trench silicon etching
TWI416609B (en) Methods for minimizing mask undercuts and notches for plasma processing system
EP2105952A2 (en) Deep reactive ion etching
TW200525689A (en) Method of forming a dielectric film including an air gap and a low-k dielectric layer, and semiconductor structure
Jansen et al. Black silicon method XI: oxygen pulses in SF6 plasma
Dixit et al. Effect of SF6 flow rate on the etched surface profile and bottom grass formation in deep reactive ion etching process
CA2938783A1 (en) Method of fabricating nano-scale structures and nano-scale structures fabricated using the method
TW201236054A (en) Semiconductor device manufacturing method
TW201216354A (en) Method for etching high-aspect-ratio features
CN103578973B (en) The circulation lithographic method of silicon nitride high depth-to-width ratio hole
Kamto et al. Cryogenic inductively coupled plasma etching for fabrication of tapered through-silicon vias
TW201140690A (en) Dry etching method
EP2887386B1 (en) Method of etching
TW201120953A (en) A through silicon via etching method.
JP2023159347A (en) Substrate processing method and substrate processing apparatus
JP2015015425A (en) Pattern formation method
CN105448697B (en) The lithographic method of high aspect ratio structure and the production method of MEMS device
CN104851834B (en) A kind of preparation method of semiconductor devices
JP2009206130A (en) Method and apparatus of dry etching
CN114121639A (en) Manufacturing method of smooth groove and smooth groove structure
US9252023B2 (en) Etching method and apparatus
CN108133888B (en) Deep silicon etching method