TW201118423A - Solar powered 3D glasses - Google Patents

Solar powered 3D glasses Download PDF

Info

Publication number
TW201118423A
TW201118423A TW99113567A TW99113567A TW201118423A TW 201118423 A TW201118423 A TW 201118423A TW 99113567 A TW99113567 A TW 99113567A TW 99113567 A TW99113567 A TW 99113567A TW 201118423 A TW201118423 A TW 201118423A
Authority
TW
Taiwan
Prior art keywords
light valve
signal
glasses
exemplary embodiment
liquid crystal
Prior art date
Application number
TW99113567A
Other languages
Chinese (zh)
Inventor
Boyd Macnaughton
Rodney W Kimmell
David W Allen
Original Assignee
Xpand Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/619,102 external-priority patent/US20100165085A1/en
Application filed by Xpand Inc filed Critical Xpand Inc
Publication of TW201118423A publication Critical patent/TW201118423A/en

Links

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

A viewing system for viewing video displays having the appearance of a three dimensional image.

Description

201118423 六、發明說明: 【發明所屬之技術領域】 本發明係關於用於呈現在觀看者看來為三維的視訊影像 之影像處理系統。 本申請案主張2009年5月18曰申請之美國臨時專利申請 案第61/179,248號(代理人案號第092847_〇〇〇〇2〇號)的申請 曰期之權利,該申請案之内容以引用的方式併入本文中。 本申凊案主張2009年1 〇月20曰申請之美國臨時專利申請 案第61/253,150號(代理人案號第〇92847 〇〇〇〇67號)的申請 曰期之權利,該申請案之内容係以引用方式併入本文中。 本申β案主張以下均在2〇〇9年11月16日申請之美國實用 專利申明案之每一者的申請曰期之權利:第丨2/6丨9,5丄8 號第 12/619,517號、第 12/619,309號、第 12/619,415 號、 第 12/619,400 號、第 12/619,431號、第 12/619,163 號第 12/619,456號、第12/619,102號,所有該等申請案之内容係 以引用方式併入本文中。 本申明案主張2009年11月16曰申請之美國臨時專利申請 案第61/261,663號(代理人案號第092847.000098號)的申請 日期之權利’該中請案之内容係以引用方式併人本文令。 本申凊案主張2009年12月9曰申請之美國臨時專利申請 案第61/285,048號(代理人案號第〇92847 〇〇〇〇94號)的申請 日期之權利,該申請案之内容係以引用方式併入本文令。 本申請案係關於2009年12月9日申請之美國臨時專利申 。月案第61/285,071號(代理人案號第〇92847 〇〇〇〇95號),該 I47659.doc 201118423 申請案之内容係以引用方式併入本文中。 【實施方式】 在以下圖式及描述中,相同部件在說明書及圖式中始終 分別用相同參考數字標記。諸圖未必按比例繪製。本發明 之特定特徵可以誇大的比例或以稍微示意性之形式展示, 且為清楚及簡明起見,可能不展示習知元件之一些細節。 本發明可能具有不同形式之實施例。特定實施例將被詳細 摇述且展示於圖式中’但應瞭解,本發明内容被視為本發 明之原理之一範例’且不欲將本發明限於本文中所說明及 所描述者。應充分認識到,下文所論述之實施例之不同教 示可單獨地或以任何合適組合使用以產生所要結果。熟習 此項技術者將在閱讀實施例之以下詳細描述及參考隨附圖 式之後容易瞭解上文所提及之各種特性,以及下文將較詳 細描述之其他特徵及特性。 先參看圖1,一種用於觀看一電影螢幕102上的三維 (「3D」)電影之系統1 00包括一副三維眼鏡丨04,其具有一 左光閥106及一右光閥1〇8。在一例示性實施例中,三維眼 鏡104包括一框架,且光閥1〇6及1〇8被設置成安裝且支撐 於該框架内之左觀看透鏡及右觀看透鏡。 在一例示性實施例中,光閥106及108為液晶單元,其在 單疋自不透明轉至透明時打開,且在單元自透明轉回至不 透明時關閉。在此情況下,透明被定義為透射足以使三維 眼鏡104之使用者看到一投射在電影螢幕102上之影像的 光。在一例示性實施例中,三維眼鏡i 04之使用者可能能 147659.doc 201118423 夠在二維眼鏡1〇4之光閥1〇6及/或1〇8之液晶單元變為乃% 至30%透射時看到投射在電影螢幕1〇2上之影像。因此, 在光閥106及/或108之液晶單元變為25。/。至30%透射時,認 為液晶單元打開。在光閥106及/或108之液晶單元打開 時’液晶單元亦可能透射多於25〇/〇至3〇%之光。 在一例示性實施例中,三維眼鏡1〇4之光閥1〇6及1〇8包 括利用低黏度、高折射率之液晶材料(諸如,ΜαΑ MLC6080)之具有π單元組態的液晶單元。在一例示性實 施例中,調整叫元厚度,使得紐單元在其鬆他狀態下 形成%波阻滯器。在一例示性實施例中,將ρι單元製造地 較厚’使得在不到完全鬆他時達成1/2波狀態。合適液晶材 料中之一者為由Merck製造2MLC6〇8〇,但可使用具有足 夠高光學各向異性、低旋轉黏度及/或雙折射率之任何液 曰曰。二維眼鏡104之光閥1〇6及1〇8亦可使用小單元間隙, 包括(例如)4微米之間隙。此外’具有足夠高折射率及低黏 度之液晶亦可適合用於三維眼鏡1G4之光閥⑽及⑽中。 在-例示性實施例中,三維眼鏡1〇4之光閥1〇6及1〇8之 二單元基於電控雙折射(「ECBj)原理工作。雙折射意謂 :畲不施加電壓或施加一小止擋電壓她神寺,Η 單元對於偏振方向平行於叫元分子之長維之光及偏振方 向垂直於長维之光具有不同折射率-及ne。差―Λη為 先學各向異性。一為光學厚度,其中鸱單元之厚产。 當△蛛仙時,當將Ρί單元相對於偏光器之轴線“Γ。置 放時,該單元充當!/2波阻滞器。因此’光學厚度是重要的 147659.doc 201118423 (不僅疋厚度)。在一例示性實施例中,三維眼鏡丨〇4之光閥 106及108之P!單元被製造成光學上過厚此意謂著 △nxd>l/n。較尚的光學各向異性意謂著單元愈薄單元鬆 弛愈快。在一例示性實施例中,當施加電壓時,三維眼鏡 HM之光閥1〇6及⑽之Pi單元之分子的長軸垂直於基板垂 直配向(homeotropic alignment),因此此狀態下無雙折 射,且因為偏光器之透射軸線交又,所以不透射光。在一 例示性實施例中,將偏光器交叉之pi單元稱為以常白模式 (normaUy white mode)工作且其在不施加電壓時透射光。 偏光器之透射軸線彼此平行地定向的pi單元以常黑模式 (normally black mode)工作,亦即,該等單元在施加一電 壓時透射光。 在-例示性實施例中’當㈣單元移除高電壓時,光間 及/或108之打開開始。此為一鬆他過程,意謂著^單元 中之液晶(「LC」)分子轉回至平衡狀態,亦即,分子與配 向層Y亦即,基板之摩擦方向)對準。p丨單元之鬆弛時間取 決於單元厚度及流體之旋轉黏度。 -般而言,Pi單元愈薄,鬆弛愈快。在一例示性實施例 中,重要參數並非Pi單元間隙林身,而是乘積盆中 △η為LC流體之雙折射率。在—例示性實施財,為^提 供打開狀態下t最大光透pi單元之對正光學阻滯 (head-on optical retardati〇n)(And)應為人/2。車交高之雙折射 率允許較薄單元且因此允許較快之單元祕^ $ 了提供可 能的最快切換’使用具有低旋轉黏度及較高雙折射率△:之 147659.doc 201118423 流體(諸如,EM industries生產之 MLC 6080)。 在一例示性實施例中,除了在Pi單元中使用具有低旋轉 黏度及較高雙折射率之切換流體之外,為了達成自不透明 至透明狀態之較快切換,亦將Pi單元製造成光學上過厚, 使得在不到完全鬆弛時達成%波狀態。通常,調整pi單元 厚度,使得該Pi單元在其鬆弛狀態下形成1/2波阻滯器。然 後,將Pi單το製造成光學上過厚使得在不到完全鬆弛時達 成%波狀態導致自不透明至透明狀態之較快切換。以此方 式,例示性實施例之光閥1〇6及1〇8提供與先前技術1^光閥 裝置相比而言增強之打開速度,其在一例示性實驗實施例 中提供了預期之外的結果。 在一例不性實施例中,可接著使用一止擋電壓以在W單 tl中之LC分子旋轉過頭之前停止該等]1(:分子之旋轉。藉 由以此方式停止Pi單元中之Lc分子之旋轉’光透射得以保 持在其峰值或其峰值附近。 在一例示性實施例中,系統100進一步包括一具有一中 央處理单7C(「CPU」)ii〇a之信號傳輸器11〇,其將—信號 傳輸向電影螢幕mu示性實施射,該傳輸^ 反射離開電影螢幕1G2而射向_信號感測器112。該傳輸传 號可為(例如)紅外線(「IR」)信號、可見光信號、多色^ 號或白光中之-或多者。在―些實施例中,該傳輪信號被 直接傳輸向信號感測器112,且因此可能不反射離開電聲 螢幕102。在-些實施例中,該傳輸信號可為(例如)一射頻 (「RF」)信號’其不反射離開電影發幕1〇2。 147659.doc 201118423 俏唬感測器112可操作地耦接至CPU 114❶在一例示性 只施例中,k號感測器i丨2偵測該傳輸信號且將該信號之 存在傳達至CPU 114。CPU 110a&cpu 114可(例如)各自包 括一通用可程式化控制器、一特殊應用積體電路 (ASIC」、一類比控制器、一局域化控制器、一分散式控 制器、一可程式化狀態控制器及/或前述裝置之一或多個 組合。 CPU 114可操作地耦接至一左光閥控制器116及一右光閥 控制器11 8以用於監視及控制該等光閥控制器之操作。在 一例示性實施例中,左光閥控制器116及右光閥控制器ιΐ8 又可操作地耦接至三維眼鏡1〇4之左光閥1〇6及右光閥 以用於監視及控制左光閥及右光閥之操作。光閥控制器 116及11 8可(例如)包括一通用可程式化控制器、一 ASJC、 一類比控制器、一類比或數位開關、一局域化控制器、一 分散式控制器、 一或多個組合。 一可程式化狀態控制器及/或前述裝置之 一電池12 0可操作地耦接到至少c p u丨丨4且提供用於操作 二維眼鏡104之CPU、信號感測器112及光閥控制器116及 11 8中之一或多者的電力。一電池感測器122可操作地耦接 至CPU 114及電池120以用於監視該電池中剩餘的電力之 量0 在一例示性實施例中’ CPU 114可監視及/或控制信號感 測器112、光閥控制器116及118及電池感測器122中之一或 多者的操作。替代性地或額外地,信號感測器112、光閥 147659.doc 201118423 控制器116及118及電池感測器122中之一或多者可包括一 單獨的專用控制器及/或複數個控制器,其可能亦或可能 不監視及/或控制信號感測器112、光閥控制器11 6及118及 電池感測器122中之一或多者。替代性地或額外地,CPU 114之操作可至少部分地分散於三維眼鏡1 〇4之其他元件中 之一或多者之間。 在一例示性實施例中,信號感測器112、CPU 114、光閥 控制器116及118、電池120及電池感測器122安裝且支撐在 三維眼鏡104之框架内。若電影螢幕1 〇2位於一電影院内, 則可提供一投影器130以用於將一或多個視訊影像投射於 该電影螢幕上。在一例示性實施例中,信號傳輸器丨丨〇可 緊接投影器130定位或可包括於投影器丨3〇内。在一例示性 實施例中,投影器130可包括(例如)下列各者令之一或多 者 電子投影裝置、一機電投影裝置、一電影投影器、 數位視Λ投影器,或用於將一或多個視訊影像顯示於電 影螢幕102上的一電腦顯示器。替代性地,或除了電影螢 幕102之外’亦可使用-電視(「TV」)或其他視訊顯示裝 置,諸如-平面螢幕TV、一電漿τν、一LCD τν,或用於 顯示影像以供三維眼鏡之使用者觀看的其他顯示裝置,直 可(例如)包括可緊接該顯示裝置之顯示器表面定位及/或位 於_不裝置之顯示器表面内的信號傳輸器m或用於發 L唬至三維眼鏡1〇4之一額外信號傳輸器。 j一例示性實施例中,在系統⑽之操作期間,CPU m 依據由信號感測器112自信號傳 娓得輸益110接收之信號及/或 147659.doc 201118423 依據由CPU自電池感測器122接收之信號而控制三維眼鏡 104之光閥106及108之操作。在一例示性實施例中,cpu 114可指導左光閥控制器i丨6打開左光閥i 〇6及/或指導右光 閥控制器118打開右光閥1 » 在一例示性實施例中,光閥控制器116及118藉由在光閥 之液晶單元上施加一電壓來分別控制光閥1〇6及1〇8之操 作。在一例示性實施例中,施加在光閥1〇6及1〇8之液晶單 兀上的電壓在負與正之間交替。在一例示性實施例中不 官所施加之電壓為正或是為負,光閥1〇6及1〇8之液晶單元 均以相同方式打開及關閉。交替所施加的電壓防止光閥 106及108之液晶單元之材料於單元之表面析出。 在一例示性實施例中,在系統100之操作期間,如圖2及 圖3中所說明’該系統可實施一左右光閥方法2〇〇,在該方 法中’若在202a中,左光閥1〇6關閉且右光閥1〇8打開,則 在202b中,分別藉由光閥控制器1丨6及u 8將一高電壓 202ba施加至左光閥1〇6及將無電壓202bb隨後接著一小止 擋電壓202bc施加至右光閥108。在一例示性實施例中,將 高電壓202ba施加至左光閥106使左光閥關閉,且不施加電 壓至右光閥108會開始打開右光閥。在一例示性實施例 中,隨後將小止擋電壓202bc施加至右光閥1〇8可防止右光 閥中之液晶在右光閥108之打開期間旋轉過頭。結果,在 202b,左光閥106被關閉且右光閥108被打開。 若在202c中,左光閥106被打開且右光閥108被關閉,則 在202d中,分別藉由光閥控制器118及116,將一高電壓 147659.doc -10- 201118423 202da施加至右光閥108且將無電壓202db隨後接著一小止 擋電壓202dc施加至左光閥106。在一例示性實施例中,將 高電壓202da施加至右光閥1〇8使右光閥關閉,且不施加電 壓至左光閥106會開始打開左光閥。在一例示性實施例 中,隨後將小止檔電壓202dc施加至左光閥106可防止左光 閥中之液晶在左光閥106之打開期間旋轉過頭。結果,在 202d,左光閥106被打開且右光閥1〇8被關閉。 在一例示性實施例中,202b及202d中所使用的止擋電壓 之量值在202b及202d中所使用的高電壓之量值的約1〇%至 20%的範圍内。 在一例示性實施例中,在系統1〇〇之操作期間,在方法 200期間,在202b中左光閥106關閉且右光閥1〇8打開的時 間期間,為右眼呈現一視訊影像,且在2〇2d中左光閥1〇6 打開且右光閥108關閉的時間期間,為左眼呈現一視訊影 像。在一例示性實施例中,視訊影像可顯示於下列各者中 之一或多者上:電影院螢幕102、一 LCD電視螢幕、一數 位光源處理(「⑽」)電視、一數位光源處理=、: 電漿營幕及其類似者。 在一例示性實施例中,數位光源處理投影器併有可自 struments購;^的習知1晶片數位光源處理投影系統 及/或習知3晶片數位光源處理投影系統。 在一例示性實施例中,在系統⑽之操作期間,c p u工i 4 將指導每一光間106及108在呈現意欲用於該光閥及觀看者 眼睛之衫像時打開。在—例示性實施例中,一同步信號可 I47659.doc 201118423 用以使光閥106及108在正確時間打開。 在一例示性實施例中,一同步信號係由信號傳輸器11〇 傳輸且該同步信號可(例如)包括一紅外光。在一例示性實 施例中,信號傳輸器110將該同步信號傳輸至一反射性表 面,且該表面將該信號反射至定位且安装於三維眼鏡1〇4 之框架内的信號感測器112。該反射性表面可(例如)為電影 院螢幕102或位於電影螢幕上或附近的另一反射性裝置, 以使得三維眼鏡104之使用者在觀看電影時大體上面對該 反射體。在一例示性實施例中,信號傳輸器⑽可將該同 步信號直接發送至感測器112。在一例示性實施例中,信 號感測器H2可包括一安裝且支撐在三維眼鏡ι〇4之框架上 的光電二極體。 該同步信號可在每-左右鏡頭光閥序列2〇〇開始時提令 一脈衝。該同步信號可更為頻繁,(例如)提供—脈衝以名 導每-光閥1〇6或108之打開。該同步信號可較不頻繁, (例如)每光閥序列200、每五個光閥序列或每_固光閱片 列提供4脈衝。CPU U何具有料時器以在同歩 k號不存在的情況下維持適當光閥定序。 在-例示性實施例中,光閥1〇6及1〇8中之黏性液晶材剩 與窄草元間隙之組合可產生一光學上過厚之單元。光鬧 及1G8中之液晶在施加有制時阻擋光透射。在移除施 1°:電壓後閥106及108中之液晶中的分子旋轉回至對 準層之定向。對準層將該等液晶單元令之分子定向以允气 光透射。在-光學上過厚之液晶單元中,該等液晶分子在 147659.doc 12 201118423 移除電力之後迅速地旋轉且因此使光透射迅速地增加,但 是接著分子旋轉過頭且光透射減小。自液晶單元分子之旋 轉開始直至光透射穩定(亦即,液晶分子旋轉停止)的時間 為真正的切換時間。 在一例示性實施例中,當光閥控制器116及11 8將小的止 播電壓施加至光閥106及108時,此止擋電廢在該等光閥中 之該等液晶單元旋轉過頭之前停止該等液晶單元之旋轉。 藉由在光閥106及108中之該等液晶單元中之分子旋轉過頭 之前停止該等分子之旋轉,穿過該等光閥甲之該等液晶單 元中之該等分子的光透射保持在其峰值或峰值附近。因 此,有效的切換時間為自光閥106及1 〇8中之液晶單元開始 其旋轉,直至液晶單元令之分子之旋轉停止在峰值光透射 點處或附近。 現參看圖4,透射指代透射穿過光閥1〇6或1〇8之光的 量,其中透射率值1指代穿過光閥1〇6或1〇8之液晶單元之 最大或接近最大光透射點。因此,對於能夠最多透射37% 之光的光閥106或108而言,透射位準1指示光閥1〇6或1〇8 正透射可用光之最大量(亦即,37%)。當然,視所使用的 特定液晶單元而定,光閥1〇6或1〇8所透射之光的最大量可 為任意量,包括(例如)33%、30%或者顯著較多或較少。 如圖4中所說明,在一例示性實驗實施例中,操作光閥 106或108 ’且在方法200之操作期間量測光透射4〇(^在光 閥106或⑽之例示性實驗實施例中,光閥在大約〇5毫秒 内關閉’接著在光閥循環的前—半中在約7毫秒内保持關 147659.doc -13· 201118423 閉’然後光閥在約1毫秒内打開至最大光透射的約9〇〇/。, 且接著光閥在約7毫秒内保持打開,且㈣關閉。作為比 較,亦在方法200之操作期間操作一可購得光閥,該光閥 展現光透射402。在方法_之操作期間,本例示性實施例 之光閥106及108之光透射在約!毫秒内達到約25%至3〇%之 透射性(亦即,最大光透射之約9〇%),如圖4所示而另一 光閥僅在約2.5毫秒之後達到約25%至3〇%之透射性(亦即, 最大光透射之約90%),如圖4所示β因此,本例示性實施 例之光閥106及108比可購得光閥提供一具有顯著較快回應 之操作。此為一意外結果。 現參看圖5,在一例示性實施例中,系統1〇〇實施一操作 方法500,在該方法中,在502中,信號感測器U4自信號 傳輸器110接收一紅外線同步(rsync」)脈衝。在5〇4中, 右二維眼鏡104不處於執行模式(run MODE),則在506中 CPU 114判定二維眼鏡1〇4是否處於關閉模式(〇FF MODE)。在506中若CPU 114判定三維眼鏡104不處於關閉 模式下’則在508中CPU 114繼續正常處理,然後返回 502。在506中若CPU 114判定三維眼鏡ι〇4處於關閉模式 下,則CPU 114在510中清除同步反相器(「SI」)及驗證旗 標以為下一個加密信號準備CPU 114,在512中起始光闊 106及108之一暖機序列’然後繼續進行正常操作5〇8且返 回 502。 在504中若三維眼鏡104處於執行模式,則在5 14中CPU 114判定三維眼鏡104是否已經組態以用於加密。在514中 147659.doc 14 201118423 若三維眼鏡104已經組態以用於加密,則CPU 114繼續508 中之正常操作且進行至502。在514中若三維眼鏡1〇4未經 組態以用於加密,則在516中CPU 114檢查以判定傳入信號 是否為三脈衝同步信號。在516中若傳入信號並非三脈衝 同步信號,則CPU II4繼續508中之正常操作且進行至 502。在516中若傳入信號為三脈衝同步信號,則在518中 CPU 114使用信號感測器丨12自信號傳輸器u〇接收組態資 料。在520中CPU 114接著將該接收到的組態資料解密以判 疋其疋否有效。在520中,若該接收到的組態資料有效, 則在522中CPU 114檢查以查看新的組態ID( rc〇NID」)是 否匹配先前CONID。在一例示性實施例中,先前(:〇犯1:)可 儲存於一記憶體裝置(諸如,非揮發性記憶體裝置)令,該 記憶體裝置在三維眼鏡1G4之製造或現場程式化期間可操201118423 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to an image processing system for presenting a video image that is three-dimensional to a viewer. The present application claims the right to apply for the application of the US Provisional Patent Application No. 61/179,248 (Attorney Docket No. 092847_〇〇〇〇2〇) filed on May 18, 2009, the contents of the application. This is incorporated herein by reference. This application claims the right to apply for the application of the US Provisional Patent Application No. 61/253,150 (Attorney Docket No. 92847 〇〇〇〇67) for the application of the application for the application of The contents of the case are incorporated herein by reference. This application of the beta case claims the following right of application for each of the US utility patent applications filed on November 16, 2009: No. 2/6丨9,5丄8#12/ 619,517, 12/619,309, 12/619,415, 12/619,400, 12/619,431, 12/619,163, 12/619,456, 12/619,102, all of these applications The content is incorporated herein by reference. This application claims the right to apply for the date of application of US Provisional Patent Application No. 61/261,663 (Attorney Docket No. 092847.000098) filed on November 16, 2009. This article is ordered. This application claims the right to apply for the date of application of US Provisional Patent Application No. 61/285,048 (Attorney Docket No. 92847 〇〇〇〇94) filed on December 9, 2009, the content of which is Incorporate this document by reference. This application is related to the U.S. Provisional Patent Application filed on Dec. 9, 2009. The contents of the application No. 61/285,071 (Attorney Docket No. 〇92847 〇〇〇〇95), the contents of which is incorporated herein by reference. [Embodiment] In the following drawings and description, the same components are denoted by the same reference numerals throughout the specification and the drawings. The figures are not necessarily drawn to scale. The specific features of the present invention may be shown in an exaggerated proportion or in a somewhat schematic form, and some details of the conventional elements may not be shown for clarity and conciseness. The invention is susceptible to embodiments in various forms. The particular embodiments are described in detail and are shown in the drawings of the claims It will be fully appreciated that the various teachings of the embodiments discussed below can be used individually or in any suitable combination to produce the desired result. Those skilled in the art will readily appreciate the various features mentioned above, as well as other features and characteristics which are described in more detail below, in the following detailed description of the embodiments. Referring first to Figure 1, a system 100 for viewing a three-dimensional ("3D") movie on a movie screen 102 includes a pair of three-dimensional eyeglasses 04 having a left light valve 106 and a right light valve 1〇8. In an exemplary embodiment, the three-dimensional eyepiece 104 includes a frame, and the light valves 1〇6 and 1〇8 are configured to mount and support the left and right viewing lenses within the frame. In an exemplary embodiment, light valves 106 and 108 are liquid crystal cells that open when the single turn is opaque to transparent and closed when the unit is turned from transparent to opaque. In this case, transparency is defined as transmitting light sufficient for the user of the 3D glasses 104 to see an image projected on the movie screen 102. In an exemplary embodiment, the user of the 3D glasses i 04 may be able to 147659.doc 201118423 enough to change the liquid crystal cell of the light valve 1〇6 and/or 1〇8 of the 2D glasses 1〇 to be % to 30 % sees the image projected on the movie screen 1〇2 when transmitting. Therefore, the liquid crystal cells at the light valves 106 and/or 108 become 25. /. When the transmission is 30%, the liquid crystal cell is considered to be on. The liquid crystal cell may also transmit more than 25 〇 to 〇 to 3 〇 of light when the liquid crystal cells of the light valves 106 and/or 108 are turned on. In an exemplary embodiment, the light valves 1〇6 and 1〇8 of the 3D glasses 1〇4 include liquid crystal cells having a π cell configuration using a low viscosity, high refractive index liquid crystal material such as ΜαΑ MLC6080. In an exemplary embodiment, the caller thickness is adjusted such that the button unit forms a % wave blocker in its relaxed state. In an exemplary embodiment, the ρι cell is made thicker so that a 1/2 wave state is achieved when it is not fully relaxed. One of suitable liquid crystal materials is 2MLC6〇8〇 manufactured by Merck, but any liquid having sufficient optical anisotropy, low rotational viscosity, and/or birefringence can be used. The light valves 1〇6 and 1〇8 of the two-dimensional glasses 104 may also use small cell gaps, including, for example, a gap of 4 microns. Further, a liquid crystal having a sufficiently high refractive index and a low viscosity can also be suitably used in the light valves (10) and (10) of the 3D glasses 1G4. In the exemplary embodiment, the two units of the light valves 1〇6 and 1〇8 of the 3D glasses 1〇4 operate on the principle of electronically controlled birefringence (“ECBj”). Birefringence means: no voltage is applied or a The small stop voltage of her god temple, 单元 unit has a different refractive index - and ne for the long-dimensional light whose polarization direction is parallel to the caller molecule and the light whose polarization direction is perpendicular to the long-dimensional light. The difference - Λη is the a priori anisotropy. One is the optical thickness, in which the germanium unit is thick. When △ spider, when the unit is "相对" relative to the axis of the polarizer. When placed, this unit acts as a !/2 wave blocker. Therefore 'optical thickness is important 147659.doc 201118423 (not only 疋 thickness). In an exemplary embodiment, the P! unit of the light valves 106 and 108 of the three-dimensional eyeglass lens 4 is made optically too thick, which means Δnxd > l/n. The more optical anisotropy means that the thinner the unit, the faster the unit relaxes. In an exemplary embodiment, when a voltage is applied, the long axes of the molecules of the light valves 1〇6 and (10) of the 3D glasses HM are perpendicular to the homeotropic alignment of the substrate, so that there is no birefringence in this state, and Since the transmission axis of the polarizer is again, the light is not transmitted. In an exemplary embodiment, the pi unit crossing the polarizer is said to operate in a normaUy white mode and it transmits light when no voltage is applied. The pi units in which the transmission axes of the polarizers are oriented parallel to each other operate in a normally black mode, i.e., the units transmit light when a voltage is applied. In the exemplary embodiment, when the (4) cell removes a high voltage, the opening of the light and/or 108 begins. This is a process of loosening, meaning that the liquid crystal ("LC") molecules in the unit are turned back to equilibrium, that is, the molecules are aligned with the alignment layer Y, that is, the rubbing direction of the substrate. The relaxation time of the p丨 unit depends on the thickness of the unit and the rotational viscosity of the fluid. In general, the thinner the Pi unit, the faster the relaxation. In an exemplary embodiment, the important parameter is not the Pi cell gap, but the Δη in the multiplication basin is the birefringence of the LC fluid. In an exemplary implementation, the head-on optical retardation (And) of the t-maximum light transmission pi unit in the open state should be human/2. The birefringence of the car's intersection allows the thinner unit and thus allows for a faster unit to provide the fastest possible switching 'using a low rotational viscosity and a higher birefringence Δ: 147659.doc 201118423 fluid (such as , MMC 6080 produced by EM industries. In an exemplary embodiment, in addition to using a switching fluid having a low rotational viscosity and a high birefringence in the Pi unit, the Pi unit is also optically fabricated in order to achieve faster switching from opaque to transparent state. Too thick, so that the % wave state is achieved when not fully relaxed. Typically, the pi cell thickness is adjusted such that the Pi cell forms a 1/2 wave retarder in its relaxed state. Then, the Pi single το is made optically too thick to achieve a % wave state when not fully relaxed, resulting in a faster switching from opaque to transparent state. In this manner, the light valves 1〇6 and 1〇8 of the illustrative embodiments provide an enhanced opening speed as compared to prior art light valve devices, which provides an expectation in an exemplary experimental embodiment. the result of. In an exemplary embodiment, a stop voltage can then be used to stop the rotation of the LC molecules before the rotation of the LC molecules in the W1. (: rotation of the molecule. By stopping the Lc molecules in the Pi unit in this manner The rotation 'light transmission is maintained near its peak or its peak. In an exemplary embodiment, system 100 further includes a signal transmitter 11A having a central processing unit 7C ("CPU") ii〇a, The signal transmission is directed to the movie screen mu, and the transmission is reflected off the movie screen 1G2 and directed to the _ signal sensor 112. The transmission signal can be, for example, an infrared ("IR") signal, a visible light signal. - or more of the multi-color or white light. In some embodiments, the pass signal is transmitted directly to the signal sensor 112, and thus may not reflect off the electro-acoustic screen 102. In an example, the transmitted signal can be, for example, a radio frequency ("RF") signal that does not reflect off the movie screen 1 〇 2. 147659.doc 201118423 The slick sensor 112 is operatively coupled to the CPU 114 In an illustrative example only, k sensory i 丨 2 detects the transmitted signal and communicates the presence of the signal to the CPU 114. The CPU 110a & cpu 114 may, for example, each comprise a universal programmable controller, a special application integrated circuit (ASIC), an analogy One or more combinations of a controller, a localized controller, a distributed controller, a programmable state controller, and/or the aforementioned devices. The CPU 114 is operatively coupled to a left light valve controller 116. And a right light valve controller 11 8 for monitoring and controlling the operation of the light valve controllers. In an exemplary embodiment, the left light valve controller 116 and the right light valve controller ΐ 8 are operatively coupled The left light valve 1〇6 and the right light valve are connected to the 3D glasses 1〇4 for monitoring and controlling the operation of the left light valve and the right light valve. The light valve controllers 116 and 186 can, for example, include a universal a programmable controller, an ASJC, an analog controller, an analog or digital switch, a localized controller, a distributed controller, one or more combinations. A programmable state controller and/or the aforementioned device One of the batteries 120 is operatively coupled to at least the cpu 丨丨 4 Power is provided for operating one or more of the CPU of the two-dimensional glasses 104, the signal sensor 112, and the light valve controllers 116 and 118. A battery sensor 122 is operatively coupled to the CPU 114 and the battery 120 for monitoring the amount of power remaining in the battery. In an exemplary embodiment, the CPU 114 can monitor and/or control the signal sensor 112, the light valve controllers 116 and 118, and the battery sensor 122. Operation of one or more. Alternatively or additionally, one or more of signal sensor 112, light valve 147659.doc 201118423 controllers 116 and 118, and battery sensor 122 may include a separate dedicated The controller and/or the plurality of controllers may or may not monitor and/or control one or more of the signal sensor 112, the light valve controllers 11 and 118, and the battery sensor 122. Alternatively or additionally, the operation of CPU 114 may be at least partially dispersed between one or more of the other elements of 3D glasses 1 〇4. In an exemplary embodiment, signal sensor 112, CPU 114, light valve controllers 116 and 118, battery 120, and battery sensor 122 are mounted and supported within the framework of three-dimensional glasses 104. If the movie screen 1 〇 2 is located in a movie theater, a projector 130 can be provided for projecting one or more video images onto the movie screen. In an exemplary embodiment, the signal transmitter 定位 can be positioned next to the projector 130 or can be included within the projector 〇3〇. In an exemplary embodiment, projector 130 may include, for example, one or more of the following electronic projection devices, an electromechanical projection device, a movie projector, a digital video projector, or for Or a plurality of video images are displayed on a computer display on the movie screen 102. Alternatively, or in addition to the movie screen 102, a television ("TV") or other video display device such as a flat screen TV, a plasma τν, an LCD τν, or an image for display may be used. Other display devices viewed by a user of the 3D glasses may, for example, include a signal transmitter m that can be positioned next to the display surface of the display device and/or located within the display surface of the device, or for One of the 3D glasses 1〇4 additional signal transmitter. In an exemplary embodiment, during operation of the system (10), the CPU m is responsive to signals received by the signal sensor 112 from the signal transmission 110 and/or 147659.doc 201118423 according to the CPU self-battery sensor The signals received by the 122 control the operation of the light valves 106 and 108 of the 3D glasses 104. In an exemplary embodiment, cpu 114 may direct left light valve controller i丨6 to open left light valve i 〇6 and/or direct right light valve controller 118 to open right light valve 1 » in an exemplary embodiment The light valve controllers 116 and 118 respectively control the operation of the light valves 1〇6 and 1〇8 by applying a voltage to the liquid crystal cells of the light valve. In an exemplary embodiment, the voltages applied to the liquid crystal cells of the light valves 1〇6 and 1〇8 alternate between negative and positive. In an exemplary embodiment, the voltage applied by the controller is positive or negative, and the liquid crystal cells of the light valves 1〇6 and 1〇8 are both turned on and off in the same manner. The alternating applied voltage prevents the material of the liquid crystal cells of the light valves 106 and 108 from being deposited on the surface of the cell. In an exemplary embodiment, during operation of system 100, as illustrated in Figures 2 and 3, the system may implement a left and right light valve method 2, in which method 'if in 202a, left light When the valve 1〇6 is closed and the right light valve 1〇8 is opened, in 202b, a high voltage 202ba is applied to the left light valve 1〇6 and the no voltage 202bb by the light valve controllers 1丨6 and u8, respectively. A small stop voltage 202bc is then applied to the right shutter 108. In an exemplary embodiment, applying a high voltage 202ba to the left shutter 106 causes the left shutter to close, and applying no voltage to the right shutter 108 begins to open the right shutter. In an exemplary embodiment, subsequent application of the small stop voltage 202bc to the right shutter 1〇8 prevents the liquid crystal in the right shutter from rotating over the opening of the right shutter 108. As a result, at 202b, the left shutter 106 is closed and the right shutter 108 is opened. If, in 202c, the left shutter 106 is opened and the right shutter 108 is closed, then in 202d, a high voltage 147659.doc -10- 201118423 202da is applied to the right by the shutter controllers 118 and 116, respectively. The light valve 108 applies a no voltage 202db followed by a small stop voltage 202dc to the left light valve 106. In an exemplary embodiment, applying a high voltage 202da to the right shutter 1〇8 causes the right shutter to close, and applying no voltage to the left shutter 106 begins to open the left shutter. In an exemplary embodiment, subsequent application of the small stop voltage 202dc to the left shutter 106 prevents the liquid crystal in the left shutter from rotating over the opening of the left shutter 106. As a result, at 202d, the left shutter 106 is opened and the right shutter 1 〇 8 is closed. In an exemplary embodiment, the magnitude of the stop voltage used in 202b and 202d is in the range of about 1% to 20% of the magnitude of the high voltage used in 202b and 202d. In an exemplary embodiment, during operation of the system 1 during the method 200, during the time when the left light valve 106 is closed and the right light valve 1〇8 is open in 202b, a video image is presented for the right eye, And during the time when the left light valve 1〇6 is turned on and the right light valve 108 is turned off in 2〇2d, a video image is presented for the left eye. In an exemplary embodiment, the video image may be displayed on one or more of the following: a cinema screen 102, an LCD television screen, a digital light source processing ("(10)") television, a digital light source processing =, : Plasma camp and its similar. In an exemplary embodiment, the digital light source processes the projector and has a conventional 1 wafer digital light source processing projection system and/or a conventional 3 wafer digital light source processing projection system. In an exemplary embodiment, during operation of the system (10), c u u i 4 will direct each of the optical rooms 106 and 108 to open when presenting a shirt image intended for the light valve and the viewer's eyes. In an exemplary embodiment, a synchronization signal can be used to cause the shutters 106 and 108 to open at the correct time. In an exemplary embodiment, a synchronization signal is transmitted by signal transmitter 11 and the synchronization signal can, for example, comprise an infrared light. In an exemplary embodiment, signal transmitter 110 transmits the synchronization signal to a reflective surface, and the surface reflects the signal to signal sensor 112 positioned and mounted within the frame of 3D glasses 1〇4. The reflective surface can be, for example, a cinema screen 102 or another reflective device located on or near the movie screen such that a user of the 3D glasses 104 generally faces the reflector while viewing the movie. In an exemplary embodiment, the signal transmitter (10) can send the synchronization signal directly to the sensor 112. In an exemplary embodiment, signal sensor H2 can include a photodiode mounted and supported on the frame of three-dimensional glasses ι4. The sync signal can be pulsed at the beginning of each-left and right lens light valve sequence 2〇〇. The sync signal can be more frequent, for example, providing a pulse to name the opening of each light valve 1〇6 or 108. The synchronization signal can be less frequent, for example, providing 4 pulses per light valve sequence 200, every five light valve sequences, or per _ fixed light reading. The CPU U has a timer to maintain proper light valve sequencing in the absence of the same k number. In the exemplary embodiment, the combination of the viscous liquid crystal material in the light valves 1〇6 and 1〇8 and the narrow grass element gap produces an optically overly thick unit. The noisy and liquid crystal in 1G8 block the transmission of light when applied. The molecules in the liquid crystals in valves 106 and 108 are rotated back to the orientation of the alignment layer after removal of the 1°: voltage. The alignment layer orients the molecules of the liquid crystal cells to allow gas to be transmitted. In an optically over-thick liquid crystal cell, the liquid crystal molecules rapidly rotate after the power is removed by 147659.doc 12 201118423 and thus the light transmission is rapidly increased, but then the molecules are rotated too far and the light transmission is reduced. The time from the rotation of the liquid crystal cell molecules until the light transmission is stabilized (i.e., the liquid crystal molecules are stopped) is the true switching time. In an exemplary embodiment, when the light valve controllers 116 and 118 apply a small stop voltage to the light valves 106 and 108, the liquid crystal cells of the stop power waste in the light valves are rotated too far. The rotation of the liquid crystal cells is stopped before. By stopping the rotation of the molecules before the molecules in the liquid crystal cells in the light valves 106 and 108 are rotated too far, the light transmission of the molecules in the liquid crystal cells passing through the light valves is maintained Near the peak or peak. Therefore, the effective switching time starts from the liquid crystal cells in the light valves 106 and 1 〇 8 until the liquid crystal cell stops the rotation of the molecules at or near the peak light transmission point. Referring now to Figure 4, transmission refers to the amount of light transmitted through the light valve 1〇6 or 1〇8, where the transmittance value 1 refers to the maximum or near liquid crystal cell passing through the light valve 1〇6 or 1〇8. Maximum light transmission point. Thus, for a light valve 106 or 108 that is capable of transmitting up to 37% of the light, the transmission level 1 indicates that the light valve 1〇6 or 1〇8 is transmitting the maximum amount of available light (i.e., 37%). Of course, depending on the particular liquid crystal cell used, the maximum amount of light transmitted by light valve 1〇6 or 1〇8 can be any amount, including, for example, 33%, 30%, or significantly more or less. As illustrated in FIG. 4, in an exemplary experimental embodiment, the light valve 106 or 108' is operated and the light transmission is measured during operation of the method 200. (An exemplary experimental embodiment of the light valve 106 or (10) In the middle, the light valve closes in approximately 毫秒5 milliseconds. Then it remains closed for about 7 milliseconds in the first half of the light valve cycle. 147659.doc -13· 201118423 Closed then the light valve opens to maximum light in about 1 millisecond. The transmission is about 9 〇〇, and then the light valve remains open for about 7 milliseconds, and (iv) is closed. As a comparison, a commercially available light valve is also operated during operation of method 200, which exhibits light transmission 402. During operation of the method, the light transmission of the light valves 106 and 108 of the present exemplary embodiment achieves a transmission of about 25% to 3% in about ! milliseconds (i.e., about 9% of the maximum light transmission). ), as shown in FIG. 4, another light valve achieves a transmittance of about 25% to 3% after only about 2.5 milliseconds (that is, about 90% of the maximum light transmission), as shown in FIG. The light valves 106 and 108 of the present exemplary embodiment provide a significantly faster response than the commercially available light valve. This is an accident Referring now to Figure 5, in an exemplary embodiment, system 1 implements an operational method 500 in which signal sensor U4 receives an infrared sync from signal transmitter 110 (rsync) In the case of 5〇4, the right 2D glasses 104 are not in the execution mode (run MODE), then in 506 the CPU 114 determines whether the 2D glasses 1〇4 is in the off mode (〇FF MODE). If the CPU 114 determines that the 3D glasses 104 are not in the off mode, then the CPU 114 continues normal processing at 508 and then returns to 502. If the CPU 114 determines in 506 that the 3D glasses ι 4 is in the off mode, the CPU 114 is at 510. Clearing the sync inverter ("SI") and verifying the flag to prepare the CPU 114 for the next encrypted signal, starting a warm-up sequence of light 106 and 108 in 512 'and then continuing normal operation 5 〇 8 and returning 502 If the 3D glasses 104 are in the execution mode at 504, the CPU 114 determines in 514 whether the 3D glasses 104 have been configured for encryption. In 514 147659.doc 14 201118423 If the 3D glasses 104 have been configured for use in Encryption, then CPU 114 follows Normal operation in 508 and proceeds to 502. If the 3D glasses 1〇4 are not configured for encryption in 514, the CPU 114 checks in 516 to determine if the incoming signal is a three-pulse synchronization signal. If the incoming signal is not a three-pulse sync signal, then CPU II 4 continues with normal operation in 508 and proceeds to 502. If the incoming signal is a three-pulse sync signal at 516, then at 518 the CPU 114 uses the signal sensor 丨12. Receive configuration data from the signal transmitter u〇. At 520, the CPU 114 then decrypts the received configuration data to determine if it is valid. In 520, if the received configuration data is valid, then at 522 the CPU 114 checks to see if the new configuration ID ( rc 〇 NID ") matches the previous CONID. In an exemplary embodiment, the previous (: 〇 1:) may be stored in a memory device (such as a non-volatile memory device) that is in the manufacture or live stylization of the 3D glasses 1G4. Operational

在執行或正常模式下,三維眼鏡 在一例示性實施例中,名In an exemplary or normal mode, 3D glasses, in an exemplary embodiment, the name

在一例示性實施例中, 信號傳輸器11〇可靠近影院投影 10 該 下 I47659.doc 201118423 器130定位。在一例示性實施例中,信號傳輸器110(尤其) 將同步L號(「sync信號」)發送至三維眼鏡1〇4之信號感 測器H2。信號傳輸器11〇可改為或額外地自影院投影器 13 0及/或任何顯不器及/或任何發射器裝置接收同步信號。 在-例示性實施例中,一加密信號可用以防止三維眼鏡 104與不含有正讀加密信號之信號傳輪器110-起操作。此 外,在Ϊ列不性實施例中,該加密傳輸器信號將不會正確 地致動未經配備以接收及處理加密信號之三維眼鏡104。 在一例示性實施例中,信號傳輸器110亦可將加密資料發 送至二維眼鏡1 〇 4。 現參看圆6 ’在一例示性實施例中, ⑽實施-操作方法_,在該方法中,在602中,該2 判定信號傳輸器11()是否因為恰好在602中傳來電力而被重 設。在602中,若信號傳輸器11〇因為恰好傳來電力而被重 〇X則在6〇4中该彳s號傳輸器產生一新的隨機同步反相旗 標。在602中,若信號傳輸器110不具有一通電重設狀況, 則在606中信號傳輸器110之CPU 110a判定是否已使用相同 同步編碼超出—狀時間量。在—例示性實施例中,606 中之預定時間可為四個小時,或一典型電影之長度或任 何其他合適時間。在6〇6中,若相同同步編碼已被使用了 4 小時以上,則在6〇4中信號傳輸器11〇之cpu 產生一新 的同步反相旗標。 在608中,信號傳輸器110之CPU 11〇a接著判定該信號傳 輸器是否仍在從投影器130接收一信號。在608中,若信號 147659.doc -16· 201118423 傳輸器110並非仍在從投影器130接收一信號,則在61 0中 信號傳輸器110可使用其自身的内部同步產生器繼續在適 當時間將同步信號發送至信號感測器112。 在操作期間’信號傳輸器110可(例如)在兩脈衝同步信號 與三脈衝同步信號之間交替。在一例示性實施例中,兩脈 衝同步信號指導三維眼鏡1〇4打開左光閥108,且三脈衝同 步信號指導三維眼鏡104打開右光閥106。在一例示性實施 例中’信號傳輸器110可在每η個信號之後發送一加密信 號。 在612中,右號傳輸器11 〇判定其應發送三脈衝同步信 號’則在614中該信號傳輸器判定自上一個加密循環起的 信號計數。在一例示性實施例中,信號傳輸器u 〇在每十 個k號中僅發送一次加密信號》然而,在一例示性實施例 中,加密信號之間可存在較多或較少信號循環。在614 中,若信號傳輸器110之CPU 110a判定此並非第η個三脈衝 同步信號,則在616中CPU指導該信號傳輸器發送一標準 的三脈衝同步信號。若該同步信號為第η個三脈衝信號, 則在618中信號傳輸器11〇之CPU ll〇a將該資料加密且在 620中CPU 11 Oa發送一具有嵌入的組態資料之三脈衝同步 信號。在612中’若信號傳輸器110判定其不應發送三脈衝 同步信號,則在622中該信號傳輸器發送兩脈衝同步信 號。 現參看圖7及圖8 ’在一例示性實施例中,在系統丨〇〇之 操作期間’信號傳輸器110實施一操作方法7〇〇,在該方法 I47659.doc •17- 201118423 中,組合該等同步脈衝與經編碼組態資料,然後由信號傳 輸器110加以傳輸。詳言之,信號傳輸器11〇包括一產生一 時脈信號800之韌體内部時鐘。在7〇2中,信號傳輸器11〇 之CPU 110a判疋時脈信號800是否處於時脈循環8〇2之開始 處在702中,.若指號傳輸器110之CPU 110a判定時脈信號 800處於時脈循&之開始處,則在中該信號傳輸器之 cpu檢查以查看―組態資料信號8〇4是高還是低。若組態 貝料乜號804為冋’則在7〇6中將一資料脈衝信號嶋設定 為门值若"且態資料k號804為低,則在708中將資料脈 衝信號806設定為一栖佶 . y , ‘ 低值。在一例不性實施例中,資料脈 衝信號806可能已句杯n本> & 同v k號。因此,在71 〇中組合資料 脈衝信號806與同步作妹B 1Λ丄 ,乜唬且在710中由信號傳輸器110加以 傳輸。 ▲例不f生實施例中,在加密操作之前或之後,組態資 料=號_之加密形式可在每一個同步信號序列期間、在 預疋數目個同步彳古號康而丨 琥序列之後、嵌入同步信號序列令、鱼 同步:號序列重叠或與同步信號序列組合地發送。此外:、 衝;I::諕8〇4之加密形式可在兩脈衝同步信號或三脈 逆或其兩者上或任何其他數目個脈衝之信號上發 =序不管是否在傳輸之任-端加密同步信號,可: ,)列之傳輪之間傳輸該加密組態資料。 组性實施例中,可(例如)使用曼徹斯特編碼提供 〜貪料信號_之編竭(具有或不具有同步信 現參看圖2、圖5、圖8、圖9及圖10,在一例示_ 147659.doc -18- 201118423 克0之細作期間’三维眼鏡m實施一摔作方法 9〇〇,在該方法令,在902φ ^ δ私作方法 f在902尹,三维眼鏡1〇 -喚醒模式逾時。在一例 114檢查 式逾時之—咖mm模 毫秒之可每二:預一 . 隹例不性實施例令’高脈衝902aa之存 在指不一喚醒模式逾時。 甘 在902中’右CPU 114谓測到_喚醒逾時,則在9〇4中該 在,用信號感測器112檢查-同步信號之存在或不存 在斷,若CPU114_到—同步信號,則在_ ⑽使三維眼鏡104處於一透明操作模式下。在一例干 性貫施例中,在透明操作模式下,該三維眼鏡實施方法 及500中的-或多者的至少幾個部分:接收同步脈衝, 處理組態資料謝。在一例示性實施例中,在透明操 作模式下’該三維眼鏡至少可提供方法1扇之操作, 文所描述。 二在904中’若CPU 114未债測到—同步信號,則在_中 。玄CPU使二維眼鏡104處於一關閉操作模式下’且接著在 902中’該CPU檢查一喚醒模式逾時。在一例示性實施例 中在關閉操作板式下,該二維眼鏡不提供正常操作模式 或透明操作模式之特徵。 、 在一例示性實施例中’當三維眼鏡處於關閉模式或透明 模式時’三維眼鏡104實施方法900。 現參看圖11及圖12,在一例示性實施例中,在系統刚 147659.doc • 19· 201118423 之操作期間’三維眼鏡104實施一暖機操作方法1100,在 該方法中’在1102中,三維眼鏡之CPU 114檢查三維眼鏡 之通電。在一例示性實施例中’可藉由一使用者啟動一 通電開關或藉由一自動喚醒序列將三維眼鏡1〇4通電。在 三維眼鏡1 04通電的情況下,三維眼鏡之光閥1 〇6及108可 能(例如)需要一暖機序列。在一時間段中不具有電力的光 閥1 06及108之液晶單元之分子可能處於一不明確狀態下。 在1102中,若三維眼鏡1〇4之CPU 114偵測到該三維眼鏡 之通電,則在1104中該CPU分別將交變電壓信號uiMa及 1104b施加至光閥1 〇6及108。在一例示性實施例中,施加 至光閥106及108之電壓在正峰值與負峰值之間交替以避免 光間之液aa早元中的離子化問題。在一例示性實施例中, 電壓信號11 04a及11 〇4b彼此至少部分地不同相。或者,電 壓信號1104a及11 〇4b可能同相或完全不同相。在一例示性 實施例中’電壓信號ll〇4a及11 04b中之一者或兩者可在一 零電壓與一峰值電壓之間交替。在一例示性實施例中,可 將其他形式之電壓信號施加至光閥1 〇 6及1 〇 8,以使得光閥 之液晶單元處於一明確操作狀態。在一例示性實施例中, 施加電壓信號ll〇4a及1104b至光閥1〇6及108使該等光閥同 時或在不同時間打開及關閉。或者,施加電壓信號】1 a 及1104b使光閥1〇6及108—直關閉。 在施加電麼信號ll〇4a及1104b至光閥1〇6及1〇8期間,在 1106中,CPU 114檢查一暖機逾時。在11〇6中,若cpu 114 偵測到一暖機逾時,則在11〇8中該cpu將停止將電壓信號 147659.doc -20- 201118423 1104a及1104b施加至光閥106及108。 在一例示性實施例中,在1104及1106中,CPU 114在一 足以致動該等光閥之該等液晶單元之時間段中將電壓信號 11 04a及11 〇4b施加至光閥106及108。在一例示性實施例 中,CPU 114在兩秒之逾時時段中將電壓信號1丨〇4a及 1104b施加至光閥1 〇6及1 08。在一例示性實施例中,電壓 信號1104a及1104b之最大量值可為14伏特。在一例示性實 施例中,1106中之逾時時段可為兩秒。在一例示性實施例 中,電壓信號1104a及1104b之最大量值可大於或小於14伏 特,且逾時時段可更長或更短。在一例示性實施例中,在 方法1100期間,CPU 114可以一不同於用於觀看電影之速 率的速率打開及關閉光閥106及1〇8。在一例示性實施例 中,在1104中,施加至光閥1〇6及1〇8之電壓信號及 1104b以一不同於用於觀看電影之速率的速率交替。在一 例示性實施例中’在11〇4中,施加至光閥1〇6及1〇8之電壓 信號不交替,且在暖機時間段期間被持續施加,且因此該 等光閥之液晶單元在整個暖機時段中可保持不透明。在一 例示性實_巾,暖機方法测可在同步錢存在或不存 在的情況下發生。因此,方法蘭為三維眼鏡 式。在—例示性實施例中,在實施暖機^法 實施方:二:鏡處:一广常執行操作模式下且接著可 方法贈之後,1 ρ “性貫施財,在實施暖機 灸二、准眼鏡處於一透明操作模式T m γ 實施下文所Μ之W。 接者可 I47659.doc 21 201118423 現參看圖13及圖14,在一例示性實施例中,在系統1〇〇 之操作期間,三維眼鏡104實施一操作方法13〇〇,在該方 法中,在1302中,CPU 114檢查以查看由信號感測器112偵 測到的同步信號是有效還是無效。在13〇2中,若cpu 114 判定同步信號無效,則在1304中該CPU將電壓信號1304a 及1304b施加至三維眼鏡104之光閥1〇6及1〇8。在一例示性 實施例中,施加至光閥1〇6及108之電壓在正峰值與負峰值 之間交替以避免光閥之液晶單元中的離子化問題。在一例 示性實施例中’電壓信號11043及11〇41)中之一者或兩者可 在一零電壓與一峰值電壓之間交替。在一例示性實施例 中,可將其他形式之電壓信號施加至光閥1〇6及1〇8,以使 仔光閥之液晶單元保持打開,使得三維眼鏡1〇4之使用者 可透過光閥正常地查看。在一例示性實施例中,施加電壓 信號1104a及ll〇4b至光閥1〇6及1〇8使該等光閥打開。 在施加電壓信號1304a及1304b至光閥106及1〇8期間,在 1306中’ CPU 114檢查-清除逾時(clearing Ume _卜在 蘭中,若CPU m僧測到一清除逾日夺,則在13〇8中該 CPU將停止將電壓信號13043及1304b施加至光閥⑽及 108。 因此,在-例示性實_中,#三維眼鏡1〇4未偵測到 -有效同步信號m維眼鏡可轉至—透明操作模式且 實施方法⑽。在透明操作模式下,在一例示性實施例 中’三維眼鏡H)4之光閥1()6及1()8均保持打開,使得觀看 者可通過三維眼鏡之光閥正常地觀看 。在一例示性實施例 147659.doc -22· 201118423 中,施加一正負交替的恆定電壓以將三維眼鏡之光閥i〇6 及108之液晶單元維持在一透明狀態。該恆定電壓可㈠列如) 在2至3伏特之範圍内,但該恆定電壓可為適合維持適度透 明光閥之任何其他電壓。在一例示性實施例中,三維眼鏡 104之光閥106及108可保持透明,直至該三維眼鏡能夠驗 證一加密信號。在一例示性實施例中,可以允許三維眼鏡 之使用者正常地觀看之一速率交替地打開及關閉三維眼鏡 之光閥106及108。 因此,方法1300提供一種清除三維眼鏡1〇4之操作之方 法,且藉此提供一透明操作模式。 現參看圖15,在一例示性實施例中,在系統1〇〇之操作 期間,二維眼鏡1〇4實施一種監視電池12〇之方法15〇〇,在 邊方法中’在1502中,三維眼鏡之CPU 114使用電池感測 器122判定電池之剩餘可用壽命。在1502中,若三維眼鏡 之CPU 114判定電池12〇之剩餘可用壽命不足,則在15〇4中 CPU提供低電池壽命狀況之一指示。 在例不性實施例中,不足的剩餘電池壽命可(例如)為 小於3小時之任何時段,在一例示性實施例中,充足的剩 餘電池壽命可由三維眼鏡之製造商預先設定及/或由三維 眼鏡之使用者程式化。 在例不性實施例中,在1504中,三維眼鏡1〇4之CPU 114將藉由使二維眼鏡之光閥1〇6及ι〇8緩慢閃爍、藉由使 光閥同時以可被二維眼鏡之使用者看見之一中等速率閃 爍藉由使一指π燈閃力、藉由產生一可聽聲音及其類似 147659.doc •23· 201118423 動作而指示一低電池壽命狀況 在例不性實施例中,若三維眼鏡104之CPU 114偵測到 剩餘電池壽命不足以持續一規定時間段,則在丨5〇4中三維 暇鏡之CPU將指示一電池電力偏低狀況且接著防止使用者 開啟三維眼鏡。 在一例示性實施例中,每當三維眼鏡轉變至透明操作模 式時,二維眼鏡104之CPU 114判定剩餘電池壽命是否足 夠。 在一例示性實施例中,若三維眼鏡之CPU 114判定電池 將持續至少預定足夠時間量,則三維眼鏡將繼續正常操 作。正常操作可包括保持在透明操作模式下五分鐘,同時 檢查來自信號傳輸器110之有效信號,然後轉至一關閉模 式’在該模式中三維眼鏡1〇4週期性地醒來以檢查來自信 號傳輸器之信號。 在一例示性實施例中’三維眼鏡104之CPU 114恰在關掉 三維眼鏡之前檢查電池電力偏低狀況。在一例示性實施例 中’若電池120將不能持續該預定的足夠剩餘壽命時間, 則光閥1 06及1 08將開始緩慢閃爍。 在一例示性實施例中,若電池120將不能持續該預定的 足夠剩餘壽命時間,則光閥106及/或108將在兩秒内處於 一不透明狀況(亦即,液晶單元關閉)且接著在十分之一秒 内處於一透明狀況(亦即’液晶單元打開)。光閥106及/或 108關閉及打開的時間段可為任何時間段。 在一例示性實施例中,三維眼鏡104可在任何時間(包括 147659.doc • 24- 201118423 在暖機期間、在正常操作期間、在透明模式期間、在斷電 模式期間,或於任何狀況之間轉變時)檢查電池電力偏低 狀況。在一例示性實施例中,若在觀看者可能在看電影之 中途時偵測到一低電池壽命狀況,則三維眼鏡丨〇4可不立 即指示該電池電力偏低狀況。 在一些實施例中,若三維眼鏡! 〇4之cpu i 14偵測到一電 池電力偏低位準,則使用者將不能夠將三維眼鏡通電。 現參看圖16,在一例示性實施例中,一測試器16〇〇可緊 接三維眼鏡1 〇4定位以便證實三維眼鏡在正常工作。在一 例不性實施例中,測試器16〇〇包括用於將測試信號 傳輸至§亥二維眼鏡之信號感測器u 2的一信號傳輸器 1600a。在一例示性實施例中,測試信號16〇〇b可包括一同 步信號,其具有一低頻率速率以使三維眼鏡1〇4之光閥1〇6 及108以可被三維眼鏡之使用者看見之一低速率閃爍。在 一例不性實施例中,光閥1〇6及1〇8不能回應於測試信號 1 600b而閃爍可指示三維眼鏡丨〇4不能正常操作。 現參看圖17,在一例示性實施例中,三維眼鏡1〇4進一 步包括一可操作地耦接至CPU 114、光閥控制器ιΐ6及 118、電池120之電荷泵1700,其用於將電池之輸出電壓轉 換成一較高輸出電壓以供操作光閥控制器之用。 參看圖18、圖18a、圖18b、圖18c及圖18d,提供三維眼 鏡1800之一例示性實施例,該三維眼鏡在設計及操作上實 質上等同於上文所說明及描述之三維眼鏡104,惟下文所 說明的方面除外。三維眼鏡1800包括一左光閥18〇2、一右 147659.doc -25· 201118423 光閥1804、一左光閥控制器i8〇6、一右光閥控制器1808、 一 CPU 1810、一電池感測器1812、一信號感測器1814及一 電荷泵1 81 6。在一例示性實施例中,三維眼鏡1 800之左光 閥1802、右光閥1804、左光閥控制器18〇6、右光閥控制器 1808、CPU 1810、電池感測器1812、信號感測器1814及電 荷泉1 8 1 6的設計及操作實質上等同於上文所描述及說明的 三維眼鏡104之左光閥1 〇6、右光閥丨〇8、左光閥控制器 116、右光閥控制器118、CPU 114、電池感測器122 '信號 感測器112及電荷泵1700。 在一例示性實施例中,三維眼鏡18〇〇包括以下組件: 名稱 值/It) R12 ----- 10K R9 100K ~~~ D3 BAS7004 R6 ------ 4.7K D2 BP104FS ' ' R1 10Μ C5 .luF R5 20K U5-2 ------- MCP6242 R3 10K C6 • luF C7 ------ .OOluf C10 .33uF R7 1M ' D1 BAS7004 R2 330K U5-1 MCP6242 R4 1M — 147659.doc -26- 201118423 名稱 值/ID R11 330K U6 MCP111 R13 100K U3 PIC16F636 C1 47uF C2 • luF R8 10K R10 20K R14 10K R15 100K 01 NDS0610 D6 MAZ31200 D5 BAS7004 L1 lmh C11 luF C3 • luF U1 4052 R511 470 C8 • luF C4 .luF U2 4052 R512 470 C1 47uF C11 luf 左透鏡 LCD 1 右透鏡 LCD 2 BT1 3VLi 在一例示性實施例中,左光閥控制器1 806包括一數位控 制類比開關U1,該開關在CPU 18 10的控制下,視操作模 式而在左光閥1 802上施加一電壓以用於控制左光閥之操 作。以類似方式,右光間控制器1808包括一數位控制類比 147659.doc -27- 201118423 開關U2,該開關在CPU 1810的控制下,視操作模式而在 右光閥1804上施加一電壓以用於控制右光閥之操作。在一 例示性實施例中’ U1及U2為習知的可自Unisonic Technologies或Texas Instruments購得的零件號碼分別為 UTC 4052及TI 4052的數位控制類比開關。 如一般熟習此項技術者將認識到,4052數位控制類比開 關包括控制輸入信號A、B及INHIBIT(禁止)(「INH」)、開 關 I/O 信號 X〇、XI、X2、X3、Y0、Yl、Y2 及 Y3,以及輸 出信號X及Y,且進一步提供以下真值表: 真值表 控制輸入 接通開關 禁止 選擇 B A 0 0 0 Y0 X0 0 0 1 Y1 XI 0 1 0 Y2 X2 0 1 1 Y3 X3 1 X X 無 *χ=任意值 且’如圖19中所說明,4052數位控制類比開關亦提供一功 能圖1900。因此,4052數位控制類比開關提供各自具有兩 個獨立開關的數位控制類比開關,其准許左光閥控制器 1806及右光閥控制器1808選擇性地在左光閥18〇2及右光閥 1 804上施加一受控電壓以控制光閥之操作。 在一例示性實施例中,CPU 1810包括一微控制器U3 , 其用於產生用於控制左光閥控制器1806及右光閥控制器 147659.doc -28- 201118423 1 808之數位控制類比開關⑴及U2之操作的輸出信號A、 B、C、D及E。微控制器U3之輸出控制信號A、B及C將以 下輸入控制信號A及B提供給數位控制類比開關U1及U2中 之每一者:In an exemplary embodiment, the signal transmitter 11 can be positioned close to the theater projection 10 . In an exemplary embodiment, signal transmitter 110 (especially) transmits a sync L number ("sync signal") to signal sensor H2 of 3D glasses 1〇4. The signal transmitter 11 can alternatively or additionally receive the synchronization signal from the cinema projector 130 and/or any of the display devices and/or any of the transmitter devices. In an exemplary embodiment, an encrypted signal can be used to prevent the 3D glasses 104 from operating with a signal wheeler 110 that does not contain a positive read encrypted signal. Moreover, in an exemplary embodiment, the encrypted transmitter signal will not properly actuate the 3D glasses 104 that are not equipped to receive and process the encrypted signals. In an exemplary embodiment, signal transmitter 110 may also transmit encrypted data to two-dimensional glasses 1 〇 4. Referring now to circle 6' in an exemplary embodiment, (10) implementation-operation method_, in which, in 602, the 2 decision signal transmitter 11() is stressed because power is transmitted exactly at 602. Assume. In 602, if the signal transmitter 11 is reset by X because it just happens to transmit power, the 彳s transmitter generates a new random sync inversion flag in 6〇4. In 602, if signal transmitter 110 does not have a power-on reset condition, then at 606 CPU 110a of signal transmitter 110 determines if the same synchronization code has been used beyond the amount of time. In an exemplary embodiment, the predetermined time in 606 can be four hours, or the length of a typical movie or any other suitable time. In 6〇6, if the same sync code has been used for more than 4 hours, the cpu of the signal transmitter 11 in 6〇4 generates a new sync inversion flag. In 608, the CPU 11A of the signal transmitter 110 then determines if the signal transmitter is still receiving a signal from the projector 130. In 608, if the signal 147659.doc -16·201118423 transmitter 110 is not still receiving a signal from projector 130, then at 61 0 signal transmitter 110 may continue to use its own internal synchronization generator at the appropriate time. The synchronization signal is sent to the signal sensor 112. During operation, the signal transmitter 110 can alternate between, for example, a two-pulse sync signal and a three-pulse sync signal. In an exemplary embodiment, the two-pulse synchronization signal directs the three-dimensional glasses 1〇4 to open the left light valve 108, and the three-pulse synchronization signal directs the three-dimensional glasses 104 to open the right light valve 106. In an exemplary embodiment, signal transmitter 110 may transmit an encrypted signal after every n signals. In 612, the right-numbered transmitter 11 determines that it should transmit a three-pulse synchronization signal'. In 614, the signal transmitter determines the signal count from the last encryption cycle. In an exemplary embodiment, the signal transmitter u 发送 transmits the encrypted signal only once every ten k numbers. However, in an exemplary embodiment, there may be more or less signal cycles between the encrypted signals. In 614, if CPU 110a of signal transmitter 110 determines that this is not the nth three-pulse sync signal, then in 616 the CPU directs the signal transmitter to transmit a standard three-pulse sync signal. If the synchronization signal is the nth three-pulse signal, the CPU 〇a of the signal transmitter 11 encrypts the data in 618 and the CPU 11 Oa transmits a three-pulse synchronization signal with the embedded configuration data at 620. . In 612, if signal transmitter 110 determines that it should not transmit a three-pulse sync signal, then at 622 the signal transmitter transmits a two-pulse sync signal. Referring now to Figures 7 and 8 'in an exemplary embodiment, during operation of the system 信号, the signal transmitter 110 implements an operational method 7 〇〇 in the method I47659.doc • 17-201118423, in combination The sync pulses are encoded with the encoded data and then transmitted by signal transmitter 110. In particular, the signal transmitter 11A includes a firmware internal clock that generates a clock signal 800. In 7〇2, the CPU 110a of the signal transmitter 11 determines whether the clock signal 800 is at the beginning of the clock cycle 8〇2, at 702. If the CPU 110a of the index transmitter 110 determines the clock signal 800. At the beginning of the clock cycle &, check the cpu of the signal transmitter to see if the configuration data signal 8〇4 is high or low. If the configuration of the material number 804 is 冋', then a data pulse signal 嶋 is set to a threshold value in 〇6, and if the state data k number 804 is low, the data pulse signal 806 is set to 708 in 708. A habitat. y , 'low value. In one example, the data pulse signal 806 may have a sentence cup >& same v k number. Therefore, the data burst signal 806 is combined with the sync B 1 在 in 71 Λ丄 and transmitted by the signal transmitter 110 in 710. ▲ In the example of the embodiment, before or after the encryption operation, the encrypted form of the configuration data = number _ can be used during each synchronization signal sequence, after a predetermined number of synchronizations, Embedded sync signal sequence, fish sync: The sequence of numbers overlaps or is transmitted in combination with a sequence of sync signals. In addition:, rush; I:: 諕8〇4 encryption form can be sent on the two-pulse sync signal or three-pulse inverse or both or any other number of pulses of the signal = regardless of whether in the transmission of the - end The encrypted synchronization signal can be: ,) The encrypted configuration data is transmitted between the columns of the transmission. In a group embodiment, the encoding can be provided, for example, using Manchester coding (with or without synchronization signals) with reference to Figures 2, 5, 8, 9, and 10, in an example _ 147659.doc -18- 201118423 gram 0 during the period of 'three-dimensional glasses m implementation of a fall-off method 9 〇〇, in the method of the order, in the 902φ ^ δ private method f in 902 Yin, 3D glasses 1 〇 - wake mode over In the case of an example of 114, the time of the check-time is _mmmm. The number of milliseconds can be every two: pre-one. The exception of the example is that the presence of the high pulse 902aa means that the wake-up mode is overtime. The CPU 114 detects that the _ wakeup timeout is in the case of 9〇4, and the signal sensor 112 checks whether the presence or absence of the synchronization signal is broken. If the CPU 114_ to the synchronization signal, the three-dimensional image is made at _ (10). The glasses 104 are in a transparent operation mode. In a dry embodiment, in the transparent operation mode, the 3D glasses implementation method and at least parts of the - or more of the 500: receiving synchronization pulses, processing the configuration Information. In an exemplary embodiment, in the transparent mode of operation, the three The glasses can provide at least one operation of the method, as described in the text. 2. In 904, 'If the CPU 114 does not measure the debt-synchronization signal, then it is in _. The CPU makes the 2D glasses 104 in a closed operation mode' and Next, at 902, the CPU checks for an awake mode timeout. In an exemplary embodiment, the two-dimensional glasses do not provide features of a normal mode of operation or a transparent mode of operation in a closed operating panel mode. In an exemplary embodiment The '3D glasses 104 implements the method 900 when the 3D glasses are in the off mode or the transparent mode. Referring now to Figures 11 and 12, in an exemplary embodiment, during operation of the system just 147659.doc • 19·201118423' The 3D glasses 104 implement a warm-up operation method 1100 in which, in 1102, the CPU 114 of the 3D glasses inspects the energization of the 3D glasses. In an exemplary embodiment, a user can activate a power-on switch or The 3D glasses 1 〇 4 are energized by an automatic wake-up sequence. In the case where the 3D glasses 104 are energized, the 3D glasses of the light valves 1 〇 6 and 108 may, for example, require a warm-up sequence. The molecules of the liquid crystal cells of the light valves 106 and 108 that do not have power during a period of time may be in an ambiguous state. In 1102, if the CPU 114 of the 3D glasses 1〇4 detects the energization of the 3D glasses, Then, in 1104, the CPU applies alternating voltage signals uiMa and 1104b to light valves 1 〇 6 and 108, respectively. In an exemplary embodiment, the voltages applied to light valves 106 and 108 are between positive and negative peaks. Alternating to avoid ionization problems in the liquid aa early element in the light. In an exemplary embodiment, the voltage signals 11 04a and 11 〇 4b are at least partially out of phase with each other. Alternatively, voltage signals 1104a and 11 〇 4b may be in phase or completely out of phase. In an exemplary embodiment, one or both of the voltage signals 11a 4a and 104b may alternate between a zero voltage and a peak voltage. In an exemplary embodiment, other forms of voltage signals can be applied to the light valves 1 〇 6 and 1 〇 8 such that the liquid crystal cells of the light valve are in an unambiguous operating state. In an exemplary embodiment, voltage signals 11A and 4104b are applied to light valves 1 and 6 and 108 to cause the light valves to open and close at the same time or at different times. Alternatively, the voltage signals 1a and 1104b are applied to cause the light valves 1〇6 and 108 to be closed. During the application of the electrical signals 11〇4a and 1104b to the light valves 1〇6 and 1〇8, in 1106, the CPU 114 checks for a warm-up timeout. In 11〇6, if cpu 114 detects a warm-up timeout, then in 11〇8 the cpu will stop applying voltage signals 147659.doc -20- 201118423 1104a and 1104b to light valves 106 and 108. In an exemplary embodiment, in 1104 and 1106, CPU 114 applies voltage signals 11 04a and 11 〇 4b to light valves 106 and 108 during a period of time sufficient to actuate the liquid crystal cells of the light valves. In an exemplary embodiment, CPU 114 applies voltage signals 1丨〇4a and 1104b to light valves 1〇6 and 1 08 in a two second timeout period. In an exemplary embodiment, the maximum magnitude of voltage signals 1104a and 1104b can be 14 volts. In an exemplary embodiment, the timeout period in 1106 can be two seconds. In an exemplary embodiment, the maximum magnitude of voltage signals 1104a and 1104b may be greater than or less than 14 volts, and the timeout period may be longer or shorter. In an exemplary embodiment, during method 1100, CPU 114 may open and close light valves 106 and 1-8 at a different rate than the rate at which the movie is viewed. In an exemplary embodiment, in 1104, the voltage signals applied to light valves 1〇6 and 1〇8 and 1104b alternate at a different rate than the rate at which the movie is viewed. In an exemplary embodiment, 'in 11〇4, the voltage signals applied to the light valves 1〇6 and 1〇8 are not alternated and are continuously applied during the warm-up period, and thus the liquid crystals of the light valves The unit remains opaque throughout the warm-up period. In an exemplary case, the warm-up method can occur in the presence or absence of synchronized money. Therefore, the method blue is a three-dimensional glasses type. In the exemplary embodiment, after implementing the warming method implementation method: two: mirror: a wide execution mode and then a method gift, 1 ρ "sexual wealth management, in the implementation of warming moxibustion two The quasi-spectacles are in a transparent mode of operation T m γ to implement the following. W. I47659.doc 21 201118423 Referring now to Figures 13 and 14, in an exemplary embodiment, during operation of the system 1 The 3D glasses 104 implement an operation method 13A. In the method, in 1302, the CPU 114 checks to see if the synchronization signal detected by the signal sensor 112 is valid or invalid. In 13〇2, if When the CPU 114 determines that the synchronization signal is invalid, the CPU applies voltage signals 1304a and 1304b to the light valves 1〇6 and 1〇8 of the 3D glasses 104 in 1304. In an exemplary embodiment, the CPU is applied to the light valve 1〇6. The voltages of 108 and 105 alternate between positive and negative peaks to avoid ionization problems in the liquid crystal cells of the light valve. In one exemplary embodiment, one or both of 'voltage signals 11043 and 11〇41' may Alternating between a zero voltage and a peak voltage. In the embodiment, other forms of voltage signals can be applied to the light valves 1〇6 and 1〇8 to keep the liquid crystal unit of the light valve open, so that the user of the 3D glasses 1〇4 can normally view through the light valve. In an exemplary embodiment, application of voltage signals 1104a and 11〇4b to light valves 1〇6 and 1〇8 causes the light valves to open. During application of voltage signals 1304a and 1304b to light valves 106 and 1〇8 In 1306, 'CPU 114 check-clears the timeout (clearing Ume _ in the blue, if the CPU m detects a clear overdose, then the CPU will stop applying the voltage signals 13043 and 1304b in 13〇8) To the light valves (10) and 108. Therefore, in the exemplary embodiment, the #3 glasses 1〇4 are not detected - the effective synchronization signal m-dimensional glasses can be transferred to the transparent operation mode and the method (10) is implemented. In the transparent operation mode Next, in the exemplary embodiment, the light valves 1 () 6 and 1 () 8 of the 'three-dimensional glasses H) 4 are kept open, so that the viewer can normally view through the light valve of the three-dimensional glasses. In an exemplary implementation Example 147659.doc -22· 201118423, applying a positive and negative alternating constant voltage to put 3D glasses The liquid crystal cells of the light valves i 〇 6 and 108 are maintained in a transparent state. The constant voltage may be in the range of 2 to 3 volts, for example, but the constant voltage may be any other voltage suitable for maintaining a moderately transparent light valve. In an exemplary embodiment, the light valves 106 and 108 of the 3D glasses 104 may remain transparent until the 3D glasses are capable of verifying an encrypted signal. In an exemplary embodiment, the user of the 3D glasses may be allowed to view normally. The light valves 106 and 108 of the 3D glasses are alternately opened and closed at a rate. Thus, method 1300 provides a method of clearing the operation of 3D glasses 1.4 and thereby providing a transparent mode of operation. Referring now to Figure 15, in an exemplary embodiment, during operation of the system 1, the two-dimensional glasses 1〇4 implement a method 15 of monitoring the battery 12〇, in the side method 'in 1502, three-dimensional The CPU 114 of the glasses uses the battery sensor 122 to determine the remaining useful life of the battery. In 1502, if the CPU 114 of the 3D glasses determines that the remaining usable life of the battery 12 is insufficient, the CPU provides an indication of a low battery life condition at 15〇4. In an exemplary embodiment, the insufficient remaining battery life can be, for example, any period of less than 3 hours. In an exemplary embodiment, sufficient remaining battery life can be pre-set by the manufacturer of the 3D glasses and/or by Stylized user of 3D glasses. In an exemplary embodiment, in 1504, the CPU 114 of the 3D glasses 1〇4 will be slowly flashed by causing the light valves 1〇6 and ι8 of the two-dimensional glasses to be simultaneously The user of the spectacles sees a medium rate flashing by indicating a π-lamp flash, by generating an audible sound and its similar action 147659.doc • 23· 201118423 indicating a low battery life condition. In an embodiment, if the CPU 114 of the 3D glasses 104 detects that the remaining battery life is insufficient for a predetermined period of time, the CPU of the 3D mirror in 丨5〇4 will indicate a battery power low condition and then prevent the user. Turn on 3D glasses. In an exemplary embodiment, whenever the 3D glasses transition to the transparent mode of operation, the CPU 114 of the 2D glasses 104 determines if the remaining battery life is sufficient. In an exemplary embodiment, if the CPU 114 of the 3D glasses determines that the battery will continue for at least a predetermined amount of time, the 3D glasses will continue to operate normally. Normal operation may include maintaining the transparent operation mode for five minutes while checking the valid signal from the signal transmitter 110, and then moving to an off mode in which the 3D glasses 1 周期性 4 periodically wake up to check for signal transmission. Signal of the device. In an exemplary embodiment, the CPU 114 of the 3D glasses 104 checks for a low battery condition just before turning off the 3D glasses. In an exemplary embodiment, if the battery 120 will not last for the predetermined sufficient remaining life time, the shutters 106 and 108 will begin to flash slowly. In an exemplary embodiment, if the battery 120 will not last for the predetermined sufficient remaining life time, the shutters 106 and/or 108 will be in an opaque condition within two seconds (ie, the liquid crystal cell is off) and then Within one tenth of a second, it is in a transparent condition (ie, 'the liquid crystal cell is turned on'). The period of time during which the shutters 106 and/or 108 are closed and opened may be any period of time. In an exemplary embodiment, the 3D glasses 104 can be at any time (including 147659.doc • 24-201118423 during warm up, during normal operation, during transparent mode, during power down mode, or in any condition) During the transition, check the battery power is low. In an exemplary embodiment, if a low battery life condition is detected while the viewer is likely to be in the middle of a movie, the 3D glasses 4 may not immediately indicate that the battery is under low. In some embodiments, if 3D glasses! If the cpu i 14 detects that the battery power is low, the user will not be able to power the 3D glasses. Referring now to Figure 16, in an exemplary embodiment, a tester 16 can be positioned in close proximity to the 3D glasses 1 to verify that the 3D glasses are functioning properly. In an exemplary embodiment, the tester 16A includes a signal transmitter 1600a for transmitting test signals to the signal sensor u 2 of the two-dimensional glasses. In an exemplary embodiment, the test signal 16〇〇b may include a synchronization signal having a low frequency rate such that the light valves 1〇6 and 108 of the 3D glasses 1〇4 are visible to the user of the 3D glasses. One of the low speeds flashes. In an exemplary embodiment, the light valves 1〇6 and 1〇8 are not responsive to the test signal 1 600b and flashing may indicate that the 3D glasses 4 are not operating properly. Referring now to Figure 17, in an exemplary embodiment, the 3D glasses 1 further includes a charge pump 1700 operatively coupled to the CPU 114, the light valve controllers ι 6 and 118, and the battery 120 for use in the battery The output voltage is converted to a higher output voltage for operation of the light valve controller. Referring to Figures 18, 18a, 18b, 18c and 18d, an exemplary embodiment of a three-dimensional eyeglass 1800 is provided that is substantially identical in design and operation to the three-dimensional eyeglasses 104 illustrated and described above. Except for the aspects described below. The 3D glasses 1800 includes a left light valve 18〇2, a right 147659.doc-25·201118423 light valve 1804, a left light valve controller i8〇6, a right light valve controller 1808, a CPU 1810, and a battery sense. The detector 1812, a signal sensor 1814 and a charge pump 1 81 6 are provided. In an exemplary embodiment, the left light valve 1802, the right light valve 1804, the left light valve controller 18〇6, the right light valve controller 1808, the CPU 1810, the battery sensor 1812, and the sense of signal of the 3D glasses 1 800 The design and operation of the detector 1814 and the charge spring 18 are substantially identical to the left light valve 1 〇6, the right light valve 丨〇8, the left light valve controller 116 of the 3D glasses 104 described and illustrated above. Right light valve controller 118, CPU 114, battery sensor 122 'signal sensor 112 and charge pump 1700. In an exemplary embodiment, the 3D glasses 18A include the following components: Name Value / It) R12 ----- 10K R9 100K ~~~ D3 BAS7004 R6 ------ 4.7K D2 BP104FS ' ' R1 10Μ C5 .luF R5 20K U5-2 ------- MCP6242 R3 10K C6 • luF C7 ------ .OOluf C10 .33uF R7 1M ' D1 BAS7004 R2 330K U5-1 MCP6242 R4 1M — 147659. Doc -26- 201118423 Name Value/ID R11 330K U6 MCP111 R13 100K U3 PIC16F636 C1 47uF C2 • luF R8 10K R10 20K R14 10K R15 100K 01 NDS0610 D6 MAZ31200 D5 BAS7004 L1 lmh C11 luF C3 • luF U1 4052 R511 470 C8 • luF C4 .luF U2 4052 R512 470 C1 47uF C11 luf Left lens LCD 1 Right lens LCD 2 BT1 3VLi In an exemplary embodiment, the left light valve controller 1 806 includes a digital control analog switch U1, which is in the CPU 18 10 Under the control of the operating mode, a voltage is applied to the left shutter 1 802 for controlling the operation of the left shutter. In a similar manner, the right inter-optical controller 1808 includes a digital control analog 147659.doc -27-201118423 switch U2 that, under the control of the CPU 1810, applies a voltage to the right shutter 1804 depending on the mode of operation for Control the operation of the right light valve. In an exemplary embodiment, U1 and U2 are conventional digitally controlled analog switches available from Unisonic Technologies or Texas Instruments with part numbers UTC 4052 and TI 4052, respectively. As will be appreciated by those skilled in the art, the 4052 digital control analog switch includes control input signals A, B and INHIBIT ("INH"), switch I/O signals X〇, XI, X2, X3, Y0, Yl, Y2 and Y3, and output signals X and Y, and further provide the following truth table: Truth table control input on switch disable selection BA 0 0 0 Y0 X0 0 0 1 Y1 XI 0 1 0 Y2 X2 0 1 1 Y3 X3 1 XX No *χ = any value and 'as illustrated in Figure 19, the 4052 digital control analog switch also provides a functional diagram 1900. Thus, the 4052 digital control analog switch provides digital control analog switches each having two independent switches that permit the left light valve controller 1806 and the right light valve controller 1808 to selectively be in the left light valve 18〇2 and the right light valve 1 A controlled voltage is applied to 804 to control the operation of the light valve. In an exemplary embodiment, the CPU 1810 includes a microcontroller U3 for generating a digital control analog switch for controlling the left shutter controller 1806 and the right shutter controller 147659.doc -28- 201118423 1 808 (1) Output signals A, B, C, D, and E of the operation of U2. The output control signals A, B, and C of the microcontroller U3 provide the following input control signals A and B to each of the digital control analog switches U1 and U2:

IB-輸出控制信號 A U1-輸入控制信號 U2-輸入控制信號 A B A C B B 在一例示性實施例中,微控制器U3之輸出控制信號D及 E提供或以其他方式實現數位控制類比開關山及U2之開關 I/O信號X〇、XI、X2、χ3、γ〇、γι、Y2及 Y3。 U3-輸出控制信號 U1-開關I/O信號 U2-開關I/O信號 D X3.Y1 Χ0,Υ2 E X3,Y1 Χ0,Υ2 在一例示性實施例中,CPU 1810之微控制器U3為可自 Microchip購得的可程式化微控制器,型號為PIC16F636。 在一例示性實施例中,電池感測器1812包括用於感測電 池120之電壓的一電力偵測器U6。在一例示性實施例中, 電力偵測器U6為可自Microchip購得之型號為MCP111的微 功率電壓偵測器。 在一例示性實施例中,信號感測器1814包括用於感測信 號傳輸器110對信號(包括同步信號及/或組態資料)之傳輸 的一光電二極體D2。在一例示性實施例中,光電二極體 D2為可自〇sram購得之型號為bp1〇4FS的光電二極體。在 —例示性實施例中,信號感測器1814進一步包括運算放大 147659.doc -29- 201118423 器U5-1及U5-2,及相關信號調節組件:電阻器ri、R2、 R3、R4、R5、R6、R7、R9、R11 及 R12、電容器 C5、 C6、C7及CIO,以及肖特基二極體D1及D3。 在一例示性實施例中,電荷泵1816使用一電荷泵將電池 120之輸出電壓之量值自3V放大至_12V。在一例示性實施 例中’電荷泵1816包括一 MOSFET Q1、一肖特基二極體 D 5 電感器L1及一齊納·一極體D 6。在一例示性實施例 中’提供電荷果1816之輸出信號以作為左光閥控制器18〇6 之數位控制類比開關U1之開關I/O信號X2及Y0之輸入信 號’及右光閥控制器1 808之數位控制類比開關U2之開關 I/O信號X3及Y1之輸入信號。 如圖20中所說明’在一例示性實施例中,在三維眼鏡 1800之操作期間,在CPU 1810之控制信號A、B、C、D及 E的控制下’數位控制類比開關川及^^可在左光閥18〇2及 右光閥1 804中之一者或兩者上提供各種電壓。詳言之,在 CPU 1 81 0之控制信號a、B、C、D及£的控制下,數位控 制類比開關U1及U2可提供:1)左光閥1802及右光閥1804中 之一者或兩者上的正或負15伏特;2)左光閥及右光閥中之 一者或兩者上的在2至3伏特範圍内之正或負電壓;或3)在 左光閥及右光閥中之一者或兩者上提供〇伏特(亦即,中性 狀態)。在一例示性實施例中,在CPU 181 〇之控制信號A、 B、C、D及E的控制下,數位控制類比開關⑴及⑴可藉由 (例如)組合+3伏特與_12伏特來提供15伏特,從而達成左光 閥1802及右光閥1804中之一者或兩者上的15伏特之差異 147659.doc •30· 201118423 (differential)。在一例示性實施例中,在Cpu 1810之控制 信號A、B、C、D及E的控制下,數位控制類比開關U1及 U2可(例如)藉由用一分壓器(包括組件R8AR1〇)將電池12〇 之3伏特輸出電壓減少至2伏特來提供2伏特止擋電壓。 或者’在CPU 1810之控制信號a、B、C、D及E的控制 下’數位控制類比開關U1及U2可提供:1)左光閥1 802及右 光閥1804中之一者或兩者上的正或負15伏特;2)左光閥及 右光閥中之一者或兩者上的約2伏特之正或負電壓;3)左 光閥及右光閥中之一者或兩者上的約3伏特之正或負電 壓,或4)在左光閥及右光閥中之一者或兩者上提供〇伏特 (亦即,中性狀態)。在一例示性實施例中,在CPU 1 8 1 〇之 控制信號A、B、C、D及E的控制下,數位控制類比開關 U1及U2可藉由(例如)組合+3伏特與_丨2伏特來提供丨5伏 特,從而達成左光閥1802及右光閥1804中之一者或兩者上 的15伏特之差異。在一例示性實施例中,在cpu丨81〇之控 制信號A、B、C、〇及£的控制下,數位控制類比開關⑴ 及U2可(例如)藉由用一分壓器(包括組件R8&Ri〇)將電池 120之3伏特輸出電壓減少至2伏特來提供2伏特止擋電壓。 現參看@21及圖22,在-例示性實施例中,在三維眼鏡 1800·之操作期間,該三維眼鏡執行一正常執行操作模式 2100,在該模式中,將由cpu 181〇產生之控制信號八、 B、C、D及E用以控制左光閥控制器18〇6及右光閥控制器 1808之操作,從而又依據信號感測器1814所偵測到的同步 佗號之類型來控制左光閥18〇2及右光閥〗8〇4之操作。' I47659.doc -31- 201118423 詳言之,在2102中,若CPU 1810判定信號感測器1814已 接收一同步信號,則在2104中,該CPU判定所接收的同步 信號之類型。在一例示性實施例中,一包括3個脈衝之同 步信號指示左光閥1802應關閉且右光閥1804應打開,而一 包括2個脈衝之同步信號指示該左光閥應打開且該右光閥 應關閉。更一般而言’可將任何數目個不同脈衝用以控制 左光閥1802及右光閥1804之打開及關閉。 在2104中’若CPU 1810判定所接收的同步信號指示左光 閥1802應關閉且右光閥1804應打開,則在2106中,該CPU 將控制信號A、B、C、D及E傳輸至左光閥控制器1 806及右 光閥控制器1808,以將一高電壓施加至左光閥18〇2且將無 電壓隨後接著一小止擋電壓施加至右光閥丨8〇4。在一例示 性貫施例中,在2 106中施加至左光閥〖8〇2的高電壓之量值 為15伏特。在一例示性實施例中,在21〇6中施加至右光閥 1804的止擋電壓之量值為2伏特。在一例示性實施例中, 在2106中,藉由將控制信號D之操作狀態(其可為低、高或 打開)控制為打開,藉此啟用分壓器組件R8及R1 〇之操作, 且將控制信號E維持在一高狀態而將止擋電壓施加至右光 閥1804。在一例示性實施例中,21〇6中該止擋電壓至右光 閥1804之施加被延遲—職時間段,以允許該右光闕之液 晶内之分子在該預定時間段期間較快速地旋轉。在該預定 時間段期滿之後隨後施加該止擋電壓接著防止右光闕麵 中之液晶内之分子在右光閥之打開期間旋轉過頭。 或者,在施中,若CPUl82〇判定所接收的同步信號指 I47659.doc •32- 201118423 示左光閥1802應打開且右光閥1804應關閉,則在21〇8中, 該CPU將控制信號a、b、c、D&E傳輸至左光閥控制器 1806及右光閥控制器1808,以將一高電壓施加至右光閥 1804且將無電壓隨後接著一小止擋電壓施加至左光閥 1802。在一例示性實施例中,在21〇8中施加至右光閥以叫 的咼電壓之里值為15伏特。在一例示性實施例中,在21 〇 § 中施加至左光閥1802的止擋電壓之量值為2伏特。在一例 不性實施例中’在2108中,藉由將控制信號d控制為打 開,藉此啟用分壓器組件R8&R1〇之操作,且將控制信號 E維持在一高位準而將該止擋電壓施加至左光閥1802。在 一例不性實施例中,21〇8中該止擋電壓至左光閥18〇2之施 加被延遲一預定時間段,以允許左光閥之液晶内之分子在 該預疋時間段期間較快速地旋轉。在該預定時間段期滿之 後隨後施加止擋電壓接著防止左光閥丨8〇2中之液晶内之分 子在左光閥之打開期間旋轉過頭。 在例示性實施例中’在方法21 〇〇期間,在步驟21 〇6及 2108之後續重複中,施加至左光閥1802及右光閥1804之電 £ 乂替地為正及負’以防止對左光閥及右光閥之液晶單元 之損害。 因此,方法2100為三維眼鏡18〇〇提供一正常或執行操作 模式。 >看® 23及® 24 ’在—例示性實施例中’在三維眼鏡 =800之心作期間,三維眼鏡實施一暖機操作方法,在 以方法中將由cpu 181〇產生之控制信號A、BC、〇及 147659.doc •33· 201118423 E用以控制左光閥控制器1806及右光閥控制器1808之操 作’從而又控制左光閥1802及右光閥1804之操作。 在2302中’三維眼鏡之CPU 1810檢查該三維眼鏡之通 電。在一例示性實施例中,三維眼鏡1 8 1 〇可透過一使用者 啟動一通電開關或透過一自動喚醒序列而通電。在三維眼 鏡1 8 10通電的情況下,三維眼鏡之光閥1802及1 804可能 (例如)需要一暖機序列。在一時間段中不具有電力的光閥 1802及1 804之液晶單元可能處於一不明破狀態下。 在2302中,若三維眼鏡1800之CPU 1810偵測到該三維眼 鏡之通電,則在2304中,該CPU分別將交變電壓信號 23 04a及2304b施加至左光閥1802及右光閥1804 »在一例示 性實施例中,施加至左光閥1802及右光閥1804之電壓在正 峰值與負峰值之間交替以避免光閥之液晶單元中的離子化 問題。在一例示性實施例中,電壓信號2304a及2304b可彼 此至少部分地不同相。在一例示性實施例中,電壓信號 23 04a及23 04b中之一者或兩者可在一零電壓與一峰值電壓 之間交替。在一例示性實施例中,可將其他形式之電壓信 號施加至左光閥1802及右光閥1804,以使得光閥之液晶單 元處於一明確操作狀態。在一例示性實施例中,施加電壓 信號2304a及2304b至左光閥1802及右光閥1804使該等光閥 同時或在不同時間打開及關閉。或者,施加電壓信號 2304a及2304b至左光閥1802及右光閥1804可使該等光閥保 持關閉。 在施加電壓信號2304a及2304b至左光閥1802及右光閥 147659.doc -34· 201118423 1804期間,在2306中,CPU 1810檢查一暖機逾時。在2306 中,若CPU 1810偵測到一暖機逾時,則在2308中,CPU將 停止施加電壓信號2304a及2304b至左光閥1802及右光閥 1804。 在一例示性實施例中,在2304及2306中,CPU 1810在一 足以致動該等光閥之液晶單元之時間段中將電壓信號 23 04a及2304b施加至左光閥1802及右光閥1804。在一例示 性實施例中,CPU 1810在兩秒之時段中將電壓信號2304a 及2304b施加至左光閥18〇2及右光閥1804。在一例示性實 施例中’電壓信號23 04a及2304b之最大量值可為15伏特。 在一例示性實施例中,2306中之逾時時段可為兩秒。在一 例示性實施例中,電壓信號23〇43及23〇41)之最大量值可大 於或小於15伏特’且逾時時段可更長或更短。在一例示性 實施例中,在方法2300期間,CPU 1810可以一不同於可用 於觀看電影之速率的速率打開及關閉左光閥丨8〇2及右光閥 1804。在一例示性實施例中,在2304中,施加至左光閥 1802及右光閥1804之電壓信號不交替,且在暖機時間段期 間持續施加’且因此該等光閥之液晶單元在整個暖機時段 中可保持不透明。在一例示性實施例中,暖機方法23〇〇可 在同步信號存在或不存在的情況下發生。因此,方法23〇〇 為三維眼鏡1800提供一暖機操作模式。在一例示性實施例 中,在實施暖機方法2300之後,三維眼鏡18〇〇處於一正常 或執行操作模式下且接著可實施方法21〇〇。或者,在一例 示f生貫施例中,在貫施暖機方法23 〇〇之後,三維眼鏡丨8〇〇 147659.doc 35· 201118423 處於一透明操作模式下且接著可實施下文所描述之方法 2500 ° 現參看圖25及圖26,在一例示性實施例中,在三維眼鏡 1800之操作期間,三維眼鏡實施一操作方法2500,在該方 法中,由CPU 1810產生之控制信號A、B、c、D&E用以 控制左光閥控制器1806及右光閥控制器丨8〇8之操作,從而 又依據由信號感測器1814接收的同步信號來控制左光閥 1802及右光閥1804之操作。 在2502中,CPU 1810檢查以查看信號感測器^“所偵測 到的同步信號是有效還是無效。在25〇2中,若cpu 181〇判 定同步#號無效,則在2504中,CPU將電壓信號2504a及 2504b施加至三維眼鏡18〇〇之左光閥18〇2及右光閥。 在一例不性實施例中,施加至左光閥丨8〇2及右光閥丨8〇4之 電壓2504a及25 04b在正峰值與負峰值之間交替以避免光閥 之液晶單元中的離子化問題。在一例示性實施例中電壓 k號2504a及2504b中之一者或兩者可在一零電壓與一峰值 電壓之間交替。在一例示性實施例中,可將其他形式之電 壓信號施加至左光閥18〇2及右光閥18〇4,以使得光閥之液 aa單元保持打開’因此三維眼鏡丨8〇〇之使用者可透過光閥 正常地觀看。在一例示性實施例中’施加電壓信號25〇4a 及2504b至左光閥1802及右光閥1804使該等光閥打開。IB-Output Control Signal A U1-Input Control Signal U2-Input Control Signal ABACBB In an exemplary embodiment, the output control signals D and E of the microcontroller U3 provide or otherwise implement digital control analog switches and U2 Switch I/O signals X〇, XI, X2, χ3, γ〇, γι, Y2, and Y3. U3-output control signal U1-switch I/O signal U2-switch I/O signal D X3.Y1 Χ0, Υ2 E X3, Y1 Χ0, Υ2 In an exemplary embodiment, the microcontroller U3 of the CPU 1810 is A programmable microcontroller available from Microchip, model number PIC16F636. In an exemplary embodiment, battery sensor 1812 includes a power detector U6 for sensing the voltage of battery 120. In an exemplary embodiment, power detector U6 is a micropower voltage detector of the type MCP111 available from Microchip. In an exemplary embodiment, signal sensor 1814 includes a photodiode D2 for sensing the transmission of signals (including synchronization signals and/or configuration data) by signal transmitter 110. In an exemplary embodiment, the photodiode D2 is a photodiode of the type bp1〇4FS available from 〇sram. In an exemplary embodiment, signal sensor 1814 further includes operational amplifications 147659.doc -29-201118423 U5-1 and U5-2, and associated signal conditioning components: resistors ri, R2, R3, R4, R5 , R6, R7, R9, R11 and R12, capacitors C5, C6, C7 and CIO, and Schottky diodes D1 and D3. In an exemplary embodiment, charge pump 1816 uses a charge pump to amplify the magnitude of the output voltage of battery 120 from 3V to _12V. In an exemplary embodiment, the charge pump 1816 includes a MOSFET Q1, a Schottky diode D 5 inductor L1, and a Zener diode D 6 . In an exemplary embodiment, 'the output signal of the charge fruit 1816 is provided as the input signal of the switch I/O signals X2 and Y0 of the analog switch U1 of the left light valve controller 18〇6 and the right light valve controller The digits of 1 808 control the input signals of the switch I/O signals X3 and Y1 of the analog switch U2. As illustrated in FIG. 20, in an exemplary embodiment, during operation of the 3D glasses 1800, under the control of the control signals A, B, C, D, and E of the CPU 1810, the digital control analog switch and the ^^ Various voltages may be provided on one or both of the left light valve 18〇2 and the right light valve 1804. In detail, under the control of the control signals a, B, C, D and £ of the CPU 1 81, the digital control analog switches U1 and U2 can provide: 1) one of the left light valve 1802 and the right light valve 1804. Or positive or negative 15 volts on both; 2) positive or negative voltage in the range of 2 to 3 volts on one or both of the left and right light valves; or 3) in the left light valve and One or both of the right light valves provide a volt (i.e., neutral state). In an exemplary embodiment, under the control of the control signals A, B, C, D, and E of the CPU 181, the digital control analog switches (1) and (1) can be combined, for example, by +3 volts and _12 volts. 15 volts is provided to achieve a difference of 15 volts on one or both of the left and right shutters 1802 and 1804 147659.doc • 30·201118423 (differential). In an exemplary embodiment, under the control of control signals A, B, C, D, and E of CPU 1810, digitally controlled analog switches U1 and U2 can be used, for example, by a voltage divider (including component R8AR1〇). The battery's 12 volt output voltage is reduced to 2 volts to provide a 2 volt stop voltage. Or 'under the control of the control signals a, B, C, D and E of the CPU 1810', the digital control analog switches U1 and U2 can provide: 1) one or both of the left light valve 1 802 and the right light valve 1804 Positive or negative 15 volts on the upper; 2) positive or negative voltage of approximately 2 volts on one or both of the left and right shutters; 3) one or both of the left and right shutters A positive or negative voltage of about 3 volts, or 4) provides a volt (i.e., neutral state) on one or both of the left and right shutters. In an exemplary embodiment, under the control of the control signals A, B, C, D, and E of the CPU 1 8 1 , the digital control analog switches U1 and U2 can be combined, for example, by +3 volts and _丨. 2 volts is provided to provide 5 volts to achieve a difference of 15 volts on one or both of the left and right shutters 1802 and 1804. In an exemplary embodiment, digital control analog switches (1) and U2 can be controlled, for example, by using a voltage divider (including components) under the control of cpu 丨 81 〇 control signals A, B, C, 〇, and £. R8 &Ri〇) reduces the 3 volt output voltage of battery 120 to 2 volts to provide a 2 volt stop voltage. Referring now to @21 and FIG. 22, in an exemplary embodiment, during operation of the 3D glasses 1800, the 3D glasses perform a normal execution mode of operation 2100, in which the control signals generated by the cpu 181 are eight , B, C, D, and E are used to control the operation of the left light valve controller 18〇6 and the right light valve controller 1808, thereby controlling the left according to the type of synchronization nickname detected by the signal sensor 1814. The operation of the light valve 18〇2 and the right light valve〗 8〇4. In particular, in 2102, if the CPU 1810 determines that the signal sensor 1814 has received a synchronization signal, then in 2104, the CPU determines the type of the received synchronization signal. In an exemplary embodiment, a synchronization signal comprising 3 pulses indicates that the left light valve 1802 should be closed and the right light valve 1804 should be open, and a synchronization signal comprising 2 pulses indicates that the left light valve should be open and the right The light valve should be closed. More generally, any number of different pulses can be used to control the opening and closing of the left and right shutters 1802, 1804. In 2104, 'If the CPU 1810 determines that the received synchronization signal indicates that the left light valve 1802 should be closed and the right light valve 1804 should be open, then in 2106, the CPU transmits control signals A, B, C, D, and E to the left. The light valve controller 1 806 and the right light valve controller 1808 apply a high voltage to the left light valve 18〇2 and apply no voltage followed by a small stop voltage to the right light valve 丨8〇4. In an exemplary embodiment, the amount of high voltage applied to the left light valve 〖8 〇 2 in 2 106 is 15 volts. In an exemplary embodiment, the magnitude of the stop voltage applied to the right shutter 1804 in 21〇6 is 2 volts. In an exemplary embodiment, in 2106, the operation of the voltage divider components R8 and R1 启用 is enabled by controlling the operational state of the control signal D (which may be low, high, or open) to be turned on, and The control signal E is maintained at a high state and a stop voltage is applied to the right shutter 1804. In an exemplary embodiment, the application of the stop voltage to the right shutter 1804 in 21〇6 is delayed for a period of time to allow molecules within the liquid crystal of the right pupil to be relatively fast during the predetermined period of time. Rotate. Subsequent application of the stop voltage after the expiration of the predetermined time period then prevents the molecules in the liquid crystal in the right pupil face from rotating over the opening of the right light valve. Or, in the implementation, if the CPU l82 determines that the received synchronization signal refers to I47659.doc • 32-201118423, the left light valve 1802 should be opened and the right light valve 1804 should be turned off, then in 21〇8, the CPU will control the signal a, b, c, D & E are transmitted to the left shutter controller 1806 and the right shutter controller 1808 to apply a high voltage to the right shutter 1804 and apply no voltage followed by a small stop voltage to the left Light valve 1802. In an exemplary embodiment, the value of the 咼 voltage applied to the right light valve at 21 〇 8 is 15 volts. In an exemplary embodiment, the magnitude of the stop voltage applied to the left shutter 1802 in 21 § § is 2 volts. In an exemplary embodiment, 'in 2108, by controlling the control signal d to be turned on, thereby enabling operation of the voltage divider component R8 & R1〇, and maintaining the control signal E at a high level The blocking voltage is applied to the left shutter 1802. In an exemplary embodiment, the application of the stop voltage to the left shutter 18〇2 in 21〇8 is delayed for a predetermined period of time to allow molecules within the liquid crystal of the left shutter to be compared during the pre-turn period. Rotate quickly. Subsequent application of the stop voltage after the expiration of the predetermined period of time then prevents the molecules in the liquid crystal in the left shutter 丨8〇2 from rotating excessively during the opening of the left shutter. In the exemplary embodiment, during the method 21 ,, in subsequent iterations of steps 21 〇 6 and 2108, the voltage applied to the left and right shutters 1802 and 1804 is positive and negative to prevent Damage to the liquid crystal cells of the left and right shutters. Thus, method 2100 provides a normal or operational mode of operation for 3D glasses 18A. > See® 23 and® 24' In the exemplary embodiment, during the operation of 3D glasses = 800, the 3D glasses implement a warm-up operation method, in which the control signal A generated by the cpu 181〇, BC, 〇 and 147659.doc • 33· 201118423 E is used to control the operation of the left light valve controller 1806 and the right light valve controller 1808 to thereby control the operation of the left light valve 1802 and the right light valve 1804. In 2302, the CPU 1810 of the 3D glasses checks the power of the 3D glasses. In an exemplary embodiment, the 3D glasses 1 8 1 can be powered by a user activation of a power switch or by an automatic wake-up sequence. In the case where the three-dimensional eyeglasses 1 8 10 are energized, the light valves 1802 and 1 804 of the three-dimensional glasses may, for example, require a warm-up sequence. The liquid crystal cells of the light valves 1802 and 1804 that do not have power for a period of time may be in an unclear state. In 2302, if the CPU 1810 of the 3D glasses 1800 detects the power of the 3D glasses, in 2304, the CPU applies the alternating voltage signals 23 04a and 2304b to the left light valve 1802 and the right light valve 1804 respectively. In an exemplary embodiment, the voltage applied to left and right shutters 1802 and 1804 alternates between a positive peak and a negative peak to avoid ionization problems in the liquid crystal cell of the light valve. In an exemplary embodiment, voltage signals 2304a and 2304b may be at least partially out of phase with each other. In an exemplary embodiment, one or both of voltage signals 23 04a and 23 04b may alternate between a zero voltage and a peak voltage. In an exemplary embodiment, other forms of voltage signals can be applied to the left and right shutters 1802 and 1804 such that the liquid crystal cells of the shutter are in an operational state. In an exemplary embodiment, applying voltage signals 2304a and 2304b to left shutter 1802 and right shutter 1804 causes the shutters to open and close simultaneously or at different times. Alternatively, application of voltage signals 2304a and 2304b to left shutter 1802 and right shutter 1804 may cause the shutters to remain closed. During the application of voltage signals 2304a and 2304b to left light valve 1802 and right light valve 147659.doc -34·201118423 1804, in 2306, CPU 1810 checks for a warm-up timeout. In 2306, if CPU 1810 detects a warm-up timeout, then in 2308, the CPU will stop applying voltage signals 2304a and 2304b to left light valve 1802 and right light valve 1804. In an exemplary embodiment, in 2304 and 2306, CPU 1810 applies voltage signals 23 04a and 2304b to left and right light valves 1802 and 1804 during a time period sufficient to actuate the liquid crystal cells of the light valves. In an exemplary embodiment, CPU 1810 applies voltage signals 2304a and 2304b to left light valve 18〇2 and right light valve 1804 for a period of two seconds. In an exemplary embodiment, the maximum magnitude of the voltage signals 23 04a and 2304b can be 15 volts. In an exemplary embodiment, the timeout period in 2306 can be two seconds. In an exemplary embodiment, the maximum magnitude of voltage signals 23〇43 and 23〇41) may be greater or less than 15 volts' and the timeout period may be longer or shorter. In an exemplary embodiment, during method 2300, CPU 1810 can turn left and right shutters 〇8〇2 and right shutter 1804 at a different rate than can be used to view the movie. In an exemplary embodiment, in 2304, the voltage signals applied to the left and right shutters 1802 and 1804 are not alternated and are continuously applied during the warm-up period and thus the liquid crystal cells of the shutters are throughout It can remain opaque during warm-up hours. In an exemplary embodiment, the warm-up method 23 can occur in the presence or absence of a synchronization signal. Thus, method 23A provides a warm-up mode of operation for 3D glasses 1800. In an exemplary embodiment, after the warm-up method 2300 is implemented, the 3D glasses 18 are in a normal or operational mode of operation and then the method 21 can be implemented. Alternatively, in an exemplary embodiment, after the warm-up method 23 〇〇, the 3D glasses 丨 8〇〇 147659.doc 35· 201118423 are in a transparent mode of operation and then the method described below can be implemented 2500 ° Referring now to Figures 25 and 26, in an exemplary embodiment, during operation of the 3D glasses 1800, the 3D glasses implement an operational method 2500 in which control signals A, B, generated by the CPU 1810, c, D&E is used to control the operation of the left light valve controller 1806 and the right light valve controller 丨8〇8, thereby controlling the left light valve 1802 and the right light valve according to the synchronization signal received by the signal sensor 1814. Operation of 1804. In 2502, the CPU 1810 checks to see if the sync signal detected by the signal sensor is valid or invalid. In 25〇2, if the cpu 181〇 determines that the sync # number is invalid, then in 2504, the CPU will The voltage signals 2504a and 2504b are applied to the left light valve 18〇2 and the right light valve of the 3D glasses 18〇〇. In an exemplary embodiment, the left light valve 丨8〇2 and the right light valve 丨8〇4 are applied. Voltages 2504a and 25 04b alternate between positive and negative peaks to avoid ionization problems in the liquid crystal cell of the light valve. In an exemplary embodiment one or both of voltage k numbers 2504a and 2504b may be in one The zero voltage alternates with a peak voltage. In an exemplary embodiment, other forms of voltage signals can be applied to the left and right light valves 18〇2 and 18〇4 such that the liquid aa unit of the light valve remains The user who opens the 'three-dimensional eyeglasses' can normally view through the light valve. In an exemplary embodiment, 'apply voltage signals 25〇4a and 2504b to left light valve 1802 and right light valve 1804 to make the light The valve opens.

在施加電麗信號2504a及2504b至左光閥18〇2及右光閥 1804期間,在2506中,Cpu 1810檢查一清除逾時。在2506 中’若CPU 1810偵測到一清除逾時,則在25〇8中,CPU 147659.doc ^ 201118423 加至光閥1802及 1810將停止將電壓信號25〇43及25〇扑施 1804。 因此’在—例示性實施财,若三維眼鏡聰未制到 -有效同步信號,則三維眼鏡可轉至—透明操作模式且實 施方法測。在透明操作模式下,在一例示性實施例中, 三維眼鏡1800之光閥難及1_均保持打開,使得觀看者 可透過三維眼鏡之光間正常地觀看。在-例示性實施例 中,施加一正負交替之歧企费·廊、 甘&匳疋電壓以將三維眼鏡1800之光閥 1802及1804之液晶單元維持在—透明狀態。該值定電遂可 (例如)在2至3㈣之範_,但純定電财為適合維持 適度透明光閥之任何其他電磨。在一例示性實施例中,三 維眼鏡刪之光閥職及難可保持透明,直至三維眼鏡 能夠驗證-加密信號及,或直至一清除模式逾時。在一例 示性實施例中,三維眼鏡18〇〇之光閥18〇2及18〇4可保持透 明,直至二維眼鏡能夠驗證一加密信號,且然後可實施方 法210◦及/或在25G6中若發生_逾時,則可實施方法刪。 在一例示性實施例中’三維眼鏡1_之光閥贈及刪可 以允許三維眼鏡之使用者正常地觀看之速率交替地打開及 關閉。 因此,方法2500提供一種清除三維眼鏡18〇〇之操作的方 法,且藉此提供一透明操作模式。 現參看圖27及圖28,在-例示性實施例中,在三維眼鏡 1800之操作期間,三維眼鏡實施一種監視電 池120之方法 27〇〇,在該方法中,將由cpu 181〇產生之控制信號A、 147659.doc •37- 201118423 B、C、D及E用以控制左光閥控制器1806及右光閥控制器 1808之操作,從而又依據由電池感測器1812偵測到的電池 120之狀況來控制左光閥1802及右光閥1804之操作。 在2702中’三維眼鏡之CPU 1810使用電池感測器1812判 定電池120之剩餘可用壽命。在2702中,若三維眼鏡1800 之CPU 1810判定電池120之剩餘可用壽命不足,則在2704 中’§玄CPU提供一低電池壽命狀況之一指示。 在一例示性實施例中,不足的剩餘電池壽命可(例如)為 小於3小時之任何時段。在一例示性實施例中,足夠的剩 餘電池壽命可由三維眼鏡18〇〇之製造商預先設定及/或由 三維眼鏡之使用者程式化。 在一例示性實施例中,在2704中,三維眼鏡1 800之CPU 1810將藉由使三維眼鏡之左光閥18〇2及右光閥18〇4緩慢閃 爍、藉由使光閥以可被三維眼鏡之使用者看見之一中等速 率同時閃爍、藉由使一指示燈閃光、藉由產生一可聽聲音 及其類似動作來指示一低電池壽命狀況。 在一例示性實施例中’若三維眼鏡丨8〇〇之CPU 1 810偵測 到剩餘電池壽命不足以持續一規定時間段,則在27〇4中, 三維眼鏡之CPU將指示一電池電力偏低狀況且接著防止使 用者開啟三維眼鏡。 在一例示性實施例中,每當該三維眼鏡轉變至關閉模式 及/或透明操作模式時’三維眼鏡18〇〇之CPU 1810判定剩 餘電池壽命是否足夠》 在一例示性實施例中’若三維眼鏡丨800之CPU 1810判定 147659.doc -38- 201118423 電將持、、只至少5亥預定足夠時間量,則該三維眼鏡將繼 續正常操作。舉例而言,正常操作可包括在五分鐘内保持 在透明操作模式下,同時檢查來自信號傳輸器110之信 號然後轉至關閉模式或開啟模式,在該模式中三維眼鏡 1800週期性地醒來以檢查來自該信號傳輸器之一一信號。 在例不性實施例中,三維眼鏡1800之CPU 181〇恰在關 掉·>亥—維眼鏡之前檢查一電池電力偏低狀況。在一例示性 實施例中,若電池12〇不能持續該預定的足夠剩餘壽命時 間,則光閥1802及1804將開始緩慢閃爍。 在一例不性實施例中,若電池12〇不能持續該預定的足 夠剩餘哥命時間,則光閥1802及/或1804將在兩秒中處於 一不透明狀況(亦即,液晶單元關閉)且接著在十分之一秒 中處於一透明狀況(亦即,液晶單元打開)。光閥1802及/或 1 804關閉及打開的時間段可為任何時間段。在一例示性實 施例中,光閥18〇2及18〇4之閃燦同步於提供電力至信號感 測器1814,以准許該信號感測器檢查一來自信號傳輸器 11〇之信號。 在一例示性實施例中,三維眼鏡丨8〇〇可在任何時間(包 括在暖機期間、在正常操作期間、在透明模式期間、在斷 電模式期間,或於任何狀況之間轉變時)檢查一電池電力 偏低狀況。在—例示性實施例中,若在觀看者可能在看電 影之中途時偵測到一低電池壽命狀況,則三維眼鏡1 800可 不立即指示該電池電力偏低狀況。 在一些實施例中,若三維眼鏡1800之CPU 1810偵測到一 147659.doc •39· 201118423 電池電力偏低位準’則使用者將不能夠將該三維眼鏡通 電。 現參看圖29 ’在一例示性實施例中,在三維眼鏡丨8〇〇之 操作期間’三維眼鏡實施一使三維眼鏡停機之方法,在該 方法中,將由CPU 1810產生之控制信號A、B、c、D及E 用以控制左光閥控制器1806及右光閥控制器1 8〇8之操作, 從而又依據電池感測器1812所偵測到的電池12〇之狀況來 控制左光閥1 8 0 2及右光閥1 8 0 4之操作。詳言之,若三維眼 鏡1 800之使用者選擇使該三維眼鏡停機或cpu 1 810選擇使 該三維眼鏡停機’則施加至三維眼鏡之左光閥丨8〇2及右光 閥1 804之電壓均被設定為零。 參看圖30、圖30a、圖30b及圖30c,提供三維眼鏡3000 之一例示性實施例,該三維眼鏡在設計及操作上實質上等 同於上文所說明及描述的三維眼鏡104,惟下文所說明的 方面除外。三維眼鏡3000包括一左光闊3002、一右光閥 3004、一左光閥控制器3006、一右光閥控制器3008、一共 同光閥控制器3010、一 CPU 3012、一信號感測器3014、一 電荷泵30 1 6及一電壓供應器30丨8。在一例示性實施例中, 二維眼鏡3000之左光閥3002、右光閥3004、左光閥控制器 3006 '右光閥控制器3008、CPU 3012、信號感測器3014及 電荷泵3016之設計及操作實質上等同於上文所描述及說明 的三維眼鏡104之左光閥1〇6、右光閥108、左光閥控制器 11 ό、右光閥控制器118、CPU 114、信號感測器112及電荷 系1700,惟下文所描述且本文中所說明的方面除外。 147659.doc •40- 201118423 在一例示性實施例中,三維眼鏡3 000包括以下組件:During the application of the motor signals 2504a and 2504b to the left light valve 18〇2 and the right light valve 1804, in 2506, the CPU 1810 checks for a clear timeout. In 2506, if the CPU 1810 detects a clear timeout, then in 25〇8, the CPU 147659.doc^201118423 is added to the light valves 1802 and 1810 to stop the voltage signals 25〇43 and 25〇1804. Therefore, in the case of an exemplary implementation, if the 3D glasses have not produced an effective synchronization signal, the 3D glasses can be transferred to the transparent operation mode and the method is implemented. In the transparent mode of operation, in an exemplary embodiment, the light valves of the 3D glasses 1800 are difficult to open, so that the viewer can normally view through the light of the 3D glasses. In the exemplary embodiment, a positive and negative alternating voltage, gall, and ampere voltages are applied to maintain the liquid crystal cells of the light valves 1802 and 1804 of the 3D glasses 1800 in a transparent state. This value can be set, for example, in the range of 2 to 3 (four), but the pure electricity is any other electric grinder suitable for maintaining a moderately transparent light valve. In an exemplary embodiment, the three-dimensional glasses are transparent and difficult to maintain until the 3D glasses are capable of verifying - encrypting the signal and, or until a clear mode expires. In an exemplary embodiment, the light valves 18〇2 and 18〇4 of the 3D glasses 18 can remain transparent until the 2D glasses are capable of verifying an encrypted signal, and then can be implemented in method 210 and/or in 25G6. If _ timeout occurs, the method can be deleted. In an exemplary embodiment, the light valve gift and deletion of the '3D glasses 1' can be alternately opened and closed at a rate that allows the user of the 3D glasses to view normally. Thus, method 2500 provides a method of clearing the operation of 3D glasses 18 and thereby providing a transparent mode of operation. Referring now to Figures 27 and 28, in an exemplary embodiment, during operation of the 3D glasses 1800, the 3D glasses implement a method 27 of monitoring the battery 120 in which the control signals generated by the cpu 181 are generated. A, 147659.doc • 37-201118423 B, C, D, and E are used to control the operation of the left light valve controller 1806 and the right light valve controller 1808, thereby relying on the battery 120 detected by the battery sensor 1812. The condition controls the operation of the left and right shutters 1802 and 1804. The CPU 1810 of the 3D glasses in 2702 uses the battery sensor 1812 to determine the remaining useful life of the battery 120. In 2702, if the CPU 1810 of the 3D glasses 1800 determines that the remaining usable life of the battery 120 is insufficient, then in 2704 the 'SYS CPU provides an indication of a low battery life condition. In an exemplary embodiment, insufficient remaining battery life may, for example, be any period of less than 3 hours. In an exemplary embodiment, sufficient remaining battery life may be pre-set by the manufacturer of the 3D glasses 18 and/or programmed by the user of the 3D glasses. In an exemplary embodiment, in 2704, the CPU 1810 of the 3D glasses 1 800 will be able to be slowly blinked by causing the left and right shutters 〇 2 and 18 〇 4 of the 3D glasses to be The user of the 3D glasses sees a medium rate flickering at the same time, indicating a low battery life condition by flashing an indicator light, by producing an audible sound, and the like. In an exemplary embodiment, if the CPU 1 810 of the 3D glasses detects that the remaining battery life is insufficient for a predetermined period of time, then in 27〇4, the CPU of the 3D glasses will indicate a battery power bias. The condition is low and then the user is prevented from turning on the 3D glasses. In an exemplary embodiment, the CPU 1810 of the 3D glasses 18 determines whether the remaining battery life is sufficient each time the 3D glasses transition to the off mode and/or the transparent mode of operation. In an exemplary embodiment, '3D The CPU 1810 of the glasses 丨800 determines 147659.doc -38-201118423 that the electric holding will be at least 5 hai for a sufficient amount of time, and the 3D glasses will continue to operate normally. For example, normal operation may include maintaining the signal in the transparent mode of operation for five minutes while checking the signal from the signal transmitter 110 and then moving to the off mode or the on mode, in which the 3D glasses 1800 periodically wake up to Check for a signal from one of the signal transmitters. In an exemplary embodiment, the CPU 181 of the 3D glasses 1800 checks for a low battery condition just before turning off the > In an exemplary embodiment, if the battery 12 〇 does not last for the predetermined sufficient remaining life time, the light valves 1802 and 1804 will begin to flash slowly. In an exemplary embodiment, if the battery 12 does not continue for the predetermined sufficient remaining life time, the light valve 1802 and/or 1804 will be in an opaque condition for two seconds (ie, the liquid crystal cell is off) and then In a transparent condition in tenths of a second (ie, the liquid crystal cell is turned on). The period of time during which the light valve 1802 and/or 1 804 is closed and opened may be any period of time. In an exemplary embodiment, the flash valves 18〇2 and 18〇4 are synchronized to provide power to the signal sensor 1814 to permit the signal sensor to check a signal from the signal transmitter 11〇. In an exemplary embodiment, the 3D glasses may be at any time (including during warm-up, during normal operation, during transparent mode, during power down mode, or between any conditions) Check for a low battery condition. In an exemplary embodiment, if a low battery life condition is detected while the viewer is likely to be watching the movie, the 3D glasses 1 800 may not immediately indicate that the battery power is low. In some embodiments, if the CPU 1810 of the 3D glasses 1800 detects a low battery level of 147659.doc •39·201118423, the user will not be able to power the 3D glasses. Referring now to Figure 29, in an exemplary embodiment, during operation of the 3D glasses, the 3D glasses implement a method of shutting down the 3D glasses, in which the control signals A, B generated by the CPU 1810 are to be generated. , c, D, and E are used to control the operation of the left light valve controller 1806 and the right light valve controller 1 8 8 , thereby controlling the left light according to the condition of the battery 12 detected by the battery sensor 1812. Operation of valve 1 8 0 2 and right light valve 1 8 0 4 . In detail, if the user of the 3D glasses 1 800 chooses to stop the 3D glasses or the cpu 1 810 selects to stop the 3D glasses, the voltage applied to the left light valve 丨8〇2 and the right light valve 1804 of the 3D glasses is selected. Both are set to zero. Referring to Figures 30, 30a, 30b and 30c, an exemplary embodiment of a 3D glasses 3000 is provided that is substantially identical in design and operation to the 3D glasses 104 described and described above, except as follows Except for the aspects of the description. The 3D glasses 3000 includes a left light width 3002, a right light valve 3004, a left light valve controller 3006, a right light valve controller 3008, a common light valve controller 3010, a CPU 3012, and a signal sensor 3014. A charge pump 30 16 and a voltage supply 30 丨 8. In an exemplary embodiment, the left light valve 3002, the right light valve 3004, the left light valve controller 3006, the right light valve controller 3008, the CPU 3012, the signal sensor 3014, and the charge pump 3016 of the two-dimensional glasses 3000 The design and operation are substantially identical to the left light valve 1〇6, right light valve 108, left light valve controller 11ό, right light valve controller 118, CPU 114, signal sense of the 3D glasses 104 described and illustrated above. The detector 112 and the charge system 1700 are excluded except for the aspects described below and illustrated herein. 147659.doc • 40- 201118423 In an exemplary embodiment, 3D glasses 3 000 includes the following components:

名稱, 、 值/ID R13 10K D5 BAS7004 R12 100K D3 BP104F R10 2.2M U5-1 MIC863 R3 10K R7 10K R8 10K R5 1M C7 .OOluF R9 47K R11 1M C1 • luF C9 • luF D1 BAS 7004 R2 330K U5-2 MIC863 U3 MIC7211 U2 PIC16F636 C3 • luF C12 47uF C2 • luF LCD1 左光閥 C14 • luF LCD2 右光閥 U1 4053 U6 4053 C4 • luF U4 4053 R14 10K 147659.doc -41 - 201118423 名稱 值/ID , R15 100K 01 NDS0610 L1 lmh D6 BAS7004 D7 MAZ31200 C13 luF C5 luF 02 R16 1M R1 1M ΒΤ1 3VLi 在一例示性實施例中,左光閥控制器3006包括一數位控 制類比開關U1,該開關在共同控制器3010(其包括一數位 控制類比開關U4)及CPU 3012的控制下,視操作模式而在 左光閥3002上施加一電壓以用於控制左光閥之操作。以類 似方式,右光閥控制器3008包括一數位控制類比開關U6, 該開關在共同控制器3010及CPU 3012的控制下,視操作模 式而在右光閥3004上施加一電壓以用於控制右光閥3004之 操作。在一例示性實施例中,Ul、U4及U6為習知可自 Unisonic Technologies購得之零件號碼為UTC 4053的數位 控制類比開關。 如一般熟習此項技術者將認識到,UTC 4053數位控制類 比開關包括控制輸入信號A、B、C及INHIBIT(「INH」)、 開關I/O信號Χ0 ' XI、Υ0、Υ1、Ζ0及Ζ1和輸出信號X、Υ 及Ζ,且進一步提供如下真值表: 147659.doc -42- 201118423 真值表 控制輸入 接通開關 禁止 選擇 C B A UTC 4053 0 0 0 0 Z0 Y0 X0 0 0 0 1 Z0 Y0 XI 0 0 1 0 Z0 Y1 X0 0 0 1 1 Z0 Y1 XI 0 1 0 0 Z1 Y0 X0 0 1 0 1 Z1 Y0 XI 0 1 1 0 Z1 Y1 X0 0 1 1 1 Z1 Y1 XI 1 X X X 無 x=任意值 且’如圖3 1中所說明’ UTC 4053數位控制類比開關亦提供 一功能圖3100。因此,UTC 4053提供各自具有三個獨立開 關的數位控制類比開關’其准許左光閥控制器3〇〇6及右光 閥控制器3008及共同光閥控制器3010在CPU 3012的控制下 在左光閥3002及右光閥3004上選擇性地施加一受控電壓, 以控制該等光閥之操作。 在一例示性實施例中,CPU 3012包括一微控制器U2, 其用於產生用於控制左光閥控制器3006及右光閥控制器 3008之數位控制類比開關ui、U6及共同光閥控制器3010 之數位控制類比開關U4之操作的輸出信號A、B、C、D、 E、F及 G。 微控制器U2之輸出控制信號a、b、C、D、E、F及G將 以下輸入控制信號A、B、c及INH提供給數位控制類比開 147659.doc -43· 201118423 關Ul、U6及U4中之每一者:Name, , Value / ID R13 10K D5 BAS7004 R12 100K D3 BP104F R10 2.2M U5-1 MIC863 R3 10K R7 10K R8 10K R5 1M C7 .OOluF R9 47K R11 1M C1 • luF C9 • luF D1 BAS 7004 R2 330K U5-2 MIC863 U3 MIC7211 U2 PIC16F636 C3 • luF C12 47uF C2 • luF LCD1 left light valve C14 • luF LCD2 right light valve U1 4053 U6 4053 C4 • luF U4 4053 R14 10K 147659.doc -41 - 201118423 Name value / ID , R15 100K 01 NDS0610 L1 lmh D6 BAS7004 D7 MAZ31200 C13 luF C5 luF 02 R16 1M R1 1M ΒΤ1 3VLi In an exemplary embodiment, the left light valve controller 3006 includes a digital control analog switch U1 that is in the common controller 3010 (which includes Under the control of a digital control analog switch U4) and CPU 3012, a voltage is applied to the left light valve 3002 depending on the mode of operation for controlling the operation of the left light valve. In a similar manner, the right light valve controller 3008 includes a digital control analog switch U6 that, under the control of the common controller 3010 and the CPU 3012, applies a voltage to the right light valve 3004 for controlling the right depending on the mode of operation. The operation of the light valve 3004. In an exemplary embodiment, U1, U4, and U6 are digitally controlled analog switches of the part number UTC 4053 available from Unisonic Technologies. As will be appreciated by those skilled in the art, the UTC 4053 digital control analog switch includes control input signals A, B, C, and INHIBIT ("INH"), switch I/O signals Χ0' XI, Υ0, Υ1, Ζ0, and Ζ1. And output signals X, Υ and Ζ, and further provide the following truth table: 147659.doc -42- 201118423 truth table control input switch on disables selection CBA UTC 4053 0 0 0 0 Z0 Y0 X0 0 0 0 1 Z0 Y0 XI 0 0 1 0 Z0 Y1 X0 0 0 1 1 Z0 Y1 XI 0 1 0 0 Z1 Y0 X0 0 1 0 1 Z1 Y0 XI 0 1 1 0 Z1 Y1 X0 0 1 1 1 Z1 Y1 XI 1 XXX No x=any value And the 'UTC 4053 digital control analog switch' also provides a functional diagram 3100 as illustrated in Figure 31. Therefore, the UTC 4053 provides digital control analog switches each having three independent switches, which permit the left light valve controller 3〇〇6 and the right light valve controller 3008 and the common light valve controller 3010 to be left under the control of the CPU 3012. A controlled voltage is selectively applied to the light valve 3002 and the right light valve 3004 to control the operation of the light valves. In an exemplary embodiment, the CPU 3012 includes a microcontroller U2 for generating digital control analog switches ui, U6 and common shutter control for controlling the left shutter controller 3006 and the right shutter controller 3008. The digits of the device 3010 control the output signals A, B, C, D, E, F, and G of the analog switch U4. The output control signals a, b, C, D, E, F, and G of the microcontroller U2 provide the following input control signals A, B, c, and INH to the digital control analogy. 147659.doc -43· 201118423 Off Ul, U6 And each of U4:

U2-輸出控制信號 U1-輸入控制信號 U6-輸入控制信號 U4-輸入控制信號 A Α,Β B Α,Β C C ΙΝΗ D A E F C G B 在一例示性實施例中,將U1之輸入控制信號INH接地, 且將U6之輸入控制信號C及INH接地。 在一例示性實施例中,數位控制類比開關U1、U6及U4 之開關I/O信號X0、XI、γο、Y1、Z0及Z1具備以下輸 入: m-開關I/O 信號 U1之輸入 V6-開關I/O信號 U6之輸入 U4-開關I/O信號 U4之輸入 X0 U4之X XO Ul之z U4之Y XO U4之Z XI V-bat XI V-bat XI 電荷泵3016 之輸出 Y0 V-bat Y0 V-bat Y0 U4之Z Y1 U4之X Y1 Ul之z U4之Y Y1 電荷泵3016 之輸出 70 GND 70 GND zo U2之E Z1 U4之X Z1 GND Z1 電壓供應器 3018之輸出 在一例示性實施例中,CPU 3012之微控制U2為可自 Microchip購得的可程式化微控制器,型號為PIC16F636。 147659.doc • 44 - 201118423 在一例示性實施例中,信號感測器3014包括用於感測信 號傳輸器110對信號(包括同步信號及/或組態資料)之傳輪 的一光電二極體D3。在一例示性實施例中,光電二極體 D3為可自Osram購得之型號為BP104FS的光電二極體。在 一例示性實施例中’信號感測器3〇 14進一步包括運算放大 器U5-1、U5-2及U3,及相關信號調節組件:電阻器r2、 R3、R5、R7、R8、R9、Rl〇、Rll、R12及 R13、電容器 Cl、C7及C9和肖特基二極體D1及D5,該等組件可(例如) 藉由透過控制增益而防止對感測到的信號之削波(Clipping) 來調節信號。 在一例示性實施例中,電荷泵3016使用一電荷泵將電池 120之輸出電壓之量值自3V放大至-12V。在一例示性實施 例中,電荷泵3016包括一 MOSFET Q1、一肖特基二極體 D6、一電感器L1及一齊納二極體〇7。在一例示性實施例 中,提供電荷泵3016之輸出信號以作為共同光閥控制器 3010之數位控制類比開關U4之開關I/O信號XI及γι的輸入 信號’及左光閥控制器3006、右光閥控制器3008及共同光 閥控制器3〇10之數位控制類比開關Ul、U6及U4的輸入電 壓 VEE。 在一例示性實施例中,電壓供應器3018包括一電晶體 Q 2、一電谷益C 5及電阻益R1及R16。在一例示性實施例 中,電壓供應器3018提供IV信號以作為共同光閥控制器 3010之數位控制類比開關U4之開關l/ο信號Z1的輸入信 號。在一例示性實施例中’電壓供應器3〇 18提供一不接地 147659.doc -45- 201118423 (ground lift) ° 如圖32中所說明,在一例示性實施例中,在三維眼鏡 3000之操作期間,在CPU 3012之控制信號A、B、C、D、 E、F及G的控制下,數位控制類比開關ui、U6及U4可在 左光閥3002及右光閥3004中之一者或兩者上提供各種電 壓。詳言之’在〇卩1;3012之控制信號入、3、(:、〇、£、? 及G的控制下’數位控制類比開關υ〗、U6&U4可提供:〇 左光閥3002及右光閥30〇4中之一者或兩者上的正或負15伏 特;2)左光閥及右光閥中之一者或兩者上的正或負之伏 特;3)左光閥及右光閥中之一者或兩者上的正或負3伏 特;及4)在左光閥及右光閥中之一者或兩者上提供〇伏特 (亦即’中性狀態)。 在一例不性實施例中,如圖32中所說明,藉由分別控制 數位控制類比開關m及!;6中之產生施加在左光閥及右光 闊上的輸出信號乂及¥之開關之操作,控制信號八控制左光 閥3002之操作且控制信號B控制右光閥3〇〇4之操作。在一 例示性實施例中,將數位控制類比開關m&U6t之每一 者的控制輸入A及B連接在一起,使得兩對輸入信號之間 的刀換同時發生,且將選定輸入轉送至左光間则2及右光 閥3004之端子。在—例示性實施例中,來自⑽則之控 制信號A控制數位控制類比開關⑴中的前兩個開關,且來 自該CPU之控制信號B控制數位控制類比開關训中的前兩 個開關。 在例π !·生貫施例中,如圖32中所說明左光間·2及 147659.doc -46- 201118423 右光閥3004中之每一者的端子中之一者始終連接至3 v。 因此,在一例示性實施例中,在CPU 3〇12之控制信號A、 B、C、D、E、F及G的控制下,操作數位控制類比開關 Ul、U6及U4以將-12 V、3 V、1 V或〇 V送至左光閥3〇〇2 及右光閥3004之其他端子。結果,在一例示性實施例中’ 在CPU 3012之控制信號a、B、c、D、E、F&G的控制 下’操作數位控制類比開關Ul、U6及U4以在左光閥3002 及右光閥3004之端子上產生15 v、〇 v、2 V或3 V之電位 差。 在一例示性實施例中,不使用數位控制類比開關U6之第 三開關,且將該第三開關之所有端子接地。在一例示性實 施例中’使用數位控制類比開關U]Lt第三開關以便省電。 詳言之,在一例示性實施例中,如圖32中所說明,控制 k號C控制數位控制類比開關υι中之產生輸出信號z的開 關之操作。結果’當控制信號C為一數位高值時,數位控 制類比開關U4之輸入信號inh亦為一數位高值,藉此使數 位控制類比開關U4之所有輸出通道關閉。結果,當控制信 號c為一數位高值時’左光閥3002及右光閥3〇〇4短路,藉 此准許一半的電荷在光閥之間轉移,藉此省電且延長電池 12〇之壽命。 在一例示性實施例中’藉由使用控制信號C使左光閥 3002及右光閥3004短路,在處在關閉狀態下的一個光閥上 所收集之大量電荷可用以恰在另一光閥轉至關閉狀態之前 使該另一光閥部分地帶電,藉此節約原本必須完全由電池 120提供的電荷之量。 147659.doc -47· 201118423 在一例示性實施例中,當由CPU 3012產生之控制信號C 為一數位尚值時,例如,當時處於關閉狀態下且其上具有 15 V電位差的左光閥3〇〇2之帶負電的板卜12 v)被連接至當 時處於打開狀態下且仍充電至+ 1 v且其上具有2 V電位差 的右光閥3004之帶更多負電之板。在一例示性實施例中, 光閥3002及3 004兩者上之帶正電的板將被充 電至+3 V。在 一例示性實施例中,由CPU 3〇12產生之控制信號c在接近 左光閥3002之關閉狀態的結束時且恰在右光閥3〇〇4之關閉 狀態之前的一短時間段中轉至一數位高值。當由cPU 3〇12 產生之控制信號c為一數位高值時,數位控制類比開關U4 上之禁止端子INH亦為一數位高值。結果,在一例示性實 施例中,U4之所有輸出通道X、γ及Z皆處於關閉狀態下。 此允許儲存在左光閥3002及右光閥3004之板上之電荷分散 在6玄等光閥之間,使得兩個光閥上之電位差為大約丨7/2 v 或8.5 V。由於光閥3〇〇2及3〇〇4的一個端子始終連接至3 V,光閥3002及3004之負端子於是處在_5·5 V。在一例示 性實施例中,由CpU 3012產生之控制信號C接著變為一數 位低值’且藉此將光閥3〇〇2及3〇〇4之負端子彼此斷開。接 著’在—例示性實施例中,右光閥3004之關閉狀態開始, 且藉由操作數位控制類比開關U4,電池120進一步將右光 閥之負端子充電至-12 V *結果,在一例示性實驗實施例 中’在二維眼鏡3000之正常執行操作模式(如下文參考方 法3300所描述)期間達成大約40%之電力節約。 在一例示性實施例中,提供由CPU 3012產生之控制信號 147659.doc • 48· 201118423 C以作為一在由CPU產生之控制信號八或3自高轉變至低或 自低轉變至高時自高轉變至低的短持續時間脈衝,以藉此 開始下一個左光閥打開/右光閥關閉或右光閥打開/左光閥 關閉。 現參看圖33及圖34,在一例示性實施例中,在三維眼鏡 3000之操作期間,该二維眼鏡執行一正常執行操作模式 3300,在該模式中,將由CPU 3〇12產生之控制信號a、 B C、D、E、F及G用以控制左光閥控制器3〇〇6及右光閥 控制器3008以及中央光閥控制器3〇1〇之操作’從而又依據 信號感測器3014所偵測到的同步信號之類型來控制左光閥 3002及右光閥3004之操作。 詳5之,在3302中,若CPU 3012判定信號感測器3〇14已 接收一同步信號,則在3304中,使用由CPU 3012產生之控 制信號A' B、C' D、E、1?及(}控制左光閥控制器3〇〇6及 右光閥控制器3008以及中央光閥控制器3〇1〇之操作,以在 左光閥3002與右光閥3004之間轉移電荷,如上文參看圖32 所描述。 在一例示性實施例中,在33〇4中,在大約〇 2毫秒中將 由CPU 3 012產生之控制彳§號c設定為一高數位值,以藉此 使左光閥3002及右光閥3〇〇4之端子短路,且因此在左光閥 與右光閥之間轉移電荷。在一例示性實施例中,在33〇4 中,在大約0.2毫秒中將由CPU 3〇12產生之控制信號◦設定 為一咼數位值,以藉此使左光閥3〇〇2及右光閥3〇〇4之帶更 多負電之端子短路,且因此在左光閥與右光閥之間轉移電 I47659.doc -49- 201118423 荷。因此,提供控制信號c以作為一短持續時間脈衝,其 在控制信號A或B自高轉變至低或自低轉變至高時或在此 之前自高轉變至低。結果’在交替於打開左光閥/關閉右 光閥與關閉左光閥/打開右光閥之間的循環期間,在三維 眼鏡3000之操作期間提供電力節約。 在3306中,CPU 3012接著判定所接收的同步信號之類 型。在一例示性實施例中,一包括2個脈衝之同步信號指 不左光閥3002應打開且右光閥3004應關閉,而一包括3個 脈衝之同步信號指示該右光閥應打開且該左光閥應關閉。 在一例示性實施例中,可使用其他不同數目及格式之同步 信號來控制左光閥30〇2及右光閥3004之交替打開及關閉。U2-output control signal U1-input control signal U6-input control signal U4-input control signal A Α, Β B Α, Β CC ΙΝΗ DAEFCGB In an exemplary embodiment, U1's input control signal INH is grounded and will U6's input control signal C and INH are grounded. In an exemplary embodiment, the digital I/O signals X0, XI, γο, Y1, Z0, and Z1 of the analog control analog switches U1, U6, and U4 have the following inputs: m-switch I/O signal U1 input V6- Switch I/O signal U6 input U4-switch I/O signal U4 input X0 U4 X XO Ul z U4 Y XO U4 Z XI V-bat XI V-bat XI Charge pump 3016 output Y0 V- Bat Y0 V-bat Y0 U4 Z Y1 U4 X Y1 Ul z U4 Y Y1 Charge pump 3016 output 70 GND 70 GND zo U2 E Z1 U4 X Z1 GND Z1 The output of the voltage supply 3018 is shown as an example In the embodiment, the micro-control U2 of the CPU 3012 is a programmable microcontroller available from Microchip, model number PIC16F636. 147659.doc • 44 - 201118423 In an exemplary embodiment, signal sensor 3014 includes a photodiode for sensing the transmission of signal (including synchronization signals and/or configuration data) by signal transmitter 110 Body D3. In an exemplary embodiment, the photodiode D3 is a photodiode of the type BP104FS available from Osram. In an exemplary embodiment, the 'signal sensor 3〇14 further includes operational amplifiers U5-1, U5-2, and U3, and associated signal conditioning components: resistors r2, R3, R5, R7, R8, R9, Rl 〇, R11, R12 and R13, capacitors C1, C7 and C9 and Schottky diodes D1 and D5, which can prevent clipping of the sensed signal, for example by controlling the gain (Clipping) ) to adjust the signal. In an exemplary embodiment, charge pump 3016 uses a charge pump to amplify the magnitude of the output voltage of battery 120 from 3V to -12V. In an exemplary embodiment, charge pump 3016 includes a MOSFET Q1, a Schottky diode D6, an inductor L1, and a Zener diode 〇7. In an exemplary embodiment, the output signal of the charge pump 3016 is provided as the input signal ' and the left light valve controller 3006 of the switch I/O signals XI and γ of the digital control analog switch U4 of the common light valve controller 3010, The digits of the right light valve controller 3008 and the common light valve controller 3〇10 control the input voltages VEE of the analog switches U1, U6 and U4. In an exemplary embodiment, voltage supply 3018 includes a transistor Q2, an electric valley C5, and resistors R1 and R16. In an exemplary embodiment, voltage supply 3018 provides an IV signal as an input signal to switch 1/o signal Z1 of digital switch analog switch U4 of digital shutter controller 3010. In an exemplary embodiment, 'voltage supply 3 〇 18 provides an ungrounded 147659.doc -45 - 201118423 (ground lift) ° as illustrated in FIG. 32, in an exemplary embodiment, in 3D glasses 3000 During operation, under the control of the control signals A, B, C, D, E, F and G of the CPU 3012, the digital control analog switches ui, U6 and U4 may be in one of the left light valve 3002 and the right light valve 3004. Or various voltages are provided on both. In detail, 'in the control signal input of 〇卩1; 3012, 3, (:, 〇, £, ? and G control 'digital control analog switch υ〗, U6 & U4 can provide: 〇 left light valve 3002 and Positive or negative 15 volts on one or both of the right light valves 30〇4; 2) positive or negative volts on one or both of the left and right light valves; 3) left light valve And positive or negative 3 volts on one or both of the right shutters; and 4) providing volts (ie, 'neutral state') on one or both of the left and right shutters. In an exemplary embodiment, as illustrated in Figure 32, the digital control analog switch m and ! In the operation of 6; the operation of the output signal 乂 and the switch applied to the left light valve and the right illuminator, the control signal VIII controls the operation of the left light valve 3002 and the control signal B controls the operation of the right light valve 3 〇〇 4 . In an exemplary embodiment, the control inputs A and B of each of the digital control analog switches m&U6t are coupled such that the tool change between the two pairs of input signals occurs simultaneously and the selected input is forwarded to the left The light between the 2 and the right light valve 3004 terminals. In the exemplary embodiment, the control signal A from (10) controls the first two switches of the analog control analog switch (1), and the control signal B from the CPU controls the first two switches of the digital control analog switch. In the example π !·生贯例, one of the terminals of each of the right light valve 3004 is always connected to 3 v as illustrated in Fig. 32, left light interval 2 and 147659.doc -46- 201118423 . Therefore, in an exemplary embodiment, under the control of the control signals A, B, C, D, E, F, and G of the CPU 3〇12, the digital control analog switches U1, U6, and U4 are operated to turn -12 V 3 V, 1 V or 〇V is sent to the left light valve 3〇〇2 and the other terminals of the right light valve 3004. As a result, in an exemplary embodiment 'under the control of the control signals a, B, c, D, E, F & G of the CPU 3012', the digital control analog switches U1, U6 and U4 are operated to the left light valve 3002 and A potential difference of 15 v, 〇v, 2 V or 3 V is generated at the terminals of the right light valve 3004. In an exemplary embodiment, the third switch of analog control switch U6 is not used and the terminals of the third switch are grounded. In an exemplary embodiment, the digital switch is used to control the analog switch U]Lt to save power. In particular, in an exemplary embodiment, as illustrated in Figure 32, control k-number C controls the operation of the digital control analog switch to generate a switch for output signal z. As a result, when the control signal C is a high value, the input signal inh of the digital control analog switch U4 is also a high value, thereby causing all the output channels of the digital control analog switch U4 to be turned off. As a result, when the control signal c is a digital high value, the left light valve 3002 and the right light valve 3〇〇4 are short-circuited, thereby permitting half of the charge to be transferred between the light valves, thereby saving power and extending the battery 12 life. In an exemplary embodiment, 'the left light valve 3002 and the right light valve 3004 are shorted by using the control signal C, and a large amount of charge collected on one of the light valves in the closed state can be used to just another light valve. The other light valve portion is electrically charged before being turned to the off state, thereby saving the amount of charge that would otherwise have to be completely provided by the battery 120. 147659.doc -47· 201118423 In an exemplary embodiment, when the control signal C generated by the CPU 3012 is a digital value, for example, the left light valve 3 that is in the off state at the time and has a potential difference of 15 V thereon The negatively charged plate 12 of the 〇〇2 is connected to a more negatively charged plate of the right light valve 3004 which is then open and still charged to +1 v and has a potential difference of 2 V thereon. In an exemplary embodiment, the positively charged plates on both of the light valves 3002 and 3 004 will be charged to +3 volts. In an exemplary embodiment, the control signal c generated by the CPU 3〇12 is in a short period of time near the end of the closed state of the left light valve 3002 and just before the closed state of the right light valve 3〇〇4. Go to a high number. When the control signal c generated by the cPU 3〇12 is a digital high value, the digital control analog switch U4 is also a digital high value. As a result, in an exemplary embodiment, all of the output channels X, γ, and Z of U4 are in a closed state. This allows the charge stored on the plates of the left light valve 3002 and the right light valve 3004 to be dispersed between the light pipes of the six-way light such that the potential difference between the two light valves is about 丨7/2 v or 8.5 V. Since one terminal of the light valves 3〇〇2 and 3〇〇4 is always connected to 3 V, the negative terminals of the light valves 3002 and 3004 are then at _5·5 V. In an exemplary embodiment, the control signal C generated by the CpU 3012 then becomes a digital low value' and thereby the negative terminals of the light valves 3〇〇2 and 3〇〇4 are disconnected from each other. Next, in the exemplary embodiment, the closed state of the right light valve 3004 is started, and by operating the digital control analog switch U4, the battery 120 further charges the negative terminal of the right light valve to -12 V*, as shown in an example. In the experimental example, a power savings of approximately 40% was achieved during the normal execution mode of operation of the two-dimensional glasses 3000 (as described below with reference to method 3300). In an exemplary embodiment, the control signal 147659.doc • 48· 201118423 C generated by the CPU 3012 is provided as a self-high when the control signal generated by the CPU is eight or three transitions from high to low or low to high. Transition to a low short duration pulse to initiate the next left light valve open/right light valve closed or right light valve open/left light valve closed. Referring now to Figures 33 and 34, in an exemplary embodiment, during operation of the 3D glasses 3000, the 2D glasses perform a normal execution mode of operation 3300 in which the control signals generated by the CPU 3〇12 are to be generated. a, BC, D, E, F and G are used to control the operation of the left light valve controller 3〇〇6 and the right light valve controller 3008 and the central light valve controller 3〇1〇 and thus according to the signal sensor The type of synchronization signal detected by 3014 controls the operation of left light valve 3002 and right light valve 3004. In detail, in 3302, if the CPU 3012 determines that the signal sensor 3〇14 has received a synchronization signal, in 3304, the control signals A'B, C'D, E, 1 generated by the CPU 3012 are used. And (} controlling the operation of the left light valve controller 3〇〇6 and the right light valve controller 3008 and the central light valve controller 3〇1〇 to transfer the charge between the left light valve 3002 and the right light valve 3004, as above The text is described with reference to Fig. 32. In an exemplary embodiment, in 33〇4, the control 彳§ number c generated by the CPU 3 012 is set to a high digit value in about 〇2 milliseconds, thereby thereby making the left The terminals of the light valve 3002 and the right light valve 3〇〇4 are short-circuited, and thus the charge is transferred between the left light valve and the right light valve. In an exemplary embodiment, in 33〇4, in about 0.2 milliseconds, The control signal generated by the CPU 3〇12 is set to a digital value to thereby short the terminals of the left light valve 3〇〇2 and the right light valve 3〇〇4 with more negative power, and thus the left light valve Transferring electricity to the right light valve I47659.doc -49- 201118423. Therefore, the control signal c is provided as a short duration pulse, which is under control Signal A or B transitions from high to low or from low to high or before transitioning from high to low. The result 'in alternating with opening the left light valve / closing the right light valve and closing the left light valve / opening the right light valve During the inter-cycle, power savings are provided during operation of the 3D glasses 3000. In 3306, the CPU 3012 then determines the type of synchronization signal received. In an exemplary embodiment, a synchronization signal comprising 2 pulses indicates The left shutter 3002 should be open and the right shutter 3004 should be closed, and a sync signal including 3 pulses indicates that the right shutter should be open and the left shutter should be closed. In an exemplary embodiment, other differences may be used The number and format synchronization signals control the alternate opening and closing of the left shutter 30〇2 and the right shutter 3004.

在3306中’若CPU 3012判定所接收的同步信號指示左光 閥3002應打開且右光閥3004應關閉’則在3308中,該CPU 將控制信號A、B、C、D、E、F及G傳輸至左光閥控制器 3006及右光閥控制器3〇〇8以及共同光閥控制器3〇1〇,以在 右光閥3004上施加一高電壓且將無電壓隨後接著一小止擋 電壓把加至左光閥3〇〇2。在一例示性實施例中,在33〇8中 施加在右光閥3004上的高電壓之量值為15伏特。在一例示 性實施例中,在3308中施加至左光閥3〇〇2的止擋電壓之量 值為2伏特。在一例示性實施例中,在33〇8中,藉由將控 制乜唬D之操作狀態控制為低及將控制信號f之操作狀態 (其可為低或高)控制為高,將該止擋電壓施加至左光閥 3002。在一例示性實施例中,33〇8中之該止擋電壓至左光 閥3002之施加被延遲—預料間段,以允許該左光間之液 I47659.doc -50- 201118423 晶内之分子較快速地旋轉。在該預定時間段期滿之後,隨 後施加止檔電壓將防止左光閥3 002中之液晶内之分子在左 光閥之打開期間旋轉過頭。在一例示性實施例中,在3 3 〇 8 中該止擋電壓至左光閥3002之施加被延遲約1毫秒。 或者,在3306中,若cpu 3012判定所接收的同步信號指 示左光閥3002應關閉且右光閥3004應打開,則在33 1〇中, 該CPU將控制信號A、B、C、D、E、F及G傳輸至左光閥 控制器3006及右光閥控制器3008以及共同光閥控制器 3010 ’以在左光閥30〇2上施加一高電壓且將無電壓隨後接 著一小止擋電壓施加至右光閥3004。在一例示性實施例 中,在33 10中施加在左光閥3002上的高電壓之量值為15伏 特。在一例示性實施例中,在33 10中施加至右光閥3〇〇4的 止擋電壓之量值為2伏特。在一例示性實施例中,在3 3 1 〇 中’藉由將控制信號F控制為高且將控制信號G控制為低, 將該止擋電壓施加至右光閥3 〇〇4。在一例示性實施例中, 在33 10中該止擋電壓至右光閥3〇〇4之施加被延遲一預定時 間段’以允許該右光閥之液晶内之分子較快速地旋轉。在 該預定時間段期滿之後’隨後施加止擋電壓將防止右光閥 3004中之液晶内之分子在右光閥之打開期間旋轉過頭。在 一例示性實施例中,在33 10中該止擋電壓至右光閥3〇〇4之 施加被延遲約1毫秒。 在一例示性實施例中’在方法3300期間,在步驟3308及 3310之後續重複中,施加至左光閥3002及右光閥3004之電 壓交替地為正及負,以防止對左光閥及右光閥之液晶單元 147659.doc •51· 201118423 之損害。 因此,方法3300為三維眼鏡3000提供一正常或執行操作 模式。 現參看圖35及圊36,在一例示性實施例中,在三維眼鏡 3000之操作期間,該三維眼鏡實施一暖機操作方法35〇〇, 在該方法中,將由CPU 3012產生之控制信號A、B、C、 D、E、F及G用以控制左光閥控制器3〇〇6及右光閥控制器 3008以及中央光閥控制器3〇 1 〇之操作,從而又控制左光閥 3002及右光閥3004之操作。 在3502中,該三維眼鏡之CPU 3〇12檢查該三維眼鏡之通 電。在一例示性實施例中,三維眼鏡3〇〇〇可藉由一使用者 啟動一通電開關、藉由一自動唤醒序列及/或藉由信號感 測器3014感測一有效同步信號而通電。在三維眼鏡3〇〇〇通 電的情況下,該三維眼鏡之光閥3002及3004可能(例如)需 要一暖機序列。在一時間段中不具有電力的光閥3〇〇2及 30 〇4之液晶單元可能處於一不明確狀態下。 在3502中,若三維眼鏡3000之CPU 3012偵測到該三維眼 鏡之通電,則在3504中,該CPU分別將交變電壓信號施加 至左光閥3 0 0 2及右光閥3 0 0 4。在一例示性實施例中,施加 至左光閥3002及右光閥3004之電壓在正峰值與負峰值之間 交替以避免光閥之液晶單元中的離子化問題。在一例示性 實施例中,施加至左光閥3002及右光閥3004之電壓信號可 彼此至少部分地不同相。在一例示性實施例中,施加至左 光閥3002及右光閥3004之電壓信號中之一者或兩者可在一 147659.doc -52- 201118423 零電壓與一峰值電壓之間交替。在一例示性實施例中,可 將其他形式之電壓信號施加至左光閥3002及右光閥3004, 以使得光閥之液晶單元處於一明確操作狀態。在一例示性 實施例中,施加電壓信號至左光閥3002及右光閥3004使該 等光閥同時或在不同時間打開及關閉。 在施加電壓信號至左光閥3002及右光閥3004期間,在 3506中’ CPU 3012檢查一暖機逾時。在3506中,若CPU 3012偵測到一暖機逾時’則在3508中,該cpu將停止將電 壓信號施加至左光閥3002及右光閥3004。 在一例示性實施例中’在3504及3506中,CPU 30 12在一 足以致動β玄專光閥之該等液晶单元之時間段中將電壓信號 施加至左光閥3002及右光閥3004。在一例示性實施例中, CPU 3012在兩秒之時段中將電壓信號施加至左光閥3〇〇2及 右光閥3004。在一例示性實施例中,施加至左光閥3〇〇2及 右光閥3004之電壓信號之最大量值可為丨5伏特。在一例示 性實施例中,3506中之逾時時段可為兩秒。在一例示性實 施例中,施加至左光閥3002及右光閥3〇〇4之電壓信號之最 大量值可大於或小於15伏特’且逾時時段可更長或更短。 在一例示性實施例中,在方法35〇〇期間, 不同於可用於觀看電影之速率的速率打開及關閉二 3002及右光閥3004。在一例示性實施例中,在35〇4中,施 加至左光間3 002及右光間讓之電壓信號在暖機時間段: 間不交替且被怪定施加’且因此該等光閥之該等液晶單元 在整個暖料段巾可則林透明。在1減實施例中, I47659.doc •53· 201118423 暖機方法35GG可在同步信號存在或不存在的情況下發生。 因此,方法3500為三維眼鏡3〇〇〇提供一暖機操作模式。在 一例示性實施例中,在實施暖機方法35〇〇之後,三維眼鏡 3000處於一正常操作模式、執行操作模式或透明操作模= 下’且接著可實施方法3300。 現參看圖37及圖38 ’在一例示性實施例中,在三維眼鏡 3〇〇〇之操作期間,該三維眼鏡實施一操作方法37〇〇,在該 方法中,將由CPU 3012產生之控制信號A、B、^、D、 F及G用以控制左光閥控制器go%及右光閥控制器Nog 以及共同光閥控制器3010之操作,從而又依據由信號感測 器3014接收的同步信號來控制左光閥3〇〇2及右光閥3〇〇4之 操作。 在3702中,CPU 3012檢查以查看信號感測器3〇14所偵測 到的同步信號是有效還是無效。在3702中,若CPU 3012判 定同步信號無效,則在3704中,該CPU將電壓信號施加至 二維眼鏡3000之左光閥3002及右光閥3004。在一例示性實 施例中,在3704中施加至左光閥3002及右光閥3〇〇4之電壓 在正峰值與負峰值之間交替以避免光閥之液晶單元中的離 子化問題。在一例示性實施例中,在37〇4中施加至左光閥 3002及右光閥3004之電壓在正峰值與負峰值之間交替以提 供頻率為6 0 Η z的方波信號。在一例示性實施例中,該 方波信號在+3 V與-3 V之間交替。在一例示性實施例中, 在3 704中施加至左光閥3002及右光閥3004之電壓信號中之 一者或兩者可在一零電壓與一峰值電壓之間交替。在一例 147659.doc •54· 201118423 示性實施例中,在3704中,可將其他形式(包括其他頻率) 之電壓信號施加至左光閥3〇〇2及右光閥3〇〇4,以使得光閥 之液晶單7G保持打開,因此三維眼鏡3〇〇〇之使用者可透過 光閥正常地觀看。在一例示性實施例中,在3704中施加電 壓信號至左光閥3002及右光閥3004使該等光閥打開。 在3704中施加電壓信號至左光閥3〇〇2及右光閥3〇〇4期 間,在3706中,CPU 3012檢查一清除逾時。在37〇6中,若 CPU 3012偵測到一清除逾時,則在37〇8中,cpu儿^將 停止施加電壓信號至光閥3〇〇2及3〇〇4_,此可接著使三維眼 鏡3000處於一關閉操作模式。在一例示性實施例中,該清 除逾時之持續時間可長達(例如)約4小時。 因此,在一例示性實施例中,若三維眼鏡3〇〇〇未偵測到 一有效同步信號,則該三維眼鏡可轉至一透明操作模式且 實施方法3700。在透明操作模式下,在一例示性實施例 中,三維眼鏡3000之光閥3002及3〇〇4均保持打開,使得觀 看者可透過三維眼鏡之光閥正常地觀看。在一例示性實施 例中,施加一正負交替的恆定電壓以將三維眼鏡3〇〇〇之光 閥3002及3004之液晶單元維持在一透明狀態。該恆定電壓 可(例如)為2伏特,但該恆定電壓可為適合維持適度透明光 閥之任何其他電壓。在-例示性實施例中,三維眼鏡3〇〇〇 之光閥3002及3004可保持透明,直至該三維眼鏡能夠驗證 一加密信號。在-例示性實施例中,可以允許三維眼鏡之 使用者正常地觀看之-速率交替地打開及關閉三維眼鏡 30〇〇之光闊 3002及 3004。 147659.doc •55· 201118423 因此,方法3700提供一種清除三維眼鏡3〇〇〇之操作的方 法,且藉此提供一透明操作模式。 現參看圖39及圖41,在叫㈣性實施射,在三維眼鏡 3〇〇〇之操作期間,該三維眼鏡實施一操作方法39〇〇,在該 方法中,將由CPU 3012產生之控制信號A、B、c、D、 E、F及G用以在光閥3〇〇2與3〇〇4之間轉移電荷◎在39们 t,CPU 3G12判定-有效同步㈣是否已由信號感測器 3(H4偵測到。gCPU3〇12判定一有效同步信號已由信號感 測器3014偵測到,則在39〇4甲,該cpu產生控制信號c ’ 其形式為一持續(在一例示性實施例中)約2〇〇叩之短持續 時間脈衝》在一例示性實施例中,在方法39〇〇期間,電荷 在光閥3002與3004之間的轉移在控制信號c之短時脈衝期 間發生,實質上如上文參看圖33及圖34所描述。 在3906中,CPU 3012判定控制信號C是否已自高轉變至 低。若CPU 3012判定控制信號c已自高轉變至低,則在 3908中,CPU改變控制信號八或6之狀態,然後三維眼鏡 3000可繼續其正常操作,(例如)如上文參看圖33及圖“所 描述及說明。 現參看圖30a、圖40及圖41,在一例示性實施例中,在 二維眼鏡3000之操作期間,該三維眼鏡實施一操作方法 4000,在該方法中,將由CPu 3012產生之控制信號RC4及 RC5用以在三維眼鏡3000之正常或暖機操作模式期間操作 電荷泵3016 ’如上文參看圖32、圖33、圖34、圖35及圖36 所描述及說明。在4002中,CPU 3012判定一有效同步信號 147659.doc -56- 201118423 疋否已由信號感測器3014偵測到。若CPU 3012判定一有效 同步信號已由信號感測器3〇14偵測到,則在4〇〇4中,該 CPU產生呈一系列短持續時間脈衝之形式的控制信號 RC4。 在一例示性實施例中’控制信號RC4之脈衝控制電晶體 Q1之操作,以藉此將電荷轉移至電容器C13,直至該電容 器上之電位達到一預定位準。特別是,當控制信號rc4切 換至一低值時’電晶體Q1將電感器L1連接至電池120。結 果,電感器L1儲存來自電池12〇之能量。接著,當控制信 號RC4切換至一高值時’儲存於電感器L1中之能量被轉移 至電容器C13。因此,控制信號RC4之脈衝不斷地將電荷 轉移至電容器C13,直至電容器Cl3上之電位達到一預定 位準。在一例示性實施例中,控制信號RC4繼續,直至電 容器C13上之電位達到_12 v。 在一例示性實施例中,在4〇〇6中,cpU3〇12產生一控制 信號RC5。結果,提供一輸入信號RA3,其具有一隨電容 器C13上之電位增加而減小之量值。詳言之,當電容器 C13上之電位接近該預定值時,齊納二極體〇7開始導電, 藉此減少輸入控制信號RA3之量值。在4〇〇8中,cpu MU 判定輸入控制信號RA3之量值是否小於一預定值。若cpu 3012判定輸入控制信號RA3之量值小於該預定值,則在 4010中,該CPU停止產生控制信號RC4及RC5。結果,電 荷向電容器C13之轉移停止。 在一例示性實施例十,在三維眼鏡3〇〇〇之操作期間,方 I47659.doc •57· 201118423 法4〇00可在方法3900之後實施。 現參看圖30a、圖42及圖43,在一例示性實施例中,在 三維眼鏡3000之操作期間,該三維眼鏡實施一操作方法 4200,在該方法中,將由CPu 3012產生之控制信號a、 B、C、D、E ' F、G、RA4、RC4及RC5係用以判定當三維 眼鏡3000已切換至一關閉狀況時電池1 2〇之操作狀態。在 4202中,CPU 30 12判定三維眼鏡3000是關閉還是打開。若 CPU 3012判定三維眼鏡3000關閉,則在42〇4中,該cpu判 疋疋否已經過一預定逾時時段。在一例示性實施例中,該 逾時時段長度為2秒。 若CPU 3 012判定已經過該預定逾時時段’則在42〇6中, s亥CPU判定信號感測器3〇 14在一預定先前時間段中所偵測 到的同步脈衝之數目是否超過一預定值。在一例示性實施 例中,在4206中,預定先前時間段為自電池之最近替換以 來已經過的時間段。 若CPU 30 12判定信號感測器3〇 14在一預定先前時間段中 偵測到的同步脈衝之數目超過一預定值,則在42〇8中,該 CPU產生作為一短持續時間脈衝的控制信號E,在 中,β亥cpu將作為一短持續時間脈衝的控制信號RA4提供 給信號感測器3014 ’且在4212中,該CPU分別雙態觸發控 制L號A及B之操作狀態。在一例示性實施例中,若信號 感測器3014在一預定先前時間段中所偵測到的同步脈衝之 數目超過一預定值,則此可指示電池丨2〇中之剩餘電力為 低。 147659.doc -58- 201118423 或者’若CPU 3012判定信號感測器3〇14在一預定先前時 間奴中偵測到的同步脈衝之數目未超過一預定值,則在 4210中’該cpu將作為—短持續時間脈衝的控制信號汉八斗 提供給k號感測器3014,且在4212中,該cpu分別雙態觸 發控制信號A及B之操作狀態。在一例示性實施例中,若 k唬感測器3014在一預定先前時間段中偵測到的同步脈衝 之數目未超過一預定值,則此可指示電池12〇中之剩餘電 力不為低。 在一例不性實施例中,在42〇8及4212中,控制信號A及 B雙態觸發與控制信號E之短持續時間脈衝之組合使三維眼 鏡3 000之光閥3002及3004關閉(在控制信號E之短持續時間 脈衝期間除外)》結果,在一例示性實施例中,藉由在一 短時間#又中使二維眼鏡之光闊急速打開(fiash 〇pen),光閥 3002及3004將電池120中剩餘之電力為低的一視覺指示提 供給三維眼鏡3000之使用者。在一例示性實施例中,在 4210中將作為一短持續時間脈衝的控制信號RA4提供給信 唬感測器3014准許該信號感測器在所提供的脈衝之持續時 間期間搜尋及偵測同步信號。 在一例示性實施例中,控制信號八及B之雙態觸發(並不 亦提供控制信號E之短持續時間脈衝)使三維眼鏡3 〇〇〇之光 閥3002及3004保持關閉。結果,在一例示性實施例中,藉 由不在一短時間段中使三維眼鏡之光閥急速打開,光閥 3002及3004將電池120中剩餘之電力不為低的一視覺指示 提供給三維眼鏡3000之使用者。 147659.doc -59- 201118423 在缺少一時序時脈之實施例中,可根據同步脈衝來量測 時間。CPU 3012可將電池120中之剩餘時間判定為電池可 繼續操作經過的同步脈衝之數目之一因數且接著藉由使光 閥3 002及3 004急速打開及關閉而將一視覺指示提供給三維 眼鏡3000之使用者。 現參看圖44至圖55,在一例示性實施例中,三維眼鏡 104、1800及3 000中之一或多者包括一框架前部4402、一 鼻樑架4404、右鏡腿4406及左鏡腿4408。在一例示性實施 例中,框架前部4402容納三維眼鏡104、1800及3000中之 一或多者之控制電路及電源供應器(如上所述),且進一步 界定用於固持上述右ISS光閥及左ISS光閥之右透鏡開口 44 10及左透鏡開口 4412。在一些實施例中,框架前部4402 抱合以形成一右翼4402a及一左翼4402b。在一些實施例 中,三維眼鏡1 04、1800及3000之控制電路的至少部分容 納於翼4402a及4402b之任一者或兩者中。 在一例示性實施例中,右鏡腿4406及左鏡腿4408自框架 前部4402延伸且包括隆脊4406a及4408a,且各自具有一蛇 形形狀,鏡腿之遠端與鏡腿之至框架前部之各別連接處相 比靠得較近。以此方式,當一使用者佩戴三維眼鏡104、 1800及3000時,鏡腿4406及4408之末端緊靠使用者之頭部 且固定就位。在一些實施例中,鏡腿4406及4408之彈簧率 由雙重彎曲來增強,而隆脊4406a及4408a的間距及深度控 制該彈簧率。如圖55所示,一些實施例不使用雙彎曲形 狀,而是使用一簡單的曲線型鏡腿4406及4408。 I47659.doc •60- 201118423 現參看圖48至圖55,在一例示性實施例中,三維眼鏡 104、1800及3 000中之一或多者之控制電路容納於框架前 部(其包括右翼4402a)中’且電池容納於右翼4402a中。此 外,在一例示性實施例中,經由一在右翼4402&之内側上 的開口提供對三維眼鏡3000之電池12〇之取用,該開口由 一蓋4414封閉,該蓋4414包括用於緊密配合及密封式嚙合 右翼4402a之一 Ο型環密封件4416。 參看圖49至圖55,在一些實施例中,電池位於一由蓋 4414及蓋内部4415形成之電池蓋總成中。電池蓋44丨4可藉 由(例如)超音波熔接而附接至電池蓋内部4415。觸點4417 可自蓋内部4415伸出以將電自電池12〇傳導至(例如)位於右 翼4402a内之觸點。 蓋内部441 5在該蓋之一内部部分上可具有周向間隔開之 徑向楔緊元件(keying element)4418。蓋4414可具有定位於 S亥蓋之一外部表面上的周向間隔開之凹陷4420。 在一例示性實施例中,如圖49至圖51中所說明,可使用 一鑰匙(key)4422操控蓋4414,該鑰匙包括用於緊密配合及 喝合該蓋之凹陷4420的複數個突起4424。以此方式,可將 蓋4414相對於二維眼鏡1〇4、18〇〇及3〇〇〇之右翼44〇2&自一 關閉(或鎖定)位置旋轉至一打開(或解鎖)位置。因此,可 藉由使用鑰匙4422將蓋4414與三維眼鏡3000之右翼4402a 喝〇而相對於環境封閉三維眼鏡104、1800及3000之控制 電路及電池。參看圖55,在另一實施例中,可使用鑰匙 4426。 147659.doc •61 · 201118423 現參看圖5 6 ’ 一信號感測器5 6 0 0之一例示性實施例包括 一可操作地耦接至一解碼器5604之窄帶通濾波器56〇2。作 號感測器5600又可操作地耦接至一 CPU 5604。窄帶通渡波 器5 602可為一類比及/或數位帶通濾波器,其可具有適於 准許一同步串列資料信號通過而濾出及移除頻帶外雜訊之 通帶。 在一例示性實施例中,CPU 5604可(例如)為三維眼鏡 104、1800或 3000之 CPU 114、CPU 1810或 CPU 3012。 在一例示性實施财,㈣作期間,信號感測器56〇〇自 一信號傳輸器5606接收一信號。在一例示性實施例中,信 號傳輸器5606可(例如)為信號傳輸器110。 。 在-例示性實施例令’由信號傳輸器56〇6傳輸至信號感 測器5_之信號5700包括一或多個資料位元⑽,其各自 由一時脈脈衝5704居先。在一例示性實施例中,在信號感 測^ 5繼之操作期間,因為資料之每-位元5702由-時脈 先…信號感測器之解碼器可容易地解 石馬長貝牙斗位兀字租。^ 收及解碼來自信號傳":測器5_能夠容易地接 唬傳輸器5606之同步串列資料傳輸。盥之 非同步資料傳輸之長資料位元字組通常難以以一 提供用於接收資料傳輸之此’信號錢器测 測器测之操作中使良式系統。此外,在信號感 碼長資料位元字組串列資料傳輸確保可容易地解 現參看圖58 —種用於調節 —使用於三維眼鏡3〇〇〇之同 I47659.doc •62- 201118423 例示性實施例包括用於感測一 一同步In 3306, 'If the CPU 3012 determines that the received synchronization signal indicates that the left light valve 3002 should be open and the right light valve 3004 should be closed, then in 3308, the CPU will control signals A, B, C, D, E, F and G is transmitted to the left light valve controller 3006 and the right light valve controller 3〇〇8 and the common light valve controller 3〇1〇 to apply a high voltage on the right light valve 3004 and will have no voltage followed by a small stop The voltage is applied to the left light valve 3〇〇2. In an exemplary embodiment, the amount of high voltage applied to the right shutter 3004 in 33〇8 is 15 volts. In an exemplary embodiment, the magnitude of the stop voltage applied to the left shutter 3〇〇2 in 3308 is 2 volts. In an exemplary embodiment, in 33〇8, by controlling the operational state of control 乜唬D to be low and controlling the operational state of control signal f (which may be low or high) to be high, The voltage is applied to the left light valve 3002. In an exemplary embodiment, the application of the stop voltage in 33〇8 to the left light valve 3002 is delayed-expected to allow the liquid in the crystal between the left light I47659.doc -50-201118423 Rotate faster. Subsequent application of the stop voltage after the expiration of the predetermined period of time will prevent the molecules in the liquid crystal in the left shutter 3 002 from rotating excessively during the opening of the left shutter. In an exemplary embodiment, the application of the stop voltage to the left shutter 3002 is delayed by about 1 millisecond in 3 3 〇 8 . Alternatively, in 3306, if cpu 3012 determines that the received synchronization signal indicates that left light valve 3002 should be closed and right light valve 3004 should be open, then in 33 1〇, the CPU will control signals A, B, C, D, E, F, and G are transmitted to the left light valve controller 3006 and the right light valve controller 3008 and the common light valve controller 3010' to apply a high voltage on the left light valve 30〇2 and will have no voltage followed by a small stop The voltage is applied to the right light valve 3004. In an exemplary embodiment, the amount of high voltage applied to the left shutter 3002 in 33 10 is 15 volts. In an exemplary embodiment, the magnitude of the stop voltage applied to the right shutter 3〇〇4 in 33 10 is 2 volts. In an exemplary embodiment, the stop voltage is applied to the right shutter 3 〇〇 4 by controlling the control signal F high and controlling the control signal G low in 3 3 1 〇. In an exemplary embodiment, the application of the stop voltage to the right shutter 3〇〇4 is delayed by a predetermined period of time in 33 10 to allow the molecules in the liquid crystal of the right shutter to rotate faster. Subsequent application of the stop voltage after the expiration of the predetermined period of time will prevent the molecules in the liquid crystal in the right shutter 3004 from rotating excessively during the opening of the right shutter. In an exemplary embodiment, the application of the stop voltage to the right shutter 3〇〇4 is delayed by approximately 1 millisecond in 33 10 . In an exemplary embodiment, during the method 3300, in subsequent iterations of steps 3308 and 3310, the voltages applied to the left and right shutters 300, 300, 3004 are alternately positive and negative to prevent left light valves and Damage to the liquid crystal unit of the right light valve 147659.doc • 51· 201118423. Thus, method 3300 provides a normal or operational mode of operation for 3D glasses 3000. Referring now to Figures 35 and 36, in an exemplary embodiment, during operation of the 3D glasses 3000, the 3D glasses implement a warm-up operation method 35, in which the control signal A generated by the CPU 3012 is to be generated. , B, C, D, E, F, and G are used to control the operation of the left light valve controller 3〇〇6 and the right light valve controller 3008 and the central light valve controller 3〇1 ,, thereby controlling the left light valve Operation of 3002 and right light valve 3004. In 3502, the CPU 3〇12 of the 3D glasses checks the power of the 3D glasses. In an exemplary embodiment, the 3D glasses 3 can be powered by a user initiating a power on switch, by an automatic wake-up sequence, and/or by sensing a valid synchronization signal by the signal sensor 3014. In the case where the 3D glasses are powered, the light valves 3002 and 3004 of the 3D glasses may, for example, require a warm-up sequence. The liquid crystal cells of the light valves 3〇〇2 and 30〇4 which do not have electric power for a period of time may be in an ambiguous state. In 3502, if the CPU 3012 of the 3D glasses 3000 detects the energization of the 3D glasses, in 3504, the CPU respectively applies an alternating voltage signal to the left light valve 3 0 0 2 and the right light valve 3 0 0 4 . In an exemplary embodiment, the voltage applied to the left and right shutters 3002, 3004 alternates between positive and negative peaks to avoid ionization problems in the liquid crystal cells of the light valve. In an exemplary embodiment, the voltage signals applied to the left and right shutters 300, 300, 3004 may be at least partially out of phase with one another. In an exemplary embodiment, one or both of the voltage signals applied to the left shutter 3002 and the right shutter 3004 may alternate between a zero voltage and a peak voltage at 147659.doc -52 - 201118423. In an exemplary embodiment, other forms of voltage signals can be applied to the left and right shutters 3002, 3004 such that the liquid crystal cells of the shutter are in an operational state. In an exemplary embodiment, applying a voltage signal to left light valve 3002 and right light valve 3004 causes the light valves to open and close simultaneously or at different times. During the application of the voltage signal to the left and right shutters 3002, 3004, the CPU 3012 checks a warm-up timeout in 3506. In 3506, if CPU 3012 detects a warm-up timeout, then in 3508, the CPU will stop applying a voltage signal to left light valve 3002 and right light valve 3004. In an exemplary embodiment, in 3504 and 3506, CPU 30 12 applies a voltage signal to left light valve 3002 and right light valve 3004 during a period of time sufficient to actuate the liquid crystal cells of the beta light valve. In an exemplary embodiment, CPU 3012 applies a voltage signal to left light valve 3〇〇2 and right light valve 3004 during a two second period. In an exemplary embodiment, the maximum magnitude of the voltage signal applied to the left and right shutters 3, 2, 3004 can be 丨 5 volts. In an exemplary embodiment, the timeout period in 3506 can be two seconds. In an exemplary embodiment, the maximum amount of voltage signals applied to the left and right shutters 3002, 3, 4, 4 may be greater than or less than 15 volts' and the timeout period may be longer or shorter. In an exemplary embodiment, during method 35, the two 3002 and right shutters 3004 are opened and closed at a different rate than the rate at which the movie can be viewed. In an exemplary embodiment, in 35〇4, the voltage signal applied between the left light 3 002 and the right light is not alternated during the warm-up period: and is erroneously applied 'and thus the light valves The liquid crystal cells can be transparent throughout the warm section. In the 1 minus embodiment, I47659.doc • 53· 201118423 The warm-up method 35GG can occur in the presence or absence of a synchronization signal. Thus, method 3500 provides a warm-up mode of operation for the 3D glasses 3 . In an exemplary embodiment, after the warm-up method 35 is performed, the 3D glasses 3000 are in a normal mode of operation, an operational mode or a transparent mode of operation is performed and then the method 3300 can be implemented. Referring now to Figures 37 and 38, in an exemplary embodiment, during operation of the 3D glasses 3, the 3D glasses implement an operational method 37 in which the control signals generated by the CPU 3012 are to be generated. A, B, ^, D, F, and G are used to control the operation of the left shutter controller go% and the right shutter controller Nog and the common shutter controller 3010, thereby relying on the synchronization received by the signal sensor 3014. The signal controls the operation of the left light valve 3〇〇2 and the right light valve 3〇〇4. In 3702, the CPU 3012 checks to see if the sync signal detected by the signal sensor 3〇14 is active or inactive. In 3702, if the CPU 3012 determines that the synchronization signal is invalid, then in 3704, the CPU applies a voltage signal to the left light valve 3002 and the right light valve 3004 of the two-dimensional glasses 3000. In an exemplary embodiment, the voltage applied to left light valve 3002 and right light valve 3〇〇4 in 3704 alternates between a positive peak and a negative peak to avoid ionization problems in the liquid crystal cell of the light valve. In an exemplary embodiment, the voltage applied to left light valve 3002 and right light valve 3004 at 37〇4 alternates between a positive peak and a negative peak to provide a square wave signal having a frequency of 60 Η z. In an exemplary embodiment, the square wave signal alternates between +3 V and -3 V. In an exemplary embodiment, one or both of the voltage signals applied to left and right shutters 3002, 3004 in 3704 may alternate between a zero voltage and a peak voltage. In an exemplary embodiment of 147659.doc •54·201118423, in 3704, other forms (including other frequencies) of voltage signals can be applied to the left and right light valves 3〇〇2 and 3〇〇4 to The liquid crystal single 7G of the light valve is kept open, so that the user of the three-dimensional glasses 3 can normally view through the light valve. In an exemplary embodiment, applying a voltage signal to the left shutter 3002 and the right shutter 3004 in 3704 causes the shutters to open. When a voltage signal is applied to the left light valve 3〇〇2 and the right light valve 3〇〇4 in 3704, in 3706, the CPU 3012 checks for a clear timeout. In 37〇6, if the CPU 3012 detects a clearing timeout, then in 37〇8, the CPU will stop applying the voltage signal to the light valves 3〇〇2 and 3〇〇4_, which can then make the three-dimensional The glasses 3000 are in a closed mode of operation. In an exemplary embodiment, the duration of the clearing time may be as long as, for example, about 4 hours. Thus, in an exemplary embodiment, if the 3D glasses 3 do not detect a valid synchronization signal, the 3D glasses can be rotated to a transparent mode of operation and method 3700 can be implemented. In the transparent mode of operation, in an exemplary embodiment, the light valves 3002 and 3〇〇4 of the 3D glasses 3000 remain open so that the viewer can view normally through the light valve of the 3D glasses. In an exemplary embodiment, a positive and negative alternating constant voltage is applied to maintain the liquid crystal cells of the shutters 3002 and 3004 of the 3D glasses 3 in a transparent state. The constant voltage can be, for example, 2 volts, but the constant voltage can be any other voltage suitable to maintain a moderately transparent light valve. In an exemplary embodiment, the light valves 3002 and 3004 of the 3D glasses 3 can remain transparent until the 3D glasses are capable of verifying an encrypted signal. In an exemplary embodiment, the user of the three-dimensional glasses can be allowed to normally view and rotate at intervals to open and close the 3D glasses 302 and 3004. 147659.doc • 55· 201118423 Accordingly, method 3700 provides a method of clearing the operation of 3D glasses 3 and thereby providing a transparent mode of operation. Referring now to Figures 39 and 41, during the operation of the three-dimensional glasses, the three-dimensional glasses implement an operation method 39, in which the control signal A generated by the CPU 3012 is to be executed. , B, c, D, E, F, and G are used to transfer charge between the light valves 3〇〇2 and 3〇〇4. At 39, t, the CPU 3G12 determines whether the effective synchronization (4) has been used by the signal sensor. 3 (H4 detected. gCPU3〇12 determines that a valid sync signal has been detected by the signal sensor 3014, then at 39〇4A, the cpu generates a control signal c' in the form of a continuous (in an exemplary manner) In an exemplary embodiment, during an exemplary embodiment, the transfer of charge between light valves 3002 and 3004 during the short pulse of control signal c during method 39A Occurs substantially as described above with reference to Figures 33 and 34. In 3906, CPU 3012 determines if control signal C has transitioned from high to low. If CPU 3012 determines that control signal c has transitioned from high to low, then at 3908 In the middle, the CPU changes the state of the control signal eight or six, and then the 3D glasses 3000 can continue its normal For example, as described and illustrated with reference to Figures 33 and Figures. Referring now to Figures 30a, 40, and 41, in an exemplary embodiment, the 3D glasses are implemented during operation of the 2D glasses 3000. An operation method 4000 in which control signals RC4 and RC5 generated by CPu 3012 are used to operate charge pump 3016 during normal or warm-up mode of operation of 3D glasses 3000 as described above with reference to Figures 32, 33, and 34. 35 and 36. In 4002, CPU 3012 determines whether a valid synchronization signal 147659.doc - 56 - 201118423 has been detected by signal sensor 3014. If CPU 3012 determines a valid synchronization signal Detected by signal sensor 3〇14, then in 4〇〇4, the CPU generates control signal RC4 in the form of a series of short duration pulses. In an exemplary embodiment, 'control signal RC4' The pulse controls the operation of the transistor Q1 to thereby transfer the charge to the capacitor C13 until the potential on the capacitor reaches a predetermined level. In particular, when the control signal rc4 is switched to a low value, the transistor Q1 will be an inductor. L1 connection The battery 120. As a result, the inductor L1 stores energy from the battery 12. Then, when the control signal RC4 is switched to a high value, the energy stored in the inductor L1 is transferred to the capacitor C13. Therefore, the pulse of the control signal RC4 The charge is continually transferred to capacitor C13 until the potential on capacitor Cl3 reaches a predetermined level. In an exemplary embodiment, control signal RC4 continues until the potential on capacitor C13 reaches _12v. In an exemplary embodiment, in 4〇〇6, cpU3〇12 generates a control signal RC5. As a result, an input signal RA3 is provided which has a magnitude which decreases as the potential on the capacitor C13 increases. In detail, when the potential on the capacitor C13 approaches the predetermined value, the Zener diode 开始7 starts to conduct, thereby reducing the magnitude of the input control signal RA3. In 4〇〇8, the cpu MU determines whether the magnitude of the input control signal RA3 is less than a predetermined value. If the cpu 3012 determines that the magnitude of the input control signal RA3 is less than the predetermined value, then in 4010, the CPU stops generating the control signals RC4 and RC5. As a result, the transfer of the charge to the capacitor C13 is stopped. In an exemplary embodiment 10, during the operation of the 3D glasses 3, the method 447 can be implemented after the method 3900. Referring now to Figures 30a, 42 and 43, in an exemplary embodiment, during operation of the 3D glasses 3000, the 3D glasses implement an operational method 4200 in which the control signal a generated by the CPu 3012, B, C, D, E 'F, G, RA4, RC4, and RC5 are used to determine the operating state of the battery when the 3D glasses 3000 have been switched to a closed condition. In 4202, the CPU 30 12 determines whether the 3D glasses 3000 are closed or open. If the CPU 3012 determines that the 3D glasses 3000 is off, then in 42〇4, the CPU determines whether a predetermined timeout period has elapsed. In an exemplary embodiment, the timeout period is 2 seconds in length. If the CPU 3 012 determines that the predetermined timeout period has elapsed, then in 42〇6, the number of synchronization pulses detected by the CPU determination signal sensor 〇14 in a predetermined previous period of time exceeds one. Predetermined value. In an exemplary embodiment, in 4206, the predetermined previous time period is the time period that has elapsed since the most recent replacement of the battery. If the CPU 30 12 determines that the number of synchronization pulses detected by the signal sensor 3〇14 in a predetermined previous period exceeds a predetermined value, then in 42〇8, the CPU generates control as a short duration pulse. The signal E, in which the β-cpu is supplied as a short duration pulse control signal RA4 to the signal sensor 3014' and in 4212, the CPU respectively triggers the operational states of L-numbers A and B. In an exemplary embodiment, if the number of sync pulses detected by signal sensor 3014 during a predetermined previous time period exceeds a predetermined value, this may indicate that the remaining power in battery pack 2 is low. 147659.doc -58- 201118423 or 'If the CPU 3012 determines that the number of sync pulses detected by the signal sensor 3〇14 in a predetermined previous time does not exceed a predetermined value, then in 4210 the 'cpu will act as The control signal for the short duration pulse is provided to the k sensor 3014, and in 4212, the cpu respectively triggers the operational states of the control signals A and B. In an exemplary embodiment, if the number of sync pulses detected by the k唬 sensor 3014 in a predetermined previous time period does not exceed a predetermined value, this may indicate that the remaining power in the battery 12 is not low. . In an exemplary embodiment, in 42〇8 and 4212, the combination of the two-state triggering of control signals A and B and the short duration pulse of control signal E causes the shutters 3002 and 3004 of the 3D glasses to be closed (in control) As a result of the short duration pulse period of the signal E), in an exemplary embodiment, the light valves 3002 and 3004 are opened by rapidly opening the light of the two-dimensional glasses in a short time #. A visual indication that the remaining power in the battery 120 is low is provided to the user of the 3D glasses 3000. In an exemplary embodiment, control signal RA4, which is a short duration pulse, is provided to signal sensor 3014 in 4210 to permit the signal sensor to seek and detect synchronization during the duration of the provided pulse. signal. In an exemplary embodiment, the two-state triggering of control signals eight and B (which also provides a short duration pulse of control signal E) keeps shutters 3002 and 3004 of the 3D glasses 3 closed. As a result, in an exemplary embodiment, the light valves 3002 and 3004 provide a visual indication that the remaining power in the battery 120 is not low to the three-dimensional glasses by not rapidly opening the light valve of the three-dimensional glasses in a short period of time. 3000 users. 147659.doc -59- 201118423 In an embodiment lacking a timing clock, the time can be measured from the sync pulse. The CPU 3012 can determine the remaining time in the battery 120 as one of the number of synchronization pulses that the battery can continue to operate and then provide a visual indication to the 3D glasses by rapidly opening and closing the light valves 3 002 and 3 004. 3000 users. Referring now to FIGS. 44-55, in an exemplary embodiment, one or more of the three-dimensional glasses 104, 1800, and 3,000 includes a frame front portion 4402, a nose bridge 4404, a right temple 4406, and a left temple. 4408. In an exemplary embodiment, frame front portion 4402 houses control circuitry and power supply (as described above) of one or more of three-dimensional glasses 104, 1800, and 3000, and is further defined for holding the right ISS light valve described above And the right lens opening 44 10 and the left lens opening 4412 of the left ISS light valve. In some embodiments, the frame front portion 4402 is engaged to form a right wing 4402a and a left wing 4402b. In some embodiments, at least a portion of the control circuitry of the 3D glasses 104, 1800, and 3000 is received in either or both of the wings 4402a and 4402b. In an exemplary embodiment, right temple 4406 and left temple 4408 extend from frame front portion 4402 and include ridges 4406a and 4408a, and each have a serpentine shape with the distal end of the temple and the temple to frame The front joints are closer together. In this manner, when a user wears the three-dimensional glasses 104, 1800, and 3000, the ends of the temples 4406 and 4408 abut the user's head and are fixed in place. In some embodiments, the spring rates of temples 4406 and 4408 are enhanced by double bending, while the pitch and depth of ridges 4406a and 4408a control the spring rate. As shown in Fig. 55, some embodiments do not use a double curved shape, but instead use a simple curved type of temples 4406 and 4408. I47659.doc • 60-201118423 Referring now to FIGS. 48-55, in an exemplary embodiment, control circuitry for one or more of the three-dimensional glasses 104, 1800, and 3,000 is housed in the front of the frame (which includes the right wing 4402a) And the battery is housed in the right wing 4402a. Moreover, in an exemplary embodiment, the access to the battery 12 of the 3D glasses 3000 is provided via an opening on the inside of the right wing 4402 & the opening is closed by a cover 4414 that includes a tight fit And sealingly engaging one of the right-handed ring seals 4416 of the right wing 4402a. Referring to Figures 49-55, in some embodiments, the battery is located in a battery cover assembly formed by a cover 4414 and a cover interior 4415. The battery cover 44A can be attached to the battery cover interior 4415 by, for example, ultrasonic welding. Contact 4417 can extend from cover interior 4415 to conduct electricity from battery 12A to, for example, a contact located within right wing 4402a. The cover interior 441 5 may have circumferentially spaced apart radial keying elements 4418 on one of the inner portions of the cover. Cover 4414 can have circumferentially spaced recesses 4420 positioned on an outer surface of one of the S-covers. In an exemplary embodiment, as illustrated in FIGS. 49-51, a cover 4414 can be manipulated using a key 4422 that includes a plurality of protrusions 4424 for closely fitting and absorbing the recess 4420 of the cover. . In this manner, the cover 4414 can be rotated from a closed (or locked) position to an open (or unlocked) position relative to the two-dimensional spectacles 1〇4, 18〇〇, and 3〇〇〇. Therefore, the control circuit and the battery of the three-dimensional glasses 104, 1800, and 3000 can be closed with respect to the environment by using the key 4422 to hold the cover 4414 and the right wing 4402a of the three-dimensional glasses 3000. Referring to Figure 55, in another embodiment, a key 4426 can be used. 147659.doc • 61 · 201118423 Referring now to Figure 5, an exemplary embodiment of a signal sensor 5600 includes a narrow bandpass filter 56〇2 operatively coupled to a decoder 5604. The sensor 5600 is in turn operatively coupled to a CPU 5604. The narrowband pass-through waver 5 602 can be an analog and/or digital bandpass filter that can have a passband adapted to permit passage of a synchronous serial data signal to filter out and remove out-of-band noise. In an exemplary embodiment, CPU 5604 can be, for example, CPU 114, CPU 1810, or CPU 3012 of 3D glasses 104, 1800, or 3000. During an exemplary implementation, (4), signal sensor 56 receives a signal from a signal transmitter 5606. In an exemplary embodiment, signal transmitter 5606 can be, for example, signal transmitter 110. . The signal 5700 transmitted by the exemplary embodiment to the signal sensor 5_6 includes one or more data bits (10), each of which is preceded by a clock pulse 5704. In an exemplary embodiment, during the signal sensing operation, the decoder of the signal sensor can be easily solved by the decoder of the signal sensor for each bit of the data 5702. Located in the word rent. ^ Receive and decode from the signal transmission ": The detector 5_ can easily connect to the synchronous serial data transmission of the transmitter 5606. The long data bit block of asynchronous data transmission is often difficult to provide a good system in the operation of the 'signal meter' for measuring the data transmission. In addition, the signal transmission length data bit string serial data transmission ensures that it can be easily solved. See Figure 58 for adjustment - for use in 3D glasses. I47659.doc • 62- 201118423 Example Embodiments include for sensing one-to-one synchronization

之傳輸,該同步信號具有可能並非主要在電磁波譜之可見 光部分中的分量’諸如紅外線信號。 步信號之系統5800之一例示性負 信號自信號傳輸器110之傳輸的 一正規器5804可操作地耦接至信號感測器58〇2及三維眼 鏡3000之CPU 3012 , 該正規器用於正規化該信號感測器所 偵測到的同步信號及將該正規化同步信號傳輸至該cpu。 在一例示性實施例t,正規器5804可使用類比及/或數 位電路來實施且可經調適以正規化該偵測到的同步信號之 振幅及/或形狀。以此方式,在一例示性實施例中,在三 維眼鏡3000之操作期間可適應信號感測器58〇2所偵測到的 同步信號之振幅及/或形狀之大幅變化。舉例而言,若信 號傳輸器110與信號感測器5802之間的間距在正常使用中 可能大幅變化,則三維眼鏡3000之信號感測器所偵測到的 同步信號之振幅可大幅變化。因此,用於正規化信號感測 器5802所偵測到的同步信號之振幅及/或形狀之一構件將 增強三維眼鏡3000之操作。 用於調節一輸入信號以正規化該輸入信號之振幅及/或 形狀之系統之實例揭示於(例如)以下美國專利中:第 3,124,797號、第 3,488,604號、第 3,652,944號、第 3,927,663 I47659.doc -63- 201118423The transmission has a component that may not be primarily in the visible portion of the electromagnetic spectrum, such as an infrared signal. An exemplary negative signal from one of the step signal systems 5800 is transmitted from the signal transmitter 110 to a normalizer 5804 operatively coupled to the signal sensor 58〇2 and the CPU 3012 of the 3D glasses 3000 for normalizing The synchronization signal detected by the signal sensor and the normalized synchronization signal are transmitted to the CPU. In an exemplary embodiment t, the normalizer 5804 can be implemented using analog and/or digital circuitry and can be adapted to normalize the amplitude and/or shape of the detected synchronization signal. In this manner, in an exemplary embodiment, a large variation in the amplitude and/or shape of the synchronization signal detected by signal sensor 58A2 can be accommodated during operation of three-dimensional glasses 3000. For example, if the spacing between the signal transmitter 110 and the signal sensor 5802 may vary greatly during normal use, the amplitude of the synchronization signal detected by the signal sensor of the 3D glasses 3000 may vary widely. Thus, one of the components used to normalize the amplitude and/or shape of the synchronization signal detected by signal sensor 5802 will enhance the operation of 3D glasses 3000. Examples of systems for adjusting an input signal to normalize the amplitude and/or shape of the input signal are disclosed, for example, in U.S. Patent Nos. 3,124,797, 3,488,604, 3,652,944, 3,927,663, I47659. Doc -63- 201118423

,該等 能性之全部或一部分可由CPU 3〇12實施。 入本文中。此等美國專利 平分地組合以實施正規器 性實施例中,正規器5804 在一例示性實施例中,正規器58〇4可另 ’正規器5804可另外地或替代性地All or part of the energy can be implemented by the CPU 3〇12. Into this article. These U.S. patents are equally divided to implement a conventional instrumental embodiment, a regularizer 5804. In an exemplary embodiment, the normalizer 58A4 may alternatively or alternatively have a regularizer 5804 that may additionally or alternatively

代實施例中,CPU 114及/或CPU 181〇可取代cpu 3〇12, 或除CPU 3012之外,還可使用cpu 114及/或cpu 181〇。 現參看圖59,在一例示性實施例中,正規器兄㈣包括一 增益控制元件5806、 —放大器及脈衝調節元件5810及一同 步振幅及形狀處理單元5812» 在一例示性實施例中,增益控制元件58〇6接收並處理由 k號感測器5802提供的同步輸入信號及由同步振幅及形狀 處理單元5812提供的増益調整信號,以產生一衰減輸出信 號以供放大器及脈衝調節元件5810處理。 在一例示性實施例中,放大器及脈衝調節元件581〇處理 由增益控制元件5806輸出的信號以產生一正規化同步信號 以傳輸至CPU 3012。 在一例示性實施例中,用於調節同步信號之系統58〇〇可 用於三維眼鏡104、1800或3000中。 現參看圖59a至圖59d,在系統5800之一例示性實驗實施 147659.doc -64 - 201118423 例中,-能量主要在可見光譜内之電磁同步信號由信號感 測器感測及/或被處理以產生—信號59〇2以傳輸至增 益控制元件5806。在-例示性實驗實施例中,同步信^ 5902之峰間振幅在約! mVM v之範圍中。在—例示性實 驗實施例t ’信號5902接著由增益控制元件58〇6處理以產 生一信號5904以傳輸至放大器及脈衝調節元件581(^在— 例示性實驗實施例中,信號5904之振幅高達約i爪乂。在— 例示性實驗實施财,信號接著由放A||及脈衝調節 兀件5810處理以產生一信號59〇6以傳輸至(:1^3〇12。在— 例示性實施例中,信號59〇6之峰間振幅高達約3 V。在— 例示性實驗實施例中,信號59〇6被回饋至同步振幅及形狀 處理單元5812以產生一回饋控制信號59〇8以傳輸至增益控 制兀件5806。在一例示性實驗實施例中,回饋控制信號 5908為一緩慢變化之信號或DC信號。 因此,系統5800之例示性實驗實施例表明,該系統可調 整感測到的同步信號之放大且使感測到的同步信號之峰間 振幅穩定。參看圖58、圖59、圖59a、圖5外、圖59c及圖 59d所說明及描述的系統58〇〇之操作之例示性實驗結果是 預期之外的。 現參看圖60、圖60a及圖60b,三維眼鏡6〇〇〇之一例示性 實施例貫貝上等同於上文所描述之三維眼鏡丨8〇〇,惟下文 所說明的方面除外。 在一例示性實施例中,三維眼鏡6〇〇〇包括三維眼鏡之左 光閥1802、右光閥18〇4、左光閥控制器18〇6、右光閥控制 147659.doc •65- 201118423 器1808、CPU 1810及電荷泵1816,該等組件包括其對應功 能性。 二維眼鏡6000包括一信號感測器6002,其實質上類似於 三維眼鏡1800之信號感測器1814、經修改以包括增益控制 元件5806、放大器及脈衝調節元件581〇及同步振幅及形狀 處理單元5 8 1 2,該信號感測器可操作地耦接至微控制器 U4。在一例示性實施例中’微控制器m為一可自TexasIn an embodiment, the CPU 114 and/or the CPU 181 may replace the cpu 3〇12, or in addition to the CPU 3012, cpu 114 and/or cpu 181〇 may be used. Referring now to Figure 59, in an exemplary embodiment, the normal brother (4) includes a gain control component 5806, an amplifier and pulse conditioning component 5810, and a synchronous amplitude and shape processing unit 5812. In an exemplary embodiment, the gain Control element 58A6 receives and processes the synchronization input signal provided by k-sensor 5802 and the gain adjustment signal provided by synchronous amplitude and shape processing unit 5812 to produce an attenuated output signal for processing by amplifier and pulse conditioning component 5810. . In an exemplary embodiment, the amplifier and pulse conditioning component 581 processes the signal output by the gain control component 5806 to produce a normalized synchronization signal for transmission to the CPU 3012. In an exemplary embodiment, system 58 for adjusting the synchronization signal can be used in 3D glasses 104, 1800 or 3000. Referring now to Figures 59a-59d, in an exemplary experimental implementation of system 5800, 147659.doc-64 - 201118423, the electromagnetic synchronization signal whose energy is primarily in the visible spectrum is sensed and/or processed by the signal sensor. To generate a signal 59 〇 2 for transmission to gain control element 5806. In the exemplary experimental embodiment, the peak-to-peak amplitude of the sync signal 5902 is about! Within the scope of mVM v. In the exemplary experimental embodiment t' signal 5902 is then processed by gain control element 58 〇 6 to produce a signal 5904 for transmission to the amplifier and pulse conditioning component 581 (in the exemplary experimental embodiment, the amplitude of signal 5904 is as high as In the case of an exemplary experiment, the signal is then processed by the A|| and pulse conditioning element 5810 to produce a signal 59〇6 for transmission to (:1^3〇12. In - exemplary implementation In the example, the peak-to-peak amplitude of the signal 59〇6 is as high as about 3 V. In the exemplary experimental embodiment, the signal 59〇6 is fed back to the synchronous amplitude and shape processing unit 5812 to generate a feedback control signal 59〇8 for transmission. To the gain control element 5806. In an exemplary experimental embodiment, the feedback control signal 5908 is a slowly varying signal or DC signal. Thus, an exemplary experimental embodiment of the system 5800 indicates that the system is tunable sensed Amplification of the synchronization signal and stabilization of the peak-to-peak amplitude of the sensed synchronization signal. An illustration of the operation of the system 58A illustrated and described with reference to Figures 58, 59, 59a, 5, 59c, and 59d Sex experiment If it is to be expected, referring to Fig. 60, Fig. 60a and Fig. 60b, an exemplary embodiment of the 3D glasses 6 is equivalent to the 3D glasses described above, except for the following Except for the illustrated aspects. In an exemplary embodiment, the 3D glasses 6〇〇〇 include a left light valve 1802, a right light valve 18〇4, a left light valve controller 18〇6, and a right light valve control 147659. Doc • 65-201118423 1808, CPU 1810 and charge pump 1816, these components include their corresponding functionality. The 2D glasses 6000 include a signal sensor 6002 that is substantially similar to the signal sensor 1814 of the 3D glasses 1800. Modified to include gain control component 5806, amplifier and pulse conditioning component 581, and synchronous amplitude and shape processing unit 5 8 1 2, the signal sensor being operatively coupled to microcontroller U4. In an exemplary implementation In the example 'microcontroller m is one from Texas

Instruments購得之 Texas Instruments MSP430F2011PWR積 體電路。在一例示性實施例中,微控制器U4亦可操作地耦 接至CPU 1810。在一例示性實施例中,信號感測器6〇〇2之 光電二極體D2能夠偵測具有在可見光譜中之分量的電磁信 號。 在一例示性實施例中,增益控制元件58〇6包括場效電晶 體 Q100 。 在一例示性實施例中’放大器及脈衝調節元件581〇包括 運算放大器U5及U6、電阻器R2、R3、R5、R6、R7、 R10、R12、R14及 R10、電容器 C5、C6、C7、C8、cl〇、 C12、C14及C15,及肖特基障壁二極體D1。 在一例示性實施例中,同步振幅及形狀處理單元58以包 括NPN電晶體Q101、電阻器R1〇〇、^以及…⑽,和電容 器 C13及C100。 在一例示性實施例中,在三維眼鏡6〇〇〇之操作期間,信 號感測器6002自信號傳輸器11〇接收信號,該等信號可(例 如)包括用於操作三維眼鏡6000之組態資料及/或同步信 147659.doc -66 - 201118423 號。 在一例示性實施例中’在三維眼鏡_〇之操作期間, Q100控制光電二極體D2之信號輸出。詳言之,在一例示 性實施例中,當Q100之閘極上之電壓(其為cu上之電二 為0V時:Q100斷開且光電二極體的之信號輸出不被衰 減。隨著Q100之閘極上之電壓增加,Q1〇〇接通且將電流 之部分自光電二極體D2傳導至接地,藉此使光電二極: D2之信號輸出衰減。輸出偵測器Ql〇1偵測來自光電二極 體D2之所得輸出信號之量值且調整〇1〇〇之閘極上之電壓 以使來自光電二極體D2之輸出信號穩定。 在一例示性實施例中,在三維眼鏡6〇〇〇之操作期間,若 光電二極體D2之信號輸出具有過大振幅,則來自放大器及 脈衝調節元件5810(包括場效電晶體卩1〇〇)之輸出將開始一 大擺動電壓《當放大器及脈衝調節元件581〇(包括場效電 晶體Q100)之擺動電壓變得過高時,Q1〇1將一適當修改之 電壓b號傳遞至Q 1 〇〇之閘極,此將可控制地使流過Q 1 之電流之一適當部分傳至接地。因此,在一例示性實施例 中,在二維眼鏡6000之操作期間,放大器及脈衝調節元件 5810之輸出處的電壓溢流(v〇itage 〇verfi〇w)愈大,自光電 二極體D2經由Q1 〇〇傳導至接地的電流之百分比愈大。結 果’隨後被提供給放大器及脈衝調節元件5810之所得信號 不會將運算放大器U5及U6過激勵至飽和。 在一例示性實施例中,在三維眼鏡6000之操作期間,微 控制器U4比較輸入信號IN—a與ιν_Β以判定是否存在一傳 147659.doc •67- 201118423 入同步脈衝。若微控制器u 開左光閥刪之-同步心 傳人时脈衝為用於打 ,· 门步脈衝,則該微控制器將該傳入回半 脈衝轉換成一 2脈衝同步脈衝 v w 衝或者,若微控制器U4判定 该傳入同步脈衝為用於打開右光閥18〇4之一同 該微控制器將㈣入同步脈衝轉換成一 3脈衝同步脈衝貝: 因此微控制益U4解碼該傳入同步脈衝以 _之左光閥刪及右㈣刪。 4眼鏡 在一例示性實施例中,在三維眼鏡6〇〇〇之操作期間,微 控制器U4進-步提供—額外敎迴路,即使該同步信號在 -段時間中不存在(諸如,若該三維眼鏡之佩戴者注視偏 離於該傳入同步作號夕古i 瑰之方向的方向),該鎖定迴路亦使得 三維眼鏡6000能夠操作。 現參看圖61,一種用於調節使用於三維眼鏡1〇4、 1800、3000或6000之一同步信號之系統61〇〇之一例示性實 施例包括用於感測一同步信號自信號傳輸器110之傳輸的 仏號感測|§ 5802。在一例示性實施例中,信號感測器58〇2 經調適以感測具有主要在電磁波譜之可見光部分中的分量 的同步信號自信號傳輸器11〇之傳輸。 一習知動態範圍減小及對比度增強元件6丨〇2可操作地耦 接至信號感測器5 802及三維眼鏡3 〇〇〇之CPU 3 012以用於減 小該信號感測器所偵測到的同步信號之動態範圍及增強該 同步信號内之對比度’以及將該正規化同步信號傳輸至該 CPU。或者’ CPU 114及/或1810可取代CPU 3012,或除 CPU 3012之外,還可使用cpu 114及/或CPU 1810。 147659.doc -68· 201118423 在一例示性實施例中’在三維眼鏡3000中使用動態範圍 減小及對比度增強元件6102增強了該三維眼鏡感測及處理 由信號傳輸器110傳輸的具有主要在電磁波譜之可見光部 分中的分量之同步信號之能力。 現參看圖62 ’ 一種用於觀看一顯示器上之三維影像之系 統6200之一例示性實施例包含用於將用於使用者之左眼及 右眼之一影像及一同步信號傳輸至一顯示表面62〇4上的投 影器6202。系統6200之使用者可佩戴三維眼鏡1〇4、 1800、3 000或6000(其可根據或可不根據圖58至圖61之實 施例之教示進一步加以修改),以藉此可控制地准許將左 眼,衫像及右眼影像呈現給該使用者之左眼及右眼。 在一例不性實施例中,投影器62〇2可為可購得之丁以犯 Instruments三維數位光源處理投影器。如一般熟習此項技 術者將認識到,該Texas Instruments三維數位光源處理投 影器藉由以下方式操作:將一投影器之12〇 Hz輸出劃分在 左眼與右眼之間(每一者60 Hz),而同步信號在主動資料傳 輸之間的超短黑暗時間期間傳出。以此方式,呈現用於觀 看者之左眼及右眼之影像,且該等影像與用於指導三維眼 鏡3〇〇〇打開左觀看光閥或右觀看光閥之同步信號交錯。 在一例示性實施例中,該Texas Instrumems(「TI」)三維 數位光源處理杈景〉器可為一 j晶片數位光源處理投影系統 及/或一3晶片數位光源處理投影系統。 。在一例示性實施例中,由投影器6202產生之該等同步信 號包括主要在可見光譜内之電磁能量。 147659.doc -69- 201118423 在一例不性實施例中,投影器62〇2包括一 TI 3晶片數位 光源處理投影系統及一内建檔案伺服器62〇2a,該内建檔 案伺服器可操作地耦接至用於將三維影像散發至投影器 6202的雲端或其他類型之一網路6206。 在一例示性實施例中,系統62〇〇經進一步調適以提供對 以下二維格式中之—或多者的支援:〇並列式(sideby_ side) ; 2)上下式(over_under) ; 3)棋盤型;句翻頁式;及5) 多視圖視讯編碼。在一例示性實施例中,系統62〇〇進一步 經調適而以每秒96個圖框(「FPS」)、12〇 fPS4M4 FPS之 速率將影像提供給該系統之使用者。 現參看圖63及圖64,一投影顯示系統63〇〇之一例示性實 施例包括一空間光調變器,更具體言之,一光調變器陣列 6305,其中光調變器陣列63〇5中之個別光調變器採取對應 於正由顯示系統6300顯示之一影像之影像資料的一狀態。 光調變器陣列6305可(例如)包括一數位微鏡面裝置 (「DMD」),其中每一光調變器為一定位微鏡面。舉例而 言,在光調變器陣列6305中之光調變器為微鏡面光調變器 之顯示系統中,來自一光源63 1〇之光可反射離開或反射向 一顯示平面63 15。來自光調變器陣列63〇5令之光調變器之 反射光之組合產生對應於影像資料之一影像。 一控制器6320協調該影像資料至光調變器陣列63〇5中之 載入、控制光源6310等。控制器632〇可耦接至—前端單元 6325,該前端單元可負責對輸入視訊信號之操作,諸如, 將類比輸入信號轉換為數位輸入信號、Y/c分離、自動色 147659.doc *70- 201118423 度控制、自動消色器(automatic color killer)等。前端單元 6325可接著將已處理視訊信號提供給控制器6320,該已處 理視訊信號可含有來自待顯示的多個影像串流之影像資 料。舉例而言’當用作為一立體顯示系統時,前端單元 6325可將來自兩個影像串流的影像資料提供給控制器 6320 ’每一串流含有相同場景之不同視角之影像。或者, 當用作為多視圖顯示系統(multi-view display system)時, 則端單元6325可將來自多個影像串流的影像資料提供給控 制器6320,其中每一串流含有非相關内容之影像。控制器 6320可為一特殊應用積體電路(「ASIC」)、一通用處理器 等’且可用以控制投影顯示系統63〇〇之—般操作。一記憶 體6330可用以儲存影像資料、序列色彩資料,及影像之顯 示中所使用的各種其他資訊。 如圖64中所說明,控制器632〇可包括一序列產生器 635〇、一同步信號產生器6355及一脈寬調變(pwM)單元 6360。序列產生器6350可用以產生色序(c〇1〇r叫此叫, 其規定將由光源631G產生的色彩及持續時間,以及控制被 載入至光調變器陣列6305中之影像資料。除產生色序之 外’序列產生器6350亦可具有將該等色序(及其部分)重新 排序且重新組織之能力,以f助減少可能負面影響 質之雜訊(PWM雜訊)。 同步信號產生器6355可產生使三維眼鏡(例如,兑可為 二維眼鏡叫、18()()、3_或6_)與正被顯示的影像同步 之信號。該等同步信號可插入至由序列產生器635〇差生之 147659.doc 71 201118423 色序中且接著可由投影顯示系統63〇〇顯示。根據一實施 例,因為由同步信號產生器⑽產生之該等同步信號係由 投影顯示系統6300顯示,所以通常在三維眼鏡(例如,其 可包括三維眼鏡104、1800、3000或6000)處於一阻斷觀看 狀態時(例如,當三維眼鏡(例如,其可包括三維眼鏡〗〇4、 1800、3000或6000)之光閥均處於關閉狀態時),將該等同 步信號插入至色序中。此可允許同步信號由三維眼鏡(例 如’其可包括二維眼鏡1〇4、1800、3 000或6000)偵測,但 防止使用者貫際看到同步信號。可將含有同步信號之色序 提供給PWM單元6360,其可將色序轉換為一pwM序列, 該PWM序列被提供給光調變器陣列63〇5及光源〇丨〇。 投影顯示系統6300所投射之影像可由佩戴(例如)三維眼 鏡104、1800、30〇〇或6000之使用者觀看到。 觀看器機構之其他實例可為根據本例示性實施例之教示 加以修改的護目鏡、眼鏡、帶目鏡之頭盔等。該等觀看器 機構可含有可允許觀看器機構偵測由投影顯示系統63〇〇顯 示之同步信號的一或多個感測器。該等觀看器機構可利用 多種光閥以使使用者能夠及不能夠看到投影顯示系統所顯 示之影像。該等光閥可為電子光閥、機械光閥、液晶光閥 等。電子光閥可阻斷光或使光通過,或可基於施加的電位 之極性而改變電子偏光器之極性。液晶光閥可以一類似方 式操作’其中電位改變液晶之定向。機械光閥可在(例如) 一馬達將機械光阻斷器移入及移出位置時阻斷光或使光通 過。 147659.doc -72· 201118423 若投影顯示系統6300以一基於(例如)一晶體參考的固定 速率操作’則可存在一優點。輸入至該投影顯示系統的信 號之圖框率可經轉換以匹配投影顯示系統6300之圖框率。 該轉換過程通常丟棄及/或添加多個行以彌補任何時序 差。最後,可能需要重複及/或丟棄一完整圖框。從觀看 器機構之觀點來看,一優點可為較易於追蹤一 PWM序列之 黑暗時間及使同步信號同步。此外,此可使觀看器機構能 夠濾出干擾且長時間地保持鎖定至PWM序列。此可能在觀 看器機構未能偵測到同步信號時發生。舉例而言,此可在 正常操作狀況下’在觀看器機構上之偵測器被阻斷或方向 偏離顯示平面的情況下發生。 現參看圖65及圖66,其展示一觀看器機構(例如,其可 為三維眼鏡104、1800、3 000或6000,其可根據或可不根 據圖5 8至圖61之教示加以修改)之例示性的左眼光閥狀態 6510及右眼光閥狀態6520,及由(例如)pwm單元產生之 PWM序列之一高階視圖6530。在一例示性實施例中,在任 何給定時間,應僅有觀看器機構(例如,其可為三維眼鏡 104、1800、3000或6000,其可根據或可不根據圖兄至圖 61之教示加以修改)的兩個光閥中的一者處於打開狀態。 然而,在一例示性實施例中,觀看器機構(例如,其可為 三維眼鏡104、1800、3000或6000,其可根據或可不根據 圖5 8至圖61之教示加以修改)之兩光閥可同時處於關閉或 打開狀態。 在一例示性實施例中,觀看器機構(例如,其可為三維 147659.doc -73· 201118423 眼鏡104、1800、3000或6000 ’其可根據或可不根據圖58 至圖61之教示加以修改)之光閥狀態之單一循環654〇包括 左眼光閥狀態65 10及右眼光閥狀態6520之單一循環。在循 環6540開始時,左眼光閥自關閉狀態轉變至打開狀辟,一 間隔6542說明發生該狀態轉變之時間跨度。在—段時間之 後’左眼光閥在一狀態轉變間隔6544期間轉變回至關閉狀 態。當左眼光閥自打開狀態轉變至關閉狀態時,右眼之光 閥狀態開始在狀態轉變間隔6544期間自關閉狀態轉變至打 開狀態。 當左眼光閥在一間隔6546期間打開時,可顯示與一將由 左眼觀看之影像相關之影像資料。因此,PWM序列含有用 以顯示意欲供左眼觀看之影像的控制指令。 一狀態圖6 5 3 0包括一表示用於顯示一左眼影像之p w M控 制指令之方框6548,其涵蓋間隔6546。間隔6546通常在左 眼光閥完成其至打開狀態之轉變之後開始。此可歸因於觀 看器機構(例如’其可為三維眼鏡1〇4、18〇〇、3〇〇〇或 6000,其可根據或可不根據圖58至圖61之教示加以修改) 之打開狀態與.關閉狀態之間的有限轉變時間。在左眼光閥 開始其向關閉狀態之轉變之後發生一類似延遲。接著,當 左眼光閥關閉且右眼光閥開啟時,例如,在脈衝655〇及 6552期間,可顯示與一將由右眼觀看之影像相關之影像資 料狀態圖6530包括一表示用於顯示一右眼影像之pwm控 制指令之方框6554,其涵蓋間隔6556。 在狀態圖6530中,用於左眼之PWM序列6548與用於右眼 147659.doc -74- 201118423 之PWM序列6554之間的時間通常可留空而沒有任何pwM 控制指令。舉例而言,方框6558在光閥轉變時間(諸如, 間隔6544及6560)期間發生。可進行此操作(例如)以防止在 間隔6544期間畲左眼光閥自打開狀態轉變至關閉狀態時, 右眼看見模糊的左眼資料,及在間隔656G期間當右眼光闕 自打開狀態轉變至關閉狀態時,左眼看見模糊的右眼資 料。此等時間間隔可接著用以顯示同步信號。並非為空而 沒有任何PWM控制指令,由方框6558表示之時間可含有顯 示同步信號所需的PWM控制指令,以&同步㈣可能需要 提供的任何資料及操作模式資訊。 如圖66中所說明,在方框6558之時間間隔期間,可傳輸 且顯示一例示性同步信號66〇〇,其包括一可用以表示何時 二’始光閥狀態之下一循環的簡單時序同步信號。舉例而 曰,當觀看器機構(例如,其可為三維眼鏡1〇4、丨_、 3_或_〇,其可根據或可不根據_至圖61之教示加以 修改)谓測到同步信號時,該觀看器機構可開始左眼光間 自關閉狀態至打開狀態之轉變、料—規定(可能經預先 程式化)之時間量,開始左眼光閥自打開狀態至關閉狀態 之轉變’開始右眼光閥自關閉狀態至打開狀態之轉變、保 持一規定(可能經預先程式化)之時間量,且開始右眼光闕 自打開狀態至關閉狀態之轉變。在一例示性實施例中,左 眼光閥轉變及右眼光閥轉變可同時發生或可按需要交錯。 可在方框⑽期間發生的圖66中所說明之同步信號刪 可(例如)在P W Μ控制序列在約時間6 6 〇 5處結束之後大約 I47659.doc -75- 201118423 270微秒時開始。舉例而言,同步信號66〇〇可接著轉變至 一咼狀態歷時約6微私,且接著轉變回至一低狀態歷時約 24微秒。舉例而a,同步信號66〇〇可接著轉變回至高狀態 歷時約6微秒,且接著轉變回至低狀態,直至方框““結 束。 可顯示可能更複雜之同步信號。舉例而言,同步信號可 規定光閥打開持續時間、應開始轉變之時間、哪一隻眼之 光間應首先轉變、顯示系統之操作模式(諸如,三雉影像 或多視圖)、控制資料、資旬莖 貝。tL寺。此外,可編碼同步信 號’使得僅經授權之觀看器媳播“ I , ^ 帝盗機構(例如,其可為三維眼鏡 104、1800、3000 或 6000,1+ /、了根據或可不根據圖58至圖 社教示加以修改)能夠處理同步信號中所含之資訊。同 步信號之總體複雜性可取決於許多因t,其包括:同步信 號之所需功能、維持對盥顯 ^一頁不系統一起使用之周邊設備之 控制的需要、可用的同步_骑 J J5虎發彳§持續時間等。 同步信號可顯示為可由顯 糸統產生之任何色彩。在利 用一固疋色序之顯示系統(諸 中,單-色彩可用 使用色輪之顯示系統) 頁不同步信號。舉例而言,在-使用 紅色、綠色、藍色、青色、洋紅色、在 原色顯示系統中,兮箄 ^ &的七色多 信號。然而,在no 者白可用以顯示同步 * A 例不性貫施例中,色彩可為黃色,因為 頁色為較明亮色彩中夕一去 π ^ 、巴 U為 中之一者,且使用其對其他色彩之顯干 造成的負面影響可較小。或者 t之』不 可用以顯示同步〜#用“ h暗的色娜藍色) “虎。使用藍色可為較佳的,因為使用較 147659.doc -76- 201118423 暗色彩可使同步信號較不容易由觀看者 用單-色彩來顯示同步信號,但可使用多個色彩。舉例而 言,可能以用以顯示同步信號之色彩來編碼資訊。在一未 利用固定色序之顯示系統中’可使用任何色彩。另外,雖 然論述了七色多原色顯示系,统,但可使用具有不同數目個 』之其他顯不系统,且其不應被解釋為録於本例 示性實施例之範疇或精神。 在一例示性實施例中,焱τ^ μ 一 Τ為了准許同步信號之顯示及防止 觀看者偵測到同步作辨·夕gg — 唬之顯不,可在左眼光閥及右眼光闊 均處於關閉狀態時顯示同步信號。如圖65中所說明,狀態 圖6530顯示—表示用於顯示同步信號之PWM控制指令的方 框6558,其包含於間隔6544及咖中。間隔⑽及㈣〇之 持續時間可取決於許多因素,諸如同步信號之複雜性、同 步信號之任何編碼之存在、同步信號中所載運之資料等。 另外間隔6544及6560之持續時間可取決於諸如光閥轉變 時間之因素。舉例而言’若光閥轉變時間長,則間隔Μ料 及6560亦應為長的以確保㈣在同步信號之顯示之前均關 閉》或者’不需要在方框6558所表示之整個間隔中產生同 步信號。耗希望觀看者不能偵_同步信號,但當顯示 系統之黑色位準之亮度中等增加時,同步信號之顯示可能 為可偵測的。 現參看圖67,在-例示性實施例中,在系統63⑼之操作 期間,該系統實施一方法67〇〇,在該方法中,在67〇5中, 顯示一來自一第一影像串流之第—影像。在一例示性實施 147659.doc •77· 201118423 在6705巾,漸進式地或交錯地顯 而,限制(諸如,海_ ± 览個衫像。然 能要求顯示該第二:;之續t間限制、影像品質限制等)可 -影像之-單—場广。舉例而言,可顯示該第 像串流之該第—髟後+ ^ 目肩第一影 影像之後,接著在6710中,可顯 -第二影像串流之第二影像。再一次敕“ 像,或可僅顯亍1 &推 了·,,·員不整個第二影 像之量及所:部分。然而’所顯示的第-影 1及所顯示的第二影像之量較 時間可不同。 々日丨力。或者, ^顯:該第-影像及該第二影像後,接著在6715中投 不系統6300可顯示一同步信號。然而,該同师號之 顯示可在任何時間發 , v 知生且用於顯示該同步作 性時間可為當該投影領干系缔夕“ Μ “虎之-例不 仅員不系統之觀看者可能 偵測該同步信號時。舉例 間護目鏡,因此可在每使用電子光 號n苜-纟 、光閥關閉時顯示該同步信 投影頻示李續Έ木户 ㈣閉光閥’因為(例如) 示之操作期間、在—先前所顯 m^r ^ ^ η ^ ^ 見疋之持續時間(其為投影 ;二: 機構(例如,其可為三維眼鏡-、 〇〇或6_ ’其可根據或可不根據圖58至圖Q之教 不加以修改)兩者已知)中祯 於贴 )規疋先閥何時將關閉。然而,投 衫顯不系統6300未必需要A 7名a 、的要為了適當操作而判定何時關閉光 ^ 通吊’只要在沒有意欲用於〆 用於任1之PWM控制序列的 時期(堵如,方框6558)之開始或結束處顯示同步信號,觀 147659.doc -78- 201118423 看器機構(例如,其可為三維眼鏡1〇4、18〇〇、3〇〇〇或 6000,其可根據或可不根據圖58至圖61之教示加以修改) 之製造商就可設定光閥轉變之時間以遮蔽(mask out)同步 k號。一旦在6715中,投影顯示系統63〇〇已顯示同步信 號,該投影顯示系統就可返回顯示來自該第一影像串流及 為第一影像串流之影像(或影像之部分)。 現參看圖68,在一例示性實施例中,在系統63〇〇之操作 期間,該系統實施一方法68〇〇,在該方法中,在68〇5及 68 1 0中,觀看器機構(例如,其可為三維眼鏡^ ^ 8⑻、 3000或6000,其可根據或可不根據圖兄至圖61之教示加以 修改)尋找同步信號(在6805中),且檢查以查看該機構偵測 到的G號是否為同步信號(在68丨〇中)。若該信號並非同步 t號’則s亥觀看器機構(例如,其可為三維眼鏡丨〇4、 1800、3000或6000,其可根據或可不根據圖“至圖61之教 示加以修改)可返回6805中之尋找同步信號。 若該信號為同步信號,則該觀看器機構(例如,其可為 二維眼鏡104、18〇〇、3000或6000,其可根據或可不根據 圖58至圖61之教示加以修改)可等待一規定時間量(在6815 中),且然後執行一諸如改變狀態轉變之規定第一動作(在 6820中)°該觀看器機構(例如,其可為三維眼鏡104、 1800、3000或6〇〇〇 ’其可根據或可不根據圖58至圖61之教 不加以修改)可接著等待另一規定時間量(在6825中),且然 後執行另一規定第二動作(在683〇中)。在該規定第二動作 完成後’該觀看器機構(例如,其可為三維眼鏡1〇4、 147659.doc •79- 201118423 1800、3000或6 000’其可根據或可不根據圖58至圖61之教 示加以修改)可返回6805中之尋找同步信號。 現參看圖69,在一例示性實施例中,在系統63〇〇之操作 期間’該系統實施一方法6900 ’在該方法中,在6905中, 顯示一與一左眼影像相關聯之同步信號(在69〇5中),繼而 在6910中顯示該左眼影像。在67丨〇中顯示該左眼影像之 後,在6915中,顯示系統6300可顯示一與一右眼影像相關 聯之同步信號,繼而在6920中顯示該右眼影像。在一例示 性實施例中,可在可能不能確保對同步信號之偵測的顯示 系統中使用方法6900。在此顯示系統中,不可使用先前同 步信號以判定何時轉變,且僅在偵測到一相關聯同步信號 時發生轉變。 現參看圖70 ’在一例示性實施例中,在系統63〇〇之操作 期間,該系統實施一方法7000,在該方法中在7〇〇5中, 偵測-同步信號。在7005中’若同步信號含有一很少出現 的開始序列及/或停止序列,則可輔助對同步信號之债 測另外,右僅在觀看器機構(例如,其可為三維眼鏡 104 1800、3000或6000,其可根據或可不根據圖^至圖 61之教示加以修改)處於規定狀態(諸如,觀看器機構之光 閥關閉)時顯示同步信f虎’則觀看器機構中之控制硬體可 經組態以在其處於敎狀態時嘗試進行同步信號偵測。-旦觀看n機構(例如,其可為三維眼鏡iG4、刪、麵或 侧,其可根據或可不根據圖58至圖61之教示加以修改) 侧到同步信號’在7010中可完整地接收同步信號。若有 147659.doc •80· 201118423 必要,在7015中,可解碼同步信號。在接收及解碼同步信 號後,若需要,在7020中,觀看器機構(例如,其可為三 維眼鏡104、1800、3000或6〇〇〇,其可根據或可不根據圖 58至圖61之教示加以修改)可執行由同步信號規定或在同 步信號中規定之動作。 在一例示性實施例中,以上參看圖63至圖7〇描述的系統 之教示可全部或部分地併入系統62〇〇中及/或取代系統 6220之全部或一些。 現參看圖71,一光閥系統7丨〇〇(例如,其可與以上參看 圖1至圖70所描述之例示性實施例之一或多個態樣組合使 用)之一例不性實施例包括一可操作地耦接至一光閥控制 器7120之光閥總成7105,其具有一或多個觀看光閥元件 711〇及一或多個顯示光閥元件7115。 在一例示性貫施例中’觀看光閥7丨丨〇可為光閥丨〇6、 1〇8、1802、18〇4、3〇〇2及/或3〇〇4中之一或多者。以此方 式在光閥控制器7 12〇的控制下,觀看光閥7 11 〇可可控制 地透射光。 在例不性實施例中,顯示光閥7115可由光閥控制器 7 120控制以向使用者顯示可為(例如)文字及/或圖形及/或 視efl的資Λ β在—例不性實施例中’顯示光閥7工工$可為一 s夫之可購得液晶,諸如—有機發光裝置(「」)。 在例不後實施例中,顯示光閱7115在操作期間可透光或 不透光。 在例不吐實施例中,光間控制器7⑵可為一可程式化 147659.doc 201118423 控制器、一 ASIC、一類比控制器、一數位控制器、一分散 式控制系統’及/或可併有控制器i i4、i i6、118、1806、 1808、1810、3006、3008、3010及 / 或 3012之設計及操作 之一或多個態樣。 現參看圖72 ’在一例示性實施例中,在光閥系統7丨〇〇之 操作期間’該系統可實施—操作方法72〇〇,在該方法中, 在7202中’該系統判定是否應在顯示光閥7丨丨5上顯示一影 像。在一例示性實施例中,該影像可包括文字影像、圖形 影像及/或視訊影像中之一或多者。 在7202中,若系統7100判定應在顯示光閥7115上顯示一 影像,則在7204中,該系統在該顯示光閥上顯示該影像。 在7206中,系統7100判定是否仍應在顯示光閥7115上顯 示該影像。 因此,在7202、7204及7206中,系統7100可控制地在顯 示光閥7115上顯示影像。 在7208中,系統7100判定觀看光閥711〇是應打開或是關 閉。若觀看光閥7110應打開,則在721〇中打開觀看光閥。 或者,若觀看光閥7110應關閉,則在7212中關閉觀看光 閥。 在一例示性實施例中,觀看光閥711〇之打開及關閉係同 步於一影像之顯示,該影像與對應於系統71〇〇之光閥總成 7105的使用者之特定觀看眼相關聯。 在一例示性實施例中,在系統之操作期間,顯示光閥 7115可能或可能不同步於觀看光閥⑽之打開及關閉而打 147659.doc -82 - 201118423 開或關閉。 在一例示性實施例中’可在一具有複數個三維眼鏡(諸 如,二維眼鏡104、1800、3000及/或6000)之系統中使用系 統7100,其中該等三維眼鏡中之每一者包括可包括光閥總 成7105之左光閥總成及/或右光閥總成。在一例示性實施 例中,在具有複數個三維眼鏡之系統中,該等三維眼鏡之 使用者的各別顯示光閥71丨5上可各自顯示有可能為唯一的 及/或為對應三維眼鏡之特定使用者客製化的影像。 現參看圖73,三維眼鏡7300(例如,其可併有以上參看 圖1至圖72所描述的三維眼鏡之例示性實施例中之一或多 者之一或多個態樣)之一例示性實施例包括均可操作地耦 接至一控制器7306之一左光閥總成73〇2及一右光閥總成 7304。在一例示性實施例中,左光閥總成73〇2可(例如)為 左光閥106、1802、3002及/或光閥總成71〇5,右光閥總成 7304可為右光閥1〇8、1804、3004及/或光閥總成71〇5,且 控制器7306可為或可包括CPU 114、左光閥控制器丨16、右 光閥控制器118、CPU 1810、左光閥控制器18〇6、右光閥 控制器18〇8、CPU30U、左光閥控制器3〇〇6、右光閥控制 器3008及/或光閥控制器7120。 在一例示性實施例中,一習知可再充電電池73〇8可操作 地耦接至控制器7306。在一例示性實施例中,一習知太陽 能電池7310可操作地耦接至可再充電電池73〇8以對該可再 充電電池再充電。 在一例示性實施例中,三維眼鏡73〇〇之所有該等元件可 147659.doc •83- 201118423 办納於一眼鏡框架73 12内,該眼鏡框架可(例如)實質上等 同於以上參看圖44至圖55所說明及描述的眼鏡框架。 在一例示性實施例中,在三維眼鏡73〇〇之操作期間,三 維眼鏡收集區域能量以(諸如)藉由使用太陽能電池731〇將 電磁能量轉換為供儲存於可再充電電池中之電能來對可再 充電電池7308再充電。更一般而言,三維眼鏡73〇〇可收集 其他形式之能量,諸如射頻、熱、生物力學、振動及/或 聲能量’以藉此對可再充電電池73〇8再充電❶在一例示性 實施例中,可額外使用一電容器或超級電容器,或替代可 再充電電池7308使用一電容器或超級電容器,以用於儲存 用於操作三維眼鏡7300之能量。 一液晶光閥具有一液晶’藉由將一電壓施加至該液晶, 其旋轉,且接者該液晶在少於一毫秒的時間内達成至少 25°/。的光透射率。當液晶旋轉至一具有最大光透射之點 時’一裝置將該液晶之旋轉停止在該最大光透射點,且然 後在一時間段中將該液晶保持在該最大光透射點。可將安 裝在一機器可讀媒體上之一電腦程式用以促進此等實施例 中之任一者。 一系統藉由使用一副液晶光閥眼鏡來呈現三維視訊影 像’該眼鏡具有一第一液晶光閥及一第二液晶光閥,及經 調適以打開該第一液晶光閥之一控制電路。該第一液晶光 閥可在少於一毫秒的時間内打開至一最大光透射點,此 時’該控制電路可施加一止擋電壓以在一第一時間段中將 該第一液晶光閥保持在該最大光透射點,且然後關閉該第 147659.doc •84- 201118423 -液晶光閥。接下來’該控制電路打開該第二液晶光閥, 其中該第二液晶光閥在少於一毫秒的時間内打開至一最大 光透射,點’且然後施加-止冑電壓以在一第^時間段中將 該第二液晶光閥保持在該最大光透射點,且然後關閉該第 二液晶光閥。該第-時間段對應於為觀看者之—第一眼呈 現-影像,且該第二時間段對應於為觀看者之一第二^呈 現-影像。可將安敦在-機器可讀媒體上之一電腦程^用 以促進本文中所描述的實施例中之任一者。 在一例示性實_巾’該控制電路經調適以使用-同步 信號來判定該第-時間段及該第二時間段。在—例示性實 施例中,該止擋電壓為2伏特。 在一例示性實施例中,該最大光透射點透射多於32%的 光。 在:例示性實施例中,一發射器提供一同步信號,且該 同步信號使該控制電路打開該等液晶光間中之一者。在— 例示性實施例令,該同步信號包含-加密信號。在 性實施例中,該二维眼错夕祕A丨兩Λ / 一、准眼鏡之控制電路將僅在驗證一加 號之後進行操作。 在一例示性實施例中,該控制電路具有-電池感測器且 可㈣適以提供一電池電力偏低狀況之—指示。電 偏低狀況之該指示可為一液S氺問. 液日日先閥在一時間段中闕閉、且 然後在一時間段中打開。 丑 =一例示性實施例中,該控制電路經調適以制—同步 在偵測到該同步信號之後開始操作該等液晶光闕。 I47659.doc -85- 201118423 在一例示性實施例中,該加密信號將僅操作具有經調適 以接收該加密信號之_控制電路的—副液晶眼鏡。 在一例示性實施例中’一測試信號以可被佩戴該副液晶 光閥眼鏡的一人看見的—速率操作該等液晶光閥。 在一例示性實施例中,—副眼鏡具有具有—第—液晶光 閥之-第-透鏡及具有—第二液晶光閥之—第二透鏡。液 晶光閥均具有可在少於一毫秒的時間内打開之一液晶及交 替地打開名第一液晶光閥及該第二液晶光閥之一控制電 ^當^&㈣料’液晶定向被料在—最大光透射 點,直至該控制電路關閉光閥。 在一例示性實施例中,一止擋電壓將該液晶保持在 大光透射點。該最大光透射點可透射多於32%的光。 在一例示性實施例中,一發射器提供一同步信號,且言 同步信號使該控制電路打開該等液晶光閥中之一者。在一 些實施例中,該同步信號包括—加密信號。在一例示性, 施例中’該控制電路將僅在驗 牡鳅°足了 3亥加密信號之後進行相 作。在一例示性實施例中, __ 控制電路包括一電池感測表 且可經調適以提供一電池電力 _ 1&狀_ /兄之一指不。電池電 力偏低狀況之該指示可為液晶朵 ^ + 巧履日日忐閥在一時間段中關閉且接 者在一時間段中打開。在一例示 _ 丨貫把例中,該控制電路 經調適以偵測一同步信號且為 在以貞心㈣时錢之後開 始操作S亥等液晶光閥。 以接收該加密信號之一 該加密信號可僅操作具有經調適 控制電路的一副液晶眼鏡。 J47659.doc -86 - 201118423 ,在一例示性實施财,-職錢以可㈣戴該副液晶 光閥眼鏡的一人看見的一速率操作該等液晶光閥。 在-例示性實施例t,藉由以下操作向—觀看者呈現三 維視訊影像··使用液晶光閥眼鏡;在少於—毫秒的時間内 打開。玄第-液晶光閥;在—第—時間段中將該第—液晶光 閥保持在-最大光透射點;關閉該第—液晶光閥,接著在 少於-毫秒的時間内打開該第二液晶光閥;且接著在一第 ,時間&中將該第二液晶光閥保持在—最大紐射點。該 第一時間段對應於為觀看者之—第—眼呈現—影像,且該 第二時間段對應於為觀看者之H呈現一影像。 在例不性實施例中,藉由一止撐電壓將該液晶光闕保 持^該最大光透射點。該止棺電壓可為2伏特。在-例示 貫施例中’ 4最大光透射點透射多於32%的光。 在一例示性實施例中,—發射器提供-同步信號,該同 ^言號使該控制電路打開該等液日日日光閥中之―者。在一些 貫施例巾,該同步錢包含—加密信號。 在-例不性實施財’該控制電路將驗 信號之後進行操作。 在 旦在—例示性實施例中,—電池感測器監視電池中的 在例不&實施例中,該控制電路經調適以提供 池電力偏低狀況之—指 ί日不。電池電力偏低狀況之該指 為一液晶光閥在一時η讲士 Ba 子間&中關閉且接著在一時間段 開。 力 電 可 打 在一例示性實施例中 該控制電路經調適以偵測一同步 147659.doc -87. 201118423 信號且在偵測到該同步信號之後開始操作該等液晶光閥。 在一例不性實施例中,該加密信號將僅操作具有經調適以 接收該加密信號之一控制電路的一副液晶眼鏡。 在一例不性實施例中,一測試信號以可被佩戴該副液晶 光閥眼鏡的一人看見之一速率操作該等液晶光閥。 在一例不性實施例中,一種用於提供三維視訊影像之系 統可包括一副眼鏡,其具有具有一第一液晶光閥之一第一 透鏡及具有一第二液晶光閥之一第二透鏡。該等液晶光閥 可具有一液晶且可在少於一毫秒的時間内打開。一控制電 路可父替地打開該第一液晶光閥及該第二液晶光閥,且將 液晶定向保持在一最大光透射點,直至該控制電路關閉該 光閥。此外,該系統可具有一電池電力偏低指示器,其包 括:一電池;一感測器,其能夠判定該電池中剩餘的電力 量;-控制器’其經調適以判定該電池中剩餘的電力量是 否足以讓該副眼鏡在比一預定時間長的時間中操作;及一 指示器,其用以在該副眼鏡不能在比該預定時間長的時間 中操作的情況下向-觀看者發信號。在一例示性實施例 中’該電池電力偏低指示器以一預定速率打開及關閉左液 晶光閥及右液晶光閥。在一例示性實施例中,該預定時間 量為大於三個小時。在一例示性實施例中,在判定該電池 中剩餘的電力量不足以讓該副眼鏡在比該預定時間量長的 時間中操作之後,該電池電力偏低指示器可操作至少三 天。在-例示性實施例中’該控制器可藉由按該電池;: 餘的同步脈衝之數目量測時間來判定該電池中剩餘的電力 147659.doc •88· 201118423 量0 在用於^供二維視訊影像之一例示性實施例中,藉由具 有包括一第一液晶光閥及一第二液晶光閥之一副三維觀看 眼鏡;在少於一毫秒的時間内打開該第—液晶光閥;在一 第一時間段中將該第一液晶光閥保持在一最大光透射點; 關閉該第一液晶光閥’且然後在少於一毫秒的時間内打開 該第二液晶光閥;在一第二時間段中將該第二液晶光閥保 持在一最大光透射點而提供影像。該第一時間段對應於為 觀看者之一第一眼呈現一影像,且該第二時間段對應於為 觀看者之第二眼呈現一影像。在此例示性實施例中,該三 維觀看眼鏡感測該電池中剩餘的電力量、判定該電池中剩 餘的電力量是否足以讓該副眼鏡在比一預定時間長的時間 t操作,且接著在該眼鏡不能在比該預定時間長的時間中 操作的情況下向一觀看者指示一電池電力偏低信號。該指 不器可以一預定速率打開及關閉該等透鏡。該電池將持續 的預定時間量可為三個小時以上。在—例示性實施例中, 在判定該電池中剩餘的電力量不足以讓該副眼鏡在比該預 定時間量長的時間中操作之後,言玄電池電力偏低指示器操 作至少三天。在一例示性實施例中,該控制器藉由按該電 池可持續經過的同步脈衝之數目量測時間來判定該電池中 剩餘的電力量。 在用於提供三維視訊影像之一例示性實施例中,該系統 包括:一副眼鏡,其包含具有一第一液晶光閥之一第—透 鏡及具有-第二液晶光閥之一第二透鏡,該等液晶光閥具 147659.doc -89- 201118423 有液SB及j於毫秒之一打開時間。一控制電路可交替 地打開該第-液晶光閥及該第二液晶光闕,且液晶定向被 保持在-最大光透射點,直至該控制電路關閉該光間。此 外,-同步裝置包括:一信號傳輸器,其發送一對應於一 第-眼呈現之影像之信號;一信號接收器,其感測該 信號;及-控制電路’其經調適以在為該第一眼呈現該影 像的-時間段期間打開該第一光閥。在一例示性實施例 中’ ^ "fS號為一紅外光。 在一例示性實施例中,該信號傳輸器將該信號投射向一 反射器’該信號由該反射器反射,且該信號接收器積測該 經反射信號。在-些實施例中,該反射器為―電影㈣ 幕。在-例示性實施例中,該信號傳輸器自一影像投影器 (諸如’電。影投影器)接收一時序信號。在一例示性實施例 中該L號為-射頻信號。在一例示性實施例中,該信號 為具有一預定間隔的一系列脈衝。在該信號為具有一預定 間隔的一系列脈衝之例示性實施例中,第一預定數目個脈 衝打開該第-液晶光閥’且第二預定數目個脈衝打開該第 —液晶光間。 在用於提供三維視訊影像之一例示性實施例中,提供影 二之方法包括:具有包含一第一液晶光閱及一第二液晶'光 1之^二維觀看眼鏡;纟少於一毫秒的時間内打開該第 ^晶光閱;在一第-時間段中將該第一液晶光間保持在 =大光透射點;關閉該第_液晶光閥,且然後在少於一 毫秒的時間内打開該第二液晶光閥;在—第二時間段中將 147659.doc •90- 201118423 °亥第二液晶光閥保持在一最大光透射點。該第一時間段對 應於為觀看者之左眼呈現一影像,且該第二時間段對應於 為觀看者之右眼呈現一影像。該信號傳輸器可傳輸一對應 於為左眼呈現之該影像的信號,及感測該信號,該三維觀 看眼鏡可使用該信號來判定何時打開該第一液晶光閥。在 一例示性實施例中,該信號為一紅外光。在一例示性實施 例中,该號傳輸器將該信號投射向—反射器(其將該作 號反射向該三維觀看眼鏡),且該眼鏡中之該信號接收器 偵測該經反射信號。在一例示性實施例中,該反射器為一 電影院螢幕。 在一例示性實施例中,信號傳輸器自一影像投影器接收 一時序信號。在一例示性實施例t,該信號為一射頻信 號。在-料性實_巾,該錢可為具#—預定間隔的 -系列脈衝。第-預;t數目個脈衝可打開該第—液晶光 閥,且第二預定數目個脈衝可打開該第二液晶光閥。 在-種用於提供三維視訊影像之系统之一例示性實施例 中’-副眼鏡具有具有-第—液晶光閱之—第一透鏡及具 有-第二液日日日光闕之-第二透鏡,該等液晶光閥具有一液 晶及小於-毫秒之-打開時間。_控制電路交替地打開該 第-液晶光閥及該第二液晶光閥,且液晶定向被保持在一 最大光透射點,直至該控制電路關閉該光閥。在一例示性 實施例中’-同步系統包含:—反射裝置,其位於該副眼 鏡前方;及—信號傳輸器,其將—信號發送向該反射裝 置。該信號對應於-為觀看者之—第一眼呈現之影像。一 147659.doc •91- 201118423 信號接收器感測自該反射裝置反射的信號, 从·Α设,一控 制電路在為該第一眼呈現該影像的一時間段期 又朋間打開該第 一光閥。 在一例示性實施例中,該信號為一紅外光。 _ 在—例示性 貫施例中,該反射器為一電影院螢幕。在— 妁不性貫施例 中,該信號傳輪器自一影像投影器接收—時 卞斤彳5娩。該信 說可為具有一預定間隔的一系列脈衝。在一 例不性實施例 中’該信號為具有一預定間隔的一系列脈衝, 且第—預定 數目個脈衝打開該第一液晶光閥,且第二預定數目個脈衝 打開該第二液晶光閥。 在用於提供二維視訊影像之一例示性實施例中,可藉由 具有包含一第一液晶光閥及一第二液晶光間之一副三^觀 看眼鏡·,在少於一毫秒的時間内打開該第一液晶光闊;在 -第-時間段中將該第一液晶光閥保持在一最大光透射 點;關閉該第一液晶光閥’且然後在少於-毫秒的時間内 打開該第二液晶光閥;且然後在一第二時間段中將該第二 液晶光閥保持在-最大光透射點而提供影像。該第一時間 段對應於為觀看者之—第-眼呈現—影像,且該第二時間 段對應於為觀看者之—第二眼呈現—影像。在—例示性實 施例中,該傳輸器傳輸-對應於為_第_眼呈現之影像的 紅外線信號。該三維觀看眼鏡感測該紅外線信號,且然後 使用該紅外線信號觸發該第1晶_之打開U示 性實施例中,該信號為一紅外虫 二 -、’卜光。在一例示性實施例中, 該反射器為一電畢彡院啓 电〜u蛍綦在—例示性實施例中,該信號 147659.doc •92· 201118423 傳輸器自衫像投影器接收一時序信號。該時序信號可為 -有預定間隔的_系列脈衝。在一些實施例中,第一預 疋數目個脈衝打開該第—液晶光閥,且第二預定數目個脈 衝打開該第二液晶光閥。 在例示性貫施例中,一種用於提供三維視訊影像之系 統包括-副眼鏡’其具有具有一第一液晶光閥之一第一透 鏡及具有一第二液晶光閥之一第二透鏡,該等液晶光閥具 有-液晶及小於—毫秒之—打開時間。該系統亦可具有一 控制電路’其交替地打開該第一液晶光閥及該第二液晶光 閥,且將液晶定向保持在一最大光透射點,直至該控制電 路關閉該光閥。該系統亦可具有一測試系統,其包含:一 仏號傳輸器;一信號接收器;及一測試系統控制電路,其 經調適成以可被一觀看者看見之一速率打開及關閉該第一 光閥及该第二光閥。在一例示性實施例中,該信號傳輸器 不自一投影器接收一時序信號。在一例示性實施例中,該 信號傳輸器發射一紅外線信號。該紅外線信號可為一系列 脈衝。在另一例示性實施例中,該信號傳輸器發射一射頻 信號。該射頻信號可為一系列脈衝。 在種用於^供二維視讯影像之方法之一例示性實施例 中,该方法可包括:具有包含一第一液晶光閥及一第二液 a曰光閥之一副二維觀看眼鏡;在少於一毫秒的時間内打開 該第一液晶光閥;在一第一時間段中將該第一液晶光閥保 持在一最大光透射點;關閉該第一液晶光閥,且然後在少 於一毫秒的時間内打開該第二液晶光閥;及在一第二時間 147659.doc •93· 201118423 丰又中將該第二液晶光閥保持在一最大光透射點。在_例示 性實施例中’該第一時間段對應於為觀看者之一第—眼呈 現一影像’且該第二時間段對應於為觀看者之—第二眼呈 現一影像。在一例示性實施例中’一傳輸器可將一測試信 號傳輸向該三維觀看眼鏡’該眼鏡接著藉由該三維眼鏡上 之一感測器接收該測試信號,且然後由於該測試信號而使 用一控制電路打開及關閉該第一液晶光閥及該第二液晶光 閥’其中該等液晶光閥以佩戴該眼鏡之一觀看者可觀察到 的速率打開及關閉。 在一例示性實施例中,該信號傳輸器不自一投影器接收 一時序信號。在一例示性實施例中,該信號傳輸器發射一 紅外線信號,其可為一系列脈衝。在一例示性實施例中, 該l说傳輸器發射一射頻信號。在一例示性實施例中,該 射頻Ί5 "5虎為·糸列脈衝。 種用於乂供二維視訊影像之系統之一例示性實施例可 包括一副眼鏡,其包含具有一第一液晶光閥之一第—透鏡 及具有一第二液晶光閥之一第二透鏡’該等液晶光閥具有 一液晶及小於一毫秒之一打開時間。該系統亦可具有一控 制電路’其交替地打開該第一液晶光閥及該第二液晶光 閥’將液晶定向保持在一最大光透射點,且然後關閉光 閥°在一例示性實施例中’一自動開啟(auto_on)系統包含 一 ^號傳輸器、一信號接收器,且其中該控制電路經調適 成以一第一預定時間間隔啟動該信號接收器、判定該信號 接收器是否正在自該信號傳輸器接收一信號、在該信號接 147659.doc -94- 201118423 收器在一第二時間段内未自該信號傳輸器接收到該信號的 情況下撤銷啟動該信號接收器,且在該信號接收器自該信 號傳輸器接收到該信號的情況下以一對應於該信號的間隔 交替地打開該第一光閥及該第二光閥。 在一例示性實施例中,該第一時間段為至少兩秒,且該 第一時間段可為不超過1 〇〇毫秒。在一例示性實施例中, 該等液晶光閥保持打開,直至該信號接收器自該信號傳輸 器接收一信號。 在一例示性實施例中,一種用於提供三維視訊影像之方 法可包括:具有包含一第一液晶光閥及一第二液晶光閥之 一副二維觀看眼鏡;在少於一毫秒的時間内打開該第一液 晶光閥;在一第一時間段中將該第—液晶光閥保持在一最 大光透射點,關閉該第一液晶光閥,且然後在少於一毫秒 的時間内打開6玄第二液晶光閥;及在一第二時間段中將該 第二液晶光閥保持在一最大光透射點。在一例示性實施例 中,該第一時間段對應於為觀看者之一第一眼呈現一影 像,且該第二時間段對應於為觀看者之一第二眼呈現一影 像。在一例示性實施例中,該方法可包括以一第一預定時 間間隔啟動一信號接收器、判定該信號接收器是否正在自 該信號傳輸1§接收一信號、在該信號接收器在一第二時間 段内未自該信號傳輸器接收到該信號的情況下撤銷啟動該 信號接收器,及在該信號接收器自該信號傳輸器接收到該 信號的情況下以一對應於該信號的間隔打開及關閉該第一 光闊及該第二光閱。在-例示性實施例中,該第-時間段 147659.doc -95- 201118423 為至少兩秒。在一例示性實施例中,該第二時間段為不超 過100毫秒。在一例示性實施例中,該等液晶光閥保持打 開,直至該信號接收器自該信號傳輸器接收一信號。 在一例不性實施例中,一種用於提供三維視訊影像之系 統可包括一副眼鏡’其包含具有一第一液晶光閥之一第一 透鏡及具有—第二液晶光閥之一第二透鏡,料液晶光閥 具有一液晶及小於-毫秒之一打開時間。該系統亦可具有 -控制電路,其可交替地打開該第—液晶光閥及該第二液 SB光閥且將液晶定向保持在一最大光透射點,直至該控 制電路關閉該光閥。在一例示性實施例中,該控制電路經 調適以保持該第一液晶光閥及該第二液晶光閥打開。在一 例示性實施例中’該控制電路保持該等透鏡打開,直至該 控制電路L卜同步信號。在—例示性實施例中,絲 至該等液晶光閥之電壓在正負之間交替。 在-種用於提供三維視訊影像之裝置之一實施例中,— 副三維觀看眼鏡包含-第-液晶光閥及—第二液晶光間, /、中該第-液晶光閥可在少於一毫秒的時間内打開,盆中 該第二液晶光閥可在少於一毫秒的時間内打開m ==亡去?透明透鏡之速率打開及關閉該第二 持該等透了夜“閥。在一實施例中’該控制電路保 一j :丁卜直至该控制電路偵測到一同步信號。在 一貝轭例中,該等液晶光閥在正負之間交替。 在一例示性實施例中,一種用於提供三維視訊 統可包括一副眼鏡,其包含具有_ 。象之糸 、虿第一液晶光閥之_第一 147659.doc -96· 201118423 透鏡及具有一第二液晶光閥之一第二透鏡’該等液晶光閥 具有一液晶及小於一毫秒之一打開時間。該系統亦可包括 一控制電路,其交替地打開該第一液晶光閥及該第二液晶 光閥,且將液晶保持在一最大光透射點,直至該控制電路 關閉該光閥。在一例示性實施例中,一發射器可提供一同 步t號,其中該同步信號之一部分經加密。可操作地連接 至該控制電路之一感測器可經調適以接收該同步信號,且 可僅在接收到一加密信號之後才以對應於該同步信號之一 型樣打開及關閉S亥第一液晶光閥及該第二液晶光閥。 在一例示性實施例中,該同步信號為具有一預定間隔的 一系列脈衝。在一例示性實施例中,該同步信號為具有一 預定間隔的一系列脈衝,且第一預定數目個脈衝打開該第 一液晶光閥,且第二預定數目個脈衝打開該第二液晶光 閥。在-例示性實施例中,該系列脈衝之—部分經加密。 在-例示性實施例中,該系列脈衝包括預定數目個未經加 密脈衝隨後接著預定數目個經加密脈衝。在—例示性實施 例:,僅在接收到兩個連續加密信號之後才以對應於該同 父L號之型樣打開及關閉該第一液晶光閥及該第二液晶 光閥。 在一種用於提供三維視訊影像之方法之—例示性實施例 ::該方法可包括,·具有包含一第一液晶光闕及一第二液 光閥之田J 一,隹镜看眼鏡;在少於一毫秒的時間内打開 該第-液晶光閥,·在-第一時間段中將該第一液晶光閥保 持在-最大光透射點;關閉該第一液晶光閥,且然後在少 147659-doc -97- 201118423 於一毫秒的時間内打開該第二液晶光閥;及在—第二時間 段中將該第二液晶光閥保持在一最大光透射點。在一例示 性實施例中,該第一時間段對應於為觀看者之一第一眼呈 現一影像,且該第二時間段對應於為觀看者之—第二眼呈 現一影像。在一例示性實施例中,一發射器提供一同步信 號,其中5亥同步號之一部分經加密。在一例示性實施例 中,一感測器可操作地連接至該控制電路且經調適以接收 該同步信號,且僅在接收到一加密信號之後才以對應於該 同步信號之一型樣打開及關閉該第一液晶光閥及該第二液 晶光閥。 在一例示性實施例中,該同步信號為具有一預定間隔的 一系列脈衝。在一例示性實施例中,該同步信號為具有一 預定間隔的一系列脈衝,且其中第一預定數目個脈衝打開 該第一液晶光閥,且其中第二預定數目個脈衝打開該第二 液晶光閥。在一例示性實施例中,該系列脈衝之一部分經 加密。在一例示性實施例中,該系列脈衝包括預定數目個 未經加密脈衝隨後接著預定數目個經加密脈衝。在一例示 性實施例中,僅在接收到兩個連續加密信號之後才以對應 於該同步信號之一型樣打開及關閉該第一液晶光閥及該第 一液晶光闊。 應理解,在不脫離本發明之範疇的情況下,可對上述内 容進行改變。儘管已展示且描述了具體實施例,但在不脫 離本發明之精神或教示的情況下,熟習此項技術者可進行 修改。所描述的實施例僅為例示性的且非限制性的。許多 147659.doc -98 · 201118423 改變及修改係可能的且在本發明之範疇内。此外,該等例 示性實施例之一或多個元素可全部或部分地與其他例示性 實施例中之一或多者之一或多個元素組合或取代其他例示 性實施例中之一或多者之一或多個元素。因此,保護範嘴 不限於所描述之實施例’而是僅受以下申請專利範圍限 制’申請專利範圍之範疇應包括申請專利範圍之標的的所 有專效物。 【圖式簡單說明】 圖1為一種用於提供三維影像之系統之一例示性實施例 的說明; 圖2為一種用於操作圖1之系統之方法之一例示性實施例 的流程圖; 圖3為圖2之方法之操作的圖形說明; 圖4為圖2之方法之操作之一例示性實驗實施例的圖形說 明; 圖5為一種用於操作圖1之系統之方法之—例示性實施例 的流程圖; 圖6為一種用於操作圖1之系統之方法之—例示性實施例 的流程圖; 圖7為一種用於操作圖1之系統之方法之—例示性實施例 的流程圖; 圖8為圖7之方法之操作的圖形說明; 圖9為一種用於操作圖1之系統之方法之—例示性實施例 的流程圖; 147659.doc .99- 201118423 圖10為圖9之方法之操作的圖形說明; 圖11為一種用於操作圖1之系統之方法之一例示性實施 例的流程圖; 圖12為圖11之方法之操作的圖形說明; 圖13為一種用於操作圖1之系統之方法之一例示性實施 例的流程圖; 圖14為圖π之方法之操作的圖形說明; 圖15為一種用於操作圖1之系統之方法之一例示性實施 例的流程圖; 圖16為一種用於操作圖1之系統之方法之一例示性實施 例的說明; 圖17為圖1之系統的三維眼鏡之一例示性實施例的說 明; 圖18、圖18a、圖1朴、圖18c及圖18d為三維眼鏡之一例 示性實施例的示意說明; 圖19為圖18、圖i8a、圖丨⑼、圖18c及圖18d之三維眼鏡 的光閥控制器之數位控制的類比開關的示意說明; 圖20為圖18、圖i8a、圖18b、圖i8c及圖18d之三維眼鏡 的光閥控制器之數位控制的類比開關、光閥及CPU之控制 信號的示意說明; 圖21為圖18、圖18a、圖18b、圖及圖18d之三維眼鏡 之操作之一例示性實施例的流程圖說明; 圖22為圖18、圖i8a、圖18b、圖18c及圖18d之三維眼鏡 之操作之一例示性實施例的圖形說明; 147659.doc -100- 201118423 圖23為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之操祚I一例示性實施例的流程圖說明; 圖24為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之操祚I —例示性實施例的圖形說明; 圖25為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之操作之一例示性實施例的流程圖說明; 圖26爲圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之操作之一例示性實施例的圖形說明; 圖27為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之操作之—例示性實施例的流程圖說明; 圖28為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之操作之一例示性實施例的圖形說明; 圖29為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之操作之一例示性實施例的圖形說明; 圖30、圖30a、圖30b及圖30c為三維眼鏡之一例示性實 施例的示意說明; 圖31為圖30、圖30a、圖30b及圖30c之三維眼鏡的光間 控制器之數位控制的類比開關的示意說明; 圖32為圖30'圖30a、圖30b及圖30c之三維眼鏡的光間 控制器之數位控制的類比開關之操作的示意說明; 圖33為圖30、圖30a、圖30b及圖30c之三維眼鏡之操作 之一例示性實施例的流程圖說明; 圖34為圖30、圖30a、圖30b及圖30c之三維眼鏡之操作 之一例示性實施例的圖形說明; 147659.doc -101 - 201118423 圖35為圖3〇、 〇a、圖3〇b及圖3〇c之三維 *限鏡之操作 之一例不性實施例的流程圖說明; 圖36為圖3〇、圖3〇a、圖3〇b及圖3〇c之三維眼鏡之操作 之一例示性實施例的圖形說明; 圖37為圖3〇、圖3〇a、圖3〇b及圖3〇c之三 、現之4呆作 之一例不性實施例的流程圖說明; 圖38為圖30、圖30a、圖30b及圖3〇c之三維眼鏡之操作 之一例示性實施例的圖形說明; 圖39為圖3〇、圖3〇a、圖3〇b及圖3〇c之三維眼鏡之操作 之一例示性實施例的流程圖說明; 圖4〇為圖30、圖30a、圖30b及圖30c之三維眼鏡之操作 之一例示性實施例的流程圖說明; 圖41為圖30、圖30a、圖通及圖3〇c之三維眼鏡之操作 之一例示性實施例的圖形說明; 圖42為圖30、圖3〇a、圖3〇b及圖3〇c之三維眼鏡之操作 之一例示性實施例的流程圖說明; ’、 圖43為圖30、ffi30a、圖鳥及圖3〇c之三維眼鏡之操作 之一例示性實施例的圖形說明; ’、 圖44為三維眼鏡之一例示性實施例的俯視圖; 圖45為圖44之三維眼鏡的後視圖; 圖46為圖44之三維眼鏡的仰視圖; 圖47為圖44之三维眼鏡的正視圖; 圖48為圖44之三維眼鏡的透視圖; 鏡之電池的外殼蓋 圖49為使用鑰匙來操縱圖44之三维 147659.doc •102- 201118423 的透視圖; 圖50為用以操縱圖44之三維眼鏡之電池的外殼蓋之鑰匙 的透視圖; 圖51為圖44之三維眼鏡之電池的外殼蓋之透視圖; 圖52為圖44之三維眼鏡的側視圖; 圖53為圖44之三維眼鏡之外殼蓋、電池及〇型環密封件 之側視透視圖; 圖54為圖44之二維眼鏡之外殼蓋、電池及〇型環密封件 之仰視透視圖; 圖55為圖44之眼鏡之一替代實施例及用以操縱圖5〇之外 设蓋的錄地之一替代實施例的透視圖; 圖56為一在例示性實施例中之一或多者中使用的信號感 測器之一例示性實施例之示意說明; 圖57為一適合使用於圖56之信號感測器的例示性資料信 號之圖形說明; 圖58為一種用於調節用於三維眼鏡中之〆同步信號之系 統之一例示性實施例的方塊圖; 圖59為一種用於調節用於三維眼鏡中之一同步信號之系 • 統之一例示性實施例的方塊圖; - 圖59a至圖59d為圖58及圖59之系統之操作之例示性實驗 結果的圖形說明; 圖60、圖60a及圖60b為三維眼鏡之—例示性實施例之示 意說明; 圖61為一種用於調節用於三維眼鏡中之一同步作號之系 147659.doc -103- 201118423 統之一例示性實施例的方塊圖; 圖62為一種供佩戴三維眼鏡之一使用者觀看三維影像之 系統之一例示性實施例的方塊圖; 圖63及圖64為一種用於與三維眼鏡一起使用之顯示系統 之一例示性實施例的方塊圖; 圖65及圖66為圖63及圖64之顯示系統之操作之例示性實 施例的圖形說明; 圖67至圖70為圖63及圖64之顯示系統之操作之例示性實 施例的流程圖說明; 圖71為三維眼鏡之一光閥總成之一例示性實施例的說 明; 圖72為一種用於操作圖71之光閥總成之方法之一例示性 實施例的流程圖說明;及 圖73為二維眼鏡之一例示性實施例之說明。 【主要元件符號說明】 100 系統 102 電影螢幕 104 三維眼鏡 106 左光閥 108 右光閥 110 信號傳輸器 110a 中央處理單元(CPU) 112 信號感測器 114 中央處理單元 147659.doc -104· 201118423 116 左光閥控制器 118 右光閥控制器 120 電池 122 電池感測器 130 投影器 200 左右光閥方法/左右鏡頭光閥序列 202ba 高電壓 202bb 無電壓 202bc 小止擋電壓 202da 高電壓 202db 無電壓 202dc 小止擋電壓 400 光透射 402 光透射 500 操作方法 600 操作方法 700 操作方法 800 時脈信號 802 時脈循環 804 組態資料信號 806 資料脈衝信號 900 操作方法 902a 時脈信號 902aa 高脈衝 I47659.doc -105- 201118423 1100 暖機操作方法 1104a 電壓信號 1104b 電壓信號 1300 方法 1304a 電壓信號 1304b 電壓信號 1500 監視電池120之方法 1600 測試Is 1600a 信號傳輸器 1600b 測試信號 1700 電荷泵 1800 三維眼鏡 1802 左光閥 1804 右光閥 1806 左光閥控制器 1808 右光閥控制器 1810 中央處理單元 1812 電池感測器 1814 信號感測器 1816 電荷泵 1900 功能圖 2100 方法 2300 暖機操作方法 2304a 電壓信號 -106- 147659.doc 201118423 2304b 電壓信號 2500 操作方法 2504a 電壓信號 2504b 電壓信號 2700 監視電池120之方法 3000 三維眼鏡 3002 左光閥 3004 右光閥 3006 左光閥控制器 3008 右光閥控制器 3010 共同光閥控制器 3012 中央處理單元 3014 信號感測器 3016 電荷泵 3018 電壓供應器 3100 功能圖 3300 方法/正常執行操作模式 3500 暖機操作方法 3700 操作方法 3900 操作方法 4000 操作方法 4200 操作方法 4402 框架前部 4402a 右翼 147659.doc -107- 201118423 4402b 左翼 4404 鼻樑架 4406 右鏡腿 4406a 隆脊 4408 左鏡腿 4408a 隆脊 4410 右透鏡開口 4412 左透鏡開口 4414 蓋 4415 蓋内部 4416 0型環密封件 4417 觸點 4418 楔緊元件 4420 凹陷 4422 鑰匙 4424 突起 4426 錄匙 5600 信號感測器 5602 窄帶通濾波器 5604 解碼器 5604 CPU 5606 信號傳輸器 5700 信號 5702 資料位元 147659.doc -108- 201118423 5704 時脈脈衝 5800 系統 5802 信號感測器 5804 正規器 5806 增益控制元件 5810 放大器及脈衝調節元件 5812 同步振幅及形狀處理單元 5902 同步信號 5904 信號 5906 信號 5908 回饋控制信號 6000 三維眼鏡 6002 信號感測器 6100 系統 6102 動態範圍減小及對比度增強元件 6200 用於觀看一顯示器上之三維影像之系 統 6202 投影器 6202a 内建檔案伺服器 6204 顯不表面 6206 網路 6300 顯示系統 6305 光調變器陣列 6310 光源 147659.doc -109- 201118423 6315 顯示平面 6320 控制器 6325 前端單元 6330 記憶體 6350 序列產生器 6355 同步信號產生器 6360 脈寬調變(PWM)單元 6510 左眼光閥狀態 6520 右眼光閥狀態 6530 高階視圖/狀態圖 6540 光閥狀態之單一循環 6542 間隔 6544 狀態轉變間隔 6546 間隔 6548 方框 6550 脈衝 6552 脈衝 6554 方框 6556 間隔 6558 方框 6560 間隔 6600 同步信號 6605 時間 6700 方法 147659.doc -110- 201118423 6800 方法 6900 方法 7000 方法 7100 光閥系統 7105 光閥總成 7110 觀看光閥元件 7115 顯示光閥元件 7120 光閥控制器 7200 方法 7300 三維眼鏡 7302 左光閥總成 7304 右光閥總成 7306 控制器 7308 可再充電電池 7310 太陽能電池 7312 眼鏡框架 A 控制輸入信號/微控制器之輸出信號/ 控制信號 B 控制輸入信號/微控制器之輸出信號/ 控制信號 C 微控制器之輸出信號/控制信號 Cl 電容器 C2 電容器 C3 電容器 147659.doc -111 - 201118423 C4 電容器 C5 電容器 C6 電容器 C7 電容器 C8 電容器 C9 電容器 C10 電容器 C11 電容器 C12 電容器 C13 電容器 C14 電容器 C15 電容器 C100 電容器 D 微控制 D1 肖特基 D2 光電二 D3 肖特基 D5 肖特基 D6 肖特基 D7 齊納二 E 微控制 F 輸出信 G 輸出信 INHIBIT(INH) 控制輸 器之輸出信號/控制信號 二極體 極體 二極體 二極體 二極體 極體 器之輸出信號/控制信號 號 號 入信號 147659.doc -112- 201118423 IN_A 輸入信號 IN_B 輸入信號 LI 電感器 LCD1 左透鏡/左光閥 LCD2 右透鏡/右光閥 Qi MOSFET Q2 電晶體 Q100 場效電晶體 Q101 NPN電晶體/輸出偵測器 R1 電阻器 R2 電阻器 R3 電阻器 R4 電阻器 R5 電阻器 R6 電阻器 R7 電阻器 R8 分壓器組件/電阻器 R9 電阻器 RIO 分壓器組件/電阻器 Rll 電阻器 R12 電阻器 R13 電阻器 R14 電阻器 R15 電阻器 147659.doc -113- 201118423 R16 電阻器 R100 電阻器 R101 電阻器 R102 電阻器 R511 電阻器 R512 電阻器 RA3 輸入控制信號 RA4 控制信號 RC4 控制信號 RC5 控制信號 U1 數位控制類比開關 U2 數位控制類比開關 U3 微控制器/運算放大器 U4 數位控制類比開關 U4 微控制器 U5 運算放大器 U5-1 運算放大器 U5-2 運算放大器 U6 運算放大器 U6 電力偵測器/數位控制類比開關 VEE 輸入電壓 X 輸出信號 XO 開關I/O信號 XI 開關I/O信號 147659.doc -114- 201118423 X2 開關1/◦信號 X3 開關I/O信號 Y 輸出信號 Y0 開關I/O信號 Y1 開關I/O信號 Y2 開關I/O信號 Y3 開關I/O信號 Z 輸出信號 zo 開關I/O信號 Z1 開關I/O信號 I47659.doc -115-Texas Instruments MSP430F2011PWR integrated circuit from Instruments. In an exemplary embodiment, microcontroller U4 is also operatively coupled to CPU 1810. In an exemplary embodiment, photodiode D2 of signal sensor 6〇〇2 is capable of detecting an electromagnetic signal having a component in the visible spectrum. In an exemplary embodiment, gain control element 58A6 includes field effect transistor Q100. In an exemplary embodiment, the 'amplifier and pulse conditioning component 581' includes operational amplifiers U5 and U6, resistors R2, R3, R5, R6, R7, R10, R12, R14, and R10, capacitors C5, C6, C7, and C8. , cl〇, C12, C14 and C15, and Schottky barrier diode D1. In an exemplary embodiment, the sync amplitude and shape processing unit 58 includes NPN transistor Q101, resistors R1〇〇, ^, and (10), and capacitors C13 and C100. In an exemplary embodiment, during operation of the 3D glasses 6 信号, the signal sensor 6002 receives signals from the signal transmitter 11 , which may, for example, include a configuration for operating the 3D glasses 6000 Information and / or synchronization letter 147659. Doc -66 - 201118423. In an exemplary embodiment, during operation of the 3D glasses, Q100 controls the signal output of the photodiode D2. In detail, in an exemplary embodiment, when the voltage on the gate of Q100 (which is 0V on cu is 0V: Q100 is turned off and the signal output of the photodiode is not attenuated. With Q100 The voltage on the gate increases, Q1〇〇 turns on and conducts part of the current from the photodiode D2 to ground, thereby attenuating the signal output of the photodiode: D2. The output detector Ql〇1 detects from The magnitude of the resulting output signal of the photodiode D2 and the voltage across the gate of the 〇1〇〇 are adjusted to stabilize the output signal from the photodiode D2. In an exemplary embodiment, in the 3D glasses 6〇〇 During operation, if the signal output of the photodiode D2 has excessive amplitude, the output from the amplifier and the pulse adjusting component 5810 (including the field effect transistor 卩1〇〇) will start a large swing voltage "when the amplifier and pulse When the swing voltage of the adjustment element 581〇 (including the field effect transistor Q100) becomes too high, Q1〇1 transmits an appropriately modified voltage b number to the gate of Q 1 ,, which will controllably flow through One of the currents of Q 1 is properly grounded to ground. In an exemplary embodiment, the greater the voltage overflow (v〇itage 〇verfi〇w) at the output of the amplifier and pulse conditioning component 5810 during operation of the two-dimensional glasses 6000, via the photodiode D2 The greater the percentage of current that Q1 conducts to ground, the result 'The resulting signal that is subsequently supplied to the amplifier and pulse conditioning component 5810 does not overdrive the operational amplifiers U5 and U6 to saturation. In an exemplary embodiment, During operation of the 3D glasses 6000, the microcontroller U4 compares the input signals IN_a and ιν_Β to determine if there is a pass 147659. Doc •67- 201118423 Into the sync pulse. If the microcontroller u turns on the left light valve to delete the synchronous heartbeat pulse for the hit, · gate pulse, the microcontroller converts the incoming half pulse into a 2 pulse sync pulse vw or if The microcontroller U4 determines that the incoming sync pulse is for opening one of the right shutters 〇4 and the microcontroller converts the (four) sync pulse into a 3-pulse sync pulse: therefore the micro-control U4 decodes the incoming sync pulse Delete the left light valve with _ and delete it with the right (four). 4 Glasses In an exemplary embodiment, during operation of the 3D glasses 6 微, the microcontroller U4 provides an additional loop, even if the sync signal does not exist during the period of time (such as if The wearer of the 3D glasses is gazing away from the direction of the incoming sync symbol, and the lock loop also enables the 3D glasses 6000 to operate. Referring now to Figure 61, an exemplary embodiment of a system 61 for adjusting a synchronization signal for use in a three-dimensional eyeglass device 1, 4, 1800, 3000 or 6000 includes sensing a synchronization signal from a signal transmitter 110. The nickname for transmission is transmitted |§ 5802. In an exemplary embodiment, signal sensor 58A is adapted to sense the transmission of a synchronization signal having a component primarily in the visible portion of the electromagnetic spectrum from signal transmitter 11A. A conventional dynamic range reduction and contrast enhancement element 6丨〇2 is operatively coupled to the signal sensor 5 802 and the 3D glasses 3 CPU 3 012 for reducing the signal sensor detection The measured dynamic range of the sync signal and the enhancement of the contrast within the sync signal 'and the normalized sync signal is transmitted to the CPU. Alternatively, CPU 114 and/or 1810 may be substituted for CPU 3012, or cpu 114 and/or CPU 1810 may be used in addition to CPU 3012. 147659. Doc -68· 201118423 In an exemplary embodiment, the use of dynamic range reduction and contrast enhancement element 6102 in 3D glasses 3000 enhances the 3D glasses sensing and processing transmitted by signal transmitter 110 having predominantly in the electromagnetic spectrum. The ability to synchronize signals with components in the visible portion. Referring now to Figure 62, an exemplary embodiment of a system 6200 for viewing a three-dimensional image on a display includes transmitting a video and a synchronization signal for a left eye and a right eye of a user to a display surface. Projector 6202 on 62〇4. A user of system 6200 can wear 3D glasses 1〇4, 1800, 3 000 or 6000 (which may be further modified depending on or may not be modified in accordance with the teachings of the embodiments of Figures 58-61) to thereby controllably permit left The eye, shirt image and right eye image are presented to the user's left and right eyes. In one example, the projector 62〇2 can be commercially available to make the projector a three-dimensional digital light source processing projector. As will be appreciated by those skilled in the art, the Texas Instruments three-dimensional digital light source processing projector operates by dividing a 12 Hz output of a projector between the left and right eyes (each 60 Hz). ), while the sync signal is transmitted during the ultra-short dark time between active data transmissions. In this manner, images for the left and right eyes of the viewer are presented, and the images are interleaved with the synchronization signals used to direct the three-dimensional eyeglasses to open the left or right viewing light valves. In an exemplary embodiment, the Texas Instrumems ("TI") three-dimensional digital light source processing scene can be a j-disc digital light source processing projection system and/or a 3-wafer digital light source processing projection system. . In an exemplary embodiment, the synchronization signals generated by projector 6202 include electromagnetic energy primarily within the visible spectrum. 147659. Doc-69-201118423 In an exemplary embodiment, projector 62〇2 includes a TI 3 wafer digital light source processing projection system and a built-in file server 62〇2a operatively coupled to the built-in file server To the cloud or other type of network 6206 for distributing the three-dimensional image to the projector 6202. In an exemplary embodiment, system 62 is further adapted to provide support for one or more of the following two-dimensional formats: sideby_side; 2) over_under; 3) checkerboard Type; sentence flipping; and 5) multiview video coding. In an exemplary embodiment, system 62 is further adapted to provide images to users of the system at a rate of 96 frames per second ("FPS"), 12 〇 fPS4M4 FPS. Referring now to Figures 63 and 64, an exemplary embodiment of a projection display system 63 includes a spatial light modulator, and more particularly, a light modulator array 6305, wherein the light modulator array 63 is The individual optical modulators of 5 take a state corresponding to the image data of one of the images being displayed by display system 6300. The light modulator array 6305 can, for example, comprise a digital micromirror device ("DMD"), wherein each light modulator is a positioning micromirror. For example, in a display system in which the light modulator in the light modulator array 6305 is a micromirror light modulator, light from a light source 63 1 可 can be reflected off or reflected toward a display plane 63 15 . The combination of the reflected light from the optical modulator array 63〇5 produces an image corresponding to one of the image data. A controller 6320 coordinates the loading of the image data into the optical modulator array 63〇5, controls the light source 6310, and the like. The controller 632 can be coupled to the front end unit 6325, which can be responsible for the operation of the input video signal, such as converting the analog input signal into a digital input signal, Y/c separation, and automatic color 147659. Doc *70- 201118423 degree control, automatic color killer (automatic color killer). The front end unit 6325 can then provide the processed video signal to the controller 6320, which can contain image data from a plurality of video streams to be displayed. For example, when used as a stereoscopic display system, the front end unit 6325 can provide image data from two video streams to the controller 6320' each stream containing images of different viewing angles of the same scene. Alternatively, when used as a multi-view display system, the end unit 6325 can provide image data from a plurality of video streams to the controller 6320, wherein each stream contains images of non-related content. . Controller 6320 can be a special application integrated circuit ("ASIC"), a general purpose processor, etc. and can be used to control the general operation of projection display system 63. A memory 6330 can be used to store image data, sequence color data, and various other information used in the display of the image. As illustrated in FIG. 64, the controller 632A may include a sequence generator 635A, a sync signal generator 6355, and a pulse width modulation (pwM) unit 6360. The sequence generator 6350 can be used to generate a color sequence (c〇1〇r called this, which specifies the color and duration to be produced by the light source 631G, and controls the image data loaded into the light modulator array 6305. The out-of-sequence 'sequence generator 6350 can also have the ability to reorder and reorganize the color sequences (and portions thereof) to help reduce noise (PWM noise) that may adversely affect quality. The 6355 can generate a signal that causes the 3D glasses (eg, the 2D glasses to be called, 18()(), 3_ or 6_) to be synchronized with the image being displayed. The synchronization signals can be inserted into the sequence generator 635 〇 之 147659. The doc 71 201118423 is in the color sequence and can then be displayed by the projection display system 63. According to an embodiment, because the synchronization signals generated by the synchronization signal generator (10) are displayed by the projection display system 6300, typically in a 3D glasses (eg, which may include 3D glasses 104, 1800, 3000 or 6000) When the viewing state is broken (for example, when the light valves of the 3D glasses (for example, they may include 3D glasses 〇4, 1800, 3000 or 6000) are all in the off state), the synchronization signals are inserted into the color sequence. This may allow the synchronization signal to be detected by 3D glasses (e.g., 'which may include 2D glasses 1〇4, 1800, 3 000 or 6000), but prevents the user from seeing the synchronization signal. The color sequence containing the sync signal can be provided to a PWM unit 6360 which converts the color sequence into a pwM sequence which is provided to the optical modulator array 63〇5 and the source 〇丨〇. The image projected by projection display system 6300 can be viewed by a user wearing, for example, three-dimensional eyepieces 104, 1800, 30, or 6000. Other examples of viewer mechanisms may be goggles, eyeglasses, helmets with eyepieces, and the like, modified in accordance with the teachings of this illustrative embodiment. The viewer mechanisms can include one or more sensors that allow the viewer mechanism to detect synchronization signals displayed by the projection display system 63. The viewer mechanisms can utilize a variety of light valves to enable and disable viewing of the image displayed by the projection display system. The light valves may be electronic light valves, mechanical light valves, liquid crystal light valves, and the like. The electronic light valve can block or pass light, or can change the polarity of the electronic polarizer based on the polarity of the applied potential. The liquid crystal light valve can be operated in a similar manner 'where the potential changes the orientation of the liquid crystal. Mechanical light valves block or pass light, for example, when a motor moves the mechanical light blocker into and out of position. 147659. Doc -72· 201118423 There may be an advantage if the projection display system 6300 operates at a fixed rate based on, for example, a crystal reference. The frame rate of the signal input to the projection display system can be converted to match the frame rate of the projection display system 6300. This conversion process typically discards and/or adds multiple rows to compensate for any timing differences. Finally, it may be necessary to repeat and/or discard a complete frame. From the standpoint of the viewer mechanism, one advantage may be that it is easier to track the dark time of a PWM sequence and synchronize the synchronization signals. In addition, this allows the viewer mechanism to filter out interference and remain locked to the PWM sequence for extended periods of time. This may occur when the viewer mechanism fails to detect the sync signal. For example, this can occur under normal operating conditions where the detector on the viewer mechanism is blocked or the direction is off the display plane. 65 and 66, which illustrate a viewer mechanism (eg, which may be 3D glasses 104, 1800, 3000 or 6000, which may or may not be modified in accordance with the teachings of FIGS. 58-61) The left eye light valve state 6510 and the right eye light valve state 6520, and one of the high frequency views 6530 of the PWM sequence generated by, for example, the pwm unit. In an exemplary embodiment, at any given time, there should be only a viewer mechanism (eg, it can be 3D glasses 104, 1800, 3000, or 6000, which may or may not be based on the teachings of Figure to Figure 61). One of the two light valves modified) is open. However, in an exemplary embodiment, the viewer mechanism (eg, which may be 3D glasses 104, 1800, 3000, or 6000, which may or may not be modified in accordance with the teachings of FIGS. 58-61), may be Can be turned off or on at the same time. In an exemplary embodiment, the viewer mechanism (eg, it can be three dimensional 147659. Doc -73· 201118423 glasses 104, 1800, 3000 or 6000 'which may or may not be modified according to the teachings of Figures 58 to 61) a single cycle 654 of light valve states including left eye light valve state 65 10 and right eye light valve A single loop of state 6520. At the beginning of the cycle 6540, the left eye light valve transitions from the closed state to the open state, and an interval 6542 illustrates the time span at which the state transition occurs. After a period of time, the left eye light valve transitions back to a closed state during a state transition interval 6544. When the left-eye light valve transitions from the open state to the closed state, the light valve state of the right eye begins to transition from the closed state to the open state during the state transition interval 6544. When the left eye light valve is opened during an interval 6546, image data associated with an image to be viewed by the left eye can be displayed. Therefore, the PWM sequence contains control commands for displaying images intended for viewing by the left eye. A state diagram 6 5 3 0 includes a block 6548 representing a p w M control command for displaying a left eye image, which covers an interval 6546. Interval 6546 typically begins after the left eye light valve completes its transition to the open state. This can be attributed to the open state of the viewer mechanism (eg, which can be 3D glasses 1〇4, 18〇〇, 3〇〇〇 or 6000, which may or may not be modified according to the teachings of Figures 58-61) versus. A limited transition time between closed states. A similar delay occurs after the left eye light valve begins its transition to the closed state. Then, when the left eye light valve is closed and the right eye light valve is turned on, for example, during pulses 655 〇 and 6552, an image data state diagram 6530 associated with an image to be viewed by the right eye may be displayed including a representation for displaying a right eye. Block 5554 of the image's pwm control instruction, which covers an interval of 6556. In state diagram 6530, the PWM sequence 6548 for the left eye is used for the right eye 147659. The time between the PWM sequence 6554 of doc -74- 201118423 can usually be left blank without any pwM control instructions. For example, block 6558 occurs during a light valve transition time, such as intervals 6544 and 6560. This can be done, for example, to prevent the left eye from seeing blurred left eye data during the interval 6544, when the left eye light valve is turned from the open state to the closed state, and when the right eye diaphragm is turned from the open state to the closed state during the interval 656G In the state, the left eye sees blurred right eye data. These time intervals can then be used to display the synchronization signal. Rather than being empty and without any PWM control commands, the time indicated by block 6558 may contain the PWM control commands required to display the sync signal to & synchronize (4) any data and operating mode information that may be required. As illustrated in Figure 66, during the time interval of block 6558, an exemplary synchronization signal 66A can be transmitted and displayed that includes a simple timing synchronization that can be used to indicate when a cycle is below the two-light valve state. signal. For example, when the viewer mechanism (for example, it may be 3D glasses 1〇4, 丨_, 3_ or _〇, which may or may not be modified according to the teaching of _ to FIG. 61), when the synchronization signal is detected The viewer mechanism can start the transition from the closed state of the left eye to the open state, the amount of time that the material is specified (possibly pre-programmed), and the transition from the open state to the closed state of the left eye light valve is started. The transition from the closed state to the open state, the amount of time required to maintain a prescribed (possibly pre-programmed), and the transition from the open state to the closed state of the right eye. In an exemplary embodiment, the left eye light valve transition and the right eye light valve transition may occur simultaneously or may be interleaved as desired. The synchronization signal illustrated in Figure 66, which may occur during block (10), may be, for example, approximately I47659 after the P W Μ control sequence ends at approximately time 6 6 〇 5. Doc -75- 201118423 Starts at 270 microseconds. For example, the sync signal 66 can then transition to a state for about 6 micro-privates, and then transition back to a low state for about 24 microseconds. For example, a, the sync signal 66〇〇 can then transition back to the high state for about 6 microseconds, and then transition back to the low state until the block "ends." It can display sync signals that may be more complicated. For example, the synchronization signal may specify the duration of the light valve opening, the time at which the transition should begin, which light should be first shifted, the operating mode of the display system (such as three-dimensional image or multi-view), control data, capital Stem. tL Temple. In addition, the synchronizing signal can be encoded such that only authorized viewers can broadcast "I, ^ the pirate mechanism (eg, it can be 3D glasses 104, 1800, 3000 or 6000, 1+ /, according to or not according to Figure 58) As shown in the figure, it can be modified to be able to process the information contained in the synchronization signal. The overall complexity of the synchronization signal can depend on many factors, including: the required function of the synchronization signal, maintaining the system The need for control of the peripheral devices used, the available synchronization _ riding J J5 彳 彳 持续 duration, etc. The synchronization signal can be displayed as any color that can be generated by the display system. In the display system using a solid color sequence (the Medium, single-color can be used with the color wheel display system) Pages are not synchronized. For example, in - use red, green, blue, cyan, magenta, in the primary color display system, 七^ & Multi-signal. However, in the no-white can be used to display the synchronization * A case of the inconsistency, the color can be yellow, because the page color is one of the brighter colors, one is π ^, and the U is one of the And use Its negative impact on the drying of other colors can be small. Or t can not be used to display synchronization ~ # use "h dark color na blue" "tiger. Use blue can be better because of use Compared with 147659. Doc -76- 201118423 Dark colors make the sync signal less likely to be displayed by the viewer in single-color, but multiple colors can be used. For example, information may be encoded in a color used to display the sync signal. Any color can be used in a display system that does not utilize a fixed color sequence. In addition, although a seven-color multi-primary display system is discussed, other display systems having different numbers can be used, and should not be construed as being included in the scope or spirit of the exemplary embodiment. In an exemplary embodiment, 焱τ^μΤ is in the left eye light valve and the right eye is wide in order to permit the display of the synchronization signal and prevent the viewer from detecting the synchronization. The sync signal is displayed when the status is off. As illustrated in Figure 65, state diagram 6530 shows - a block 6558 indicating a PWM control command for displaying a synchronization signal, which is included in interval 6544 and in the coffee. The duration of the intervals (10) and (iv) may depend on a number of factors, such as the complexity of the synchronization signal, the presence of any code of the synchronization signal, and the information carried in the synchronization signal. Further, the duration of the intervals 6544 and 6560 may depend on factors such as the light valve transition time. For example, 'if the light valve transition time is long, the interval data and 6560 should also be long to ensure (4) turn off before the synchronization signal is displayed" or 'do not need to generate a synchronization signal in the entire interval indicated by block 6558. . It is desirable for the viewer to be unable to detect the sync signal, but when the brightness of the black level of the display system is moderately increased, the display of the sync signal may be detectable. Referring now to Figure 67, in an exemplary embodiment, during operation of system 63 (9), the system implements a method 67, in which, in 67〇5, a first video stream is displayed. First—image. In an exemplary implementation 147659. Doc •77· 201118423 In the 6705 towel, progressively or staggered, limited (such as sea _ ± view a shirt image. However, can require the display of the second:; continued t-limit, image quality restrictions, etc.) Can - image - single - field wide. For example, after the first image of the first image stream of the first image stream is displayed, and then in the 6710, the second image of the second image stream is displayed. Once again, "image, or only 1 & push, ..., the number of the second image and the part: the part. However, the displayed first image 1 and the displayed second image The amount can be different from the time. 々日丨力. Or, ^: After the first image and the second image, then the system 6300 can display a synchronization signal in 6715. However, the display of the same teacher can be At any time, v is known and used to display the synchronization time can be when the projection leader is in the "unknown" "the tiger" - the case is not only the viewer of the system may detect the synchronization signal. The eyepiece, therefore, can display the synchronization signal projection frequency every time the electronic light number is used, and the light valve is closed, because the (closed) light valve is used, for example, during the operation, M^r ^ ^ η ^ ^ See the duration of the ( (which is the projection; two: the mechanism (for example, it can be 3D glasses -, 〇〇 or 6_ ' which may or may not be taught according to Figure 58 to Figure Q Modifications) Both are known to be affixed to the rules) when the first valve will be closed. The shirt display system 6300 does not necessarily need A 7 name a, to determine when to turn off the light for proper operation ^ pass-hang 'as long as there is no intention to use it for the period of any of the PWM control sequences (blocking, box 6558) The sync signal is displayed at the beginning or end of the view, view 147659. Doc -78- 201118423 The viewer mechanism (for example, it may be a 3D glasses 1〇4, 18〇〇, 3〇〇〇 or 6000, which may or may not be modified according to the teachings of Figures 58-61) It is possible to set the time of the light valve transition to mask out the sync k number. Once in 6715, the projection display system 63 has displayed the synchronization signal, the projection display system can return to display the image (or portion of the image) from the first video stream and the first video stream. Referring now to Figure 68, in an exemplary embodiment, during operation of system 63, the system implements a method 68 in which the viewer mechanism (in 68〇5 and 68 1 0) For example, it may be a 3D glasses ^^8(8), 3000 or 6000, which may or may not be modified according to the teachings of Figure to Figure 61) to find a synchronization signal (in 6805) and check to see what the mechanism detects. Whether the G number is a sync signal (in 68丨〇). If the signal is not synchronized with the 'number', then the device may be 3D glasses 4, 1800, 3000 or 6000, which may or may not be modified according to the teachings of the figures "to 61". Looking for a synchronization signal in 6805. If the signal is a synchronization signal, the viewer mechanism (for example, it may be two-dimensional glasses 104, 18, 3000 or 6000, which may or may not be according to Figures 58-61) The teachings may be modified to wait for a specified amount of time (in 6815), and then perform a prescribed first action (in 6820) such as changing the state transition. The viewer mechanism (eg, it may be 3D glasses 104, 1800) , 3000 or 6 〇〇〇 'which may or may not be modified according to the teachings of Figures 58 to 61) may then wait for another specified amount of time (in 6825), and then perform another prescribed second action (at 683〇). After the second action of the regulation is completed, the viewer mechanism (for example, it can be 3D glasses 1〇4, 147659. Doc • 79- 201118423 1800, 3000 or 6 000' may or may not be modified according to the teachings of Figures 58-61) may return to the search sync signal in 6805. Referring now to Figure 69, in an exemplary embodiment, during operation of system 63, the system implements a method 6900. In the method, in 6906, a synchronization signal associated with a left eye image is displayed. (in 69〇5), then the left eye image is displayed in 6910. After displaying the left eye image in 67 ,, in 6915, display system 6300 can display a synchronization signal associated with a right eye image, which is then displayed in 6920. In an exemplary embodiment, method 6900 can be used in a display system that may not be able to ensure detection of synchronization signals. In this display system, the previous sync signal cannot be used to determine when to transition, and only when an associated sync signal is detected. Referring now to Figure 70', in an exemplary embodiment, during operation of system 63, the system implements a method 7000 in which a sync-synchronization signal is detected at 7〇〇5. In 7005, if the synchronization signal contains a rarely occurring start sequence and/or stop sequence, it can assist in the measurement of the synchronization signal. In addition, the right is only in the viewer mechanism (for example, it can be 3D glasses 104 1800, 3000). Or 6000, which may or may not be modified according to the teachings of FIG. 6 to FIG. 61. When the specified state (such as the shutter of the viewer mechanism is closed), the synchronization signal is displayed, and the control hardware in the viewer mechanism is It is configured to attempt synchronous signal detection while it is in a 敎 state. Once viewed n (for example, it may be 3D glasses iG4, deleted, face or side, which may or may not be modified according to the teachings of Figures 58-61) Side-to-synchronization signal 'completely receiving synchronization in 7010 signal. If there is 147659. Doc •80· 201118423 Necessary, in 7015, the sync signal can be decoded. After receiving and decoding the synchronization signal, if desired, in 7020, the viewer mechanism (eg, it may be 3D glasses 104, 1800, 3000, or 6 〇〇〇, which may or may not be in accordance with the teachings of FIGS. 58-61) Modifications can be performed by actions specified by the synchronization signal or specified in the synchronization signal. In an exemplary embodiment, the teachings of the systems described above with reference to Figures 63-7 can be incorporated, in whole or in part, into system 62 and/or in place of all or some of system 6220. Referring now to Figure 71, an optical valve system 7 (e.g., which may be used in combination with one or more of the exemplary embodiments described above with reference to Figures 1 through 70) includes an example embodiment comprising A light valve assembly 7105 operatively coupled to a light valve controller 7120 having one or more viewing light valve elements 711A and one or more display light valve elements 7115. In an exemplary embodiment, the 'view light valve 7' may be one or more of the light valves 丨〇6, 1〇8, 1802, 18〇4, 3〇〇2, and/or 3〇〇4. By. In this manner, under the control of the light valve controller 7 12 ,, the light valve 7 11 is viewed to controllably transmit light. In an exemplary embodiment, the display light valve 7115 can be controlled by the light valve controller 7 120 to display to the user a resource that can be, for example, text and/or graphics and/or view efl. In the example, the display light valve 7 can be a commercially available liquid crystal such as an organic light-emitting device (""). In the latter embodiment, the light reading 7115 is shown to be light transmissive or opaque during operation. In the embodiment, the inter-light controller 7(2) can be a programmable 147659. Doc 201118423 controller, an ASIC, an analog controller, a digital controller, a decentralized control system 'and/or may have controllers i i4, i i6, 118, 1806, 1808, 1810, 3006, 3008, One or more aspects of the design and operation of 3010 and / or 3012. Referring now to Figure 72, in an exemplary embodiment, during operation of the light valve system 7', the system can be implemented - an operational method 72, in which the system determines whether it should An image is displayed on the display light valve 7丨丨5. In an exemplary embodiment, the image may include one or more of a text image, a graphic image, and/or a video image. In 7202, if system 7100 determines that an image should be displayed on display light valve 7115, then in 7204, the system displays the image on the display light valve. In 7206, system 7100 determines if the image should still be displayed on display light valve 7115. Thus, in 7202, 7204, and 7206, system 7100 can controllably display an image on display light valve 7115. In 7208, system 7100 determines whether viewing light valve 711 should be open or closed. If the viewing light valve 7110 should be opened, the viewing light valve is opened in 721〇. Alternatively, if the viewing light valve 7110 should be closed, the viewing light valve is closed in 7212. In an exemplary embodiment, viewing shutter 711 is opened and closed in synchronization with the display of an image associated with a particular viewing eye of a user corresponding to light valve assembly 7105 of system 71. In an exemplary embodiment, during operation of the system, display light valve 7115 may or may not be synchronized to the opening and closing of viewing light valve (10) to 147659. Doc -82 - 201118423 On or off. In an exemplary embodiment, system 7100 can be used in a system having a plurality of three-dimensional glasses, such as two-dimensional glasses 104, 1800, 3000, and/or 6000, wherein each of the three-dimensional glasses includes A left light valve assembly and/or a right light valve assembly of the light valve assembly 7105 can be included. In an exemplary embodiment, in a system having a plurality of three-dimensional glasses, the respective display light valves 71丨5 of the users of the three-dimensional glasses may each be displayed as being unique and/or corresponding to the three-dimensional glasses. Customized images for specific users. Referring now to Figure 73, one of the three-dimensional glasses 7300 (e.g., one or more of one or more of the exemplary embodiments of the three-dimensional glasses described above with reference to Figures 1 through 72) is illustrative. Embodiments include a left light valve assembly 73〇2 and a right light valve assembly 7304 that are operatively coupled to a controller 7306. In an exemplary embodiment, the left light valve assembly 73〇2 can be, for example, a left light valve 106, 1802, 3002 and/or a light valve assembly 71〇5, and a right light valve assembly 7304 can be a right light. Valves 1〇8, 1804, 3004 and/or light valve assemblies 71〇5, and controller 7306 can be or can include CPU 114, left light valve controller 丨16, right light valve controller 118, CPU 1810, left Light valve controller 18〇6, right light valve controller 18〇8, CPU 30U, left light valve controller 3〇〇6, right light valve controller 3008, and/or light valve controller 7120. In an exemplary embodiment, a conventional rechargeable battery 73A8 is operatively coupled to controller 7306. In an exemplary embodiment, a conventional solar cell 7310 is operatively coupled to a rechargeable battery 73A to recharge the rechargeable battery. In an exemplary embodiment, all of the elements of the 3D glasses 73 can be 147659. Doc • 83- 201118423 is incorporated into a spectacle frame 73 12 that can, for example, be substantially identical to the spectacle frame illustrated and described above with reference to Figures 44-55. In an exemplary embodiment, during operation of the 3D glasses 73, the 3D glasses collect area energy to convert electromagnetic energy into electrical energy for storage in the rechargeable battery, such as by using solar cells 731. The rechargeable battery 7308 is recharged. More generally, the 3D glasses 73 can collect other forms of energy, such as radio frequency, heat, biomechanics, vibration, and/or acoustic energy, to thereby recharge the rechargeable battery 73〇8 in an exemplary manner. In an embodiment, a capacitor or supercapacitor may be additionally used, or instead of a rechargeable battery 7308, a capacitor or supercapacitor may be used for storing energy for operating the 3D glasses 7300. A liquid crystal light valve has a liquid crystal 'rotating by applying a voltage to the liquid crystal, and the liquid crystal reaches at least 25°/ in less than one millisecond. Light transmittance. When the liquid crystal is rotated to a point having maximum light transmission, a device stops the rotation of the liquid crystal at the maximum light transmission point, and then maintains the liquid crystal at the maximum light transmission point for a period of time. A computer program can be installed on a machine readable medium to facilitate any of these embodiments. A system presents a three-dimensional video image by using a pair of liquid crystal shutter glasses. The lens has a first liquid crystal light valve and a second liquid crystal light valve, and is adapted to open a control circuit of the first liquid crystal light valve. The first liquid crystal light valve can be opened to a maximum light transmission point in less than one millisecond, and the control circuit can apply a stop voltage to the first liquid crystal light valve in a first period of time. Keep at this point of maximum light transmission, and then close the 147659. Doc •84- 201118423 - Liquid crystal light valve. Next, the control circuit opens the second liquid crystal light valve, wherein the second liquid crystal light valve is turned on to a maximum light transmission in less than one millisecond, and the point 'and then the -stop voltage is applied to a ^ The second liquid crystal light valve is maintained at the maximum light transmission point during the time period, and then the second liquid crystal light valve is closed. The first time period corresponds to a first-eye representation-image for the viewer, and the second time period corresponds to a second-presentation-image for the viewer. Any of the embodiments described herein can be used to facilitate any of the embodiments described herein. In an exemplary embodiment, the control circuit is adapted to determine the first time period and the second time period using a -synchronization signal. In an exemplary embodiment, the stop voltage is 2 volts. In an exemplary embodiment, the maximum light transmission point transmits more than 32% of the light. In an exemplary embodiment, a transmitter provides a synchronization signal and the synchronization signal causes the control circuit to open one of the liquid crystals. In an exemplary embodiment, the synchronization signal includes an -encrypted signal. In an embodiment, the two-dimensional eye finder is a control circuit that will only operate after verifying a plus sign. In an exemplary embodiment, the control circuit has a battery sensor and can be (4) adapted to provide an indication of a low battery power condition. This indication of a low battery condition can be a single solution.  The liquid daily valve is closed for a period of time and then opened for a period of time. Ugly = In an exemplary embodiment, the control circuit is adapted to enable the operation of the liquid crystal stop after detecting the synchronization signal. I47659. Doc-85-201118423 In an exemplary embodiment, the encrypted signal will only operate as a pair of liquid crystal glasses having a control circuit adapted to receive the encrypted signal. In an exemplary embodiment, a test signal operates at a rate that can be seen by a person wearing the pair of liquid crystal valve glasses. In an exemplary embodiment, the pair of spectacles has a second lens having a first liquid crystal shutter and a second liquid crystal light valve. The liquid crystal light valves each have a liquid crystal that can be turned on in less than one millisecond and alternately open the first liquid crystal light valve and one of the second liquid crystal light valves to control the electric power ^^amp; Feed at - the maximum light transmission point until the control circuit closes the light valve. In an exemplary embodiment, a stop voltage maintains the liquid crystal at a point of great light transmission. The maximum light transmission point can transmit more than 32% of the light. In an exemplary embodiment, a transmitter provides a synchronization signal and the synchronization signal causes the control circuit to open one of the liquid crystal shutters. In some embodiments, the synchronization signal includes an -encrypted signal. In an exemplary embodiment, the control circuit will only perform the correlation after the oyster has been calibrated. In an exemplary embodiment, the __ control circuit includes a battery sensing meter and can be adapted to provide a battery power _ 1 & This indication of a low battery condition can be that the liquid crystal is turned off during a period of time and the receiver is turned on for a period of time. In an exemplary embodiment, the control circuit is adapted to detect a synchronization signal and to operate the liquid crystal light valve such as S Hai after the money (4). To receive one of the encrypted signals, the encrypted signal can operate only one pair of liquid crystal glasses having an adapted control circuit. J47659. Doc-86 - 201118423, in an exemplary implementation, the operation of the liquid crystal light valve can be operated at a rate that can be seen by one person wearing the pair of liquid crystal light valve glasses. In the exemplary embodiment t, a three-dimensional video image is presented to the viewer by the following operations: using liquid crystal shutter glasses; opening in less than - milliseconds. a liquid crystal light valve; the first liquid crystal light valve is maintained at a maximum light transmission point in a -first period; the first liquid crystal light valve is closed, and then the second is opened in less than - milliseconds The liquid crystal light valve; and then the second liquid crystal light valve is maintained at - the maximum shot point in a time, time & The first time period corresponds to an image for the viewer's - first eye, and the second time period corresponds to presenting an image for the viewer's H. In an exemplary embodiment, the liquid crystal stop is maintained at a maximum light transmission point by a stop voltage. The stop voltage can be 2 volts. In the example embodiment, the > 4 maximum light transmission point transmits more than 32% of the light. In an exemplary embodiment, the transmitter provides a sync signal that causes the control circuit to turn on the liquid day day sun valve. In some embodiments, the sync money contains an encrypted signal. The control circuit operates after the signal is checked. In an exemplary embodiment, the battery sensor monitors the battery in an embodiment where the control circuit is adapted to provide a low battery power condition. The indication of a low battery power condition is that a liquid crystal light valve is turned off in a time η Ba Ba Ba & and then opened for a period of time. The power circuit can be activated in an exemplary embodiment. The control circuit is adapted to detect a synchronization 147659. Doc -87.  The 201118423 signal and begins to operate the liquid crystal light valves after detecting the synchronization signal. In an exemplary embodiment, the encrypted signal will only operate a pair of liquid crystal glasses having a control circuit adapted to receive the encrypted signal. In one embodiment, a test signal operates the liquid crystal shutters at a rate that can be seen by a person wearing the pair of liquid crystal valve glasses. In an exemplary embodiment, a system for providing a three-dimensional video image can include a pair of glasses having a first lens having a first liquid crystal light valve and a second lens having a second liquid crystal light valve . The liquid crystal light valves can have a liquid crystal and can be turned on in less than one millisecond. A control circuit can open the first liquid crystal shutter and the second liquid crystal shutter, and maintain the liquid crystal orientation at a maximum light transmission point until the control circuit closes the light valve. Additionally, the system can have a battery power low indicator comprising: a battery; a sensor capable of determining the amount of power remaining in the battery; - a controller that is adapted to determine the remaining of the battery Whether the amount of power is sufficient for the pair of glasses to operate for a longer period of time than a predetermined time; and an indicator for transmitting to the viewer if the pair of glasses are unable to operate for a longer period of time than the predetermined time signal. In an exemplary embodiment, the battery power low indicator turns the left liquid crystal light valve and the right liquid crystal light valve on and off at a predetermined rate. In an exemplary embodiment, the predetermined amount of time is greater than three hours. In an exemplary embodiment, the battery power low indicator is operable for at least three days after determining that the amount of power remaining in the battery is insufficient to operate the pair of glasses for a period of time longer than the predetermined amount of time. In an exemplary embodiment, the controller can determine the remaining power in the battery by measuring the time of the battery; the number of remaining sync pulses 147659. Doc • 88· 201118423 Quantity 0 In an exemplary embodiment for a two-dimensional video image, by having a three-dimensional viewing glasses including a first liquid crystal light valve and a second liquid crystal light valve; Opening the first liquid crystal light valve within one millisecond; maintaining the first liquid crystal light valve at a maximum light transmission point in a first period of time; closing the first liquid crystal light valve 'and then less than one The second liquid crystal light valve is opened in milliseconds; the second liquid crystal light valve is maintained at a maximum light transmission point for providing images in a second period of time. The first time period corresponds to presenting an image to the first eye of one of the viewers, and the second time period corresponds to presenting an image for the second eye of the viewer. In this exemplary embodiment, the three-dimensional viewing glasses sense the amount of power remaining in the battery, determine whether the amount of power remaining in the battery is sufficient for the pair of glasses to operate at a time t longer than a predetermined time, and then The glasses are incapable of indicating a battery power low signal to a viewer if operated in a time longer than the predetermined time. The finger can open and close the lenses at a predetermined rate. The battery will last for a predetermined amount of time of more than three hours. In an exemplary embodiment, after determining that the amount of power remaining in the battery is insufficient to operate the pair of glasses for a period of time longer than the predetermined amount of time, the battery power indicator is operated for at least three days. In an exemplary embodiment, the controller determines the amount of power remaining in the battery by measuring the time of the number of synchronization pulses that the battery can continue to pass. In an exemplary embodiment for providing a three-dimensional video image, the system includes: a pair of glasses including a first lens having a first liquid crystal light valve and a second lens having a second liquid crystal light valve , these liquid crystal light valve 147659. Doc -89- 201118423 There is liquid SB and j open time in one millisecond. A control circuit alternately opens the first liquid crystal light valve and the second liquid crystal stop, and the liquid crystal orientation is maintained at a maximum light transmission point until the control circuit closes the light. In addition, the sync device includes: a signal transmitter that transmits a signal corresponding to an image presented by a first eye; a signal receiver that senses the signal; and - a control circuit that is adapted to The first light valve is opened during a time period in which the image is presented at first sight. In an exemplary embodiment, the '^ "fS number is an infrared light. In an exemplary embodiment, the signal transmitter projects the signal toward a reflector. The signal is reflected by the reflector, and the signal receiver integrates the reflected signal. In some embodiments, the reflector is a "movie (4) screen. In an exemplary embodiment, the signal transmitter receives a timing signal from an image projector, such as an 'optical projector. In an exemplary embodiment, the L number is a radio frequency signal. In an exemplary embodiment, the signal is a series of pulses having a predetermined interval. In an exemplary embodiment in which the signal is a series of pulses having a predetermined interval, a first predetermined number of pulses opens the first liquid crystal shutter ' and a second predetermined number of pulses opens between the first liquid crystals. In an exemplary embodiment for providing a three-dimensional video image, the method for providing the image 2 includes: two-dimensional viewing glasses including a first liquid crystal light and a second liquid crystal light 1; 纟 less than one millisecond Opening the first crystal light in a time period; maintaining the first liquid crystal light at a large light transmission point in a first time period; closing the first liquid crystal light valve, and then in less than one millisecond Opening the second liquid crystal light valve; in the second time period will be 147659. Doc •90- 201118423 °H The second liquid crystal light valve is maintained at a maximum light transmission point. The first time period corresponds to presenting an image to the left eye of the viewer, and the second time period corresponds to presenting an image to the right eye of the viewer. The signal transmitter can transmit a signal corresponding to the image presented for the left eye and sense the signal, the three-dimensional viewing glasses can use the signal to determine when to open the first liquid crystal shutter. In an exemplary embodiment, the signal is an infrared light. In an exemplary embodiment, the number transmitter projects the signal toward a reflector that reflects the number toward the three dimensional viewing glasses, and the signal receiver in the glasses detects the reflected signal. In an exemplary embodiment, the reflector is a cinema screen. In an exemplary embodiment, the signal transmitter receives a timing signal from an image projector. In an exemplary embodiment t, the signal is a radio frequency signal. In the case of a material, the money may be a series of pulses with a predetermined interval of #. The first-pre-t pulse can open the first liquid crystal light valve, and the second predetermined number of pulses can open the second liquid crystal light valve. In an exemplary embodiment of a system for providing a three-dimensional video image, the '-the pair of glasses has a first lens and a second lens with a second liquid daylight The liquid crystal light valves have a liquid crystal and an opening time of less than - milliseconds. The control circuit alternately opens the first liquid crystal light valve and the second liquid crystal light valve, and the liquid crystal orientation is maintained at a maximum light transmission point until the control circuit closes the light valve. In an exemplary embodiment, the '-synchronization system includes: - a reflecting means located in front of the secondary eyeglass; and - a signal transmitter that transmits a signal to the reflecting means. This signal corresponds to the image presented to the viewer at the first eye. One 147659. Doc • 91- 201118423 The signal receiver senses the signal reflected from the reflecting device. From the setting, a control circuit opens the first light valve during a period of time during which the image is presented for the first eye. In an exemplary embodiment, the signal is an infrared light. _ In an exemplary embodiment, the reflector is a cinema screen. In the case of the inaccurate application, the signal transmitter is received from an image projector. The letter can be a series of pulses having a predetermined interval. In an exemplary embodiment, the signal is a series of pulses having a predetermined interval, and a first predetermined number of pulses opens the first liquid crystal shutter and a second predetermined number of pulses opens the second liquid crystal shutter. In an exemplary embodiment for providing a two-dimensional video image, the lens can be viewed by having a first liquid crystal light valve and a second liquid crystal light in less than one millisecond. Opening the first liquid crystal light; maintaining the first liquid crystal light valve at a maximum light transmission point in the -first time period; closing the first liquid crystal light valve ' and then opening in less than - milliseconds The second liquid crystal light valve; and then maintaining the second liquid crystal light valve at a maximum light transmission point for a second period of time to provide an image. The first time period corresponds to the image presented to the viewer - the first eye, and the second time period corresponds to the image presented to the viewer - the second eye. In an exemplary embodiment, the transmitter transmits - an infrared signal corresponding to the image presented for the _th eye. The three-dimensional viewing glasses sense the infrared signal, and then use the infrared signal to trigger the opening of the first crystal. The signal is an infrared worm, and the light is an infrared worm. In an exemplary embodiment, the reflector is powered by an electric amp; in an exemplary embodiment, the signal is 147659. Doc •92· 201118423 The transmitter receives a timing signal from the shirt image projector. The timing signal can be - a series of pulses with a predetermined interval. In some embodiments, the first predetermined number of pulses opens the first liquid crystal shutter and the second predetermined number of pulses opens the second liquid crystal shutter. In an exemplary embodiment, a system for providing a three-dimensional video image includes a pair of glasses having a first lens having a first liquid crystal light valve and a second lens having a second liquid crystal light valve. The liquid crystal light valves have a liquid crystal and an opening time of less than - milliseconds. The system can also have a control circuit that alternately opens the first liquid crystal light valve and the second liquid crystal light valve and maintains the liquid crystal orientation at a maximum light transmission point until the control circuit closes the light valve. The system can also have a test system comprising: an nickname transmitter; a signal receiver; and a test system control circuit adapted to turn the first on and off at a rate that can be seen by a viewer a light valve and the second light valve. In an exemplary embodiment, the signal transmitter does not receive a timing signal from a projector. In an exemplary embodiment, the signal transmitter transmits an infrared signal. The infrared signal can be a series of pulses. In another exemplary embodiment, the signal transmitter transmits a radio frequency signal. The RF signal can be a series of pulses. In an exemplary embodiment of the method for providing a two-dimensional video image, the method may include: having a first two-dimensional viewing glasses including a first liquid crystal light valve and a second liquid a light valve Opening the first liquid crystal light valve in less than one millisecond; maintaining the first liquid crystal light valve at a maximum light transmission point in a first period of time; closing the first liquid crystal light valve, and then Opening the second liquid crystal light valve in less than one millisecond; and at a second time 147659. Doc •93· 201118423 Feng Zhongzhong maintains the second liquid crystal light valve at a maximum light transmission point. In the exemplary embodiment, the first time period corresponds to presenting an image to the first eye of the viewer and the second time period corresponds to presenting an image to the second eye of the viewer. In an exemplary embodiment, a transmitter can transmit a test signal to the three-dimensional viewing glasses. The glasses then receive the test signal by one of the sensors on the 3D glasses, and then use the test signal. A control circuit opens and closes the first liquid crystal light valve and the second liquid crystal light valve 'where the liquid crystal light valves are opened and closed at a rate observable by a viewer wearing the glasses. In an exemplary embodiment, the signal transmitter does not receive a timing signal from a projector. In an exemplary embodiment, the signal transmitter emits an infrared signal, which can be a series of pulses. In an exemplary embodiment, the transmitter transmits a radio frequency signal. In an exemplary embodiment, the RF Ί5 "5 is a 糸 脉冲 pulse. An exemplary embodiment of a system for providing two-dimensional video images may include a pair of glasses including a first lens having a first liquid crystal light valve and a second lens having a second liquid crystal light valve 'The liquid crystal light valves have a liquid crystal and an opening time of less than one millisecond. The system can also have a control circuit 'which alternately opens the first liquid crystal light valve and the second liquid crystal light valve' to maintain the liquid crystal orientation at a maximum light transmission point, and then close the light valve. In an exemplary embodiment The 'auto_on' system includes a transmitter, a signal receiver, and wherein the control circuit is adapted to activate the signal receiver at a first predetermined time interval to determine whether the signal receiver is self-determining The signal transmitter receives a signal and is connected to the signal at 147659. Doc -94- 201118423 The receiver revokes the signal receiver without receiving the signal from the signal transmitter for a second period of time, and the signal receiver receives the signal from the signal transmitter In the case, the first light valve and the second light valve are alternately opened at an interval corresponding to the signal. In an exemplary embodiment, the first time period is at least two seconds and the first time period may be no more than one millisecond. In an exemplary embodiment, the liquid crystal shutters remain open until the signal receiver receives a signal from the signal transmitter. In an exemplary embodiment, a method for providing a three-dimensional video image may include: having a first two-dimensional viewing glasses including a first liquid crystal light valve and a second liquid crystal light valve; in less than one millisecond Opening the first liquid crystal light valve; holding the first liquid crystal light valve at a maximum light transmission point in a first period of time, closing the first liquid crystal light valve, and then opening in less than one millisecond 6 Xuan second liquid crystal light valve; and maintaining the second liquid crystal light valve at a maximum light transmission point in a second period of time. In an exemplary embodiment, the first time period corresponds to presenting an image to a first eye of one of the viewers, and the second time period corresponds to presenting an image to a second eye of one of the viewers. In an exemplary embodiment, the method can include initiating a signal receiver at a first predetermined time interval, determining whether the signal receiver is receiving a signal from the signal transmission, and at the signal receiver Deactivating the signal receiver without receiving the signal from the signal transmitter within two time periods, and in the case where the signal receiver receives the signal from the signal transmitter, with an interval corresponding to the signal The first light width and the second light reading are turned on and off. In an exemplary embodiment, the first time period is 147659. Doc -95- 201118423 for at least two seconds. In an exemplary embodiment, the second time period is no more than 100 milliseconds. In an exemplary embodiment, the liquid crystal shutters remain open until the signal receiver receives a signal from the signal transmitter. In an exemplary embodiment, a system for providing a three-dimensional video image can include a pair of glasses including a first lens having a first liquid crystal light valve and a second lens having a second liquid crystal light valve The liquid crystal light valve has a liquid crystal and an opening time of less than - millisecond. The system can also have a control circuit that alternately opens the first liquid crystal light valve and the second liquid SB light valve and maintains the liquid crystal orientation at a maximum light transmission point until the control circuit closes the light valve. In an exemplary embodiment, the control circuit is adapted to maintain the first liquid crystal shutter and the second liquid crystal shutter open. In an exemplary embodiment, the control circuitry maintains the lenses open until the control circuit L synchronizes the signals. In the exemplary embodiment, the voltages from the filaments to the liquid crystal light valves alternate between positive and negative. In one embodiment of the apparatus for providing a three-dimensional video image, the sub-three-dimensional viewing glasses include a -th liquid crystal light valve and a second liquid crystal light, wherein the first liquid crystal light valve can be less than When the time is turned on within one millisecond, the second liquid crystal light valve in the basin can open m == dead in less than one millisecond. The rate of the transparent lens opens and closes the second holding of the "night" valve. In an embodiment, the control circuit maintains a signal until the control circuit detects a synchronization signal. In a yoke example, the liquid crystal light valves alternate between positive and negative. In an exemplary embodiment One for providing a three-dimensional video system may include a pair of glasses, including the first 147659. Doc-96·201118423 Lens and a second lens having a second liquid crystal light valve. The liquid crystal light valves have a liquid crystal and an opening time of less than one millisecond. The system can also include a control circuit that alternately opens the first liquid crystal light valve and the second liquid crystal light valve and maintains the liquid crystal at a point of maximum light transmission until the control circuit closes the light valve. In an exemplary embodiment, a transmitter can provide a synchronization t number, wherein a portion of the synchronization signal is partially encrypted. One of the sensors operatively coupled to the control circuit can be adapted to receive the synchronization signal, and can only be turned on and off in response to one of the synchronization signals after receiving an encrypted signal a liquid crystal light valve and the second liquid crystal light valve. In an exemplary embodiment, the synchronization signal is a series of pulses having a predetermined interval. In an exemplary embodiment, the synchronization signal is a series of pulses having a predetermined interval, and a first predetermined number of pulses opens the first liquid crystal light valve, and a second predetermined number of pulses opens the second liquid crystal light valve . In an exemplary embodiment, the portion of the series of pulses is encrypted. In an exemplary embodiment, the series of pulses includes a predetermined number of unencrypted pulses followed by a predetermined number of encrypted pulses. In an exemplary embodiment, the first liquid crystal light valve and the second liquid crystal light valve are opened and closed in a pattern corresponding to the same parent L number only after receiving two consecutive encrypted signals. In an exemplary embodiment for providing a three-dimensional video image: the method may include: a field comprising a first liquid crystal stop and a second liquid light valve, a frog mirror; Opening the first liquid crystal light valve in less than one millisecond, maintaining the first liquid crystal light valve at a maximum light transmission point in a first time period; closing the first liquid crystal light valve, and then less 147659-doc -97- 201118423 opens the second liquid crystal light valve in one millisecond; and maintains the second liquid crystal light valve at a maximum light transmission point during the second time period. In an exemplary embodiment, the first time period corresponds to presenting an image to a first eye of one of the viewers, and the second time period corresponds to presenting an image to the second eye of the viewer. In an exemplary embodiment, a transmitter provides a synchronization signal in which a portion of the 5th synchronization number is encrypted. In an exemplary embodiment, a sensor is operatively coupled to the control circuit and adapted to receive the synchronization signal and only to open in response to one of the synchronization signals after receiving an encrypted signal And closing the first liquid crystal light valve and the second liquid crystal light valve. In an exemplary embodiment, the synchronization signal is a series of pulses having a predetermined interval. In an exemplary embodiment, the synchronization signal is a series of pulses having a predetermined interval, and wherein a first predetermined number of pulses opens the first liquid crystal light valve, and wherein a second predetermined number of pulses turns on the second liquid crystal Light valve. In an exemplary embodiment, one of the series of pulses is partially encrypted. In an exemplary embodiment, the series of pulses includes a predetermined number of unencrypted pulses followed by a predetermined number of encrypted pulses. In an exemplary embodiment, the first liquid crystal light valve and the first liquid crystal light are opened and closed in a pattern corresponding to one of the synchronization signals only after receiving two consecutive encrypted signals. It is to be understood that the above changes may be made without departing from the scope of the invention. While the embodiment has been shown and described, it will be modified by those skilled in the art without departing from the scope of the invention. The described embodiments are merely illustrative and not limiting. Many 147659. Doc -98 · 201118423 Changes and modifications are possible and within the scope of the invention. In addition, one or more of the elements of the exemplary embodiments may be combined in whole or in part with one or more of one or more of the other exemplary embodiments or in place of one or more of the other exemplary embodiments. One or more elements. Therefore, the protection of the mouth is not limited to the described embodiments, but is only limited by the scope of the following patent application. The scope of the patent application should include all the objects of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an illustration of an exemplary embodiment of a system for providing a three-dimensional image; FIG. 2 is a flow chart of an exemplary embodiment of a method for operating the system of FIG. 3 is a graphical illustration of the operation of the method of FIG. 2; FIG. 4 is a graphical illustration of an exemplary experimental embodiment of the operation of the method of FIG. 2; FIG. 5 is an exemplary implementation of a method for operating the system of FIG. Figure 6 is a flow diagram of an exemplary embodiment of a method for operating the system of Figure 1; Figure 7 is a flow diagram of an exemplary embodiment of a method for operating the system of Figure 1. Figure 8 is a graphical illustration of the operation of the method of Figure 7; Figure 9 is a flow diagram of an exemplary embodiment of a method for operating the system of Figure 1; 147659. Doc . 99-201118423 Figure 10 is a graphical illustration of the operation of the method of Figure 9; Figure 11 is a flow diagram of an exemplary embodiment of a method for operating the system of Figure 1; Figure 12 is a diagram of the operation of the method of Figure 11 Figure 13 is a flow chart of an exemplary embodiment of a method for operating the system of Figure 1; Figure 14 is a graphical illustration of the operation of the method of Figure π; Figure 15 is a diagram for operating the system of Figure 1. A flowchart of one exemplary embodiment of the method; FIG. 16 is an illustration of one exemplary embodiment of a method for operating the system of FIG. 1. FIG. 17 is an exemplary embodiment of one of the three-dimensional glasses of the system of FIG. 18, FIG. 18a, FIG. 1, FIG. 18c, and FIG. 18d are schematic illustrations of an exemplary embodiment of a three-dimensional eyeglass; FIG. 19 is a three-dimensional view of FIG. 18, i8a, FIG. (9), FIG. 18c, and FIG. FIG. 20 is a schematic diagram of the digital control of the light valve controller of the three-dimensional glasses of FIG. 18, FIG. And a schematic description of the control signal of the CPU; Figure 21 is a diagram 18. Flowchart of an exemplary embodiment of the operation of the 3D glasses of Figs. 18a, 18b, 18D and Fig. 18d; Fig. 22 is an operation of the 3D glasses of Figs. 18, i8a, 18b, 18c and 18d Graphical illustration of one exemplary embodiment; 147659. Doc -100- 201118423 Figure 23 is a flow chart illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 18, 18a, 18b, 18c and 18d; Figure 24 is Figure 18, Figure 18a, Figure 18b FIG. 18c and FIG. 18d are schematic views of an exemplary embodiment; FIG. 25 is an exemplary embodiment of the operation of the three-dimensional glasses of FIGS. 18, 18a, 18b, 18c, and 18d. Figure 26 is a graphical illustration of one exemplary embodiment of the operation of the three-dimensional glasses of Figures 18, 18a, 18b, 18c, and 18d; Figure 27 is Figure 18, Figure 18a, Figure 18b, Figure 18c and FIG. 18d operation of the 3D glasses - a flowchart illustration of an exemplary embodiment; FIG. 28 is a diagram of an exemplary embodiment of the operation of the 3D glasses of FIGS. 18, 18a, 18b, 18c, and 18d 29 is a graphical illustration of an exemplary embodiment of the operation of the 3D glasses of FIGS. 18, 18a, 18b, 18c, and 18d; FIGS. 30, 30a, 30b, and 30c are one of the 3D glasses BRIEF DESCRIPTION OF THE EXEMPLARY EMBODIMENT; Figure 31 is the light between the three-dimensional glasses of Figures 30, 30a, 30b and 30c Figure 32 is a schematic illustration of the operation of the analog switch of the digital control of the optical controller of Figure 3a, Figure 30b and Figure 30c; Figure 33 is a diagram 30. Flowchart of an exemplary embodiment of the operation of the 3D glasses of FIGS. 30a, 30b, and 30c; FIG. 34 is an exemplary implementation of the operation of the 3D glasses of FIGS. 30, 30a, 30b, and 30c. Graphical illustration of the example; 147659. Doc -101 - 201118423 Figure 35 is a flow chart illustration of an example of the operation of the three-dimensional * limiting mirror of Figures 3A, 〇a, Figure 3B and Figure 3〇c; Figure 36 is Figure 3 3A, FIG. 3B and FIG. 3〇c are diagrams of an exemplary embodiment of the operation of the 3D glasses; FIG. 37 is FIG. 3〇, FIG. 3〇a, FIG. 3〇b, and FIG. Figure 4 is a flow chart illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 30, 30a, 30b, and 3C; 39 is a flow chart illustration of an exemplary embodiment of the operation of the 3D glasses of FIGS. 3A, 3A, 3B, and 3C; FIG. 4A is FIG. 30, FIG. 30a, FIG. 30b, and FIG. FIG. 41 is a schematic illustration of an exemplary embodiment of the operation of the 3D glasses of FIGS. 30, 30a, 3D, and 3C; FIG. FIG. 30, FIG. 3A, FIG. 3B, and FIG. 3B are diagrams of an exemplary embodiment of an operation of an exemplary embodiment; ', FIG. 43 is FIG. 30, ffi30a, bird and FIG. c three-dimensional A graphical illustration of one exemplary embodiment of the operation of the eyeglasses; ', FIG. 44 is a plan view of one exemplary embodiment of the three-dimensional eyeglasses; FIG. 45 is a rear view of the three-dimensional eyeglasses of FIG. 44; Figure 47 is a front view of the 3D glasses of Figure 44; Figure 48 is a perspective view of the 3D glasses of Figure 44; the housing cover of the mirror battery Figure 49 is the use of a key to manipulate the three-dimensional 147659 of Figure 44. Doc • 102-201118423; FIG. 50 is a perspective view of the key of the housing cover for operating the battery of the 3D glasses of FIG. 44; FIG. 51 is a perspective view of the housing cover of the battery of the 3D glasses of FIG. 44; Figure 34 is a side elevational view of the outer cover of the three-dimensional glasses of Figure 44, the battery and the ring seal; Figure 54 is the outer cover of the two-dimensional glasses of Figure 44, the battery and Figure 5 is a perspective view of an alternative embodiment of the eyeglass of Figure 44 and an alternative embodiment for manipulating the footprint of the cover of Figure 5; Figure 56 is an illustration of A schematic illustration of one exemplary embodiment of a signal sensor used in one or more of the illustrative embodiments; FIG. 57 is a graphical illustration of an exemplary data signal suitable for use with the signal sensor of FIG. 56; Figure 58 is a block diagram of an exemplary embodiment of a system for adjusting a chirp synchronization signal for use in 3D glasses; Figure 59 is a diagram of one of the systems for adjusting a synchronization signal for use in 3D glasses. Block diagram of an exemplary embodiment; - Figure 59a Figure 59d is a graphical illustration of exemplary experimental results of the operation of the system of Figures 58 and 59; Figure 60, Figure 60a and Figure 60b are schematic illustrations of three-dimensional glasses - an illustrative embodiment; Figure 61 is a Used in one of the 3D glasses to synchronize the number of the line 147659. Doc-103-201118423 is a block diagram of an exemplary embodiment; FIG. 62 is a block diagram of an exemplary embodiment of a system for viewing a three-dimensional image by a user wearing a three-dimensional eyeglass; FIG. 63 and FIG. A block diagram of an exemplary embodiment of a display system for use with 3D glasses; FIGS. 65 and 66 are graphical illustrations of exemplary embodiments of the operation of the display system of FIGS. 63 and 64; FIGS. 67-70 FIG. 71 is an illustration of an exemplary embodiment of a light valve assembly of one of the three-dimensional glasses; FIG. 72 is an illustration of one of the exemplary embodiments of the light valve assembly of FIG. A flowchart illustration of one exemplary embodiment of a method of light valve assembly; and FIG. 73 is an illustration of one exemplary embodiment of a two-dimensional eyeglass. [Main component symbol description] 100 System 102 Movie screen 104 3D glasses 106 Left light valve 108 Right light valve 110 Signal transmitter 110a Central processing unit (CPU) 112 Signal sensor 114 Central processing unit 147659. Doc -104· 201118423 116 Left light valve controller 118 Right light valve controller 120 Battery 122 Battery sensor 130 Projector 200 Left and right light valve method / Left and right lens light valve sequence 202ba High voltage 202bb No voltage 202bc Small stop voltage 202da High voltage 202db no voltage 202dc small stop voltage 400 light transmission 402 light transmission 500 operation method 600 operation method 700 operation method 800 clock signal 802 clock cycle 804 configuration data signal 806 data pulse signal 900 operation method 902a clock signal 902aa High pulse I47659. Doc -105- 201118423 1100 Warm-up operation method 1104a Voltage signal 1104b Voltage signal 1300 Method 1304a Voltage signal 1304b Voltage signal 1500 Method of monitoring battery 120 1600 Test Is 1600a Signal transmitter 1600b Test signal 1700 Charge pump 1800 3D glasses 1802 Left light valve 1804 Right light valve 1806 Left light valve controller 1808 Right light valve controller 1810 Central processing unit 1812 Battery sensor 1814 Signal sensor 1816 Charge pump 1900 Function diagram 2100 Method 2300 Warm-up operation method 2304a Voltage signal -106- 147659 . Doc 201118423 2304b Voltage signal 2500 Operation method 2504a Voltage signal 2504b Voltage signal 2700 Method of monitoring battery 120 3000 3D glasses 3002 Left light valve 3004 Right light valve 3006 Left light valve controller 3008 Right light valve controller 3010 Common light valve controller 3012 Central Processing Unit 3014 Signal Sensor 3016 Charge Pump 3018 Voltage Supply 3100 Function Diagram 3300 Method / Normal Execution Mode 3500 Warm-up Operation Method 3700 Operation Method 3900 Operation Method 4000 Operation Method 4200 Operation Method 4402 Frame Front 4402a Right Wing 147659. Doc -107- 201118423 4402b Left wing 4404 nose bridge 4406 right temple 4406a ridge 4408 left temple 4408a ridge 4410 right lens opening 4412 left lens opening 4414 cover 4415 cover inner 4416 0 ring seal 4417 contact 4418 wedge element 4420 recess 4422 key 4424 protrusion 4426 key 5600 signal sensor 5602 narrow bandpass filter 5604 decoder 5604 CPU 5606 signal transmitter 5700 signal 5702 data bit 147659. Doc -108- 201118423 5704 Clock Pulse 5800 System 5802 Signal Sensor 5804 Normalizer 5806 Gain Control Element 5810 Amplifier and Pulse Conditioning Element 5812 Synchronous Amplitude and Shape Processing Unit 5902 Synchronization Signal 5904 Signal 5906 Signal 5908 Feedback Control Signal 6000 3D Glasses 6002 Signal Sensor 6100 System 6102 Dynamic Range Reduction and Contrast Enhancement Element 6200 System for viewing 3D images on a display 6202 Projector 6202a Built-in file server 6204 Display surface 6206 Network 6300 Display system 6305 Variant array 6310 light source 147659. Doc -109- 201118423 6315 Display plane 6320 Controller 6325 Front end unit 6330 Memory 6350 Sequence generator 6355 Synchronization signal generator 6360 Pulse width modulation (PWM) unit 6510 Left eye light valve status 6520 Right eye light valve status 6530 High-order view / status Figure 6540 Single Cycle of Light Valve Status 6542 Interval 6544 State Transition Interval 6546 Interval 6548 Box 6550 Pulse 6552 Pulse 6554 Box 6556 Interval 6558 Box 6560 Interval 6600 Synchronization Signal 6605 Time 6700 Method 147659. Doc -110- 201118423 6800 Method 6900 Method 7000 Method 7100 Light Valve System 7105 Light Valve Assembly 7110 View Light Valve Element 7115 Display Light Valve Element 7120 Light Valve Controller 7200 Method 7300 3D Glasses 7302 Left Light Valve Assembly 7304 Right Light Valve Assembly 7306 Controller 7308 Rechargeable Battery 7310 Solar Cell 7312 Eyeglass Frame A Control Input Signal / Microcontroller Output Signal / Control Signal B Control Input Signal / Microcontroller Output Signal / Control Signal C Microcontroller Output Signal / Control Signal Cl Capacitor C2 Capacitor C3 Capacitor 147659. Doc -111 - 201118423 C4 capacitor C5 capacitor C6 capacitor C7 capacitor C8 capacitor C9 capacitor C10 capacitor C11 capacitor C12 capacitor C13 capacitor C14 capacitor C15 capacitor C100 capacitor D micro control D1 Schottky D2 photoelectric two D3 Schottky D5 Schottky D6 Schottky D7 Zener II E Micro Control F Output Letter G Output Letter INHIBIT (INH) Output Signal of Control Transmitter / Control Signal Output Signal of Diode Body Diode Diode Body Dipole Body The control signal number is entered into the signal 147659. Doc -112- 201118423 IN_A Input signal IN_B Input signal LI Inductor LCD1 Left lens / Left light valve LCD2 Right lens / Right light valve Qi MOSFET Q2 Crystal Q100 Field effect transistor Q101 NPN transistor / Output detector R1 Resistor R2 Resistor R3 Resistor R4 Resistor R5 Resistor R6 Resistor R7 Resistor R8 Divider Assembly / Resistor R9 Resistor RIO Divider Assembly / Resistor Rll Resistor R12 Resistor R13 Resistor R14 Resistor R15 Resistor 147659. Doc -113- 201118423 R16 Resistor R100 Resistor R101 Resistor R102 Resistor R511 Resistor R512 Resistor RA3 Input Control Signal RA4 Control Signal RC4 Control Signal RC5 Control Signal U1 Digital Control Analog Switch U2 Digital Control Analog Switch U3 Microcontroller /Operational Amplifier U4 Digital Control Analog Switch U4 Microcontroller U5 Operational Amplifier U5-1 Operational Amplifier U5-2 Operational Amplifier U6 Operational Amplifier U6 Power Detector/Digital Control Analog Switch VEE Input Voltage X Output Signal XO Switch I/O Signal XI switch I/O signal 147659. Doc -114- 201118423 X2 Switch 1/◦ signal X3 Switch I/O signal Y Output signal Y0 Switch I/O signal Y1 Switch I/O signal Y2 Switch I/O signal Y3 Switch I/O signal Z Output signal zo Switch I /O signal Z1 switch I/O signal I47659. Doc -115-

Claims (1)

201118423 七、申請專利範圍: 1. 一種用於觀看影像之三維眼鏡,該等影像包括用於該三 維眼鏡之一使用者之一左眼的影像及用於該使用者之一 右眼的影像,該三維眼鏡包含: 一左眼觀看光閥; 一右眼觀看光閥;及 一控制器’可操作地耦接至該左眼觀看光閥及該右眼 觀看光閥’其用於同步於該等左眼影像及該等右眼影像 向該使用者之該左眼及該右眼之一顯示而可控制地打開 及關閉該左眼觀看光閥及該右眼觀看光閥; 其中該左眼觀看光閥及該右眼觀看光閥中之至少一者 包含用於顯示影像之一顯示光閥。 2. 如請求項1之三維眼鏡,其中該顯示光閥可被打開或關 閉。 3. 如請求項1之三維眼鏡,其中該顯示光閥可同步於該對 應觀看光閥之該打開及關閉而被打開或關閉。 4. 一種操作具有一左眼光閥及一右眼光閥之三維眼鏡以用 於觀看用於一使用者之左眼及右眼的影像的方法,其包 含: 在該左眼光閥及該右眼光閥中之至少一者之一部分上 顯示影像。 5_如請求項4之方法,其進一步包含:同步於向該使用者 顯示左眼影像及右眼影像而打開及關閉該左眼光閥及該 右眼光閥。 147659.doc 201118423 6·如5月求項5之方法’其進一步包含:打開及關閉該左眼 光閥及該右眼光閥之該等部分。 7_ —種用於向一使用者之一左眼及一右眼顯示影像之系 統’其包含: 用於在一左眼光閥及一右眼光閥中之至少一者之一部 为上顯示影像之構件;及 用於同步於向該使用者顯示左眼影像及右眼影像而打 開及關閉該左眼光閥及該右眼光閥之構件。 8·如明求項7之系統,其進一步包含:用於同步於向該使 用者顯示該等左眼影像及該等右眼影像而打開及關閉該 左眼光閥及該右眼光閥之該等部分之構件。 9. 一種操作各自具有一左眼光閥及一右眼光閥之複數個三 維眼鏡以用於觀看用於一對應使用者之左眼及右眼的影 像的方法,其包含: 在該等三維眼鏡中之每一者的該左眼光閥及該右眼光 閥中之至少一者之一部分上顯示影像。 1〇·如請求項9之方法,其進一步包含:同步於向該等使用 者顯不該等左眼影像及該等右眼影像而打開及關閉該等 二維眼鏡之該左眼光閥及該右眼光閥。 11.如請求項9之方法’其進一步包含:打開及關閉該等三 維眼鏡中之每一者的該左眼光閥及該右眼光閥之該等部 分。 12·如請求項Η之方法,其進一步包含:同步於向該等使用 者顯示該等左眼影像及該等右眼影像而打開及關閉該等 147659.doc 201118423 二維眼鏡中之每一者的該左眼光閥及該右眼光閥之該等 部分。 13.如請求項9之方法’其中顯示於該等三維眼鏡中之每一 者上的該等影像相互不同。 14·如請求項9之方法,其中顯示於該等三維眼鏡中之每一 者上的該等影像可由該對應使用者客製化。 15· —種供複數個使用者觀看左眼影像及右眼影像之系統, 其包含: 用於在該等使用者t之每一者的三維眼鏡之左眼光閥 及右眼光閥中之至少一者之一部分上顯示影像之構 件;及 用於同步於向該等使用者顯示該等左眼影像及該等右 眼影像而打開及關閉該等三維眼鏡之該左眼光閥及該右 眼光閥之構件。 16. 如叫求項15之系統,其進一步包含:用於打開及關閉該 等使用者之该等三維眼鏡中之每一者的該左眼光閥及該 右眼光閥之該等部分之構件。 17. 如明求項16之系統,其進一步包含:用於同步於向該等 使用者顯$等左眼影像及該等右眼影像而打開及關閉 該等使用者之該等三維眼鏡中之每__者的該左眼光闊及 該右眼光閥之該等部分之構件。 18·如μ求項15之系統’其十顯示於該等使用者之該等三維 眼鏡中之每—者上的該等影像相互不同。 19.如π求項丨5之系統,其中顯示於該等使用者之該等三維 147659.doc 201118423 眼鏡中之每一者ι的該等影料由該對應使用者客製 化。 20. —種三維眼鏡,其包含: 左觀看光閥及右觀看光閥; -控制器,彳操作地麵接至該左觀看《閥及該右觀看 光間; 一可再充電電池,可操作地耦接至該控制器;及 電力收集裝置,可操作地麵接至該可再充電電池。 2 1 ·如凊求項2〇之三維眼鏡,其中該電力收集裝置經調適以 收集射頻、熱、生物力學、振動及/或聲能量中之—或多 者。 22. —種操作包括左觀看光閥及右觀看光閥之三維眼鏡之方 法,其包含: 收集用於操作該左觀看光閥及該右觀看光閥之區域能 量。 23. 如請求項22之方法’其中該所收集區域能量包含射頻、 熱 '生物力學、振動及/或聲能量中之一或多者。 24. —種用於操作包括左觀看光閥及右觀看光閥之三維眼鏡 之系統’其包含: 用於收集用於操作該左觀看光閥及該右觀看光閥之區 域能量之構件;及 用於儲存用於操作該左觀看光閥及該右觀看光閥之該 所收集區域能量之構件。 25. 如請求項24之系統,其中該所收集區域能量包含射頻、 熱、生物力學、振動及/或聲能量中之一或多者。 147659.doc201118423 VII. Patent application scope: 1. A three-dimensional glasses for viewing images, the images including images for one of the left eyes of one of the users of the three-dimensional glasses and images for one of the right eyes of the user. The 3D glasses include: a left eye viewing light valve; a right eye viewing light valve; and a controller 'operably coupled to the left eye viewing light valve and the right eye viewing light valve' for synchronizing thereto And the left eye image and the right eye image are displayed to one of the left eye and the right eye of the user to controllably open and close the left eye viewing light valve and the right eye viewing light valve; wherein the left eye At least one of the viewing light valve and the right eye viewing light valve includes a light valve for displaying one of the displayed images. 2. The 3D glasses of claim 1 wherein the display light valve can be opened or closed. 3. The 3D glasses of claim 1, wherein the display light valve is opened or closed in synchronization with the opening and closing of the corresponding viewing light valve. 4. A method of operating 3D glasses having a left eye light valve and a right eye light valve for viewing images for a left eye and a right eye of a user, comprising: the left eye light valve and the right eye light valve The image is displayed on one of at least one of the sections. 5) The method of claim 4, further comprising: turning the left eye light valve and the right eye light valve on and off in synchronization with displaying the left eye image and the right eye image to the user. 147659.doc 201118423 6. The method of claim 5, wherein the method further comprises: opening and closing the left eye valve and the portions of the right eye light valve. 7_ - a system for displaying an image to one of a user's left eye and a right eye', comprising: for displaying an image on one of at least one of a left eye light valve and a right eye light valve a member; and means for synchronizing the left eye light valve and the right eye light valve to display the left eye image and the right eye image to the user. 8. The system of claim 7, further comprising: synchronizing with displaying the left eye image and the right eye image to the user, opening and closing the left eye light valve and the right eye light valve Part of the components. 9. A method of operating a plurality of three-dimensional glasses each having a left-eye light valve and a right-eye light valve for viewing images for a left eye and a right eye of a user, comprising: in the three-dimensional glasses An image is displayed on a portion of at least one of the left eye light valve and the right eye light valve of each of the ones. The method of claim 9, further comprising: synchronizing the left eye light valve that opens and closes the two-dimensional glasses in synchronization with the display of the left eye image and the right eye images to the users Right eye light valve. 11. The method of claim 9 further comprising: opening and closing the left eye light valve of each of the three dimensional glasses and the portions of the right eye light valve. 12. The method of claim 1, further comprising: turning on and off each of the 147659.doc 201118423 two-dimensional glasses in synchronization with displaying the left eye images and the right eye images to the users The left eye light valve and the portion of the right eye light valve. 13. The method of claim 9, wherein the images displayed on each of the three-dimensional glasses are different from each other. 14. The method of claim 9, wherein the images displayed on each of the three-dimensional glasses are customizable by the corresponding user. 15. A system for viewing a left eye image and a right eye image by a plurality of users, comprising: at least one of a left eye light valve and a right eye light valve for three dimensional glasses of each of the user t The component of the image is displayed on one of the parts; and the left eye light valve and the right eye light valve for opening and closing the three-dimensional glasses in synchronization with displaying the left eye image and the right eye image to the users member. 16. The system of claim 15, further comprising: means for opening and closing each of the left eye light valve and the right eye light valve of each of the three dimensional glasses of the user. 17. The system of claim 16, further comprising: in the three-dimensional glasses for simultaneously opening and closing the left eye image and the right eye image to the user The left eye of each __ is wider and the components of the right eye light valve. 18. The images of the system of the fifteenth item 15 which are displayed on each of the three-dimensional glasses of the users are different from each other. 19. A system of π-claims 5, wherein the shadows of each of the three-dimensional 147659.doc 201118423 glasses displayed by the user are customized by the corresponding user. 20. A 3D spectacles comprising: a left viewing light valve and a right viewing light valve; - a controller, 彳 operating ground connected to the left viewing "valve between the valve and the right viewing light; a rechargeable battery operable The ground is coupled to the controller; and the power collecting device is operatively connected to the rechargeable battery. 2 1 . The 3D glasses of claim 2, wherein the power collection device is adapted to collect - or more of radio frequency, heat, biomechanics, vibration and/or acoustic energy. 22. A method of operating a three-dimensional eyeglass comprising a left viewing light valve and a right viewing light valve, the method comprising: collecting energy for operating the left viewing light valve and the right viewing light valve. 23. The method of claim 22 wherein the collected region energy comprises one or more of radio frequency, thermal 'biomechanics, vibration and/or acoustic energy. 24. A system for operating 3D glasses comprising a left viewing light valve and a right viewing light valve, comprising: means for collecting energy for operating a region of the left viewing light valve and the right viewing light valve; and Means for storing energy for operating the collected area of the left viewing light valve and the right viewing light valve. 25. The system of claim 24, wherein the collected region energy comprises one or more of radio frequency, thermal, biomechanical, vibrational, and/or acoustic energy. 147659.doc
TW99113567A 2009-05-18 2010-04-28 Solar powered 3D glasses TW201118423A (en)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US17924809P 2009-05-18 2009-05-18
US25315009P 2009-10-20 2009-10-20
US26166309P 2009-11-16 2009-11-16
US12/619,102 US20100165085A1 (en) 2008-11-17 2009-11-16 Encoding Method for 3D Glasses
US12/619,415 US20100157029A1 (en) 2008-11-17 2009-11-16 Test Method for 3D Glasses
US12/619,456 US20100149320A1 (en) 2008-11-17 2009-11-16 Power Conservation System for 3D Glasses
US12/619,431 US20100149636A1 (en) 2008-11-17 2009-11-16 Housing And Frame For 3D Glasses
US12/619,517 US20100157178A1 (en) 2008-11-17 2009-11-16 Battery Sensor For 3D Glasses
US12/619,309 US20100157031A1 (en) 2008-11-17 2009-11-16 Synchronization for 3D Glasses
US12/619,163 US20100157027A1 (en) 2008-11-17 2009-11-16 Clear Mode for 3D Glasses
US12/619,518 US20100177254A1 (en) 2008-11-17 2009-11-16 3D Glasses
US12/619,400 US20100157028A1 (en) 2008-11-17 2009-11-16 Warm Up Mode For 3D Glasses
US28507109P 2009-12-09 2009-12-09
US28504809P 2009-12-09 2009-12-09

Publications (1)

Publication Number Publication Date
TW201118423A true TW201118423A (en) 2011-06-01

Family

ID=44935646

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99113567A TW201118423A (en) 2009-05-18 2010-04-28 Solar powered 3D glasses

Country Status (1)

Country Link
TW (1) TW201118423A (en)

Similar Documents

Publication Publication Date Title
EP2271124A2 (en) Viewing system
EP2315449A2 (en) Normalization of a synchronization signal for 3D glasses
TW201207430A (en) Improved 3D glasses
CA2744666A1 (en) Universal 3d glasses
CA2728983A1 (en) New 3d glasses with hinged frame and enhanced contrast lenses
US20110234775A1 (en) DLP Link System With Multiple Projectors and Integrated Server
US20110228062A1 (en) 3D Glasses with OLED Shutters
EP2323415A2 (en) A system for viewing 3D images using 3D glasses having left and right shutters
US20110221876A1 (en) Solar Powered 3D Glasses
JP2011125014A (en) Active 3d glasses with oled shutter
EP2364033A2 (en) 3D glasses with RF synchronization
AU2011203276A1 (en) Universal 3D glasses
TW201112736A (en) Synchronization signal for use with 3D glasses
EP2373047A2 (en) Universal 3D glasses for use with televisions
TW201118423A (en) Solar powered 3D glasses
JP2011125013A (en) Active 3d glasses with oled shutter
EP2364034A2 (en) 3D Shutter Glasses for use with LCD Displays
TW201108713A (en) 3D shutter glasses for use with LCD displays
TW201118424A (en) Active 3D glasses with OLED shutters
TW201127020A (en) 3D glasses with RF synchronization
CA2735342A1 (en) Universal 3d glasses for use with televisions
TW201140144A (en) Battery housing and cover for 3D glasses