TW201120938A - Method of fabricating a transferable crystalline thin film - Google Patents

Method of fabricating a transferable crystalline thin film Download PDF

Info

Publication number
TW201120938A
TW201120938A TW98142691A TW98142691A TW201120938A TW 201120938 A TW201120938 A TW 201120938A TW 98142691 A TW98142691 A TW 98142691A TW 98142691 A TW98142691 A TW 98142691A TW 201120938 A TW201120938 A TW 201120938A
Authority
TW
Taiwan
Prior art keywords
film layer
film
substrate
crystal
thin film
Prior art date
Application number
TW98142691A
Other languages
Chinese (zh)
Other versions
TWI451474B (en
Inventor
Tien-Hsi Lee
Original Assignee
Tien-Hsi Lee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tien-Hsi Lee filed Critical Tien-Hsi Lee
Priority to TW098142691A priority Critical patent/TWI451474B/en
Publication of TW201120938A publication Critical patent/TW201120938A/en
Application granted granted Critical
Publication of TWI451474B publication Critical patent/TWI451474B/en

Links

Abstract

A method fabricates a transferable crystalline thin film structure on an aluminum oxide substrate. The steps by order is to deposit a metal-nitride layer on the surface of the aluminum oxide substrate, to grow an amorphous layer on the metal-nitride layer, and to epitaxially grown a crystalline layer on the amorphous layer that forms the thin film structure on the aluminum oxide substrate. A recrystallizing process is applied on the thin film structure on the aluminum oxide substrate to transform the thin film structure into a crystalline thin film structure. And then the surface of the crystalline thin film substrate is exposed to the hydrogen ion source for injecting hydrogen ions inside. The surface of the crystalline thin film substrate is then bonded with another substrate through a wafer bonding approach. The crystalline thin film structure is separated from the aluminum oxide substrate and then transferred onto one any substrate by using an energy-input process.

Description

201120938 六、發明說明: 【發明所屬之技術領域i 在一任意基板(如石英、玻璃、聚合物薄片等)表面上,合成一低缺陷密度、單晶半 導體薄膜是當今微電子、機械光學、微機電、生物感測器等先端科技業在元件製程中201120938 VI. Description of the Invention: [Technical Fields of the Invention i] On a surface of an arbitrary substrate (such as quartz, glass, polymer sheet, etc.), a low defect density, single crystal semiconductor film is synthesized in today's microelectronics, mechanical optics, and micro Advanced technology in electromechanical and biosensors in component manufacturing

所需求之複合基板。以光電領域的矽基薄膜太陽能電池為例:現今常見的製程是以化 學氣體沈積製程(CVD)將矽晶薄膜長於¥璃之上/但是r•般玻螭基板屬於非晶材料,這 項材料上的先天雖關’使得在其±賴的轉料無法長祕有單晶晶體結構的薄 膜。在玻璃基板上时晶薄顧途非常廣泛,例如也被製成微電子驅動電制於液晶 員示器之中,工業產值相當龐大。但是無論如何,此種非晶梦薄膜之載子遷移率3〜 〇.7cm2/VS)受到高度财晶粒邊界干_浦,無域付現今快速電子運作的要求, 也不符高鱗太電池所需;而且若在其上製倾膽細電路,在運射更是容 易產生廢熱,消耗能量。為了減少這類晶·構中晶粒雜密度,在玻璃基板上的非 晶石夕薄膜可經由雷射掃描照射之再結晶加工製程,大量減少晶粒邊界,產生優於非晶 石夕的多晶_ ’使載子_提升為〗、2 emW。現今的_縣_太陽能電 池所需要的材_ ’是_栽子_單晶賴,_速_子電洞,避開 再復合現象,有效提升光·姻_。但是大_生產技術,又財賴上生長石夕 薄膜為主流,以至光電轉換效率偏低。探討這類薄膜晶體組織問題的根源,乃係玻璃 為非曰曰基板因此無_用任何沉積方法,在玻璃上沉積㈣晶薄卿自然成為非 晶矽結構。 儘官多aa雜纽《錄好咐義構,但其載子遷鲜對高速好產品而言仍 然偏低,瓣卿物咐蚊糊繼。她之[樹或是密度 細少罐㈣爾咖,賴㈣顺刪㈣喊 4 201120938 非晶石夕甚多,而且穩定度也相當好。本發明即是在一氧化紹生長基板上爲晶形成一單 晶石夕薄膜躲構,織狀純化财長基板分離或轉移至其他任意基紅的方法。 【先前技術】 現今應用在微電子產業常見的單晶石夕薄膜雖有單晶的特徵,亦即是沒有晶粒邊界, 但可能内部存在有較高的差排密度。這類薄膜仍然具有足夠高的載子遷移率⑽ cmVVs)。在現今單晶_膜形成技射,其中—種方法是直接在γ切面的氧化銘(了 • _Ab〇3)基板上’以蟲晶技術來長㈣膜。這種蠢晶長單晶㈣膜的原理是r切面氧化 鋁和(100)石夕薄膜表面原子空間排列相似。可是雙方晶格常數卻不匹配,長出後的石夕晶 薄膜層雖有單晶結構,仍存有相當高的差排密度。因此伴隨此技術發展出應用雷射區 域熔融、軒佈她傷、賴敎等方法,使能產生再結晶來槪應變力,消除這些 差排。_生胁氧脑基板上的單祕薄膜財滅高的藤密度,其載子遷移率 之數量級與在别述非晶生長基板上獲得的石夕薄膜層相較,仍為相當高,為2⑼至咖(cm 2/Vs)。 鲁從工業生絲本上財量’氧化板甚為昂貴,若能在單砂㈣膜在上形 成之後’轉移至低成本的玻璃基板上,然後此氧化銘基板回收,再經表面處理,可當 作模《紐絲切晶_,再重_移至其他域本基板上,便㈣縣能大幅 降氐更進步的發展,可合成位於可撓性基板(此^此触批邮3,例如塑膠)上的 單明石夕細。現今在可撓性基板上卿_,主要為有齡晶舰其載子遷移率相 當低(<lcm2/VS)。如應用將前述氧化銘上單晶石夕薄膜結構於製作可撓性薄膜型太陽 能電池時’能將具有PN結(PNjunction)元件之單晶石夕薄膜先形成後,再低溫轉移到塑 膠或聚合物等可撓性基板上,不但將可提供雜有财_更優異的魏雜,同時 201120938 單晶㈣難有情„之_性質M物敍的抗破刪峨處e toughness),可 配口可繞折基板彎曲折疊而維持其品質。發屐此類高效率之太陽能電池技術,或是前 面提到的可繞折基板電子產品的應用,關鍵仍然是在於如何以符合經濟效益之方式, 形成單Ba⑦細在大輯之輕峡娜基板上才能絲體有高載子漂移速率來製 作高速電子元件。這種在單晶__製作的電子元件,當然遠_成於玻璃上之非 晶石夕薄膜層或是塑膠上之有機石夕基電子元件,有更好電性和可靠性,將是項新興產品 的領域。 取所周知’欲單祕_的先絲件是要有晶觀配,可當晶種的生長 基板,此外,触長基板麵忍受—定高的長晶溫度,以達到_定的單晶相變化。因 為蟲晶的溫度和高度晶格匹配㈣ieemismateh<5%)生長基板的限制直接在低溫玻 璃基板上形成單砂薄膜馳轉錄高,在非晶結構的玻璃基板上直接長單晶石夕薄 膜是種近於*可能的方法。可行的方法是經由—生長基綠長成為良好特性之單晶石夕 薄膜層再轉移至塑膠或是玻璃等任意基板上。現今在氧化銘基板上蟲晶生長優質單 夕薄膜方法如下.先在氧化基板上以低溫生長―層非晶梦薄膜作為緩衝層,然後 再昇高製程溫度’成長正常單晶石夕薄膜。開始時長晶時,在與非晶緩衝層生長界面有 差排產生’然當此單晶賴織到_定厚麟,雜賴力槪可·減少。因此越 後長出的薄膜内的晶體結構將漆近於完美,而差排集中在石夕薄膜與氧化銘基板介面及 其鄰近處。為要解決差排的問題’需要將此區塊晶格造成更大的扭曲變形,以便健存 應變能,在後續高溫退火製程中來㈣再結晶。其_之—的方法便是卿原子以自我 離子雜枝,时適_雛量植人__,使之獻的㈣子晴錢氧化銘 生長介面’卿義與氧化絲板介面處的晶體結構縣破壞,成為H態。隨後 以高溫退火處理這塊經矽原子自我佈植後矽薄膜之氧化鋁晶圓。 6 201120938 右此石夕晶薄膜成功生長在氡化絲板上後,下一步便是薄膜轉移技術。九十年代半 導體業界對絕緣神晶圓(Silie_nInsulatOT)材料雜烈需求,使單晶㈣膜轉移技 術發展-日千里。現在,將單晶稍由塊體單晶砂·材料轉移至任意基板,有數種 不同的方式’但大部分不符低成本大賴贿效益或是不切實際。例如_種方法是將 石夕a曰圓内建B/Ge為晶侧停止層,然後與玻璃或是塑膠基板以晶圓鍵合方式結合,再 由背面酬移除大部分财基板^此方法對於大面積的覆蓋顧基板而言是不符經濟 > '、的九八零年代,IBM發展應用氧離子直接植入法(Separation by Implantation φ 0xygen,SIM0X)麵展製作以氧化層隔絕基板之超薄單晶㈣膜SOI材料。而該氧 化層可成為十分優異的侧停止層,將單晶石夕薄膜轉移到玻璃或是娜基板上。然而 SIM0X製程需要植入非常高劑量的氡離子(約5 X 1〇18,咖2),雖然經過高溫退火處理, 仍然無法使因植入氧離子在石夕晶薄膜層内造成之缺陷全部消除。一九九二年,法國的 布鲁爾(Dr. M. Bruel)發明「智七刀法」(Smart Cut ® Process) »智切法能使形成知單晶 矽薄膜厚度亦具有如SIM〇x優異的均.勻度。依據_丨於美國專利文件⑽p福 5,374,564)所請求之專利範圍(claims)描述,該制程步驟是先於一原始基板中植入相 鲁 當1^的劑量(約1X1()1W)如氫、鈍氣等氣體的離子,然後與另一目標基板鍵合成 體,接著再施以加高溫熱處理(heating),使植入之氫離子在植入層中聚合,進而生 成許多I聽(mierobubbles)。_這麵氣泡在連成—#統祕,_分離薄膜。 由於智切法所得之薄膜均勻度十分良好,缺陷密度小,氫氣逸出後也無毒無害,沒有 環境污染問題,且可以回收原始基板材料。以上氧離子直接植入法或是智切法皆以離 子植入的能量來控制單晶__膜厚。眾所壯,_子佈植方法雌生的單晶石夕 4膜,生產所需之成本相當昂高,不太能符合生產太陽能電池的成本需要。況且智切 法在薄膜分離的製程中,需要攝氏_度的熱處理,無法與常用之玻璃或是塑膠基板 201120938 相容。 總而言之,為得到高品質單晶石夕基薄膜,往往需要經由以拉單晶生長方式(如cz或 FZ晶體生長製程)得到的塊體單晶矽晶棒,經由切片得到矽晶圓片,再將矽晶圓片和 擬採用之主基板例如玻璃接合,以各種加工技巧,如上述研磨拋光'内建餘刻停止層、 智切法製程等等物理化學方法來減薄單晶矽晶圓。從數百微米厚度減薄至微米甚至奈 米·#級厚度單晶石夕薄膜的研磨或姓刻的過程之中,99%以上的石夕基板被消耗浪費,且在 最後製成的單晶矽薄膜,還存在應力破壞造成的損傷及整片基板厚度均勻度的問題。 IBM 的 Bojarczuk 在美國專利(US Patent # 6210479, Product and process for forming asemiconductOTstmctureonahostsubstrate)揭露使用藍寶石基板作襯底,然後鍵上氮 化物薄膜。接著在該氮化物薄獏上在生長大致近於單晶或多晶之矽晶體結構薄膜。再 將該矽晶體結構薄膜表面與另一基板以黏膠結著後,再自藍寶石背面施以雷射光舉起 (lift-off)藍寶石基板,分解氮化鎵薄膜而分離矽薄膜與藍寶石。此方法與2〇〇〇年柏克 萊加州大學(Umv. of California,Berkeley)的Cheung發明以雷射光入射在藍寶石上的 氮化鎵與其介面,分解1化鎵成減鱗元素,舉起Μ;ε基板而分靴化鎵和藍寶 石十分相似。(U.S. Patent No. 6,〇71,795; "Separation of Thin Films from Τ細parent Substrates by Selective Optical Processing,- N. W. Cheung, T. D. Sands and W. S. Wong, issued June 6th,2000)。但是矽與氮化鎵之間晶格匹配差距甚大,在生長過程中易產生 差排缺陷’與前述尚需再結晶製程來改善晶體結構品f作法所得㈣膜品質,有段差 距。且由雷射光來分解氮化鎵_,將受雷射光束面積及輸出轉限制,以及需分解 之氮化鎵薄膜要求總量影響之下(使產生得到得线壓力需^夠高),無法進行有效率的 大面積薄膜分離。 總括來看,在低溫條件限制下(為避免損害己内建完成的電子元件,需小於攝氏例 201120938 度),在玻璃上形成單晶矽晶薄膜的關鍵技術為低溫薄膜轉移技術。 【發明内容】 本發明在製作一種在耐高溫基板如氧化鋁基板上生長,可作低溫薄膜轉移之單晶薄 膜如單晶矽薄膜的方法,將晶體生長與薄膜轉移兩者,畢其功於一製程。 該單晶薄膜亦可藉由在能耐高溫基板上之優勢,經過一般半導體製程,形成電子元 件於其愤,再娜至魏減核低溫之任意基板上。 本發月製程帛步生長金屬氣化物薄膜,例如氮化欽(Τα),氮化⑪(ain),說化 (nN)或氮化鎵((jaN)溥膜在具單晶結構的氧化銘(八丨2〇3)基板上,然後在緊接形 成非晶層薄膜例如非晶雜該金屬氮化物上作為緩衝層。此時非晶薄膜層有兩項功 用·第一疋緩衝層功用’提供該金屬氮化物薄膜和後續長的晶體薄膜如單晶梦薄膜, 格漸進緩衝作用’此大幅減少直接由氧化銘基板生長石夕薄膜引發的高密度缺陷;另 疋提供其與後續生長其上的晶體薄膜介面處產生差排,使晶格不匹配產出的應力更 加得以釋放’來長岐乎完美的單晶結構薄_緩衝層作用。非晶層_生成之後, 提升製程溫度,將晶體_層’例如單晶碎,直独液減晶(LpE)献學蒸氣沉激 (D)方式長在此一非晶薄膜層上。待完成蟲晶生長後,完成晶體薄膜層結構主體 凌使用兩/ια退火氣程將此氧化銘基板上的晶體薄膜結構進行再結晶,消除晶體薄媒 、…構與氧化銘基板之間晶格差異造成的差排,得到低缺陷之結晶晶體薄膜層結構。由 於氫離子溶於金魏化物解度相當大。在Yafei Li等作者在2_年;Qumal of N_echn〇l〇gy 20 215701發表之c⑽辦_β/祕㈣”如零”加零如 «/贿·嶋mY峨卿細一文,提到氣化銘可储存高達3 66㈣的氮氣。因此, 可將賴本發鴨神形成之單糾賴/氮化轉府氧化絲紐沒在雜氮電毁 201120938 中,使此氧化鋁基板上的單晶矽薄膜結構表面暴露在高密度氫離子中,使氫離子由單 晶矽薄膜接觸氫離子源之表面注入,通過單晶矽薄膜結構進入金屬氮化鋁薄膜層儲 存》形成此富含氫離子之氮化鋁之氧化鋁結構體後,再經晶圓鍵合方式與其他基板接 合,構成一晶圓鍵合對。輸入適當的能量,例如以350 nm波長強紫外光向氧化銘基板 裸面照射,使先前經氫離子表面處理之儲存在金屬氮化鋁的氫離子,聚合成氫氣體分 子,也分解金屬氮化物薄膜,最終能有效率分離該單晶矽薄膜層結構與氧化鋁基板。 此項氫分解金屬氮化物效果也被揭露於在2〇〇7年Japanese journal of Applied Physics (Vol_ 46, LI 114 - LI 116 頁)發表的及吨 m α母办加哪如—文’描述以氬氣執行氤化鎵金屬化步驟,將磊晶 A1N溥膜分解為氫化紹(A1H)及氨分子(NH3)。在實施例中,氩不但分解Ain薄膜,也 形成氣體壓力剝離薄膜。該氧化鋁上的鋁金屬殘留物經過蝕刻步驟移除,可重覆再使 用。 另一方面,在金屬氮化物中,氮化鈦則具有阻擋氫離子擴散的功效。若以其為首先 沉澱之薄膜,則可有效阻擋氫離子於氮化鈦與晶體薄膜層結構的介面,而使氫離子大 量堆積聚集在氮化鈦與矽晶薄膜層結構間。在接下來的紫外光照射製程中,也能產生 氫氣薄膜分離矽晶薄膜結構層效果。該氧化鋁上的氮化鈦殘留物經過磷酸蚀刻步驟移 除’可重覆再使用。 參閱圖一至圖十二以瞭解本發明的流程。圖一是形成晶體薄膜層結構1〇9於氧化鋁 基板101上。該晶體薄膜層結構1〇9係由晶體薄膜層1〇2長在非晶薄膜層1〇4上。此 非晶薄膜層104有緩衝層的功用,但又長在晶格不匹配的金屬氮化物薄膜層105上, 由於金屬氮化物薄膜層105與晶體薄膜層1〇2晶格交互扭曲應力的作用,形成較高密 度差排層103於晶體薄膜層ι〇2與非晶薄膜層ι〇4之間。此差排層ι〇3將是後續再結 201120938 晶退火處理過程中,提供再結晶驅動力的來源。 圖二是已經再結晶處理過程之後,在氧化鋁基板1〇1上的結晶晶體薄膜層1〇6。圖 三則是由氫離子源注人氫離子108,經由結晶晶體_層1G6表面1G7進人結晶晶體薄 膜層106與金屬氮化物薄臈層1〇5,使之成為富含氣離子的結晶晶體薄膜層顏和在 表面與氫離子有交互作用的金屬氣化物薄膜層觀。然後將一任意基板u〇以晶圓鍵 合方式和結晶晶體薄膜層1061的表面接合,如圖四所示。圖五顯示有一能量,如紫外 光,由氧化鋁基板ιοί背部無遮蔽表面U1輸入,使富含氫離子的結晶晶體薄膜層1〇61 和在表面與麟子有交互作㈣金屬氮化物腦的氫離子釋放絲,且經化學反應成 為氫氣體,分解金屬氮化物1051成為分解物1〇52 ,也使含氫量高的結晶晶體薄膜層 1061轉成-般性的結晶晶體薄膜層1G62。圖六則是當氫氣壓力足夠高,將結晶晶趙薄 膜層1062自氧化鋁基板1〇1分離後轉移至一任意基板11〇,而金屬氮化物分解物也可 能因被降低強度而斷裂,遺留分解物1〇52在氧化鋁基板1〇1上。 圖七是形成一結晶晶體薄膜層203在氧化鋁基板201上的金屬氮化物薄膜層202上 面(例如以前述方法實施)。圖八是在該結晶晶體薄膜層2〇3經過半導體製程,如光罩顯 影、離子佈植等製程後’形成元件裝置在該結晶晶體薄膜層2〇3内,成為元件裝置薄 膜層204。圖九則是表示由氫離子注入製程。氫離子2〇5,經由元件裝置薄膜層2〇4表 面206 ’進入元件裝置薄膜層204與金屬氮化物薄膜層202,使之成為與氫離子有交互 作用的金屬1化物薄膜層2021和富含氫離子元件裝置薄膜層懸。然後將—任意基板 208以晶圓鍵合方式和元件裝置薄膜層2041的表面206接合,如圖十所示。圖十一顯 示有一能量由氧化鋁基板201背部無遮蔽表面2〇7輸入,使富含氫離子的元件裝置薄 膜層2041和金屬氮化物2021的氫離子釋放出來,經化學反應成為氫氣體,分解金屬 氮化物2021成為分解物2022,使含氫量高的元件裝置薄膜層2〇41轉成一般性的元件 201120938 裝置薄膜層2042。圖十二則是當氫氣壓力足夠高,將元件裝置薄膜層2042自氧化鋁基 板201分離後轉移至一任意基板208,而金屬氮化物分解物也可能因被降低強度而斷 裂,遺留分解物2022在氧化鋁基板201上。The composite substrate required. Take the bismuth-based thin film solar cell in the field of optoelectronics as an example: the common process today is to use a chemical vapor deposition process (CVD) to grow a twinned film over a glass / but an r•like glass substrate is an amorphous material. Although the congenital on the 'off' makes it impossible to have a thin film with a single crystal structure in its ± ray. On the glass substrate, the crystal thin film is very extensive, for example, it is also made into a microelectronic drive system for liquid crystal display, and the industrial output value is quite large. However, in any case, the carrier mobility of this amorphous dream film is 3~ 7.7cm2/VS), which is subject to the high-margin grain boundary _ 浦, which does not meet the requirements of fast electronic operation, and does not meet the requirements of high-grade batteries. Moreover, if a bile circuit is made on it, it is easy to generate waste heat and consume energy during the transport. In order to reduce the grain density in the crystal structure, the amorphous slab film on the glass substrate can be recrystallized by laser scanning, and the grain boundaries are greatly reduced, resulting in a much better than amorphous eve. Crystal _ 'Raise carrier _ to 〗, 2 emW. Today's _ county _ solar battery requires _ _ is _ plant _ single crystal Lai, _ speed _ sub-hole, avoiding recombination phenomenon, effectively enhance light and marriage _. However, the large-scale production technology, and the growth of the Shishi film as the mainstream, and the photoelectric conversion efficiency is low. The root cause of the problem of crystal structure of such a thin film is that the glass is a non-ruthenium substrate, so there is no deposition method on the glass, and the tetrazed crystal is naturally a non-crystalline structure. Due to the fact that there are a lot of aa hybrids, the record is good, but its carrier is still low for high-speed products, and the petals are cold. Her [tree or density of small cans (four) er, Lai (four) shun (four) shouting 4 201120938 Amorphous stone eve, and the stability is quite good. The invention is a method for crystallizing a monocrystalline film on a growth substrate of a oxidized substrate, and separating or transferring the woven-purified financial substrate to any other red group. [Prior Art] Although the single crystal stone film which is commonly used in the microelectronics industry today has the characteristics of single crystal, that is, there is no grain boundary, there may be a high difference in density inside. Such films still have a sufficiently high carrier mobility (10) cmVVs). In today's single crystal film formation technology, one of the methods is to directly grow the film on the gamma-cut surface of the oxidized crystal (the _Ab〇3) substrate by the insect crystal technology. The principle of this stupid crystal long single crystal (tetra) film is that the surface area of the r-cut aluminum oxide and the (100) stone film are similar. However, the lattice constants of the two sides are not matched, and the elongated Sihua crystal film layer has a relatively high difference density even though it has a single crystal structure. Therefore, along with this technology, the application of laser melting, Xuanbu her injury, and Laiwu method has been developed to enable recrystallization to generate strain and eliminate these differences. The monotonic film on the oxidized oxygen brain substrate has a high density of vines, and the carrier mobility is still on the order of 2 (9) compared with the shi shi film layer obtained on the amorphous growth substrate. To coffee (cm 2/Vs). Lu from the industrial raw silk, the amount of 'oxidation plate is very expensive, if the single sand (four) film is formed on the 'transfer to the low-cost glass substrate, then the oxidation of the substrate is recovered, and then surface treatment, can be The mold "News cut crystal _, and then heavy _ moved to other domains on this substrate, then (four) county can significantly reduce the development of more advanced, can be synthesized on the flexible substrate (this ^ touch batch 3, such as plastic ) on the single Ming Shi Xi fine. Nowadays, on the flexible substrate, the carrier mobility is relatively low (<lcm2/VS). If the application of the above-mentioned oxidation on the single crystal stone film structure in the production of flexible thin film solar cells, 'a single crystal epoch film with a PN junction element can be formed first, then low temperature transfer to plastic or polymerization. On a flexible substrate such as a material, not only will it provide miscellaneous wealth, but also the 201120938 single crystal (four) is difficult to be _ _ _ nature M material anti-breaking e toughness), can be equipped with The folded substrate is bent and folded to maintain its quality. The key to this highly efficient solar cell technology, or the application of the previously entangled substrate electronics, is how to form a single in a cost-effective manner. Ba7 is fine on the large-scale light gorge-na substrate to produce high-speed electronic components with high carrier drift rate. This electronic component made in single crystal __ is of course far away from the amorphous stone on the glass. The thin-film layer or the organic stone-based electronic components on the plastic, which has better electrical properties and reliability, will be the field of emerging products. Knowing that the first piece of the 'single secret _ is to have a crystal view, Can be used as seed crystal growth The plate, in addition, the long substrate surface endures - a fixed high crystal temperature to achieve a single crystal phase change. Because the temperature and height of the crystal lattice match (4) ieemismateh < 5%) growth substrate limit directly in low temperature glass The formation of a single sand film on the substrate is highly transcribed, and the direct growth of a single crystal on a glass substrate of an amorphous structure is a near-possible method. A feasible method is to obtain a good single crystal via a growth-base green length. The Shixi film layer is transferred to any substrate such as plastic or glass. Nowadays, the method of growing high-quality single-day film on the oxidized substrate is as follows: firstly, low-temperature growth on the oxidized substrate is used as a buffer layer. Then increase the process temperature 'growth normal single crystal stone film. When the crystal grows at the beginning, there is a difference between the growth interface and the amorphous buffer layer. 'When this single crystal is woven to _Ding thick lin, the lyric force Therefore, the crystal structure in the film which grows later will make the paint nearly perfect, and the difference is concentrated in the interface between the Shishi film and the oxide substrate, and in order to solve the problem of the poor row, The lattice of this block causes more distortion and deformation, so as to maintain the strain energy, and re-crystallize in the subsequent high-temperature annealing process. The method of _-- is the self-ion hybrid, the time is appropriate植人__, make it (4) Ziqing Qian oxidized the growth interface 'Qingyi and the oxidized silk plate interface at the crystal structure of the county destroyed, became H state. Then after high temperature annealing treatment of this piece of ruthenium atom self-planting氧化铝 Film of alumina wafers. 6 201120938 After the success of this Shi Xijing film on the bismuth silk plate, the next step is the film transfer technology. In the 1990s, the semiconductor industry on the silicon wafer (Silie_nInsulatOT) material is very strong. Demand, the development of single crystal (four) film transfer technology - thousands of miles. Now, the single crystal is slightly transferred from the bulk single crystal sand material to any substrate, there are several different ways 'but most of them do not meet the cost of high bribery or It is impractical. For example, the method is to build B/Ge into a crystal side stop layer, and then combine it with a glass or plastic substrate by wafer bonding, and then remove most of the financial substrate from the back side. For the large-area coverage of the substrate, it is not economical. In the 1980s, IBM developed the application of oxygen ion direct implantation (Separation by Implantation φ 0xygen, SIM0X) to create a substrate with an oxide layer. Thin single crystal (four) film SOI material. The oxide layer can be a very excellent side stop layer, and the single crystal film can be transferred to a glass or a nano substrate. However, the SIM0X process requires the implantation of very high doses of strontium ions (about 5 X 1 〇 18, coffee 2). Although it has been subjected to high temperature annealing, it still cannot eliminate the defects caused by the implantation of oxygen ions in the film layer. . In 1992, France's Dr. M. Bruel invented the "Smart Cut ® Process" (Intelligent Cut ® Process), which is capable of forming a film thickness of a single crystal, such as SIM〇x. Excellent uniformity. According to the claimed patent claims (U.S. Patent No. 5,374,564), the process steps are prior to implanting a dose of about 1X1 (1 W), such as hydrogen, in an original substrate. The ions of the gas such as blunt gas are then bonded to another target substrate, and then subjected to high temperature heat treatment to polymerize the implanted hydrogen ions in the implant layer, thereby generating a plurality of mierobubbles. _ This bubble is connected in the form - #密秘, _ separation film. Since the film uniformity obtained by the wisdom cutting method is very good, the defect density is small, the hydrogen gas is non-toxic and harmless after it escapes, there is no environmental pollution problem, and the original substrate material can be recovered. The above oxygen ion direct implantation method or the wisdom cutting method controls the single crystal __ film thickness by the energy of ion implantation. The strong growth of the _ sub-planting method of the female single crystal stone 4 film, the cost of production is quite high, not in line with the cost of producing solar cells. Moreover, the wisdom cutting method requires a heat treatment of _ degrees Celsius in the process of film separation, and cannot be compatible with the commonly used glass or plastic substrate 201120938. In summary, in order to obtain a high-quality single crystal base film, it is often necessary to obtain a tantalum wafer by slicing through a bulk single crystal twin rod obtained by pulling a single crystal growth method (such as a cz or FZ crystal growth process). The germanium wafer is bonded to the main substrate to be used, for example, glass, and the single crystal germanium wafer is thinned by various processing techniques such as the above-mentioned grinding and polishing 'built-in residual stop layer, wisdom cutting process and the like. In the process of grinding or surnamed from a thickness of several hundred micrometers to a micron or even a nanometer-meter thickness single crystal stone film, more than 99% of the stone substrate is wasted, and the single crystal is finally produced. The tantalum film also has problems of damage caused by stress damage and uniformity of thickness of the entire substrate. The use of a sapphire substrate as a substrate and then a nitride film is disclosed in U.S. Patent No. 6,6210479, Product and process for forming asemiconduct OTstmctureonahostsubstrate. Next, a thin crystal structure film which is substantially close to single crystal or polycrystal is grown on the nitride thin crucible. After the surface of the tantalum crystal structure film is adhered to another substrate, a laser lift-off sapphire substrate is applied from the back surface of the sapphire, and the gallium nitride film is decomposed to separate the tantalum film and the sapphire. This method and Cheung, of the University of California, Berkeley, in the 2nd year, invented the gallium nitride and its interface on the sapphire with laser light, decomposed gallium into scaly elements, and lifted Μ The ε substrate is very similar to the gallium and sapphire. (U.S. Patent No. 6, 〇 71, 795; " Separation of Thin Films from Sub fine parent Substrates by Selective Optical Processing, - N. W. Cheung, T. D. Sands and W. S. Wong, issued June 6th, 2000). However, the lattice matching between bismuth and gallium nitride is very large, and it is easy to produce poor discharge defects during the growth process, and the above-mentioned recrystallization process is required to improve the crystal structure product (four) film quality, with a step difference. And the laser light decomposes gallium nitride _, which is limited by the area of the laser beam and the output, and the total amount of the gallium nitride film to be decomposed (so that the resulting line pressure needs to be high enough) Perform efficient large-area film separation. In summary, under the constraints of low temperature conditions (to avoid damage to the built-in electronic components, it is less than the 201120938 degrees Celsius), the key technology for forming single crystal twinned films on glass is low temperature film transfer technology. SUMMARY OF THE INVENTION The present invention is a method for producing a single crystal film such as a single crystal germanium film which is grown on a high temperature resistant substrate such as an alumina substrate and can be used for low temperature film transfer, and both crystal growth and film transfer are performed in one process. . The single crystal film can also form an electronic component in its anger by a general semiconductor process by virtue of its ability to withstand high temperature substrates, and then to any substrate on which the low temperature of the core is reduced. This month's process is a step-by-step process for growing metal vapor films, such as nitriding (Τα), nitriding 11 (ain), ortho (nN) or gallium nitride ((jaN) ruthenium film in a single crystal structure. (Bagua 2 〇 3) on the substrate, and then as an amorphous layer film, such as amorphous metal nitride, as a buffer layer. At this time, the amorphous film layer has two functions, the first buffer layer function Providing the metal nitride film and a subsequent long crystal film such as a single crystal dream film, the lattice progressive buffering function 'this greatly reduces the high density defect directly caused by the growth of the oxidized substrate growth of the stone film; the other provides its and subsequent growth thereon The difference in the crystal film interface creates a difference in the lattice, so that the stress generated by the lattice mismatch is released more. 'The thin single crystal structure is thin and the buffer layer acts. After the amorphous layer is generated, the process temperature is raised, and the crystal is _ The layer 'for example, single crystal crushing, straight liquid single crystal reduction (LpE), vapor sinking (D) method is long on the amorphous thin film layer. After the crystal growth is completed, the crystal thin film layer structure body is used to complete two /ια annealing process on this oxidized on the substrate The film structure is recrystallized to eliminate the difference between the crystal medium, the crystal lattice difference between the structure and the oxidized substrate, and the low-defect crystal crystal film layer structure is obtained. The hydrogen ion is dissolved in the gold and the chemical solution is quite large. In the year of Yafei Li and other authors in 2 years; Qumal of N_echn〇l〇gy 20 215701 published c (10) _β / secret (four) "such as zero" plus zero such as «/Brib, 嶋mY峨 卿, a fine article, mentioning gas Huaming can store up to 3 66 (four) of nitrogen. Therefore, the single entanglement of the Lai Ben duck gods can be formed in the nitrogen-free electricity destruction 201120938, so that the single crystal germanium film structure on the alumina substrate The surface is exposed to high-density hydrogen ions, so that hydrogen ions are injected from the surface of the single crystal germanium film contacting the hydrogen ion source, and enter the metal aluminum nitride film layer through the single crystal germanium film structure to form the hydrogen fluoride-rich aluminum nitride. After the alumina structure is bonded to other substrates by wafer bonding, a wafer bonding pair is formed, and appropriate energy is input, for example, ultraviolet light of 350 nm wavelength is irradiated to the bare surface of the oxidized substrate to make the previous At the surface of the hydrogen ion The hydrogen ions stored in the metal aluminum nitride are polymerized into hydrogen gas molecules, and the metal nitride film is also decomposed, and finally the single crystal germanium film layer structure and the aluminum oxide substrate can be efficiently separated. The hydrogen decomposition metal nitride effect Also disclosed in the Japanese Journal of Applied Physics (Vol_ 46, LI 114 - LI 116) published in 2-7 years, and the ton m α parent-added, as in the text, describes the implementation of gallium arsenide metallization with argon gas. In the step, the epitaxial A1N ruthenium film is decomposed into hydrogenation (A1H) and ammonia molecule (NH3). In the embodiment, argon not only decomposes the Ain film but also forms a gas pressure release film. The aluminum metal residue on the alumina passes through The etching step is removed and can be reused. On the other hand, in metal nitrides, titanium nitride has the effect of blocking the diffusion of hydrogen ions. If it is the first deposited film, it can effectively block the interface of hydrogen ions between the titanium nitride and the crystal thin film layer structure, and a large amount of hydrogen ions accumulate between the titanium nitride and the twin film layer structure. In the next ultraviolet light irradiation process, the effect of the hydrogen film separating the structural layer of the twin film can also be produced. The titanium nitride residue on the alumina is removed by a phosphoric acid etching step and can be reused. Referring to Figures 1 through 12, the flow of the present invention will be understood. Figure 1 shows the formation of a crystalline thin film layer structure 1〇9 on an alumina substrate 101. The crystal thin film layer structure 1〇9 is grown on the amorphous thin film layer 1〇4 from the crystalline thin film layer 1〇2. The amorphous thin film layer 104 has the function of a buffer layer, but grows on the lattice mismatched metal nitride thin film layer 105, due to the interaction between the metal nitride thin film layer 105 and the crystalline thin film layer 1 〇 2 lattice distortion stress A higher density difference row layer 103 is formed between the crystal film layer ι 2 and the amorphous film layer ι 4 . This differential layer ι〇3 will be the source of the recrystallization drive force during the subsequent re-annealing of the 201120938 crystal annealing process. Figure 2 is a crystalline crystalline thin film layer 1〇6 on the alumina substrate 1〇1 after the recrystallization treatment process. In Fig. 3, a hydrogen ion source is injected with hydrogen ions 108, and a crystalline crystal film layer 106 and a metal nitride thin layer 1〇5 are introduced into the surface of the crystalline crystal layer 1G6 to form a crystal crystal rich in gas ions. A thin layer of film and a layer of metal vaporized film that interacts with hydrogen ions on the surface. An arbitrary substrate u is then bonded in a wafer bonding manner to the surface of the crystalline crystalline film layer 1061 as shown in FIG. Figure 5 shows an energy, such as ultraviolet light, from the U1 input of the unshielded surface of the alumina substrate ιοί, so that the crystalline crystal film layer 1富含61 rich in hydrogen ions and the surface interact with the lining (4) metal nitride brain The hydrogen ion releases the filament and chemically reacts to become a hydrogen gas, and the metal nitride 1051 is decomposed into a decomposition product 1〇52, and the crystalline crystal thin film layer 1061 having a high hydrogen content is also converted into a general crystalline crystal thin film layer 1G62. Figure 6 shows that when the hydrogen pressure is sufficiently high, the crystalline film layer 1062 is separated from the alumina substrate 1〇1 and transferred to an arbitrary substrate 11〇, and the metal nitride decomposition product may also be broken due to the reduced strength, leaving a residue. The solution 1〇52 was on the alumina substrate 1〇1. Fig. 7 is a view in which a crystalline crystal thin film layer 203 is formed on the metal nitride thin film layer 202 on the alumina substrate 201 (for example, by the aforementioned method). Fig. 8 shows the element device thin film layer 204 in the crystal crystal thin film layer 2〇3 after the crystal crystal thin film layer 2〇3 is subjected to a semiconductor process such as photomask development and ion implantation. Figure 9 shows the hydrogen ion implantation process. The hydrogen ion 2〇5 enters the element device film layer 204 and the metal nitride film layer 202 via the surface layer 206' of the device device film layer 2〇4, so that it becomes a metallization film layer 2021 which interacts with hydrogen ions and is enriched The hydrogen ion device device is suspended in a thin film layer. Then, any substrate 208 is bonded to the surface 206 of the component device film layer 2041 in a wafer bonding manner as shown in FIG. Figure 11 shows an energy input from the unshielded surface 2〇7 of the back surface of the alumina substrate 201, so that the hydrogen ions of the hydrogen-rich element device thin film layer 2041 and the metal nitride 2021 are released, chemically reacted into hydrogen gas, and decomposed. The metal nitride 2021 is a decomposition product 2022, and the element device film layer 2〇41 having a high hydrogen content is converted into a general element 201120938 device film layer 2042. Figure 12 shows that when the hydrogen pressure is sufficiently high, the element device film layer 2042 is separated from the alumina substrate 201 and transferred to an arbitrary substrate 208, and the metal nitride decomposition product may also be broken due to the reduced strength, leaving the decomposition product 2022. On the alumina substrate 201.

12 201120938 【實施例】 本實施例僅是說明流程,但非限制本發明之精神及應用。 實施例一 在一 r切面氧化鋁基板,以MOCVD生長120 nm厚氮化鋁薄膜,覆蓋在該氧化鋁 基板上。然後以PECVD在200。(:〜500-C條件下,緊接形成50 nm非晶石夕緩衝層在氮 化鎵薄膜層上。接下來,提升製程溫度至95〇〇c,將25〇〇11111厚(1〇〇)單晶矽薄膜結 構薄膜層主體以液減晶(LPE)長在此-非晶魏衝層上。完成該單㈣薄膜結構薄 膜層主體後’使用高溫退火製程(約95〇 ~ 115〇。〇,在氬氣氣氛中將此氧化銘基板上 的單晶賴構_層進行回復、再結晶、晶減長過程,把該單晶㈣闕結構與氧 化銘基板間晶格差異造成的差排盡可能的移除。經由此製程,可得到低缺陷之單晶石夕 結構薄膜層。將此單晶雜構_層表面以常觀離子電祕理,賴離子繼進入, 储存於氮化鎵_。縣此單晶雜構麵層表面與_含_子之赌點玻璃, 以陽極鍵合法鍵合成為-晶_合體(bQndedpak)。將—料光自氧倾裸面方向入 射於氮倾與氧倾基板介面,藉此將氫離子聚合成氫氣,分解該氮她細層進而 η 刀離,亥單0a_結構_層與氧化銘基板’轉移至該低溶點玻璃基版上。 實施例二 在一 r切面氧化域板,關〇講生長_ nm輪_膜覆蓋在該氧化 銘基板上。然⑽ECVD纟鞭〜默條件下,緊接形成5〇⑽非峨衝層在 氛化紅梅上。接下來’提糧溫度至派〜讀,將5_邮厚_麟 摻雜n-type早砂薄麟體,喊相“(Lp聰在此—非晶额騎上。完成 13 201120938 該單晶矽薄膜結構主體後,使用高溫退火製程(約950 ~ 1150T),在氬氣氣氛中將此 氧化鋁基板上的單晶矽薄膜結構主體進行回復、再結晶、晶粒成長過程,把該η_πρ6 單晶矽薄膜結構主體内部與氧化鋁基板間晶格差異造成的差排移除。再經氣相磊晶 (VPE)在此n-type單晶石夕溥膜結構薄膜層上,長soonm厚的棚掺雜p_type單晶梦薄膜 層。將此含PN結結構之單晶矽薄膜層表面以常壓氫離子電漿處理,將氫離子擴散進 入,儲存於氮化鎵薄膜層内。再將此含PN結結構之單晶矽薄膜層表面與一含硼離子之 低熔點玻璃,以陽極鍵合法鍵合成為一晶圓鍵合體(b〇n(jed pair) ^將一紫外光自氧化 鋁裸面方向入射於氤化鋁與氧化鋁基板介面,藉此將氫離子聚合成氫氣,分解該氮化 鋁薄膜層進而分離該含PN結結構之單晶矽薄膜層與氧化鋁基板,轉移至該低熔點玻璃 基版上。 實施例三 在-r切面氧化織板’以M0CVD生長12〇咖厚氮化銘薄膜,覆蓋在該氧化銘 基板上。然後以PECVD在2〇〇Τ〜500。〇條件下,緊接形成5〇nm非晶石夕緩衝層在氮 φ 化鎵薄膜層上。接下來’提升製程溫度至95(TC,將250。nm厚⑽)單晶梦薄膜結構 薄膜層主體以液相蟲晶(LPE)長在此__非晶賴衝層上。完成該單晶_膜結構薄膜 層主體後,使用高溫退火製程(約95〇,在氫氣氣氧中將此氧化组基板上的 單曰曰石夕.纟。構4麟進侧復、再結晶、晶減長過程,把該單㈣_層結構與氧化 鋁基板間晶格差異造成的差排移除。經由此製程,可得到低之單晶石夕結構薄膜層。 將此單晶石夕結構薄臈層表面以常壓氫離子電漿處理,將氫離子擴散進入,储存於氮化 鎵薄膜層内。再將此單晶石夕結構薄膜層表面與一聚合物基板,以膠黏鍵合法鍵合成為 一晶圓鍵合體。將—紫外光自氡化練面方向人射贼化贿氧化·板介面,藉此 14 201120938 將氫離子聚合成氫氣,分解該氮化銘薄膜層進而分離該單晶石夕結構薄膜層與氣化紐基 板,轉移至該聚合物基版上。 實施例四 在-r切面氧化絲板’錢OCVD生長12G nm厚肢_膜,在該氧化銘 基板上。然後以PECVE^20(rc〜500·件下,緊接形成5〇nm非晶魏衝層在氮 化鎵薄膜層上。接下來,提升製程溫度至·c,將5_师厚p加e(_單晶石夕薄 φ 麻構薄膜層主體以液相為晶(LPE)長在此一非晶石夕緩衝層上。完成該單晶石夕薄膜結 構薄膜層主體後,使用高溫退火製程(約〜蕭c),在含氫離子之氣氛中將此氧 化銘基板上的單㈣結構_層進行回復' 再結晶、晶粒成長過程把該單晶石夕薄棋 s。構與氧化縣躺晶格差異造成的差排絲。_此製程,可制低缺陷之單晶 珍結構薄膜層且能儲存氫離子於氣德薄膜層其中。再將此單晶雜構薄膜層表面與 聚。物基板’以膠黏鍵合法鍵合成為一晶圓鍵合體。將一紫外光自氧化銘裸面方向 ;氮化結與氧化銘基板介面,藉此將氫離子聚合成氫氣,分解該說化紹薄膜層進 籲骑_單騎結__魏化减板,_至魏合物基版上。 實施例五 在一 基板上。 c切面氧脑基板,以M〇CVD生長12Q nm厚祕鎵薄膜覆蓋在該氧化銘 ’、、、後以PECVD在2GGT〜500。(:條件下,緊接形成7Gnm非晶魏衝層在氮 化錄薄膜層上。接下來,提升製程溫度至寶c,將麵咖厚p_t神稱晶石夕薄 膜層主體以液術日_)長在此—非晶賴衝層上。完成該單轉薄膜結 _膜層主體後’賴高溫退火触⑽代),在含鱗子之氣氛帽此氧化銘基板 上的單K结構薄膜層進行回復、再結晶 晶粒成長過程,把該單晶矽薄膜層結構與 15 201120938 氡化铭基朗晶縣異造成的差鄕除 '軸此製程,可得到錄陷之單㈣結構薄 膜層且能儲存氫離子於肢鎵_層其巾。再狀單晶賴構_層表面與—聚合物 基板,以膠黏鍵合法鍵合成為一晶圓鍵合體。將一紫外光脈衝雷射光自氧化鋁裸面方 向入射於統賴氧德基板介面,藉麟鱗子料錢氣,分解靴傾薄膜層 進而分離該單晶矽結構薄膜層與氧化鋁基板,轉移至該聚合物基版上。 實施例六 在一 r切面氧化鋁基板,以M0CVD生長120 nm厚氮化鋁薄膜,覆蓋在該氧化鋁 基板上。然後以PECVD在20(rc〜500T條件下,緊接形成5〇啪非晶石夕緩衝層在氮 化鎵薄膜層上。接下來’提升製程溫度至95GX,將測⑽厚(勘)單轉薄膜結構 薄膜層主敎液撼晶(LPE)長在此一非砂緩衝層上。絲鮮⑽雜結構薄膜 層主體後’使用高溫退火製程(約950〜115〇。〇,在氮氣氣氛中將此氧化銘基板上的 單晶石夕結構賴層進行喊、再結晶' 晶粒成長雜,把該單晶㈣膜層結構與氧化 鋁基板間晶格差異造成的差排移除。經由此製程,可得到低缺陷之單晶矽結構薄膜層。 將此單晶矽結構薄膜層表面接以陽極= 電解酸性溶液方式,將 氫離子藉電場力擴散進入,儲存於氮化鎵薄膜層内。再將此單晶矽結構薄膜層表面與 一聚合物基板,以膠黏鍵合法鍵合成為一晶圓鍵合體。將一紫外光自氧化鋁裸面方向 入射於氮化_氧德基板介面,藉此將氫離子聚合成氫氣,分解該氮化_膜層進 而分離該單晶矽結構薄膜層與氧化鋁基板,轉移至該聚合物基版上。 實施例七 在一c切面氧化銘基板,以M〇CVD生長12〇⑽厚氮化铭薄膜,覆蓋在該氧化銘 基板上。然後以PECVD在200〇C,500T條件下,緊接形成50 nm非晶珍緩衝層在氮 201120938 將2500 nm厚(m)單晶矽薄膜結構 化鎵薄膜層上。接下來,提升製程溫度至95〇〇c, 薄膜層主體錄祕晶(LPE)長在此_非晶魏衝紅。完成料晶㈣麟構薄膜 層主體後’使用高溫退火製程(約咖,在氫氣氣氛中將此氧化銘基板上的 單晶妙結構賊祕行贿、再㈣、晶減長舰,把該單轉_層結構與氧化 銘基板間晶異造成的差排移除。經由此製程,可得到低缺陷之單晶雜構薄膜層。12 201120938 [Embodiment] This embodiment is merely illustrative of the flow, but does not limit the spirit and application of the present invention. Example 1 On a r-cut alumina substrate, a 120 nm thick aluminum nitride film was grown by MOCVD to cover the alumina substrate. Then at PECVD at 200. (: ~500-C condition, immediately form a 50 nm amorphous stone buffer layer on the gallium nitride film layer. Next, increase the process temperature to 95〇〇c, 25〇〇11111 thick (1〇〇 The main body of the single crystal germanium film structure film layer is liquid-deposited (LPE) on the amorphous-punching layer. After the completion of the single (four) film structure film layer body, a high-temperature annealing process (about 95 〇 to 115 Å is used). 〇, in the argon atmosphere, the single crystal lyophilized layer on the oxidized substrate is subjected to recovery, recrystallization, and crystal reduction process, and the difference in lattice between the single crystal (tetra) iridium structure and the oxidized substrate is caused. Remove as much as possible. Through this process, a low-defect monocrystalline slab structure film layer can be obtained. The surface of this single crystal heterostructure layer is treated with a conventional ion-electricity secret, and the Lai ions are successively entered and stored in GaN. _. The surface of this single crystal hetero-facial layer and the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ And the oxygen tilting substrate interface, thereby hydrogenating hydrogen ions into hydrogen gas, decomposing the nitrogen her fine layer and then η knife away, Haidan 0a_ The structure layer and the oxidized substrate are transferred to the low-melting point glass substrate. Embodiment 2 In a r-cut oxidized domain plate, the growth _ nm wheel _ film is coated on the oxidized substrate. (10) ECVD纟Under the conditions of whip~merge, immediately form a 5〇(10) non-choke layer on the scented red plum. Next, 'to raise the temperature of the grain to the pie~ read, the 5_mail thick_lin-doped n-type early sand thin body , shouting "(Lp Cong is here - amorphous ride. Completed 13 201120938 after the single crystal ruthenium film structure body, using a high temperature annealing process (about 950 ~ 1150T), in an argon atmosphere on this alumina substrate The main body of the single crystal germanium film is subjected to recovery, recrystallization, and grain growth, and the difference between the inside of the η_πρ6 single crystal germanium film structure body and the alumina substrate is removed, and then vapor phase epitaxy is performed. VPE) On the n-type single crystal stone film structure, the long somm thick shed is doped with p_type single crystal dream film layer. The surface of the single crystal germanium film layer containing the PN junction structure is made of atmospheric hydrogen ions. Plasma treatment, diffusing hydrogen ions into the gallium nitride film layer, and then including this PN junction The surface of the monocrystalline ruthenium film layer and a low-melting glass containing boron ions are synthesized by a anodic bond to form a wafer bond (b〇n (jed pair) ^ an ultraviolet light is incident from the alumina bare side Interfacing the aluminum oxide with the aluminum oxide substrate to polymerize hydrogen ions into hydrogen gas, decomposing the aluminum nitride thin film layer, separating the single crystal germanium film layer and the aluminum oxide substrate containing the PN junction structure, and transferring to the low melting glass On the base plate, in the third embodiment, a -r cut surface oxidized woven plate was grown by M0CVD on a 12 Å thick nitriding film, covered on the oxidized substrate, and then PECVD at 2 〇〇Τ to 500 〇, Immediately after formation of a 5 Å nm amorphous rock buffer layer on the nitrogen φ gallium film layer. Next, the process temperature was raised to 95 (TC, 250 nm thick (10)) single crystal dream film structure. The film layer body was grown on this __ amorphous layer by liquid phase crystallites (LPE). After completing the main body of the single crystal film structure layer, a high-temperature annealing process (about 95 Å, in the hydrogen gas oxygen gas, the oxidized group substrate is smectite 夕 纟. The crystal reduction process removes the difference between the single (four) layer structure and the crystal lattice difference between the alumina substrates. Through this process, a low single crystal stone structure thin film layer can be obtained. The surface of the thin layer of the structure is treated by atmospheric pressure hydrogen ion plasma, and the hydrogen ions are diffused into the layer and stored in the gallium nitride film layer. The surface of the single crystal structure layer and the polymer substrate are bonded to each other. The legal bond is synthesized into a wafer bond body. The ultraviolet light is self-twisted and the thief is oxidized and the plate interface is used. By this, 14 201120938, hydrogen ions are polymerized into hydrogen gas, and the nitriding film layer is decomposed and separated. The single crystal structure film layer and the vaporized new substrate are transferred onto the polymer substrate. Example 4: Growth of a 12G nm thick limb _ film on a -r cut surface oxidized silk plate 'money OCVD, on the oxidized substrate Then take PECVE^20 (rc~500· pieces, immediately after forming 5〇nm non The crystal layer is on the gallium nitride film layer. Next, the process temperature is raised to ·c, and the thickness of the 5th division is increased by e (the single crystal is thin and the main body of the film layer is crystallized in the liquid phase (LPE). Long on the amorphous rock buffer layer. After the main body of the single crystal thin film structure film layer is completed, the high temperature annealing process (about ~ Xiao C) is used to oxidize the substrate on the substrate in a hydrogen ion-containing atmosphere. The single (four) structure _ layer to restore 'recrystallization, grain growth process to the single crystal stone sho s. The structure and the oxidation of the county lying lattice difference caused by the difference between the wire. _ This process, can make a low defect single The crystal structure layer can store hydrogen ions in the gas film layer, and then the surface of the single crystal heterostructure film layer and the polymer substrate are bonded by a bond bond to form a wafer bond. Light self-oxidation Ming bare surface direction; nitrided junction and oxidized Ming substrate interface, thereby hydrogen ion polymerization into hydrogen, decomposition of the said Shaoshou film layer into the riding _ single riding knot __魏化减板, _ to Wei On the basis of the substrate, the fifth embodiment is on a substrate. The c-section oxygen-brain substrate is grown by M〇CVD to grow a 12Q nm thick gallium film. Covered in the oxidation of ',, and after PECVD in 2GGT ~ 500. (: conditions, immediately formed 7Gnm amorphous Wei Chong layer on the nitride film layer. Next, increase the process temperature to treasure c, will face The thickness of the p_t god is called the crystal stone layer of the main body of the crystal _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The atmosphere of the scale is used to recover and recrystallize the grain growth of the single-k structure film layer on the oxidized substrate, and the difference between the single-crystal 矽 film layer structure and the 2011化铭基朗晶县#201120938 氡化铭基朗晶县'Axis' process, can obtain a single (four) structural film layer and can store hydrogen ions in the gallium layer of the limb. The recrystallized single crystal structure layer and the polymer substrate are synthesized by adhesive bonding. It is a wafer bond. An ultraviolet pulsed laser light is incident on the interface of the oxidized substrate from the bare side of the alumina, and the lining material is decomposed, and the thin film layer is separated and the single crystal ruthenium structure film layer and the alumina substrate are separated and transferred. To the polymer substrate. Example 6 On a r-cut alumina substrate, a 120 nm thick aluminum nitride film was grown by M0CVD to cover the alumina substrate. Then, by PECVD, under the condition of 20 (rc~500T, 5 〇啪 amorphous 夕 buffer layer is formed on the GaN thin film layer. Next, the process temperature is raised to 95 GX, and the (10) thick (exploration) is transferred. The film structure film layer main bismuth liquid crystal (LPE) grows on this non-sand buffer layer. The wire fresh (10) heterostructure film layer body is 'after high temperature annealing process (about 950~115 〇. 〇, in a nitrogen atmosphere The monocrystalline stone structure on the oxidized substrate is shouted and recrystallized, and the grain growth is removed, and the difference between the single crystal (four) film structure and the alumina substrate is removed. A low-defect monocrystalline germanium structure film layer can be obtained. The surface of the single crystal germanium structure film layer is connected to the anode = electrolytic acid solution, and the hydrogen ions are diffused by the electric field force and stored in the gallium nitride film layer. The surface of the single crystal germanium structure film layer is bonded to a polymer substrate by a bond bond to form a wafer bond. An ultraviolet light is incident on the nitrided-oxo substrate interface from the bare side of the alumina. This polymerizes hydrogen ions into hydrogen and decomposes the nitride film. The layer further separates the single crystal ruthenium structure film layer and the alumina substrate, and transfers to the polymer substrate. In the seventh embodiment, a c-plane oxidized substrate is used to grow a 12 〇 (10) thick nitriding film by M CVD. On the oxidized substrate, then a 50 nm amorphous buffer layer was formed by PECVD at 200 ° C, 500 T, and a 2500 nm thick (m) single crystal germanium film structured gallium film layer was deposited on nitrogen 201120938. Next, increase the process temperature to 95 〇〇c, the film layer main body crystal (LPE) grows here _ amorphous Wei Chong red. After the completion of the material crystal (four) lining film layer body 'use high temperature annealing process (about coffee, in hydrogen In the atmosphere, the single crystal structure on the oxidized Ming substrate is secretly bribed, and then (four), the crystal reduction ship, removes the difference between the single-turn structure and the oxidation of the substrate. Through this process, A low-defect single crystal heterostructure film layer can be obtained.

將此單㈣結構薄膜層表面浸於含高濃度氫離子酸性溶液,以加熱方式,將氫離子藉 由熱增加之動能擴舰人’贿於以酬職内。再將此單晶魏構賴層表面與 一聚合物基板,鱗黏鍵合法鍵合絲—„鍵合體。將—料光自氧化轉面方向 入射魏化减氧德基板介面,藉此將氫離子聚合成氫氣,分解魏恤薄膜層進 而分離該單晶賴構_層與氧化絲板,轉移至該聚合物基版上。 實施例八 在一 c切面氧化紹基板’以M0CVD生長12〇 nm厚氮化銘薄膜,覆蓋在該氧她 基板上。然後以PECVD在2歐~責條件下,緊接形成5〇唧非晶碳化石夕緩衝層 • 在氣化錄薄膜層上。接下來,提升製程溫度至·,將测邮厚單晶碳化石夕薄膜結 構薄膜層主體以液相蟲晶(LPE)長在此一非晶石夕緩衝層上。完成該單晶石夕薄膜結構薄 膜層主體後’伽高溫耿製程(約Η·),在統氣氛憎此氧她基板上 的單晶碳化石夕結構薄膜層進行回復、再結晶、晶粒成長過程,把該單晶碳化石夕薄膜層 結構與氧她餘間晶格差異造成的差排歸。經由此製程,可得到低缺陷之單晶碳 化石夕’.·σ構薄膜層。將此單晶碳化石夕結構薄膜層表面浸於含高濃度氫離子電浆環境令, 以加財式’將鱗子糾熱增加之械織進人’齡魏化鎵軸相。再將此 早曰日碳化石夕結構薄膜層表面與一玻璃基板,以晶圓鍵合法鍵合成為—晶圓鍵合體。將 17 201120938 一紫外光自氧化鋁裸面方向入射於氮化鋁與氧化鋁基板介面,藉此將氫離子聚合成氫 氣,分解該氮化鋁薄膜層進而分離該單晶碳化矽結構薄膜層與氧化鋁基板,轉移至該The surface of the single (four) structural film layer is immersed in an acidic solution containing a high concentration of hydrogen ions, and the kinetic energy of the hydrogen ion is increased by the heat to expand the ship. Then, the surface of the single crystal structured layer is bonded to a polymer substrate, and the scale bond is bonded to the silk--bond. The light is incident on the surface of the Weihua deoxidized substrate from the surface of the oxidation surface, thereby hydrogen is introduced. Ion polymerization into hydrogen, decomposing the layer of the t-shirt film and separating the single crystal lysate layer and the oxide wire plate, and transferring to the polymer substrate. Example 8 is to oxidize the substrate in a c-section to grow 12 〇 nm by M0CVD A thick nitriding film is deposited on the substrate of the oxygen. Then, under the condition of 2 ohms, PECVD is used to form a 5 Å amorphous carbon carbide buffer layer on the gas film layer. Next, Increasing the process temperature to the surface of the monocrystalline carbonized stone thin film structure film layer with a liquid crystal worm (LPE) on the amorphous layer buffer layer. The single crystal thin film structure film layer is completed. After the main body, the gamma high temperature 耿 process (about Η·), in the atmosphere of the oxygen crystal on the substrate of the single crystal carbonized carbide ceremonial film layer for recovery, recrystallization, grain growth process, the single crystal carbonized stone film The difference between the layer structure and the oxygen lattice difference between her and her. In this process, a low-defect monocrystalline carbonized stone '.. σ-structure film layer can be obtained. The surface of the monocrystalline carbonized stone kiln structure film layer is immersed in a plasma environment containing a high concentration of hydrogen ions, The scale-enhanced heat-increasing machine is woven into the human-aged gallium-axis phase. The surface of the carbonized stone-structured film layer and a glass substrate are synthesized as wafer-bonded bonds by wafer bonding. 17 201120938 an ultraviolet light is incident on the interface between the aluminum nitride and the aluminum oxide substrate from the bare surface of the aluminum oxide, thereby hydrogenating hydrogen ions into hydrogen gas, decomposing the aluminum nitride thin film layer and separating the single crystal silicon carbide structure thin film layer and Alumina substrate, transferred to the

P 玻璃基版上。 實施例九 在一 r切面氧化銘基板’以MOCVD生長120 nm厚氮化銘薄膜,覆蓋在該氧化銘 基板上。然後以PECVD在200〇c〜500T條件下,緊接形成50唧非晶石夕緩衝層在氮 • 化鎵薄膜層上。接下來’提升製程溫度至娜C,將5_膽厚p-type⑽〕單晶石夕薄 膜結構薄膜層主體以液相蟲晶(LPE)長在此一非晶石夕緩衝層上。完成該單晶石夕薄膜結 構薄膜層主體後’使用高溫退火製程(約95〇〜⑽。〇,在含氫離子之氣氛中將此氧 化紹基板上的單晶雜構薄麟進行喊、再結晶、晶粒絲郝,滤單晶石夕薄膜 層’。構與氧似g基板間晶格差異造成的差排移除。經自此製程,可得到低缺陷之單晶 矽結構薄膜層且能儲存氫離子於氮化銘薄膜層其中。再將此單晶雜構薄膜層經半導 體製程’形成電子元件於其中。將此元件表面與一含元件之半導體基板,經過校準, φ Λ曰曰圓鍵0法鍵合成為一晶圓鍵合體。將一紫外光自氧化銘裸面方向入射於氮化銘與 氧化铭基板介面,藉此將氫離子聚合成氬氣,分解該氮化銘薄膜層進而分離該含電子 元件單晶雜構薄膜層與氧化銘基板,轉移至該半導體基版上,形成三度空間積體電 路。 實施例十 在一r切面氧化鋁基板,以⑽㈣生長12〇 nm__膜,覆蓋在該氧化銘 基板上。然後以PECVD在着c〜實條件下緊接形成5〇腿非晶石夕緩衝層在氣 ?、層上接下來,提升製程溫度至95〇β(:,將5〇〇〇腿厚p-以^ (1⑽)單晶矽薄 201120938 膜結構薄_主體以液她晶(LPE)長在此-非㈣緩衝層上。完成該單㈣薄膜結 構薄膜層主舰,使用高溫退火製程(約· ~ 115QX),在含氫離子之氣氛中將此氧 化銘基板上的單晶雜構_層進行回復、再結晶、晶粒成長擁,把該單晶石夕薄膜 層結構與氧化織板間晶格差異造成的差排雜。經由此製程,可制低缺陷之單晶 梦結構細層錢儲存氫離子於氮德賴層其巾。再將此單抑結構賊層經半導 體製程,職電子元件於其巾。將此元件表面與-可舰基板,合法鍵合成 為一晶圓鍵合體。將—紫外光自氧化贿面方向人射於氣化銘與氧化織板介面,藉 此將氫離子聚合成統,分解魏德賊層進而分雜含電子元件單於結構薄膜 層與氧化鋁基板,轉移至該可撓性基版上。 【圖式簡單說明】 在參閱伴隨下觸示之詳細說明後,將可了解本發明之其他或另外目的、優點及特徵。 其中相同的圖號表示結構中相同的元件。 第-圖係本剌賴之氧腫基板及其上薄麟獅賴視圖。, 第-圖係本發明製程使氧德基板上之薄麟構層再結晶的側視圖。 第一圖係本發明触使氫離子進人氧⑽基板其上細結構層的側視圖。 第四圖係本發明製程使氧化錄板上薄麟構層接合其絲板的側視圖。 第五圖係本㈣製紐氧脑基板與其上之薄赌構層分_側視圖。 第/、圖係本發a續程使氧脑基板±之細結構層轉移至其他基板的側視圖。 第七圖係本發明卿之氧化絲板及其上薄麟構層的側視圖。 第八圖係本發明製程使元件裝置在氧化紹基板上之薄膜結構層内的側視圖。 201120938 第九圖係本發明製程使氫離子進入氧化鋁基板上含元件裝置薄膜結構層的側視圖。 第十圖係本發明製程使氧化鋁基板上含元件裝置薄膜結構層接合其他基板的側視 圖。 第十一圖係本發明製程使氧化鋁基板與含元件裝置薄膜結構層分離的側視圖。 第十二圖係本發明製程使氧化鋁基板上之含元件裝置薄膜結構層轉移至其他基板 的側視圖。P glass base plate. Example 9 A 120 nm thick nitriding film was grown by MOCVD on an r-plane oxidized substrate to cover the oxide substrate. Then, a 50 Å amorphous silica buffer layer was formed on the GaN thin film layer by PECVD at 200 〇 c to 500 T. Next, the process temperature was raised to Na C, and the main body of the 5_bony thick p-type (10) monocrystalline thin film structure film layer was grown on the amorphous buffer layer by liquid phase crystal (LPE). After the completion of the single crystal thin film structure film layer body, a high temperature annealing process (about 95 〇 ~ (10) is used. 〇, in the atmosphere containing hydrogen ions, the single crystal heterostructure thin lining on the oxidized substrate is shouted, and then Crystallization, grain sifting, filtering single crystal slab film layer. The difference between the structure and the oxygen-like substrate is caused by the lattice difference. After this process, a low-defect monocrystalline yttrium structure film layer can be obtained. The hydrogen ion can be stored in the nitriding film layer, and the single crystal film layer is formed into a semiconductor device through a semiconductor process. The surface of the device and the semiconductor substrate containing the component are calibrated, φ Λ曰曰The round key 0 method is synthesized into a wafer bonding body. An ultraviolet light is incident on the interface of the nitriding and oxidizing substrate on the surface of the oxidized surface, thereby hydrogenating the hydrogen ions into argon gas, and decomposing the nitriding film. The layer further separates the monocrystalline thin film layer containing the electronic component and the oxidized substrate, and transfers to the semiconductor substrate to form a three-dimensional space integrated circuit. Embodiment 10 is grown on a r-cut alumina substrate with (10) (four) 12 〇 Nm__ film, covered in The oxidation is on the substrate. Then, by PECVD, under the condition of c~ real conditions, a 5-foot amorphous rock buffer layer is formed on the gas layer and the layer is next, and the process temperature is raised to 95 〇β (:, 5 〇) 〇〇 leg thickness p- to ^ (1 (10)) single crystal thinner 201120938 thin film structure _ body with liquid crystal (LPE) on this - non (four) buffer layer. Complete the single (four) thin film structure film layer main ship, use a high-temperature annealing process (about ~115QX), in which a single crystal heterostructure layer on the oxidized substrate is recovered, recrystallized, and crystal grains are grown in an atmosphere containing hydrogen ions, and the single crystal thin film layer structure is formed. The difference between the lattice and the oxidized woven plate is caused by the difference in lattice. Through this process, a low-defect single crystal dream structure can be made to store hydrogen ions in the Nitrogen layer, and then the single-suppressed structure thief layer The semiconductor process, the electronic components of the device are used in the towel. The surface of the component is combined with the - ship substrate, and the legal bond is synthesized into a wafer bond. The ultraviolet light is self-oxidized in the direction of the briquette to the gasification and the oxidized woven interface. In order to polymerize hydrogen ions into a system, decompose the Weid thief layer and then divide the electronic component into a single The film layer and the alumina substrate are transferred to the flexible substrate. [Brief Description] Other or additional objects, advantages and features of the present invention will become apparent from the Detailed Description. The same figure number indicates the same component in the structure. The first figure is the view of the oxidized substrate and the thin lion ray on it. The first picture shows the thin lining layer on the oxygen substrate. Side view of the crystal. The first figure is a side view of the fine structure layer of the present invention which touches the hydrogen ions into the human oxygen (10) substrate. The fourth figure is the process of the present invention, the thin lining of the oxidation recording board is bonded to the silk plate. The fifth figure is the (4) system of the neo-oxygen cerebral substrate and the thin gambling layer on the _ side view. The / / map is a continuation of the oxygen-brain substrate ± fine structure layer transferred to other substrates Fig. 7 is a side view of the oxidized wire board of the present invention and its upper thin layer. Figure 8 is a side elevational view of the process of the present invention in which the component device is placed in a thin film structural layer on a substrate that is oxidized. 201120938 The ninth drawing is a side view of the process of the present invention for allowing hydrogen ions to enter the thin film structural layer of the component device on the alumina substrate. The tenth drawing is a side view showing the process of the present invention for bonding a film structure layer of a component device on an alumina substrate to another substrate. The eleventh drawing is a side view of the process of the present invention for separating the alumina substrate from the film structure layer containing the component device. Fig. 12 is a side view showing the process of the present invention for transferring a film structure layer containing a component device on an alumina substrate to another substrate.

20 201120938 【主要元件符號說明】20 201120938 [Description of main component symbols]

101 · • · ·氧化鋁基板 102 •••結晶薄膜層 104 · • ••非晶薄膜層 105 · •..金屬氮化物薄膜層 106 · • . ·結晶晶體薄膜層 108 · • ••氫離子源 109 · • · ·晶體薄膜層結構 110 · • ♦•基板 111 · • · ·能量輸入 1062 •·.結晶晶體薄膜層 201 · •氧化鋁基板 202 · • · ·金屬氮化物薄膜層 203 · • ••結晶晶體薄膜層 204 · • ··元件裝置薄膜層 205 · • · ·氫離子源 208 . • ••基板 209 · • ·.能量輸入 2042 • ·..元件裝置薄膜層 21101 · • · · Alumina substrate 102 •••crystalline film layer 104 • •••Amorphous film layer 105 ·•.. metal nitride film layer 106 · • · Crystalline film layer 108 · • •• Hydrogen ion Source 109 · • · Crystal film layer structure 110 · • ♦• Substrate 111 · • · Energy input 1062 • Crystalline crystal film layer 201 • • Alumina substrate 202 • • · Metal nitride film layer 203 · • • Crystalline crystalline film layer 204 • • • Component device film layer 205 • • • Hydrogen ion source 208 • • • Substrate 209 • • • Energy input 2042 • • Component device film layer 21

Claims (1)

201120938 七、申請專利範園: 1. 一種形成薄膜層結構之製程方法,缽古,土s* a ,丄 氧化織板之表面上,·形成至少金屬氮化物薄膜層於- 薄膜層結構分離。 该氧化鋁基板裸面輸入能量,使得該氧化鋁基板與該 2. 如申明專利範圍第1項所述之方法’其#上述金屬氮化物薄膜層係由氮化欽組成。 3. 如申請專利範圍第1項所述之大,土廿丄 銦或氮化鋁組成。 忐,其中上述金屬氮化物薄膜層係由氮化鎵、氮化 多晶或非晶半 4. 麵1項所述之方法,其中上述_結構包含結晶、 多晶或非晶碎 多晶或非晶碳 多晶或非晶錯 5 Hi細1摘述之方法,其中上述細層結構包含結晶、 6· =2=娜1項所述之方法,其中上述雜層結構包含結晶、 7. 專糊第1項所述之麵,其中上述賴結構包含結晶、 晶、多晶或非晶梦 8. 第1項所述之方法,其中上述賴結構包含結晶、 9. 如申請專利範圍第1項所述之方法,其中上述注入氮離子係藉由氣離子源擴散方式. 10. 如申請專利範圍第9項所述之方法,其中上述氫離子源係藉由氫賴產生。 11·如中請專利細第9項所述之方法,其中上述氫離子藝藉域性溶液解離產生 12. 如申請專利範圍第9項所述之方法,其中上述氮離子源係藉由電解液中電解產生。 13. 如申請專利範圍第1項所述之方法,其中上述注入氮離子係藉由離子佈植方式。 脈 14_ 第方法’其中上述能量輸入方式係藉由紫外光照射 15· nt申請專利範圍第14項所述之方法,其中上述脈衝雷射光束波長範圍為220, 22 201120938 16. 17. 18. 如申請專概Μ 14_述之方法,其中上述能量輸人方式側域朗時輪入。 ί:請 利範„ 17項誠之方法,其中上述隨意基_由_或是聚合物材料 19•如申請專利範圍第17項所述之方法,其中上述隨意基板係由半導體材料所形成的。 饥=請專利範固第17項所述之方法’其中上述晶圓鍵合方式係藉由黏著劑媒介層 # n- ,㈣《蝴㈣咖玻璃媒 22.如申請專利範圍第i項所述之方法,其中上述薄膜層結構係由㈣料所形成。 级如申請專利範圍第i項所述之方法,其中上述薄膜層結構係由錯材料所形成。 24.如申請專利範園第1項所述之方法,其中上述薄膜層結構係由碳切材料所形成。 瓜如巾請專概_ i項所述之方法,其中上述馳層結構係由半導體材料所形成。 26· 項所述之方法’其中上述薄膜層結構包含經過-半導體製程形 Φ 27·如申請專利範圍第26項所述之方法,其中上述薄膜層為石夕材料。 28. Γ請專利範圍第26項所述之方法,其中上述元件裝置包含難、或功率元 29. 30. 31. 一種形成薄膜層結構之製程方法, 氧化鋁基板之表面上;形成至少量二2s.形成一金屬氮化物薄膜層於一 膜層結構表面注人氫離子;自該氧該金錢化物材料層上;於該薄 屬氣化物薄膜,進而分離該氧化量,使氮氣形成、分解該金 如申請專利刪29項所述之方法,其t上述亀化物細層係由氮化欽組成。 ===獅述之方法,其中上述金缝__由氮化鎵、氣 32·如申凊專利範圍第29項所述之方法 半導體薄膜層。 其中上述薄膜層結構包含結晶、多晶或非晶 23 201120938 33. 如申請專利範圍第29項所述之方法, 矽薄膜層。 其中上述薄膜層結構包含結晶'多晶或非晶 ’其中上述薄膜層結構包含結晶 ’其中上述薄膜層結構包含結晶 ’其中上述薄膜層結構包含結晶 多晶或非晶 多晶或非晶 多晶或非晶 34. 如申請專利範圍第29項所述之方法 碳化矽薄膜層。 35. 如申請專利範圍第29項所述之方法 鍺薄膜層。 36. 如申請專利範圍第29項所述之方法 矽鍺薄膜層。 37. • 肌$申請專利範圍第29項所述之方法,其中上述注入氮離子係藉由氮離子源擴散方 39. 如申請專利範圍第38項所述之方法 40. 如申請專利範圍第38項所述之方法 41·如申請專利範圍第38項所述之方法 42_如申請專利範圍第29項所述之方法 43.如申請專利範圍第29項所述之方法 脈衝雷射光束照射、或微波照射。 ’其中上述氫離子源係藉由氫電漿產生。 ’其中上述氫離子源係藉由酸性溶液解離產生。 ’其中上述氫離子源係藉由電解液中電解產生。 ,其中上述注入氫離子係藉由離子佈植方式。 ,其中上述能量輸入方式係藉由紫外光照射、201120938 VII. Application for Patent Park: 1. A process for forming a thin film layer structure. On the surface of the oxidized woven plate, at least the metal nitride film layer is separated from the film layer structure. The aluminum substrate is input to the bare surface to make the alumina substrate and the method described in the first aspect of the invention, wherein the metal nitride film layer is composed of nitride. 3. As claimed in the first paragraph of the patent application, it consists of indium or aluminum nitride. The above-mentioned metal nitride thin film layer is a method according to the above, wherein the above-mentioned structure comprises crystalline, polycrystalline or amorphous polycrystalline or non-crystalline, non-crystalline or amorphous. A method of crystal carbon polycrystalline or amorphous error 5 Hi fine 1 , wherein the fine layer structure comprises a crystal, 6· = 2 = Na, wherein the heterostructure comprises crystals, 7. The method of claim 1, wherein the above-mentioned Lai structure comprises a crystal, a crystal, a polycrystal or an amorphous dream. The method according to Item 1, wherein the Lai structure comprises crystals, 9. The method of claim 7, wherein the injecting nitrogen ions is by a gas ion source diffusion method. The method of claim 9, wherein the hydrogen ion source is generated by hydrogen permeation. The method of claim 9, wherein the method of claim 12, wherein the source of the nitrogen ion is by an electrolyte Medium electrolysis is produced. 13. The method of claim 1, wherein the implanting nitrogen ions is by ion implantation. The method of the above-mentioned energy input is the method described in claim 14, wherein the pulsed laser beam has a wavelength range of 220, 22 201120938 16. 17. 18. The application method is described in the above description, wherein the above-mentioned energy input method is rounded in the side field. ί: 请利范 „17 诚 method, wherein the above-mentioned random basis _ or _ or polymer material 19 • The method described in claim 17, wherein the random substrate is formed by a semiconductor material. The method described in the Patent Application No. 17 wherein the wafer bonding method is performed by an adhesive medium layer #n-, (4) "Butterfly (four) coffee glass medium 22. The method described in claim i. The film layer structure is formed by the (four) material. The method of claim 4, wherein the film layer structure is formed of a wrong material. 24. As described in claim 1 The method of the present invention, wherein the film layer structure is formed by a carbon-cut material. The method of the invention, wherein the layered structure is formed of a semiconductor material. The method of claim 26, wherein the film layer structure comprises a method of the semiconductor device, wherein the film layer is a stone material. The above components Included in the method of forming a thin film layer structure, on the surface of the alumina substrate; forming at least two s. forming a metal nitride thin film layer on the surface of a film structure Hydrogen ions; from the oxygen layer of the methylene material; in the thin film of vapor, further separating the amount of oxidation, causing nitrogen to form and decompose the gold, as described in the patent application, the above-mentioned telluride The thin layer is composed of nitriding. === The method of the lion, wherein the gold slat is made of gallium nitride, and the gas is 32. The semiconductor film layer of the method of claim 29, wherein the film is The layer structure comprises crystal, polycrystalline or amorphous. The method of claim 29, wherein the film layer structure comprises a crystalline 'polycrystalline or amorphous', wherein the film layer structure comprises Crystallization 'where the above-mentioned film layer structure comprises crystals' wherein the above-mentioned film layer structure comprises crystalline polycrystalline or amorphous polycrystalline or amorphous polycrystalline or amorphous 34. The method of claim 29碳 碳 矽 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 The method of claim 7, wherein the injecting nitrogen ions are diffused by a nitrogen ion source. 39. The method of claim 38, wherein the method of claim 38 is as claimed in claim 38. The method of claim 38, wherein the method of claim 29 is the method of claim 29, wherein the method of claim 29 is a pulsed laser beam irradiation or microwave irradiation. It is produced by hydrogen plasma. Wherein the above source of hydrogen ions is produced by dissociation from an acidic solution. Wherein the above source of hydrogen ions is produced by electrolysis in an electrolyte. Wherein the above-described implanted hydrogen ions are by ion implantation. Wherein the above energy input method is irradiated by ultraviolet light, 44.如申請專利範圍第43項所述之方法 nm ° ,其中上述脈衝雷射光束波長範圍為220〜400 45.如申請專利範圍第43項所述之方法,其中上述能量輸入方式係藉由熱能同時輸入。 46·如申請專利範圍第29項所述之方法,直由治么h 離之前,上賴_麟狀暴料聽合接構合分。 4?. 利範圍第46項所述之方法,其中上述隨意基板係由玻璃或是聚合物材料 48.如申請專利範圍第46項所述之方法,其中上述隨意基板係由半導體材料所形成的。 役=請專利範圍第46項所述之方法,其中上述晶圓鍵合方式係藉由黏著劑媒介層 24 201120938 50. 如申請專利範圍第46項所述之方法 介層溶合接合。 51. 如申請專利範圍第29項所述之方法 52. 如申請專利範圍第29項所述之方法 53. 如申請專利範圍第29項所述之方法 54. 如申請專利範圍第29項所述之方法 55. 如申請專利範圍第29項所述之方法 形成元件裝置於其中。 其中上述晶圓鍵合方式係藉由低熔點玻璃媒 其中上述薄膜層結構係由矽材料所形成。 其中上述薄膜層結構係由鍺材料所形成。 其中上述薄膜層結構係由碳化石夕材料所形成。 其中上述薄膜層結構係由半導體材料所形成。 其中上述溝膜層結構包含經過一半導體製程 %如申請專利範圍第55項所球之方法,其中上述薄膜層為石夕材料。 57. ^申請專利範圍第55項所述之方法,其中上述元件裝置包含pN結、廳或功率元 58. —種形成矽晶薄膜層結構之製程方法,該方法 於-氧化纖之表面上娜至少一==1;=:=氮化物薄膜層 上;於該薄膜層結構表面注入氫離子;自該氧化紹材^ 形成、分解該金屬氮化物薄联,分離該氧化紹基板與該薄膜層!構。…、,使虱乳 说如申請專利範圍第58項所述之方法,其中上述金屬氣化物薄膜層係由氮化欽組成。 6〇. 娜咖,組侧祕咖舰化鎵、氮 队=請專利範圍第58項所述之方法,其中上述石夕晶薄膜層結構製作包含再結晶製 62. -種形成含元件之薄膜層結構之製程方法,該方法至少包含:形 f層於-氧化錄板之表面上;形成至少__個晶體細層 ^ f上;經:元件製作程序’形成元件裝置於該晶體薄膜層結構中; f 入祕子;自該氧_基板裸面以紫外光騎,使氫氣形成' ^解兮金 化物溥膜,分離該氧化鋁基板與該含元件之薄膜層結構。 攻分解該金屬氮 63. 如申請專利範圍第62項所述之方法,其中上述金屬氮化物薄膜層係由氣化欽組成。 Η 項所述之方法,其中上_____ j 65.如申請專利範圍第58項所述之方法,其中上述晶體薄膜層結難作包含再結晶製 25 201120938 程 濕式 66.=請概之妓’其中上述元件編離子佈植、 於-氧化銘;&板之表面上;形成至含:形成一金屬氮化物薄膜層 形成一結晶石夕薄膜層於該非晶於該金屬氮化物薄膜層上; 單晶石夕薄膜層結構於金屬氧化物?專膜上/再,.,°明製程,使結晶石夕薄膜結構層形成 68.如申請專利範圍第67項所述之方法,其中上述金屬氮化物薄膜層係由氣化欽組成。 69· 項所述之方法,其中上述金屬氣化物薄膜層係由氣化鎵、氣 7〇· 上;形成-結晶碳化石讀膜層結構^、日ίίϊίί氮化物薄膜層 形成單晶碳化㈣_聽於金魏上’婦結晶製較_結構層 7L如申請專利範圍第7〇項所述之方法,其中上述金屬纽物薄膜層係由氣化欽組成。 ?2· 項所述之方法,其中上述金屬氮化物薄_由_ 4 73. 成述之方法,其中上述結晶碳化_膜層結構材料係由單 74· 法,該方法至純含:形成-金魏化物薄膜層 成-錄薄膜I結構於該非晶薄膜層 層結構於金屬氧化物賴上。 、,再…日製程使越結構層形成單晶錯薄媒 75. 如申請專利範圍第74項所述之方法,其中上述金屬氣化物薄膜層係由氮化銀組成。 76. 項所述之方法’其中上述嫩化物薄膜層係械化鎵、氣 ::签 構 該:膜 層上;經再結晶製程使薄膜結縣形成 78.如申請專利範圍第77項所述之方法,其中上述金屬氣化物薄膜層係由氣化欽組成。 26 20112093844. The method of claim 45, wherein the pulsed laser beam has a wavelength range of 220 to 400. 45. The method of claim 43 wherein the energy input method is Thermal energy is input at the same time. 46. If the method described in item 29 of the patent application is applied, it is straightforward to treat it before the departure of the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The method of claim 46, wherein the random substrate is a glass or a polymer material. The method of claim 46, wherein the random substrate is formed of a semiconductor material. . The method of claim 46, wherein the wafer bonding method is by means of an adhesive medium layer 24 201120938 50. The layer is fused and joined as described in claim 46 of the patent application. 51. The method of claim 29, wherein the method of claim 29 is as described in claim 29, the method of claim 29, wherein the method of claim 29 is as described in claim 29, as described in claim 29 Method 55. The method of forming a component device as described in claim 29 of the patent application. The wafer bonding method is formed by a low-melting glass medium in which the film layer structure is formed of a germanium material. Wherein the above film layer structure is formed of a tantalum material. Wherein the above film layer structure is formed of a carbonized stone material. Wherein the above film layer structure is formed of a semiconductor material. The trench layer structure comprises a method of passing through a semiconductor process, such as the ball of claim 55, wherein the film layer is a stone material. 57. The method of claim 55, wherein the component device comprises a pN junction, a chamber or a power cell 58. a process for forming a crystalline thin film layer structure, the method is on the surface of the oxidized fiber At least one ==1;=:= on the nitride film layer; implanting hydrogen ions on the surface of the film layer structure; forming and decomposing the metal nitride thinning from the oxide material, separating the oxide substrate and the film layer Construction. The method of claim 58, wherein the metal vaporized film layer is composed of nitriding. 6〇. 娜咖, group side espresso gallium, nitrogen team = please refer to the method described in the 58th item, wherein the above-mentioned lithography film layer structure comprises recrystallization 62. - forming a film containing components a method for fabricating a layer structure, the method comprising: at least forming a layer of f on the surface of the oxidized recording plate; forming at least __ crystal fine layer ^ f; and: forming a component device to form the crystal thin film layer structure f; into the secrets; from the oxygen _ substrate bare surface riding with ultraviolet light, so that hydrogen forms a ' ^ 兮 兮 溥 溥 film, separating the aluminum oxide substrate and the film structure of the containing element. The method of claim 62, wherein the metal nitride thin film layer is composed of gasification. The method according to the above item, wherein the method of claim 57, wherein the crystal film layer is difficult to comprise comprises a recrystallization system. 'The above-mentioned components are ion-distributed, on-oxidized; & on the surface of the plate; formed to include: forming a metal nitride thin film layer to form a crystalline thin film layer on the amorphous metal nitride thin film layer The single crystal stone film layer structure is formed on the metal oxide film, the film is formed on the metal oxide film, and the film is formed by the method described in claim 67, wherein the metal is The nitride film layer is composed of gasification. The method according to the item 69, wherein the metal vaporized film layer is formed by gallium hydride gas, gas gas, gas film, carbon crystal film layer, and single crystal carbonization (4) The method described in the above paragraph 7 of the patent application, wherein the metal film layer is composed of gasification. The method of claim 2, wherein the metal nitride is thinner than the method described in the above, wherein the crystalline carbonization-membrane structure material is a single 74. method, and the method comprises: pure gold: forming - gold The film of the film of the film of the film is formed on the layer of the amorphous film. The method of claim 74, wherein the metal vaporized film layer is composed of silver nitride. 76. The method of the invention, wherein the above-mentioned tenderized film layer is mechanically gallium, gas:: signing: on the film layer; and the film is formed by a recrystallization process to form 78. As described in claim 77 The method wherein the metal vaporized film layer is composed of gasification. 26 201120938 79. 如申請專利範圍第77項所述之方法,其中上述金屬氮化物薄膜層係由氮化鎵、氮 化銦或氮化銘組成。 80. 如申請專利範圍第77項所述之方法,其中上述結晶半導體薄膜層結構材料係由單 晶半導體材料或多晶半導體材料構成。 2779. The method of claim 77, wherein the metal nitride thin film layer is composed of gallium nitride, indium nitride or nitride. The method of claim 77, wherein the crystalline semiconductor thin film layer structural material is composed of a single crystal semiconductor material or a polycrystalline semiconductor material. 27
TW098142691A 2009-12-14 2009-12-14 Method of fabricating a transferable crystalline thin film TWI451474B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098142691A TWI451474B (en) 2009-12-14 2009-12-14 Method of fabricating a transferable crystalline thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098142691A TWI451474B (en) 2009-12-14 2009-12-14 Method of fabricating a transferable crystalline thin film

Publications (2)

Publication Number Publication Date
TW201120938A true TW201120938A (en) 2011-06-16
TWI451474B TWI451474B (en) 2014-09-01

Family

ID=45045373

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098142691A TWI451474B (en) 2009-12-14 2009-12-14 Method of fabricating a transferable crystalline thin film

Country Status (1)

Country Link
TW (1) TWI451474B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105190875A (en) * 2013-03-13 2015-12-23 英特尔公司 Methods of forming under device interconnect structures
CN112614867A (en) * 2020-12-11 2021-04-06 联合微电子中心有限责任公司 Stacked color image sensor and monolithic integration method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020069312A1 (en) 2018-09-28 2020-04-02 The Penn State Research Foundation Method of growing crystalline layers on amorphous substrates using two-dimensional and atomic layer seeds

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534380B1 (en) * 1997-07-18 2003-03-18 Denso Corporation Semiconductor substrate and method of manufacturing the same
FR2867310B1 (en) * 2004-03-05 2006-05-26 Soitec Silicon On Insulator TECHNIQUE FOR IMPROVING THE QUALITY OF A THIN LAYER TAKEN
US8101501B2 (en) * 2007-10-10 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105190875A (en) * 2013-03-13 2015-12-23 英特尔公司 Methods of forming under device interconnect structures
CN112614867A (en) * 2020-12-11 2021-04-06 联合微电子中心有限责任公司 Stacked color image sensor and monolithic integration method thereof

Also Published As

Publication number Publication date
TWI451474B (en) 2014-09-01

Similar Documents

Publication Publication Date Title
JP7025773B2 (en) How to separate the semiconductor substrate body and the functional layer on it
TWI236056B (en) GaN single crystal substrate and method of making the same
TWI271788B (en) GaN single-crystal substrate, nitride type semiconductor epitaxial substrate, nitride type semiconductor device, and methods of making the same
US8921239B2 (en) Process for recycling a substrate
JP3501606B2 (en) Method for manufacturing semiconductor substrate and method for manufacturing solar cell
CN101521155B (en) Method for preparing substrate having monocrystalline film
TWI736554B (en) Manufacturing method of SiC composite substrate
TW200524005A (en) Process for producing monocrystal thin film and monocrystal thin film device
JP2009231816A (en) Method for preparing substrate having monocrystalline thin film
JP2007250575A (en) Manufacturing method of substrate for photoelectric conversion element
JP2010537936A (en) Method for manufacturing a hybrid substrate having at least one nitride material layer
EP2627803B1 (en) Heterogrowth
KR20150070161A (en) Method for producing nanocarbon film and nanocarbon film
WO2010015878A2 (en) Process for modifying a substrate
CN107706086B (en) Silicon carbide substrate vertical structure film electronic device and manufacturing method thereof
EP2216428B1 (en) PROCESS FOR PRODUCING SINGLE CRYSTAL SiC SUBSTRATE
EP2221853B1 (en) Relaxation and transfer of strained material layers
CN111883651A (en) Method for preparing high-quality aluminum nitride template
TW201120938A (en) Method of fabricating a transferable crystalline thin film
JP4894780B2 (en) Manufacturing method of semiconductor substrate
CN108511322A (en) A method of preparing GaN film in two-dimentional graphite substrate
JP2001089291A (en) Liquid phase growth method, method of producing semiconductor member and method of producing solar battery
CN114678257A (en) Nitride template based on metal substrate and preparation method and application thereof
JP2004307253A (en) Method for manufacturing semiconductor substrate
TW539782B (en) Single crystal SiC composite material for producing a semiconductor device, and a method of producing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees