TW201119121A - Solid oxide fuel cell and method of manufacturing the same - Google Patents
Solid oxide fuel cell and method of manufacturing the same Download PDFInfo
- Publication number
- TW201119121A TW201119121A TW099131500A TW99131500A TW201119121A TW 201119121 A TW201119121 A TW 201119121A TW 099131500 A TW099131500 A TW 099131500A TW 99131500 A TW99131500 A TW 99131500A TW 201119121 A TW201119121 A TW 201119121A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- plate
- electrolytic
- fuel electrode
- functional
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 292
- 239000007787 solid Substances 0.000 title claims abstract description 110
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 35
- 239000003792 electrolyte Substances 0.000 claims abstract description 12
- 239000010410 layer Substances 0.000 claims description 372
- 239000002346 layers by function Substances 0.000 claims description 113
- 229910052751 metal Inorganic materials 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 29
- 239000000203 mixture Substances 0.000 claims description 18
- 239000000919 ceramic Substances 0.000 claims description 17
- 239000000126 substance Substances 0.000 claims description 11
- 238000005868 electrolysis reaction Methods 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- 229910044991 metal oxide Inorganic materials 0.000 claims description 8
- 150000004706 metal oxides Chemical class 0.000 claims description 8
- 230000005611 electricity Effects 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000011148 porous material Substances 0.000 claims description 5
- 238000002485 combustion reaction Methods 0.000 claims description 4
- 239000007772 electrode material Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 3
- -1 and total y Substances 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- 206010011469 Crying Diseases 0.000 claims 1
- 239000011248 coating agent Substances 0.000 claims 1
- 239000000839 emulsion Substances 0.000 claims 1
- 230000008901 benefit Effects 0.000 abstract description 5
- 210000004027 cell Anatomy 0.000 description 131
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 9
- 229910052759 nickel Inorganic materials 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000003292 glue Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000002737 fuel gas Substances 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- BQENXCOZCUHKRE-UHFFFAOYSA-N [La+3].[La+3].[O-][Mn]([O-])=O.[O-][Mn]([O-])=O.[O-][Mn]([O-])=O Chemical compound [La+3].[La+3].[O-][Mn]([O-])=O.[O-][Mn]([O-])=O.[O-][Mn]([O-])=O BQENXCOZCUHKRE-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 241000124033 Salix Species 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- CVMIVKAWUQZOBP-UHFFFAOYSA-L manganic acid Chemical compound O[Mn](O)(=O)=O CVMIVKAWUQZOBP-UHFFFAOYSA-L 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 229910002119 nickel–yttria stabilized zirconia Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 230000009919 sequestration Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2404—Processes or apparatus for grouping fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8882—Heat treatment, e.g. drying, baking
- H01M4/8885—Sintering or firing
- H01M4/8889—Cosintering or cofiring of a catalytic active layer with another type of layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2425—High-temperature cells with solid electrolytes
- H01M8/2432—Grouping of unit cells of planar configuration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
201119121201119121
1 ! IW6848FA 六、發明說明: 【發明所屬之技術領域】 本發明實施範例是有關於一種固態氧化物燃料電 池,且本發明之實施例特別是有關於一種之平板管狀固態 氧化物燃料電池及其製造方法。 【先前技術】 在第一代電池(乾電池)及第二代電池(充電電池) 之後,所研發的燃料電池係被稱為第三代電池。燃料電池 可將燃料的氧化物所產生的化學能直接轉換成電能。依據 此燃料電池,反應物係持續地產生在燃料電池系統的輸出 側,而生成物則是持續地從燃料電池系統的輸入側被移 除。如此,便能半永久地(semipermanently )產生電力。 再者,燃料電池並不會因為機械轉換而造成能源損耗,故 能轉效率相當高。燃料電池可使用各種燃料,例如是化石 燃料、液體燃料、氣體燃料,且依據操作響度可被分成低 溫形態及高溫形態。 固態氧化物燃料電池使用之固態氧化物具有氧離子 傳導力或氫離子傳導力,如電解質般,且操作在600t與 1,000°C之間的溫度,此溫度是燃料電池操作溫度的最高 者。更者,由於各種元件具有固態形式,所以燃料電池的 結構相當簡單,也沒有諸如電解質損失或填補的問題。再 者,由於不需金屬催化劑,燃料的提供可容易地藉由内部 結構的調整來實現。另者,熱氣會在發電的過程中產生, 使用排放的熱能來結合產熱及產能亦是可實現的。因為上 201119121 述2梭點,研究及發展固態氧化物燃料電池主要是已開發 ^如美國、日本,而希望能在二十一世界初期達到固 態氧化物燃料電池的商品化。 、,依據沉積結構的不同,固態氧化物燃料電池可被分成 平板式及平板管狀式(圓柱狀)。平板管狀固態氧化物燃料 電池具有單電池的流通路徑。 請參照第1圖,其繪示為依照習知技藝(韓國專利第 8555號)之一平板管狀固態氧化物燃料電池之示意 圖、。請參照第1圖,燃料電極的支持管柱u係作為燃料 電池的支持器,且具有相互平行的一上板nA及一下板 UB。上板11A及下板11B的兩端皆經由弧形的側板Uc 相互連接,故上板11A、下板iiB、及側板uc係相互結 合成一平板管狀的形式。 上板丨1 A及下板ΠΒ形成燃料電極的支持管柱u的 截面中央部位,且係經由從至少兩架橋β而相互支持與連 接,此兩架橋B是從下板11B的上表面垂直延伸以直^地 連接至上板11A的下表面。 如此,平板管狀固態氧化物燃料電池包含:燃料電極 支持管柱11 ; 一連接構件π,其係縱向穿越上板ΠΑ中 央部位且具有長方形截面;一電解層12,其係塗佈在燃料 電極支持管柱11之外表面且不包含連接構件13;及一空 氣電極14,其係塗佈在電解層12之外表面且與連接構件 之側表面分隔一預定距離d。此燃料電極支持管柱】】 係藉由擠出(extrusion)的方式形成,而電解層〗2及空氣電 極14則是以塗佈製程來形成。 2011191211! IW6848FA VI. Description of the Invention: [Technical Field] The present invention relates to a solid oxide fuel cell, and an embodiment of the present invention particularly relates to a flat tubular solid oxide fuel cell and Production method. [Prior Art] After the first generation battery (dry battery) and the second generation battery (rechargeable battery), the developed fuel cell is called a third generation battery. Fuel cells convert the chemical energy produced by the oxides of fuel directly into electrical energy. According to this fuel cell, the reactants are continuously generated on the output side of the fuel cell system, and the product is continuously removed from the input side of the fuel cell system. In this way, electricity can be generated semipermanently. Furthermore, the fuel cell does not cause energy loss due to mechanical switching, so the conversion efficiency is quite high. The fuel cell can use various fuels such as fossil fuels, liquid fuels, and gaseous fuels, and can be classified into a low temperature form and a high temperature form depending on the operational loudness. Solid oxide oxides used in solid oxide fuel cells have oxygen ion conductivity or hydrogen ion conductivity, such as electrolytes, and operate at temperatures between 600 t and 1,000 ° C, which is the highest operating temperature of the fuel cell. Moreover, since the various elements have a solid form, the structure of the fuel cell is relatively simple and there are no problems such as electrolyte loss or filling. Furthermore, since no metal catalyst is required, the provision of fuel can be easily achieved by adjustment of the internal structure. In addition, hot gas will be generated during the power generation process, and the use of discharged heat energy to combine heat production and production capacity is also achievable. Because of the above-mentioned 201119121, the research and development of solid oxide fuel cells has mainly been developed, such as the United States and Japan, and it is hoped that the commercialization of solid oxide fuel cells will be achieved in the early 21st century. According to the deposition structure, the solid oxide fuel cell can be divided into a flat plate type and a flat plate type (cylindrical shape). The flat tubular solid oxide fuel cell has a single cell flow path. Referring to Fig. 1, there is shown a schematic view of a flat tubular solid oxide fuel cell according to the prior art (Korean Patent No. 8555). Referring to Fig. 1, the support column u of the fuel electrode serves as a support for the fuel cell, and has an upper plate nA and a lower plate UB which are parallel to each other. Both ends of the upper plate 11A and the lower plate 11B are connected to each other via the curved side plates Uc, so that the upper plate 11A, the lower plate iiB, and the side plates uc are combined with each other to form a flat tubular shape. The upper plate 丨1 A and the lower plate ΠΒ form a central portion of the cross section of the support column u of the fuel electrode, and are mutually supported and connected via at least two bridges β which extend vertically from the upper surface of the lower plate 11B. It is connected to the lower surface of the upper plate 11A in a straight line. Thus, the flat tubular solid oxide fuel cell comprises: a fuel electrode support column 11; a connecting member π which longitudinally passes through the central portion of the upper plate and has a rectangular cross section; an electrolytic layer 12 which is coated on the fuel electrode support The outer surface of the column 11 does not include the connecting member 13; and an air electrode 14 is coated on the outer surface of the electrolytic layer 12 and separated from the side surface of the connecting member by a predetermined distance d. The fuel electrode support column is formed by extrusion, and the electrolytic layer 2 and the air electrode 14 are formed by a coating process. 201119121
' 1 I W6848FA 極態氧化物燃料電池的燃料電 再者,由於電解層^^^^^故厚雜以減少。 成,妗劊.Mi π 巩包極14係以塗佈製程來形 成故k時間相對很長。更者,藉 電解層12可能合因蛊外,从讲 师表私而心成的 以形成可靠:;;Γ= 的孔洞而有缺陷,故難 ㈣4 = 習知之平板管狀固態氧化物 構件製㈣形成連接構件13 ’更因連接 冓件13的形成位置無法產生電力而會降低電池的效能。 【發明内容】 _本==;:=態氧化物 池的厚度。 手及“效率’並能減少燃料電 本發明之實施範例另提出一種上述之平 氧化物燃料電池的製造方法。 心 二發:之實施範例另提出一種固態氧化物燃料電 池’此增進強度或集電能力。 本發明之實施制另提出—種上述 料電池的製造方法。 礼化物勝 根據本發明之一實施範例,係提出一種 以製造一平板管狀固態氧化物燃料電池。於此方法中,’一 電解板、-燃料電極板、及具有一開口之板_ 形成-多層板。此多層板係銲接(sint:= f具有流通路控(flow path)之通道支持層、一燃料電極 ^、及圍繞通道支持層及燃料電極層之一電解層。—*氣 201119121 1 vv uo*-ror rv 電極層係形成為具有圍繞電解層的管狀形式。 於一實施例中,電解板包含一上電解板及一下電解 板,而燃料電極板包含一上燃料電極板及一下燃料電極 板,上燃料電極板及下燃料電極板係設置於上電解板及下 電解板之間,而通道板係設置於上燃料電極板與下燃料電 極板之間。 於一實施例中,上電解板、下電解板、及通道板之寬 度係大於上燃料電極板及下燃料電極板之寬度。 於一實施例中,多層板之上電解板之一部分係被移 除,以形成一集電器(current collector),而空氣電極層係 將形成於電解層之一表面的集電器暴露出來,並將與集電 器重疊之電解層之一對側表面覆蓋。 於一實施例中,電解板、燃料電極板、及通道板係被 部分地移除,以形成流通路徑之入口。 舉例來說,燃料電極板及通道板包含相同的化學成 分。或者,電解板及通道板亦可包含相同的化學成分。再 者,通道板係包含選自熱脹常數介於6x1 (Τ6]^1至14x 10_6!^之間的陶瓷、金屬、及金屬氧化物之至少之一所組 成的群組。 當電解板及通道板可包含相同化學成份時,多層板之 上電解板之一部分可被移除,以形成開口而暴露上燃料電 極板;而上燃料電極板之一部分及通道板之一部分可被移 除,以形成一連接孔;而開口及連接孔可以一傳導材料填 充,以形成一連接部來接觸上燃料電極板及下燃料電極 板,並形成一集電器來接觸連接部且可被暴露於外。 201119121' 1 I W6848FA The fuel of the polar oxide fuel cell is further reduced due to the thickness of the electrolytic layer ^^^^^. Cheng, 妗刽.Mi π 巩包极14 is formed by a coating process, so k is relatively long. Moreover, the electrolytic layer 12 may be due to the fact that it is formed from the instructor's private body to form a reliable:;; Γ = hole is defective, so it is difficult (4) 4 = conventional flat tubular solid oxide component system (four) formation The connecting member 13' is more incapable of generating electric power due to the formation position of the connecting member 13, which lowers the performance of the battery. SUMMARY OF THE INVENTION _ Ben ==;: = The thickness of the oxide pool. Hand and "efficiency" and reducing fuel power. Embodiments of the present invention further provide a method for manufacturing the above-described flat oxide fuel cell. The second embodiment of the present invention provides a solid oxide fuel cell. The present invention provides a method for manufacturing the above-mentioned battery. According to an embodiment of the present invention, a method for manufacturing a flat tubular solid oxide fuel cell is proposed. An electrolytic plate, a fuel electrode plate, and a plate having an opening _ forming a multilayer plate. The multilayer plate is welded (sint:=f has a flow path support layer, a fuel electrode ^, and An electrolytic layer surrounding one of the channel support layer and the fuel electrode layer. The gas layer is formed into a tubular form surrounding the electrolytic layer. In one embodiment, the electrolytic plate comprises an upper electrolytic plate. And the electrolytic plate, wherein the fuel electrode plate comprises an upper fuel electrode plate and a lower fuel electrode plate, wherein the upper fuel electrode plate and the lower fuel electrode plate are disposed on the upper electrolytic plate and Between the lower electrolytic plates, and the channel plate is disposed between the upper fuel electrode plate and the lower fuel electrode plate. In one embodiment, the widths of the upper electrolytic plate, the lower electrolytic plate, and the channel plate are greater than the upper fuel electrode plate and The width of the lower fuel electrode plate. In one embodiment, a portion of the electrolytic plate above the multilayer plate is removed to form a current collector, and the air electrode layer is formed on one surface of the electrolytic layer. The current collector is exposed and covers one of the side surfaces of the electrolytic layer overlapping the current collector. In one embodiment, the electrolytic plate, the fuel electrode plate, and the channel plate are partially removed to form an inlet for the flow path. For example, the fuel electrode plate and the channel plate contain the same chemical composition. Alternatively, the electrolytic plate and the channel plate may also contain the same chemical composition. Furthermore, the channel plate system is selected from a thermal expansion constant of 6x1 (Τ6). a group consisting of at least one of ceramic, metal, and metal oxide between ^1 and 14x10_6!^. When the electrolytic plate and the channel plate can contain the same chemical composition, the electrolytic plate on the multilayer plate A portion may be removed to form an opening to expose the fuel electrode plate; and a portion of the upper fuel electrode plate and a portion of the channel plate may be removed to form a connection hole; and the opening and the connection hole may be filled with a conductive material. A connection portion is formed to contact the upper fuel electrode plate and the lower fuel electrode plate, and a current collector is formed to contact the connection portion and can be exposed to the outside.
' 1 TW6848PA 根據本發明之一實施範例,係提出一種平板管狀固態 氧化物燃料電池,包括:一通道支持層,具有一流通路徑 (flow path); —上燃料電極層,係形成於通道支持層上; 一下燃料電極層,係形成於通道支持層下;一上電解層, 係形成於上燃料電極層之上,並具有一開口; 一下電解 層,係形成於下燃料電極層之下;一集電器,係形成於上 電解層之開口中,並接觸上燃料電極層;以及一空氣電極 層,具有管狀形式且圍繞上電解層與下電解層。 於一實施例中,通道支持層包含與上電解層或下電解 層相同的成份。再者,通道支持層係包含選自熱脹常數介 於όχΗΓ6!^1至ΜχΙΟ^Κ·1之間的陶瓷、金屬、及金屬氧化 物之至少之一所組成的群組。 於一實施例中,通道支持層可包含一連接部,連接部 係電性連接上燃料電極層至下燃料電極層。 於一實施例中,空氣電極層係將集電器暴露,而空氣 電極層之覆蓋下電解層的表面尺寸係大於空氣電極層之 覆蓋上電解層的表面尺寸。 於一實施例中,集電器係形成於鄰近流通路徑之一入 口之處。 根據本發明之一實施範例,係提出一種固態氧化物燃 料電池,包括一通道支持層、一第一電池層、一第二電池 層、一第一功能層、及一第二功能層。 通道支持層具有至少一流通路徑。第一電池層係設置 於通道支持層下,且包括依序設置於下之一第一燃料電極 層、一第一電解層、及一第一空氣電極層。 第二電池層係設置於通道支持層上,且包括依序設置 於上之一第二燃料電極層、一第二電解層、及一第二空氣 電極層。 第一功能層係設置於第一電池層與通道支持層之 間,第二功能層係設置於第二電池層與通道支持層之間, 各第一功能層及第二功能層用以增加強度。 於一實施例中,第一功能層及第二功能層各別包含陶 究、金屬、或其組合。 於一實施例中,第一空氣電極層及第二空氣電極層分 別向下及向上暴露出第一電解層之一部分及第二電解層 之一部分。 於一實施例中,固態氧化物燃料電池包令—第一連接 構件及一第二連接構件,其係在一與暴露部位重疊的區域 中分別穿過第一電解層及第二電解層,並分別連接至第一 燃料電極層及第二燃料電極層。 於一實施例中,固態氧化物燃料電池更包含一第三功 能層及一第四功能層,第三功能層係設置於第一功能與第 一電池層之間,第四功能層係設置於第二功能層及第二電 池層之間,第三功能層及第四功能層包含傳導率實質上大 於100西門子/公分(S/cm)的陶瓷、金屬、或其組合。 於一實施例中,第一功能層及第二功能層各別包含傳 導率實質上大於1〇〇西門子/公分(S/cm)的陶瓷、金屬、或 其組合。 於一實施例中,第一空氣電極層及第二空氣電極層分 別向下及向上暴露出第一電解層之一部分及第二電解層 201119121' 1 TW6848PA According to an embodiment of the present invention, a flat tubular solid oxide fuel cell is provided, comprising: a channel support layer having a flow path; and an upper fuel electrode layer formed on the channel support layer The fuel electrode layer is formed under the channel support layer; an upper electrolytic layer is formed on the upper fuel electrode layer and has an opening; and the lower electrolytic layer is formed under the lower fuel electrode layer; The current collector is formed in the opening of the upper electrolytic layer and contacts the upper fuel electrode layer; and an air electrode layer has a tubular form and surrounds the upper electrolytic layer and the lower electrolytic layer. In one embodiment, the channel support layer comprises the same composition as the upper or lower electrolytic layer. Further, the channel supporting layer comprises a group consisting of at least one of ceramics, metals, and metal oxides having a thermal expansion constant between όχΗΓ6!^1 and ΜχΙΟ^Κ·1. In one embodiment, the channel support layer may include a connection portion electrically connected to the upper fuel electrode layer to the lower fuel electrode layer. In one embodiment, the air electrode layer exposes the current collector, and the surface size of the electrolytic layer covered by the air electrode layer is greater than the surface size of the electrolytic layer covered by the air electrode layer. In one embodiment, the current collector is formed adjacent one of the inlets of the flow path. According to an embodiment of the present invention, a solid oxide fuel cell is provided, comprising a channel support layer, a first battery layer, a second battery layer, a first functional layer, and a second functional layer. The channel support layer has at least one flow path. The first battery layer is disposed under the channel support layer and includes a first fuel electrode layer, a first electrolyte layer, and a first air electrode layer. The second battery layer is disposed on the channel support layer and includes a second fuel electrode layer, a second electrolyte layer, and a second air electrode layer. The first functional layer is disposed between the first battery layer and the channel support layer, and the second functional layer is disposed between the second battery layer and the channel support layer, and each of the first functional layer and the second functional layer is used for increasing strength . In one embodiment, the first functional layer and the second functional layer each comprise a ceramic, a metal, or a combination thereof. In one embodiment, the first air electrode layer and the second air electrode layer expose a portion of the first electrolytic layer and a portion of the second electrolytic layer downward and upward, respectively. In one embodiment, the solid oxide fuel cell package has a first connecting member and a second connecting member that pass through the first electrolytic layer and the second electrolytic layer, respectively, in a region overlapping the exposed portion, and Connected to the first fuel electrode layer and the second fuel electrode layer, respectively. In one embodiment, the solid oxide fuel cell further includes a third functional layer and a fourth functional layer, the third functional layer is disposed between the first function and the first battery layer, and the fourth functional layer is disposed on the first functional layer Between the second functional layer and the second battery layer, the third functional layer and the fourth functional layer comprise ceramic, metal, or a combination thereof having a conductivity substantially greater than 100 Siemens/cm (S/cm). In one embodiment, the first functional layer and the second functional layer each comprise a ceramic, a metal, or a combination thereof having a conductivity substantially greater than 1 〇〇 Siemens/cm (S/cm). In one embodiment, the first air electrode layer and the second air electrode layer expose a portion of the first electrolytic layer and the second electrolytic layer downward and upward, respectively.
' 1 TW6848PA 之一部分,而固態氧化物燃料電池包含一第一連接構件及 一第二連接構件,其係在一與暴露部位重疊的區域中分別 穿過第一電解層及第二電解層,並分別連接至第一功能層 及第二功能層。 於一實施例中,第一功能層及第二功能層各自具有一 多孔結構。更詳細地,第一功能層及第二功能層各自所具 有之孔率(口〇代^1丨〇)係實質上介於1〇¥〇1%至5(^〇1%。 根據本發明之一實施範例,係提出一種製造方法,用 以製造一固態氧化物燃料電池。此方法包括:將一第一電 解板、一第一燃料電極板、及一第一功能板薄板化(laminate) 來增加強度,以形成一第一多層板;將一第二電解板、一 第二燃料電極板、及一第二功能板薄板化來增加強度,以 形成一第二多層板;將第一多層板及第二多層板分別薄板 化於一具有一流通路徑(flow path)之通道板之下方及上 方,並銲接(sinter)通道層、第一多層板、及第二多層板, 以形成一第一電解層、一第一燃料電極層、一第一功能 層、一通道支持層、一第二功能層、一第二燃料電極層、 及一第二電解層;以及各別塗佈一空氣電極材料於第二電 解層之上與第二電解層之下,並銲接以形成一第一空氣電 極層及一第二空氣電極層。 於一實施例中,第一功能板及第二功能板各自包含陶 瓷、金屬或其組合。 於一實施例中,第一功能板及第二功能板各自包含傳 導率實質上大於100西門子/公分(S/cm)的陶瓷、金屬或其 組合。第一空氣電極層及第二空氣電極層係分別向下及向 201119121 上暴露出第-電解層之—部分及第二電解層之—部分。 於—實施例中,此方法更包括分別為一第一電解 第二電解層形成一第一穿孔及一第二穿孔,並於—盥‘露 部位重4的區域中分別為第一燃料電極層及第二燃料 極層形成一第三穿孔及一第四穿孔。 於-實施例中,此方法更包括形成一第一連接構件及 ::二連接構件,其係分別穿過第一穿孔與第二穿孔、第 三穿孔與第四穿孔’並分別連接至第-功能層與第二功能 層、第一燃料電極層與第二燃料電極層。 依據本發明之實施例,平板管狀固態氧化物概料電池 可由多數個板的薄板化來製造。如此,平板管㈣離氧化 物燃料電池可兼具有平板管狀固態氧化物燃料電池在社 構與製造上的優點。更者,相較於傳統中以擠出方式製: =板官狀固態氧化物燃料電池,本實施例的平板管狀固 態氧化物燃料電池可以較薄。 再者,還可提昇電解層的品質,而多數個單電池可以 相互串聯及/或並聯,藉以成形一電池堆(stack)。 更者,由於固態氧化物燃料電池具有位於通道支持層 及第-與第二電池層之_第—魏層及第二功能層^ 固態氧化物燃料電池可具有實質上高於_百萬^购) 的強度。因此’便可以減少或避免因外部衝擊所導致的損 壞0 、 八值、料魏的第—及第二功能板包 含傳導率貫質上大於1〇〇西門子/公分(s/cm)的陶究、金屬 或其組合時,第-及第二連接構件係藉由第— 201119121a part of 1 TW6848PA, wherein the solid oxide fuel cell comprises a first connecting member and a second connecting member, respectively passing through the first electrolytic layer and the second electrolytic layer in a region overlapping the exposed portion, and Connected to the first functional layer and the second functional layer, respectively. In one embodiment, the first functional layer and the second functional layer each have a porous structure. In more detail, the porosity of each of the first functional layer and the second functional layer is substantially between 1% and 5% (1% to 1%). According to the present invention In one embodiment, a manufacturing method is proposed for manufacturing a solid oxide fuel cell. The method includes: laminating a first electrolytic plate, a first fuel electrode plate, and a first functional plate. To increase the strength to form a first multi-layer board; to thin a second electrolysis plate, a second fuel electrode plate, and a second function plate to increase the strength to form a second multi-layer plate; a multi-layer board and a second multi-layer board are respectively thinned under and above a channel plate having a flow path, and sinter channel layer, first multilayer board, and second layer a plate to form a first electrolytic layer, a first fuel electrode layer, a first functional layer, a channel support layer, a second functional layer, a second fuel electrode layer, and a second electrolyte layer; Do not apply an air electrode material above the second electrolytic layer and below the second electrolytic layer And soldering to form a first air electrode layer and a second air electrode layer. In an embodiment, the first functional board and the second functional board each comprise ceramic, metal or a combination thereof. In an embodiment, The first functional panel and the second functional panel each comprise ceramic, metal or a combination thereof having a conductivity substantially greater than 100 Siemens/cm (S/cm). The first air electrode layer and the second air electrode layer are downward and toward the respectively 201119121. The portion of the first electrolytic layer and the portion of the second electrolytic layer are exposed. In the embodiment, the method further comprises forming a first through hole and a second through hole respectively for the first electrolytic second electrolytic layer. And forming a third through hole and a fourth through hole in the region of the first fuel electrode layer and the second fuel electrode layer respectively in the region of the weight portion 4 of the exposed portion. In the embodiment, the method further comprises forming a first a connecting member and: two connecting members respectively passing through the first through hole and the second through hole, the third through hole and the fourth through hole 'and respectively connected to the first functional layer and the second functional layer, the first fuel electrode layer and a second fuel electrode layer. According to an embodiment of the present invention, a flat tubular solid oxide oxide battery can be manufactured by thinning a plurality of plates. Thus, the flat tube (IV) can be combined with an oxide fuel cell to have a flat tubular solid oxide fuel cell in a The manufacturing advantage is more. Compared with the conventional extrusion method: the plate-shaped solid oxide fuel cell, the flat tubular solid oxide fuel cell of the embodiment can be thinner. The quality of the electrolytic layer, and a plurality of single cells can be connected in series and/or in parallel to form a stack. Further, since the solid oxide fuel cell has a channel support layer and first and second battery layers _--Wei layer and second functional layer ^ Solid oxide fuel cell can have a strength substantially higher than _ million. Therefore, it is possible to reduce or avoid the damage caused by external impacts, the octal value, the first dimension of the material, and the second functional panel containing a conductivity of more than 1 〇〇 Siemens/cm (s/cm). , metal or a combination thereof, the first and second connecting members are by - 201119121
'1W6848PA 層而電性連接至第一及第二功能板。所以,第一及第二燃 料電極層的電子可有效地被壓縮。如此,便可增進固雜氧 化物燃料電池的電力產生效率。 為了對本發明之上述及其他方面有更佳的瞭解,下文 特舉較佳實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 本發明係對應所附圖式於此完整描述如下,並以其之 多種實施範例作說明。 〃 然而,本發明可具有多種不同之實施例,且不為以下 所述之實施例為限。以下所述之實施例係用以完整地揭露 本發明,使得本發明所屬技術領域中具有通常知識者可完 王了解本發明。為了更清楚說明本發明,圖式之層及區域 之尺寸及相對尺寸可能被誇張地繪示。 「此^之空間相對用詞,例如是「在··.下方」、「下面」、 下」上面」或上」或其他類似用詞,可用於簡單地 描述如所附圖式中所緣示之元件,或某特徵與另一元件或 =徵之關係。可了解的是,此些空間相對用詞係包括其他 =之:述’並非受限於圖式中之方向。舉例來說,當圖 下顛倒時,「一元件位於另一元件或特徵之 ^之敘㈣變為「-元件位於另—元件或特徵之上」。 包括「上」和「下」兩種方位。元 使 :向(旋轉90度或朝向其他方向),而此處 使用之二間相對用詞係被對應地解釋。 此處之用韻用以敘述本發明之實施例,並非用以限 201119121 I WUOHOr/Λ 制^發明。,除非特別註明,否則此處所用之「一」及「此」 之單數,式之敘述,亦包括複數之形式。此處所用之「包 含」及〇括」所述之特徵、整數、步驟、操作、元件或 成份,並非排除其他之特徵、整數、步驟、操作、元件、 成份或其組合。 除非另外定義,此處所使用之所有用詞(包括技術及 科學用3司)’係與本發明所屬技術領域中具有通常知識者 所了解之意,相同。此外,除非特別定義,此處所使用之 普通字典所疋義之用詞,當與相關技藝中之此用詞之意義 一致,而非指理想化或過度正式之意思。 第2至8圖繪示為依據本發明一實施範例之平板管狀 固態氧化物燃料電池之製造方法的示意圖。 請參照第2 ϋ,準備一上電解板1〇〇、一上燃料電極 板200、一通逼板300、一下燃料電極板4〇〇、及一下電解 板500。上燃料電極板2〇〇及下燃料電極板4〇〇係設置於 上電解板1〇〇與下電解板500之間,而通道層300係設置 於上燃料電極板2〇〇與下燃料電極板4〇〇之間。 上電解板100、下電解板5〇〇、及通道板3〇〇的寬度 係大於上燃料電極板2〇〇及下燃料電極板4〇〇之見度 上電解板100包含電解粉、溶劑、及黏合劑樹脂。舉 例來5兑’電解粉可包含一金屬氧化物,例如是絲疋·的乳 I乙錯(Yttria Stabi丨ized Zirconia, YSZ)及其相似物。而黏 & 劑樹脂可包含聚乙烯丁酸 (polyvinyl butyral)及其相^ 溶劑的實施例則可包含乙醇、二甲苯、及甲本。了早 用此些物品,或使用其之組合。更者,上電解板100 <更 201119121The '1W6848PA layer is electrically connected to the first and second function boards. Therefore, the electrons of the first and second fuel electrode layers can be effectively compressed. In this way, the power generation efficiency of the solid oxide fuel cell can be improved. In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in the accompanying drawings. [Embodiment] The present invention is fully described below with reference to the accompanying drawings, and is illustrated by the various embodiments. However, the invention may be embodied in a variety of different embodiments and is not limited to the embodiments described below. The embodiments described below are intended to fully disclose the present invention so that those skilled in the art can understand the invention. To more clearly illustrate the invention, the dimensions and relative dimensions of layers and regions of the drawings may be exaggerated. "The space relative to this word, such as "below", "below", "above" or above" or other similar terms, may be used to simply describe as shown in the accompanying drawings. The component, or the relationship of a feature to another component or sign. It can be understood that these spatially relative terms include other =: ' is not limited by the direction in the drawing. For example, when the figure is reversed, "a component in another component or feature (4) becomes "-the component is on another component or feature." Including "up" and "down". Yuan: (rotate 90 degrees or toward other directions), and the two relative terms used here are interpreted correspondingly. The rhyme used herein is intended to describe embodiments of the invention and is not intended to limit the invention of 201119121 I WUOHOr/. Unless otherwise stated, the singular expressions "a" and "the" are used herein to include the plural. The features, integers, steps, operations, components or components described herein are not intended to exclude other features, integers, steps, operations, components, components or combinations thereof. Unless otherwise defined, all terms (including technical and scientific uses, 3) used herein are the same as those of ordinary skill in the art to which the invention pertains. In addition, unless otherwise defined, the terms used in the ordinary dictionary as used herein are used in the sense of the meaning of the word in the related art, and are not intended to be ideal or overly formal. 2 to 8 are schematic views showing a method of manufacturing a flat tubular solid oxide fuel cell according to an embodiment of the present invention. Referring to the second step, an upper electrolytic plate 1A, an upper fuel electrode plate 200, a pass plate 300, a lower fuel electrode plate 4A, and a lower electrolytic plate 500 are prepared. The upper fuel electrode plate 2 and the lower fuel electrode plate 4 are disposed between the upper electrolytic plate 1 and the lower electrolytic plate 500, and the channel layer 300 is disposed on the upper fuel electrode plate 2 and the lower fuel electrode. Between the plates 4 〇〇. The widths of the upper electrolytic plate 100, the lower electrolytic plate 5〇〇, and the channel plate 3〇〇 are greater than the upper fuel electrode plate 2〇〇 and the lower fuel electrode plate 4〇〇. The electrolytic plate 100 contains electrolytic powder, solvent, And binder resin. For example, the 5' electrolytic powder may contain a metal oxide such as Yttria Stabi丨ized Zirconia (YSZ) and the like. The viscous & resin may comprise polyvinyl butyral and its phase solvent. The examples may comprise ethanol, xylene, and meth. Use these items early, or use a combination of them. Moreover, the upper electrolytic plate 100 < more 201119121
’ 'TW6848PA 包含分散劑(dispersant)及塑化劑(plasticizer)。 舉例來說,上電解板100的形成可藉由準備包含電解 粉、溶劑、黏合劑樹脂、分散劑、塑化劑的漿體(Slurry), 並藉由帶鑄(tape-casting)製程來形成一包含此漿體的平 板。或者’傳統的電解板也可使用在此上電解板1〇〇。 下電解板500在化學成分上可相同於上電解板1〇〇。 上燃料電極板200包含燃料電極粉、溶劑、及黏合劑 樹脂。舉例來說,燃料電極粉可包含—金屬氧化物,例如 疋L疋的YSZ鎳氧化物(Ni〇)及其相似物。溶劑及黏合 劑樹脂可實質上相同於上電解板1()()所使用者。上燃料電 極板200彳更包含相似於上電解板1〇〇所使用之分散劑及 塑化劑。 下燃料電極板4〇〇太彳卜風j·、\ 在化學成分上可相同於上燃料電 通道板300具有多個p弓π 2 qnn . 夕個開口 350,開口 350係穿越通道 Γ::二 =、上延伸。當燃料電池製造完成後,開口 通道板㈣一 m〇l-YSZ)、或燃料電極板。、貝二電解板相同的成分(8 熱脹常數介於)通道板3〇〇可包含選自 n 主 14χ 1 〇"6]^ * 1 及金屬氧化物之至少之— 、 之間的陶瓷、金屬、 鎳氧化物。可單獨使用此些物品,:(3mo“YSZ)、鎳、或 通道板300可且右 或使用其之組合。 通。 Ί細微孔洞’以使氣體可經其流 201119121 於此實施例中,通道板3〇〇具有與電解板相同的化學 成分。 請參照第3圖’上電解板1〇〇、上燃料電極板200、 通道板300、下燃料電極板4〇〇、及下電解板500係薄板 化以形成一具有平板狀的多層板。由於上電解板1〇〇、下 電解板500、及通道板3〇〇的寬度係大於上燃料電極板2〇〇 及下燃料電極板400之寬度,上燃料電極板2〇〇及下燃料 電極板400的側面係被上電解板丨〇〇圍繞’故下電解板5〇〇 及通道板300因而形成一管狀形式。因此,多層板的一邊 緣可相對較薄’而藉由在薄板化製程的過程中的施壓,多 層板的厚度亦可變得均勻。 請參照第4及5圖,上電解板1〇〇的一部分可切割以 形成一開口 150,而此開口 15〇係以一包含燃料電極粉或 金屬的傳導膠來填滿,以形成—集電器Π0。集電器170 與上燃料電極板200接觸。開口 15〇的數量及形狀與集電 器170可依據所需電池堆的目標與設計來對應修改。舉例 來說,集電器Π〇之上表面的高度係實質上相同於上燃料 電極板200的上表面的高度。或者,集電器17〇的形狀係 凸出於上燃料電極板200的上表面。更詳細地說,集電器 ]7〇的上表面的高度係實質上相同於一空氣電極的上表面 的高度。對應地,集電器170的功能係相仿於一連接構件, 故能省略此連接構件。 於此實施例中,當開口 150形成時,連接孔33〇係經 由上燃料電極板200及通道板3〇〇而形成,以暴露出下燃 料電極板400的上表面。此連接孔33〇係以一傳導膠來填'TW6848PA contains a dispersant and a plasticizer. For example, the upper electrolytic plate 100 can be formed by preparing a slurry containing an electrolytic powder, a solvent, a binder resin, a dispersing agent, a plasticizer, and by a tape-casting process. A plate containing the slurry. Alternatively, the conventional electrolytic plate can also be used here. The lower electrolytic plate 500 may be chemically identical to the upper electrolytic plate 1〇〇. The upper fuel electrode plate 200 contains a fuel electrode powder, a solvent, and a binder resin. For example, the fuel electrode powder may comprise a metal oxide such as YSZ nickel oxide (Ni〇) of 疋L疋 and the like. The solvent and binder resin can be substantially the same as those of the upper electrolytic plate 1 () (). The upper fuel electrode plate 200 further comprises a dispersant and a plasticizer similar to those used in the upper electrolytic plate. The lower fuel electrode plate 4 〇〇 彳 彳 j · · \ 在 在 在 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上Two =, upper extension. When the fuel cell is manufactured, open the channel plate (4) a m〇l-YSZ), or a fuel electrode plate. The same composition of the second electrolysis plate (8 thermal expansion constant) channel plate 3 can contain ceramics selected from the group consisting of n main 14χ 1 〇"6]^* 1 and at least metal oxides , metal, nickel oxide. These articles may be used alone: (3mo "YSZ), nickel, or channel plate 300 may be right or use a combination thereof. Pass through the fine pores 'to allow gas to flow through it 201119121 in this embodiment, the channel The plate 3 has the same chemical composition as the electrolytic plate. Please refer to FIG. 3 'the upper electrolytic plate 1 上, the upper fuel electrode plate 200, the channel plate 300, the lower fuel electrode plate 4 〇〇, and the lower electrolytic plate 500 Thinning to form a multi-layered plate having a flat shape. Since the widths of the upper electrolytic plate 1 , the lower electrolytic plate 500 , and the channel plate 3 are larger than the widths of the upper fuel electrode plate 2 and the lower fuel electrode plate 400 The sides of the upper fuel electrode plate 2 and the lower fuel electrode plate 400 are surrounded by the upper electrolytic plate ', so the lower electrolytic plate 5 〇〇 and the channel plate 300 thus form a tubular form. Therefore, one edge of the multilayer plate The thickness of the multilayer board can be made uniform by the pressing during the thinning process. Referring to Figures 4 and 5, a portion of the upper electrolytic plate 1 can be cut to form a Opening 150, and the opening 15 is included The electrode powder or the metal conductive glue is filled to form a current collector Π0. The current collector 170 is in contact with the upper fuel electrode plate 200. The number and shape of the openings 15〇 and the current collector 170 can be based on the desired target of the battery stack. Designed to correspond to the modification. For example, the height of the upper surface of the collector 系 is substantially the same as the height of the upper surface of the upper fuel electrode plate 200. Alternatively, the shape of the current collector 17 凸 protrudes from the upper fuel electrode plate In more detail, the height of the upper surface of the collector 7 is substantially the same as the height of the upper surface of an air electrode. Correspondingly, the function of the current collector 170 is similar to that of a connecting member. This connecting member can be omitted. In this embodiment, when the opening 150 is formed, the connecting hole 33 is formed via the upper fuel electrode plate 200 and the channel plate 3 to expose the upper surface of the lower fuel electrode plate 400. The connecting hole 33 is filled with a conductive adhesive
201119121 * IW6848PA 充,以形成一連接部,用以連接上 料電極板400。 微料電極板200至下燃 集電器170係較佳地形成於201119121 * IW6848PA is charged to form a connection for connecting the upper electrode plate 400. The microelectrode plate 200 to the lower combustion collector 170 are preferably formed on
位,而下電解板500並不呈有斑電解板100的周邊部 請參照第6圖,具有隼電;2器170重疊的開口。 成一支持結構,此支持結構包;㈣層板係銲接以形 料電極層210、一通道支持層31〇、上電解層110、一上燃 及-下電解層510。此多層^可、—下燃料電極層410、 的溫度來録接。於此之後,係、^ ,冒C ⑽、通道支持層310、及下電解層邊^綠示於上電解層 然而,由於上電解層〗1()、1、# 0之間,以利§兑明。 …具有相同的化學成份層加、及下電解層 解支持結構。 v成一無界線的完整電 請參照第7及8圖,—空氣 =的外表面上,而具有圍繞此係形成於支持 17〇的管狀。燃料電極層所暴露足持結構且暴露集電器 係部分移除,以形成流通路徑之支持結構的一側邊, 池。如此,空氣電極層800 ς 之入口,藉以形成單電 電器170暴露出來,並將與隹二成於電解層之表面的集 對側表面覆蓋。流通路押:态ηο重疊之電解層之一 層80。形成前來實施、;在二可在空氣電極 請參照第8圖,流通略S3 4。, 構的側表面,然而,、、*、s 、 D係形成於支持結 結構的對側表面(未繪$—35G的人π可形成於支持 舉例來說,聚體包含_孟氧化物(st_lumdoped 201119121 lanthanum manganite,LSM)、或 YSZ,聚體係塗佈且銲 以形成^氣電極層_。空氣電極層_的製程可在 路徑350的入口形成之前或之後來實施。 第一9圖繪示為第8圖中沿線段I及I ,的剖面圖’第 10圖繪不為第8圖中沿線π及n,的剖面圖。 請參照第9圖,集電器m係形成於鄰近流通 的上電解層110,而集電器⑽可沿著與流通 路L 350之縱向垂直的方向延伸。 。。空氣電極層_係將形成於電解層之—表面的 益170暴露出來,並將與集電 /、 ,蓋。如此,空氣電極層‘ ::電的二電Γ11。,而暴露出咖 τΓ 表面。如此,空氣電極 田_之覆盍下電解層510的表面 8〇〇之覆蓋上電解声於二虱電極層 解臂110的表面尺寸。—連接部】80係穿 越燃料電極層210與通道支持層3】〇,且係 访 燃料電極層41G相接觸。對應地,上極^ ”下 枓洁拉s 丄λ"、了十电極層210可雷 =:燃料電極層4】〇。此連接㈣。的形成 接至集電器170,以方便製造過程。然而, 的形成方式亦可不連接至集電器170。 指〇 繞上ίΐΓ第10圖,空氣電極層800具有管狀形式且圍 形成it敗:支持層310、與下電解一^ 電池堆時:便能容二=。如此’在從單電池形成 連接至空氣電極層。 &應表面積將燃料電極層 201119121The lower electrolytic plate 500 is not in the peripheral portion of the spot electrolytic plate 100. Referring to Fig. 6, there is an opening in which the two devices 170 overlap. A support structure is formed, and the support structure package is provided; (4) the laminate is soldered to form a electrode layer 210, a channel support layer 31, an upper electrolytic layer 110, an upper combustion and a lower electrolytic layer 510. The temperature of the multi-layer, the lower fuel electrode layer 410 is recorded. After that, the system, ^, C (10), channel support layer 310, and the lower electrolytic layer edge ^ green are shown in the upper electrolytic layer. However, due to the upper electrolytic layer 〖1 (), 1, # 0, to benefit § For the clear. ...with the same chemical composition layer and the lower electrolytic layer solution support structure. v Complete power of an unbounded line Refer to Figures 7 and 8, on the outer surface of air = and have a tubular shape formed around the support. The fuel electrode layer is exposed to the footprint and the exposed current collector is partially removed to form a side of the support structure of the flow path, the pool. Thus, the inlet of the air electrode layer 800 is formed so that the single electric device 170 is exposed and covers the opposite side surfaces of the surface of the electrolytic layer. The flow path is a layer 80 of one of the electrolytic layers in which the state ηο overlaps. The formation is carried out before; the second can be used in the air electrode. Refer to Figure 8 and circulate slightly S3 4 . The side surface of the structure, however, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , St_lumdoped 201119121 lanthanum manganite, LSM), or YSZ, the poly system is coated and welded to form a gas electrode layer _. The process of the air electrode layer _ can be implemented before or after the inlet of the path 350 is formed. For the cross-sectional view 'Fig. 10 along the line segments I and I in Fig. 8, the cross-sectional view along the line π and n in Fig. 8 is drawn. Referring to Fig. 9, the collector m is formed on the adjacent circulation. The electrolytic layer 110, and the current collector (10) may extend in a direction perpendicular to the longitudinal direction of the flow path L 350. The air electrode layer _ exposes the surface 170 formed on the surface of the electrolytic layer, and will be combined with the current collection/ , the cover. Thus, the air electrode layer ' :: electric second electric Γ 11 . . , and expose the surface of the coffee τ 。. Thus, the surface of the air electrode field _ the underlying electrolytic layer 510 is covered with electrolytic sound The surface area of the second electrode layer disengaged arm 110. - Connection section] 80 series crossing fuel The electrode layer 210 is in contact with the channel support layer 3, and is in contact with the fuel electrode layer 41G. Correspondingly, the upper electrode ^" lower jaw s 丄 λ", the ten electrode layer 210 can be Ray =: fuel electrode layer The connection of the connection (4) is connected to the current collector 170 to facilitate the manufacturing process. However, the formation manner may not be connected to the current collector 170. The winding electrode 10 has a tubular form. And the formation of the failure: support layer 310, and the next electrolysis of a battery stack: can accommodate two =. So 'in the formation of a cell connected to the air electrode layer. & surface area will be fuel electrode layer 201119121
* 1 TW6848PA 於此實施射,電解板丨00輿的寬度係 電極板200與柳的寬度,故能使電解層11〇與、j 燃料電極層2H)與梢。或者,電解板1〇〇與% = 亦可相同於燃料電極板細與400的寬度,而 ^ 膠於燃料電極板200與400的侧面,以使一 傅導 一燃料電極層。 足解層能圍繞 於此實施例中,流通路徑35〇具 形狀,且係形成於相對的兩個 而、::延伸的 的形狀與位置亦可修改。舉例來說路徑35〇 U形’而流通路徑350的人口可於佐的形狀可為 圖所示。或者,流通路徑的形狀亦可:面上,如第 如弟12圖所示。 馬4曲形(Zigzag), 依據本發明之實施例,平板管 可經由平板薄板化的方式來制土。 心氣化物燃料電池 Z造的平板管狀固態氧化物:料電:可實施例所 狀固態氧化物燃料電池於結構 保、有-平板管 較於傳統以播出方式製成的平板管狀固的^。再者,相 池,此處所提出之平板# 〜氣化物燃料電 等。更者,可、氣化物燃料電池的厚度可 電解層的品質、並能使個種形狀的流通路徑、改善 相互連接。 早電池能以串聯或並聯的方式 第13圖誇示為依據本發明另 固態氧化物燃料電池的萝 乾例之平板管狀 為依據本發明另―,:^法之示意圖。第14圖繪示 電池的剖面圖。更焊έ ^ 之平板官狀固態氧化物燃料 也說,第14圖的剖面圖係沿著相 201119121 1 vv uonor r\ 同於第8圖之線段I及Γ而被繪示。 請參照第13圖,依據本發明另一實施範例之一通道 板300可具有與燃料電極板相同的化學成份。為了將通道 板300電性隔離,一密合板370係設置於通道板300之旁, 如平面圖所示。此密合板370可設置於遠離通道板300之 處、或可設置成與通道板300接觸。此密合板370的薄板 化製程可相同於通道板300的製程,或是不同於通道板300 的的製程。此密合板370可具有與一電解板相同的化學成 份。 通道板300與燃料電極板200及400可銲接以形成一 具有流通路徑350的燃料電極支持結構600,而一上電解 板與一下電解板係銲接以形成具有管狀形式且圍繞燃料 電極支持結構600的電解層700。如此,有別於第8圖所 示之平板管狀固態氧化物燃料電池,由於上燃料電極層並 未藉由一通道支持層而與下燃料電極層隔離,故不需在形 成集電器時形成一連接部。 第15圖繪示為依據本發明一實施範例之平板管狀固 態氧化物燃料電池之電池堆的示意圖。第16圖繪示為第 1 5圖中沿著線段Π至Π ’的剖面圖。 請參照第15及16圖,兩個單電池係互相串聯連接, 以形成一燃料電池堆。各單電池係實質上相同於平板管狀 固態氧化物燃料電池。如此,各單電池包括一具有流通路 徑350的通道支持層310、設置於通道支持層310之上與 下的燃料電極層210與410、及設置於燃料電極層210與 410之上與下的電解層110與510,而上電解層110的一 201119121* 1 TW6848PA is used for this shot. The width of the electrolytic plate 丨00舆 is the width of the electrode plate 200 and the willow, so that the electrolytic layer 11 and the j fuel electrode layer 2H) and the tip can be made. Alternatively, the electrolytic plates 1 〇〇 and % = may be the same as the width of the fuel electrode plates and 400, and are glued to the sides of the fuel electrode plates 200 and 400 to provide a fuel electrode layer. The layer of the foot can be around this embodiment, the flow path 35 has a shape and is formed in two opposite sides:: The shape and position of the extension can also be modified. For example, the path 35 〇 U-shape and the population of the flow path 350 can be shaped as shown. Alternatively, the shape of the flow path can also be: face, as shown in Figure 12. In the case of a Zigzag, in accordance with an embodiment of the present invention, the flat tube can be soiled by means of a flat sheet. Heart-vaporized fuel cell Z-made flat-plate tubular solid oxide: material electricity: The solid oxide fuel cell of the embodiment can be used in the structure, and the flat-plate tube is more rigid than the conventional flat-tube type made by the broadcast method. Furthermore, the phase cell, the plate #~ gasification fuel, etc. proposed here. Furthermore, the thickness of the vaporizable fuel cell can be such that the quality of the electrolytic layer can be made and the flow paths of various shapes can be improved and interconnected. The early battery can be illustrated in series or in parallel. Fig. 13 is a schematic view showing another embodiment of the solid oxide fuel cell according to the present invention. Figure 14 is a cross-sectional view of the battery. The flat-plate solid oxide fuel of the solder joint ^ is also said to have a cross-sectional view of Fig. 14 along the line 201119121 1 vv uonor r\ and the line I and Γ of Fig. 8. Referring to Figure 13, a channel plate 300 according to another embodiment of the present invention may have the same chemical composition as the fuel electrode plate. In order to electrically isolate the channel plate 300, a sealing plate 370 is disposed adjacent to the channel plate 300 as shown in plan view. The sealing plate 370 can be disposed away from the channel plate 300 or can be placed in contact with the channel plate 300. The thinning process of the sealing plate 370 can be the same as the process of the channel plate 300 or a process different from that of the channel plate 300. This laminate 370 can have the same chemical composition as an electrolytic plate. The channel plate 300 and the fuel electrode plates 200 and 400 may be welded to form a fuel electrode support structure 600 having a flow path 350, and an upper electrolytic plate is welded to the lower electrolytic plate to form a tubular form and surrounding the fuel electrode support structure 600. Electrolytic layer 700. Thus, unlike the flat tubular solid oxide fuel cell shown in FIG. 8, since the upper fuel electrode layer is not isolated from the lower fuel electrode layer by a channel support layer, it is not necessary to form a current collector. Connection. Figure 15 is a schematic view showing a battery stack of a flat tubular solid oxide fuel cell according to an embodiment of the present invention. Figure 16 is a cross-sectional view along line Π to Π ' in Figure 15. Referring to Figures 15 and 16, the two battery cells are connected in series to each other to form a fuel cell stack. Each of the single cells is substantially identical to a flat tubular solid oxide fuel cell. As such, each of the cells includes a channel support layer 310 having a flow path 350, fuel electrode layers 210 and 410 disposed above and below the channel support layer 310, and electrolysis disposed above and below the fuel electrode layers 210 and 410. Layers 110 and 510, while the upper electrolytic layer 110 is a 201119121
' * TW6848PA 部分係被開洞以形成一與上燃料電極層210接觸的集電器 170。上燃料電極層210係經由一連接部180而連接至一 下燃料電極層410。 如圖所示,依據本發明之一實施例所製造的兩個單電 池係相互重疊,並相互-聯連接以形成一電池堆。於此電 池堆中,第一單電池的空氣電極層係連接至設置於其下的 第二單電池的集電器。一串聯連接構件190可形成於第一 單電池的空氣電極層與第二單電池的集電器之間,用以方 便地使空氣電極層連接至集電器。此串聯連接構件190的 實作例可包含長條狀的傳導膠、傳導線、網(mesh)、或金 屬薄片(foil)。更者,傳導膠可塗佈於第一單電池的空氣電 極層與第二單電池的集電器上。於此實施例中,此串聯連 接構件190的厚度係大於空氣電極層。如此,第一及第二 單電池的空氣電極層800可相互分離,並經由一空氣電極 連接構件197而相互電性連接。 或者,集電器170可形成為凸出於上電解層110的上 表面,故第二單電池的集電器可接觸第一單電池的空氣電 極層,而不需串聯連接構件。 第17圖繪示為依據本發明另一實施範例之平板管狀 固態氧化物>然料電池之電池堆的示意圖。第18圖繪示為 第17圖中沿著線段IV至IV’的剖面圖。 於此實施例中,多個單電池係相互並聯連接。舉例來 說,一第一單電池的燃料電極層係電性連接至一第二單電 池的燃料電極層。舉例來說,一串聯連接構件190可形成 於各第一及第二單電池的集電器,而一燃料電極連接構件 19 201119121 195與-空氣電極連接構件199可形成於第一及第二單 池的侧面之間。燃料電極連接構件195與空氣電極連接構 件州的形成方法可相似於串聯連接構件19〇的形成方 法。 第19圖繪示為依據本發明再一實施範例之平板管狀 固態氧化物燃料電池之電池堆的示意圖。帛2〇圖 第19圖中沿著線段v,的剖面圖。 a , 於此實施例中,多個單電池係相互串聯及並聯連接。 ,例來說’-第-單電池可以串聯方式電性連接至一第二 ,電池’而此第-單電池另以並聯方式電性連接至—第三 :電池’且此第三單f池更以串聯方式電性連接至一第四 早電池’而此第二單電池另以並聯方式電性連接四 電池。 干 舉例來說,一串聯連接構件丨9 〇可形成於第一單電池 的-空氣電極層與第二單電池的集電器之間,而—燃料電 極連接構件〗95與一空氣電極連接構件〗99可形成於第一 及第,單電池的側面之間。一串聯連接構件190可更形成 於第三單電池的一空氣電極層8〇〇與第四單電池的集電器 170之間’而—燃料電極連接構件195與—空氣電=連接 構件199 T更形成於第二及第四單電池的側面之間。 相較於傳統以擠出方式製成的平板管狀固態氧化物 燃料電池’本發明實施例之平板管狀固態氧化物燃料電池 的可變得較薄。再者,多個單電池能以㈣及/或並聯的方 式相互連接,故能方便地形成一電池堆。 第21圖續' 示為依據本發明另一實施範例之固態氧化 20The portion of the * TW6848PA is opened to form a current collector 170 in contact with the upper fuel electrode layer 210. The upper fuel electrode layer 210 is connected to a lower fuel electrode layer 410 via a connection portion 180. As shown, two single cells fabricated in accordance with an embodiment of the present invention overlap each other and are interconnected to form a stack. In this battery stack, the air electrode layer of the first unit cell is connected to the current collector of the second unit cell disposed thereunder. A series connection member 190 may be formed between the air electrode layer of the first unit cell and the current collector of the second unit cell for conveniently connecting the air electrode layer to the current collector. The embodiment of the series connection member 190 may comprise a strip of conductive glue, a conductive wire, a mesh, or a metal foil. Further, the conductive paste may be applied to the air electrode layer of the first unit cell and the current collector of the second unit cell. In this embodiment, the series connection member 190 has a thickness greater than that of the air electrode layer. Thus, the air electrode layers 800 of the first and second cells can be separated from each other and electrically connected to each other via an air electrode connecting member 197. Alternatively, the current collector 170 may be formed to protrude from the upper surface of the upper electrolytic layer 110, so that the current collector of the second unit cell may contact the air electrode layer of the first unit cell without connecting the connecting members in series. Figure 17 is a schematic view showing a battery stack of a flat tubular solid oxide > battery according to another embodiment of the present invention. Figure 18 is a cross-sectional view taken along line IV to IV' in Figure 17. In this embodiment, a plurality of unit cells are connected in parallel to each other. For example, the fuel electrode layer of a first single cell is electrically connected to the fuel electrode layer of a second single cell. For example, a series connection member 190 may be formed on the current collectors of the first and second battery cells, and a fuel electrode connection member 19 201119121 195 and an air electrode connection member 199 may be formed in the first and second single cells. Between the sides. The method of forming the fuel electrode connecting member 195 and the air electrode connecting member state can be similar to the method of forming the series connecting member 19A. Figure 19 is a schematic view showing a battery stack of a flat tubular solid oxide fuel cell according to still another embodiment of the present invention.帛2〇 Figure 19 is a cross-sectional view along line v. a. In this embodiment, the plurality of unit cells are connected in series and in parallel to each other. For example, the '-the first battery can be electrically connected in series to a second battery, and the first battery is electrically connected in parallel to the third-battery' and the third single f-cell The battery is electrically connected to a fourth early battery in series, and the second battery is electrically connected to the four batteries in parallel. For example, a series connection member 丨9 〇 may be formed between the air electrode layer of the first unit cell and the current collector of the second unit cell, and the fuel electrode connection member 95 and an air electrode connection member 99 may be formed between the first and the first sides of the unit cell. A series connection member 190 may be further formed between an air electrode layer 8〇〇 of the third unit cell and the current collector 170 of the fourth unit cell, and the fuel electrode connection member 195 and the air battery=connection member 199T are further Formed between the sides of the second and fourth battery cells. The flat tubular solid oxide fuel cell of the embodiment of the present invention can be made thinner than the conventional flat tubular solid oxide fuel cell which is conventionally produced by extrusion. Furthermore, a plurality of unit cells can be connected to each other in a (four) and/or parallel manner, so that a battery stack can be conveniently formed. Figure 21 continued 'shown as solid state oxidation in accordance with another embodiment of the present invention 20
201119121 IW6848PA ,料電池的分解示意圖。第22圖繪示為依據本發明另 一貫施範例之固態氧化物燃料電池的製造方法之示音 圖。第23 ®緣示為第22圖中沿著線段似^的剖面圖= ^凊參照第21至23圖,依據本發明另一實施例之固態 氧化物燃料電池1000包含一通道支持層11〇〇、一第一^ 池層1200、-第二電池層13⑼、一第—功能層剛、及 一第二功能層1500。 通道支持層1100包含多個支持部u】〇而具有位於其 間的至少一流通路徑1112。支持部ηι〇的形成係 1〇〇〇 的所有7G件被薄板化後,垂直於流通路徑1112的延伸方 向的通道支持層1110的一端係被切割以打開流通路徑 1112的入口或出口。 通道支持層mo可包含陶瓷、金屬或其之組合。舉 例來說’通道支持層】100可包含氧化紹⑽㈧、ysz、或 YSZ與鎳的組合物。更者,通道支持層η⑻可包含選自 熱脹常數介於6X10-V1 14xl0-6K·〗之間嶋、金屬、 及金屬氧化物之至少之一所組成的群組。 更者,通逼支持層110的形成成分可相同於第一功能 層】400及第二功能層15〇〇 ’藉以強化固態氧化物燃料電 池麵的強度。與第一功能層剛和第二功能層15〇〇 不同的是,支持層1100的結構可不具有孔洞。 广含風的燃料氣體FG流入至通道支持層1100的流通 路:1112。舉例來說’燃料氣體fg可以是氫氣⑽,其 係藉由文與石厌说合之氫(碳氫化合物)而取得,例如是甲 21 201119121 1 ννυ〇Η〇ΓΛ\ 烧(CH4)、丙烧(C3H8)、或丁烧(C4H10)。或者,燃料氣體 FG可以是碳氫化合物的氣體。 第一電池層1200係設置於通道支持層1100下。第一 電池層1200包含依序設置於下的一第一燃料電極層 1210、一第一電解層122〇、與一第一空氣電極層123〇。 第一燃料電極層1210係設置與通道支持層11〇〇相 對。第一燃料電極層丨21〇接觸流通路徑1112中所流通的 氫原子。第一燃料電極層121〇具有多孔結構,故氫氣可 穿越於其間。第一燃料電極層1210可包括離子傳導材料, 例如是鎳與YSZ的混合物。 备與碳混合的氫(碳氫化合物)流入流通路徑1丨12 時’第一燃料電極層1210可包含銅來避免碳的形成。或 者’,第一燃料電極層1210可包含鈽氧化物(Ce〇2),用以氧 化形成於第-燃料電極層121()上的碳,並排出碳氣化物。 第一電解層1220可包含一陶瓷粉,例如是YSZ、 (La Sr)(Ga,Mg)〇3 . Ba(Zr,Y)〇3 > GDC(Gd ## Ce02) > ㈣Yf3 ΐ參雜㈤2),其等係具有高離子傳導性、低 來… 魏遇原反應的高穩定性、與高力學特性。 木5兄,苐—電解層1220可包含8mo丨_YSZ。 二空氣電極層123〇與含氧氣的外部氣體⑷ 於其:1= = =有多孔結構’故氧氣可〗 介面=層子122°用二傳送來自第-空氣電極⑵ 的乳的離子,而此離子係提供至第—燃料電右 22 201119121201119121 IW6848PA, a schematic diagram of the decomposition of the material battery. Fig. 22 is a view showing a method of manufacturing a solid oxide fuel cell according to another embodiment of the present invention. The 23rd ® is shown as a cross-sectional view along the line in Fig. 22 = ^ 凊 Referring to Figs. 21 to 23, the solid oxide fuel cell 1000 according to another embodiment of the present invention includes a channel support layer 11 a first battery layer 1200, a second battery layer 13 (9), a first functional layer, and a second functional layer 1500. The channel support layer 1100 includes a plurality of support portions 〇 with at least one flow path 1112 therebetween. After all of the 7G members of the forming portion ηι〇 are thinned, one end of the channel supporting layer 1110 perpendicular to the extending direction of the flow path 1112 is cut to open the inlet or outlet of the flow path 1112. The channel support layer mo may comprise ceramic, metal or a combination thereof. For example, the 'channel support layer" 100 can comprise a combination of oxidized (10) (eight), ysz, or YSZ with nickel. Furthermore, the channel support layer η(8) may comprise a group selected from the group consisting of at least one of a thermal expansion constant of between 6X10-V1 14xl0-6K·, a metal, and a metal oxide. Furthermore, the forming composition of the support layer 110 can be the same as the first functional layer 400 and the second functional layer 15〇〇' to enhance the strength of the solid oxide fuel cell surface. Unlike the first functional layer just as the second functional layer 15A, the structure of the support layer 1100 may have no holes. The widely distributed wind gas FG flows into the passage of the passage support layer 1100: 1112. For example, 'the fuel gas fg can be hydrogen (10), which is obtained by the combination of hydrogen and hydrocarbons, such as A 21 201119121 1 ννυ〇Η〇ΓΛ\ burning (CH4), C Burn (C3H8), or calcined (C4H10). Alternatively, the fuel gas FG may be a hydrocarbon gas. The first battery layer 1200 is disposed under the channel support layer 1100. The first battery layer 1200 includes a first fuel electrode layer 1210, a first electrolytic layer 122, and a first air electrode layer 123, which are sequentially disposed underneath. The first fuel electrode layer 1210 is disposed opposite to the channel support layer 11A. The first fuel electrode layer 丨21〇 contacts the hydrogen atoms flowing through the flow path 1112. The first fuel electrode layer 121 has a porous structure so that hydrogen gas can pass therethrough. The first fuel electrode layer 1210 may comprise an ion conducting material, such as a mixture of nickel and YSZ. When hydrogen (hydrocarbon) mixed with carbon flows into the flow path 1丨12, the first fuel electrode layer 1210 may contain copper to avoid formation of carbon. Alternatively, the first fuel electrode layer 1210 may contain cerium oxide (Ce 〇 2) for oxidizing carbon formed on the first fuel electrode layer 121 () and discharging the carbon gas. The first electrolytic layer 1220 may comprise a ceramic powder, such as YSZ, (La Sr)(Ga,Mg)〇3. Ba(Zr,Y)〇3 > GDC(Gd ## Ce02) > (4) Yf3 ΐ ΐ (5) 2), which have high ion conductivity and low... The high stability and high mechanical properties of Wei Yuyuan reaction. Wood 5, 苐 - electrolytic layer 1220 may comprise 8mo 丨 _YSZ. The two air electrode layers 123 and the oxygen-containing external gas (4) are: 1 = = = have a porous structure, so the oxygen can be interfaced = the layer 122° transmits the ions from the milk of the first air electrode (2), and this Ion system provided to the first - fuel electric right 22 201119121
1 ' TW6848PA 1210。此離子與燃料氣體反應而產生電子來提供水或電。 當氧氣直接與氫氣接觸時,將會降低功率產生效率。 為了避免此狀況,有別於第一燃料電極層1210與第一空 氣電極層1230,第一電解層1220可具有非多孔結構。再 者,相仿於通道支持層1100,第一電解層1220的寬度可 大於第一燃料電極層1210與第一空氣電極層1230之寬 度。 第二電池層1300係設置於通道支持層1100上。第二 電池層1300包含依序設置於上的一第二燃料電極層 1310、一第二電解層1320、與一第二空氣電極層1330。 第二燃料電極層1310、第二電解層1320、與第二空 氣電極層1330係實質上相同於第一燃料電極層1210、第 一電解層1220、與第一空氣電極層1230,除了其等之位 置外,故於此省略重複的說明。 第一功能層1400係設置於通道支持層1100與第一電 池層1200之間,更詳細地說,係設置於通道支持層1100 與第一燃料電極層1210之間。第一功能層1400的形狀可 為平板狀。第一功能層1400的加入係用以增進強度或傳 導力,而第一功能層1400的材料可視不同需求而有多樣 的選擇。 第一功能層1400具有多孔結構,故於流通路徑1112 中流動的氫會被轉移至第一燃料電極層1210。當第一功能 層1400的孔率約小於lOvol%時,便不容易使氫穿越第一 功能層1400。如此,可減少第一燃料電極層丨210的電子 產生效率。當第一功能層1400的孔率約小於50vol%時, 23 201119121 則會因為多餘的孔洞而幾乎無法增加強度或傳導力。 如此’第一功能層1400較佳地可具有的孔率約介於 10vol°/〇至50vol%之間。更佳地,第一功能層14〇〇的孔率 約介於20vol%至40vol%之間。更佳地,第一功能層14〇〇 的孔率約介於30vol%至40vol°/〇之間。 第一功能層1400之多孔結構的形成可藉由使用一孔 洞成形劑。孔洞成形劑的實作例可包括一基於碳的孔洞成 形劑、一基於聚合物的孔洞成形劑、或一基於殺粉的孔洞 成形劑。或者,第一功能層14〇〇的多孔結構的形成可藉 由改變第一功能層1400的製造方式,而不需孔洞成形劑曰。 第二功能層1500係設置於通道支持層11〇〇與第二電 池層1300之間,更詳細地說,係設置於通道支持層η㈧ 與第二燃料電極層1310之間。第二功能層1500係實質上 相同於第一功能層14〇〇,除了配置之外。 、 為了製造此固態氧化物燃料電池1〇〇〇,用來增進強 度或傳導力的-第-電解板、—第—燃料電極板、與一第 -功能板係薄板化以形成一第一多層板,而用來增進 或傳導力的-第二電解板、—第二燃料電極板、與—第: 功能板係薄板化以形成一第二多層板。 一 料槪係设置於第一及第二多層板之間,且係 =二:UCKTCM,漏。〇的溫度來鮮接,藉以形 第蛄料電極層1210、第一電解層丨22〇、第— 1400、通道域層應、第二㈣電極層丨训 ^ 電解層1320。 只弟 空氣電極材料係塗佈於第一電解層1220上與第二電 24 2011191211 ' TW6848PA 1210. This ion reacts with the fuel gas to produce electrons to provide water or electricity. When oxygen is directly in contact with hydrogen, power generation efficiency will be reduced. In order to avoid this, unlike the first fuel electrode layer 1210 and the first air electrode layer 1230, the first electrolytic layer 1220 may have a non-porous structure. Further, similarly to the channel support layer 1100, the width of the first electrolytic layer 1220 may be greater than the width of the first fuel electrode layer 1210 and the first air electrode layer 1230. The second battery layer 1300 is disposed on the channel support layer 1100. The second battery layer 1300 includes a second fuel electrode layer 1310, a second electrolyte layer 1320, and a second air electrode layer 1330. The second fuel electrode layer 1310, the second electrolytic layer 1320, and the second air electrode layer 1330 are substantially the same as the first fuel electrode layer 1210, the first electrolytic layer 1220, and the first air electrode layer 1230, except for The position is outside, so the repeated description is omitted here. The first functional layer 1400 is disposed between the channel support layer 1100 and the first battery layer 1200, and more specifically, between the channel support layer 1100 and the first fuel electrode layer 1210. The shape of the first functional layer 1400 may be a flat plate shape. The addition of the first functional layer 1400 is used to enhance strength or conduction, and the material of the first functional layer 1400 can be varied depending on different needs. The first functional layer 1400 has a porous structure, so hydrogen flowing in the flow path 1112 is transferred to the first fuel electrode layer 1210. When the porosity of the first functional layer 1400 is less than about 10% by volume, it is not easy to pass hydrogen through the first functional layer 1400. Thus, the electron generation efficiency of the first fuel electrode layer 210 can be reduced. When the porosity of the first functional layer 1400 is less than about 50 vol%, 23 201119121 may hardly increase strength or conductivity due to excess holes. Thus the first functional layer 1400 preferably has a porosity of between about 10 vol / 〇 to 50 vol %. More preferably, the first functional layer 14 has a porosity of between about 20 vol% and 40 vol%. More preferably, the first functional layer 14 has a porosity of between about 30 vol% and 40 vol/min. The formation of the porous structure of the first functional layer 1400 can be achieved by using a void forming agent. The embodiment of the void forming agent may include a carbon-based pore former, a polymer-based pore former, or a powder-killing pore former. Alternatively, the formation of the porous structure of the first functional layer 14 can be achieved by changing the manner in which the first functional layer 1400 is fabricated without the need for a void forming agent. The second functional layer 1500 is disposed between the channel support layer 11A and the second battery layer 1300, and more specifically, between the channel support layer η(8) and the second fuel electrode layer 1310. The second functional layer 1500 is substantially identical to the first functional layer 14A except for the configuration. In order to manufacture the solid oxide fuel cell, the first electrolysis plate, the first fuel electrode plate, and the first functional plate are thinned to form a first plurality. The laminate, and the second electrolytic plate, the second fuel electrode plate, and the -: functional plate are used to promote or conduct the force to form a second multilayer plate. A lanthanum system is disposed between the first and second multi-layer boards, and is two: UCKTCM, leaking. The temperature of the crucible is freshly connected, whereby the electrode layer 1210, the first electrolytic layer 2222, the first 1400, the channel domain layer, and the second (four) electrode layer are trained. The air electrode material is applied to the first electrolytic layer 1220 and the second electricity 24 201119121
' 'TW6848PA 解層1320下,而以約1,000°C至1,300°C的溫度來銲接, 藉以形成第一及第二空氣電極層1230與1330。如此,便 可製成此固態氧化物燃料電池1000。 當形成第一及第二空氣電極層1230與1330時,第一 及第二電解層1220與1320可向上或向下部分暴露出來。 一第一穿孔1222與一第二穿孔1322可形成於第一及第二 電解層1220與1320所暴露之處。由於在薄板化過程所施 加的壓力,故固態氧化物燃料電池1000的周圍部分的厚 度可相同於中央部分,如第23圖所示。 第24圖繪示為第22圖中沿線段VII至VT的剖面圖。 請參照第24圖,包含陶瓷、金屬或其組合的第一及 第二功能層1400與1500,可增加固態氧化物燃料電池 1000的強度。 更詳細地說,具有第一及第二功能層1400與1500的 固態氧化物燃料電池1000,其強度大於約100百萬帕 (MPa),而於此狀態下,正常處理固態氧化物燃料電池1000 時,固態氧化物燃料電池1000幾乎不會受到損傷。 舉例來說,第一及第二功能層1400與1500具有強度 約為200MPa的3 mol-YSZ。3 mol-YSZ的強度可大於8 mol-YSZ約5至8倍,後者用於形成第一及第二電解層 1220 與 1320。 表一 第一及第二 第一及 第一及第 通 道 強度 電解層 第二燃 二功能層 支 持 料電極 層 25 201119121 層 比 8mol-YSZ Ni-YSZ - 8mol- 約 65 MPa 較 YSZ 例 實 3mol-YSZ 3mol- 約 347 MPa 作 (孔率:40 YSZ 例 vol%) 表一顯示本發明之實作例所製造之固態氧化物燃料 電池與比較例,尺寸為15x20 mm2,固態氧化物燃料電池 的強度係以Tinius Olsen(UTM)來量測。 請參照表一,於本發明之實作例所製造之固態氧化物 燃料電池中,第一及第二功能層1400與1500係以3 mol-YSZ來形成且孔率約為40 vol%,通道支持層1100的 成分與第一及第二功能層相同,此例之強度約347 MPa, 然而,於比較例所製造之固態氧化物燃料電池中,通道支 持層的成分與第一及第二電解層1220與1230相同,但不 具第一及第二功能層1400與1500,此例之強度約為65 MPa,即本發明之實作例所製造之固態氧化物燃料電池的 約五分之一。 如上所述,含第一及第二功能層1400與1500的固態 氧化物燃料電池1000可增加強度,從而降低因外力而導 致損壞的可能。 各第一及第二電解層1220與1320的一部分係被分割 以形成一第一穿孔1222與一第二穿孔1322,而第一及第 26 201119121'TW6848PA is layered under 1320 and soldered at a temperature of about 1,000 ° C to 1,300 ° C to form first and second air electrode layers 1230 and 1330. Thus, the solid oxide fuel cell 1000 can be fabricated. When the first and second air electrode layers 1230 and 1330 are formed, the first and second electrolytic layers 1220 and 1320 may be exposed upward or downward. A first through hole 1222 and a second through hole 1322 may be formed at the places where the first and second electrolytic layers 1220 and 1320 are exposed. The thickness of the surrounding portion of the solid oxide fuel cell 1000 may be the same as that of the central portion due to the pressure applied during the thinning process, as shown in Fig. 23. Figure 24 is a cross-sectional view taken along line VII to VT in Figure 22. Referring to Figure 24, the first and second functional layers 1400 and 1500 comprising ceramic, metal or a combination thereof may increase the strength of the solid oxide fuel cell 1000. In more detail, the solid oxide fuel cell 1000 having the first and second functional layers 1400 and 1500 has a strength greater than about 100 megapascals (MPa), and in this state, the solid oxide fuel cell 1000 is normally processed. At that time, the solid oxide fuel cell 1000 is hardly damaged. For example, the first and second functional layers 1400 and 1500 have a 3 mol-YSZ having a strength of about 200 MPa. The strength of 3 mol-YSZ may be about 5 to 8 times greater than that of 8 mol-YSZ, which is used to form first and second electrolytic layers 1220 and 1320. Table 1 first and second first and first and first channel strength electrolytic layer second burning two functional layer supporting material electrode layer 25 201119121 layer ratio 8mol-YSZ Ni-YSZ - 8mol - about 65 MPa than YSZ example 3mol- YSZ 3mol - about 347 MPa (porosity: 40 YSZ case vol%) Table 1 shows a solid oxide fuel cell manufactured by a practical example of the present invention and a comparative example, the size of a solid oxide fuel cell of 15x20 mm2 Measured by Tinius Olsen (UTM). Referring to Table 1, in the solid oxide fuel cell manufactured by the embodiment of the present invention, the first and second functional layers 1400 and 1500 are formed by 3 mol-YSZ and the porosity is about 40 vol%, and the channel support The composition of the layer 1100 is the same as that of the first and second functional layers, and the strength of this example is about 347 MPa. However, in the solid oxide fuel cell manufactured by the comparative example, the composition of the channel supporting layer and the first and second electrolytic layers are the same. 1220 is the same as 1230, but does not have first and second functional layers 1400 and 1500. The strength of this example is about 65 MPa, which is about one-fifth of the solid oxide fuel cell manufactured by the embodiment of the present invention. As described above, the solid oxide fuel cell 1000 including the first and second functional layers 1400 and 1500 can increase the strength, thereby reducing the possibility of damage due to an external force. A portion of each of the first and second electrolytic layers 1220 and 1320 is divided to form a first through hole 1222 and a second through hole 1322, and the first and the second 2011 19121
' * TW6848PA 二穿孔1222與1322係以傳導膠填充,例如是金屬膠或陶 瓷膠,藉以形成一第一連接構件1700與一第二連接構件 1800。第一與第二穿孔1222與1322的填充方式可以平板 狀的傳導膠來填充,或經由網版印刷(screen printing)的方 法來填充。 第一與第二穿孔1222與1322的形狀可為多角形。當 第一與第二穿孔1222與1322為多角形時,第一與第二穿 孔1222與1322的尾端可為圓球形。如此,第一與第二連 接構件1700與1800便可具有對應於第一與第二穿孔1222 與1322的形狀。 對應地,第一與第二連接構件1700與1800分別地與 第一及第二燃料電極層1210與1310接觸。 之後,塗佈且銲接一空氣電極材料以形成第一及第二 空氣電極層1230與1330,而暴露出第一及第二穿孔1222 與 1322。 當多個單一固態氧化物燃料電池相互結合以形成電 池堆時,各單一固態氧化物燃料電池1000可具有第一及 第二連接構件1700與1800,而暴露在外的第一及第二連 接構件1700與1800可電性連接至一外部電子裝置。 暴露在外的第一及第二連接構件1700與1800壓縮第 一與第二燃料電極層1210與1310所產生的電子,而將電 子提供至外部電子裝置來操作外部電子裝置。外部電子裝 置可為由電力或電池所驅動的一般電子裝置。 當此些單一固態氧化物燃料電池1000相互串聯連接 時,未暴露於外的第一及第二連接構件1700與1800係電 27 201119121 性連接至一鄰近的單一固態氧化物燃料電池的第一及第 二空氣電極層1230與1330。當此些單一固態氧化物燃料 電池1000相互並聯連接時,未暴露於外的第一及第二連 接構件1700與1800則是電性連接至一鄰近的單一固能氧 化物燃料電池的第一與第二燃料電極層121〇與i3i〇; 第25圖繪示為第24圖中之第二連接構件之另一實施 例的放大示意圖。 於此實施例中,第-及第二連接構件具有相同的結 構。因此,在此將針對第二連接構件作說明。 請參照第25圖,第二電解層1325可具有多個穿孔 1323排列在-暴露在外且未被第二空氣電極層⑽覆蓋 的區域。 此些穿孔1323的狀形可為圓環形(circ—),如第 圖户f示、。或者,此些穿孔1323的狀形可為多角形,而其 尾如》係為圓球形。 苐一連接構件1 8 1 0的形狀+ J心狀可相同於穿孔1323,且可 被插入至各穿孔1323中。舉例决# 咖 L a 列石5兄,穿孔1323可用含粉 的膠體填充,其中粉具有傳導陶究、八 一 ^ ^ ^ 1 〇 1 尤孟屬或其組合,藉以 t成苐·一連接構件1810。再去,;_ M , # ,. 也可利用塗佈或喷塗含傳 V陶是、金屬或其組合的漿體央 墙% @ ^ 木形成弟二連接構件1810。 第26圖綠示為依據本發明 揪料㈣夕Μ β 貫施例之固態氧化物 燃枓電池之第-及弟二功能層的剖 之線段YD及VK,而繪示者。第97 〃你/〇第22圖 圖之第π 圖繪示出傳導率與第26 圖之第-及功能層的鎳含量的相對變化。 於此實施例中,固態氧化物 吻燃枓電池係實質上相同於 28 201119121'* TW6848PA The two perforations 1222 and 1322 are filled with conductive glue, such as metal glue or ceramic glue, to form a first connecting member 1700 and a second connecting member 1800. The filling of the first and second perforations 1222 and 1322 can be filled with a flat conductive adhesive or by a screen printing method. The shapes of the first and second perforations 1222 and 1322 may be polygonal. When the first and second through holes 1222 and 1322 are polygonal, the trailing ends of the first and second through holes 1222 and 1322 may be spherical. As such, the first and second connecting members 1700 and 1800 can have shapes corresponding to the first and second perforations 1222 and 1322. Correspondingly, the first and second connecting members 1700 and 1800 are in contact with the first and second fuel electrode layers 1210 and 1310, respectively. Thereafter, an air electrode material is applied and soldered to form first and second air electrode layers 1230 and 1330 to expose first and second perforations 1222 and 1322. When a plurality of single solid oxide fuel cells are combined with each other to form a battery stack, each single solid oxide fuel cell 1000 may have first and second connecting members 1700 and 1800, and exposed first and second connecting members 1700 And 1800 can be electrically connected to an external electronic device. The exposed first and second connecting members 1700 and 1800 compress the electrons generated by the first and second fuel electrode layers 1210 and 1310, and supply the electrons to the external electronic device to operate the external electronic device. The external electronic device can be a general electronic device driven by electricity or a battery. When the single solid oxide fuel cells 1000 are connected to each other in series, the first and second connecting members 1700 and 1800 are not exposed to each other, and the first and second adjacent solid oxide fuel cells are connected to the first one. The second air electrode layers 1230 and 1330. When the single solid oxide fuel cells 1000 are connected in parallel with each other, the first and second connecting members 1700 and 1800 that are not exposed are electrically connected to the first of a neighboring single solid oxide fuel cell. The second fuel electrode layers 121A and i3i〇; Fig. 25 is an enlarged schematic view showing another embodiment of the second connecting member in Fig. 24. In this embodiment, the first and second connecting members have the same structure. Therefore, the second connecting member will be described here. Referring to Fig. 25, the second electrolytic layer 1325 may have a plurality of perforations 1323 arranged in an area exposed to the outside and not covered by the second air electrode layer (10). The shape of the perforations 1323 may be a circular shape (circ—), as shown in the figure. Alternatively, the perforations 1323 may be polygonal in shape and the tails may be spherical. The shape of the connecting member 1 8 10 + J core may be the same as the through hole 1323 and may be inserted into each of the through holes 1323. For example, #咖L a 列石5兄, perforation 1323 can be filled with powder-containing colloid, wherein the powder has conductive ceramics, Bayi ^ ^ ^ 1 〇 1 Yumeng or a combination thereof, whereby t is a connecting member 1810 . Then, _ M , # ,. can also be used to coat or spray the slurry wall containing the V ceramic, metal or a combination thereof to form the second connecting member 1810. Fig. 26 is a green diagram showing the section lines YD and VK of the first and second functional layers of the solid oxide fuel-burning battery according to the present invention. Page 97 You / 〇 Figure 22 The πth graph shows the relative change in conductivity and the nickel content of the first and functional layers of Figure 26. In this embodiment, the solid oxide kiss burning battery system is substantially the same as 28 201119121
' * TW6848PA 第24圖所示之固態氧化物燃料電池,除了第一及第二功 能層與第-及第二燃料電極層。因此,相同的元件係以相 同的標號來表示’並省略重複的說明。 請參照第26及27 U,於本發明另一實施例之固態氧 化物燃料電池中,第-及第二功能層142〇與152〇包含傳 導率實質上大於西門子/公分(s/cm)的陶曼、金屬或其 組合。 再者,第一及第二功能層1420與1520較佳地可具有 大於锰酸鑭(Lanthanum Manganite)的傳導率。舉例來說, 在約800 C的溫度下,第一及第二功能層1420與1520可 包含傳導率實質上大於55西門子/公分(s/cm)的陶竞、金 屬或其組合,即錳酸鑭的傳導率。 舉例來s兒’弟一及第二功能層1420與1 520可包含3 mol-YSZ與鎳的混合物。由於傳導率在鎳含量約為3〇 v〇1% 時係快速降低,故第—及第二能層1420與1520較佳地可 具有大於30 vol%的鎳含量。舉例來說,第一·及第二功能 層1420與1520可包含鑭鉻氧化物(Lacr〇3)與炭黑的混合 物。 第一及第二燃料電極層1240與1340可具有分別連接 至第一及第二穿孔1222與1322的第三及第四穿孔1242 與1342。第三與第四穿孔1242與1342可分別具有與第一 及第二穿孔1222與1322實質上相同的形狀。 第一及第二連接構件1750與1850分別穿越第三與第 四穿孔】242與1342及第一與第二穿孔丨222與1322,故 第一及第二連接構件1750與1 850的尾端係接觸第—與第 29 201119121 I ν» ν/ϋ~τυι r\ 二功能層1420與1520。第一與第二功能層1420與1520 的側面係分別接觸第一與第二燃料電極層1240與1340。 如上所述,當第一與第二連接構件1750與1850電性 連接至第一與第二功能層1420與1520及第一與第二燃料 電極層1240與1340時,便可從第一與第二燃料電極層 1240與1340來有效地壓縮電子。如此,便可提高固態氧 化物燃料電池2100的功率產生效率。 第28圖繪示為依據本發明再一實施例之固態氧化物 燃料電池之分解示意圖。第29圖繪示為第28圖中沿著線 段Μ及VDT的剖面圖。 於此實施例中,固態氧化物燃料電池係實質上相同於 第26圖所示之固態氧化物燃料電池,除了第三與第四功 能層為新加入者外。因此,相同的元件係以相同的標號來 表示,並省略重複的說明。 請參照第28及29圖,依據本發明另一實施例之固態 氧化物燃料電池2200包括第三及第四功能層1450與 1550,其係設置於通道支持層1100與第一功能層1420之 間和通道支持層1100與第二功能層1520之間。 第三及第四功能層1450與1550可包含陶瓷、金屬或 其組合,故固態氧化物燃料電池2200的強度可大於約 lOOMPa。舉例來說,第三與第四功能層1450與1550可包 含強度約為200MPa的3 mol-YSZ,如第24圖所繪示之第 一與第二功能層1400與1500。 如上所述,當固態氧化物燃料電池2200包含第三與 第四功能層1450與1550及第一與第二功能層1420與1520 30 201119121' * TW6848PA The solid oxide fuel cell shown in Figure 24, except the first and second functional layers and the first and second fuel electrode layers. Therefore, the same elements are denoted by the same reference numerals and the repeated description is omitted. Referring to FIGS. 26 and 27 U, in a solid oxide fuel cell according to another embodiment of the present invention, the first and second functional layers 142 〇 and 152 〇 comprise a conductivity substantially greater than that of Siemens/cm (s/cm). Tauman, metal or a combination thereof. Furthermore, the first and second functional layers 1420 and 1520 preferably have a conductivity greater than that of Lanthanum Manganite. For example, at a temperature of about 800 C, the first and second functional layers 1420 and 1520 can comprise a pottery, a metal, or a combination thereof having a conductivity substantially greater than 55 Siemens/cm (s/cm), ie, manganic acid. The conductivity of 镧. For example, the first and second functional layers 1420 and 1 520 may comprise a mixture of 3 mol-YSZ and nickel. Since the conductivity is rapidly lowered at a nickel content of about 3 〇 v 〇 1%, the first and second energy layers 1420 and 1520 preferably have a nickel content of more than 30 vol%. For example, the first and second functional layers 1420 and 1520 may comprise a mixture of lanthanum chrome oxide (Lacr 〇 3) and carbon black. The first and second fuel electrode layers 1240 and 1340 can have third and fourth perforations 1242 and 1342 coupled to the first and second perforations 1222 and 1322, respectively. The third and fourth perforations 1242 and 1342 can each have substantially the same shape as the first and second perforations 1222 and 1322. The first and second connecting members 1750 and 1850 respectively pass through the third and fourth through holes 242 and 1342 and the first and second through holes 222 and 1322, so that the end portions of the first and second connecting members 1750 and 1 850 are Contact the first and the 29th 201119121 I ν» ν/ϋ~τυι r\ two functional layers 1420 and 1520. The side surfaces of the first and second functional layers 1420 and 1520 contact the first and second fuel electrode layers 1240 and 1340, respectively. As described above, when the first and second connecting members 1750 and 1850 are electrically connected to the first and second functional layers 1420 and 1520 and the first and second fuel electrode layers 1240 and 1340, the first and the second The two fuel electrode layers 1240 and 1340 effectively compress electrons. Thus, the power generation efficiency of the solid oxide fuel cell 2100 can be improved. Figure 28 is a schematic exploded view of a solid oxide fuel cell in accordance with still another embodiment of the present invention. Figure 29 is a cross-sectional view along line Μ and VDT in Figure 28. In this embodiment, the solid oxide fuel cell is substantially identical to the solid oxide fuel cell shown in Figure 26 except that the third and fourth functional layers are new. Therefore, the same elements are denoted by the same reference numerals, and the repeated description is omitted. Referring to FIGS. 28 and 29, a solid oxide fuel cell 2200 according to another embodiment of the present invention includes third and fourth functional layers 1450 and 1550 disposed between the channel support layer 1100 and the first functional layer 1420. And between the channel support layer 1100 and the second functional layer 1520. The third and fourth functional layers 1450 and 1550 can comprise ceramic, metal, or a combination thereof, such that the strength of the solid oxide fuel cell 2200 can be greater than about 100 MPa. For example, the third and fourth functional layers 1450 and 1550 can comprise 3 mol-YSZ having an intensity of about 200 MPa, as illustrated by the first and second functional layers 1400 and 1500 of FIG. As described above, when the solid oxide fuel cell 2200 includes third and fourth functional layers 1450 and 1550 and first and second functional layers 1420 and 1520 30 201119121
* , TW6848PA 於通道支持層110之上與下時,將能達到關於第24圖所 述的增加強度、與關於第26圖所述的增加集電流率。 當固態氧化物燃料電池2200的厚度因第一與第二功 能層1420與1520及第三與第四功能層1450與155〇而增 加時’將使落差(step difference)變大而導致破裂。因此, 於鄰近固態氧化物燃料電池2200之兩側面的通道支持層 1100之上與之下,固態氧化物燃料電池2200可更包含第 一及第二密合構件1600與1650 ’以移除並密合此落差。 然而’當固態氧化物燃料電池包含第一與第三功能層 1420與1450之一、及第二與第四功能層1520與1550之 一時’落差很小,故可不需第一及第二密合構件16〇〇與 1650。 為了形成第一與第二密合構件1600與1650,可以相 似於形成通道支持層1100的方式來薄板化一-帶狀的平板 及其他元件’而將此平板不包含密合構件1600與165〇的 一剩餘部分移除。第一與第二密合構件1600與1650所包 含的成份可相同於第一及第二電解層1220與1320或通道 支持層1100。 於此實施例中,如第三及第四功能層1450與1550的 高強度層係與第一及第二功能層1420與1520的高傳導層 相互分離。然而,亦可將高強度材質分別加入第一及第二 功能層1420與1520,以得到兼具兩種效果的訊號功能層。 依據本發明實施例之固態氧化物燃料電池及其製造 方法可應用於可攜式電池、或發電廠的大型電池。固態氧 化物燃料電池可方便地進行串聯連接,而具有較小的厚 31 201119121 vvuonor i 度。如此,相較於傳統的電池堆,藉由連接多個固態氧化 物燃料電池的電池堆可具有較小的體積。如此,固離氧化 物燃料電池可具有製造高電壓、高功率燃料電池^的優 點。 ^上述實施例的說明並不限制本發明的理解。雖然已經 說明本發明的少數實施例,本發明所屬技術領域中呈有通 常知識者,在不脫離本發明之精神和範圍内,當可作各種 之更動與潤鋅。因此,所有在本發明之精神和範圍内的修 改皆包括在本發明内。在申請專利範圍内,當執行列舉的 功此時,手段功能用語係用以涵蓋執行該功能的結構,不 =包括本文中所描述結構的均等物,亦包括其等效結構。 述不同實施例的了解以及對於實施例的揭露並 2财發_理解,同樣地,修改且揭露的實施例以及 ,、他貫施㈣包含麵加申料鄉_。因此,本發明 :: 呆:範圍當視後附之申請專利範圍所界定者為 =下述”專利範圍定義4請專利範圍的均等物亦 被包括在本文件之中。 刀 上所述’雖然本發明已以較佳實施例揭露如上,缺 :亚非㈣限定本發明。本發明所屬技術領域中具有通常、 =者,在不脫離本發明之精神和範_,當 二動與潤飾。因此’本發明之保護範圍當視後附之申請專 利乾圍所界定者為準。 月寻*, when TW6848PA is above and below the channel support layer 110, the increased intensity as described in Fig. 24 and the increased current rate as described in Fig. 26 will be achieved. When the thickness of the solid oxide fuel cell 2200 is increased by the first and second functional layers 1420 and 1520 and the third and fourth functional layers 1450 and 155, it will cause the step difference to become large to cause cracking. Thus, above and below the channel support layer 1100 adjacent the two sides of the solid oxide fuel cell 2200, the solid oxide fuel cell 2200 can further include first and second adhesion members 1600 and 1650' for removal and compaction. In this case, the gap. However, when the solid oxide fuel cell comprises one of the first and third functional layers 1420 and 1450 and one of the second and fourth functional layers 1520 and 1550, the drop is small, so that the first and second adhesions are not required. The members 16 are 1650. In order to form the first and second adhesive members 1600 and 1650, the one-and-reel-shaped flat plate and other members may be thinned in a manner similar to the manner in which the channel support layer 1100 is formed, and the flat plate does not include the adhesive members 1600 and 165. One of the remaining parts was removed. The first and second adhesive members 1600 and 1650 may comprise the same composition as the first and second electrolytic layers 1220 and 1320 or the channel support layer 1100. In this embodiment, the high strength layers of the third and fourth functional layers 1450 and 1550 are separated from the high conductive layers of the first and second functional layers 1420 and 1520. However, high-strength materials may be added to the first and second functional layers 1420 and 1520, respectively, to obtain a signal functional layer having both effects. The solid oxide fuel cell according to an embodiment of the present invention and a method of manufacturing the same can be applied to a portable battery, or a large battery of a power plant. Solid oxide fuel cells are conveniently connected in series with a small thickness of 31 201119121 vvuonor i degrees. Thus, a battery stack connected by a plurality of solid oxide fuel cells can have a smaller volume than a conventional battery stack. Thus, a sequestration oxide fuel cell can have the advantage of manufacturing a high voltage, high power fuel cell. The description of the above embodiments does not limit the understanding of the present invention. While a few embodiments of the present invention have been described, it will be apparent to those skilled in the art that the invention may be practiced. Therefore, all modifications within the spirit and scope of the invention are included in the invention. In the context of the patent application, when the enumerated work is performed, the means function means to cover the structure in which the function is performed, and not including the equivalent of the structure described herein, and the equivalent structure thereof. The understanding of the different embodiments and the disclosure of the embodiments and the understanding of the embodiments, as well as the modifications and disclosures of the embodiments, and the application of the inventions. Accordingly, the present invention is:: Staying: The scope is defined by the scope of the patent application appended to the following = "The definition of the patent scope 4 The equivalent of the patent scope is also included in this document. The present invention has been disclosed in the above preferred embodiments, and the present invention is defined in the technical field of the present invention, and the present invention is not limited to the spirit and scope of the present invention. The scope of protection of the present invention is subject to the definition of the attached patent application.
201119121 ' * TW6848PA 【圖式簡單說明】 第1圖繪示為—傳統之平板管狀 池之示意圖; 匕切微枓電 第2至8圖綠示為依據本發明 固態氧化物燃料電池之製造方法的示意圖;千板官狀 p輯示為第8射沿線段,的剖面圖; # 10圖繪不為第8圖中沿線η及π,的剖面圖; 11及12圖繪示為依據本發明__實施範例之放 狀固態氧化物燃料電池之流通路徑的平面圖; Β &第13圖繪示為依據本發明另一實施範例之平 固悲氧化物燃料電池的製造方法之示意圖; 第14圖繪示為依據本發明另一實施範例之平 固態氧化物燃料電池的剖面圖; 第15圖繪示為依據本發明一實施範例之平 態氧化物燃㈣池之電池堆的示意圖; S狀口 第16圖繪不為第15圖中沿著線段瓜至瓜,的剖面圖; 第17圖繪示為依據本發明另一實施範例之平板管狀 固態氧化物燃料電池之電池堆的示意圖; 第18圖繪示為第17圖中沿著線段IV至IV,的剖面圖; 第9圖、,.a示為依據本發明再一實施範例之平板管狀 固態氧化物燃料電池之電池堆的示意圖; =20圖繪示為第19圖中沿著線段v至V,的剖面圖; 第21圖繪示為依據本發明另一實施範例之固態氧化 物燃料電池之分解示意圖; 第22圖繪不為依據本發明另一實施範例之固態氧化 201119121 vv vio'toi r\ 物燃料電池之示意圖; 第23圖繪示為第22圖中沿著線段νι及vp的剖面圖; 第24圖繪示為第22圖中沿線段观至γπ’的剖面圖; 第25圖繪示為第24圖之第二連接構件之另一實施例 的放大示意圖; 第26圖繪示為依據本發明另一實施例之固態氧化物 燃料電池之第一及第二功能層的剖面圖,其係沿第22圖 之線段W及VD’而繪示者; 第27圖繪示出傳導率與第26圖之第一及第二功能層 的鎳含量的相對變化; 第28圖繪示為依據本發明再一實施例之固態氧化物 燃料電池之分解示意圖;及 第29圖繪示為第28圖中沿著線段珊及週,的剖面圖。 【主要元件符號說明】 11 :支持管柱 11A :上板 11B :下板 nc:侧板 12 :電解層 13 .連接構件 14 :空氣電極 100 :上電解板 110 :上電解層 150、351 :開口 34 201119121201119121 ' * TW6848PA [Simple description of the drawing] Fig. 1 is a schematic view of a conventional flat tubular pool; Fig. 2 to Fig. 8 is a schematic view showing the manufacturing method of the solid oxide fuel cell according to the present invention. The section of the slab is shown as a section along the line 8; the figure of 10 is not a section along the line η and π in Fig. 8; the figures 11 and 12 are shown in accordance with the invention __ A plan view of a flow path of a planar solid oxide fuel cell of an embodiment; Β & 13 is a schematic view showing a method of manufacturing a flat-solid oxide fuel cell according to another embodiment of the present invention; FIG. 15 is a cross-sectional view showing a flat solid oxide fuel cell according to another embodiment of the present invention; FIG. 15 is a schematic view showing a battery stack of a flat oxide (four) cell according to an embodiment of the present invention; FIG. 17 is a cross-sectional view of the battery stack of the flat tubular solid oxide fuel cell according to another embodiment of the present invention; FIG. 18 is a cross-sectional view of the battery pack of the flat tubular solid oxide fuel cell according to another embodiment of the present invention; Shown in Figure 17 A cross-sectional view along line IV to IV; FIG. 9 is a schematic view showing a battery stack of a flat tubular solid oxide fuel cell according to still another embodiment of the present invention; FIG. 21 is a schematic exploded view of a solid oxide fuel cell according to another embodiment of the present invention; and FIG. 22 is not a solid state according to another embodiment of the present invention; Schematic diagram of oxidizing 201119121 vv vio'toi r\ fuel cell; Fig. 23 is a cross-sectional view taken along line νι and vp in Fig. 22; Fig. 24 is a view along line 22 in Fig. 22 to γπ' FIG. 25 is an enlarged schematic view showing another embodiment of the second connecting member of FIG. 24; FIG. 26 is a view showing the first embodiment of the solid oxide fuel cell according to another embodiment of the present invention; A cross-sectional view of the second functional layer, which is depicted along line W and VD' of Figure 22; Figure 27 depicts the relative conductivity versus the nickel content of the first and second functional layers of Figure 26 Variation; Figure 28 is a diagram showing a solid oxide according to still another embodiment of the present invention. Exploded view of a battery material; and Figure 29 shows a sectional view along a circumferential line and Shan, 28 of FIG. [Description of main component symbols] 11: Supporting column 11A: Upper plate 11B: Lower plate nc: Side plate 12: Electrolytic layer 13. Connecting member 14: Air electrode 100: Upper electrolytic plate 110: Upper electrolytic layer 150, 351: Opening 34 201119121
‘ TW6848PA 170 :集電器 180 :連接部 195 :燃料電極連接構件 199空氣電極連接構件 190 :串聯連接構件 197 :空氣電極連接構件 200 :上燃料電極板 210 :上燃料電極層 300 :通道板 310 :通道支持層 330 :連接孔 350、1112 :流通路徑 370 :密合板 400 :下燃料電極板 410 :下燃料電極層 500 :下電解板 510 :下電解層 600 :燃料電極支持結構 7〇〇 :電解層 800 :空氣電極層 1000、2100、2200 :固態氧化物燃料電池 1100 :通道支持層 Π10 :支持部 1200 :第一電池層 1210、1240 :第一燃料電極層 35 201119121 1220 :第一電解層 1230 :第一空氣電極層 1300 :第二電池層 1310、1340 :第二燃料電極層 1320 :第二電解層 1330 :第二空氣電極層 1222、1322、1323、1242、1342 :穿孔 1400、1420 :第一功能層 1500、1520 :第二功能層 1450 :第三功能層 1550 :第四功能層 1600、1650 :密合構件 1700、1750 :第一連接構件 1800、1810、1850 :第二連接構件 AR :外部氣體 B :架橋 d :預定距離 FG :燃料氣體 36'TW6848PA 170 : Current collector 180 : Connection portion 195 : Fuel electrode connection member 199 Air electrode connection member 190 : Series connection member 197 : Air electrode connection member 200 : Upper fuel electrode plate 210 : Upper fuel electrode layer 300 : Channel plate 310 : Channel support layer 330: connection holes 350, 1112: flow path 370: close-fitting plate 400: lower fuel electrode plate 410: lower fuel electrode layer 500: lower electrolytic plate 510: lower electrolytic layer 600: fuel electrode support structure 7: electrolysis Layer 800: air electrode layer 1000, 2100, 2200: solid oxide fuel cell 1100: channel support layer 10: support portion 1200: first battery layer 1210, 1240: first fuel electrode layer 35 201119121 1220: first electrolytic layer 1230 : first air electrode layer 1300 : second battery layer 1310 , 1340 : second fuel electrode layer 1320 : second electrolytic layer 1330 : second air electrode layer 1222 , 1322 , 1323 , 1242 , 1342 : perforation 1400 , 1420 : A functional layer 1500, 1520: a second functional layer 1450: a third functional layer 1550: a fourth functional layer 1600, 1650: an adhesive member 1700, 1750: a first connecting member 1800, 1810, 1850: a second connecting member AR : External gas B : Bridge d : Predetermined distance FG : Fuel gas 36
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090112958A KR101694144B1 (en) | 2009-11-23 | 2009-11-23 | Flat tubular solid oxide fuel cell and method of manufacturing the same |
KR1020100022733A KR101731964B1 (en) | 2010-03-15 | 2010-03-15 | Solid oxide fuel cell and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201119121A true TW201119121A (en) | 2011-06-01 |
Family
ID=44060145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099131500A TW201119121A (en) | 2009-11-23 | 2010-09-16 | Solid oxide fuel cell and method of manufacturing the same |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201119121A (en) |
WO (1) | WO2011062358A2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015217944A1 (en) * | 2015-09-18 | 2017-03-23 | Robert Bosch Gmbh | Electrochemical cell and method for producing an electrochemical cell |
US11404710B2 (en) * | 2018-12-17 | 2022-08-02 | Cummins Enterprise Llc | Assembled portion of a solid oxide fuel cell and methods for inspecting the same |
CN115224335B (en) * | 2022-01-29 | 2024-07-16 | 浙江氢邦科技有限公司 | Solid oxidation pile and pile sealing method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK174654B1 (en) * | 2000-02-02 | 2003-08-11 | Topsoe Haldor As | Solid oxide fuel cell and its applications |
US6558831B1 (en) * | 2000-08-18 | 2003-05-06 | Hybrid Power Generation Systems, Llc | Integrated SOFC |
JP4113720B2 (en) * | 2002-03-29 | 2008-07-09 | Tdk株式会社 | Method for producing solid electrolyte fuel cell |
KR100538555B1 (en) * | 2003-08-25 | 2005-12-23 | 한국에너지기술연구원 | Anode-supported flat-tubular solid oxide fuel cell stack and fabrication method of it |
-
2010
- 2010-09-14 WO PCT/KR2010/006222 patent/WO2011062358A2/en active Application Filing
- 2010-09-16 TW TW099131500A patent/TW201119121A/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2011062358A2 (en) | 2011-05-26 |
WO2011062358A3 (en) | 2011-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1796192B1 (en) | Solid oxide fuel cell module, fuel cell system using the same and manufacturing method thereof | |
JP5117627B1 (en) | Fuel cell structure | |
JP2009134978A (en) | Horizontal-stripe fuel cell stack, and fuel cell | |
JP2010080151A (en) | Cell stack and fuel battery module as well as fuel cell device equipped with the same | |
JP2008108647A (en) | Reformer-integrated fuel cell | |
JP5709670B2 (en) | Fuel cell device | |
JP5176079B2 (en) | Solid oxide fuel cell sub-module and solid oxide fuel cell composite module | |
JP4999305B2 (en) | Fuel cell and fuel cell | |
TW201119121A (en) | Solid oxide fuel cell and method of manufacturing the same | |
JP2004265734A (en) | Fuel battery cell | |
CN104979575A (en) | Porous inert supporting tube type solid oxide fuel battery with two opening ends, galvanic pile and preparation method of fuel battery | |
JP2010282870A (en) | Power generator | |
KR102030981B1 (en) | Metal-supported solid oxide fuel cell and manufacturing method | |
JP2004172062A (en) | Fuel cell system and multilayer cell for the same | |
JP7061105B2 (en) | Electrochemical reaction single cell and electrochemical reaction cell stack | |
JP6982582B2 (en) | Electrochemical reaction cell stack | |
JP2006339034A (en) | Solid oxide fuel cell, and method of manufacturing same | |
KR101694144B1 (en) | Flat tubular solid oxide fuel cell and method of manufacturing the same | |
JP6898188B2 (en) | Fuel cell stack | |
JP5137416B2 (en) | Current collecting material for fuel electrode, solid oxide fuel cell unit cell and solid oxide fuel cell | |
JP2007265750A (en) | Fuel cell device and fuel cell assembly | |
JP2005322452A (en) | Cell plate for solid oxide fuel cell, and solid oxide fuel cell | |
JP7058686B2 (en) | Solid oxide fuel cell using an integrated current collector plate and its manufacturing method | |
JP2005216619A (en) | Fuel battery cell and fuel battery | |
JP6917398B2 (en) | Electrochemical reaction single cell and electrochemical reaction cell stack |