TW201112736A - Synchronization signal for use with 3D glasses - Google Patents

Synchronization signal for use with 3D glasses Download PDF

Info

Publication number
TW201112736A
TW201112736A TW99113620A TW99113620A TW201112736A TW 201112736 A TW201112736 A TW 201112736A TW 99113620 A TW99113620 A TW 99113620A TW 99113620 A TW99113620 A TW 99113620A TW 201112736 A TW201112736 A TW 201112736A
Authority
TW
Taiwan
Prior art keywords
signal
synchronization signal
light valve
exemplary embodiment
glasses
Prior art date
Application number
TW99113620A
Other languages
Chinese (zh)
Inventor
Boyd Macnaughton
Rodney W Kimmell
David W Allen
Original Assignee
Xpand Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/619,456 external-priority patent/US20100149320A1/en
Application filed by Xpand Inc filed Critical Xpand Inc
Publication of TW201112736A publication Critical patent/TW201112736A/en

Links

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

A viewing system for viewing video displays having the appearance of a three dimensional image.

Description

201112736 六、發明說明: 【發明所屬之技術領域】 本發明係關於用於呈現在觀看者看來為三維的視訊影像 之影像處理系統。 本申請案係關於2009年5月18曰申請之美國臨時專利申 凊案第61/179,248號(代理人案號第〇92847 〇〇〇〇2〇號),該 申請案之内容係以全文引用方式併入本文中。 本申請案係關於2009年10月20曰申請之美國臨時專利申 請案第61/253,150號(代理人案號第〇92847 〇〇〇〇67號),該 申請案之内容係以引用方式併入本文中。 本申請案係關於2009年11月16曰申請之美國臨時專利申 請案第61/261,663號(代理人案號第〇92847 〇〇〇〇98號),該 申請案之内容係以引用方式併入本文中。 本申s青案主張以下均在2009年11月16曰申請之美國實用 專利申凊案中之母一者的申請日期之權利:第〗2/6丨9,5丄8 號、第 12/6^517號、第 12/619,3〇9號、第 12/619,415 號、 第 12/619,400 號、第 、第 12/619,163號、第 12/619,456號、第12/619,1G2號,所有該等巾請案之内容係 以引用方式併入本文中。 【實施方式】 在以下圖式及描述中,相同部件在說明書及圖式中始終 分別用相同參考數字標記。諸圖未必按比例繪製。本發明 之特定特徵可以誇大的比例或以稍微示意性之形式展示, 且為清楚及簡明起見,可能不展示習知元件之一些細節。 147661.doc 201112736 本發明可能具有不同形式之實施例。特定實施例將被詳細 描述且展示於圖式中,但應瞭解,本發明内容被視為本發 明之原理之一範例’且不欲將本發明限於本文中所說明及 所描述者。應充分認識到’下文所論述之實施例之不同教 示可單獨地或以任何合適組合使用以產生所要結果。熟習 此項技術者將在閱讀實施例之以下詳細描述及參考隨附圖 式之後容易瞭解上文所提及之各種特性,以及下文將較詳 細描述之其他特徵及特性。 先參看圖1 ’ 一種用於觀看一電影螢幕1〇2上的三維 (3 D」)電影之系統1 〇 〇包括一副三維眼鏡1 〇 4,其具有一 左光閥10 6及一右光閥1 〇 8。在一例示性實施例中,三維眼 鏡104包括一框架’且光閥ι〇6及ι〇8被設置為安裝且支樓 在該框架内之左觀看透鏡及右觀看透鏡。 在一例示性實施例中,光閥106及i 08為液晶單元,其在 單元自不透明轉至透明時打開’且在單元自透明轉回至不 透明時關閉。在此情況下,透明被定義為透射足以使三維 眼鏡104之使用者看到一投射在電影螢幕ι〇2上之影像的 光。在一例示性實施例中’三維眼鏡104之使用者可能能 夠在三維眼鏡104之光閥1〇6及/或1〇8之液晶單元變為25% 至3〇%透射時看到投射在電影螢幕102上之影像。因此, 在光閥106及/或1〇8之液晶單元變為25。/。至30。/。透射時,認 為液晶單元打開。在光閥1〇6及/或1〇8之液晶單元打開 時’液晶單元亦可能透射多於25%至30%之光。 在一例示性實施例中,三維眼鏡1〇4之光閥1〇6及1〇8包 147661.doc 201112736 括利用低黏度、高折射率之液晶材料(諸如,Merck MLC6080)之具有PI單元組態的液晶單元。在—例示性實 施例中,調整PI單元厚度,使得該?1單元在其鬆他狀態下 形成%波阻滯器。在一例示性實施例中,將ρι單元製造地 較厚’使得在不到完全鬆他時達成1/2波狀態。合適液晶材 料中之一者為由Merck製造之MLC6080,但可使用具有足 夠高光學各向異性、低旋轉黏度及/或雙折射率之任何液 晶。三維眼鏡1〇4之光閥1〇6及1〇8亦可使用小單元間隙, 包括(例如)4微米之間隙。此外,具有足夠高折射率及低黏 度之液晶亦可適合用於三維眼鏡1〇4之光閥1〇6及1〇8中。 在一例示性實施例中,三維眼鏡1〇4之光閥1〇6及1〇8之 P:單元基於電控雙折射(「ECB」)原理工作。雙折射意謂 著當不施加電壓或施加一小止擋電壓(catch v〇hage)時, 單元對於偏振方向平行於Pi單元分子之長維之光及偏振方 向垂直於長維之光具有不同折射率⑽及ne。差為 光學各向異性。ΔηΧ(1為光學厚度,其中d為單元之厚度。 當Δη><^1/2λ時,當將Pi單元相對於偏光器之軸線成45。置 放時,該單元充當%波阻滯器。因此,光學厚度是重要的 (不僅疋厚度)。在一例不性實施例中,三維眼鏡1 之光閥 106及108之Pi單元被製造成光學上過厚,此意謂著 △nxd>l/2X。較高的光學各向異性意謂著單元愈薄單元鬆 弛愈快。在一例示性實施例中,當施加電壓時,三維眼鏡 1〇4之光閥106及108之Pi單元之分子的長軸垂直於基板垂 直配向(homeotropic alignment),因此此狀態下無雙折 147661.doc 201112736 射’且因為偏光器之透射軸線交又,所以不透射光。在— 例示性實施例中’將偏光器交又之Pi單元稱為以常白模式 (normally white mode)工作且其在不施加電壓時透射光。 偏光器之透射軸線彼此平行地定向的pi單元以常累模式 (normally black mode)工作,亦即,該等單元在施加一電 壓時透射光。 在一例示性實施例中,當自Pi單元移除高電壓時,光閥 106及/或1〇8之打開開始。此為—鬆弛過程,意謂著pi單元 中之液晶(「LC」)分子轉回至平衡狀態,亦即,分子與配 向層(亦即,基板之摩擦方向)對準。Pi單元之鬆弛時間取 決於單元厚度及流體之旋轉黏度。 -般而言’ Pi單元愈薄’鬆弛愈快。在一例示性實施例 中’重要參數並非Pi單it間隙d本身,而是乘積And,其中 △η為LC流體之雙折射率❶在一例示性實施例中,為了提 供打開狀態下之最大光透射,pi單元之對正光學阻滯 (head,optical retardati〇n)(And)應為 m。較高之雙折射 率允許較薄單元且因此允許較快之單元鬆弛^ 了提供可 能的最快切換,使具有低旋轉黏度及車交高雙折射率^之 流體(諸如,EM industries 生產2MLC6〇8〇)。 在一例示性實_中,除了在pi單元中使用具有低旋轉 黏度及較高雙折射率之切換流體之外,為了達成自不透明 至透明狀態之較快切換,亦將pi單元製造成光學上過厚, 使得在不到完全鬆他時達成%波狀態。通常,調整Pi單元 厚度使得。玄Pi單元在其鬆他狀態下形成匕波阻滞器。然 147661.doc 201112736 後,將Pi單元製造成光學上過厚使得在不到完全鬆弛時達 成%波狀態導致自不透明至透明.狀態之較快切換以此方 式,例示性實施例之光閥106及108提供與先前技術LC光閥 裝置相比而言增強之打開速度,其在一例示性實驗實施例 中提供了預期之外的結果。 在一例示性實施例中,可接著使用一止擋電壓以在pi單 元中之LC分子旋轉過頭之前停止該等LC分子之旋轉。藉 由以此方式停止Pi單元中之LC分子之旋轉,光透射得以保 持在其峰值或其峰值附近。 在一例示性實施例中’系統100進一步包括—具有一中 央處理單元(「CPU」)1 l〇a之信號傳輸器11〇,其將一信號 傳輸向電影螢幕102。在一例示性實施例中,該傳輸信號 反射離開電影螢幕102而射向一信號感測器丨丨2。該傳輸信 號可為(例如)紅外線(「IR」)信號、可見光信號、多色信 號或白光中之-或多者。在-些實施例中,該傳輸信號被 直接傳輸向信號感測器112 ,且因此可能不反射離開電影 螢幕102。在一些實施例中,該傳輸信號可為(例如)一射頻 (「RF」)信號,其不反射離開電影螢幕1〇2。 信號感測器112可操作地耦接至CPU 114。在—例示性 實施例中,信號感測器112偵測該傳輸信號且將該信號之 存在傳達至CPU 114。CPU ll〇a及CPU U 4可(例如)各自包 括-通用可程式化控制器、一特殊應用積體電: (「ASIC」)、一類比控制器、一局域化控制器、—分散式 控制器、一可程式化狀態控制器,及/或前述裝置之一 ^ 147661.doc 201112736 多個組合。 CPU 114可操作地耦接至一左光閥控制器116及一右光閥 控制器11 8,以用於監視及控制該等光閥控制器之操作。 在一例示性實施例中,左光閥控制器i丨6及右光閥控制器 11 8繼而可操作地耦接至三維眼鏡1〇4之左光閥1〇6及右光 閥108,以用於監視及控制左光閥及右光閥之操作。光閥 控制器116及11 8可(例如)包括一通用可程式化控制器、一 ASIC、一類比控制器、一類比或數位開關、一局域化控制 器、一分:散式控制器、一可程式化狀態控制器,及/或前 述裝置之一或多個組合。 一電池120係可操作地耦接到至少CPU 114且提供用於操 作三維眼鏡104之CPU、信號感測器112及光閥控制器1丄6 及118中之一或多者的電力。一電池感測器ι22可操作地搞 接至CPU 114及電池120以用於監視該電池中剩餘的電力之 量。 在一例示性實施例中’CPU 114可監視及/或控制信號感 測器112、光閥控制器U6及118及電池感測器122中之一或 多者的操作。替代性地或額外地,信號感測器丨12、光閱 控制器116及118及電池感測器122中之一或多者可包括一 單獨的專用控制器及/或複數個控制器,其可能亦或可能 不監視及/或控制信號感測器112、光閥控制器丨^及丨丨8及 電池感測器122中之一或多者。替代性地或額外地,cpu 114之操作可至少部分地分散於三維眼鏡1〇4之其他元件中 之一或多者之間。 147661.doc 201112736 在一例示性實施例中,信號感測器112、CPU 114、光閥 控制器116及118、電池120及電池感測器122安裝且支樓在 三維眼鏡104之框架内。若電影螢幕1〇2位於一電影院内, 則可提供一投影器130以用於將一或多個視訊影像投射於 該電影螢幕上。在一例示性實施例中,信號傳輸器u 〇可 緊接投影器13 0定位或可包括於投影器丨3 〇内。在一例示性 貫施例中’投影器13 0可包括(例如)下列各者中之一或多 者:一電子投影裝置 '一機電投影裝置、一電影投影器、 一數位視訊投影器,或用於將一或多個視訊影像顯示於電 〜螢幕1 02上的一電腦顯示器。替代性地,或除了電影螢 幕102之外,亦可使用一電視(rTV」)或其他視訊顯示裝 置,諸如一平面螢幕TV、一電漿TV、一 LCD τν ,或用於 顯示影像以供三維眼鏡之使用者檢視的其他顯示裝置,其 可(例如)包括可緊接該顯示裝置之顯示器表面定位及/或位 於該顯示裝置之顯示器表面内的信號傳輸器11〇或用於發 信號至三維眼鏡1 〇4之一額外信號傳輸器。 在一例示性實施例中,在系統1〇〇之操作期間,CPU U4 依據由信號感測器112自信號傳輸器11〇接收之信號及/或 依據由CPU自電池感測器122接收之信號而控制三維眼鏡 1〇4之光閥106及108之操作。在一例示性實施例中,⑽ Μ可指導左光閥控制器116打開左光閥⑽心或指導右光 閥控制器11 8打開右光閥1 〇8。 在一例示性實施例中,光閥控制器m及118藉由在光閥 之液晶單元上施加_電麼來分別控制㈣⑽及⑽之操 147661.doc 201112736 作。在一例*性實施例中,施加在光閥1〇6及108之液晶單 7G上的電壓在負與正之間交替。在—例示性實施例中,不 管所施加之電壓為正或是為負,光閥1G6及⑽之液晶單元 句、相同方式打開及關閉。交替所施力口的電壓防止光閥 106及108之液晶單元之材料於單元之表面析出。 在一例示性實施例中,在系統1〇〇之操作期間,如圖2及 圖3中所說明,該系統可實施一左右光閥方法2〇〇,在該方 法中,若在202a中,左光閥丨〇6關閉且右光閥1〇8打開,則 在202b中’分別藉由光閥控制器n 6及u 8將一高電壓 202ba施加至左光閥1〇6及將無電壓2〇2bb隨後接著一小止 擋電壓202bc施加至右光閥108。在一例示性實施例中,將 咼電壓202ba施加至左光閥1〇6使左光閥關閉,且不施加電 壓至右光閥10 8會開始打開右光閥。在一例示性實施例 中’隨後將小止擋電壓202bc施加至右光閥1〇8可防止右光 閥中之液晶在右光閥108之打開期間旋轉過頭。結果,在 202b,左光閥106被關閉且右光閥1〇8被打開。 若在202c中,左光閥106被打開且右光閥1〇8被關閉,則 在202d中,分別藉由光閥控制器118及116,將一高電壓 202da施加至右光閥108且將無電壓202db隨後接著一小止 擋電壓202dc施加至左光閥106。在一例示性實施例中,將 高電壓202da施加至右光閥108使右光閥關閉,且不施加電 壓至左光閥10 6會開始打開左光閥。在一例示性實施例 中,隨後將小止檔電壓202dc施加至左光閥i〇6可防止左光 閥中之液晶在左光閥106之打開期間旋轉過頭。結果,在 147661.doc • 10- 201112736 202d ’左光閥i〇6被打開且右光閥ι〇8被關閉。 在一例示性實施例中,2〇215及2〇2d中所使用的止擋電壓 之星值在202b及202d中所使用的高電壓之量值的約1〇%至 20%的範圍内。 在一例示性實施例中,在系統1〇〇之操作期間,在方法 200期間,在202b中左光閥106關閉且右光閥1〇8打開的時 間期間,為右眼呈現一視訊影像,且在2〇2d中左光閥1〇6 打開且右光閥108關閉的時間期間,為左眼呈現一視訊影 像。在一例示性實施例中,視訊影像可顯示於下列各者中 之或夕者上.電影院螢幕102、一 LCD電視螢幕、一數 位光源處理(「DLP」)電視、一數位光源處理投影器、一 電樂螢幕及其類似者。 在例示〖生貫施例中,在系統丨〇〇之操作期間,^ 4 將‘導每-光^剛及lG8在呈現意欲用於該光閥及檢視者 眼睛之影像時打開。在—例示性實施财,—同步信號可 用以使光閥106及108在正確時間打開。 在-例示性實施例中,—同步信號係由信號傳輸器ιι〇 傳輸且該同步信號可(例如)包括-紅外光。在一例示性實 ⑶t L號傳輸⑦UG將該同步信號傳輸至—反射性表 面’且該表面將該信號反射至定位且安裝於三維眼鏡1〇4 之框架内的信號感測器112。該反射性表面可(例如)為電影 院螢幕1〇2或位於電影螢幕上或附近的另—反射性裝置, 以使得三料鏡1()4之制者在觀看電科大體上面對該 反射體。在—例示性實施例中,信號傳輸器HO可將該同 147661.doc 201112736 步"ί。號直接發送至感測器11 2。在一例示性實施例中,信 號感測器112可包括一安裝且支標在三維眼鏡】〇4之框架上 的光電二極體。 s亥同步彳§號可在母一左右鏡頭光閥序列2 〇〇開始時提供 一脈衝。該同步信號可更為頻繁,(例如)提供一脈衝以指 導每一光閥106或108之打開。該同步信號可較不頻繁, (例如)每光閥序列200、每五個光閥序列或每ι〇〇個光閥序 列提供一次脈衝。CPU 114可具有一内部計時器以在同步 信號不存在的情況下維持適當光閥定序。 在一例示性實施例中,光閥106及1〇8中之黏性液晶材料 與窄單元間隙之組合可產生一光學上過厚之單元。光閥 1 06及108中之液晶在施加有電壓時阻擔光透射。在移除施 加之電壓後,光閥106及108中之液晶中的分子旋轉回至對 準層之定向。對準層將該等液晶單元中之分子定向以允許 光透射。在一光學上過厚之液晶單元中,該等液晶分子在 移除電力之後迅速地旋轉且因此使光透射迅速地增加,但 是接著分子旋轉過頭且光透射減小。自液晶單元分子之旋 轉開始直至光透射穩定(亦即,液晶分子旋轉停止)的時間 為真正的切換時間。 在一例示性實施例中,當光閥控制器116及118將小的止 擋電壓施加至光閥106及1 〇8時,此止擋電壓在該等光閥中 之該等液晶單元旋轉過頭之前停止該等液晶單元之旋轉。 藉由在光閥106及108中之該等液晶單元中之分子旋轉過頭 之前停止該等分子之旋轉,穿過該等光閥中之該等液晶單 147661.doc 12 201112736 元中之該等分子的光透射保持在其峰值或峰值附近。因 此’有效的切換時間為自光閥106及108中之液晶單元開始 其旋轉’直至液晶單元中之分子之旋轉停止在峰值光透射 點處或附近。 現參看圖4 ’透射指代透射穿過光閥1〇6或1〇8之光的 量,其中透射值1指代穿過光閥106或108之液晶單元之最 大或接近最大光透射點。因此,對於能夠最多透射37%之 光的光閥1 06或108而言,透射位準1指示光閥1 〇6或1 〇8正 透射可用光之最大量(亦即,37%)。當然,視所使用的特 定液晶單元而定,光閥106或108所透射之光的最大量可為 任意量,包括(例如)33°/。、30%或者顯著較多或較少。 如圖4中所說明,在一例示性實驗實施例中,操作光閥 106或108,且在方法200之操作期間量測光透射4〇〇。在光 閥1 06或108之例示性實驗實施例中,光閥在大約〇 5毫秒 内關閉’接著在光閥循環的前一半中在約7毫秒内保持關 閉,然後光閥在約1毫秒内打開至最大光透射的約9〇%, 且接著光閥在約7毫秒内保持打開,且然後關閉。作為比 較’亦在方法200之操作期間操作一可購得光閥,該光間 展現光透射402。在方法200之操作期間,本例示性實施例 之光閥106及1 08之光透射在約1毫秒内達到約25%至3〇%之 透射性(亦即,最大光透射之約90%),如圖4所示,而另一 光閥僅在約2.5毫秒之後達到約25%至30%之透射性(亦即, 最大光透射之約90%)’如圖4所示。因此,本例示性實施 例之光閥106及1〇8比可購得光閥提供—顯著較快回應之操 147661.doc 201112736 作。此為一意外結果。 現參看圖5 ’在一例示性實施例中,系統1 〇〇實施一操作 方法500,在該方法中’在502中,信號感測器114自信號 傳輸器110接收一紅外線同步(「sync」)脈衝。在504中, 若三維眼鏡1 04不處於執行模式(Rim MODE),則在506中 CPU 114判定三維眼鏡1〇4是否處於關閉模式(〇FF MODE)。在506中若CPU 1U判定三維眼鏡1〇4不處於關閉 模式下’則在508中CPU 114繼續正常處理,然後返回 502。在506中若CPU II4判定三維眼鏡1〇4處於關閉模式 下’則CPU 114在5 10中清除同步反相器(「SI」)及驗證旗 標以為下一個加密信號準備CPU 114,在512中起始光閥 I 06及1 08之一暖機序列’然後繼續進行正常操作5〇8且返 回 502。201112736 VI. Description of the Invention: [Technical Field] The present invention relates to an image processing system for presenting a video image that is three-dimensional to a viewer. This application is related to U.S. Provisional Patent Application No. 61/179,248 (Attorney Docket No. 4792847 〇〇〇〇2〇) filed on May 18, 2009, the contents of which are incorporated by reference in its entirety. The manner is incorporated herein. This application is related to U.S. Provisional Patent Application No. 61/253,150, filed on Oct. 20, 2009 (Attorney Docket No. PCT No. 92847 〇〇〇〇67), the contents of which are incorporated by reference. Incorporated herein. The present application is related to U.S. Provisional Patent Application Serial No. 61/261,663, filed on Nov. 16, 2009 (Attorney Docket No. No. 92847 〇〇〇〇98), the contents of which are incorporated by reference. Incorporated herein. This application s 青青claims the following right of the application date of the mother of the US utility patent application filed on November 16, 2009: No. 2/6丨9,5丄8, 12/ 6^517, 12/619, 3〇9, 12/619,415, 12/619,400, 12th, 619,163, 12/619,456, 12/619, 1G2, all The contents of these claims are hereby incorporated by reference. [Embodiment] In the following drawings and description, the same components are denoted by the same reference numerals throughout the specification and the drawings. The figures are not necessarily drawn to scale. The specific features of the present invention may be shown in an exaggerated proportion or in a somewhat schematic form, and some details of the conventional elements may not be shown for clarity and conciseness. 147661.doc 201112736 The invention may have different forms of embodiment. The specific embodiments are described in detail and shown in the drawings, and are in the It will be fully appreciated that the various teachings of the embodiments discussed below can be used individually or in any suitable combination to produce the desired result. Those skilled in the art will readily appreciate the various features mentioned above, as well as other features and characteristics which are described in more detail below, in the following detailed description of the embodiments. Referring first to Figure 1 'A system for viewing a three-dimensional (3D) movie on a movie screen 1 〇 2 includes a pair of 3D glasses 1 〇 4 having a left light valve 106 and a right light Valve 1 〇 8. In an exemplary embodiment, the three-dimensional eyepiece 104 includes a frame' and the light valves ι 6 and ι 8 are configured to mount and support the left and right viewing lenses within the frame. In an exemplary embodiment, light valves 106 and i 08 are liquid crystal cells that open when the unit is turned from opaque to transparent and closed when the unit is turned from transparent to opaque. In this case, transparency is defined as transmitting light sufficient for the user of the three-dimensional glasses 104 to see an image projected on the movie screen 〇2. In an exemplary embodiment, the user of the 3D glasses 104 may be able to see the projection in the movie when the liquid crystal cells of the light valves 1〇6 and/or 1〇8 of the 3D glasses 104 become 25% to 3〇% transmitted. The image on the screen 102. Therefore, the liquid crystal cell at the light valve 106 and/or 1〇8 becomes 25. /. To 30. /. When transmitting, it is considered that the liquid crystal cell is turned on. When the liquid crystal cell of the light valve 1〇6 and/or 1〇8 is turned on, the liquid crystal cell may also transmit more than 25% to 30% of light. In an exemplary embodiment, the light valves 1〇6 and 1〇8 of the 3D glasses 1〇4 package 147661.doc 201112736 include a PI unit group using a low viscosity, high refractive index liquid crystal material such as Merck MLC6080. Liquid crystal cell. In an exemplary embodiment, the PI unit thickness is adjusted such that? The 1 unit forms a % wave blocker in its relaxed state. In an exemplary embodiment, the ρι cell is made thicker so that a 1/2 wave state is achieved when it is not fully relaxed. One of suitable liquid crystal materials is MLC6080 manufactured by Merck, but any liquid crystal having sufficiently high optical anisotropy, low rotational viscosity, and/or birefringence can be used. The light valves 1〇6 and 1〇8 of the 3D glasses 1〇4 can also use small cell gaps, including, for example, 4 micron gaps. Further, a liquid crystal having a sufficiently high refractive index and a low viscosity can also be suitably used in the light valves 1〇6 and 1〇8 of the 3D glasses 1〇4. In an exemplary embodiment, the P:cells of the light valves 1〇6 and 1〇8 of the 3D glasses 1〇4 operate on the principle of electronically controlled birefringence (“ECB”). Birefringence means that when no voltage is applied or a small stop voltage (catch v〇hage) is applied, the unit has different refractions for the long-dimensional light whose polarization direction is parallel to the Pi unit molecule and the polarization direction perpendicular to the long-dimensional light. Rate (10) and ne. The difference is optical anisotropy. ΔηΧ (1 is the optical thickness, where d is the thickness of the unit. When Δη ><^1/2λ, when the Pi unit is 45 with respect to the axis of the polarizer, the unit acts as a % wave retarder. Therefore, the optical thickness is important (not only the thickness of the crucible). In an exemplary embodiment, the Pi cells of the light valves 106 and 108 of the 3D glasses 1 are made optically too thick, which means Δnxd>l /2X. Higher optical anisotropy means that the thinner the cell is, the faster the cell relaxation is. In an exemplary embodiment, when a voltage is applied, the molecules of the Pi cell of the light valves 106 and 108 of the 3D glasses 1〇4 The long axis is perpendicular to the homeotropic alignment of the substrate, so that there is no double fold in this state and the light is not transmitted because the transmission axis of the polarizer is again. In the exemplary embodiment, the polarization will be The Pi unit is said to operate in a normally white mode and transmits light when no voltage is applied. The pi unit whose transmissive axes are oriented parallel to each other operates in a normally black mode. , that is, the units Light is transmitted when a voltage is applied. In an exemplary embodiment, when a high voltage is removed from the Pi unit, the opening of the light valve 106 and/or 1 〇 8 begins. This is a relaxation process, meaning a pi unit The liquid crystal ("LC") molecules are turned back to equilibrium, that is, the molecules are aligned with the alignment layer (ie, the rubbing direction of the substrate). The relaxation time of the Pi unit depends on the thickness of the cell and the rotational viscosity of the fluid. The thinner the 'Pi cell' is, the faster it relaxes. In an exemplary embodiment, the important parameter is not the Pi single-it gap d itself, but the product And, where Δη is the birefringence of the LC fluid. In an embodiment, in order to provide maximum light transmission in the open state, the aligning optical retardation (And) of the pi unit should be m. Higher birefringence allows for thinner cells and thus allows The faster unit relaxation ^ provides the fastest possible switching, making the fluid with low rotational viscosity and high birefringence (such as EM industries producing 2MLC6〇8〇). In an exemplary real _, in addition to Use in a pi unit with low spin In addition to the viscosity and higher birefringence switching fluids, the pi cell is also made optically too thick to achieve a faster switching from opaque to transparent state, so that the % wave state is achieved when not fully loosened. Adjusting the thickness of the Pi unit so that the Xuan Pi unit forms a chopper blocker in its loose state. After 147661.doc 201112736, the Pi unit is made optically too thick to achieve a % wave state when not fully relaxed. Resulting in a faster switching from opaque to transparent. In this manner, the light valves 106 and 108 of the illustrative embodiments provide enhanced opening speeds as compared to prior art LC light valve devices, in an exemplary experimental embodiment. Provided unexpected results. In an exemplary embodiment, a stop voltage can then be used to stop the rotation of the LC molecules before the LC molecules in the pi unit are rotated too far. By stopping the rotation of the LC molecules in the Pi unit in this manner, the light transmission is maintained at its peak or its peak. In an exemplary embodiment, system 100 further includes a signal transmitter 11 having a central processing unit ("CPU") 1 l〇a that transmits a signal to movie screen 102. In an exemplary embodiment, the transmitted signal is reflected off the movie screen 102 and directed toward a signal sensor 丨丨2. The transmission signal can be, for example, one or more of an infrared ("IR") signal, a visible light signal, a polychromatic signal, or white light. In some embodiments, the transmitted signal is transmitted directly to signal sensor 112 and thus may not be reflected off movie screen 102. In some embodiments, the transmission signal can be, for example, a radio frequency ("RF") signal that does not reflect off the movie screen 1〇2. Signal sensor 112 is operatively coupled to CPU 114. In the exemplary embodiment, signal sensor 112 detects the transmitted signal and communicates the presence of the signal to CPU 114. The CPU 11a and the CPU U 4 may, for example, each comprise a - general programmable controller, a special application integrated battery: ("ASIC"), an analog controller, a localized controller, - decentralized A combination of a controller, a programmable state controller, and/or one of the aforementioned devices ^ 147661.doc 201112736. CPU 114 is operatively coupled to a left light valve controller 116 and a right light valve controller 11 8 for monitoring and controlling the operation of the light valve controllers. In an exemplary embodiment, the left shutter controller i丨6 and the right shutter controller 118 are in turn operatively coupled to the left shutter 1〇6 and the right shutter 108 of the 3D glasses 1〇4 to Used to monitor and control the operation of the left and right light valves. The light valve controllers 116 and 186 may, for example, include a universal programmable controller, an ASIC, an analog controller, an analog or digital switch, a localized controller, a minute: a discrete controller, A programmable state controller, and/or one or more combinations of the foregoing. A battery 120 is operatively coupled to at least the CPU 114 and provides power for operating one or more of the CPU of the 3D glasses 104, the signal sensor 112, and the light valve controllers 1 and 6 and 118. A battery sensor ι 22 is operatively coupled to the CPU 114 and battery 120 for monitoring the amount of power remaining in the battery. In an exemplary embodiment, the 'CPU 114 may monitor and/or control the operation of one or more of the signal sensor 112, the light valve controllers U6 and 118, and the battery sensor 122. Alternatively or additionally, one or more of signal sensor 丨 12, light reading controllers 116 and 118 and battery sensor 122 may include a separate dedicated controller and/or a plurality of controllers, One or more of signal sensor 112, light valve controllers 丨丨 and 丨丨8, and battery sensor 122 may or may not be monitored and/or controlled. Alternatively or additionally, the operation of cpu 114 may be at least partially dispersed between one or more of the other elements of 3D glasses 1〇4. 147661.doc 201112736 In an exemplary embodiment, signal sensor 112, CPU 114, light valve controllers 116 and 118, battery 120, and battery sensor 122 are mounted and the wrap is within the framework of three-dimensional glasses 104. If the movie screen 1 is located in a movie theater, a projector 130 can be provided for projecting one or more video images onto the movie screen. In an exemplary embodiment, the signal transmitter u 定位 can be positioned next to the projector 130 or can be included in the projector 丨3 。. In an exemplary embodiment, 'projector 130 may include, for example, one or more of: an electronic projection device', an electromechanical projection device, a movie projector, a digital video projector, or A computer display for displaying one or more video images on the electrical to screen 102. Alternatively, or in addition to the movie screen 102, a television (rTV) or other video display device such as a flat screen TV, a plasma TV, an LCD τν, or for displaying images for three-dimensional use may be used. Other display devices for viewing by the user of the eyeglass, which may, for example, include a signal transmitter 11 that can be positioned next to the display surface of the display device and/or located within the display surface of the display device or for signaling to three dimensions One of the glasses 1 额外 4 additional signal transmitter. In an exemplary embodiment, during operation of the system 1, the CPU U4 is responsive to signals received by the signal sensor 112 from the signal transmitter 11 and/or according to signals received by the CPU from the battery sensor 122. The operation of the light valves 106 and 108 of the three-dimensional glasses 1〇4 is controlled. In an exemplary embodiment, (10) Μ may direct the left light valve controller 116 to open the left light valve (10) core or direct the right light valve controller 11 8 to open the right light valve 1 〇 8. In an exemplary embodiment, the light valve controllers m and 118 respectively control (4) (10) and (10) operations 147661.doc 201112736 by applying _ electricity to the liquid crystal cells of the light valve. In an exemplary embodiment, the voltage applied to the liquid crystal cells 7G of the light valves 1〇6 and 108 alternates between negative and positive. In the exemplary embodiment, the liquid crystal cells of the light valves 1G6 and (10) are opened and closed in the same manner, regardless of whether the applied voltage is positive or negative. The voltage applied to the alternately applied ports prevents the material of the liquid crystal cells of the light valves 106 and 108 from being deposited on the surface of the cell. In an exemplary embodiment, during operation of the system 1, as illustrated in Figures 2 and 3, the system can implement a left and right light valve method 2, in which, if in 202a, When the left light valve 丨〇6 is closed and the right light valve 1〇8 is opened, a high voltage 202ba is applied to the left light valve 1〇6 and the voltage is no longer applied by the light valve controllers n 6 and u 8 respectively in 202b. 2〇2bb is then applied to the right shutter 108 followed by a small stop voltage 202bc. In an exemplary embodiment, applying a chirp voltage 202ba to the left shutter 1〇6 causes the left shutter to close, and applying no voltage to the right shutter 108 begins to open the right shutter. In an exemplary embodiment, the subsequent application of the small stop voltage 202bc to the right shutter 1〇8 prevents the liquid crystal in the right shutter from rotating over the opening of the right shutter 108. As a result, at 202b, the left shutter 106 is closed and the right shutter 1〇8 is opened. If in 202c, the left light valve 106 is opened and the right light valve 1〇8 is closed, then in 202d, a high voltage 202da is applied to the right light valve 108 by the light valve controllers 118 and 116, respectively, and The no voltage 202db is then applied to the left shutter 106 followed by a small stop voltage 202dc. In an exemplary embodiment, applying a high voltage 202da to the right shutter 108 causes the right shutter to close, and applying no voltage to the left shutter 106 will begin to open the left shutter. In an exemplary embodiment, subsequent application of the small stop voltage 202dc to the left shutter valve 〇6 prevents the liquid crystal in the left shutter from rotating over the opening of the left shutter 106. As a result, at 147661.doc • 10- 201112736 202d 'the left light valve i 〇 6 is opened and the right light valve 〇 8 is closed. In an exemplary embodiment, the star value of the stop voltage used in 2 〇 215 and 2 〇 2d is in the range of about 1% to 20% of the magnitude of the high voltage used in 202b and 202d. In an exemplary embodiment, during operation of the system 1 during the method 200, during the time when the left light valve 106 is closed and the right light valve 1〇8 is open in 202b, a video image is presented for the right eye, And during the time when the left light valve 1〇6 is turned on and the right light valve 108 is turned off in 2〇2d, a video image is presented for the left eye. In an exemplary embodiment, the video image may be displayed on or among the following: a cinema screen 102, an LCD television screen, a digital light source processing ("DLP") television, a digital light source processing projector, A music screen and the like. In the illustrated embodiment, during operation of the system, ^4 will be turned on when the image intended for the light valve and the viewer's eyes is presented. In an exemplary implementation, the synchronization signal can be used to cause the shutters 106 and 108 to open at the correct time. In an exemplary embodiment, the sync signal is transmitted by the signal transmitter and the sync signal may, for example, comprise -infrared light. The synchronization signal is transmitted to the -reflective surface at an exemplary real (3) t L transmission 7UG and the surface reflects the signal to the signal sensor 112 positioned and mounted within the frame of the 3D glasses 1〇4. The reflective surface can be, for example, a cinema screen 1 〇 2 or another reflective device located on or near the movie screen such that the maker of the three mirrors 1 (4) generally faces the reflection while viewing the electronics body. In an exemplary embodiment, the signal transmitter HO may be the same as 147661.doc 201112736 " The number is sent directly to the sensor 11 2 . In an exemplary embodiment, signal sensor 112 may include a photodiode mounted and supported on a frame of 3D glasses. The s-synchronization 彳 § can provide a pulse at the beginning of the mother-left lens valve sequence 2 〇〇. The synchronization signal can be more frequent, for example, providing a pulse to direct the opening of each light valve 106 or 108. The synchronization signal can be less frequent, for example, providing one pulse per light valve sequence 200, every five light valve sequences, or every ι light valve sequence. The CPU 114 can have an internal timer to maintain proper light valve sequencing in the absence of a synchronization signal. In an exemplary embodiment, the combination of the viscous liquid crystal material in the light valves 106 and 1 and the narrow cell gap produces an optically overly thick unit. The liquid crystals in the light valves 1 06 and 108 block light transmission when a voltage is applied. Upon removal of the applied voltage, the molecules in the liquid crystals in shutters 106 and 108 are rotated back to the orientation of the alignment layer. The alignment layer orients the molecules in the liquid crystal cells to allow light transmission. In an optically thick liquid crystal cell, the liquid crystal molecules rapidly rotate after the power is removed and thus the light transmission is rapidly increased, but then the molecules are rotated too far and the light transmission is reduced. The time from the rotation of the liquid crystal cell molecules until the light transmission is stabilized (i.e., the liquid crystal molecules are stopped) is the true switching time. In an exemplary embodiment, when the light valve controllers 116 and 118 apply a small stop voltage to the light valves 106 and 1 〇 8, the stop voltages of the liquid crystal cells in the light valves are rotated too far. The rotation of the liquid crystal cells is stopped before. Stopping the rotation of the molecules before the molecules in the liquid crystal cells in the light valves 106 and 108 rotate over the head, passing through the molecules in the liquid crystals of the light valves 147661.doc 12 201112736 The light transmission remains near its peak or peak. Therefore, the 'effective switching time is that the liquid crystal cells in the light valves 106 and 108 start their rotation' until the rotation of the molecules in the liquid crystal cell stops at or near the peak light transmission point. Referring now to Figure 4, the transmission refers to the amount of light transmitted through the light valve 1〇6 or 1〇8, where the transmission value 1 refers to the maximum or near maximum light transmission point of the liquid crystal cell passing through the light valve 106 or 108. Thus, for a light valve 106 or 108 capable of transmitting up to 37% of light, the transmission level 1 indicates that the light valve 1 〇 6 or 1 〇 8 is transmitting the maximum amount of available light (i.e., 37%). Of course, depending on the particular liquid crystal cell used, the maximum amount of light transmitted by the light valve 106 or 108 can be any amount, including, for example, 33°/. 30% or significantly more or less. As illustrated in Figure 4, in an exemplary experimental embodiment, light valve 106 or 108 is operated and light transmission is measured during operation of method 200. In an exemplary experimental embodiment of the light valve 106 or 108, the light valve is closed in approximately 〇5 milliseconds' then remains closed for approximately 7 milliseconds in the first half of the light valve cycle, and then the light valve is within approximately 1 millisecond It is turned on to about 9% of the maximum light transmission, and then the light valve remains open for about 7 milliseconds and then turned off. As a comparison, a commercially available light valve is also operated during operation of method 200, which exhibits light transmission 402. During operation of method 200, light transmission of light valves 106 and 108 of the present exemplary embodiment achieves a transmission of about 25% to 3% in about 1 millisecond (i.e., about 90% of maximum light transmission). As shown in Figure 4, another light valve achieves a transmission of about 25% to 30% (i.e., about 90% of the maximum light transmission) after about 2.5 milliseconds, as shown in Figure 4. Thus, the light valves 106 and 1〇8 of the present exemplary embodiment provide a significantly faster response than the commercially available light valve 147661.doc 201112736. This is an unexpected result. Referring now to Figure 5, in an exemplary embodiment, system 1 implements an operational method 500 in which signal sensor 114 receives an infrared sync from signal transmitter 110 ("sync"). )pulse. In 504, if the 3D glasses 104 are not in the execution mode (Rim MODE), the CPU 114 determines in 506 whether the 3D glasses 1〇4 are in the off mode (〇FF MODE). If the CPU 1U determines in 506 that the 3D glasses 1〇4 are not in the OFF mode, then the CPU 114 continues normal processing at 508 and then returns to 502. If the CPU II4 determines that the 3D glasses 1〇4 are in the off mode at 506, the CPU 114 clears the synchronous inverter ("SI") and the verification flag in 5 10 to prepare the CPU 114 for the next encrypted signal, in 512. One of the start light valves I 06 and 108 warms up the sequence 'and then proceeds to normal operation 5 〇 8 and returns to 502.

在504中若二維眼鏡1 〇4處於執行模式,則在5 14中CPU II 4判定三維眼鏡1 〇4是否已經組態以用於加密。在5丨4中 右二維眼鏡10 4已經組態以用於加密,則c p u 114繼續5 0 8 中之正常操作且進行至502。在514中若三維眼鏡1〇4未經 組態以用於加密’則在5 16中C P U 114檢查以判定傳入信號 是否為三脈衝同步信號。在5 1 6十若傳入信號並非三脈衝 同步信號,則CPU 114繼續508中之正常操作且進行至 502。在516中若傳入信號為三脈衝同步信號,則在518中 CPU 114使用信號感測器112自信號傳輸器11〇接收組態資 料。在520中CPU 114接者將该接收到的組態資料解密以判 定其是否有效。在520中,若該接收到的組態資料有效, 147661.doc -14· 201112736 則在522中CPU 114檢查以查看新的組態ID(「c〇NID」)是 否匹配先前CONID。在一例示性實施例中,先前(:〇1^11)可 儲存於一 5己憶體裝置(諸如,非揮發性記憶體裝置)中,該 記憶體裝置在三維眼鏡104之製造或現場程式化期間可操 作地耦接至CPU 114。在522中,若新的C0NID不匹配先前 CONID,則在M4中CPU 114指導三維眼鏡1〇4之光閥1〇6及 108進入透明模式(CLEAR M〇dE)。在522中,若新的 CONID匹配先前c〇NID,則在526中CPU 114設定SI及 CONID旗軲以觸發正常模式光閥序列以用於檢視三維影 像。 在一例示性實施例中,在執行或正常模式下,三維眼鏡 104完全可操作。在一例示性實施例中,在關閉模式下, 該三維眼鏡不可操作。在一例示性實施例中,在正常模式 下’该二維眼鏡可操作且可實施方法200。 在一例讀實施财,信號傳輸器11〇可靠近影院投影 器130定位。在一例示性實施例中,信號傳輸器ιΐ〇(尤其) 將一同步信號(「sync信號」)發送至三維眼鏡1〇4之信號感 測器112。信號傳輸器11〇可改為或額外地自影院投影器 130及/或任何顯示器及/或任何發射器裝置接收同步信號。 在-例不性實施例中,一加密信號可用以防止三維眼鏡 1〇4與不含有正確加密信號之信號傳輸器110—起操作。此 外’在—例示性實施例中,該加密傳輸器信號將不會正確 地致動未經配備以接收及處理加密信號之三維眼鏡1〇4。 在一例示性實施例中’信號傳輸器11〇亦可將加密資料發 147661.doc 15 201112736 送至三維眼鏡104。 在操作期間,系統 在602中,該系統 現參看圖6,在一例示性實施例中, 1 00實施一操作方法600,在該方法中 判定信號傳輸器110是否因為恰好在6〇2中傳來電力而被重 設。在602中,若信號傳輸器11〇因為恰好傳來電力而被重 設,則在604中該信號傳輸器產生一新的隨機同步反相旗 標。在602中,若信號傳輸器11〇不具有—通電重設狀況, 則在606中信號傳輸器110之CPU u〇a判定是否已使用相同 同步編碼超出一預定時間量。在一例示性實施例中,6⑽ 中之預定時間可為四個小時,或一典型電影之長度,或任 何其他合適時間。在606中,若相同同步編碼已被使用了 4 小時以上,則在604中信號傳輸器11〇之CPU ll〇a產生一新 的同步反相旗標。 在6〇8中,信號傳輸器110之cpu 110a接著判定該信號傳 輸器是否仍在從投影器130接收一信號。在608中,若信號 傳輸器110並非仍在從投影器13〇接收一信號,則在61〇中 信號傳輸器110可使用其自身的内部同步產生器繼續在適 當時間將同步信號發送至信號感測器112。 在操作期間,.信號傳輸器110可(例如)在兩脈衝同步信號 與三脈衝同步信號之間交替。在一例示性實施例中,兩脈 衝同步信號指導三維眼鏡104打開左光閥108,且三脈衝同 步k號指導三維眼鏡1 〇4打開右光閥1 〇6。在一例示性實施 例中’信號傳輸器11 〇可在每η個信號之後發送一加密信 號。 147661.doc -16 - 201112736 在612中’若信號傳輸器U0判定其應發送三脈衝同步信 號,則在614中該信號傳輸器判定自上一個加密循環起的 信號計數。在一例示性實施例中’信號傳輪器u〇在每十 個信號中僅發送一次加密信號。然而,在一例示性實施例 中,加岔仏號之間可存在較多或較少信號循環。在614 中,若信號傳輸器110之CPU 110a判定此並非第^固三脈衝 同步信號,則在616中CPU指導該信號傳輸器發送一標準 的三脈衝同步信號。若該同步信號為第„個三脈衝信號, 則在618中信號傳輸器110之cpu n〇a將該資料加密且在 620 中 CPU 110a發送一 具有嵌入的組態資料之三脈衝同步 信號。在612中,若信號傳輸器11〇判定其不應發送三脈衝 同步信號,則在622中該信號傳輸器發送兩脈衝同步信 在系統100之If the 2D glasses 1 〇 4 are in the execution mode at 504, the CPU II 4 determines in 514 whether the 3D glasses 1 〇 4 have been configured for encryption. In 5丨4, the right 2D glasses 10 4 have been configured for encryption, then c p u 114 continues normal operation in 5 0 8 and proceeds to 502. If the 3D glasses 1〇4 are not configured for encryption at 514, then the C P U 114 checks in 5 16 to determine if the incoming signal is a three-pulse synchronization signal. If the incoming signal is not a three-pulse sync signal at 5 1 6 10, the CPU 114 continues with normal operation in 508 and proceeds to 502. If the incoming signal is a three-pulse sync signal at 516, then at 518 the CPU 114 receives the configuration data from the signal transmitter 11 using the signal sensor 112. At 520, the CPU 114 picks up the received configuration data to determine if it is valid. In 520, if the received configuration data is valid, 147661.doc -14· 201112736 then in 522 the CPU 114 checks to see if the new configuration ID ("c〇NID") matches the previous CONID. In an exemplary embodiment, the previous (: 〇 1 ^ 11) may be stored in a 5 hex memory device, such as a non-volatile memory device, in the manufacture or field program of the 3D glasses 104 The CPU is operatively coupled to the CPU 114. In 522, if the new C0NID does not match the previous CONID, then in M4 the CPU 114 directs the light valves 1〇6 and 108 of the 3D glasses 1〇4 to enter the transparent mode (CLEAR M〇dE). In 522, if the new CONID matches the previous c〇NID, then in 526 the CPU 114 sets the SI and CONID flags to trigger the normal mode light valve sequence for viewing the three dimensional image. In an exemplary embodiment, the 3D glasses 104 are fully operational in an execution or normal mode. In an exemplary embodiment, the 3D glasses are inoperable in the off mode. In an exemplary embodiment, the two-dimensional glasses are operable and the method 200 can be implemented in the normal mode. In an example implementation, the signal transmitter 11 can be positioned adjacent to the theater projector 130. In an exemplary embodiment, the signal transmitter (in particular) transmits a synchronization signal ("sync signal") to the signal sensor 112 of the 3D glasses 1〇4. The signal transmitter 11 can alternatively or additionally receive the synchronization signal from the cinema projector 130 and/or any display and/or any transmitter device. In an exemplary embodiment, an encrypted signal can be used to prevent the 3D glasses 1〇4 from operating with the signal transmitter 110 that does not contain the correct encrypted signal. In addition, in the exemplary embodiment, the encrypted transmitter signal will not properly actuate the 3D glasses 1〇4 that are not equipped to receive and process the encrypted signal. In an exemplary embodiment, the 'signal transmitter 11' may also send the encrypted data to 147661.doc 15 201112736 to the 3D glasses 104. During operation, the system is at 602, which now refers to FIG. 6. In an exemplary embodiment, 100 is implemented with an operational method 600 in which it is determined whether the signal transmitter 110 is transmitting at exactly 6 〇 2 It was reset by electricity. In 602, if signal transmitter 11 is reset due to just passing power, then at 604 the signal transmitter generates a new random sync inversion flag. In 602, if the signal transmitter 11 does not have a power-on reset condition, then in step 606 the CPU u〇a of the signal transmitter 110 determines whether the same synchronization code has been used for more than a predetermined amount of time. In an exemplary embodiment, the predetermined time in 6(10) may be four hours, or the length of a typical movie, or any other suitable time. In 606, if the same sync code has been used for more than 4 hours, then at 604 the signal transmitter 11 CPU ll 〇 a generates a new sync inverted flag. In 6.8, the cpu 110a of the signal transmitter 110 then determines if the signal transmitter is still receiving a signal from the projector 130. In 608, if the signal transmitter 110 is not still receiving a signal from the projector 13A, the signal transmitter 110 can continue to transmit the synchronization signal to the signal sense at the appropriate time using its own internal synchronization generator. Detector 112. During operation, the signal transmitter 110 can alternate between, for example, a two-pulse sync signal and a three-pulse sync signal. In an exemplary embodiment, the two pulse sync signals direct the 3D glasses 104 to open the left shutter 108, and the three pulse sync k command directs the 3D glasses 1 〇 4 to open the right shutter 1 〇 6. In an exemplary embodiment, the 'signal transmitter 11' may transmit an encrypted signal after every n signals. 147661.doc -16 - 201112736 In 612, if signal transmitter U0 determines that it should transmit a three-pulse synchronization signal, then at 614 the signal transmitter determines the signal count from the last encryption cycle. In an exemplary embodiment, the 'signal wheeler u' transmits the encrypted signal only once every ten signals. However, in an exemplary embodiment, there may be more or fewer signal cycles between the apostrophes. In 614, if CPU 110a of signal transmitter 110 determines that this is not the first three-pulse synchronization signal, then in 616 the CPU directs the signal transmitter to transmit a standard three-pulse synchronization signal. If the sync signal is the „th three-pulse signal, then cpu n〇a of signal transmitter 110 encrypts the data at 618 and CPU 610a transmits a three-pulse sync signal with embedded configuration data at 620. In 612, if the signal transmitter 11 determines that it should not transmit a three-pulse synchronization signal, then in 622 the signal transmitter transmits a two-pulse synchronization signal in the system 100.

若組態資料信號804為低, 現參看圖7及圖8,在一例示性實施例中,名 操作期間,信號傳輸器11〇實施一操作方法7〇〇 中’組合該等同步脈衝與經編碼組態資料,然 輸器110加以傳輪。詳言之,信號 資料脈衝信號806設定 ’則在708中將資料脈 147661.doc 201112736 衝信號806設定為一低值。在一例示性實施例中,資料脈 衝h號806可忐已包括同步信號。因此,在7丨〇中組合資料 脈衝信號806與同步信號且在71〇中由信號傳輸器11〇加以 傳輸。 在一例示性貫施例中,在加密操作之前或之後,組態資 料k唬804之加在'形式可在每一個同步信號序列期間、在 預定數目個同步信號序列之後、嵌入同步信號序列中、與 同步信號序列重疊或與同步信號序列組合地發送。此外, 組態資料信號804之加密形式可在兩脈衝同步信號或三脈 衝同步信號或其兩者上或任何其他冑目個脈衝之信號上發 送。另外,不管是否在傳輸之任一端加密同步信號,可在 同步信號序列之傳輸之間傳輸該加密組態資料。 在-例示«_中’可(例如)使用曼徹斯特編碼提供 組態資料信號804之編碼(具有或不具有同步信號序列)。 現參看圖2、圖5、圖8、圖9及圖1〇,在一例示性實施例 中’在系統HH)之操作期間,三維眼鏡ισ4實施—操作方法 在》亥方/去中,在902中,三維眼鏡1〇4之cpu 114檢查 -喚醒模式逾時。在一例示性實施例中,9〇2中的喚醒模 式逾時之存在由-時脈信號9Q2a提供,該時脈信號具有一 續時間為1〇〇毫秒之高脈衝9〇2aa,其可每兩秒或其他預 疋時間段出現。在-例示性實施例中,高脈衝9Q2⑽之存 在指示一喚醒模式逾時。 在〇2中右CPU 114侦測到一喚醒逾時,則在9〇4令該 咖使用信號感測器112檢查—同步信號之存在或不存 147661.doc -18- 201112736 若CPUU,到-同步信號,則在_ 性貫施例中,在透明操作模 τ在例不 200及500中的一戋多者的 以二維眼鏡實施方法 „ ^ 勺^幾個部分:接收同步脈衝, 及/或處職㈣料8〇4。在1^ 作模式下,該三維眼鏡至少可接…”中在透明知 文所描述。 之操作’如下 在2中,若哪114未_到—同步信號,則在彻中 υ使三維眼鏡1G4處於-_操作模式下,且接著在 902中,該CPU檢查一喚 接者在 中,在關_模式下,該二::二―例示性實施例 或透明操作模式之特徵。⑽不提供正«作模式 在一例示性實施例中,當= 4,, 、准眼鏡處於關閉模式或透明 模式時,三維眼鏡1〇4實施方法9〇〇。 現參看圖U及圖1 2 3 4 5 6 7 8,在—例示性實施例t,在系統100 ,刼作期間,三維眼鏡1〇4實施一暖機操作方法ιι〇〇 ,在 147661.doc 1 玄方法中’在1102中’三維眼鏡之CPU 114檢查三維眼鏡 2 之通電。在一例示性實施例中,可藉由一使用者啟動一通 3 電開關或藉由一自動唤醒序列將三維眼鏡1〇4通電。在三 4 維眼鏡104通電的情況下’三維眼鏡之光閥106及1〇8可能 5 (例如)需要—暖機序列。在—時間段中不具有電力的光間 6 106及1〇8之液晶單元之分子可能處於一不明確狀態下。 7 在1102中,若二維眼鏡1〇4之cpu 114偵測到該三維眼鏡 8 之通電,則在11 〇4中該cpu分別將交變電壓信號〗1 〇4a及 201112736 Π04b施加至光閥106及1 〇8。在一例示性實施例中,施加 至光閥106及108之電壓在正峰值與負峰值之間交替以避免 光閥之液晶單元中的離子化問題。在一例示性實施例中, 電壓信號1104a及ll〇4b彼此至少部分地不同相。或者,電 壓信號1104a及1104b可能同相或完全不同相。在一例示性 實施例中,電壓信號ll〇4a及1104b中之一者或兩者可在一 零電壓與一峰值電壓之間交替。在一例示性實施例中,可 將其他形式之電壓信號施加至光閥106及108,以使得光閥 之液晶卓元處於一明確操作狀態。在一例示性實施例中, 施加電壓信號1104a及11 04b至光閥1〇6及108使該等光閥同 時或在不同時間打開及關閉。或者,施加電壓信號1丨〇4a 及1104b使光閥1〇6及108—直關閉。 在施加電壓信號1104a及1104b至光閥106及108期間,在 1106中,CPU 114檢查一暖機逾時。在n〇6中,若CPU 114 偵測到一暖機逾時,則在1108中該CPU將停止將電壓信號 1104a及11 〇4b施加至光閥106及108。 在一例示性實施例中,在1104及11 〇6中,CPU 114在一 足以致動該等光閥之該等液晶單元之時間段中將電壓信號 ll(Ma及ll(Mb施加至光閥106及1〇8。在一例示性實施例 中,CPU 114在兩秒之逾時時段中將電壓信號1104&及 11 04b施加至光閥106及108。在一例示性實施例中,電壓 信號1104a及1104b之最大量值可為14伏特。在一例示性實 施例中’ 1106中之逾時時段可為兩秒。在一例示性實施例 中,電壓信號1104a及1104b之最大量值可大於或小於14伏 147661.doc •20- 201112736 特,且逾時時段可更長或更短。在-例示性實施例中’在 方法1100,月間,CPU 114可以__不同於彡 率的速率打開及關閉光閥106及108。在一例示性實施例 中在1104中,施加至光閥106及108之電壓信號1104&及 1104b以一不同於用於觀看電影之速率的速率交替。在一 =示性實施例中,在11〇4中,施加至光閥1〇6及1〇8之電塵 4«號不父替,且在暖機時間段期間被持續施加,且因此該 等光閥之液晶單元在整個暖機時段中可保持不透明。在一 例示性實施例中,暖機方法_可在同步信號存在或不存 在的情況下發生。因此,方法1100為三維眼鏡104提供一 暖機操作模式。在一例示性實施例中,在實施暖機方法 1100之後,二維眼鏡處於一正常執行操作模式下且接著可 實施方法200。或者,在一例示性實施例中,在實施暖機 方法1100之後,三維眼鏡處於一透明操作模式下且接著可 實施下文所描述之方法1300。 現參看圖13及圖14,在一例示性實施例中,在系統丨〇〇 之操作期間,三維眼鏡1〇4實施一操作方法13〇〇,在該方 法中,在1302中,CPU 114檢查以查看由信號感測器112偵 測到的同步信號是有效還是無效。在丨中,若CPU 1】4 判疋同步信號無效,則在1304中該CPU將電壓信號13〇4a 及1304b施加至三維眼鏡104之光閥1〇6及1〇8。在一例示性 貫施例令,施加至光閥i 〇6及! 〇8之電壓在正峰值與負峰值 之間交替以避免光閥之液晶單元中的離子化問題。在一例 示性實施例中,電壓信號11〇43及丨1〇4b中之一者或兩者可 14766I.doc -21 - 201112736 在一零電壓與一峰值電壓之間交替。在一例示性實施例 中’可將其他形式之電壓信號施加至光閥1〇6及1〇8,以使 付光閥之液晶單元保持打開,使得三維眼鏡1 〇 4之使用者 可透過光閥正常地查看。在一例示性實施例中,施加電壓 信號1104a及11 〇4b至光閥1 〇6及108使該等光閥打開。 在施加電壓k號1304a及1304b至光閥1〇6及1〇8期間,在 1306 中,CPU 114 檢查一清除逾時(clearing time 〇ut)。在 1306中,若CPU 114偵測到一清除逾時,則在13〇8中該 cpu將停止將電壓信號130乜及13〇4b施加至光閥1〇6及 108 » 因此,在一例示性實施例中,若三維眼鏡1〇4未偵測到 一有效同步信號,則該三維眼鏡可轉至一透明操作模式且 實施方法1300。在透明操作模式下,在一例示性實施例 中,三維眼鏡104之光閥106及1〇8均保持打開,使得觀看 者可通過三維眼鏡之光閥正常地觀看。在—例示性實施例 中,施加-正^替較定電壓以將三維眼鏡之光闊1〇6 及108之液晶單元維持在一透明狀態。該恆定電壓可(例如) 在2至3伏特之範圍内,但該恆定電壓可為適合維持適度透 明光閥之任何其他電壓。在一例示性實施例中,三維眼鏡 104之光閥106及108可保持透明,直至該三維眼鏡能夠驗 證-加密信號。在-例示性實施例中,可以允許三維眼鏡 之使用者正常地觀看之一速率交替地打開及關閉三維眼鏡 之光閥106及108。 之方 因此,方法1300提供一種 清除三維眼鏡1 〇4之操作 147661.doc -22- 201112736 法,且藉此提供一透明操作模式。 見多看圖15,在一例示性實施例中,在系統100之操作 期間,三維眼鏡104實施一種監視電池120之方法1,在 °玄方法中,在1502中,三維眼鏡之Cl>u 114使用電池感測 器122判定電池之剩餘可用壽命。在1502中,若三維眼鏡 之CPU 114判定電池120之剩餘可用壽命不足,則在15〇4中 CPU提供低電池壽命狀況之一指示。 在一例示性實施例中,不足的剩餘電池壽命可(例如)為 小於3小時之任何時段。在一例示性實施例中,充足的剩 餘電池哥命可由三維眼鏡之製造商預先設定及/或由三維 眼鏡之使用者程式化。 在一例示性實施例中,在15〇4中,三維眼鏡1〇4之cpu 114將藉由使三維眼鏡之光閥1〇6及1〇8緩慢閃爍、藉由使 光閥同時以可被三維眼鏡之使用者看見之一中等速率閃 爍、藉由使一指示燈閃光、藉由產生一可聽聲音及其類似 動作而指示一低電池壽命狀況 在一例示性實施例中,若三維眼鏡1 〇4之CPU 114彳貞測到 剩餘電池壽命不足以持續一規定時間段,則在丨5〇4中三維 眼鏡之CPU將指示一電池電力偏低狀況且接著防止使用者 開啟三維眼鏡。 在一例示性實施例中’每當三維眼鏡轉變至透明操作模 式時,三維眼鏡104之CPU 114判定剩餘電池壽命是否足 夠。 在一例示性實施例中,若三維眼鏡之CPU 114判定電池 I47661.doc •23- 201112736 將持續至少預定足夠時間量,則三耗鏡將繼續正常操 作。正常操作可包括保持在透明操作模式下五分鐘,同時 檢查來自信號傳輸器11G之有效信號,㈣轉至一關閉模 式在°亥模式中二維眼鏡104週期性地醒來以檢查來自信 號傳輸益之信號。 在例不性實施例中,三維眼鏡1〇4之CPU 114恰在關掉 三維眼鏡之前檢查電池電力偏低狀況。在一例示性實施例 中,右電池120將不能持續該預定的足夠剩餘壽命時間, 則光閥106及1 〇8將開始緩慢閃爍。 在一例示性實施例中,若電池12〇將不能持續該預定的 足夠剩餘壽命時間,則光閥1〇6及/或1〇8將在兩秒内處於 一不透明狀況(亦即,液晶單元關閉)且接著在十分之一秒 内處於透明狀況(亦即,液晶單元打開)。光閥1 〇6及/或 108關閉及打開的時間段可為任何時間段。 在—例示性實施例中,三維眼鏡1〇4可在任何時間(包括 在暖機期間、在正常操作期間、在透明模式期間、在斷電 模式期間,或於任何狀況之間轉變時)檢查電池電力偏低 狀況。在一例示性實施例中,若在觀看者可能在看電影之 中途時偵測到一低電池壽命狀況’則三維眼鏡104可不立 即指示該電池電力偏低狀況。 在一些實施例中’若三維眼鏡104之CPU 11 4偵測到一電 池電力偏低位準,則使用者將不能夠將三維眼鏡通電。 現參看圖16,在一例示性實施例中,一測試器丨6〇〇可緊 接二維眼鏡1〇4定位,以便證實三維眼鏡在正常工作。在 147661.doc •24- 201112736 一例示性實施例中,測試器1600包括用於將測試信號 1 600b傳輸至該三維眼鏡之信號感測器11 2的一信號傳輸器 16 0 0 a。在一例示性實施例中,測試信號16 〇 〇 b可包括一同 步信號,其具有一低頻率速率以使三維眼鏡1 04之光閥106 及1 08以可被三維眼鏡之使用者看見之一低速率閃爍。在 一例示性實施例中,光閥106及108不能回應於測試信號 1600b而閃爍可指示三維眼鏡1〇4不能正常操作。 現參看圖1 7 ’在一例示性實施例中,三維眼鏡1 〇4進一 步包括可操作地耦接至CPU 114、光閥控制器Π6及118、 電池120之一電荷泵1700,其用於將電池之輸出電壓轉換 成一較高輸出電壓以供操作光閥控制器之用。 參看圖18、圖18a、圖18b、圖18c及圖18d,提供三維眼 鏡1 800之一例示性實施例,該三維眼鏡在設計及操作上實 質上等同於上文所說明及描述之三維眼鏡1〇4,惟下文所 說明的方面除外。三維眼鏡18〇〇包括一左光閥丨8〇2、一右 光閥1804、一左光閥控制器1 806、一右光閥控制器1 8〇8、 一CPU 1810、一電池感測器1812、一信號感測器1814及一 電荷泵1 8 16。在一例示性實施例中,三維眼鏡丨8〇〇之左光 閥1802、右光閥1804、左光閥控制器1806、右光閥控制器 1808 ' CPU 1810、電池感測器1812、信號感測器1814及電 荷泵1816的設計及操作實質上等同於上文所描述及說明的 三維眼鏡104之左光閥106、右光閥1〇8、左光閥控制器 116、右光閥控制器118、CPU 114、電池感測器122、信號 感測器112及電荷果17〇〇。 147661.doc -25- 201112736 在一例示性實施例中,三維眼鏡1 800包括以下組件: 名稱 值/ID £ R12 10K R9 100K D3 BAS7004 R6 4.7K D2 BP104FS R1 10M C5 • luF R5 20K U5-2 MCP6242 R3 10K C6 • luF C7 •OOluf C10 •33uF R7 1M D1 BAS7004 R2 330K U5-1 MCP6242 R4 1M R11 330K U6 MCP111 R13 100K U3 PIC16F636 Cl 47uF C2 .luF R8 10K RIO 20K R14 10K R15 100K Ql NDS0610 D6 MAZ31200 D5 BAS7004 LI lmh Cll luF C3 .luF U1 4052 R511 470 C8 • luF C4 .luF U2 4052 R512 470 Cl 47uF Cll luf 左透鏡 LCD 1 右透鏡 LCD 2 BT1 3V Li 147661.doc •26· 201112736 在一例示性實施例中,左光閥控制器1 806包括一數位控 制類比開關U1,該開關在CPU 1810的控制下,視操作模 式而在左光閥1802上施加一電壓以用於控制左光閥之操 作。以類似方式,右光閥控制器1808包括一數位控制類比 開關U2,該開關在CPU 1810的控制下,視操作模式而在 右光閥1 804上施加一電壓以用於控制右光閥之操作。在一 例示性實施例中,U1及U2為習知的可自unisonic Technologies或Texas Instruments購得的零件號碼分別為 UTC 4052及TI 4052的數位控制類比開關。 如一般熟習此項技術者將認識到,4052數位控制類比開 關包括控制輸入信號A、B及INHIBIT(禁止)(「INH」)、開 關 I/O 信號 X〇、XI、X2、X3、Y0、Yl、Y2 及 Y3,以及輸 出信號X及Y,且進一步提供以下真值表: 真值表 控制輸入 接通開關 禁止 選擇 Β A 0 0 0 Y0 X0 0 0 1 Y1 XI 0 1 0 Y2 X2 0 1 1 Y3 X3 1 X X 無 *Χ=任意值 且,如圖19中所說明,4052數位控制類比開關亦提供一功 能圖1 900。因此,4052數位控制類比開關提供各自具有兩 個獨立開關的數位控制類比開關,其允許左光閥控制器 1806及右光閥控制器1808選擇性地在左光閥1802及右光閥 • 27· 147661.doc ς 201112736 1 804上施加一受控電壓以控制光閥之操作。 在一例示性實施例中’ CPU 1810包括一微控制器U3, 其用於產生用於控制左光閥控制器18〇6及右光閥控制器 1808之數位控制類比開關m及U2之操作的輸出信號a、 B、C、D及E。微控制器U3之輸出控制信號A、B及c將以 下輸入控制信號A及B提供給數位控制類比開關u〖及U2中 之每一者:If the configuration data signal 804 is low, referring to FIG. 7 and FIG. 8, in an exemplary embodiment, during the name operation, the signal transmitter 11 performs an operation method 7 ' 'combining the synchronization pulses and the The configuration data is encoded, and the transmitter 110 transmits the wheel. In particular, signal data pulse signal 806 is set to 'and then at 708 the data pulse 147661.doc 201112736 pulse signal 806 is set to a low value. In an exemplary embodiment, data pulse h 806 may have included a synchronization signal. Therefore, the data pulse signal 806 and the synchronization signal are combined in 7 且 and transmitted by the signal transmitter 11 〇 in 71 。. In an exemplary embodiment, before or after the encryption operation, the configuration data k 804 may be added to the synchronization signal sequence during each synchronization signal sequence, after a predetermined number of synchronization signal sequences, and in the synchronization signal sequence. And overlap with the sync signal sequence or in combination with the sync signal sequence. In addition, the encrypted form of the configuration data signal 804 can be transmitted on a two-pulse sync signal or a three-pulse sync signal or both or any other number of pulses. Alternatively, the encrypted configuration material can be transferred between transmissions of the synchronization signal sequence, whether or not the synchronization signal is encrypted at either end of the transmission. The encoding of the configuration profile signal 804 (with or without a synchronization signal sequence) can be provided, for example, using Manchester coding, in the instantiation -_. Referring now to Figures 2, 5, 8, 9, and 1, in an exemplary embodiment, during operation of the system HH, the 3D glasses ισ4 is implemented - the method of operation is in the "Hai Fang / Go", in In 902, the cpu 114 of the 3D glasses 1〇4 check-wake mode expires. In an exemplary embodiment, the presence of the wake-up mode timeout in 9〇2 is provided by the -clock signal 9Q2a, which has a high pulse of 9〇2aa with a duration of 1〇〇 milliseconds, which may be Two seconds or other pre-emptive time periods appear. In the exemplary embodiment, the presence of high pulse 9Q2 (10) indicates an awake mode timeout. In 〇2, the right CPU 114 detects a wake-up timeout, and then at 9〇4, the coffee uses the signal sensor 112 to check whether the synchronization signal exists or not. 147661.doc -18- 201112736 If CPUU, to - Synchronization signal, in the embodiment of the transparent operation mode τ in the case of not more than 200 and 500 in the two-dimensional glasses implementation method „ ^ scoop ^ several parts: receiving synchronization pulse, and / Or the service (4) material 8〇4. In the 1^ mode, the 3D glasses can be connected at least...” is described in the transparent knowledge. The operation 'is in 2, if 114 does not _ to - the synchronization signal, then the 3D glasses 1G4 are in the -_ operation mode in the middle, and then in 902, the CPU checks a caller in, In the off mode, the second::two is an exemplary embodiment or a feature of a transparent mode of operation. (10) No provision is made. In an exemplary embodiment, when = 4,, the spectacles are in the closed mode or the transparent mode, the 3D glasses 1 实施 4 implements the method 9 〇〇. Referring now to Figure U and Figure 1 2 3 4 5 6 7 8, in the exemplary embodiment t, during the system 100, the 3D glasses 1〇4 implement a warm-up operation method ιι〇〇, at 147661.doc 1 In the Xuan method, the CPU 114 of the 3D glasses in '1102' checks the energization of the 3D glasses 2. In an exemplary embodiment, the 3D glasses 1〇4 can be powered by a user-initiated one-way electrical switch or by an automatic wake-up sequence. In the case where the three-dimensional glasses 104 are energized, the light valves 106 and 1 of the three-dimensional glasses may, for example, require a warm-up sequence. The molecules of the liquid crystal cells 6 106 and 1 8 which do not have electric power in the period of time may be in an ambiguous state. 7 In 1102, if the cpu 114 of the two-dimensional glasses 1〇4 detects the energization of the three-dimensional glasses 8, the cpu applies the alternating voltage signals 〖1 〇4a and 201112736 Π04b to the light valve respectively in 11 〇4. 106 and 1 〇 8. In an exemplary embodiment, the voltage applied to the light valves 106 and 108 alternates between a positive peak and a negative peak to avoid ionization problems in the liquid crystal cell of the light valve. In an exemplary embodiment, voltage signals 1104a and 11a4b are at least partially out of phase with one another. Alternatively, voltage signals 1104a and 1104b may be in phase or completely out of phase. In an exemplary embodiment, one or both of voltage signals 11a 4a and 1104b may alternate between a zero voltage and a peak voltage. In an exemplary embodiment, other forms of voltage signals can be applied to the light valves 106 and 108 such that the liquid crystal elements of the light valve are in an operational state. In an exemplary embodiment, voltage signals 1104a and 104b are applied to light valves 1〇6 and 108 to cause the light valves to open and close at the same time or at different times. Alternatively, application of voltage signals 1丨〇4a and 1104b causes light valves 1〇6 and 108 to be closed. During the application of voltage signals 1104a and 1104b to light valves 106 and 108, in 1106, CPU 114 checks for a warm-up timeout. In n〇6, if CPU 114 detects a warm-up timeout, then in 1108 the CPU will stop applying voltage signals 1104a and 11 〇4b to light valves 106 and 108. In an exemplary embodiment, in 1104 and 11 〇6, the CPU 114 applies a voltage signal 11 (Ma and ll (Mb to the light valve 106) during a period of time sufficient to actuate the liquid crystal cells of the light valves. And in an exemplary embodiment, CPU 114 applies voltage signals 1104 & and 104b to light valves 106 and 108 during a two second time period. In an exemplary embodiment, voltage signal 1104a And the maximum magnitude of 1104b can be 14 volts. In an exemplary embodiment, the timeout period in '106 can be two seconds. In an exemplary embodiment, the maximum magnitude of voltage signals 1104a and 1104b can be greater than or Less than 14 volts 147661.doc • 20-201112736, and the timeout period may be longer or shorter. In the exemplary embodiment, 'in method 1100, during the month, CPU 114 may __ differ from the rate of opening and Light valves 106 and 108 are closed. In an exemplary embodiment, in 1104, voltage signals 1104 & 1104b applied to light valves 106 and 108 alternate at a different rate than the rate at which the movie is viewed. In the embodiment, in 11〇4, the electric dust applied to the light valves 1〇6 and 1〇8 is 4 The number is not replaced and is continuously applied during the warm-up period, and thus the liquid crystal cells of the light valves may remain opaque throughout the warm-up period. In an exemplary embodiment, the warm-up method may be synchronized The presence or absence of a signal occurs. Thus, method 1100 provides a warm-up mode of operation for 3D glasses 104. In an exemplary embodiment, after performing warm-up method 1100, the 2D glasses are in a normal operational mode of operation. Next, and then method 200 can be implemented. Alternatively, in an exemplary embodiment, after implementing warm-up method 1100, the 3D glasses are in a transparent mode of operation and then the method 1300 described below can be implemented. 14, in an exemplary embodiment, during operation of the system, the 3D glasses 1 4 implement an operation method 13A, in which, in 1302, the CPU 114 checks to see the sense of signal. Whether the synchronization signal detected by the detector 112 is valid or invalid. In the case, if the CPU 1 4 determines that the synchronization signal is invalid, then in 1304 the CPU applies the voltage signals 13〇4a and 1304b to Light valves 1〇6 and 1〇8 of the 3D glasses 104. In an exemplary embodiment, the voltages applied to the light valves i 〇6 and ! 〇8 alternate between positive and negative peaks to avoid light valves. Ionization problem in a liquid crystal cell. In an exemplary embodiment, one or both of the voltage signals 11〇43 and 丨1〇4b may be 14766I.doc -21 - 201112736 at a zero voltage and a peak voltage Alternating. In an exemplary embodiment, other forms of voltage signals can be applied to the light valves 1〇6 and 1〇8 to keep the liquid crystal cell of the pay-off valve open, so that the user of the 3D glasses 1〇4 It can be viewed normally through the light valve. In an exemplary embodiment, voltage signals 1104a and 11 〇 4b are applied to shutters 〇 6 and 108 to cause the shutters to open. During the application of voltage k numbers 1304a and 1304b to light valves 1〇6 and 1〇8, in 1306, CPU 114 checks for a clearing time 〇ut. In 1306, if the CPU 114 detects a clear timeout, the CPU will stop applying the voltage signals 130乜 and 13〇4b to the light valves 1〇6 and 108 in 13〇8. Therefore, in an exemplary manner In an embodiment, if the 3D glasses 1〇4 does not detect a valid synchronization signal, the 3D glasses can be transferred to a transparent operation mode and the method 1300 is implemented. In the transparent mode of operation, in an exemplary embodiment, the light valves 106 and 1〇8 of the 3D glasses 104 remain open so that the viewer can view normally through the light valve of the 3D glasses. In the exemplary embodiment, the predetermined voltage is applied to maintain the liquid crystal cells of the three-dimensional glasses 1 〇 6 and 108 in a transparent state. The constant voltage can be, for example, in the range of 2 to 3 volts, but the constant voltage can be any other voltage suitable to maintain a moderately transparent light valve. In an exemplary embodiment, the light valves 106 and 108 of the 3D glasses 104 may remain transparent until the 3D glasses are capable of verifying the -encrypted signal. In an exemplary embodiment, a user of the three-dimensional eyeglasses can be allowed to normally view the light valves 106 and 108 of the three-dimensional glasses alternately opening and closing at a rate. Thus, method 1300 provides a method of clearing 3D glasses 1 〇 4 147661.doc -22- 201112736 and thereby providing a transparent mode of operation. Referring more to Figure 15, in an exemplary embodiment, during operation of system 100, 3D glasses 104 implement a method 1 of monitoring battery 120, in which the C-type glasses of Cl Battery sensor 122 is used to determine the remaining useful life of the battery. In 1502, if the CPU 114 of the 3D glasses determines that the remaining usable life of the battery 120 is insufficient, the CPU provides an indication of a low battery life condition at 15〇4. In an exemplary embodiment, insufficient remaining battery life may, for example, be any period of less than 3 hours. In an exemplary embodiment, sufficient remaining battery life may be pre-set by the manufacturer of the 3D glasses and/or programmed by the user of the 3D glasses. In an exemplary embodiment, in 15〇4, the cpu 114 of the 3D glasses 1〇4 will be slowly flashed by causing the light valves 1〇6 and 1〇8 of the 3D glasses to be simultaneously A user of the 3D glasses sees a medium rate flash, indicating a low battery life condition by flashing an indicator light, by generating an audible sound, and the like, in an exemplary embodiment, if the 3D glasses 1 The CPU 114 of 〇4 detects that the remaining battery life is insufficient for a predetermined period of time, and the CPU of the 3D glasses in 丨5〇4 will indicate a low battery condition and then prevent the user from turning on the 3D glasses. In an exemplary embodiment, whenever the 3D glasses transition to the transparent mode of operation, the CPU 114 of the 3D glasses 104 determines if the remaining battery life is sufficient. In an exemplary embodiment, if the CPU 114 of the 3D glasses determines that the battery I47661.doc • 23-201112736 will continue for at least a predetermined amount of time, the three-consumption mirror will continue to operate normally. Normal operation may include maintaining the transparent operation mode for five minutes while checking the valid signal from the signal transmitter 11G, and (iv) turning to a shutdown mode in which the two-dimensional glasses 104 periodically wake up to check for signal transmission benefits. Signal. In the exemplary embodiment, the CPU 114 of the 3D glasses 1〇4 checks for a low battery power condition just before turning off the 3D glasses. In an exemplary embodiment, the right battery 120 will not last for the predetermined sufficient remaining life time, and the light valves 106 and 1 〇 8 will begin to flash slowly. In an exemplary embodiment, if the battery 12〇 will not last for the predetermined sufficient remaining life time, the light valve 1〇6 and/or 1〇8 will be in an opaque condition within two seconds (ie, the liquid crystal cell Off) and then in a transparent condition within tenth of a second (ie, the liquid crystal cell is turned on). The period in which the shutters 〇6 and/or 108 are closed and opened may be any period of time. In an exemplary embodiment, the 3D glasses 1〇4 can be inspected at any time, including during warm-up, during normal operation, during transparent mode, during power-down mode, or between any conditions. Battery power is low. In an exemplary embodiment, if a low battery life condition is detected while the viewer is likely to be in the middle of a movie, the 3D glasses 104 may not immediately indicate that the battery power is low. In some embodiments, if the CPU 11 of the 3D glasses 104 detects a low level of battery power, the user will not be able to power up the 3D glasses. Referring now to Figure 16, in an exemplary embodiment, a tester 丨6〇〇 can be positioned next to the 2D glasses 1〇4 to verify that the 3D glasses are functioning properly. In an exemplary embodiment, tester 1600 includes a signal transmitter 16 0 a for transmitting test signal 1 600b to signal sensor 11 2 of the 3D glasses. In an exemplary embodiment, test signal 16 〇〇b may include a synchronization signal having a low frequency rate such that light valves 106 and 108 of 3D glasses 104 are visible to a user of the 3D glasses. Low speed flashing. In an exemplary embodiment, the shutters 106 and 108 are not responsive to the test signal 1600b and flashing may indicate that the 3D glasses 1〇4 are not operating properly. Referring now to FIG. 1 ' in an exemplary embodiment, the 3D glasses 1 进一步 4 further includes a charge pump 1700 operatively coupled to the CPU 114, the light valve controllers 6 and 118, and the battery 120 for The output voltage of the battery is converted to a higher output voltage for operation of the light valve controller. Referring to Figures 18, 18a, 18b, 18c and 18d, an exemplary embodiment of a 3D glasses 1 800 is provided that is substantially identical in design and operation to the 3D glasses 1 described and described above. 〇 4, except for the aspects described below. The 3D glasses 18 includes a left light valve 丨8〇2, a right light valve 1804, a left light valve controller 1806, a right light valve controller 1 8〇8, a CPU 1810, and a battery sensor. 1812, a signal sensor 1814 and a charge pump 1 8 16 . In an exemplary embodiment, the left light valve 1802, the right light valve 1804, the left light valve controller 1806, the right light valve controller 1808 'CPU 1810, the battery sensor 1812, the sense of signal The design and operation of the detector 1814 and the charge pump 1816 are substantially identical to the left light valve 106, the right light valve 1〇8, the left light valve controller 116, and the right light valve controller of the 3D glasses 104 described and illustrated above. 118, CPU 114, battery sensor 122, signal sensor 112 and charge fruit 17 〇〇. 147661.doc -25- 201112736 In an exemplary embodiment, 3D glasses 1 800 includes the following components: Name Value / ID £ R12 10K R9 100K D3 BAS7004 R6 4.7K D2 BP104FS R1 10M C5 • luF R5 20K U5-2 MCP6242 R3 10K C6 • luF C7 • OOluf C10 • 33uF R7 1M D1 BAS7004 R2 330K U5-1 MCP6242 R4 1M R11 330K U6 MCP111 R13 100K U3 PIC16F636 Cl 47uF C2 .luF R8 10K RIO 20K R14 10K R15 100K Ql NDS0610 D6 MAZ31200 D5 BAS7004 LI lmh Cll luF C3 .luF U1 4052 R511 470 C8 • luF C4 .luF U2 4052 R512 470 Cl 47uF Cll luf Left lens LCD 1 Right lens LCD 2 BT1 3V Li 147661.doc •26· 201112736 In an exemplary embodiment The left light valve controller 1 806 includes a digital control analog switch U1 that, under the control of the CPU 1810, applies a voltage to the left light valve 1802 depending on the mode of operation for controlling the operation of the left light valve. In a similar manner, the right light valve controller 1808 includes a digital control analog switch U2 that, under the control of the CPU 1810, applies a voltage to the right light valve 1 804 depending on the mode of operation for controlling the operation of the right light valve. . In an exemplary embodiment, U1 and U2 are conventional digitally controlled analog switches available from unisonic Technologies or Texas Instruments with part numbers UTC 4052 and TI 4052, respectively. As will be appreciated by those skilled in the art, the 4052 digital control analog switch includes control input signals A, B and INHIBIT ("INH"), switch I/O signals X〇, XI, X2, X3, Y0, Yl, Y2 and Y3, and output signals X and Y, and further provide the following truth table: Truth table control input on switch disable selection Β A 0 0 0 Y0 X0 0 0 1 Y1 XI 0 1 0 Y2 X2 0 1 1 Y3 X3 1 XX No *Χ = any value and, as illustrated in Figure 19, the 4052 Digital Control Analog Switch also provides a functional diagram 1 900. Thus, the 4052 digital control analog switch provides digital control analog switches each having two independent switches that allow the left light valve controller 1806 and the right light valve controller 1808 to selectively be in the left light valve 1802 and the right light valve. 147661.doc ς 201112736 1 804 applies a controlled voltage to control the operation of the light valve. In an exemplary embodiment, 'CPU 1810 includes a microcontroller U3 for generating operations for controlling the left light valve controller 18〇6 and the right light valve controller 1808 to control the operation of the analog switches m and U2. Output signals a, B, C, D, and E. The output control signals A, B, and c of the microcontroller U3 provide the following input control signals A and B to each of the digital control analog switches u and U2:

U3-輸出控制信號 U1-輸入控制信號 U2-輸入控制信號 A A B A C B B 在一例示性實施例中,微控制器U3之輸出控制信號〇及 E提供或以其他方式實現數位控制類比開關⑴及U2之開關 I/CH吕號 X0、XI、X2、X3、γ〇、γι、γ2及 γ3。 U3_輸出控制信號 U1-開關I/O信號 U2-開關I/O信號 D X3,Y1 X0,Y2 E Χ3,Υ1 Χ0,Υ2 在一例示性實施例中,CPU 1810之微控制器U3為可自 Microchip講得的可程式化微控制器,型號為picl6F636。 在一例不性實施例中,電池感測器1812包括用於感測電 池120之電壓的一電力偵測器U6。在一例示性實施例中, 電力偵測器U6為可自Micr〇chip購得之型號為河(:1)111的微 功率電壓偵測器。 在一例不性實施例中,信號感測器1814包括用於感測信 唬傳輸器110對信號(包括同步信號及/或組態資料)之傳輸 的光電一極體。在—例示性實施例中,光電二極體 147661.doc •28· 201112736 D2為可自〇sram購得之型號為BP104FS的光電二極體。在 一例示性實施例中’信號感測器1814進一步包括運算放大 器U5-1及U5-2,及相關信號調節組件:電阻器ri、R2、 R3、R4、R5、R6、R7、R9、Rl 1 及 R12、電容器 C5、 C6、C7及C10 ’以及肖特基二極體D1&D3。 在一例示性實施例中,電荷泵1816使用一電荷泵將電池 120之輸出電壓之量值自3 v放大至_12 v。在一例示性實 施例中,電荷泵1 8 1 6包括一 MOSFET Q1、一肖特基二極體 D5、一電感器l 1及一齊納二極體D6。在一例示性實施例 中’提供電荷泵1816之輸出信號以作為左光閥控制器18〇6 之數位控制類比開關U1之開關I/O信號χ2及γ〇之輸入信 號,及右光閥控制器1 808之數位控制類比開關U2之開關 I/O信號X3及Y1之輸入信號。 如圖20中所說明,在一例示性實施例中,在三維眼鏡 1800之操作期間,在CPU 181〇之控制信號A、B、c、d及 E的控制下,數位控制類比開關m&U2可在左光閥丨如之及 右光閥1804中之一者或兩者上提供各種電壓。詳言之在 CPU 1810之控制仏號A、B、c、D及E的控制下,數位控 制類比開關U1及U2可提供:1}左光閥18〇2及右光閥18〇4中 之一者或兩者上的正或負15伏特;2)左光閥及右光閥中之 者或兩者上的在2至3伏特範圍内之正或負電壓;或3)在 左光閥及右光閥中之一者或兩者上提供〇伏特(亦即,中性 狀態)。在一例示性實施例中,在cpu 181〇之控制信號A、 B、C、D及E的控制下,數位控制類比開關⑴及卩?可藉由 147661.doc •29· 201112736 (例如)組合+3伏特與·12伏特來提供15伏特,從而達成左光 閥1802及右光閥職中之m者上的15伏特之差異 (differential)。在一例示性實施例中,在cpu 之控制 U A B、C、D及E的控制下,數位控制類比開關⑴及 U2可(例如)藉由用一分壓器(包括組件及將電池 之3伏特輸出電壓減少至2伏特來提供2伏特止擋電壓。 或者,在CPU 1810之控制信號A、B、c、;〇及£的控制 下,數位控制類比開關1;1及1;2可提供:丨)左光閥18〇2及右 光閥1804中之一者或兩者上的正或負15伏特;2)左光閥及 右光閥中之一者或兩者上的約2伏特之正或負電壓;3)左 光閥及右光閥中之一者或兩者上的約3伏特之正或負電 壓,或4)在左光閥及右光閥中之一者或兩者上提供〇伏特 (亦即’中性狀態)。在一例示性實施例中,在CPU 1 8 10之 控制信號A、B、C、D及E的控制下,數位控制類比開關 U1及U2可藉由(例如)組合+3伏特與-12伏特來提供1 5伏 特,從而達成左光閥1802及右光閥18〇4中之一者或兩者上 的1 5伏特之差異。在一例示性實施例中,在cpu 1 810之控 制信號A、B、C、D及E的控制下,數位控制類比開關 及U2可(例如)藉由用一分壓器(包括組件R8及R10)將電池 120之3伏特輸出電壓減少至2伏特來提供2伏特止擋電壓。 現參看圖21及圖22,在一例示性實施例中,在三維眼鏡 1 8 0 0之彳呆作期間’該三維眼鏡執行一正常執行操作模式 2100’在該模式中,將由CPU 1810產生之控制信號a、 B、C、D及E用以控制左光閥控制器1 806及右光閥控制器 14766I.doc • 30· 201112736 1 8 0 8之操作,從而又依據信號感測器1814所彳貞測到的同步 信號之類型來控制左光閥1802及右光閥1804之操作。 詳言之,在2102中,若CPU 1810判定信號感測器1814已 接收一同步信號,則在2104中,該CPU判定所接收的同步 信號之類型。在一例示性實施例中,一包括3個脈衝之同 步信號指示左光閥1802應關閉且右光閥1804應打開,而一 包括2個脈衝之同步信號指示該左光閥應打開且該右光閥 應關閉。更一般而言,可將任何數目個不同脈衝用以控制 左光閥1802及右光閥丨⑽々之打開及關閉。 在2104中,若CPU 181〇判定所接收的同步信號指示左光 閥1802應關閉且右光閥18〇4應打開,則在21〇6中,該cpu 將控制信號A、B、C、D及E傳輸至左光閥控制器1806及右 光閥控制器1808,以將一高電壓施加至左光閥18〇2且將無 電壓隨後接著一小止擋電壓施加至右光閥18〇4。在一例示 性貫%例中,在21 〇6中施加至左光閥丨8〇2的高電壓之量值 為1 5伏特。在一例示性實施例中,在2 106中施加至右光閥 1804的止擋電壓之量值為2伏特。在一例示性實施例中, 在21 06中,藉由將控制信號D之操作狀態(其可為低、高或 打開)控為打開,藉此啟肖分壓器組件以及ri 〇之操作, 且將控制信號E維持在一高狀態而將止擋電壓施加至右光 閥1 804。在一例不性實施例中,2 1 %中該止擋電壓至右光 ^ 804之施加被延遲一預定時間段,以允許該右光閥之液 晶内之分子在該默時間段期間較快速地旋轉。在該預定 時間段期滿之後隨後施加該止擋電壓接著防止右光間18〇4 14766] .doc 201112736 中之液晶内之分子在右光閥之打開期間旋轉過頭。 或者,在2104中,若CPU 1 820判定所接收的同步信號指 示左光閥1802應打開且右光閥1804應關閉,則在2108中, 該CPU將控制信號a、b、c、D及E傳輸至左光閥控制器 1806及右光閥控制器1808,以將一高電壓施加至右光閥 1 804且將無電壓隨後接著一小止擋電壓施加至左光閥 1 802。在一例示性實施例中,在2丨〇8中施加至右光閥丨8〇4 的尚電Μ之量值為1 5伏特。在一例示性實施例中,在2 1 〇 § 中施加至左光閥1802的止擋電壓之量值為2伏特。在一例 示性實施例中,在2108中,藉由將控制信號D控制為打 開,藉此啟用分壓器組件R8&R1〇之操作,且將控制信號 E維持在一高位準而將該止擋電壓施加至左光閥18〇2。在 一例示性實施例中,2108中該止擋電壓至左光閥18〇2之施 加被延遲一預定時間段,以允許左光閥之液晶内之分子在 該預定時間段期間較快速地旋轉。在該預定時間段期滿之 後隨後施加止擋電壓接著防止左光閥18〇2中之液晶内之分 子在左光閥之打開期間旋轉過頭。 在一例示性實施例中,在方、、各叫Λ 牡万法2100期間,在步驟21〇6及 2 1 0 8之後續重複中,施加至左光 也尤閥1802及右光閥1804之電 壓交替地為正及負,以防止對.古 于左先閥及右光閥之液晶單元 模式 因此,方法2100為三維眼鏡咖提供一正常或執行操作 維眼鏡 現參看圖23及圖24’在—例示性實施例中,在 147661.doc •32- 201112736 1 800之操作期間,三維眼鏡實施一暖機操作方法23〇〇,在 s亥方法中’將由CPU i 8 1〇產生之控制信號a、b、c、D及 E用以控制左光閥控制器丨8〇6及右光閥控制器丨8〇8之操 作’從而又控制左光閥1802及右光閥18〇4之操作。 在2302中’三維眼鏡之CPU 1810檢查該三維眼鏡之通 電。在一例示性實施例中,三維眼鏡181〇可透過一使用者 啟動一通電開關或透過一自動喚醒序列而通電。在三維眼 鏡18 10通電的情況下’三維眼鏡之光閥丨8〇2及丨8〇4可能 (例如)需要一暖機序列。在一時間段中不具有電力的光閥 1 802及1 804之液晶單元可能處於一不明確狀態下。 在2302中,若三維眼鏡1800之CPU 1810偵測到該三維眼 鏡之通電’則在2304中’該CPU分別將交變電壓信號 2304a及2304b施加至左光閥1802及右光閥1804。在一例示 性實施例中’施加至左光閥1 802及右光閥1 804之電壓在正 峰值與負峰值之間交替以避免光閥之液晶單元中的離子化 問題。在一例示性實施例中,電壓信號2304a及2304b可彼 此至少部分地不同相。在一.例示性實施例中,電壓信號 23 04a及23 04b中之一者或兩者可在一零電壓與一峰值電壓 之間交替。在一例示性實施例中’可將其他形式之電壓信 號施加至左光閥1 802及右光閥1 804,以使得光閥之液晶單 元處於一明確操作狀態。在一例示性實施例中,施加電壓 信號2304a及2304b至左光閥1802及右光閥1804使該等光閥 同時或在不同時間打開及關閉。或者,施加電壓信號 2304a及2304b至左光閥1802及右光閥1804可使該等光間保 147661.doc -33· 201112736 持關閉。 在施加電壓信號2304a及2304b至左光閥1802及右光閥 1804期間,在2306中,CPU 1810檢查一暖機逾時。在2306 申,若CPU 1810偵測到一暖機逾時,則在2308中,CPU將 停止施加電壓信號2304a及2304b至左光閥1802及右光闊 1804 〇 在一例示性實施例中,在2304及2306中,CPU 1810在一 足以致動該等光閥之液晶單元之時間段中將電壓信號 2304a及2304b施加至左光閥1802及右光閥1804。在一例示 性貫施例中’ CPU 1 8 1 0在兩秒之時段中將電壓信號23 〇4a 及2304b施加至左光閥1802及右光閥1804 »在一例示性實 施例中,電壓信號2304a及2304b之最大量值可為15伏特。 在一例示性實施例中’ 2306中之逾時時段可為兩秒。在一 例示性實施例中,電壓信號230乜及23〇41)之最大量值可大 於或小於15伏特,且逾時時段可更長或更短。在一例示性 實施例中,在方法2300期間,CPU 181〇可以一不同於可用 於觀看電影之速率的速率打開及關閉左光閥18〇2及右光閥 1804。在-例示性實施例中,在23()4中,施加至左光闊 1 802及右光閥1804之電壓作雜X^ 电! 妮不乂替,且在暖機時間段期 間持續施加’且因此該等光關之浪B留-, 寸7^阀之孜日日早兀在整個暖機時段 中可保持不透明。在一例示神眚你也丨士 , J不性貫施例中,暖機方法2300可 在同步信號存在或不存在的格益_丄 廿牡旳If况下發生。因此,方法23〇〇 為三維眼鏡1800提供一暖機掉作描彳 飛铞作楨式。在一例示性實施例 中,在實施暖機方法2300之後,=雉叩拉 便一、准眼鏡1 800處於一正常 147661.doc •34· 201112736 或執行操作模式下且接著可實施方法21⑻。或者,在一例 示性實施例中,在實施暖機方法測之後,三維眼鏡議 處於-透明操作模式下且接著可實施下文所描述之方法 2500 〇 現參看圖25及圖26,在-例示性實施例中,在三維眼鏡 1800之操作期間,三維眼鏡實施一操作方法25〇〇,在該方 法中,由〇?111810產生之控制信號八、]3、(:、£)及£用以 控制左光閥控制器1806及右光閥控制器18〇8之操作,從而 又依據由信號感測器1814接收的同步信號來控制左光閥 1802及右光閥1804之操作。 在2502中,CPU 18 10檢查以查看信號感測器1814所偵測 到的同步#號是有效還是無效。在25〇2中,若cpu 1810判 疋同步仏號無效,則在2504中,CPU將電壓信號2504a及 2504b施加至三維眼鏡1800之左光閥18〇2及右光閥18〇4。 在一例示性實施例中,施加至左光閥18〇2及右光閥18〇4之 電壓2504a及2504b在正峰值與負峰值之間交替以避免光閥 之液B曰單元中的離子化問題。在一例示性實施例中,電壓 信號25 04a及25 04b中之一者或兩者可在一零電壓與一峰值 電壓之間交替。在一例示性實施例中,可將其他形式之電 壓信號施加至左光閥1802及右光閥1804,以使得光閥之液 晶單元保持打開,因此三維眼鏡1 8〇〇之使用者可透過光閥 正常地觀看。在一例示性實施例中,施加電壓信號25〇4a 及2504b至左光閥1802及右光閥1804使該等光閥打開。 在施加電壓信號2504a及2504b至左光閥1802及右光閥 147661.doc •35- 201112736 1804期間,在2506中,CPU 1810檢查一清除逾時。在25〇6 中,若CPU 1810偵測到一清除逾時,則在2508中,CPU 1810將停止將電壓信號25〇仏及25〇朴施加至光閥i8〇2及 1804 ° 因此,在一例示性實施例中,若三維眼鏡18〇〇未偵測到 有效同步L冑’則三維眼鏡可轉至一冑明操作模式且實 施方法2500。在透明操作模式下,在一例示性實施例中, 三維眼鏡1800之光閥18〇2及18〇4均保持打開,使得觀看者 可透過三維眼鏡之光閥正常地觀看。在一例示性實施例 中施加正負交替之恆定電壓以將三維眼鏡丨8〇〇之光閥 1 802及1 8G4之液單元維持在—透明n該值定電壓可 (例如)在2至3伏特之範圍内’但該恆定電壓可為適合維持 適度透明光閥之任何其他電壓。在一例示性實施例中,三 維眼鏡1800之光閥18〇2及18〇4可保持透明直至三維眼鏡 能夠驗證一加密信號及/或直至一清除模式逾時。在一例 不J·生實靶例中,二維眼鏡18〇〇之光閥18〇2及Η⑽可保持透 明直至二維眼鏡能夠驗證一加密信號,且然後可實施方 法2100及/或在25〇6中若發生一逾時,則可實施方法_。 在一例示性實施例中,三維眼鏡18〇〇之光閥18〇2及18〇4可 以允許三維眼鏡之使用者正常地觀看之速率交替地打開及 關閉》 因此,方法2500提供一種清除三維眼鏡18〇〇之操作的方 法,且藉此提供一透明操作模式。 現參看圖27及圖28,在一例示性實施例中,在三維眼鏡 147661.doc •36· 201112736 1800之操作期間’三維眼鏡實施一種監視電池12〇之方法 2700,在該方法中,將由Cpu 18 10產生之控制信號A、 B、C、D及E用以控制左光閥控制器丨806及右光閥控制器 1 808之操作,從而又依據由電池感測器丨8丨2偵測到的電池 120之狀況來控制左光閥1802及右光閥1804之操作。 在2702中,三維眼鏡之CPU 1810使用電池感測器1812判 定電池120之剩餘可用壽命。在2702中,若三維眼鏡1800 之CPU 1810判定電池120之剩餘可用壽命不足,則在2704 中,該CPU提供一低電池壽命狀況之一指示。 在一例示性實施例中,不足的剩餘電池壽命可(例如)為 小於3小時之任何時段。在一例示性實施例中,足夠的剩 餘電池壽命可由三維眼鏡1800之製造商預先設定及/或由 三維眼鏡之使用者程式化。 在一例示性實施例中,在2704中,三維眼鏡1 800之CPU 1810將藉由使三維眼鏡之左光閥18〇2及右光閥18〇4緩慢閃 燦、藉由使光閥以可被三維眼鏡之使用者看見之一中等速 率同時閃爍、藉由使一指示燈閃光、藉由產生一可聽聲音 及其類似動作來指示一低電池壽命狀況。 在一例示性實施例中,若三維眼鏡丨8〇〇之Cpu丨8丨0偵測 到剩餘電池壽命不足以持續一規定時間段,則在27〇4中, 二維眼鏡之CPU將指示—電池電力偏低狀況且接著防止使 用者開啟三維眼鏡。 在一例示性實施例中,每當該三維眼鏡轉變至關閉模式 及/或透明操作模式時’三維眼鏡18〇〇之Cpu 1810判定剩 147661.doc •37- 201112736 餘電池壽命是否足夠。 在一例示性實施例中,若三維眼鏡1800之CPU 1810判定 該電池將持續至少該預定足夠時間量,則該三維眼鏡將繼 續正常操作。舉例而言,正常操作可包括在五分鐘内保持 在透明操作模式下,同時檢查來自信號傳輸器11〇之信 號,然後轉至關閉模式或開啟模式,在該模式中三維眼鏡 1800週期性地醒來以檢查來自該信號傳輸器之一一信號。 在一例示性實施例中,三維眼鏡UOOiCPU 181〇恰在關 掉該二維眼鏡之前檢查一電池電力偏低狀況。在一例示性 貫施例十,若電池12〇不能持續該預定的足夠剩餘壽命時 間,則光閥1802及1804將開始緩慢閃爍。 在一例示性實施例中,若電池12〇不能持續該預定的足 夠剩餘壽命時間,則光閥18〇2及/或18〇4將在兩秒中處於 一不透明狀況(亦即,液晶單元關閉)且接著在十分之一秒 中處於一透明狀況(亦即,液晶單元打開)。光閥以们及/或 1804關閉及打開的時間段可為任何時間段。在一例示性實 施例中,光閥1802及1804之閃爍同步於提供電力至信號感 測器1814,以允許該信號感測器檢查一來自信號傳輸器 110之信號。 在一例示性實施例中,三維眼鏡18〇〇可在任何時間(包 括在暖機期間、在正常操作期間、在透明模式期間、在斷 電杈式期間,或於任何狀況之間轉變時)檢查一電池電力 偏低狀況。在一例示性實施例中,若在觀看者可能在看電 衫之中途時偵測到一低電池壽命狀況,則三維眼鏡1800可 147661.doc -38- 201112736 不立即指示該電池電力偏低狀況。 在一些實施例中,若三維眼鏡18〇〇之cpu 1810偵測到一 電池電力偏低位準,則使用者將不能夠將該三維眼鏡通 電。 現參看圖29,在一例示性實施例中,在三維眼鏡18〇〇之 才呆作期間,三維眼鏡實施一使三維眼鏡停機之方法,在該 方法中,將由CPU 1810產生之控制信號a、B、c、〇及£ 用以控制左光閥控制器1806及右光閥控制器18〇8之操作, 從而又依據電池感測器1812所偵測到的電池12〇之狀況來 控制左光閥1802及右光閥1804之操作。詳言之,若三維眼 鏡1800之使用者選擇使該三維眼鏡停機或cpu 181〇選擇使 該三維眼鏡停機,則施加至三維眼鏡之左光閥18〇2及右光 閥1804之電壓均被設定為零。 參看圖30、圖3〇a、圖30b及圖30c,提供三維眼鏡3〇〇〇 之一例示性實施例,該三維眼鏡在設計及操作上實質上等 门於上文所說明及描述的二維眼鏡10 4,惟下文所說明的 方面除外。三維眼鏡3000包括一左光閥3〇〇2、一右光閥 3 004、一左光閥控制器3006 ' —右光閥控制器3008、一共 同光閥控制器3010、一CPU 3012、一信號感測器3014、一 電何粟3 016及一電壓供應益3 0 1 8。在一例示性實施例中, 二維眼鏡3000之左光閥3002 '右光閥3004、左光閥控制器 30〇6、右光閥控制器3008、CPU 3012、信號感測器3014及 電荷泵3 0 1 6之設計及操作實質上等同於上文所描述及說明 的二維眼鏡104之左光閥1 〇6、右光閥1 〇8、左光閥控制器 147661.doc -39- 201112736 116、右光閥控制器118、CPU 114、信號感測器112及電荷 泵1700,惟下文所描述且本文中所說明的方面除外。 在一例示性實施例中,三維眼鏡3000包括以下組件: 名稱 值/ID R13 10K D5 BAS7004 R12 100K D3 BP104F R10 2.2M U5-1 MIC863 R3 10K R7 10K R8 10K R5 1M C7 .OOluF R9 47K R11 1M C1 • luF C9 • luF D1 BAS7004 R2 330K U5-2 MIC863 U3 MIC7211 U2 PIC16F636 C3 .luF C12 47uF C2 • luF LCD1 左光閥 C14 • luF LCD2 右光閥 U1 4053 U6 4053 147661.doc •40· 201112736 名稱 值/ID C4 .luF U4 4053 R14 10K R15 100K Q1 NDS0610 L1 lmh D6 BAS7004 D7 MAZ31200 C13 luF C5 luF Q2 R16 1M R1 1M ΒΤ1 3V Li 在一例示性實施例中,左光閥控制器3006包括一數位控 制類比開關U1,該開關在共同控制器3010(其包括一數位 控制類比開關U4)及CPU 3012的控制下,視操作模式而在 左光閥3002上碼加一電壓以用於控制左光閥之操作。以類 似方式,右光閥控制器3008包括一數位控制類比開關U6, 該開關在共同控制器3010及CPU 3012的控制下,視操作模 式而在右光閥3004上施加一電壓以用於控制右光閥3004之 操作。在一例示性實施例中,Ul、U4及U6為習知可自 Unisonic Technologies購得之零件號碼為UTC 4053的數位 控制類比開關。 如一般熟習此項技術者將認識到,UTC 4053數位控制類 比開關包括控制輸入信號A、B、C及INHIBIT(「INH」)、 開關I/O信號Χ0、XI、Υ0、Υ1、Ζ0及Ζ1和輸出信號X、Υ 147661.doc -41 - 201112736 及ζ,且進一步提供如下真值表: 真值表 多#輪入 選擇U3-output control signal U1-input control signal U2-input control signal AABACBB In an exemplary embodiment, output control signals 〇 and E of microcontroller U3 provide or otherwise implement digitally controlled analog switches (1) and U2 switches I/CH Lu X0, XI, X2, X3, γ〇, γι, γ2 and γ3. U3_Output Control Signal U1-Switch I/O Signal U2-Switch I/O Signal D X3, Y1 X0, Y2 E Χ3, Υ1 Χ0, Υ2 In an exemplary embodiment, the microcontroller U3 of the CPU 1810 is A programmable microcontroller from Microchip, model number picl6F636. In one exemplary embodiment, battery sensor 1812 includes a power detector U6 for sensing the voltage of battery 120. In an exemplary embodiment, power detector U6 is a micropower voltage detector of the type (:1) 111 available from Micr(R). In one example embodiment, signal sensor 1814 includes a photodiode for sensing the transmission of signals (including synchronization signals and/or configuration data) by signal transmitter 110. In an exemplary embodiment, the photodiode 147661.doc • 28· 201112736 D2 is a photodiode of the type BP104FS available from 〇sram. In an exemplary embodiment, 'signal sensor 1814 further includes operational amplifiers U5-1 and U5-2, and associated signal conditioning components: resistors ri, R2, R3, R4, R5, R6, R7, R9, Rl 1 and R12, capacitors C5, C6, C7 and C10' and Schottky diodes D1 & D3. In an exemplary embodiment, charge pump 1816 uses a charge pump to amplify the magnitude of the output voltage of battery 120 from 3v to _12v. In an exemplary embodiment, charge pump 1 8 16 includes a MOSFET Q1, a Schottky diode D5, an inductor l 1 and a Zener diode D6. In an exemplary embodiment, 'the output signal of the charge pump 1816 is provided as the input signal of the switch I/O signals χ2 and γ〇 of the digital control switch U6 of the left light valve controller 18〇6, and the right light valve control The digits of the device 1 808 control the input signals of the switch I/O signals X3 and Y1 of the analog switch U2. As illustrated in FIG. 20, in an exemplary embodiment, during operation of the 3D glasses 1800, under the control of the control signals A, B, c, d, and E of the CPU 181, the digital control analog switch m& U2 Various voltages can be provided on one or both of the left and right shutters 1804. In detail, under the control of the control signals A, B, c, D and E of the CPU 1810, the digital control analog switches U1 and U2 can provide: 1} left light valve 18〇2 and right light valve 18〇4 Positive or negative 15 volts on one or both; 2) positive or negative voltage in the range of 2 to 3 volts on either or both of the left and right shutters; or 3) in the left valve One or both of the right light valves are provided with a volt (i.e., neutral state). In an exemplary embodiment, under the control of the control signals A, B, C, D, and E of the cpu 181, the digital control analog switch (1) and 卩? 15 volts can be provided by combining 147661.doc •29·201112736 (for example) +3 volts and 12 volts to achieve a 15 volt difference on the left light valve 1802 and the right light valve. . In an exemplary embodiment, under the control of the CPU control UAB, C, D, and E, the digital control analog switches (1) and U2 can be used, for example, by using a voltage divider (including components and a battery of 3 volts). The output voltage is reduced to 2 volts to provide a 2 volt stop voltage. Alternatively, under the control of the control signals A, B, c, 〇 and £ of the CPU 1810, the digital control analog switches 1; 1 and 1; 2 provide:丨) positive or negative 15 volts on one or both of the left and right shutters 1804; 2) about 2 volts on one or both of the left and right shutters Positive or negative voltage; 3) positive or negative voltage of about 3 volts on one or both of the left and right light valves, or 4) one or both of the left and right light valves The volts are provided (ie, 'neutral state'). In an exemplary embodiment, under the control of the control signals A, B, C, D, and E of the CPU 108, the digitally controlled analog switches U1 and U2 can be combined, for example, by +3 volts and -12 volts. A voltage of 15 volts is provided to achieve a difference of 15 volts on one or both of the left light valve 1802 and the right light valve 18〇4. In an exemplary embodiment, under the control of control signals A, B, C, D, and E of cpu 1 810, the digital control analog switch and U2 can be used, for example, by a voltage divider (including component R8 and R10) reduces the 3 volt output voltage of battery 120 to 2 volts to provide a 2 volt stop voltage. Referring now to Figures 21 and 22, in an exemplary embodiment, during operation of the 3D glasses 1800, the 3D glasses perform a normal execution mode of operation 2100' in which the CPU 1810 will be generated. The control signals a, B, C, D, and E are used to control the operation of the left light valve controller 1 806 and the right light valve controller 14766I.doc • 30· 201112736 1 8 0 8 , thereby relying on the signal sensor 1814 The type of synchronization signal detected is used to control the operation of the left and right shutters 1802 and 1804. In particular, in 2102, if CPU 1810 determines that signal sensor 1814 has received a synchronization signal, then in 2104, the CPU determines the type of synchronization signal received. In an exemplary embodiment, a synchronization signal comprising 3 pulses indicates that the left light valve 1802 should be closed and the right light valve 1804 should be open, and a synchronization signal comprising 2 pulses indicates that the left light valve should be open and the right The light valve should be closed. More generally, any number of different pulses can be used to control the opening and closing of the left shutter 1802 and the right shutter 10 (10). In 2104, if the CPU 181 determines that the received synchronization signal indicates that the left shutter 1802 should be closed and the right shutter 18〇4 should be open, then in 21〇6, the cpu will control signals A, B, C, D And E is transmitted to the left light valve controller 1806 and the right light valve controller 1808 to apply a high voltage to the left light valve 18〇2 and apply no voltage followed by a small stop voltage to the right light valve 18〇4 . In an exemplary example, the amount of high voltage applied to the left light valve 丨8〇2 in 21 〇6 is 15 volts. In an exemplary embodiment, the magnitude of the stop voltage applied to the right shutter 1804 in 2 106 is 2 volts. In an exemplary embodiment, in 21 06, the operation state of the control signal D (which may be low, high, or open) is controlled to be turned on, thereby enabling the operation of the voltage divider component and the ri ,, The control signal E is maintained at a high state and a stop voltage is applied to the right shutter 1804. In an exemplary embodiment, the application of the stop voltage to the right light 804 in 21% is delayed for a predetermined period of time to allow molecules within the liquid crystal of the right shutter to be faster during the silent period Rotate. The stop voltage is then applied after the expiration of the predetermined time period and then the molecules in the liquid crystal in the right light are prevented from rotating over during the opening of the right light valve by 18 〇 4 14766]. Alternatively, in 2104, if CPU 1 820 determines that the received synchronization signal indicates that left light valve 1802 should be open and right light valve 1804 should be closed, then in 2108, the CPU will control signals a, b, c, D, and E. The left light valve controller 1806 and the right light valve controller 1808 are transmitted to apply a high voltage to the right light valve 1 804 and apply no voltage followed by a small stop voltage to the left light valve 1 802. In an exemplary embodiment, the amount of electric power applied to the right light valve 丨8〇4 in 2丨〇8 is 15 volts. In an exemplary embodiment, the magnitude of the stop voltage applied to the left shutter 1802 in 2 1 〇 § is 2 volts. In an exemplary embodiment, in 2108, the operation of the voltage divider component R8 & R1 is enabled by controlling the control signal D to be turned on, and the control signal E is maintained at a high level. The blocking voltage is applied to the left light valve 18〇2. In an exemplary embodiment, the application of the stop voltage to the left shutter 18〇2 in 2108 is delayed for a predetermined period of time to allow the molecules within the liquid crystal of the left shutter to rotate faster during the predetermined period of time. . Subsequent application of the stop voltage after the expiration of the predetermined period of time then prevents the molecules in the liquid crystal in the left shutter 18〇2 from rotating over the opening of the left shutter. In an exemplary embodiment, during the subsequent steps of steps 21〇6 and 2108, during the subsequent steps of the steps 2〇6 and 2108, the left light is also applied to the left valve 1802 and the right light valve 1804. The voltages are alternately positive and negative to prevent the liquid crystal cell mode of the left and right light valves. Therefore, the method 2100 provides a normal or operational operation for the three-dimensional glasses. Referring now to Figures 23 and 24' In an exemplary embodiment, during operation of 147661.doc • 32-201112736 1 800, the 3D glasses implement a warm-up operation method 23〇〇, in the s-hai method, a control signal a to be generated by the CPU i 8 1〇 , b, c, D, and E are used to control the operation of the left light valve controller 〇8〇6 and the right light valve controller 丨8〇8 to control the operation of the left light valve 1802 and the right light valve 18〇4. In 2302, the CPU 1810 of the 3D glasses checks the power of the 3D glasses. In an exemplary embodiment, the 3D glasses 181 can be powered by a user activation of a power switch or by an automatic wake up sequence. In the case where the three-dimensional eyeglasses 18 10 are energized, the light valves 丨8〇2 and 丨8〇4 of the three-dimensional glasses may, for example, require a warm-up sequence. The liquid crystal cells of the light valves 1 802 and 1 804 that do not have power for a period of time may be in an ambiguous state. In 2302, if the CPU 1810 of the 3D glasses 1800 detects the energization of the 3D eyeglasses, then in 2304 the CPU applies alternating voltage signals 2304a and 2304b to the left and right shutters 1802 and 1804, respectively. In an exemplary embodiment, the voltage applied to left shutter 1 802 and right shutter 1 804 alternates between a positive peak and a negative peak to avoid ionization problems in the liquid crystal cell of the light valve. In an exemplary embodiment, voltage signals 2304a and 2304b may be at least partially out of phase with each other. In an exemplary embodiment, one or both of voltage signals 23 04a and 23 04b may alternate between a zero voltage and a peak voltage. In an exemplary embodiment, other forms of voltage signals can be applied to the left and right shutters 1 802 and 804 such that the liquid crystal cells of the shutter are in an operational state. In an exemplary embodiment, applying voltage signals 2304a and 2304b to left shutter 1802 and right shutter 1804 causes the shutters to open and close simultaneously or at different times. Alternatively, applying voltage signals 2304a and 2304b to left light valve 1802 and right light valve 1804 may cause the optical security 147661.doc -33· 201112736 to be turned off. During the application of voltage signals 2304a and 2304b to left shutter 1802 and right shutter 1804, in 2306, CPU 1810 checks for a warm-up timeout. At 2306, if the CPU 1810 detects a warm-up timeout, then in 2308, the CPU will stop applying the voltage signals 2304a and 2304b to the left light valve 1802 and the right light barrier 1804. In an exemplary embodiment, In 2304 and 2306, CPU 1810 applies voltage signals 2304a and 2304b to left light valve 1802 and right light valve 1804 during a period of time sufficient to actuate the liquid crystal cells of the light valves. In an exemplary embodiment, 'CPU 1 8 1 0 applies voltage signals 23 〇 4a and 2304b to left and right light valves 1802 and 1804 in a two second period. In an exemplary embodiment, the voltage signal The maximum magnitude of 2304a and 2304b can be 15 volts. The timeout period in '2306' may be two seconds in an exemplary embodiment. In an exemplary embodiment, the maximum magnitude of voltage signals 230A and 23〇41) may be greater or less than 15 volts, and the timeout period may be longer or shorter. In an exemplary embodiment, during method 2300, CPU 181 may open and close left and right shutters 18, 2, 1804 at a different rate than may be used to view the movie. In the exemplary embodiment, in 23() 4, the voltage applied to the left wide 1 802 and the right light valve 1804 is mixed X^! Ni is not replaced, and it continues to be applied during the warm-up period, and therefore the waves of the light-off are left, and the 77^ valve can remain opaque throughout the warm-up period. In an example of a sacred sorcerer, you can also use the warm-up method 2300 in the presence or absence of a sync signal in the presence or absence of a geek _ 丄 廿 旳. Therefore, the method 23 提供 provides a warm-up operation for the 3D glasses 1800. In an exemplary embodiment, after the warm-up method 2300 is implemented, the first contact lens 1 800 is in a normal 147661.doc • 34· 201112736 or the operational mode is performed and then the method 21 (8) can be implemented. Alternatively, in an exemplary embodiment, after performing the warm-up method test, the 3D glasses are in a transparent operation mode and then the method 2500 described below can be implemented. Referring now to Figures 25 and 26, in an exemplary In an embodiment, during operation of the 3D glasses 1800, the 3D glasses implement an operational method 25, in which the control signals generated by the ?111810 are used to control the signals 8, 3, (:, £) and £. The operation of the left light valve controller 1806 and the right light valve controller 18〇8, in turn, controls the operation of the left and right light valves 1802 and 1804 in accordance with the synchronization signals received by the signal sensor 1814. In 2502, CPU 18 10 checks to see if the sync # number detected by signal sensor 1814 is valid or invalid. In 25〇2, if the cpu 1810 determines that the sync nickname is invalid, then in 2504, the CPU applies voltage signals 2504a and 2504b to the left light valve 18〇2 and the right light valve 18〇4 of the 3D glasses 1800. In an exemplary embodiment, the voltages 2504a and 2504b applied to the left and right shutters 18〇2 and 2504 alternate between positive and negative peaks to avoid ionization in the liquid B曰 unit of the light valve. problem. In an exemplary embodiment, one or both of voltage signals 25 04a and 25 04b may alternate between a zero voltage and a peak voltage. In an exemplary embodiment, other forms of voltage signals may be applied to the left and right shutters 1802 and 1804 such that the liquid crystal cell of the shutter remains open, so that the user of the 3D glasses is permeable to light. The valve is normally viewed. In an exemplary embodiment, voltage signals 25A4a and 2504b are applied to left and right shutters 1802 and 1804 to cause the shutters to open. During the application of voltage signals 2504a and 2504b to left light valve 1802 and right light valve 147661.doc • 35- 201112736 1804, in 2506, CPU 1810 checks for a clear timeout. In 25〇6, if the CPU 1810 detects a clear timeout, then in 2508, the CPU 1810 will stop applying the voltage signals 25〇仏 and 25 to the light valves i8〇2 and 1804°. In an exemplary embodiment, if the 3D glasses 18 do not detect a valid sync L胄', the 3D glasses can be rotated to a mode of operation and method 2500 is implemented. In the transparent mode of operation, in an exemplary embodiment, the light valves 18〇2 and 18〇4 of the 3D glasses 1800 remain open so that the viewer can view normally through the light valves of the 3D glasses. In an exemplary embodiment, a constant voltage alternating between positive and negative is applied to maintain the liquid cells of the light valves 1 802 and 1 8G4 of the three-dimensional eyeglass lens 8 - transparent n. The constant voltage can be, for example, 2 to 3 volts. Within the range 'but the constant voltage can be any other voltage suitable to maintain a moderately transparent light valve. In an exemplary embodiment, the light valves 18〇2 and 18〇4 of the three-dimensional glasses 1800 may remain transparent until the 3D glasses are capable of verifying an encrypted signal and/or until a clear mode timeout. In one example of the non-J·realistic target, the light valves 18〇2 and Η(10) of the two-dimensional glasses 18 can remain transparent until the two-dimensional glasses can verify an encrypted signal, and then the method 2100 and/or at 25〇 can be implemented. If a timeout occurs in 6 , the method _ can be implemented. In an exemplary embodiment, the light valves 18〇2 and 18〇4 of the 3D glasses 18 can allow the user of the 3D glasses to alternately open and close at a rate of normal viewing. Thus, the method 2500 provides a clearing of the 3D glasses. The method of operation, and thereby providing a transparent mode of operation. Referring now to Figures 27 and 28, in an exemplary embodiment, during operation of the 3D glasses 147661.doc • 36·201112736 1800, the 3D glasses implement a method 2700 of monitoring the battery 12, in which the CPU will be 18 10 generated control signals A, B, C, D and E are used to control the operation of the left light valve controller 丨 806 and the right light valve controller 1 808, thereby being detected by the battery sensor 丨 8 丨 2 The condition of the battery 120 is reached to control the operation of the left and right shutters 1802 and 1804. In 2702, the CPU 1810 of the 3D glasses uses the battery sensor 1812 to determine the remaining useful life of the battery 120. In 2702, if CPU 1810 of 3D glasses 1800 determines that the remaining usable life of battery 120 is insufficient, then in 2704, the CPU provides an indication of a low battery life condition. In an exemplary embodiment, insufficient remaining battery life may, for example, be any period of less than 3 hours. In an exemplary embodiment, sufficient remaining battery life may be pre-set by the manufacturer of the 3D glasses 1800 and/or programmed by the user of the 3D glasses. In an exemplary embodiment, in 2704, the CPU 1810 of the 3D glasses 1 800 will slowly flash the left light valve 18〇2 and the right light valve 18〇4 of the 3D glasses by making the light valve A medium rate is simultaneously blinked by the user of the 3D glasses, indicating a low battery life condition by flashing an indicator light, by generating an audible sound, and the like. In an exemplary embodiment, if the Cpu丨8丨0 of the 3D glasses detects that the remaining battery life is insufficient for a predetermined period of time, then in 27〇4, the CPU of the 2D glasses will indicate— The battery power is low and then the user is prevented from turning on the 3D glasses. In an exemplary embodiment, whenever the 3D glasses transition to the off mode and/or the transparent mode of operation, the Cpu 1810 of the 3D glasses 18 determines whether 147661.doc • 37 - 201112736 remaining battery life is sufficient. In an exemplary embodiment, if the CPU 1810 of the 3D glasses 1800 determines that the battery will continue for at least the predetermined amount of time, the 3D glasses will continue to operate normally. For example, normal operation may include maintaining the signal in the transparent mode of operation for five minutes while checking the signal from the signal transmitter 11 and then going to the off mode or the on mode, in which the 3D glasses 1800 periodically wake up To check for a signal from one of the signal transmitters. In an exemplary embodiment, the 3D glasses UOOiCPU 181 checks for a low battery condition just prior to turning off the 2D glasses. In an exemplary embodiment ten, if the battery 12 〇 does not last for the predetermined sufficient remaining life time, the light valves 1802 and 1804 will begin to flash slowly. In an exemplary embodiment, if the battery 12 does not last for the predetermined sufficient remaining life time, the light valve 18〇2 and/or 18〇4 will be in an opaque condition for two seconds (ie, the liquid crystal cell is off). And then in a transparent condition in one tenth of a second (ie, the liquid crystal cell is turned on). The time period during which the light valve is closed and opened by the person and/or 1804 can be any period of time. In an exemplary embodiment, the blinking of light valves 1802 and 1804 is synchronized with providing power to signal sensor 1814 to allow the signal sensor to examine a signal from signal transmitter 110. In an exemplary embodiment, the 3D glasses 18 can be at any time (including during warm-up, during normal operation, during a transparent mode, during a power-off mode, or between any conditions) Check for a low battery condition. In an exemplary embodiment, if a low battery life condition is detected while the viewer is likely to be in the middle of viewing the shirt, the 3D glasses 1800 may 147661.doc -38 - 201112736 not immediately indicate that the battery power is low. . In some embodiments, if the cpu 1810 of the 3D glasses 18 detects a low battery level, the user will not be able to power the 3D glasses. Referring now to Figure 29, in an exemplary embodiment, during the period in which the 3D glasses 18 are in use, the 3D glasses implement a method of stopping the 3D glasses, in which the control signal a generated by the CPU 1810, B, c, 〇 and £ are used to control the operation of the left light valve controller 1806 and the right light valve controller 18〇8, thereby controlling the left light according to the condition of the battery 12 detected by the battery sensor 1812. Operation of valve 1802 and right shutter 1804. In detail, if the user of the 3D glasses 1800 chooses to stop the 3D glasses or cpu 181〇 selects to stop the 3D glasses, the voltages of the left light valve 18〇2 and the right light valve 1804 applied to the 3D glasses are set. Zero. Referring to FIG. 30, FIG. 3A, FIG. 30b and FIG. 30c, an exemplary embodiment of three-dimensional glasses 3 is provided, which is substantially equivalent in design and operation to the two illustrated and described above. Dimensional glasses 10 4, except for the aspects described below. The 3D glasses 3000 includes a left light valve 3〇〇2, a right light valve 3 004, a left light valve controller 3006'-right light valve controller 3008, a common light valve controller 3010, a CPU 3012, and a signal. The sensor 3014, an electric supply 3 016 and a voltage supply benefit 3 0 1 8 . In an exemplary embodiment, the left light valve 3002 of the two-dimensional glasses 3000, the right light valve 3004, the left light valve controller 30〇6, the right light valve controller 3008, the CPU 3012, the signal sensor 3014, and the charge pump The design and operation of 3 0 16 is substantially equivalent to the left light valve 1 〇6, right light valve 1 〇8, left light valve controller 147661.doc -39- 201112736 of the two-dimensional glasses 104 described and illustrated above. 116. Right light valve controller 118, CPU 114, signal sensor 112, and charge pump 1700, except as described below and as described herein. In an exemplary embodiment, the 3D glasses 3000 includes the following components: Name Value / ID R13 10K D5 BAS7004 R12 100K D3 BP104F R10 2.2M U5-1 MIC863 R3 10K R7 10K R8 10K R5 1M C7 .OOluF R9 47K R11 1M C1 • luF C9 • luF D1 BAS7004 R2 330K U5-2 MIC863 U3 MIC7211 U2 PIC16F636 C3 .luF C12 47uF C2 • luF LCD1 left light valve C14 • luF LCD2 right light valve U1 4053 U6 4053 147661.doc •40· 201112736 Name value / ID C4 .luF U4 4053 R14 10K R15 100K Q1 NDS0610 L1 lmh D6 BAS7004 D7 MAZ31200 C13 luF C5 luF Q2 R16 1M R1 1M ΒΤ1 3V Li In an exemplary embodiment, the left light valve controller 3006 includes a digital control analog switch U1, the switch, under the control of the common controller 3010 (which includes a digital control analog switch U4) and the CPU 3012, applies a voltage to the left light valve 3002 depending on the mode of operation for controlling the operation of the left light valve. In a similar manner, the right light valve controller 3008 includes a digital control analog switch U6 that, under the control of the common controller 3010 and the CPU 3012, applies a voltage to the right light valve 3004 for controlling the right depending on the mode of operation. The operation of the light valve 3004. In an exemplary embodiment, U1, U4, and U6 are digitally controlled analog switches of the part number UTC 4053 available from Unisonic Technologies. As will be appreciated by those skilled in the art, the UTC 4053 digital control analog switch includes control input signals A, B, C, and INHIBIT ("INH"), switch I/O signals Χ0, XI, Υ0, Υ1, Ζ0, and Ζ1. And the output signal X, 147 147661.doc -41 - 201112736 and ζ, and further provide the following truth table: truth table more # wheel-in selection

11 11 X X X X 11 γ γ γ γ 11 1Α ζ ζ ζ ζ11 11 X X X X 11 γ γ γ γ 11 1Α ζ ζ ζ ζ

UTC 4053 接通開關 ζο ΥΟ χο ζο Υ0 XI ζο ΥΙ χο ζο ΥΙ XI 無 禁止 0 0 0 0 0 ο ο ο χ=任意值 且’如圖31中所說明,UTC 4053數位控制類比開關亦提供 一功能圖3100。因此’ UTC 4053提供各自具有三個獨立開 關的數位控制類比開關,其允許左光閥控制器3006及右光 閥控制器3008及共同光閥控制器3〇1〇在cpu 3012的控制下 在左光闊及右光閥3004上選擇性地施加一受控電壓, 以控制該等光閥之操作。 在一例示性實施例中,cpu 3〇12包括一微控制器u2, 其用於產生用於控制左光閥控制器3〇〇6及右光閥控制器 3008之數位控制類比開關、U6及共同光閥控制器3〇1〇 之數位控制類比開關U4之操作的輸出信號A、B、CD、 E、F及 G。 微控制器U2之輸出控制信號A、B、c、D、e、f及g將 以下輸入控制信號A、B、c及聰提供給數位控制類比開 關Ul、U6及U4中之每—者: I4766l.doc •42- 201112736 U2-輸出控制信號 U1-輸入控制信號 U6-輸入控制信號 U4-輸入控制信號 A A,B B A,B C C INH D A E F C G B 在一例示性實施例中,將U1之輸入控制信號INH接地, 且將U6之輸入控制信號C及INH接地。 在一例示性實施例中,數位控制類比開關Ul、U6及U4 之開關I/O信號X〇、XI、Y0、Y1、Z0及Z1具備以下輸 入: U1-開關 I/O信號 U1之輸入 U6-開關 I/O信號 U6之輸入 U4-開關 I/O信號 U4之輸入 X0 U4之X xo Ul之z U4之Y XO U4之Z XI V-bat XI V-bat XI 電荷泵3016之輸出 Y0 V-bat Y0 V-bat Y0 U4之Z Y1 U4之X Y1 Ul之Z U4之Y Y1 電荷泵3016之輸出 Z0 GND zo GND zo U2之E Z1 U4之X Z1 GND Z1 電壓供應器3018之輸出 在一例示性實施例中,CPU 30 12之微控制器U2為可自UTC 4053 ON switch ζο ΥΟ χο ζο Υ0 XI ζο ΥΙ χο ζο ΥΙ XI No ban 0 0 0 0 0 ο ο ο χ 任意 = any value and 'as illustrated in Figure 31, UTC 4053 digital control analog switch also provides a function Figure 3100. Therefore, UTC 4053 provides digital control analog switches each with three independent switches, which allows left light valve controller 3006 and right light valve controller 3008 and common light valve controller 3〇1〇 to be left under the control of cpu 3012. A controlled voltage is selectively applied to the light and right light valve 3004 to control the operation of the light valves. In an exemplary embodiment, cpu 3〇12 includes a microcontroller u2 for generating a digital control analog switch for controlling left shutter controller 3〇〇6 and right shutter controller 3008, U6 and The digital light control controller 3〇1〇 controls the output signals A, B, CD, E, F, and G of the analog switch U4. The output control signals A, B, c, D, e, f, and g of the microcontroller U2 provide the following input control signals A, B, c, and Cong to each of the digital control analog switches U1, U6, and U4: I4766l.doc • 42- 201112736 U2-output control signal U1-input control signal U6-input control signal U4-input control signal AA, BBA, BCC INH DAEFCGB In an exemplary embodiment, grounding U1 input control signal INH And ground the input control signals C and INH of U6. In an exemplary embodiment, the digital I/O signals X〇, XI, Y0, Y1, Z0, and Z1 of the analog control analog switches U1, U6, and U4 have the following inputs: U1-Input I/O signal U1 input U6 - Switch I/O signal U6 input U4-switch I/O signal U4 input X0 U4 X xo Ul z U4 Y XO U4 Z XI V-bat XI V-bat XI Charge pump 3016 output Y0 V -bat Y0 V-bat Y0 U4 Z Y1 U4 X Y1 Ul Z U4 Y Y1 Charge pump 3016 output Z0 GND zo GND zo U2 E Z1 U4 X Z1 GND Z1 Voltage supply 3018 output in one In an exemplary embodiment, the microcontroller U2 of the CPU 30 12 is self-contained.

Microchip購得的可程式化微控制器,型號為PIC16F636。 在一例示性實施例中,信號感測器30 1 4包括用於感測信 號傳輸器110對信號(包括同步信號及/或組態資料)之傳輸 的一光電二極體D3。在一例示性實施例中,光電二極體 D3為可自Osram購得之型號為BP104FS的光電二極體。在 一例示性實施例中,信號感測器3014進一步包括運算放大 器U5-1、U5-2及U3,及相關信號調節組件:電阻器R2、 R3、R5、R7、R8、R9、R10、Rll、R12及 R13、電容器 147661.doc -43- 201112736A programmable microcontroller available from Microchip, model number PIC16F636. In an exemplary embodiment, signal sensor 30 14 includes a photodiode D3 for sensing the transmission of signal (including synchronization signals and/or configuration data) by signal transmitter 110. In an exemplary embodiment, the photodiode D3 is a photodiode of the type BP104FS available from Osram. In an exemplary embodiment, signal sensor 3014 further includes operational amplifiers U5-1, U5-2, and U3, and associated signal conditioning components: resistors R2, R3, R5, R7, R8, R9, R10, R11 , R12 and R13, capacitor 147661.doc -43- 201112736

Cl、C7及C9和肖特基二極體]〇1及1)5,該等組件可(例如) 藉由透過控制增益而防止對感測到的信號之削波(dicing) 來調節信號。 在一例示性實施例中,電荷泵3016使用一電荷泵將電池 120之輸出電壓之量值自3 v放大至_i2 v。在一例示性實 施例中,電荷泵3016包括__M〇SFET Qi、一肖特基二極體 D6、一電感器L1及一齊納二極體D7。在一例示性實施例 中提供電荷泵3〇16之輸出信號以作為共同光閥控制器 301 〇之數位控制類比開關U4之開關1/〇信號幻及γι的輸入 t唬,及左光閥控制器3〇〇6、右光閥控制器3〇〇8及共同光 閥控制器3010之數位控制類比開關υ〗、1;6及1;4的輸入電 壓 VEE。 在一例示性實施例中,電壓供應器3〇18包括一電晶體 Q2、一電容器C5及電阻器R1&R1^在一例示性實施例 中,電壓供應器301 8提供1 V信號以作為共同光閥控制器 3010之數位控制類比開關U4之開關1/〇信號以的輸入信 號。在一例示性實施例中,電壓供應器3〇18提供一不接地 (ground lift) ° 如圖32中所說明,在一例示性實施例中,在三維眼鏡 3000之操作期間,在cpu 3〇12之控制信號八、B、c、d、 E、F及G的控制下,數位控制類比開關、U6&U4可在 左光閥3002及右光閥3004中之一者或兩者上提供各種電Cl, C7 and C9 and Schottky diodes 〇1 and 1)5, these components can adjust the signal, for example, by preventing dicing of the sensed signal by controlling the gain. In an exemplary embodiment, charge pump 3016 uses a charge pump to amplify the magnitude of the output voltage of battery 120 from 3v to _i2v. In an exemplary embodiment, charge pump 3016 includes __M〇SFET Qi, a Schottky diode D6, an inductor L1, and a Zener diode D7. In an exemplary embodiment, the output signal of the charge pump 3 〇 16 is provided as the input of the digital light control controller 301 数 digital control analog switch U4 switch 1 / 〇 signal illusion and γι, and left light valve control The digital voltage of the comparator 3〇〇6, the right light valve controller 3〇〇8 and the common light valve controller 3010 controls the input voltage VEE of the analog switches υ, 1; 6 and 1; In an exemplary embodiment, voltage supply 〇18 includes a transistor Q2, a capacitor C5, and resistors R1 & R1. In an exemplary embodiment, voltage supply 301 8 provides a 1 V signal as a common The digital control of the light valve controller 3010 controls the input signal of the switch 1/〇 signal of the analog switch U4. In an exemplary embodiment, voltage supply 3 〇 18 provides a ground lift ° as illustrated in FIG. 32, in an exemplary embodiment, during operation of 3D glasses 3000, at cpu 3〇 Under the control of control signals 8, B, c, d, E, F and G of 12, the digital control analog switch, U6 & U4 can provide various kinds on one or both of the left light valve 3002 and the right light valve 3004. Electricity

壓。詳言之,在CPU 3012之控制信號A、b、c、D、E、F 及G的控制下,數位控制類比開關U]L、U6&U4可提供:u 14766I.doc •44· 201112736 左光閥3002及右光閥3004中之一者或兩者上的正或負15伏 特;2)左光閥及右光閥中之一者或兩者上的正或負2伏 特,3)左光閥及右光閥中之一者或兩者上的正或負3伏 特;及4)在左光閥及右光閥中之—者或兩者上提供〇伏特 (亦即,中性狀態)。 在一例示性實施例中’如圖32中所說明,藉由分別控制 數位控制類比開關U1及U 6中之產生施加在左光閥及右光 閥上的輸出信號X及γ之開關之操作’控制信號A控制左光 閥3002之操作且控制信號B控制右光閥3004之操作。在一 例示性實施例中’將數位控制類比開關m及U6中之每一 者的控制輸入A及B連接在一起’使得兩對輸入信號之間 的切換同時發生,且將選定輸入轉送至左光閥3〇〇2及右光 閥3004之端子。在一例示性實施例中,來自cpu 3012之控 制信號A控制數位控制類比開關ui中的前兩個開關,且來 自該CPU之控制信號b控制數位控制類比開關U6中的前兩 個開關。 在一例示性貫施例中,如圖32中所說明,左光閥3002及 右光閥3004中之每一者的端子中之一者始終連接至3 γ。 因此,在一例示性實施例中,在Cpu 3012之控制信號A、 B、C、D、E、F及G的控制下’操作數位控制類比開關 Ul、U6及U4以將_12 v、3 V、1 V或0 V送至左光閥3002 及右光閥3004之其他端子。結果,在一例示性實施例中, 在CPU 3 012之控制信號a、B、c、D、E、F及G的控制 下’操作數位控制類比開關Ul、U6及U4以在左光閥3002 147661.doc •45· 201112736 及右光閥3004之端子上產生15 v、〇 v、2 ¥或3 v之電位 差。 在一例不性實施例中,不使用數位控制類比開關U6之第 二開關,且將該第三開關之所有端子接地。在一例示性實 施例中,使用數位控制類比開關m之第三開關以便省電。 詳言之,在一例示性實施例中,如圖32中所說明,控制 信號C控制數位控制類比開關m中之產生輸出信號z的開 關之操作。結果’當控制信號c為一數位高值時,數位控 制類比開關U4之輸入信號INH亦為一數位高值,藉此使數 位控制類比開關U4之所有輸出通道關閉。結果,當控制信 號C為一數位尚值時’左光閥3〇〇2及右光閥3004短路,藉 此允許一半的電荷在光閥之間轉移,藉此省電且延長電池 120之壽命。 在一例示性實施例中,藉由使用控制信號C使左光閥 3002及右光閥3004短路,在處在關閉狀態下的一個光閥上 所收集之大量電荷可用以恰在另一光閥轉至關閉狀態之前 使該另一光閥部分地帶電,藉此節約原本必須完全由電池 120提供的電荷之量。 在一例示性實施例中,當由CPU 3 01 2產生之控制信號C 為一數位高值時,例如,當時處於關閉狀態下且其上具有 15 V電位差的左光閥3002之帶負電的板(-12 V)被連接至當 時處於打開狀態下且仍充電至+1 V且其上具有2 V電位差 的右光閥3004之帶更多負電之板。在一例示性實施例中, 光閥3002及3004兩者上之帶正電的板將被充電至+3 V。在 147661.doc •46· 201112736 一例示性實施例中,由CPU 3012產生之控制信號〇在接近 左光閥3002之關閉狀態的結束時且恰在右光閥之關閉 狀態之前的一短時間段中轉至一數位高值。當由cpu 3〇12 產生之控制彳5號c為一數位尚值時,數位控制類比開關U4 上之禁止端子INH亦為一數位高值。結果,在一例示性實 施例中,U4之所有輸出通道X、γ&ζ皆處於關閉狀態下。 此允許儲存在左光閥3002及右光閥3004之板上之電荷分散 在该等光閥之間,使得兩個光閥上之電位差為大約丨7/2 v 或8.5 V。由於光閥3002及3004的一個端子始終連接至3 V,光閥3002及3004之負端子於是處在_55 ν。在一例示 性實施例中,由CPU 3012產生之控制信號c接著變為一數 位低值’且藉此將光閥3002及3004之負端子彼此斷開。接 著,在一例示性實施例中,右光閥3004之關閉狀態開始, 且藉由操作數位控制類比開關U4,電池12〇進一步將右光 閥之負ί而子充電至-12 V。結果’在一例示性實驗實施例 中’在三維眼鏡3000之正常執行操作模式(如下文參考方 法3300所描述)期間達成大約40%之電力節約。 在一例示性實施例中,提供由CPU 3 0 12產生之控制信號 C以作為一在由CPU產生之控制信號A或B自高轉變至低咬 自低轉變至高時自高轉變至低的短持續時間脈衝,以藉此 開始下一個左光閥打開/右光閥關閉或右光閥打開/左光閱 關閉。 現參看圖33及圖34,在一例示性實施例中,在三維眼鏡 3000之操作期間,該三維眼鏡執行一正常執行操作模式 147661.doc • 47- 201112736 3300,在該模式中,將由CPU 3012產生之控制信號a、 B ' C、D、E、F及G用以控制左光閥控制器3006及右光閥 控制器3008以及中央光閥控制器3010之操作,從而又依據 信號感測器3014所偵測到的同步信號之類型來控制左光閥 3002及右光閥3004之操作。 詳言之,在3302中,若CPU 3012判定信號感測器3014已 接收一同步信號’則在3304中,使用由CPU 3012產生之控 制信號A、B、C、D、E、F及G控制左光閥控制器3006及 右光閥控制器3008以及中央光閥控制器3〇1〇之操作,以在 左光閥3002與右光閥3004之間轉移電荷,如上文參看圖32 所描述。 在一例示性實施例中,在3304中,在大約〇.2毫秒中將 由CPU 3012產生之控制信號C設定為一高數位值,以藉此 使左光閥3002及右光閥3004之端子短路,且因此在左光閥 與右光閥之間轉移電荷。在一例示性實施例中,在33〇4 中,在大約0.2毫秒中將由CPU 3012產生之控制信號匸設定 為一高數位值,以藉此使左光閥3〇〇2及右光閥3〇〇4之帶更 多負電之端子短路且因此在左光閥與右光閥之間轉移電 何因此,長1供控制彳§號C以作為一短持續時間脈衝,其 在控制仏號A或B自高轉變至低或自低轉變至高時或在此 之别自同轉變至低。結果,在交替於打開左光閥/關閉右 光閥與關閉左光閥/打開右光閥之間的循環期間,在三維 眼鏡3000之操作期間提供電力節約。 在3306中,CPU 3012接著判定所接收的同步信號之類 147661.doc -48- 201112736 型。在一例示性實施例中’ 一包括2個脈衝之同步信號指 示左光閥3002應打開且右光閥3004應關閉,而一包括3個 脈衝之同步信號指示該右光閥應打開且該左光閥應關閉。 在一例示性實施例中’可使用其他不同數目及格式之同步 h说來控制左光閥3 0 0 2及右光閥3 0 0 4之交替打開及關閉。 在3306中,若CPU 3 012判定所接收的同步信號指示左光 閥3002應打開且右光閥30〇4應關閉,則在33〇8中,該cPU 將控制信號A、B、C、D、E、F及G傳輸至左光閥控制器 3006及右光閥控制器3008以及共同光閥控制器3〇1〇,以在 右光閥3004上施加一高電壓且將無電壓隨後接著一小止擒 電廢施加至左光閥3002。在一例示性實施例中,在3308中 施加在右光閥3004上的高電壓之量值為15伏特。在一例示 性實施例中,在3308中施加至左光閥3002的止擋電壓之量 值為2伏特。在一例示性實施例中,在3308中,藉由將控 制信號D之操作狀態控制為低及將控制信號ρ之操作狀態 (其可為低或高)控制為高,將該止擋電壓施加至左光閥 3 002。在一例示性實施例中,33〇8中之該止擋電壓至左光 閥3002之施加被延遲一預定時間段,以允許該左光閥之液 晶内之分子較快速地旋轉。在該預定時間段期滿之後,隨 後施加止擋電壓將防止左光閥3〇〇2中之液晶内之分子在左 光閥之打開期間旋轉過頭。在一例示性實施例中,在33〇8 中該止擋電壓至左光閥3〇〇2之施加被延遲約1毫秒。 或者’在3 306中’若CPU 3012判定所接收的同步信號指 不左光閥3002應關閉且右光閥3004應打開,則在33 10中, 147661.doc •49- 201112736 該CPU將控制信號A、B、C、D、E、F及G傳輸至左光闊 控制器3006及右光閥控制器3008以及共同光閥控制器 3010,以在左光閥3002上施加一高電壓且將無電壓隨後接 者一小止播電壓施加至右光閥3 004。在一例示性實施例 中,在3310中施加在左光閥3002上的高電壓之量值為15伏 特。在一例示性實施例中,在33 10中施加至右光閥30〇4的 止撞電壓之量值為2伏特。在一例示性實施例中,在3 3 1 〇 中’藉由將控制信號F控制為高且將控制信號G控制為低, 將該止擔電壓施加至右光閥3004。在一例示性實施例中, 在3310中該止擋電壓至右光閥3004之施加被延遲一預定時 間^又’以允許該右光閥之液晶内之分子較快速地旋轉。在 s亥預定時間段期滿之後’隨後施加止擋電壓將防止右光閥 3 004中之液晶内之分子在右光閥之打開期間旋轉過頭。在 一例示性實施例中,在33 10中該止擋電壓至右光閥3〇〇4之 施加被延遲約1毫秒。 在一例示性實施例中’在方法33〇〇期間,在步驟33〇8及 3310之後續重複中,施加至左光閥3〇〇2及右光閥3004之電 壓交替地為正及負,以防止對左光閥及右光閥之液晶單元 之損害。 因此’方法3300為三維眼鏡3000提供一正常或執行操作 模式。 現參看圖3 5及圖3 6,在一例示性實施例中,在三維眼鏡 3000之操作期間,該三維眼鏡實施一暖機操作方法35〇〇’ 在S亥方法中,將由CPU 3 012產生之控制信號A、B、c、 147661.doc -50· 201112736 D、E、F及G用以控制左光閥控制器3006及右光閥控制器 3008以及中央光閥控制器3010之操作,從而又控制左光闕 3002及右光閥3004之操作。 在3502中,該三維眼鏡之cpu 3012檢查該三維眼鏡之通 電。在一例示性實施例中,三維眼鏡3000可藉由一使用者 啟動一通電開關、藉由一自動喚醒序列及/或藉由信號威 測器3 014感測一有效同步信號而通電。在三維眼鏡3 〇 〇 〇通 電的情況下,該三維眼鏡之光閥3002及3004可能(例如)需 要一暖機序列。在一時間段中不具有電力的光閥3〇〇2及 30〇4之液晶單元可能處於一不明確狀態下。 在3502中’若三維眼鏡3〇〇〇之CPU 3012偵測到該三維眼 鏡之通電,則在3504中,該CPU分別將交變電壓信號施加 至左光閥3002及右光閥3004。在一例示性實施例中,施加 至左光閥3002及右光閥3004之電壓在正峰值與負峰值之間 交替以避免光閥之液晶單元中的離子化問題。在一例示性 實施例中’施加至左光閥3002及右光閥3004之電壓信號可 彼此至少部分地不同相。在一例示性實施例中,施加至左 光閥3002及右光閥3004之電壓信號中之一者或兩者可在一 零電壓與一峰值電壓之間交替。在一例示性實施例中,可 將其他形式之電壓信號施加至左光閥3〇〇2及右光閥3004, 以使得光閥之液晶單元處於一明確操作狀態。在一例示性 實施例中,施加電壓信號至左光閥3002及右光閥3004使該 等光閥同時或在不同時間打開及關閉。 在施加電壓信號至左光閥3002及右光閥3004期間,在 147661.doc -51- 201112736 3506中,CPU 3012檢查一暖機逾時。在 3012偵測到一暖機逾時,則在3508中,該CPU將停止將電 壓信號施加至左光閥3002及右光閥3004。 在一例示性實施例中,在3504及3506中,CPU 3012在一 足以致動該等光閥之該等液晶單元之時間段中將電壓信號 施加至左光閥3 0 0 2及右光閥3 0 0 4。在一例示性實施例中, CPU 30 12在兩秒之時段中將電壓信號施加至左光閥3〇〇2及 右光閥3004。在一例示性實施例中,施加至左光閥3〇〇2及 右光閥3004之電壓信號之最大量值可為15伏特。在一例示 性實施例中,3506中之逾時時段可為兩秒。在一例示性實 施例中,施加至左光閥3002及右光閥3〇〇4之電壓信號之最 大直值可大於或小於15伏特,且逾時時段可更長或更短。 在一例示性實施例中,在方法35〇〇期間,cpU3〇i2可以一 不同於可用於觀看電影之速率的速率打開及關閉左光閥 3〇〇2及右光閥3_。在一例示性實施例中,在35附,施 加至左光閥3002及右光閥3004之電壓信號在暖機時間段期 間不交替且独定絲,且因此料㈣之料液晶單元 在整個暖機時段中可保持不透明。在_例示性實施例中, 暖機方法350G可在同步信號存在或不存在的情泥下發生。 因此’方法3500為三維眼鏡3_提供―暖機操作模式 一例示性實施财,在實施暖機方法35⑽之後, 确處於—正常操作模式、執行操作模 =兒 下,且接著可實施方法330(^ 乃絲作核式 二維眼鏡 現參看圖37及圖38,L性實施例中,在 147661.doc -52- 201112736 3000之操作期間,該三維眼鏡實施一操作方法3700,在該 方法中’將由CPU 3012產生之控制信號A、B、C、D、 E、F及G用以控制左光閥控制器3006及右光閥控制器3〇〇8 以及共同光閥控制器3 01 0之操作,從而又依據由信號感測 器3014接收的同步信號來控制左光閥3〇〇2及右光閥3〇〇4之 操作。 在3702中’ CPU 3012檢查以查看信號感測器3014所偵測 到的同步信號是有效還是無效。在3702中,若CPU 3012判 定同步信號無效,則在3704中,該CPU將電壓信號施加至 二維眼鏡3000之左光閥3002及右光閱3004。在·例示性實 施例中’在3704中施加至左光閥3002及右光閥3004之電壓 在正峰值與負峰值之間交替以避免光閥之液晶單元中的離 子化問題。在一例示性實施例中,在3704中施加至左光閥 3 002及右光閥3004之電壓在正峰值與負峰值之間交替以提 供一頻率為60 Hz的方波信號。在一例示性實施例中,該 方波彳§號在+3 V與-3 V之間交替。在一例示性實施例中, 在3704中施加至左光閥3002及右光閥3004之電壓信號中之 一者或兩者可在一零電壓與一峰值電壓之間交替。在一例 示性實施例中,在3704中,可將其他形式(包括其他頻率) 之電壓彳§號施加至左光閥3 〇〇2及右光閥3 004,以使得光閱 之液晶早元保持打開’因此三維眼鏡3〇〇〇之使用者可透過 光閥正常地觀看。在一例示性實施例中,在37〇4中施加電 壓信號至左光閥3002及右光閥3004使該等光閥打開。 在3704中施加電壓信號至左光閥3002及右光閥3〇〇4期 147661.doc -53- 201112736 間,在3706中,CPU 3012檢查一清除逾時。在37〇6中,若 CPU 3012偵測到一清除逾時,則在37〇8中,2將 停止施加電壓信號至光閥3〇〇2及3〇〇4,此可接著使三維眼 鏡3_處於-關閉操作模式。在—例示性實施例中,該清 除逾時之持續時間可長達(例如)約4小時。 因此,在一例示性實施例中,若三維眼鏡3〇〇〇未偵測到 -有效同步信號,則該三維眼鏡可轉至—透明操作模式且 實施方法3700。在透明操作模式下,在—例示性實施例 中,三維眼鏡3000之光閥3〇〇2及3〇〇4均保持打開使得觀 看者可透過三維眼鏡之光閥正常地觀看。在一例示性實施 例中,施加一正負交替的恆定電壓以將三維眼鏡3〇〇〇之光 閥3002及3004之液晶單元維持在一透明狀態。該惶定電壓 可(例如)為2伏特,但該恆定電壓可為適合維持適度透明光 閥 例示性實施例中 三維眼鏡3000 之任何其他電壓。在一 之㈣则2及3_可保持透明,直至該三維眼㈣夠驗證 -加密信號。在-例示性實施例中,可以允許三維眼鏡之 使用者正常地觀看之—速率交替地打開及關閉三維眼鏡 3000 之光閥 3002 及 3004。 因此,方法3700提供一種清除三維眼鏡3〇〇〇之操作的方 法,且藉此提供一透明操作模式。 現參看圖39及@ 41,在-例示性實施例中,在三維眼鏡 3_之操作期間,該三維眼鏡實施—操作方法侧,在該 方法中,將由CPU 3012產生之控制信號A、B、c、D、 E F及G用以在光閥3002與3004之間轉移電荷。在39〇2 147661.doc -54- 201112736 中’ CPU 301 2判定一有效同步信號是否已由信號感測器 3014偵測到。若CPlJ 3012判定一有效同步信號已由信號感 測器3014偵測到’則在3904中,該CPU產生控制信號C, 其形式為一持續(在一例示性實施例中)約2〇〇 μ3之短持續 時間脈衝。在一例示性實施例中,在方法39〇〇期間,電荷 在光閥3002與3004之間的轉移在控制信號c之短時脈衝期 間發生’實質上如上文參看圖33及圖34所描述。 在3 906中’ CPU 3 012判定控制信號c是否已自高轉變至 低。若CPU 3012判定控制信號c已自高轉變至低,則在 3908申,CPU改變控制信號a或B之狀態,然後三維眼鏡 3000可繼續其正常操作,(例如)如上文參看圖33及圖“所 描述及說明。 現參看圖30a、圖40及圖41,在一例示性實施例中,在 二維眼鏡3000之操作期間,該三維眼鏡實施一操作方法 4000,在忒方法中,將由CPU 3〇12產生之控制信號rc4及 RC5用以在三維眼鏡3000之正常或暖機操作模式期間操作 電荷泵3016,如上文參看圖32、圖33、圖34、圖35及圖% 所描述及說明。在4002中,CPU 3〇12判定一有效同步信號 是否已由信號感測器3014偵測到。若cpu 3〇 12判定一有效 同步信號已由信號感測器3014偵測到,則在4〇〇4中該 CPU產生呈一系列短持續時間脈衝之形式的控制信號 RC4。 在一例示性實施财,控制信敍C4之脈衝控制電晶體 Q1之操作以藉此將電荷轉移至電容器C13,直至該電容器 147661.doc -55- 201112736 上之電位達到一預定位準,詳言之,當控制信號RC4切換 至一低值時,電晶體Q1將電感器L1連接至電池12〇 ^結 果,電感器L1儲存來自電池12〇之能量。接著,當控制信 號R.C4切換至一高值時,儲存於電感器以中之能量被轉移 至電容器C13。因此,控制信號RC4之脈衝不斷地將電荷 轉移至電容器C13,直至電容器C13上之電位達到一預定 位準。在一例示性實施例中,控制信號RC4繼續,直至電 容器C13上之電位達到_12 v。 在一例示性實施例中,在4006中,CPU 3012產生一控制 k號RC5。結果,提供一輸入信號RA3 ,其具有一隨電容 器C13上之電位增加而減小之量值。詳言之,當電容器 C13上之電位接近該預定值時,齊納二極體D7開始導電, 藉此減少輸入控制信號RA3之量值。在4008中,CPU 3012 判疋輸入控制信號RA3之量值是否小於一預定值。若CPU 30 12判定輸入控制信號RA3之量值小於該預定值,則在 4010中,該CPU停止產生控制信號RC4及RC5。結果,電 荷向電容器C13之轉移停止。 在一例示性實施例中,在三維眼鏡3000之操作期間,方 法4000可在方法3900之後實施。 現參看圖30a、圖42及圖43,在一例示性實施例中,在 三維眼鏡3000之操作期間,該三維眼鏡實施一操作方法 4200,在該方法中,將由CPU 3012產生之控制信號a、 B、C、D、E、F、G、RA4、RC4及RC5用以判定當三維眼 鏡3000已切換至一關閉狀況時電池120之操作狀態。在 147661.doc •56· 201112736 4202中CPU 3012判定三維眼鏡3〇〇〇是關閉還是打開。若 CPU 3012判定三維眼鏡3_關閉,則在伽中,該⑽判 疋疋否已k it預疋逾時時段。在—例示性實施例中,該 逾時時段長度為2秒。 • ^CPU 3012判定已經過該預定逾時時段,則在4206中, - ⑽U判定信號感測器3014在-預定先前時間段中所㈣ 到的同步脈衝之數目是否超過一預定值。在一例示性實施 例中>M2G6中’預&先前時間段為自電池之最近替換以 來已經過的時間段。 右CPU 3012判定信號感測器3〇 14在一預定先前時間段中 偵測到的同步脈衝之數目超過一預定值,則在侧中,該 CPU產生作為-&持續時間脈衝的控制信號E,在42 i 〇 中β cpu將作為-短持續時間脈衝的控制信號ra4提供 給信號感測器3〇14,且在4212中,該cpu分別雙態觸發控 制信號A及B之操作狀態。在一例示性實施例中,若信號 感測器3G14在-預定先前時間段中所㈣到的同步脈衝之 數目超過-預定值,則此可指示電池12〇中之剩餘電力為 低。 或者,若CPU 3012判定信號感測器3014在一預定先前時 間段中偵測到的同步脈衝之數目未超過一預定值,則在 4210中,該CPU將作為一短持續時間脈衝的控制信號RA4 提供給信號感測器3014,且在4212中,該CPU分別雙態觸 發控制彳§號A及B之操作狀態。在一例示性實施例中,若 信號感測器3014在一預定先前時間段中偵測到的同步脈衝 147661.doc -57· 201112736 之數目未超過一預定值’則此可指示電池丨2〇中之剩餘電 力不為低。 在一例示性實施例中’在4208及4212中,控制信號八及 B雙態觸發與控制信號E之短持續時間脈衝之組合使三維眼 鏡3000之光閥3002及3004關閉(在控制信號E之短持續時間 脈衝期間除外)。結果,在一例示性實施例中,藉由在一 短時間段中使三維眼鏡之光閥急速打開(flash open),光閥 3002及3004將電池120中剩餘之電力為低的一視覺指示提 供給二維眼鏡3 0 0 0之使用者。在一例示性實施例中,在 42 10中將作為一短持續時間脈衝的控制信號RA4提供給信 號感測器3 0 14允許該信號感測器在所提供的脈衝之持續時 間期間搜尋及偵測同步信號。 在一例示性實施例中,控制信號A&B之雙態觸發(並不 亦提供控制彳§號E之短持續時間脈衝)使三維眼鏡3〇〇〇之光 閥3002及3004保持關閉。結果,在一例示性實施例中藉 由不在一短時間段中使三維眼鏡之光閥急速打開,光閥 3002及3004將電池120中剩餘之電力不為低的一視覺指示 提供給三維眼鏡3000之使用者。 在缺少一時序時脈之實施例中,可根據同步脈衝來量測 時間。CPU 3012可將電池120中之剩餘時間判定為電池可 繼續操作經過的同步脈衝之數目之一因數且接著藉由使光 閥3002及3004急速打開及關閉而將一視覺指示提供給三維 眼鏡3000之使用者。 現參看圖44至圖55,在一例示性實施例中,三維眼鏡 147661.doc -58- 201112736 104、1800及3000中之一或多者包括一框架前部4402、一 鼻樑架4404、右鏡腿4406及左鏡腿4408。在一例示性實施 例中,框架前部4402容納三維眼鏡104、1800及3000中之 一或多者之控制電路及電源供應器(如上所述),且進一步 界定用於固持上述右ISS光閥及左ISS光閥之右透鏡開口 44 10及左透鏡開口 4412。在一些實施例中,框架前部4402 抱合以形成一右翼4402a及一左翼4402b。在一些實施例 中,三維眼鏡104、1800及3000之控制電路的至少部分容 納於翼4402a及4402b之任一者或兩者中。 在一例示性實施例中,右鏡腿4406及左鏡腿4408自框架 前部4402延伸且包括隆脊4406a及4408a,且各自具有一蛇 形形狀,鏡腿之遠端與鏡腿之至框架前部之各別連接處相 比靠得較近。以此方式,當一使用者佩戴三維眼鏡104、 1800及3000時,鏡腿4406及4408之末端緊靠使用者之頭部 且固定就位。在一些實施例中,鏡腿4406及4408之彈簣率 由雙重彎曲來增強,而隆脊4406a及4408a的間距及深度控 制該彈簧率。如圖55所示,一些實施例不使用雙彎曲形 狀,而是使用一簡單的曲線型鏡腿4406及4408。 現參看圖48至圖55,在一例示性實施例中,三維眼鏡 104、1800及3000中之一或多者之控制電路容納於框架前 部(其包括右翼4402a)中,且電池容納於右翼4402a中。此 外,在一例示性實施例中,經由一在右翼4402a之内側上 的開口提供對三維眼鏡3000之電池120之取用,該開口由 一蓋4414封閉,該蓋4414包括用於緊密配合及密封式嚙合 147661.doc -59- 201112736 右翼4402a之一 〇型環密封件4416。 參看圖49至圖55,在-些實施例中,電池位於一由蓋 4414及蓋内部4415形成之電池蓋總成中。電池蓋4414可藉 由(例如)超音波熔接而附接至電池蓋内部4415。觸點私口 可自蓋内部441 5伸出以將電自電池i2()傳導至(例如)位於右 翼44〇2a内之觸點。 蓋内部4415在該蓋之一内部部分上可具有周向間隔開之 徑向楔緊το件(keying element)4418。蓋4414可具有定位於 該蓋之一外部表面上的周向間隔開之凹陷442〇〇 在一例不性實施例中,如圖49至圖5丨中所說明可使用 一鑰廷(key)4422操控蓋4414,該鑰匙包括用於緊密配合及 嚙合該蓋之凹陷4420的複數個突起4424。以此方式,可將 蓋4414相對於三維眼鏡1〇4、18〇〇及3〇〇〇之右翼44〇2&自一 關閉(或鎖定)位置旋轉至一打開(或解鎖)位置。因此,可 藉由使用鑰匙4422將蓋44 14與三維眼鏡3000之右翼4402a 0齒合而相對於環境封閉三維眼鏡1〇4、1800及3000之控制 電路及電池。參看圖5 5,在另一實施例中,可使用鍮匙 4426 〇 現參看圖56 ’ 一信號感測器5600之一例示性實施例包括 可操作地耦接至一解碼器5604之一窄帶通濾波器5602。信 號感測器5600又可操作地耦接至一 CPU 5604。窄帶通濾、波 器5602可為一類比及/或數位帶通濾波器,其可具有適於 允许一同步串列資料信號通過而渡出及移除頻帶外雜訊之 通帶。 147661.doc •60· 201112736 在-例示性實施例中,CPU 5604可(例如)為三維眼鏡 HH、1800或 3000之 CPU 114、cpu 181〇 或 cpu 3〇12。 在一例示性實施例中,在操作期間,信號感測器5_自 一信號傳輸器5606接收—信號。在一例示性實施例中,信 號傳輸器5606可(例如)為信號傳輸器u〇。 α 在-例示性實施例中’由信號傳輪器5_輸至信號感 測器侧之信號57〇〇包括—或多個資料位元5观,其各自 由-時脈脈衝5 7 0 4居先。在一例示性實施例中,在信號感 測器5600之操作期間,因為資料之每一位元遍由一時脈 脈衝5704居先’所以信號感測器之解碼㈣⑽可容易地解 碼長資料位元字組。因此,信號感測器5600能夠容易地接 收及解碼來自信號傳輸器56〇6之同步串列資料傳輸。與之 相比,為非同步資料傳輸之長資料位元字組通常難以以一 有效及/或無錯方式傳輸及解碼。因&,信號感測器5_ 提供用於接收資料傳輸之―改良式系統。此外,在信號感 、_】器560G之操作中使用同步串列資料傳輸確保可容易地解 碼長資料位元字組。 現參看圖58 ’ —種用於調節❹於三維眼鏡3_之-同 步信號之系統5800之一你丨-一 < J不性貫施例包括用於感測一同步 信號自信號傳輸器UG之傳輸的一信號感測器5802。在一 例示性實施例中,作 唬感測器5802經調適以感測該同步传 號自k 5虎傳輸器11 〇之值私 傳輪,该同步信號具有主要在電磁 波SW之可見光部分中八θ „ , 刀Τ的刀®。在若干替代實施例中,信號 感測器5802可妞咿镝w 、、二凋適以感測該同步信號自信號傳輸器110 147661.doc • 61 - 201112736 之傳輸,該同步信號具有可能並非主要在電磁波譜之可見 光部分中的分量,諸如紅外線信號。 一正規器5804可操作地耦接至信號感測器58〇2及三維眼 鏡3000之CPU 3012,該正規器用於正規化該信號感測器所 偵測到的同步信號及將該正規化同步信號傳輸至該CPU。 在一例示性實施例中,正規器5804可使用類比及/或數 位電路來實施且可經調適以正規化該偵測到的同步信號之 振幅及/或形狀。以此方式,在一例示性實施例中,在三 維眼鏡3000之操作期間可適應信號感測器58〇2所偵測到的 同步#號之振幅及/或形狀之大幅變化。舉例而言,若信 號傳輸裔11 0與信號感測器5 802之間的間距在正常使用中 可能大幅變化,則三維眼鏡3000之信號感測器所偵測到的 同步信號之振幅可大幅變化。因此’用於正規化信號感測 器5802所偵測到的同步信號之振幅及/或形狀之一構件將 增強三維眼鏡3000之操作。 用於調節一輸入信號以正規化該輸入信號之振幅及/或 形狀之系統之貫例揭示於(例如)以下美國專利中:第 3,124,797 號、第 3,488,604 號、第 3,652,944 號、第 3,927,663 號、第 4,270,223 號、第 6,081,565 號及第 6,272,103號,該等專利之揭示内容以引用的方式併入本文 中。此等美國專利之揭示内容及/或教示可全部或部分地 組合以實施正規器5804之全部或一部分。在一例示性實施 例中,正規器5804之功能性之全部或一部分可由cpu 3〇 i 2 實施。 147661.doc -62· 201112736 在一例示性實施例中,正規器5804可另外地或替代性地 自仏號感測器5802接收傳入同步信號,且調整該傳入同步 信號之放大及/或使該傳入同步信號之峰間振幅穩定以產 生一隨後自該正規器傳輸至CPU 3012之輸出信號。在一替 代實施例中,CPU 114及/或CPU 1810可取代CPU 3〇12, 或除€卩113012之外,還可使用(:]?1;114及/或(:1>1;181〇。 現參看圖59,在-例示性實施例中,正規器58〇4包括一 增益控制元件5806、一放大器及脈衝調節元件581〇及一同 步振幅及形狀處理單元5812。 在一例示性實施例中,增益控制元件58〇6接收並處理由 L號感測益5802提供的同步輸入信號及由同步振幅及形狀 處理單元5812提供的增益調整信號,以產生一衰減輸出信 號以供放大器及脈衝調節元件58丨〇處理。 在一例示性實施例中,放大器及脈衝調節元件581〇處理 由增益控制元件5806輸出的信號以產生一正規化同步信號 以傳輸至CPU 3012。 在一例示性實施例中,用於調節同步信號之系統58〇〇可 用於二維眼鏡104、1800或3000中。 現參看圖59a至圖59d,在系統5800之一例示性實驗實施 !中 此里主要在可見光5普内之電磁同步信號由信號感 測器5802感測及/或被處理以產生一信號5902以傳輸至增 扭控制兀件5806。在一例示性實驗實施例中,同步信號 5902之峰間振幅在約! mVi i v之範圍中。在一例示性實 驗實施例中,信號5902接著由增益控制元件5806處理以產 147661.doc -63· 201112736 生一信號5 9 0 4以傳輸至放大器及脈衝調節元件5 8丨〇 ^在— 例示性實驗實施例中,信號5904之振幅高達約i mV。在— 例示性實驗實施例中,信號5904接著由放大器及脈衝調節 兀件581〇處理以產生一信號59〇6以傳輪至cpu 3〇12。在— 例不性實施例中,信號5906之峰間振幅高達約3 v。在— 例不性實驗實施例中,信號5906被回饋至同步振幅及形狀 處理單元5812以產生一回饋控制信號59〇8以傳輸至增益控 制το件5806。在一例示性實驗實施例中,回饋控制信號 5908為一緩慢變化之信號或dc信號。 因此,系統S800之例示性實驗實施例表明,該系統可調 整感測到的同步信號之放大且使感測到的同步信號之峰間 振幅穩定。參看圖58、圖59、圖59a、圖59b、圖59c及圖 59d所說明及描述的系統58〇〇之操作之例示性實驗結果是 預期之外的。 現參看圖60、圖60a及圖60b,三維眼鏡6〇〇〇之一例示性Pressure. In detail, under the control of the control signals A, b, c, D, E, F and G of the CPU 3012, the digital control analog switches U]L, U6 & U4 can provide: u 14766I.doc • 44· 201112736 left Positive or negative 15 volts on one or both of the light valve 3002 and the right light valve 3004; 2) positive or negative 2 volts on one or both of the left and right light valves, 3) left Positive or negative 3 volts on one or both of the light valve and the right light valve; and 4) providing volts (ie, neutral) on either or both of the left and right shutters ). In an exemplary embodiment, as illustrated in FIG. 32, the operation of the switches that generate the output signals X and γ applied to the left and right shutters in the analog control analog switches U1 and U6, respectively, is controlled. 'Control signal A controls the operation of left light valve 3002 and control signal B controls the operation of right light valve 3004. In an exemplary embodiment, 'the digital control is connected to the control inputs A and B of each of the switches m and U6' such that switching between the two pairs of input signals occurs simultaneously and the selected input is forwarded to the left The terminals of the light valve 3〇〇2 and the right light valve 3004. In an exemplary embodiment, control signal A from cpu 3012 controls the first two switches in digital control analog switch ui, and control signal b from the CPU controls the first two switches in digital control analog switch U6. In an exemplary embodiment, as illustrated in Figure 32, one of the terminals of each of the left shutter 3002 and the right shutter 3004 is always connected to 3 γ. Therefore, in an exemplary embodiment, under the control of the control signals A, B, C, D, E, F, and G of the CPU 3012, the digital control analog switches U1, U6, and U4 are operated to set _12 v, 3 V, 1 V or 0 V is sent to the left light valve 3002 and the other terminals of the right light valve 3004. As a result, in an exemplary embodiment, under the control of the control signals a, B, c, D, E, F, and G of the CPU 3 012, the digital control analog switches U1, U6, and U4 are operated to the left light valve 3002. 147661.doc •45· 201112736 and the right light valve 3004 terminals produce a potential difference of 15 v, 〇v, 2 ¥ or 3 v. In an exemplary embodiment, the second switch of analog control switch U6 is not used and all terminals of the third switch are grounded. In an exemplary embodiment, the third switch of the analog switch m is digitally controlled to save power. In particular, in an exemplary embodiment, as illustrated in Figure 32, control signal C controls the operation of the digital control analog switch m to generate a switch for output signal z. As a result, when the control signal c is a digital high value, the input signal INH of the digital control analog switch U4 is also a high value, thereby causing all the output channels of the digital control analog switch U4 to be turned off. As a result, when the control signal C is a digital value, the left light valve 3〇〇2 and the right light valve 3004 are short-circuited, thereby allowing half of the charge to be transferred between the light valves, thereby saving power and extending the life of the battery 120. . In an exemplary embodiment, the left light valve 3002 and the right light valve 3004 are shorted by using the control signal C, and a large amount of charge collected on one of the light valves in the closed state can be used to just another light valve. The other light valve portion is electrically charged before being turned to the off state, thereby saving the amount of charge that would otherwise have to be completely provided by the battery 120. In an exemplary embodiment, when the control signal C generated by the CPU 301 is a digital high value, for example, a negatively charged panel of the left light valve 3002 that is in the off state and has a potential difference of 15 V thereon. (-12 V) is connected to the plate with more negative power of the right light valve 3004 that was then turned on and still charged to +1 V with a potential difference of 2 V. In an exemplary embodiment, the positively charged plates on both of the light valves 3002 and 3004 will be charged to +3 volts. In an exemplary embodiment, the control signal generated by the CPU 3012 is a short period of time immediately before the end of the closed state of the left light valve 3002 and just before the closed state of the right light valve. Transfer to a high number. When the control generated by cpu 3〇12 is a digital value, the digital control analog switch U4 is also a digital high value. As a result, in an exemplary embodiment, all of the output channels X, γ & U of U4 are in a closed state. This allows the charge stored on the plates of the left and right light valves 3002 and 3004 to be dispersed between the light valves such that the potential difference across the two light valves is about /27/2 v or 8.5 volts. Since one terminal of the light valves 3002 and 3004 is always connected to 3 V, the negative terminals of the light valves 3002 and 3004 are then at _55 ν. In an exemplary embodiment, the control signal c generated by the CPU 3012 then becomes a digital low value' and thereby the negative terminals of the light valves 3002 and 3004 are disconnected from each other. Next, in an exemplary embodiment, the closed state of the right shutter 3004 begins, and by operating the digital control analog switch U4, the battery 12 further charges the negative of the right shutter to -12 volts. The results ' in an exemplary experimental embodiment' achieved approximately 40% power savings during the normal execution mode of operation of the 3D glasses 3000 (as described below with reference to Method 3300). In an exemplary embodiment, the control signal C generated by the CPU 310 is provided as a short transition from high to low when the control signal A or B generated by the CPU transitions from high to low bite to low. The duration pulse is used to start the next left light valve open / right light valve closed or right light valve open / left light read off. Referring now to Figures 33 and 34, in an exemplary embodiment, during operation of the 3D glasses 3000, the 3D glasses perform a normal execution mode of operation 147661.doc • 47-201112736 3300, in which the CPU 3012 will be The generated control signals a, B ' C, D, E, F, and G are used to control the operation of the left light valve controller 3006 and the right light valve controller 3008 and the central light valve controller 3010, thereby relying on the signal sensor The type of synchronization signal detected by 3014 controls the operation of left light valve 3002 and right light valve 3004. In detail, in 3302, if the CPU 3012 determines that the signal sensor 3014 has received a synchronization signal 'in 3304, it uses the control signals A, B, C, D, E, F, and G generated by the CPU 3012 to control. Left light valve controller 3006 and right light valve controller 3008 and central light valve controller 3〇1〇 operate to transfer charge between left light valve 3002 and right light valve 3004, as described above with reference to FIG. In an exemplary embodiment, in 3304, the control signal C generated by the CPU 3012 is set to a high digit value in about 0.2 milliseconds to thereby short the terminals of the left and right shutters 3002, 3004. And thus transfer charge between the left and right shutters. In an exemplary embodiment, in 33〇4, the control signal 产生 generated by the CPU 3012 is set to a high digit value in about 0.2 milliseconds to thereby cause the left shutter 3〇〇2 and the right shutter 3 〇〇4 is more short-circuited with a negative terminal and therefore transfers between the left and right light valves. Therefore, the length 1 is controlled by 彳§ C as a short duration pulse, which is controlled by the nickname A. Or B shifts from high to low or from low to high or from here to the other. As a result, power savings are provided during operation of the 3D glasses 3000 during a cycle that alternates between opening the left shutter/closing the right shutter and closing the left shutter/opening the right shutter. In 3306, the CPU 3012 then determines the type of 147661.doc -48-201112736 that is the received synchronization signal. In an exemplary embodiment, a synchronization signal comprising two pulses indicates that the left light valve 3002 should be open and the right light valve 3004 should be closed, and a synchronization signal comprising three pulses indicates that the right light valve should be open and the left The light valve should be closed. In an exemplary embodiment, the alternate opening and closing of the left light valve 3 0 0 2 and the right light valve 3 0 0 4 can be controlled using other different numbers and formats of synchronization h. In 3306, if CPU 3 012 determines that the received synchronization signal indicates that left light valve 3002 should be open and right light valve 30〇4 should be closed, then in 33〇8, the cPU will control signals A, B, C, D , E, F, and G are transmitted to the left light valve controller 3006 and the right light valve controller 3008 and the common light valve controller 3〇1〇 to apply a high voltage on the right light valve 3004 and will be no voltage followed by a A small stagnation electric waste is applied to the left light valve 3002. In an exemplary embodiment, the amount of high voltage applied to the right shutter 3004 in 3308 is 15 volts. In an exemplary embodiment, the magnitude of the stop voltage applied to the left shutter 3002 in 3308 is 2 volts. In an exemplary embodiment, in 3308, the stop voltage is applied by controlling the operational state of the control signal D to be low and controlling the operational state of the control signal ρ (which may be low or high) to be high. To the left light valve 3 002. In an exemplary embodiment, the application of the stop voltage in 33〇8 to the left shutter 3002 is delayed for a predetermined period of time to allow the molecules within the liquid crystal of the left shutter to rotate faster. Subsequent application of the stop voltage after the expiration of the predetermined period of time will prevent the molecules in the liquid crystal in the left shutter 3〇〇2 from rotating excessively during the opening of the left shutter. In an exemplary embodiment, the application of the stop voltage to the left light valve 3〇〇2 is delayed by about 1 millisecond in 33〇8. Or 'in 3 306' if the CPU 3012 determines that the received sync signal indicates that the left shutter 3002 should be closed and the right shutter 3004 should be open, then in 33 10, 147661.doc • 49- 201112736 the CPU will control the signal A, B, C, D, E, F, and G are transmitted to the left optical controller 3006 and the right light valve controller 3008 and the common light valve controller 3010 to apply a high voltage to the left light valve 3002 and will be absent The voltage is then applied to a right stop valve 3 004. In an exemplary embodiment, the amount of high voltage applied to left light valve 3002 in 3310 is 15 volts. In an exemplary embodiment, the magnitude of the anti-collision voltage applied to the right shutter 30〇4 in 33 10 is 2 volts. In an exemplary embodiment, the stop voltage is applied to the right shutter 3004 by controlling the control signal F high and controlling the control signal G low in 3 3 1 〇. In an exemplary embodiment, the application of the stop voltage to the right shutter 3004 is delayed by a predetermined time in 3310 to allow the molecules in the liquid crystal of the right shutter to rotate faster. Subsequent application of the stop voltage after the expiration of the predetermined period of time will prevent the molecules in the liquid crystal in the right shutter 3 004 from rotating too far during the opening of the right shutter. In an exemplary embodiment, the application of the stop voltage to the right shutter 3〇〇4 is delayed by approximately 1 millisecond in 33 10 . In an exemplary embodiment, during the method 33, during the subsequent iterations of steps 33A8 and 3310, the voltages applied to the left and right shutters 3, 2, 3004 are alternately positive and negative, To prevent damage to the liquid crystal unit of the left and right light valves. Thus, method 3300 provides a normal or operational mode of operation for 3D glasses 3000. Referring now to Figures 35 and 3, in an exemplary embodiment, during operation of the 3D glasses 3000, the 3D glasses implement a warm-up operation method 35〇〇' in the S-H method, which will be generated by the CPU 3 012 Control signals A, B, c, 147661.doc -50· 201112736 D, E, F and G are used to control the operation of the left light valve controller 3006 and the right light valve controller 3008 and the central light valve controller 3010, thereby The operation of the left aperture 3002 and the right light valve 3004 is also controlled. In 3502, the cpu 3012 of the 3D glasses checks the power of the 3D glasses. In an exemplary embodiment, the 3D glasses 3000 can be powered up by a user activating a power on switch, by an automatic wake-up sequence, and/or by sensing a valid synchronization signal by the signal detector 3 014. In the case where the 3D glasses 3 〇 〇 are energized, the 3D glasses light valves 3002 and 3004 may, for example, require a warm-up sequence. The liquid crystal cells of the light valves 3〇〇2 and 30〇4 which do not have electric power for a period of time may be in an ambiguous state. In 3502, if the CPU 3012 of the 3D glasses 3 detects the energization of the 3D eyeglasses, in 3504, the CPU applies an alternating voltage signal to the left light valve 3002 and the right light valve 3004, respectively. In an exemplary embodiment, the voltage applied to the left and right shutters 3002, 3004 alternates between positive and negative peaks to avoid ionization problems in the liquid crystal cells of the light valve. In an exemplary embodiment, the voltage signals applied to left and right shutters 300, 300, 3004 may be at least partially out of phase with one another. In an exemplary embodiment, one or both of the voltage signals applied to the left shutter 3002 and the right shutter 3004 may alternate between a zero voltage and a peak voltage. In an exemplary embodiment, other forms of voltage signals can be applied to the left and right shutters 3, 2, 3004 such that the liquid crystal cells of the shutter are in an operational state. In an exemplary embodiment, applying a voltage signal to left light valve 3002 and right light valve 3004 causes the light valves to open and close simultaneously or at different times. During the application of the voltage signal to the left light valve 3002 and the right light valve 3004, in 147661.doc -51 - 201112736 3506, the CPU 3012 checks for a warm-up timeout. When a warm-up timeout is detected at 3012, then in 3508, the CPU will stop applying a voltage signal to the left and right shutters 3002, 3004. In an exemplary embodiment, in 3504 and 3506, CPU 3012 applies a voltage signal to left light valve 3 0 0 2 and right light valve 3 during a period of time sufficient to actuate the liquid crystal cells of the light valves. 0 0 4. In an exemplary embodiment, CPU 30 12 applies a voltage signal to left light valve 3〇〇2 and right light valve 3004 during a two second period. In an exemplary embodiment, the maximum magnitude of the voltage signal applied to the left and right shutters 3, 2, 3004 can be 15 volts. In an exemplary embodiment, the timeout period in 3506 can be two seconds. In an exemplary embodiment, the maximum straight value of the voltage signal applied to the left and right shutters 3002, 3, 4, 4 may be greater or less than 15 volts, and the timeout period may be longer or shorter. In an exemplary embodiment, during method 35, cpU3〇i2 can open and close left shutter 3〇〇2 and right shutter 3_ at a different rate than can be used to view the movie. In an exemplary embodiment, at 35, the voltage signals applied to the left and right shutters 3002, 3004 are not alternated and monolithic during the warm-up period, and thus the liquid crystal cell of the material (four) is warm throughout It can remain opaque during the machine time. In an exemplary embodiment, the warm-up method 350G may occur in the presence or absence of a synchronization signal. Therefore, the method 3500 provides an exemplary implementation of the warm-up mode for the 3D glasses 3_. After the warm-up method 35 (10) is implemented, the operation mode is performed, the operation mode is performed, and then the method 330 is implemented ( ^Nass for nuclear two-dimensional glasses Referring now to Figures 37 and 38, in the L embodiment, during operation of 147661.doc -52 - 201112736 3000, the 3D glasses implement an operational method 3700 in which The control signals A, B, C, D, E, F, and G generated by the CPU 3012 are used to control the operation of the left light valve controller 3006 and the right light valve controller 3〇〇8 and the common light valve controller 310. And thereby controlling the operation of the left light valve 3〇〇2 and the right light valve 3〇〇4 according to the synchronization signal received by the signal sensor 3014. In 3702, the 'CPU 3012 checks to view the signal sensor 3014. Whether the detected synchronization signal is valid or invalid. In 3702, if the CPU 3012 determines that the synchronization signal is invalid, then in 3704, the CPU applies a voltage signal to the left light valve 3002 and the right light reading 3004 of the two-dimensional glasses 3000. In the exemplary embodiment, 'applied to the left in 3704 The voltages of the light valve 3002 and the right light valve 3004 alternate between positive and negative peaks to avoid ionization problems in the liquid crystal cell of the light valve. In an exemplary embodiment, applied to the left light valve 3 002 in 3704 And the voltage of the right shutter 3004 alternates between a positive peak and a negative peak to provide a square wave signal having a frequency of 60 Hz. In an exemplary embodiment, the square wave 彳§ is at +3 V and -3 V. Alternating between. In an exemplary embodiment, one or both of the voltage signals applied to left and right shutters 3002, 3004 in 3704 may alternate between a zero voltage and a peak voltage. In an exemplary embodiment, in 3704, other forms (including other frequencies) of voltage § § can be applied to the left and right shutters 3 〇〇 2 and 3 004 to maintain the liquid crystal Opening 'Therefore, the user of the 3D glasses 3 can normally view through the light valve. In an exemplary embodiment, a voltage signal is applied to the left light valve 3002 and the right light valve 3004 in 37〇4 to make the light The valve opens. A voltage signal is applied to the left light valve 3002 and the right light valve 3〇〇4 in 14704. Between 7661.doc -53- 201112736, in 3706, CPU 3012 checks for a clear timeout. In 37〇6, if CPU 3012 detects a clear timeout, then at 37〇8, 2 will stop applying voltage. Signals to light valves 3〇〇2 and 3〇〇4, which may then cause the 3D glasses 3_ to be in a -off mode of operation. In an exemplary embodiment, the duration of the clearing may be as long as, for example, approximately 4 hours. Thus, in an exemplary embodiment, if the 3D glasses 3 do not detect a valid sync signal, the 3D glasses can be moved to a transparent mode of operation and method 3700 can be implemented. In the transparent mode of operation, in the exemplary embodiment, the light valves 3〇〇2 and 3〇〇4 of the 3D glasses 3000 remain open so that the viewer can view normally through the light valve of the 3D glasses. In an exemplary embodiment, a positive and negative alternating constant voltage is applied to maintain the liquid crystal cells of the shutters 3002 and 3004 of the 3D glasses 3 in a transparent state. The set voltage can be, for example, 2 volts, but the constant voltage can be any other voltage suitable for maintaining the 3D glasses 3000 in an exemplary embodiment of a moderately transparent light valve. In one (4), 2 and 3_ can remain transparent until the three-dimensional eye (four) is sufficient to verify - encrypt the signal. In an exemplary embodiment, the user of the 3D glasses can be allowed to view the light valves 3002 and 3004 of the 3D glasses 3000 alternately at a rate that is normally viewed. Thus, method 3700 provides a method of clearing the operation of the 3D glasses 3 and thereby providing a transparent mode of operation. Referring now to Figures 39 and @41, in an exemplary embodiment, during operation of the 3D glasses 3, the 3D glasses are implemented - the method side, in which the control signals A, B generated by the CPU 3012, c, D, EF, and G are used to transfer charge between light valves 3002 and 3004. In 39〇2 147661.doc -54- 201112736, the CPU 301 2 determines whether a valid sync signal has been detected by the signal sensor 3014. If CPlJ 3012 determines that an active synchronization signal has been detected by signal sensor 3014, then in 3904, the CPU generates control signal C in the form of a continuation (in an exemplary embodiment) of about 2 〇〇μ3. Short duration pulse. In an exemplary embodiment, during method 39A, the transfer of charge between light valves 3002 and 3004 occurs during a short pulse of control signal c' substantially as described above with reference to Figures 33 and 34. In 3 906 'CPU 3 012 determines if the control signal c has transitioned from high to low. If the CPU 3012 determines that the control signal c has transitioned from high to low, then at 3908, the CPU changes the state of the control signal a or B, and then the 3D glasses 3000 can continue its normal operation, for example, as described above with reference to FIG. 33 and FIG. Illustrated and illustrated. Referring now to Figures 30a, 40, and 41, in an exemplary embodiment, during operation of the two-dimensional glasses 3000, the three-dimensional glasses implement an operational method 4000 in which the CPU 3 The control signals rc4 and RC5 generated by 〇12 are used to operate the charge pump 3016 during normal or warm-up mode of operation of the three-dimensional glasses 3000, as described and illustrated above with reference to Figures 32, 33, 34, 35 and FIG. In 4002, CPU 3〇12 determines whether an active synchronization signal has been detected by signal sensor 3014. If cpu 3〇12 determines that an active synchronization signal has been detected by signal sensor 3014, then at 4〇 The CPU generates a control signal RC4 in the form of a series of short duration pulses. In an exemplary implementation, the control of the pulse C4 controls the operation of the transistor Q1 to thereby transfer charge to the capacitor C13 until The capacitor 147 The potential on 661.doc -55- 201112736 reaches a predetermined level. In detail, when the control signal RC4 is switched to a low value, the transistor Q1 connects the inductor L1 to the battery 12〇, and the inductor L1 stores The energy from the battery 12. Then, when the control signal R.C4 is switched to a high value, the energy stored in the inductor is transferred to the capacitor C13. Therefore, the pulse of the control signal RC4 continuously transfers the charge to the capacitor. C13, until the potential on capacitor C13 reaches a predetermined level. In an exemplary embodiment, control signal RC4 continues until the potential on capacitor C13 reaches _12v. In an exemplary embodiment, in 4006, The CPU 3012 generates a control k number RC5. As a result, an input signal RA3 is provided which has a magnitude which decreases as the potential on the capacitor C13 increases. In detail, when the potential on the capacitor C13 approaches the predetermined value, The Zener diode D7 starts to conduct electricity, thereby reducing the magnitude of the input control signal RA3. In 4008, the CPU 3012 determines whether the magnitude of the input control signal RA3 is less than a predetermined value. If the CPU 30 12 determines the input control The magnitude of the number RA3 is less than the predetermined value, and in 4010, the CPU stops generating the control signals RC4 and RC5. As a result, the transfer of charge to the capacitor C13 is stopped. In an exemplary embodiment, during operation of the 3D glasses 3000 Method 4000 can be implemented after method 3900. Referring now to Figures 30a, 42 and 43, in an exemplary embodiment, during operation of 3D glasses 3000, the 3D glasses implement an operational method 4200 in which The control signals a, B, C, D, E, F, G, RA4, RC4, and RC5 generated by the CPU 3012 are used to determine the operational state of the battery 120 when the 3D glasses 3000 have been switched to a closed condition. In 147661.doc • 56· 201112736 4202, the CPU 3012 determines whether the 3D glasses 3 is closed or open. If the CPU 3012 determines that the 3D glasses 3_ is off, then in the gamma, the (10) judges whether or not it has prepaid the timeout period. In an exemplary embodiment, the timeout period is 2 seconds in length. • The CPU 3012 determines that the predetermined timeout period has elapsed, then in 4206, -(10)U determines whether the number of synchronization pulses to which the signal sensor 3014 is in the predetermined previous time period exceeds a predetermined value. In an exemplary embodiment > M2G6 'pre- & previous time period is the time period that has elapsed since the most recent replacement of the battery. The right CPU 3012 determines that the number of synchronization pulses detected by the signal sensor 3〇14 in a predetermined previous period exceeds a predetermined value, and in the side, the CPU generates a control signal E as a -& duration pulse. At 42 i β, the β cpu is supplied to the signal sensor 3〇14 as a control signal ra4 of the short duration pulse, and in 4212, the cpu respectively triggers the operational states of the control signals A and B. In an exemplary embodiment, if the number of sync pulses to which the signal sensor 3G14 has reached (-) in the predetermined previous time period exceeds a predetermined value, this may indicate that the remaining power in the battery 12 is low. Alternatively, if the CPU 3012 determines that the number of synchronization pulses detected by the signal sensor 3014 in a predetermined previous time period does not exceed a predetermined value, then in 4210, the CPU will act as a short duration pulse control signal RA4. The signal sensor 3014 is provided, and in 4212, the CPU respectively triggers the operational states of the control signals § § A and B. In an exemplary embodiment, if the number of synchronization pulses 147661.doc -57·201112736 detected by the signal sensor 3014 in a predetermined previous time period does not exceed a predetermined value', then the battery 指示2〇 may be indicated. The remaining power in the middle is not low. In an exemplary embodiment, 'in 4208 and 4212, the combination of the control signal eight and B two-state triggers and the short duration pulse of the control signal E causes the light valves 3002 and 3004 of the three-dimensional glasses 3000 to be turned off (at the control signal E) Except for short duration pulse periods). As a result, in an exemplary embodiment, the light valves 3002 and 3004 provide a visual indication that the remaining power in the battery 120 is low by flashing the shutter of the three-dimensional glasses for a short period of time. For users of 2D glasses 30000. In an exemplary embodiment, the control signal RA4, which is a short duration pulse, is provided to the signal sensor 310 in 42 10 allowing the signal sensor to search and detect during the duration of the provided pulse. Measure the sync signal. In an exemplary embodiment, the two-state triggering of control signals A&B (which also provides a short duration pulse of control 彳§ E) keeps shutters 3002 and 3004 of the 3D glasses 3 closed. As a result, in an exemplary embodiment, the light valves 3002 and 3004 provide a visual indication that the remaining power in the battery 120 is not low to the three-dimensional glasses 3000 by not rapidly opening the light valves of the three-dimensional glasses in a short period of time. User. In an embodiment lacking a timing clock, the time can be measured based on the sync pulse. The CPU 3012 can determine the remaining time in the battery 120 as one of the number of synchronization pulses that the battery can continue to operate and then provide a visual indication to the 3D glasses 3000 by causing the light valves 3002 and 3004 to rapidly open and close. user. Referring now to FIGS. 44-55, in an exemplary embodiment, one or more of the three-dimensional glasses 147661.doc-58-201112736 104, 1800, and 3000 include a frame front portion 4402, a nose bridge 4404, and a right mirror. Leg 4406 and left temple 4408. In an exemplary embodiment, frame front portion 4402 houses control circuitry and power supply (as described above) of one or more of three-dimensional glasses 104, 1800, and 3000, and is further defined for holding the right ISS light valve described above And the right lens opening 44 10 and the left lens opening 4412 of the left ISS light valve. In some embodiments, the frame front portion 4402 is engaged to form a right wing 4402a and a left wing 4402b. In some embodiments, at least a portion of the control circuitry of the 3D glasses 104, 1800, and 3000 is received in either or both of the wings 4402a and 4402b. In an exemplary embodiment, right temple 4406 and left temple 4408 extend from frame front portion 4402 and include ridges 4406a and 4408a, and each have a serpentine shape with the distal end of the temple and the temple to frame The front joints are closer together. In this manner, when a user wears the three-dimensional glasses 104, 1800, and 3000, the ends of the temples 4406 and 4408 abut the user's head and are fixed in place. In some embodiments, the spring rates of the temples 4406 and 4408 are enhanced by double bending, while the pitch and depth of the ridges 4406a and 4408a control the spring rate. As shown in Fig. 55, some embodiments do not use a double curved shape, but instead use a simple curved type of temples 4406 and 4408. Referring now to Figures 48-55, in an exemplary embodiment, control circuitry for one or more of the three-dimensional glasses 104, 1800, and 3000 is housed in the front of the frame (which includes the right wing 4402a) and the battery is housed in the right wing. In 4402a. Moreover, in an exemplary embodiment, access to the battery 120 of the 3D glasses 3000 is provided via an opening in the inner side of the right wing 4402a, the opening being closed by a cover 4414 that includes a tight fit and seal Engagement 147661.doc -59- 201112736 One of the right wing 4402a 〇 type ring seal 4416. Referring to Figures 49-55, in some embodiments, the battery is located in a battery cover assembly formed by a cover 4414 and a cover interior 4415. The battery cover 4414 can be attached to the battery cover interior 4415 by, for example, ultrasonic welding. The contact private port can extend from the cover interior 441 5 to conduct electricity from the battery i2() to, for example, a contact located within the right wing 44〇2a. The lid interior 4415 can have a circumferentially spaced apart radial wedging key 4418 on an interior portion of the lid. The cover 4414 can have a circumferentially spaced apart recess 442 positioned on an outer surface of the cover. In one example, a key 4422 can be used as illustrated in Figures 49-5. The cover 4414 is manipulated and includes a plurality of protrusions 4424 for tightly fitting and engaging the recesses 4420 of the cover. In this manner, the cover 4414 can be rotated from a closed (or locked) position to an open (or unlocked) position relative to the 3D glasses 1〇4, 18〇〇 and 3〇〇〇 right wing 44〇2& Therefore, the control circuit and the battery of the three-dimensional glasses 1〇4, 1800, and 3000 can be closed with respect to the environment by using the key 4422 to engage the cover 44 14 with the right wing 4402a 0 of the 3D glasses 3000. Referring to FIG. 5 5, in another embodiment, a key 4426 can be used. Referring now to FIG. 56, an exemplary embodiment of a signal sensor 5600 includes a narrow bandpass operatively coupled to a decoder 5604. Filter 5602. Signal sensor 5600 is in turn operatively coupled to a CPU 5604. The narrowband pass filter, the waver 5602 can be an analog and/or digital bandpass filter that can have a passband adapted to allow a synchronous serial data signal to pass through and remove out-of-band noise. 147661.doc • 60· 201112736 In an exemplary embodiment, CPU 5604 can be, for example, CPU 114, cpu 181〇 or cpu 3〇12 of 3D glasses HH, 1800 or 3000. In an exemplary embodiment, signal sensor 5_ receives a signal from a signal transmitter 5606 during operation. In an exemplary embodiment, signal transmitter 5606 can be, for example, a signal transmitter u.在 In the exemplary embodiment, the signal 57 输 from the signal transmitter 5_ to the signal sensor side includes - or a plurality of data bits 5, each of which consists of - clock pulse 5 7 0 4 First. In an exemplary embodiment, during operation of signal sensor 5600, because each bit of data is preceded by a clock pulse 5704', decoding of the signal sensor (4) (10) can easily decode long data bits. Word group. Therefore, the signal sensor 5600 can easily receive and decode the synchronous serial data transmission from the signal transmitter 56〇6. In contrast, long data bit blocks for asynchronous data transmission are often difficult to transmit and decode in an efficient and/or error-free manner. Because &, the signal sensor 5_ provides an improved system for receiving data transmission. In addition, the use of synchronous serial data transmission in the operation of signal sense 560G ensures that long data bit blocks can be easily decoded. Referring now to Figure 58', one of the systems 5800 for adjusting the sync signal of the 3D glasses 3_ < The J-inhibition embodiment includes a signal sensor 5802 for sensing the transmission of a synchronization signal from the signal transmitter UG. In an exemplary embodiment, the sensor 5802 is adapted to sense the value of the synchronization signal from the k 5 transmitter 11 〇 private transmission wheel, the synchronization signal having a focus in the visible portion of the electromagnetic wave SW θ „ , Knife of the Knife®. In several alternative embodiments, the signal sensor 5802 can be used to sense the synchronization signal from the signal transmitter 110 147661.doc • 61 - 201112736 The synchronization signal has a component that may not be primarily in the visible portion of the electromagnetic spectrum, such as an infrared signal. A normalizer 5804 is operatively coupled to the signal sensor 58〇2 and the CPU 3012 of the 3D glasses 3000, the regular The device is configured to normalize the synchronization signal detected by the signal sensor and transmit the normalized synchronization signal to the CPU. In an exemplary embodiment, the normalizer 5804 can be implemented using analog and/or digital circuitry and The amplitude and/or shape of the detected synchronization signal can be adapted to normalize. In this manner, in an exemplary embodiment, the signal sensor 58 〇 2 can be adapted during operation of the 3D glasses 3000 Measurement A large change in the amplitude and/or shape of the sync #. For example, if the spacing between the signal transmission 110 and the signal sensor 5 802 may vary greatly during normal use, the signal sense of the 3D glasses 3000 The amplitude of the sync signal detected by the detector can vary widely, so that one of the components used to normalize the amplitude and/or shape of the sync signal detected by signal sensor 5802 will enhance the operation of 3D glasses 3000. A general example of a system for adjusting an input signal to normalize the amplitude and/or shape of the input signal is disclosed in, for example, U.S. Patent Nos. 3,124,797, 3,488,604, 3,652,944, 3,927,663. No. 4, 270, 223, 6, 081, 565, and 6, 272, 133, the disclosures of each of which are hereby incorporated by reference. All or a portion of the normalizer 5804 is implemented. In an exemplary embodiment, all or a portion of the functionality of the normalizer 5804 may be implemented by cpu 3〇i 2. 147661.doc -62· 201112736 In an exemplary embodiment, the normalizer 5804 may additionally or alternatively receive an incoming synchronization signal from the volume sensor 5802 and adjust the amplification of the incoming synchronization signal and/or cause the incoming synchronization signal The amplitude between the peaks is stabilized to produce an output signal that is subsequently transmitted from the normalizer to the CPU 3012. In an alternate embodiment, the CPU 114 and/or the CPU 1810 can replace the CPU 3〇12, or in addition to the €113012. You can also use (:]?1;114 and/or (:1>1;181〇. Referring now to Figure 59, in the exemplary embodiment, the normalizer 58A includes a gain control component 5806, an amplifier and pulse conditioning component 581, and a sync amplitude and shape processing unit 5812. In an exemplary embodiment, gain control component 58A6 receives and processes the sync input signal provided by L sense sensor 5802 and the gain adjustment signal provided by sync amplitude and shape processing unit 5812 to produce an attenuated output signal. It is processed by the amplifier and the pulse adjusting component 58丨〇. In an exemplary embodiment, the amplifier and pulse conditioning component 581 processes the signal output by the gain control component 5806 to produce a normalized synchronization signal for transmission to the CPU 3012. In an exemplary embodiment, system 58 for adjusting the synchronization signal can be used in two-dimensional glasses 104, 1800 or 3000. Referring now to Figures 59a-59d, in an exemplary experimental implementation of system 5800, the electromagnetic synchronizing signal, primarily within visible light, is sensed by signal sensor 5802 and/or processed to produce a signal 5902. Transfer to the torque increase control element 5806. In an exemplary experimental embodiment, the peak-to-peak amplitude of the sync signal 5902 is about! In the range of mVi i v. In an exemplary experimental embodiment, signal 5902 is then processed by gain control component 5806 to produce 147661.doc -63 · 201112736 a signal 5 9 0 4 for transmission to the amplifier and pulse conditioning component. In the experimental example, the amplitude of signal 5904 is as high as about i mV. In an exemplary experimental embodiment, signal 5904 is then processed by amplifier and pulse conditioning component 581〇 to produce a signal 59〇6 for transmission to cpu 3〇12. In an exemplary embodiment, the peak-to-peak amplitude of signal 5906 is as high as about 3 volts. In an exemplary embodiment, signal 5906 is fed back to sync amplitude and shape processing unit 5812 to generate a feedback control signal 59 〇 8 for transmission to gain control τ member 5806. In an exemplary experimental embodiment, feedback control signal 5908 is a slowly varying signal or dc signal. Thus, an exemplary experimental embodiment of system S800 shows that the system can modulate the amplification of the sensed synchronization signal and stabilize the peak-to-peak amplitude of the sensed synchronization signal. Exemplary experimental results of the operation of system 58 illustrated and described with reference to Figures 58, 59, 59a, 59b, 59c, and 59d are unexpected. Referring now to Figures 60, 60a and 60b, an exemplary embodiment of the 3D glasses 6

實施例實質上等同於上文所描述之三維眼鏡18〇〇,惟下文 所§兒明的方面除外D 在一例示性實施例中,三維眼鏡6〇〇〇包括三維眼鏡之左 光閥1802、右光閥1804、左光閥控制器18〇6、右光閥控制 器1議、CPU 1810及電荷$1816,該等組件包括其對應功 能性。 三維眼鏡6000包括一信號感測器6〇〇2,其實質上類似於 三維眼鏡1800之信號感測器1814 '經修改以包括增益控制 元件5806、放大器及脈衝調節元件581〇及同步振幅及形狀 147661.doc -64 - 201112736 處理單元5812,該信號感測器可操作地輕接至微控制器 U4。在一例示性實施例中,微控制器…為可自丁以⑵ Instruments購得之 Texas Instruments Msp43oF2ollpwR積 體電路H示性實施例中,微控制細亦可操作地搞 接至CPU 1810。在一例示性實施例中,信號感測器_2之 光電二極體D2能夠偵測具有在可見光譜中之分量的電磁信 號。 ° 在一例示性實施例中,增益控制元件58〇6包括場效電晶 體Q100。 在一例示性實施例中,放大器及脈衝調節元件581〇包括 運算放大器U5及U6、電阻器R2、R3、R5、R6、R7、 RIO、R12、R14及 R16、電容器 C5、C6、C7、C8、cl〇、 C12、C14及C15 ’及肖特基障壁二極體D1。 在一例不性實施例中,同步振幅及形狀處理單元5812包 括NPN電晶體Qi〇i、電阻器R1〇〇、R1〇1及R1〇2,和電容 器 C13及C100。 在一例示性實施例中,在三維眼鏡6〇〇〇之操作期間,信 唬感測器6002自信號傳輸器i丨〇接收信號,該等信號可(例 如)包括用於操作三維眼鏡6〇〇〇之組態資料及/或同步信 號。 在一例示性實施例中’在三維眼鏡6〇〇〇之操作期間, Q1 〇〇控制光電二極體£)2之信號輸出。詳言之,在一例示 性實施例令,當q100之閘極上之電壓(其為(:13上之電壓) 為0 V時’ Q100斷開且光電二極體d2之信號輸出不被衰 I47661.doc -65- 201112736 減。隨著Q100之閘極上之電壓增加,q100接通且將電流 之部分自光電二極體D2傳導至接地,藉此使光電二極體 D2之信號輸出衰減。輸出偵測器q101偵測來自光電二極 體D2之所得輸出信號之量值且調整q丨〇〇之閘極上之電壓 以使來自光電二極體D2之輸出信號穩定。 在一例示性貪施例中,在三維眼鏡6〇〇〇之操作期間,若 光電二極體D2之信號輸出具有過大振幅,則來自放大器及 脈衝調節元件5 8 1 0 (包括場效電晶體Q丨〇 〇 )之輸出將開始一 大擺動電壓。當放大器及脈衝調節元件581〇(包括場效電 晶體Q100)之擺動電壓變得過高時,(^1〇1將一適當修改之 電壓信號傳遞至Q100之閘極,此將可控地使流過qi〇〇之 電流之-適當部分傳至接地。因此,在一例示性實施例 中,在三維眼鏡6000之操作期間,放大器及脈衝調節元件 581〇之輸出處的電壓溢流(v〇hage 〇verfi〇w)愈大,自光電 二極體D2經由Qi〇0傳導至接地的電流之百分比愈大。結 果,iw後被提供給放大器及脈衝調節元件581〇之所得作號 不會將運算放大器115及1;6過激勵至飽和。 “ 在一例示性實施例中,在三維眼鏡6000之操作期間, 控制益U4比較輸入信號爪一八與B以判定是否存在— 入同步脈衝。若微控制器U4散該傳人同步脈衝為用於 開左光閥1 8G2之-同步脈衝,則該微控制^將該傳入同 脈衝轉換成一 2脈衝同步脈衝。或者,若微控制器以判 該傳入同步脈衝為用於打開右光闊刪之一同步脈衝, 該微控制器將該傳人同步脈衝轉換成-3脈衝同步脈衝 I47661.doc .66· 201112736 因此’微控制器U4解碼該傳人同步脈衝以操作三維眼鏡 6000之左光閥1802及右光閥18〇4。 在一例示性實施例中’在三維眼鏡6〇〇〇之操作期間微 控制器U4進-步提供—額外敎迴路,即使該同步信號在 -段時間中不存在(諸如,若該三維眼鏡之佩戴者注視偏 離於該傳入同步信號之方向的方向),該鎖定迴路亦使得 三維眼鏡6000能夠操作。 現參看圖61,一種用於調節使用於三維眼鏡1 〇4、 1800、3000或6000之一同步信號之系統61〇〇之一例示性實 施例包括用於感測一同步信號自信號傳輸器丨1〇之傳輸的 信號感測器5802。在一例示性實施例中,信號感測器58〇2 經s周適以感測具有主要在電磁波譜之可見光部分中的分量 的同步信號自信號傳輸器11〇之傳輸。 一習知動態範圍減小及對比度增強元件61〇2可操作地耦 接至信號感測器5802及三維眼鏡3000之cpu 3012以用於減 小該信號感測器所偵測到的同步信號之動態範圍及增強該 同步L號内之對比度’以及將該正規化同步信號傳輸至該 CPU。或者,CPU 114及/或1810可取代CPU 3012,或除 CPU 3012之外’還可使用cpu 114及/或CPU 1810。 在一例示性實施例中’在三維眼鏡3〇〇〇中使用動態範圍 減小及對比度增強元件6102增強了該三維眼鏡感測及處理 由信號傳輸器110傳輸的具有主要在電磁波譜之可見光部 分中的分量之同步信號之能力。 現參看圖62,一種用於觀看一顯示器上之三維影像之系 147661.doc -67- 201112736 統6200之一例示性實施例包含用於將用於使用者之左眼及 右眼之一影像及一同步信號傳輸至一顯示表面6204上的投 影器6202 »系統6200之使用者可佩戴三維眼鏡1〇4、 1800、3 000或6000(其可根據或可不根據圖58至圖61之實 施例之教示進一步加以修改),以藉此可控地允許將左眼 影像及右眼影像呈現給該使用者之左眼及右眼。 在一例示性實施例中,投影器6202可為可購得之Texas Instruments三維數位光源處理投影器。如一般熟習此項技 術者將認識到’該Texas Instruments三維數位光源處理投 影器藉由以下方式操作:將一投影器之丨2〇 Hz輸出劃分在 左眼與右眼之間(每一者60 Hz) ’而同步信號在主動資料傳 輸之間的超短黑暗時間期間傳出。以此方式,呈現用於觀 看者之左眼及右眼之影像,且該等影像與用於指導三維眼 鏡3000打開左觀看光閥或右觀看光閥之同步信號交錯。 在一例示性實施例中,由投影器6202產生之該等同步信 號包括主要在可見光譜内之電磁能量。 見多看圖6 3及圖6 4 ’ 一投影顯不系統6 3 0 〇之一例示性實 施例包括一空間光調變器,更具體言之,一光調變器陣列 63〇5,其中光調變器陣列6305中之個別光調變器採取對應 於正由顯示系統6300顯示之一影像之影像資料的—狀態。 光調變器陣列6305可(例如)包括一數位微鏡面裝置 (「DMD」)’其中每一光調變器為一定位微鏡面。舉例而 言,在光調變器陣列6305中之光調變器為微鏡面光調變器 之顯示系統中’來自一光源6310之光可反射離開或反射向 H7661.doc -68 - 201112736 一顯示平面6315。來自光調變器陣列6305中之光調變器之 反射光之組合產生對應於影像資料之一影像。 一控制器6320協調該影像資料至光調變器陣列63〇5中之 載入、控制光源63 10等。控制器6320可耦接至一前端單元 6325,該前端單元可負責對輸入視訊信號之操作,諸如, 將類比輸入信號轉換為數位輸入信號、Y/C分離、自動色 度控制、自動消色器(automatic color killer)等。前端單元 6325可接著將已處理視訊信號提供給控制器632〇,該已處 理視机k號可含有來自待顯示的多個影像串流之影像資 料。舉例而言,當用作為一立體顯示系統時,前端單元 6325可將來自兩個影像串流的影像資料提供給控制器 6320 ’每一串流含有相同場景之不同視角之影像。或者, 菖用作為多視圖顯示系統(mum_vjew diSpiay system)時, 前端單元6325可將來自多個影像串流的影像資料提供給控 制器6320 ’其中每一串流含有非相關内容之影像。控制器 6320可為一特殊應用積體電路(「ASIC」)、一通用處理器 等,且可用以控制投影顯示系統63 00之一般操作。一記憶 體6330可用讀存影像資料、序列色料料,及影像之顯 示中所使用的各種其他資訊。 士圖64中所說明,控制器632〇可包括一序列產生器 63 50同步“號產生器6355及一脈寬調變(PWM)單元 6360序列產生器635〇可用以產生色序(⑶—μ刪“), /、規定將由光源63 1G產生的色彩及持續時間,以及控制被 載入至光調變H陣列㈣5中之影像資I除產生色序之 147661.doc -69- 201112736 外’序列產生器6350亦可具有將該等色序(及其部分)重新 排序且重新組織之能力,以幫助減少可能負面影響影像品 質之雜訊(PWM雜訊)。 同步彳§號產生器6355可產生使三維眼鏡(例如,其可為 三維眼鏡104、1800、3000或6000)與正被顯示的影像同步 之信號。該等同步信號可插入至由序列產生器63 5〇產生之 色序中且接著可由投影顯示系統63〇〇顯示。根據一實施 例,因為由同步信號產生器6355產生之該等同步信號係由 投景> 顯示系統63 00顯示’所以通常在三維眼鏡(例如,其 可包括三維眼鏡104、18〇〇、3000或6000)處於一阻斷觀看 狀態時(例如’當三維眼鏡(例如,其可包括三維眼鏡丨〇4、 1800、3000或6000)之光閥均處於關閉狀態時),將該等同 步信號插入至色序中。此可允許同步信號由三維眼鏡(例 如’其可包括三維眼鏡104、1800、3 000或6000)偵測,但 防止使用者實際看到同步信號。可將含有同步信號之色序 提供給PWM單元6360,其可將色序轉換為一 pWM序列, s玄PWM序列被提供給光調變器陣列63〇5及光源63丨〇。 投影顯示系統6300所投射之影像可由佩戴(例如)三維眼 鏡104、1800、3000或6000之使用者觀看到。 觀看器機構之其他實例可為根據本例示性實施例之教示 加以修改的護目鏡、眼鏡、帶目鏡之頭盔等。該等觀看器 機構可含有可允許觀看器機構偵測由投影顯示系統63〇〇顯 示之同步信號的一或多個感測器。該等觀看器機構可利用 多種光閥以使使用者能夠及不能夠看到投影顯示系統所顯 147661.doc •70· 201112736 示之影像。該箄杏門7达而 等 > 寻先閥可為電子光閥、機械光閥、液晶光閥 子光閥可阻斷光或使光通過,或可基於施加的電位 之極性而改,變Iu 。 义電子偏先益之極性。液晶光閥可以一類似方 式細作,兑φ t n ^、 /、电位改 '支液晶之定向。機械光閥可在(例如) 、’、、達將機械光阻斷II移人及移出位置時阻斷光或使光通 過。 :。…員示系統6300以基於(例如)一晶體參考的一固定 速率知作,則可存在—優點。輸入至該投影顯示系統的信 號之圖框率可經轉換以匹配投影顯示系統6300之圖框率。 該轉換過程通常丟棄及/或添加多個行以彌補任何時序 f。最後’可能需要重複及/或丟棄一完整圖框。從觀看 器機構之觀點來看’一優點可為較易於追蹤-PWM序列之 黑日曰時間及使同步信號同步。此外,此可使觀看器機構能 夠濾出干擾且長時間地保持鎖定至pwM序列。此可能在觀 看器機構未能價測到同步信號時發生。舉例而t,此可在 正常操作狀況下,在觀看器機構上之㈣器被阻斷或方向 偏離顯示平面的情況下發生。 現參看圖65及圖66,其展示一觀看器機構(例如,其可 為三維眼鏡1〇4、1800、3000或6〇〇〇,其可根據或可不根 據圖58至圖61之教示加以修改)之例示性的左眼光閥狀態 65丨0及右眼光閥狀態6520,及由(例如)pwM單元產生二 PWM序列之-高階視圖6530。在一例示性實施例中,在任 何給定時間,應僅有觀看器機構(例如,其可為三维眼鏡 1〇4、18〇〇、3〇〇〇或6000,其可根據或可不根據圖“至圖 147661.doc -71 - 201112736 61之教示加以修改)的兩個光閥中的一者處於打開狀態。 然而,在一例示性實施例中,觀看器機構(例如,其可為 三維眼鏡104、1800、3000或6000 ’其可根據或可不根據 圖5 8至圖61之教示加以修改)之兩光閥可同時處於關閉或 打開狀態。 在一例示性實施例中,觀看器機構(例如,其可為三維 眼鏡104、1800、3000或6000 ’其可根據或可不根據圖58 至圖61之教示加以修改)之光閥狀態之單一循環6540包括 左眼光閥狀態65 10及右眼光閥狀態6520之單一循環。在循 環6540開始時,左眼光闊自關閉狀態轉變至打開狀態,一 間隔6 5 4 2說明發生該狀態轉變之時間跨度。在一段時間之 後’左眼光閥在一狀態轉變間隔6544期間轉變回至關閉狀 態。當左眼光閥自打開狀態轉變至關閉狀態時,右眼之光 閥狀態'開始在狀態轉變間隔6544期間自關閉狀態轉變至打 開狀態。 當左眼光閥在一間隔6546期間打開時,可顯示與一將由 左眼觀看之影像相關之影像資料。因此,pwM序列含有用 以顯示意欲供左眼觀看之影像的控制指令。 狀悲圖6530包括表示用於顯示一左眼影像之pwM控制 才曰令之一方框6548,其涵蓋間隔6546。間隔6546通常在左 眼光閥完成其至打開狀態之轉變之後開始。此可歸因於觀 看器機構(例如,其可為三維眼鏡1〇4、18〇〇、3〇〇〇或 6000,其可根據或可不根據圖%至圖6〗之教示加以修改) 之打開狀‘4與關閉狀態之間的有限轉變時間。在左眼光間 147661.doc -72- 201112736 開始其向M m狀態之轉變之後發生一類似延遲。接著,當 左眼光閥關閉且右眼光閥開啟時,例如,在脈衝655〇及 6552期間,可顯示與將由右眼觀看之影像相關之一影像資 料。狀態圖6530包括表示用於顯示一右眼影像之pwM控制 指令之一方框65 54,其涵蓋間隔6556。 在狀態圖6530中,用於左眼之PWM序列6548與用於右眼 之PWM序列6554之間的時間通常可留空而沒有任何pWM 控制指令。舉例而言,方框6558在光閥轉變時間(諸如, 間隔6544及6560)期間發生。可進行此操作(例如)以防止在 間隔6544期間當左眼光閥自打開狀態轉變至關閉狀態時, 右眼看見模糊的左眼資料,及在間隔656〇期間當右眼光閥 自打開狀態轉變至關閉狀態時,左眼看見模糊的右眼資 料。此等時間間隔可接著用以顯示同步信號。並非為空而 沒有任何PWM控制指令,由方框6558表示之時間可含有顯 示同步信號所需的PWM控制指令,以及同步信號可能需要 提供的任何資料及操作模式資訊。 如圖66中所說明,在方框6558之時間間隔期間,可傳輸 且顯不一例示性同步信號6600,其包括可用以表示何時開 始光閥狀態之下一循環的一簡單時序同步信號。舉例而 s ’當觀看器機構(例如’其可為三維眼鏡1〇4、ι8〇〇、 3000或6000,其可根據或可不根據圖S8至圖61之教示加以 修改)偵測到同步信號時,該觀看器機構可開始左眼光閥 自關閉狀態至打開狀態之轉變、保持一規定(可能經預先 私式化)之時間量’開始左眼光閥自打開狀態至關閉狀態 147661.doc -73- 201112736 之轉變’開始右眼光閥自關閉狀態至打開狀態之轉變、保 持一規疋(可能經預先程式化)之時間量,且開始右眼光閥 自打開狀態至關閉狀態之轉變。在一例示性實施例中,左 眼光閥轉變及右眼光閥轉變可同時發生或可按需要交錯。 可在方框65 5 8期間發生的圖66中所說明之同步信號66〇〇 可(例如)在PWM控制序列在約時間66〇5處結束之後大約 270微秒時開始。舉例而言,同步信號66〇〇可接著轉變至 一咼狀態歷時約6微秒,且接著轉變回至一低狀態歷時約 24微秒。舉例而言,同步信號66〇〇可接著轉變回至高狀態 歷時約6微秒,且接著轉變回至低狀態,直至方框^“結 束0 可顯示可能更複雜之同步信號。舉例而言,同步信號可 規定光閥打開持續時間、應開始轉變之時間、哪一隻眼之 光閥應首先轉變、顯示系統之操作模式(諸如,三維影傳 或多視圖)、控制資料、資訊等。此外,可編碼同步信 號,使得僅經授權之觀看器機構(例如,.其可為三維眼鏡 HM、18()()、3_)或_,其可根據或可不根據圖58至^ 61之教示加以修改)能夠處理同步信號中所含之資訊。同 步信號之總體複雜性可取決於許多因素,其包括:同步^ 號之所需功能、維持對與顯示系統—起使用之周邊設二二 控制的需要、可用的同步信號發信持續時間等。 同步信號可顯示為可由顯示系統產生之任何色彩。在利 用-固定色序之顯示系統(諸如’―使用色輪之顯示系統) 中’單-色彩可用以顯示同步信號。舉例而言,在一使用 147661.doc -74- 201112736 黃色及白色的七色多 者皆可用以顯示同步 紅色、綠色、藍色、青色、洋紅色、 原色顯示系統中,該等色彩中之任— 信號n在-例示性實施例t,色彩可為黃色,因為 黃色為較明亮色彩中之—去,a# 々r之者’且使用其對其他色彩之顯示The embodiment is substantially identical to the three-dimensional eyeglasses 18 上文 described above except for the aspects hereinafter described. In an exemplary embodiment, the 3D glasses 6 〇〇〇 include left-hand light valves 1802 of 3D glasses. Right light valve 1804, left light valve controller 18〇6, right light valve controller 1, CPU 1810, and charge $1816, these components include their corresponding functionality. The 3D glasses 6000 includes a signal sensor 6〇〇2 that is substantially similar to the signal sensor 1814' of the 3D glasses 1800 modified to include the gain control element 5806, the amplifier and pulse conditioning element 581, and the synchronized amplitude and shape. 147661.doc -64 - 201112736 Processing unit 5812, the signal sensor is operatively lighted to the microcontroller U4. In an exemplary embodiment, the microcontroller is an exemplary embodiment of the Texas Instruments Msp43oF2ollpwR integrated circuit H available from (2) Instruments, and the micro-controls are finely operatively coupled to the CPU 1810. In an exemplary embodiment, photodiode D2 of signal sensor 2 is capable of detecting an electromagnetic signal having a component in the visible spectrum. ° In an exemplary embodiment, gain control element 58A6 includes field effect transistor Q100. In an exemplary embodiment, the amplifier and pulse conditioning component 581A includes operational amplifiers U5 and U6, resistors R2, R3, R5, R6, R7, RIO, R12, R14, and R16, capacitors C5, C6, C7, and C8. , cl〇, C12, C14 and C15' and Schottky barrier diode D1. In an exemplary embodiment, the sync amplitude and shape processing unit 5812 includes an NPN transistor Qi〇i, resistors R1〇〇, R1〇1, and R1〇2, and capacitors C13 and C100. In an exemplary embodiment, during operation of the 3D glasses 6 唬, the signal sensor 6002 receives signals from the signal transmitter i, which may, for example, include for operating the 3D glasses 6〇组态 Configuration data and / or synchronization signals. In an exemplary embodiment, Q1 〇〇 controls the signal output of the photodiode £2 during operation of the 3D glasses 6〇〇〇. In detail, in an exemplary embodiment, when the voltage on the gate of q100 (which is the voltage at (13) is 0 V, 'Q100 is turned off and the signal output of the photodiode d2 is not degraded I47661. .doc -65- 201112736 minus. As the voltage on the gate of Q100 increases, q100 turns on and conducts part of the current from photodiode D2 to ground, thereby attenuating the signal output of photodiode D2. The detector q101 detects the magnitude of the resulting output signal from the photodiode D2 and adjusts the voltage on the gate of the q丨〇〇 to stabilize the output signal from the photodiode D2. In an exemplary example In the operation of the 3D glasses, if the signal output of the photodiode D2 has an excessive amplitude, the output from the amplifier and the pulse adjusting component 5 8 1 0 (including the field effect transistor Q丨〇〇) A large swing voltage will be started. When the swing voltage of the amplifier and the pulse adjusting component 581〇 (including the field effect transistor Q100) becomes too high, (^1〇1 transmits an appropriately modified voltage signal to the gate of Q100). This will controllably flow through the electricity The appropriate portion is passed to ground. Thus, in an exemplary embodiment, during operation of the 3D glasses 6000, the voltage overflow (v〇hage 〇verfi〇w) at the output of the amplifier and pulse conditioning component 581〇 Larger, the greater the percentage of current that is transmitted from the photodiode D2 to the ground via Qi〇0. As a result, the resulting Iw is supplied to the amplifier and the pulse-regulating element 581, and the operational amplifiers 115 and 1; Over-excitation to saturation. In an exemplary embodiment, during operation of the 3D glasses 6000, the control benefit U4 compares the input signal jaws one and eight to determine if there is a sync pulse. If the microcontroller U4 dissipates the passer The sync pulse is a sync pulse for opening the left light valve 1 8G2, and the micro control converts the incoming same pulse into a 2-pulse sync pulse. Alternatively, if the microcontroller determines that the incoming sync pulse is used for Turn on the right ray to delete one of the sync pulses, the microcontroller converts the pass sync pulse into a -3 pulse sync pulse I47661.doc .66· 201112736 Therefore 'microcontroller U4 decodes the pass sync pulse to operate three The left light valve 1802 and the right light valve 18〇4 of the glasses 6000. In an exemplary embodiment, the microcontroller U4 provides an additional loop during the operation of the 3D glasses 6〇〇〇, even if the synchronization signal The lock loop also enables the 3D glasses 6000 to operate if there is no presence in the segment time (such as if the wearer of the 3D glasses is looking in a direction that deviates from the direction of the incoming sync signal). Referring now to Figure 61, one is used One exemplary embodiment of a system 61 for adjusting one of three-dimensional glasses 1 1800 4, 1800, 3000 or 6000 includes signal sensing for sensing the transmission of a synchronization signal from a signal transmitter 丨1〇 5802. In an exemplary embodiment, signal sensor 58A is adapted to sense the transmission of a synchronization signal having a component primarily in the visible portion of the electromagnetic spectrum from signal transmitter 11A. A conventional dynamic range reduction and contrast enhancement component 61〇2 is operatively coupled to the signal sensor 5802 and the cpu 3012 of the 3D glasses 3000 for reducing the synchronization signal detected by the signal sensor. Dynamic range and enhancement of contrast within the sync L number and transmission of the normalized sync signal to the CPU. Alternatively, CPU 114 and/or 1810 may replace CPU 3012 or may use cpu 114 and/or CPU 1810 in addition to CPU 3012. In an exemplary embodiment, the use of a dynamic range reduction and contrast enhancement element 6102 in a 3D glasses 3T enhances the 3D glasses sensing and processing transmitted by the signal transmitter 110 having a predominantly visible portion of the electromagnetic spectrum. The ability of the component to synchronize signals. Referring now to Figure 62, an exemplary embodiment of a system for viewing a three-dimensional image on a display 147661.doc-67-201112736 system 6200 includes an image for the left and right eyes of the user and A synchronization signal is transmitted to the projector 6202 on a display surface 6204. The user of the system 6200 can wear the 3D glasses 1〇4, 1800, 3 000 or 6000 (which may or may not be according to the embodiments of FIGS. 58-61) The teaching is further modified to controllably allow the left eye image and the right eye image to be presented to the left and right eyes of the user. In an exemplary embodiment, projector 6202 can be a commercially available Texas Instruments three-dimensional digital light source processing projector. As will be appreciated by those skilled in the art, the Texas Instruments three-dimensional digital light source processing projector operates by dividing the 〇2〇Hz output of a projector between the left and right eyes (each of which 60 Hz) 'And the sync signal is transmitted during the ultra-short dark time between active data transmissions. In this manner, images for the left and right eyes of the viewer are presented, and the images are interleaved with the synchronization signals used to direct the three-dimensional eyepiece 3000 to open the left or right viewing light valve. In an exemplary embodiment, the synchronization signals generated by projector 6202 include electromagnetic energy primarily within the visible spectrum. See Figure 6 3 and Figure 6 4 'One Projection Display System 6 3 0 〇 One exemplary embodiment includes a spatial light modulator, and more specifically, a light modulator array 63〇5, wherein The individual light modulators in the light modulator array 6305 take a state corresponding to the image material of one of the images being displayed by the display system 6300. The light modulator array 6305 can, for example, comprise a digital micromirror device ("DMD")' wherein each of the light modulators is a positioning micromirror. For example, the light modulator in the light modulator array 6305 is a display system of a micromirror light modulator. 'Light from a light source 6310 can be reflected off or reflected to H7661.doc-68 - 201112736. Plane 6315. The combination of the reflected light from the optical modulator in the optical modulator array 6305 produces an image corresponding to one of the image data. A controller 6320 coordinates the loading of the image data into the optical modulator array 63〇5, controls the light source 63 10, and the like. The controller 6320 can be coupled to a front end unit 6325, which can be responsible for the operation of the input video signal, such as converting the analog input signal into a digital input signal, Y/C separation, automatic chromaticity control, automatic color eliminator (automatic color killer) and so on. The front end unit 6325 can then provide the processed video signal to the controller 632, which can contain image data from a plurality of video streams to be displayed. For example, when used as a stereoscopic display system, the front end unit 6325 can provide image data from two video streams to the controller 6320' each stream containing images of different viewing angles of the same scene. Alternatively, when used as a multi-view display system (mum_vjew diSpiay system), the front end unit 6325 can provide image data from a plurality of video streams to the controller 6320' where each stream contains images of non-related content. Controller 6320 can be a special application integrated circuit ("ASIC"), a general purpose processor, etc., and can be used to control the general operation of projection display system 63 00. A memory 6330 can be used to store image data, sequence color materials, and various other information used in the display of images. As illustrated in FIG. 64, the controller 632A may include a sequence generator 63 50 to synchronize the "number generator 6355 and a pulse width modulation (PWM) unit 6360 sequence generator 635" to generate a color sequence ((3) - μ Delete "), /, specify the color and duration to be generated by the light source 63 1G, and control the image resource I loaded into the light modulation H array (4) 5 in addition to the color sequence of 147661.doc -69- 201112736 outside 'sequence Generator 6350 can also have the ability to reorder and reorganize the color sequences (and portions thereof) to help reduce noise (PWM noise) that can negatively impact image quality. The sync code generator 6355 can generate a signal that causes the 3D glasses (e.g., it can be 3D glasses 104, 1800, 3000, or 6000) to be synchronized with the image being displayed. The synchronization signals can be inserted into the color sequence produced by sequence generator 63 5 and can then be displayed by projection display system 63. According to an embodiment, since the synchronization signals generated by the synchronization signal generator 6355 are displayed by the projection > display system 63 00, they are typically in 3D glasses (e.g., they may include 3D glasses 104, 18, 3000) Or 6000) when in a blocked viewing state (eg, when the light valves of the 3D glasses (eg, which may include 3D glasses 4, 1800, 3000, or 6000) are off), the synchronization signals are inserted To the color sequence. This may allow the synchronization signal to be detected by 3D glasses (e.g., 'which may include 3D glasses 104, 1800, 3 000 or 6000), but prevents the user from actually seeing the synchronization signal. The color sequence containing the sync signal can be provided to the PWM unit 6360, which converts the color sequence into a pWM sequence, which is supplied to the light modulator array 63〇5 and the light source 63丨〇. The image projected by projection display system 6300 can be viewed by a user wearing, for example, three-dimensional eyepieces 104, 1800, 3000 or 6000. Other examples of viewer mechanisms may be goggles, eyeglasses, helmets with eyepieces, and the like, modified in accordance with the teachings of this illustrative embodiment. The viewer mechanisms can include one or more sensors that allow the viewer mechanism to detect synchronization signals displayed by the projection display system 63. The viewer mechanisms can utilize a variety of light valves to enable the user to and cannot view images displayed by the projection display system. The 箄 门 7 达 & 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 Iu. The polarity of the electronic is preferred. The liquid crystal light valve can be finely fabricated in a similar manner, and the orientation of the liquid crystal is changed by φ t n ^, /, and the potential is changed. The mechanical light valve can block or pass light when, for example, ', ', moves the mechanical light block II to and from the position. :. The ... member system 6300 is known to have an advantage based on, for example, a fixed rate of a crystal reference. The frame rate of the signal input to the projection display system can be converted to match the frame rate of the projection display system 6300. This conversion process typically discards and/or adds multiple rows to compensate for any timing f. Finally, it may be necessary to repeat and/or discard a complete frame. From the point of view of the viewer mechanism, an advantage can be that it is easier to track - the black day time of the PWM sequence and synchronize the synchronization signals. In addition, this allows the viewer mechanism to filter out interference and remain locked to the pwM sequence for extended periods of time. This may occur when the viewer mechanism fails to measure the sync signal. By way of example, this can occur under normal operating conditions if the (4) device on the viewer mechanism is blocked or the direction is off the display plane. 65 and 66, which illustrate a viewer mechanism (eg, which may be 3D glasses 1, 4, 1800, 3000, or 6 〇〇〇, which may or may not be modified in accordance with the teachings of FIGS. 58-61) An exemplary left eye light valve state 65 丨 0 and right eye light valve state 6520, and a high order view 6530 of two PWM sequences generated by, for example, a pwM unit. In an exemplary embodiment, at any given time, there should be only a viewer mechanism (eg, it may be a 3D glasses 1〇4, 18〇〇, 3〇〇〇 or 6000, which may or may not be based on a map One of the two light valves of "as modified by the teachings of Figures 147661.doc -71 - 201112736 61 is in an open state. However, in an exemplary embodiment, the viewer mechanism (eg, it may be 3D glasses) The two light valves of 104, 1800, 3000 or 6000 'which may or may not be modified according to the teachings of Figures 58 to 61 may be in a closed or open state at the same time. In an exemplary embodiment, the viewer mechanism (e.g. The single cycle 6540 of the light valve state, which may be a 3D glasses 104, 1800, 3000 or 6000 'which may or may not be modified according to the teachings of FIGS. 58-61, includes a left eye light valve state 65 10 and a right eye light valve state. A single cycle of 6520. At the beginning of cycle 6540, the left eye is widened from the off state to the open state, and an interval 6 5 4 2 indicates the time span at which the state transition occurs. After a period of time, the left eye light valve is in a state transition. The transition back to the closed state during the interval of 6544. When the left-eye light valve transitions from the open state to the closed state, the light valve state of the right eye begins to transition from the closed state to the open state during the state transition interval 6544. When the left-eye light valve is in a state When opened during the interval 6546, image data associated with an image to be viewed by the left eye may be displayed. Therefore, the pwM sequence contains control commands for displaying images intended for viewing by the left eye. The sadness map 6530 includes representations for displaying one. The pwM control of the left eye image is one of the blocks 6548, which covers the interval 6546. The interval 6546 typically begins after the left eye light valve completes its transition to the open state. This can be attributed to the viewer mechanism (eg, it can be 3D glasses 1〇4, 18〇〇, 3〇〇〇 or 6000, which may or may not be modified according to the teachings of Figures % to 6). The limited transition time between the open state '4 and the closed state. Left eye light 147661.doc -72- 201112736 A similar delay occurs after its transition to the M m state begins. Then, when the left eye light valve is closed and the right eye light valve is open, for example, During the pulses 655 〇 and 6552, one of the image data associated with the image to be viewed by the right eye may be displayed. The state diagram 6530 includes one of the pwM control commands for displaying a right eye image, block 65 54, which covers the interval 6556. In state diagram 6530, the time between the left eye PWM sequence 6548 and the right eye PWM sequence 6554 can typically be left blank without any pWM control commands. For example, block 6558 is at the light valve transition time ( This occurs, for example, during intervals 6544 and 6560. This can be done, for example, to prevent blurred left eye data from being seen by the right eye when the left eye light valve transitions from the open state to the closed state during interval 6544, and at interval 656〇 During the transition of the right eye light valve from the open state to the closed state, the left eye sees the blurred right eye data. These time intervals can then be used to display the synchronization signal. Rather than empty without any PWM control commands, the time indicated by block 6558 may contain the PWM control commands required to display the sync signal, as well as any data and operating mode information that the sync signal may need to provide. As illustrated in Figure 66, during the time interval of block 6558, an exemplary synchronization signal 6600 can be transmitted and displayed that includes a simple timing synchronization signal that can be used to indicate when a cycle below the light valve state is initiated. For example, when the viewer mechanism (for example, it may be 3D glasses 1〇4, ι8〇〇, 3000 or 6000, which may or may not be modified according to the teachings of Figures S8 to 61), the synchronization signal is detected. The viewer mechanism can start the transition of the left eye light valve from the closed state to the open state, and maintain a prescribed amount (possibly pre-privatized) for a certain amount of time to start the left eye light valve from the open state to the closed state 147661.doc -73- The transition of 201112736 'starts the transition of the right eye light valve from the closed state to the open state, maintains a regular amount of time (possibly pre-programmed), and begins the transition of the right eye light valve from the open state to the closed state. In an exemplary embodiment, the left eye light valve transition and the right eye light valve transition may occur simultaneously or may be interleaved as desired. The synchronization signal 66 图 illustrated in Figure 66, which may occur during block 65 58 , may begin, for example, at approximately 270 microseconds after the PWM control sequence ends at approximately 66 〇 5 . For example, the sync signal 66 can then transition to a state for about 6 microseconds and then transition back to a low state for about 24 microseconds. For example, the sync signal 66 can then transition back to the high state for about 6 microseconds, and then transition back to the low state until the block "end 0" can display a more complex sync signal. For example, synchronization The signal may dictate the duration of the light valve opening, the time at which the transition should begin, which light valve should be first changed, the operating mode of the display system (such as three-dimensional video or multi-view), control data, information, etc. The synchronization signal is encoded such that only authorized viewer mechanisms (eg, which may be 3D glasses HM, 18()(), 3_) or _, may or may not be modified according to the teachings of FIGS. 58-61) Capable of processing the information contained in the synchronization signal. The overall complexity of the synchronization signal can depend on a number of factors, including: the required functionality of the synchronization signal, the need to maintain the control of the peripherals used with the display system, The available sync signal is sent for duration, etc. The sync signal can be displayed as any color that can be produced by the display system. In a display system that utilizes - fixed color sequence (such as '- use color wheel Display system) 'Single-color can be used to display the sync signal. For example, one can use 147661.doc -74- 201112736 yellow and white seven colors can be used to display synchronized red, green, blue, cyan, ocean In the red, primary color display system, any of these colors - signal n is in the exemplary embodiment t, the color can be yellow, because yellow is the brighter color - go, a# 々r's and use the pair Display of other colors

造成的負面影響可較小。式! ±. . , A 罕乂 J 或者較暗的色彩(諸如藍色) 可用以顯不同步信號。你用gh Μ ι便用藍色可為較佳的,因為使用較 暗色彩可使同步信號較不容易由觀看者偵測。雖錄佳使 用單-色彩來顯示同步信號,但可使用多個色彩。舉例而 言’可能以用以顯示同步信號之色彩來編碼資訊。在一未 利用固疋色序之顯示系統中’可使用任何色彩。另外,雖 然論述了七色多原色顯示系統,但可使用具有不同數目個 顯示色彩之其他顯示系、统,且其不應被解釋為侷限於本例 示性實施例之範疇或精神。 在一例示性實施例中,為了允許同步信號之顯示及防止 觀看者偵_同步㈣之顯^可在纽錢及右眼光闊 均處於關閉狀態時顯示同步信號。如圖65中所說明,狀態 圖6530顯示表示用於顯示同步信號之pwM控制指令的一方 框6558,其包含於間隔6544及656〇中。間隔6544及656〇之 持續時間可取決於許多因素,諸如同步信號之複雜性、同 步信號之任何編碼之存在、同步信號巾所載運之資料等。 另外,間隔6544及6560之持續時間可取決於諸如光閥轉變 時間之因素。舉例而言,若光閥轉變時間長,則間隔6544 及6560亦應為長的以確保光閥在同步信號之顯示之前均關 閉。或者,不需要在方框6558所表示之整個間隔中產生同 147661.doc -75- 201112736 步㈣。雖然希望觀看者不能_到同步信號但當顯示 糸統之黑色位準之亮度 為可偵測的。 _號之顯示可能 現參看圖67,在„你丨+ 眷+Λ» , 期間例中,在系統6扇之操作 頻:^糸、.先貫施一方法67〇〇,在該方法中,在㈣ 顯不來自一第一影像串流之一 ^ Φ , ^ 知像。在一例示性實施 中,漸進式地或交錯地顯示整 2要=(諸如’顯示持續時間限制、影像品質^等):; ::::示㈣一影像之-部分。舉例而言,可顯示該第 像ρ —場(Singlefield)。在已顯示來自該第一影 二=第-影像之後’接著在671。中,可顯示來自一 像…心““象再-次,可顯示整個第二影 該影像之一部分。然而,所顯示的第-影 =及所顯示的第二影像之量較佳實質上相同。或者, 8子間可不同。 =該第-影像及該第二影像後,接著在6715中,投 統6綱可顯示-同步信號。然而,該同步信號之 性=在任何時間發生,且用於顯示該同步信號之-例示 偵列:=當該投影顯示系統之觀看者可能不能在視覺上 閥/目^ 時。舉例而言,觀看者可能正使用電子光 以目鏡,因此可在每一眼上之光間關閉時顯示該同步作 影顯示系統咖可判定何時關閉光閥,因為(例如D) 干^顯示系統通常在-初始組態操作期間、在一先前所顯 '间步信號中或在-製造商規定之持續時間(其為投影 147661.(1, -76- 201112736 顯示系統及觀看器機構(例如,其可為三維眼鏡104、 刪、3_或6_,其可根據或可不根據圖沿㈣之教 π加以修改)兩者已知)中規定光閥何時將關閉。然而,投 影顯示系統63G0未必需要為了適當操作而判定何時關閉光 閥通^要在沒有意欲用於任一眼之PWM控制序列的 時期(諸如,方框6558)之開始或結束處顯示同步信號,觀 看器機構(例如,其可為三維眼鏡1〇4、18〇〇、3〇〇〇或 6〇〇〇,其可根據或可不根據圖58至圖6〗之教示加以修改) 之製造商就可設定光閥轉變之時間以遮蔽(mask 〇ut)同步 L號。旦在67 15中,投影顯示系統6300已顯示同步信 號,該投影顯示系統就可返回顯示來自該第一影像串流及 3玄第一景》像串流之影像(或影像之部分)。 現參看圖68,在一例示性實施例中,在系統63〇〇之操作 期間,該系統實施一方法6800,在該方法中,在68〇5及 68 10中,觀看器機構(例如,其可為三維眼鏡104、1800、 3 000或6000,其可根據或可不根據圖58至圖61之教示加以 修改)尋找同步信號(在6805中),且檢查以查看該機構偵測 到的信號是否為同步信號(在6810中)。若該信號並非同步 t號’則该觀看器機構(例如’其可為三維眼鏡丨〇4、 1800、3000或6000,其可根據或可不根據圖58至圖61之教 示加以修改)可返回6805中之尋找同步信號。 若該信號為同步信號’則該觀看器機構(例如,其可為 二維眼鏡104、1800、3 000或6000,其可根據或可不根據 圖58至圖61之教示加以修改)可等待一規定時間量(在6815 147661.doc -77· 201112736 中)’且然後執行一諸如改變狀態轉變之規定第一動作(在 6820中)°該觀看器機構(例如,其可為三維眼鏡104、 1800、3000或60〇〇,其可根據或可不根據圖58至圖61之教 不加以修改)可接著等待另一規定時間量(在6825中),且然 後執行另一規定第二動作(在683〇中)。在該規定第二動作 完成後’該觀看器機構(例如,其可為三維眼鏡丨〇4、 1800、3000或6000,其可根據或可不根據圖58至圖61之教 示加以修改)可返回68〇5中之尋找同步信號。 現參看圖69,在一例示性實施例中,在系統63〇〇之操作 期間,該系統實施一方法6900,在該方法中,在69〇5中, 顯示與一左眼影像相關聯之同步信號(在6905中),繼而 在6910中顯示該左眼影像。在671〇中顯示該左眼影像之 後在6915中,顯不系統63〇〇可顯示一與一右眼影像相關 聯之同步信號,繼而在692〇中顯示該右眼影像。在一例示 性實施例巾’可在可^㈣㈣同步信狀侧的顯示 系統中使用方法_〇。在此顯示系統中,不可使用先前同 步信號以判定何時轉變,且僅右福 彳皇在偵測到一相關聯同步信號 時發生轉變。 現參看圖70 ’在一例示性實施例中在系統63〇〇之… 期間’該系統實施-方法7咖,在該方法中在·5中 偵測一同步信號。在7005中,芒π止 右同步信號含有一很少出j 的開始序列及/或停止序列,則可# - 斤Ν則可輔助對同步信號之4 測。另外’若僅在觀看器機構( 丨如’其可為三維眼| 104、1800、3000 或 6000,其可 以 媒或可不根據圖58至β 147661.doc -78- 201112736 之教不加以修改)處於規定狀態(諸如,觀看器機構之光 閉)時顯示同步信冑,則觀看器機構中之控制硬體可 經組態以在其處於規定狀態時嘗試進行同步信號偵測。一 旦觀看器機構(例如’其可為三維眼鏡ig4、刪、麵或 _〇 ’其可根據或可不根據圖58至圖61之教示加以修改) 偵測到同步信號’在7〇1〇中可完整地接收同步信號。若有 必要’在7〇15中,可解瑪同步信號。在接收及解碼同步信 號後,若需要,在7020中,觀看器機構(例如,其可為三 維眼鏡104、1800、3000或6_,其可根據或可不根據圖 58至圖61之教示加以修改)可執行由同步信號規定或在同 步信號中規定之動作。 一液晶光閥具有一液晶,藉由將-電壓施加至該液晶, 其旋轉,且接著該液晶在少於一毫秒的時間内達成至少 25%的光透射率。當液晶旋轉至一具有最大光透射之點 時,一裝置將該液晶之旋轉停止在該最大光透射點,且然 後在一時間段中將該液晶保持在該最大光透射點。可將安 裝在一機器可讀媒體上之一電腦程式用以促進此等實施例 中之任一者。 一系統藉由使用一副液晶光閥眼鏡來呈現三維視訊影 像,該眼鏡具有一第一液晶光閥及一第二液晶光閥,及經 調適以打開該第一液晶光閥之一控制電路。該第一液晶光 閥可在少於一毫秒的時間内打開至一最大光透射點,此 時,該控制電路可施加一止擔電壓以在一第一時間段中將 該第一液晶光閥保持在該最大光透射點,且然後關閉該第 14766I.doc -79· 201112736 一液晶光閥。接下來’該控制電路打開該第:液晶光閥, 其中該第二液晶光閥在少於—毫秒的時間内打開至一最大 光透射點,且然後施加一止擋電壓以在—第二時間段中將 該第二液晶光閥保持在該最大光透射點,且㈣關閉該第 二液晶光閥。該第—時間段對應於為觀看者之—第一眼呈 現一影像,且該第二時間段對應於為觀看者之一第二眼呈 現一影像。可將安裝在一 機器可讀媒體上之一電腦程式用 以促進本文中所描述的實施例中之任一者。 在一例示性實施例中,該控制電路經調適以使用一同步 信號來判定該第一時間段及該第二時間段。在一例示性實 施例中,該止擋電壓為2伏特。 在一例示性實施例中’該最大光透射點透射多於32%的 光0 在一例示性實施例中’一發射器提供一同步信號,且該 同步L號使該控制電路打開該等液晶光閥中之一者。在一 例示性實施例中,該同步信號包含一加密信號。在一例示 性實施例中,該三維眼鏡之控制電路將僅在驗證一加密信 號之後進行操作。 在一例示性實施例中,該控制電路具有一電池感測器且 可經調適以提供一電池電力偏低狀況之一指示。電池電力 偏低狀況之該指示可為一液晶光閥在一時間段中關閉、且 然後在一時間段中打開。 在一例示性實施例中’該控制電路經調適以偵測一同步 信號且在偵測到該同步信號之後開始操作該等液晶光閥。 147661.doc -80 - 201112736 在例不性實施例中,該加密信號將僅操作具有經調適 以接收該加密信號之一控制電路的一副液晶眼鏡。 在一例不性實施例中,一測試信號以可被佩戴該副液晶 光閥眼鏡的—人看見的—速率操作該等液晶光闊。 在一例示性實施例中,一副眼鏡具有具有一第一液晶光 閥之一第一透鏡及具有一第二液晶光閥之一第二透鏡。液 晶光閥均具有可在少於—毫秒的時間内打開之—液晶及交 替地打開該第-液晶光閥及該第二液晶光閥之一控制電 路。當液晶光閥打開時’液晶定向被保持在一最大光透射 點’直至該控制電路關閉光閥。 在一例不性實施财’一止播電壓將該液晶保持在該最 大光透射點。該最大光透射點可透射多於32%的光。 在-例示性實施例中,一發射器提供一同步信號,且該 同步信號使該控制電路打開該等液晶光閥中之一者。在一 些實施例中,㈣步信號包括一加密信號。在一例示性實 施例中,該控制電路將僅在驗證了該加密信號之後進行操 作。在-例示性實施例中’該控制電路包括_電池感測器 且可經調適以提供-電;也電力職狀況之—指巾。電池電 力偏低狀況之該指示可為液晶光閥在一時間段中關閉且接 著在-時間段中打開。在-例示性實施例中,該控制電路 經調適以偵測一同步信號且在其偵測到該同步信號之後開 始操作該等液晶光閥。 該加密信號可僅操作具有經調適以接收該加密信號之一 控制電路的一副液晶眼鏡》 u 147661.doc -81 - 201112736 在一例示性實施例中,-測試信號以可被佩戴該副液晶 光閥眼鏡的一人看見的一速率操作該等液晶光閥。 在-例示性實施例中’藉由以下操作向一觀看者呈現三 維視訊影像:使用液晶光閥眼鏡;在少於一毫秒的時間内 打開該第一液晶光閥;在一第一時間段中將該第一液晶光 閥保持在-最大光透射點;關閉該第―液日曰日㈣,接著在 少於-毫秒的時間内㈣該第二液晶光閥;且接著在—第 二時間段中將該第二液晶光閥保持在—最大光透射點。該 第一時間段對應於為觀看者之一第__ 乐眼呈現一影像,且該 第二時間段對應於為觀看者之一第二眼呈現一影像。 ^ -例示性實施例中’藉由一止擋電壓將該液晶光闕保 夺在-亥最大先透射點。該止擋電壓可為2伏特。在一例干 性實施例中,該最大光透射點透射多於32%的光。'、 :一例示性實施例中’-發射器提供一同步信號,該同 步^虎使㈣制電路打開該等液晶光閥中之一者。在—此 實施例中’該同步信號包含一加密信號。 二 在一例示性實施你丨φ , — α & 例中,该控制電路將僅在驗證 信號之後進行操作。 也 在一例示性實施例φ.. j中-電池感測器監視電池中的電力 望。在-例不性貫施例中,該控制電路經調適以提供 池電力偏低狀況之—於-^ ^ 、 电 ^彳日不。電池電力偏低狀況之該指示可 為一液晶光閥在一昧pq饥+ nn 仕時間段中關閉且接著在一時間段中打 開。 在一例示性實施例Φ _ _,, ^ ,邊控制電路經調適以偵測一同步 147661.doc -82· 201112736 信號且在侦测到該同步信號之後開始操作該等液晶光閥。 在例不!·生實施例中,該加密信號將僅操作具有經調適以 mun號之—控制電路的—副液晶眼鏡。 ,在例不[生實施例中,一測試信號以可被佩戴該副液晶 ί艮鏡#人看見之—速率操作該等液晶光間。 例不r生實施例中,一種用於提供三維視訊影像之系 :克可包括-副眼鏡’其具有具有一第一液晶光閥之一第一 透鏡及ί帛—液晶光閥之—第二透鏡。該等液晶光閥 可具有/夜晶且可在少於一毫秒的時間内打開。一控制電 路:乂替地打開該第一液晶光閥及該第二液晶光閥且將 液晶定向保持在一最大光透射點,直至該控制電路關閉該 光閥。此外’ s亥系統可具有一電池電力偏低指示器,其包 括 電池,一感測器,其能夠判定該電池中剩餘的電力 里’控制器’其經調適以判定該電池中剩餘的電力量是 R以讓該副眼鏡在比-預定時間長的時間中操作;及一 指示器',其用以在該副眼鏡不能在比該預定時間長的時間 中操作的情況下向一觀看者發信號。在一例示性實施例 中,該電池電力偏低指示器以一預定速率打開及關閉左液 ^曰光閥及右液晶光閥。在-例示性實施例中,該預定_ 量為大於三個小時。在-例示性實施例中,在狀該電池 中剩餘的電力量不足以讓該副眼鏡在比該敎時間量長的 時間中操作之後’該電池電力偏低指示器可操作至少三 天。在-例示性實施例中,該控制器可藉由按該電池中剩 餘的同步脈衝之數目量測時間來衫該電池中剩餘的電力 147661.doc •83- 201112736 在用於提供三維視訊影像之一例示性實施例中,藉由具 有包括一第一液晶光閥及一第二液晶光閥之一副三維觀看 眼鏡;在少於一毫秒的時間内打開該第一液晶光閥;在— 第-時間段中將該第-液晶光閥保持在—最大光透射點; 關閉該第-液晶光閥’ i然後在少於-毫秒的時間内打開 該第二液晶光閥;在一第二時間段中將該第二液晶光閥保 持在最大光透射點而提供影像。該第一時間段對應於為 觀看者之一第一眼呈現一影像’且該第二時間段對應於為 觀看者之第二眼呈現—影像。在此例示性實施例中,該三 維觀看眼鏡感測該電池中剩餘的電力量、判定該電池中: 餘的電力量疋否足以讓該副眼鏡在比一預定時間長的時間 中細作,且接著在該眼鏡不能在比該預定時間長的時間中 操作的it况下向—觀看者指示一電池電力偏低信號。該指 不益可以—預定速率打開及關該等透鏡。該電池將持續 的預定時間量可為三個小時以上。在—例示性實施例中^ :判疋該電池中剩餘的電力量不足以讓該副眼鏡在比該預 疋時間量長的時間中操作之後’豸電池電力偏低指示器操 作至;二天。在一例示性實施例中,該控制器藉由按該電 池可持續經過的同步脈衝之數目量測時間來判定該電池中 剩餘的電力量。 用於提供二維視訊影像之一例示性實施例中,該》 包括·— μ眼鏡包含具有—第-液晶光閥之一第_ 鏡及具有一第二液晶光閥之-第二透鏡,該等液晶光β I47661.doc -84 - 201112736 有一液晶及小於一毫秒之—打 了寺間。一控制電路可交替 地打開該第一液晶光閥及該第二曰 —液日日光閥,且液晶定向被 保持在一最大光透射點,直 至4控制電路闕閉該光閥。此 外’一同步裝置包括·· 一作妹彳套^ ★ 唬傳輪器,其發送一對應於一 為一第一眼呈現之影像之栌躲· L唬,一信號接收器,其感測該 乜,及一控制電路,其經 4 w以在為s亥第一眼呈現該影 像的一時間段期間打開該第_ 乐九閥。在一例示性實施例 中’ 5亥k號為一紅外光。 在一例示性實施例中,該信號傳輸器將該信號投射向一 反射i該信號由該反射器反射,且該信號接收器偵測該 經反射k號。在一些實 J τ β哀反射器為一電影院螢 ;。在-例不性實施例中’該信號傳輸器自一影像投影器 (諸如’電影投影器)接 一 砰序l说。在一例示性實施例 中,該信號為-射頻信號。在一例示性實施例中,該信號 為-有預定間隔的一系列脈衝。在該信號為具有—預定 間的-糸列脈衝之例示性實施例中,第一預定數目個脈 衝打開該第一液日# „ 碉,且第一預定數目個脈衝打開該繁 '一液晶光閥。 在用於提供三維視訊影像之一例示性實施例中,提供$ 像之方法包括:具有包含一第-液晶光閥及-第二液晶光 閃之4 —維觀看眼鏡;在少於一毫秒的時間内打開該第 液曰曰光閥,在—第一時間段中將該第-液晶光閥保持在 一最大光透射點;關閉該第一液晶光閥,且然後在少於— 宅秒的時間内;pq >^5· 円打開该第二液晶光閥;在一第二時間段中將 147661.doc •85- 201112736 5亥第二液晶光閥保持在一最大光透射點。該第一時間段對 應於為觀看者之左眼呈現一影像,且該第二時間段對應於 為觀看者之右眼呈現一影像。該信號傳輸器可傳輸一對應 於為左眼呈現之該影像的信號,及感測該信號,該三維觀 看眼鏡可使用该彳g號來判定何時打開該第一液晶光閥。在 例示性貫施例中,該信號為一紅外光。在一例示性實施 例中,該信號傳輸器將該信號投射向一反射器(其將該信 唬反射向S亥二維觀看眼鏡),且該眼鏡中之該信號接收器 偵測該經反射信號。在一例示性實施例中,該反射器為一 電影院螢幕。 在一例示性實施例中,信號傳輸器自一影像投影器接收 一時序信號。在一例示性實施例中,該信號為一射頻信 號。在-例示性實施财,該信號可為具有—預定間隔的 系列脈衝。第一預定數目個脈衝可打開該第一液晶光 閥,且第二預定數目個脈衝可打開該第二液晶光閥。 在種用於提供二維視訊影像之系統之一例示性實施例 中’一副眼鏡具有具有-第—液晶光閥之-第-透鏡及具 有-第二液晶光閥之一第二透鏡,該等液晶光閥具有一液 晶及小於-毫秒之一打開時間。一控制電路交替地打開該 第-液晶光閥及該S二液晶光閥’ 液晶定向被保持在-最大光透射點’直至該控制電路關閉該光閥。在一例示性 實施例中$步系統包含:-反射裝置,其位於該副眼 鏡前方;及-信號傳輸器,其將—信號發送向該反射裝 置。該信號對應於-為觀看者之—第—眼呈現之影像… 147661.doc -86 - 201112736 信號接收器感測自該反射裝置反射的信號,且然後,一控 制電路在為該第一目艮呈現㈣像的一時間段期間打開該第 一光閥。 在一例示性實施例中,該信號為一紅外光。在—例示性 實施例中’該反射器為一電影院螢幕。在一例示性實施例 中,該信號傳輸器自一影像投影器接收一時序信號。該信 號可為具有一預定間隔的一系列脈衝。在一例示性實施例 中,該信號為具有一預定間隔的一系列脈衝,且第一預定 數目個脈衝打開該第-液晶光閥,且第二預定數目個脈衝 打開該第二液晶光閥。 在用於提供三維視訊影像之一例示性實施例中,可藉由 具有包含一第一液日曰曰光閥及一第=液晶光間之—副三㈣ 2眼鏡;在少於一毫秒的時間内打開該第一液晶光閥丨在 -第-時間段中將該第一液晶光閥保持在—最大光透射 點;關閉該第-液晶光閥,且然後在少於—毫秒的時間内 打開。亥第—液晶光閥;且然後在一第二時間段中將該第二 液晶光閥保持在-最大光透射點而提供影像。該第一時間 段對應於為觀看者之—第—眼呈現—影像,且該第二時間 段對應於為觀看者之—第二眼呈現—影像。在—例示性實 施例中,該傳輸器傳輸-對應於為_[眼呈現之影像的 紅外線信號。該三維觀看目艮鏡感測該紅外線信號,且然後 使用該紅外線信號觸發該第—液晶光m卜在一例示 性實施例中’該信號為-紅外n例示性實施例中, 該反射器為—電影院螢幕。在-例示性實施例t,該信號 147661.doc -87- 201112736 傳輸器自-影像投影,收—時序信號。該時序信號可為 具有-預定間隔的一系列脈衝。在一些實施例中,第一預 定數目個脈衝打開該第-液晶光閥,i第二預定數目個脈 衝打開該第二液晶光閥。 在-例示性實施例中,_㈣於提供三維視訊影像之系 統包括-副眼鏡’其具有具有一第一液晶光閥之一第一透 鏡及具有-第二液晶光閥之一第二透鏡該等液晶光閥具 有一液晶及小於-毫秒之—打開時間。該系統亦可具有一 控制電路,其交替地打開該第一液晶光閥及該第二液晶光 閥且將液晶定向保持在一最大光透射點,直至該控制電 路關閉該光閥。^玄糸#介π ^ 1 D玄糸統亦可具有一測試系統,其包含:一 信號傳輸器;—信號接收H測試系㈣制電路,其 經調適成以可被一觀差·去4 g > 硯看者看見之一速率打開及關閉該第一 光閥及該第二光閥。在一例 例不〖生實鈿例中,該信號傳輸器 不自-投影器接收-時序信號。在—例示性實施例中,該 信號傳輸11發射—紅外線信號。該红外線信號可為-系列 脈衝。在另一例示{生眚尬心丨士 貫施例中,該信號傳輸器發射一射頻 U。該射頻信號可為一系列脈衝。 在種用於提供三維視訊影像之方法之—例示性 ::該方法可包括:具有包含-第-液晶光闊及一第」 =間=三維觀看眼鏡;在少於一毫秒的時間内打開 =一在-第-時間段中將該第-液晶光閥保 寺在-最大光透射點;關閉該第_液晶光閥,且然後在少 於-毫秒的時間内打開該第 伙日日无閥,及在一第二時間 147661.doc -88 - 201112736 ’又中將該第二液晶光閥保持在一最大光透射點。在一例示 性實施例中’該第一時間段對應於為觀看者之一第一眼呈 現一影像,且該第二時間段對應於為觀看者之一第二眼呈 現一影像。在一例示性實施例中,一傳輸器可將一測試信 號傳輸向該三維觀看眼鏡,該眼鏡接著藉由該三維眼鏡上 之一感測器接收該測試信號,且然後由於該測試信號而使 用一控制電路打開及關閉該第一液晶光閥及該第二液晶光 閥,其中該等液晶光閥以佩戴該眼鏡之一觀看者可觀察到 的速率打開及關閉。 在—例示性實施例中,該信號傳輸器不自一投影器接收 一時序信號。在一例示性實施例中,該信號傳輸器發射一 紅外線信號,其可為一系列脈衝。在一例示性實施例中, 該信號傳輸器發射一射頻信號。在一例示性實施例中,該 射頻信號為一系列脈衝。 一種用於提供三維視訊影像之系統之一例示性實施例可 包括一副眼鏡,其包含具有一第一液晶光閥之一第一透鏡 及具有一第二液晶光閥之一第二透鏡,該等液晶光閥具有 一液晶及小於一毫秒之一打開時間。該系統亦可具有一控 制電路,其交替地打開該第一液晶光閥及該第二液晶光 閥’將液晶定向保持在一最大光透射點,且然後關閉光 閥。在一例示性實施例中’一自動開啟(auto_on)系統包含 一 k號傳輸器、一信號接收器’且其中該控制電路經調適 成以—第一預定時間間隔啟動該信號接收器、判定該信號 接收器是否正在自該信號傳輸器接收一信號、在該信號接 147661.doc -89- 201112736 收器在一第二時間段内未自該信號傳輸器接收到該信號的 情況下撤銷啟動該信號接收器,且在該信號接收器自該信 號傳輸器接收到該信號的情況下以一對應於該信號的間隔 交替地打開該第一光閥及該第二光閥。 在一例示性實施例中,該第一時間段為至少兩秒,且該 第二時間段可為不超過100毫秒。在—例示性實施例中, 該等液晶光閥保持打開,直至該信號接收器自該信號傳輸 器接收一信號。 在一例示性實施例中,一種用於提供三維視訊影像之方 法可包括:具有包含一第一液晶光閥及一第二液晶光閥之 一副二維觀看眼鏡;在少於一毫秒的時間内打開該第一液 晶光閥;在一第一時間段中將該第一液晶光閥保持在一最 大光透射點;關閉該第一液晶光閥,且然後在少於一毫秒 的時間内打開s亥第二液晶光閥;及在一第二時間段中將該 第二液晶光閥保持在一最大光透射點。在一例示性實施例 中,該第一時間段對應於為觀看者之一第一眼呈現一影 像,且該第二時間段對應於為觀看者之一第二眼呈現一影 像。在一例示性實施例中,該方法可包括以一第一預定時 間間隔啟動一信號接收器、判定該信號接收器是否正在自 該信號傳輸器接收一信號、在該信號接收器在一第二時間 段内未自該信號傳輸器接收到該信號的情況下撤銷啟動該 k號接收斋,及在該信號接收器自該信號傳輸器接收到該 k號的情況下以一對應於該信號的間隔打開及關閉該第一 光閥及該第二光閥。在一例示性實施例中,該第一時間段 147661.doc -90· 201112736 為至少兩秒。在一例示性實施例中,該第二時間段為不超 過100毫秒。在一例示性實施例中,該等液晶光閥保持打 開,直至該信號接收器自該信號傳輸器接收一信號。 在一例示性實施例中,一種用於提供三維視訊影像之系 統可包括-副眼鏡,其包含具有一第一液晶光閥之一第_ 透鏡及具有-第:液晶光閥之—第二透鏡該等液晶光間 具有-液晶及小於—毫秒之一打開時間。該系統亦可具有 拴制電路’其可交替地打開該第一液晶光閥及該第二液 光閥 晶 且將液晶定向保持在一最大光透射點’直至該控 制電路關閉該光閥。在—例示性實施例中,該控制電路經 調適以保持該第-液晶光閥及該第二液晶光閥打開。在一 例7Γ陡Λ⑯例巾’該控制電路保持該等透鏡打開,直至該 控制電路彳貞_-时信號。在—例示性實施例中,施加 至該等液晶光閥之電壓在正負之間交替。 在一種用於提供三維視訊影像之裝置之-實施例中,一 副三維觀看眼鏡包含—第-液晶光閥及-第二液晶光閥, 其中該第-液晶光閥可在少於一毫秒的時間内打開,其中 該第二液晶光閥可在少於-毫秒的時間内打開;以一使該 專液晶光閥看上去氧# 曰一 Λ 去為透明透鏡之速率打開及關閉該第一液 拉=t Θ第—液晶光閥。在—實施例中,該控制電路保 二:> 見打開,直至該控制電路偵測到-同步信號。在 -貫:例中,該等液晶光閥在正負之間交替。 站可勺&實施财,—種用於提供三維視訊影像之系 ^鏡’其包含具有-第-液晶光閥之-第- 147661.doc -91- 201112736 透鏡及具有-第二液日日日光閥之—第三透鏡,該等液晶光間 具有-液晶及小於一毫秒之一打開時間。該系統亦可包括 一控制電路,其交替地打開該第—液晶光閥及該第二液晶 光閥,且將液晶保持在一最大光透射點,直至該控制電路 關閉該光閥。在一例示性實施例中,一發射器可提供—同 步乜唬,其中該同步信號之一部分經加密。可操作地連接 至该控制電路之一感測器可經調適以接收該同步信號,且 可僅在接收到一加密信號之後才以對應於該同步信號之一 型樣打開及關閉該第一液晶光閥及該第二液晶光閥。 在一例示性實施例中,該同步信號為具有一預定間隔的 一系列脈衝。在一例示性實施例中,該同步信號為具有一 預定間隔的一系列脈衝,且第—預定數目個脈衝打開該第 一液晶光閥’且第二預定數目個脈衝打開該第二液晶光 閥。在一例示性實施例中,該系列脈衝之一部分經加密。 在一例示性實施例中,該系列脈衝包括預定數目個未經加 密脈衝隨後接著預定數目個經加密脈衝。在一例示性實施 例中’僅在接收到兩個連續加密信號之後才以對應於該同 步信號之一型樣打開及關閉該第一液晶光閥及該第二液晶 光閥。 在一種用於提供三維視訊影像之方法之一例示性實施例 中’該方法可包括:具有包含一第一液晶光閥及一第二液 晶光閥之一副三維觀看眼鏡;在少於一毫秒的時間内打開 該第一液晶光閥;在一第一時間段中將該第一液晶光閥保 持在一最大光透射點;關閉該第一液晶光閥,且然後在少 147661.doc -92- 201112736 於一窀秒的時間内打開該第二液晶光閥;及在一第二時間 段中將§亥第二液晶光閥保持在一最大光透射點。在一例示 性實施例中,該第一時間段對應於為觀看者之一第一眼呈 現一衫像,且該第二時間段對應於為觀看者之一第二眼呈 現一影像。在一例示性實施例中,一發射器提供—同步信 號’其中該同步信號之一部分經加密。在一例示性實㈣ 中,一感測器可操作地連接至該控制電路且經調適以接收 该同步#號,且僅在接收到一加密信號之後才以對應於該 同步信號之一型樣打開及關閉該第一液晶光閥及該第二液 晶光閥。 在-例示性實施例中,該同步信號為具有一預定間隔的 -系列脈衝。在一例示性實施例t,f亥同步信號為具有一 預定間隔的U脈衝,且其巾第―預定數目個脈衝打開 該第-液晶光閥,且其中第二預定數目個脈衝打開該第二 液晶光閥。在-例示性實施例中,該系列脈衝之—部分經 加密。在—例示性實施财,該㈣脈衝包括預定數目個 純加密脈彳請後接著預定數目個經加密脈衝。在一例示 〖生只%例中’僅在接收到兩個連續加密信號之後才以對應 於該同步信號之一型樣打開及關閉該第一液晶光閱及㈣ 一液晶光閥。 應理解,在不脫離本發明之料的情況下,可對上述内 容進行改變。儘管已W述了具體實施例,但在不脫 離本發明之精神或教示的情沉下,熟習此項技術者可進行 修改。所描述的實施例僅為例示性的且非限制性的。許多 147661.doc -93- 201112736 改變及修改係可能的且在本發明之範疇内。此外,該等例 示性實施例之一或多個元素可全部或部分地與其他例示性 貫施例中之一或多者之一或多個元素組合或取代其他例示 性實施例中之一或多者之一或多個元素。因此,保護範疇 不限於所描述之實施例,而是僅受以下申請專利範圍限 制’申請專利範圍之範疇應包括申請專利範圍之標的的所 有等效物β 【圖式簡單說明】 圖1為一種用於提供三維影像之系統之一例示性實施例 的說明。 圖2為-種用於操作圖i之系統之方法之一例示性實施例 的流程圖。 圖3為圖2之方法之操作的圖形說明。 圖4為圖2之方法之操作之—例示性實驗實施例的圖形說 明。 之方法之一例示性實施例 之方法之一例示性實施例 之方法之一例示性實施例 圖5為一種用於操作圖1之系統 的流程圖。 圖6為一種用於操作圖丨之系統 的流程圖。 圖7為一種用於操作圖丨之系統 的流程圖。 圖8為圖7之方法之操作的圖形說明。 圖9為一種用於操作圖丨之系 的流程圖。 統之方法之一例示性實施例 147661 .doc -94· 201112736 圖10為圖9之方法之操作的圖形說明。 圖11為一種用於操作圖1之系統之方法之一例示性實施 例的流程圖。 圖12為圖11之方法之操作的圖形說明。 ' 圖13為一種用於操作圖1之系統之方法之一例示性實施 . 例的流程圖。 圖14為圖13之方法之操作的圖形說明。 圖15為一種用於操作圖1之系統之方法之一例示性實施 例的流程圖。 圖16為一種用於操作圖1之系統之方法之一例示性實施 例的說明。 圖17為圖1之系統的三維目艮鏡之一例示性實施例的說 明。 圖18、圖18a、圖18b、圖18c及圖18d為三維眼鏡之一例 示性實施例的示意說明。 圖19為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 的光閥控制器之數位控制的類比開關的示意說明。 圖20為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 ' 的光閥控制器之數位控制的類比開關、光閥及CPU之控制 信號的示意說明。 圖21為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之操作之一例示性實施例的流程圖說明。 圖22為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之細作之一例示性實施例的圖形說明。 147661.doc -95- 201112736 圖23為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之操作之一例示性實施例的流程圖說明。 圖24為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之操作之一例示性貫施例的圖形說明。 圖25為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之操作之一例示性實施例的流程圖說明。 圖26為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之操作之一例示性實施例的圖形說明。 圖27為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之操作之一例示性實施例的流程圖說明。 圖28為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之操作之一例示性實施例的圖形說明。 圖29為圖18、圖18a、圖18b、圖18c及圖18d之三維目『於 之操作之一例示性實施例的圖形說明。 圖30、圖30a、圖30b及圖30c為三維眼鏡之—例示性實 施例的示意說明。 圖3 1為圖30、圖30a、圖30b及圖30c之三維眼鏡的光^ 控制器之數位控制的類比開關的示意說明。 圖32為圖30、圖30a、圖30b及圖30c之三維眼金、 現的光閥 控制器之數位控制的類比開關之操作的示意說明。 圖33為圖3〇、圖3〇a、圖3〇b及圖3〇c之三 一- *眠鏡之操作 之一例示性實施例的流程圖說明。 圖34為圖3〇、圖3〇a、圖3〇b及圖3〇c之三 眼鏡之操作 例不性實施例的圖形說明。 147661.doc -96- 201112736 維眼鏡之操作 維眼鏡之操作 維眼鏡之操作 圖35為圖30、圖30a、圖30b及圖30c之三 之一例示性實施例的流程圖說明。 圖36為圖30、圖30a、圖30b及圖30c之三 之一例示性實施例的圖形說明。 圖37為圖30、圖30a、圖30b及圖30c之三 之一例示性實施例的流程圖說明。 二維眼鏡之操作 圖38為圖30、圖30a、圖30b及圖30c之 之一例示性實施例的圖形說明。 圖39為圖30、圖30a、圖30b及圖30c之=%目p拉 、伞眠鏡之操作 之一例示性實施例的流程圖說明。 圖40為圖3〇、圖30a、圖30b及圖30c之三維眼鏡之操作 之一例示性實施例的流程圖說明。 圖41為圖30、圖30a、圖30b及圖3〇c之三維眼鏡之操作 之一例示性實施例的圖形說明。 圖42為圖30、圖30a、圖30b及圖30c之三维眼鏡之操作 之一例示性實施例的流程圖說明。 圖43為圖3〇、圖3〇a、圖勘及圖3()e之三維眼鏡之操作 之一例示性實施例的圖形說明。 圖44為三維眼鏡之—例示性實施例的俯視圖。 圖45為圖44之三維眼鏡的後視圖。 圖46為圖44之三維眼鏡的仰視圖。 圖47為圖44之三維眼鏡的正視圖。 圖48為圖44之三維眼鏡的透視圖。 圖49為使⑽匙來操縱圖44之三維眼鏡之電池的外殼蓋 147661.doc -97- 201112736 的透視圖。 圖5〇為用以操縱圖44之三維眼鏡之電池的外殼蓋之鑰匙 的透視圖。 圖51為圖44之二維眼鏡之電池的外殼蓋之透視圖。 圖52為圖44之三維眼鏡的側視圖。 圖53為圖44之二維眼鏡之外殼蓋、電池及〇型環密封件 之側視透視圖。 圖54為圖44之三維眼鏡之外殼蓋、電池及〇型環密封件 之仰視透視圖。 圖55為圖44之眼鏡之—替代實施例及用以操縱圖5〇之外 设蓋的鑰匙之一替代實施例的透視圖。 圖56為一在例示性實施例中之一或多者中使用的信號感 測器之一例示性實施例之示意說明。 圖57為一適合使用於圖56之信號感測器的例示性資料信 號之圖形說明。 圖58為一種用於調節用於三維眼鏡中之一同步信號之系 統之一例示性實施例的方塊圖。 圖59為一種用於調節用於三維眼鏡中之一同步信號之系 統之一例示性實施例的方塊圖。 圖59a至圖59d為圖58及圖59之系統之操作之例示性實驗 結果的圖形說明。 圖60、圖60a及圖60b為三維眼鏡之一例示性實施例之示 意說明。 圖61為一種用於調節用於三維眼鏡中之一同步信號之系 14766l.doc -98- 201112736 統之一例示性實施例的方塊圖。 圖62為一種供佩戴三維眼鏡之一使用者觀看三維影像之 系統之一例示性實施例的方塊圖。 圖63及圖64為一種用於與三維眼鏡一起使用之顯示系統 之一例示性實施例的方塊圖。 圖65及圖66為圖63及圖64之顯示系統之操作之例示性實 施例的圖形說明。 圖67至圖70為圖63及圖64之顯示系統之操作之例示性實 施例的流程圖說明》 【主要元件符號說明】 100 糸統 102 電影螢幕 104 三維眼鏡 106 左光閥 108 右光閥 110 信號傳輸器 110a 中央處理單元(CPU) 112 信號感測器 114 中央處理單元 116 左光閥控制器 118 右光閥控制器 120 電池 122 電池感測器 130 投影器 I47661.doc 201112736 200 左右光閥方法/左右鏡頭光閥序列 202ba 高電壓 202bb 無電壓 202bc 小止擋電壓 202da 高電壓 202db 無電壓 202dc 小止擋電壓 400 光透射 402 光透射 500 操作方法 600 操作方法 700 操作方法 800 時脈信號 802 時脈循環 804 組態資料信號 806 資料脈衝信號 900 操作方法 902a 時脈信號 902aa 南脈衝 1100 暖機操作方法 1104a 電壓信號 1104b 電壓信號 1300 方法 1304a 電壓信號 147661.doc -100- 201112736 1304b 電壓信號 1500 監視電池120之方法 1600 測試 1600a 信號傳輸器 1600b 測試信號 1700 電荷泵 1800 三維眼鏡 1802 左光閥 1804 右光閥 1806 左光閥控制器 1808 右光閥控制器 1810 中央處理單元 1812 電池感測器 1814 信號感測器 1816 電荷泵 1900 功能圖 2100 方法 2300 暖機操作方法 2304a 電壓信號 2304b 電壓信號 2500 操作方法 2504a 電壓信號 2504b 電壓信號 2700 監視電池120之方法 147661.doc • 101 - 201112736 3000 三維眼鏡 3002 左光閥 3004 右光閥 3006 左光閥控制器 3008 右光閥控制器 3010 共同光閥控制器 3012 中央處理單元 3014 信號感測器 3016 電荷泵 3018 電壓供應器 3100 功能圖 3300 方法/正常執行操作模式 3500 暖機操作方法 3700 操作方法 3900 操作方法 4000 操作方法 4200 操作方法 4402 框架前部 4402a 右翼 4402b 左翼 4404 鼻樑架 4406 右鏡腿 4406a 隆脊 4408 左鏡腿 •102· 147661 .doc 201112736 4408a 隆脊 4410 右透鏡開口 4412 左透鏡開口 4414 蓋 4415 蓋内部 4416 〇型環密封件 4417 觸點 4418 楔緊元件 4420 凹陷 4422 输匙 4424 突起 4426 输匙 5600 信號感測器 5602 窄帶通濾波器 5604 解碼器 5604 CPU 5606 信號傳輸器 5700 信號 5702 資料位元 5704 時脈脈衝 5800 系統 5802 信號感測器 5804 正規器 5806 增益控制元件 147661.doc -103 - 201112736 5810 放大器及脈衝調節元件 5812 同步振幅及形狀處理單元 5902 同步信號 5904 信號 5906 信號 5908 回镇控制信號 6000 三維眼鏡 6002 信號感測器 6100 系統 6102 動態範圍減小及對比度增強元件 6202 投影器 6202a 内建檔案伺服器 6204 顯示表面 6206 網路 6300 顯示系統 6305 光調變器陣列 6310 光源 6315 顯示平面 6320 控制器 6325 前端單元 6330 記憶體 6350 序列產生器 6355 同步信號產生器 6360 脈寬調變(PWM)單元 147661.doc -104- 201112736 6510 6520 6530 6540 6542 6544 6546 6548 6550 6552 6554 6556 6558 6560 6600 6605 6700 6800 6900 7000 左眼光閥狀態 右眼光閥狀態 高階視圖/狀態圖 光閥狀態之單一循環 間隔 狀態轉變間隔 間隔 方框 脈衝 脈衝 方框 間隔 方框 間隔 同步信號 時間 方法 方法 方法 方法 A 控制輸入信號/微控制器之輸出信號/ 控制信號 B 控制輸入信號/微控制器之輸出信號/ 控制信號 147661.doc - 105 - 201112736 c 微控制器之輸出信號/控制信號 Cl 電容器 C2 電容器 C3 電容器 C4 電容器 C5 電容器 C6 電容器 C7 電容器 C8 電容器 C9 電容器 CIO 電容器 Cll 電容器 C12 電容器 C13 電容器 C14 電容器 C15 電容器 C100 電容器 D 微控制器之輸出信號/控制信號 D1 肖特基二極體 D2 光電二極體 D3 肖特基二極體 D5 肖特基二極體 D6 肖特基二極體 D7 齊納二極體 147661.doc -106- 201112736 E 微控制器之輸出信號/控制信號 F 輸出信號 G 輸出信號 INHIBIT(INH) 控制輸入信號 IN_A 輸入信號 IN_B 輸入信號 LI 電感器 LCD1 左透鏡/左光閥 LCD2 右透鏡/右光閥 Qi MOSFET Q2 電晶體 Q100 場效電晶體 Q101 NPN電晶體/輸出偵測器 R1 電阻器 R2 電阻器 R3 電阻器 R4 電阻器 R5 電阻器 R6 電阻器 R7 電阻器 R8 分壓器組件/電阻器 R9 電阻器 RIO 分壓器組件/電阻器 Rll 電阻器 147661.doc -107- 201112736 R12 電阻器 R13 電阻器 R14 電阻器 R15 電阻器 R16 電阻器 R100 電阻器. R101 電阻器 R102 電阻器 R511 電阻器 R512 電阻器 RA3 輸入控制信號 RA4 控制信號 RC4 控制信號 RC5 控制信號 U1 數位控制類比開關 U2 數位控制類比開關 U3 微控制器/運算放大器 U4 數位控制類比開關 U4 微控制器 U5 運算放大器 U5-1 運算放大器 U5-2 運算放大器 U6 運算放大器 U6 電力偵測器/數位控制類比開關 147661.doc -108- 201112736 VEE 輸入電壓 X 輸出信號 xo 開關I/O信號 XI 開關I/O信號 X2 開關I/O信號 X3 開關I/O信號 Y 輸出信號 YO 開關I/O信號 Y1 開關I/O信號 Y2 開關I/O信號 Y3 開關I/O信號 Z 輸出信號 zo 開關I/O信號 Z1 開關I/O信號 147661.doc - 109 -The negative impact can be small. formula! ±.  .  , A rare J or a darker color (such as blue) can be used to display the unsynchronized signal. It is better to use gh Μ ι with blue, because the use of darker colors makes the sync signal less detectable by the viewer. Although the recording uses single-color to display the sync signal, multiple colors can be used. For example, the information may be encoded with the color used to display the sync signal. Any color can be used in a display system that does not utilize a solid color sequence. In addition, although seven-color multi-primary color display systems are discussed, other display systems having different numbers of display colors can be used and should not be construed as being limited to the scope or spirit of the exemplary embodiments. In an exemplary embodiment, the synchronization signal is displayed when the display of the synchronization signal and the prevention of the viewer's detection and synchronization (4) are both turned off and the right eye is in the off state. As illustrated in Figure 65, state diagram 6530 displays a block 6558 representing the pwM control command for displaying the synchronization signal, which is included in intervals 6544 and 656A. The duration of the intervals 6544 and 656 可 may depend on a number of factors, such as the complexity of the synchronization signal, the presence of any code of the synchronization signal, and the information carried by the synchronization signal towel. Additionally, the duration of the intervals 6544 and 6560 may depend on factors such as the light valve transition time. For example, if the light valve transition time is long, the intervals 6544 and 6560 should also be long to ensure that the light valve is closed before the synchronization signal is displayed. Alternatively, it is not necessary to produce the same 147661 in the entire interval represented by block 6558. Doc -75- 201112736 Step (4). Although it is desirable for the viewer to be unable to _ to the sync signal, the brightness of the black level of the display system is detectable. The display of the _ number may refer to Figure 67. In the case of „你丨+ 眷+Λ», in the example, the operating frequency of the system is 6: ^糸,. First, a method of 67 〇〇 is applied. In the method, (4) is not derived from one of the first image streams ^ Φ , ^ image. In an exemplary implementation, the entire 2 is to be displayed progressively or staggered (such as 'display duration limit, image quality ^, etc.):; :::: (4) an image-part. For example, the first image ρ - field (Singlefield) can be displayed. After it has been shown from the first shadow two = first image - then at 671. In the middle, it can be displayed from the image...the heart "like the second-time, can display the entire second image of one part of the image. However, the displayed first image = and the displayed second image amount are preferably substantially the same. Or, 8 sub-differs can be different. = After the first image and the second image, then in 6715, the conventional 6-display can display the -synchronization signal. However, the nature of the synchronization signal = occurs at any time and is used to display the synchronization signal - an exemplary detector: = when the viewer of the projection display system may not be visually in the valve / target. For example, the viewer may be using electronic light as an eyepiece, so that the synchronized shadow display system can be displayed when the light on each eye is turned off to determine when to close the light valve because (eg, D) the dry display system is typically During the initial configuration operation, in a previously displayed 'step signal' or at the manufacturer's specified duration (which is the projection 147661. (1, -76- 201112736 display system and viewer mechanism (for example, it may be 3D glasses 104, deleted, 3_ or 6_, which may or may not be modified according to the teaching π of the figure (4)) both are known) It is specified when the light valve will be closed. However, projection display system 63G0 does not necessarily need to determine when to properly switch the light valve to display a synchronization signal at the beginning or end of a period of time (such as block 6558) that is not intended for any one of the PWM control sequences, for viewing. The manufacturer (for example, it may be a 3D glasses 1〇4, 18〇〇, 3〇〇〇 or 6〇〇〇, which may or may not be modified according to the teachings of Figures 58 to 6) Set the time of the light valve transition to mask (〇 )) the synchronous L number. In 6715, the projection display system 6300 has displayed a synchronization signal, and the projection display system can return an image (or a portion of the image) from the first video stream and the first image stream. Referring now to Figure 68, in an exemplary embodiment, during operation of system 63, the system implements a method 6800 in which, in 68〇5 and 68 10, the viewer mechanism (e.g., Can be 3D glasses 104, 1800, 3 000 or 6000, which may or may not be modified according to the teachings of Figures 58-61) to find a synchronization signal (in 6805) and check to see if the signal detected by the mechanism is Is the sync signal (in 6810). If the signal is not synchronous t number ' then the viewer mechanism (eg 'which may be 3D glasses 4, 1800, 3000 or 6000, which may or may not be modified according to the teachings of FIGS. 58 to 61) may return to 6805 Looking for a sync signal. If the signal is a synchronization signal, then the viewer mechanism (eg, it may be two-dimensional glasses 104, 1800, 3 000 or 6000, which may or may not be modified according to the teachings of FIGS. 58-61) may await a rule The amount of time (at 6815 147661. Doc -77· 201112736) and then performing a prescribed first action (in 6820) such as changing the state transition. The viewer mechanism (eg, it may be 3D glasses 104, 1800, 3000 or 60 〇〇, It may or may not be modified according to the teachings of Figures 58-61) may then wait for another specified amount of time (in 6825) and then perform another prescribed second action (in 683〇). After the prescribed second action is completed, the viewer mechanism (eg, it may be a three-dimensional eyeglass frame 4, 1800, 3000 or 6000, which may or may not be modified according to the teachings of FIGS. 58-61) may return 68 Look for the sync signal in 〇5. Referring now to Figure 69, in an exemplary embodiment, during operation of system 63, the system implements a method 6900 in which synchronization associated with a left eye image is displayed in 69〇5 The signal (in 6905) is then displayed in 6910 in the left eye image. After displaying the left eye image in 671 在, in 6915, the display system 63 〇〇 can display a synchronization signal associated with a right eye image, and then display the right eye image in 692 。. In an exemplary embodiment, the method can be used in a display system that can be on the (four) (four) sync signal side. In this display system, the previous sync signal cannot be used to determine when to transition, and only the right singer will transition when it detects an associated sync signal. Referring now to Figure 70', during an exemplary embodiment, during system 63, the system implements a method in which a synchronization signal is detected in . In the 7005, the ππ-right sync signal contains a start sequence and/or a stop sequence with a few j, and the #- Ν can assist in the detection of the sync signal. In addition, if only in the viewer mechanism (for example, it can be a three-dimensional eye | 104, 1800, 3000 or 6000, it may or may not be according to Figure 58 to β 147661. The teaching of doc-78-201112736 is not modified. When the synchronization signal is displayed in a prescribed state (such as the light of the viewer mechanism), the control hardware in the viewer mechanism can be configured to be in the specified state. Try sync signal detection. Once the viewer mechanism (eg, 'which may be 3D glasses ig4, delete, face or _〇' may or may not be modified according to the teachings of FIGS. 58-61) the sync signal is detected 'in 7〇1〇 Receive the sync signal completely. If necessary, in 7〇15, the synchronization signal can be solved. After receiving and decoding the synchronization signal, if desired, in 7020, the viewer mechanism (eg, it may be 3D glasses 104, 1800, 3000, or 6_, which may or may not be modified in accordance with the teachings of FIGS. 58-61) The actions specified by the synchronization signal or specified in the synchronization signal can be performed. A liquid crystal light valve has a liquid crystal which is rotated by applying a voltage to the liquid crystal, and then the liquid crystal achieves a light transmittance of at least 25% in less than one millisecond. When the liquid crystal is rotated to a point having maximum light transmission, a device stops the rotation of the liquid crystal at the maximum light transmission point, and then maintains the liquid crystal at the maximum light transmission point for a period of time. A computer program can be installed on a machine readable medium to facilitate any of these embodiments. A system presents a three-dimensional video image by using a pair of liquid crystal shutter glasses having a first liquid crystal light valve and a second liquid crystal light valve, and adapted to open a control circuit of the first liquid crystal light valve. The first liquid crystal light valve can be opened to a maximum light transmission point in less than one millisecond. At this time, the control circuit can apply a stop voltage to the first liquid crystal light valve in a first period of time. Maintaining at the point of maximum light transmission, and then closing the 14766I. Doc -79· 201112736 A liquid crystal light valve. Next, the control circuit opens the first: liquid crystal light valve, wherein the second liquid crystal light valve opens to a maximum light transmission point in less than - milliseconds, and then applies a stop voltage to - at the second time The second liquid crystal light valve is held at the maximum light transmission point in the segment, and (4) the second liquid crystal light valve is closed. The first time period corresponds to presenting an image to the viewer for the first eye, and the second time period corresponds to presenting an image for the second eye of one of the viewers. A computer program installed on a machine readable medium can be used to facilitate any of the embodiments described herein. In an exemplary embodiment, the control circuit is adapted to determine the first time period and the second time period using a synchronization signal. In an exemplary embodiment, the stop voltage is 2 volts. In an exemplary embodiment, the maximum light transmission point transmits more than 32% of light. In an exemplary embodiment, a transmitter provides a synchronization signal, and the synchronization L causes the control circuit to turn on the liquid crystals. One of the light valves. In an exemplary embodiment, the synchronization signal includes an encrypted signal. In an exemplary embodiment, the control circuitry of the 3D glasses will operate only after verifying an encrypted signal. In an exemplary embodiment, the control circuit has a battery sensor and can be adapted to provide an indication of a low battery condition. The indication of a low battery power condition may be that a liquid crystal light valve is turned off for a period of time and then turned on for a period of time. In an exemplary embodiment, the control circuit is adapted to detect a synchronization signal and to begin operating the liquid crystal shutters after detecting the synchronization signal. 147661. Doc-80 - 201112736 In an exemplary embodiment, the encrypted signal will only operate a pair of liquid crystal glasses having a control circuit adapted to receive the encrypted signal. In one embodiment, a test signal is operated at a rate that can be seen by a person wearing the pair of liquid crystal shutter glasses. In an exemplary embodiment, a pair of glasses has a first lens having a first liquid crystal shutter and a second lens having a second liquid crystal shutter. The liquid crystal light valves each have a liquid crystal and alternately open the first liquid crystal light valve and one of the second liquid crystal light valve control circuits. When the liquid crystal shutter is opened, the 'liquid crystal orientation is maintained at a maximum light transmission point' until the control circuit closes the light valve. In an example, the liquid crystal is held at the maximum light transmission point. The maximum light transmission point can transmit more than 32% of the light. In an exemplary embodiment, a transmitter provides a synchronization signal and the synchronization signal causes the control circuit to open one of the liquid crystal shutters. In some embodiments, the (four) step signal includes an encrypted signal. In an exemplary embodiment, the control circuit will only operate after verifying the encrypted signal. In an exemplary embodiment, the control circuit includes a battery sensor and can be adapted to provide - electricity; also a power condition - a towel. This indication of a low battery condition can be that the liquid crystal shutter is closed for a period of time and then opened during the - time period. In an exemplary embodiment, the control circuit is adapted to detect a synchronization signal and to begin operating the liquid crystal shutters after it detects the synchronization signal. The encrypted signal can operate only a pair of liquid crystal glasses having a control circuit adapted to receive the encrypted signal. u 147661. Doc-81 - 201112736 In an exemplary embodiment, the test signal operates the liquid crystal light valves at a rate that can be seen by a person wearing the pair of liquid crystal valve glasses. In the exemplary embodiment, 'a three-dimensional video image is presented to a viewer by using liquid crystal light valve glasses; opening the first liquid crystal light valve in less than one millisecond; in a first time period Holding the first liquid crystal light valve at a maximum light transmission point; turning off the first liquid day (four), followed by less than - milliseconds (four) of the second liquid crystal light valve; and then at - the second time period The second liquid crystal light valve is maintained at a maximum light transmission point. The first time period corresponds to presenting an image to one of the viewers, and the second time period corresponds to presenting an image to the second eye of one of the viewers. In the exemplary embodiment, the liquid crystal stop is held at a maximum transmission point by a stop voltage. The stop voltage can be 2 volts. In one example of the dry embodiment, the maximum light transmission point transmits more than 32% of the light. ', In an exemplary embodiment, the '-transmitter provides a synchronization signal that causes the (4) circuit to open one of the liquid crystal light valves. In this embodiment the sync signal contains an encrypted signal. In an exemplary implementation of your 丨φ, —α & example, the control circuit will only operate after the verification signal. Also in an exemplary embodiment φ. .  j-Battery sensor monitors the power in the battery. In the case of the embodiment, the control circuit is adapted to provide a state in which the pool power is low---^^, and the power is not. The indication of a low battery power condition can be that a liquid crystal light valve is turned off during a period of time and then turned on for a period of time. In an exemplary embodiment Φ _ _, , ^ , the edge control circuit is adapted to detect a synchronization 147661. Doc -82· 201112736 signals and starts operating the liquid crystal light valves after detecting the synchronization signal. In the case of no! In the embodiment, the encrypted signal will only operate as a pair of liquid crystal glasses with a control circuit adapted to the mun number. In the example, a test signal is operated between the liquid crystal lights at a rate that can be seen by the sub-liquid crystal lens # human. In an embodiment, a system for providing a three-dimensional video image: a gram-including sub-glass having a first lens having a first liquid crystal light valve and a liquid crystal light valve - a second lens. The liquid crystal light valves can have /night crystal and can be turned on in less than one millisecond. A control circuit: the first liquid crystal light valve and the second liquid crystal light valve are opened and the liquid crystal orientation is maintained at a maximum light transmission point until the control circuit closes the light valve. In addition, the 'shai system can have a low battery power indicator, which includes a battery, a sensor capable of determining the amount of power remaining in the battery that is 'control' in the remaining power in the battery. Is R to operate the pair of glasses for a longer period of time than the predetermined time; and an indicator 'to send a viewer to the viewer if the pair of glasses cannot be operated for a longer period of time than the predetermined time signal. In an exemplary embodiment, the battery power low indicator turns the left liquid shutter and the right liquid crystal shutter on and off at a predetermined rate. In an exemplary embodiment, the predetermined amount is greater than three hours. In an exemplary embodiment, the battery power low indicator is operable for at least three days after the amount of power remaining in the battery is insufficient to allow the pair of glasses to operate for a longer period of time than the amount of time. In an exemplary embodiment, the controller can draw the remaining power in the battery by measuring the time of the remaining sync pulses in the battery. Doc • 83- 201112736 In an exemplary embodiment for providing a three-dimensional video image, by having a three-dimensional viewing glasses including a first liquid crystal light valve and a second liquid crystal light valve; in less than one millisecond Opening the first liquid crystal light valve in a time period; maintaining the first liquid crystal light valve at a maximum light transmission point in a first time period; closing the first liquid crystal light valve 'i and then in a time less than - millisecond The second liquid crystal light valve is opened; the second liquid crystal light valve is maintained at a maximum light transmission point for providing a image in a second period of time. The first time period corresponds to presenting an image 'to the first eye of one of the viewers' and the second time period corresponds to presenting the image to the second eye of the viewer. In this exemplary embodiment, the three-dimensional viewing glasses sense the amount of power remaining in the battery, and determine whether the remaining amount of power in the battery is sufficient for the pair of glasses to be fined for a longer period of time than a predetermined time, and A battery power low signal is then indicated to the viewer in the event that the glasses cannot operate for a longer period of time than the predetermined time. The finger can be used to open and close the lenses at a predetermined rate. The battery will last for a predetermined amount of time of more than three hours. In an exemplary embodiment, it is determined that the amount of power remaining in the battery is insufficient to allow the pair of glasses to operate after a period of time longer than the predetermined amount of time. In an exemplary embodiment, the controller determines the amount of power remaining in the battery by measuring the time of the number of synchronization pulses that the battery can continue to pass. In an exemplary embodiment for providing a two-dimensional video image, the optical lens includes a first lens having a first liquid crystal light valve and a second lens having a second liquid crystal light valve. Liquid crystal light β I47661. Doc -84 - 201112736 There is a liquid crystal and less than one millisecond - hit the temple. A control circuit alternately opens the first liquid crystal shutter and the second helium liquid daylight valve, and the liquid crystal orientation is maintained at a maximum light transmission point until the control circuit closes the light valve. In addition, the 'synchronization device includes: · a sister-in-law set ^ ★ 唬 轮 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , And a control circuit that opens the first _le valve during a period of time for presenting the image to the first eye of the shai for 4 weeks. In an exemplary embodiment, '5H' is an infrared light. In an exemplary embodiment, the signal transmitter projects the signal toward a reflection i the signal is reflected by the reflector, and the signal receiver detects the reflected k number. In some real J τ β dam reflectors for a cinema firefly; In the exemplary embodiment, the signal transmitter is followed by an image projector (such as a 'movie projector). In an exemplary embodiment, the signal is a - radio frequency signal. In an exemplary embodiment, the signal is a series of pulses having a predetermined interval. In an exemplary embodiment in which the signal is a predetermined pulsed pulse, the first predetermined number of pulses turns on the first liquid day # „ , and the first predetermined number of pulses turns on the complex liquid crystal In an exemplary embodiment for providing a three-dimensional video image, the method of providing an image includes: having a first liquid crystal light valve and a second liquid crystal light flashing 4-dimensional viewing glasses; in less than one Opening the first liquid calender valve in milliseconds, maintaining the first liquid crystal light valve at a maximum light transmission point in a first period of time; closing the first liquid crystal light valve, and then at less than In the second time; pq >^5· 円 open the second liquid crystal light valve; in a second time period will be 147661. Doc •85- 201112736 5H The second liquid crystal light valve is maintained at a maximum light transmission point. The first time period corresponds to presenting an image to the left eye of the viewer, and the second time period corresponds to presenting an image to the right eye of the viewer. The signal transmitter can transmit a signal corresponding to the image presented for the left eye and sense the signal, and the three-dimensional viewing glasses can use the 彳g number to determine when to open the first liquid crystal light valve. In an exemplary embodiment, the signal is an infrared light. In an exemplary embodiment, the signal transmitter projects the signal to a reflector that reflects the signal to the two-dimensional viewing glasses, and the signal receiver in the glasses detects the reflected signal. In an exemplary embodiment, the reflector is a cinema screen. In an exemplary embodiment, the signal transmitter receives a timing signal from an image projector. In an exemplary embodiment, the signal is a radio frequency signal. In an exemplary implementation, the signal can be a series of pulses having a predetermined interval. A first predetermined number of pulses can open the first liquid crystal shutter, and a second predetermined number of pulses can open the second liquid crystal shutter. In an exemplary embodiment of a system for providing a two-dimensional video image, 'a pair of glasses has a first lens having a - liquid crystal light valve and a second lens having a second liquid crystal light valve, The liquid crystal light valve has a liquid crystal and an opening time of less than - millisecond. A control circuit alternately opens the first liquid crystal light valve and the S liquid crystal light valve 'the liquid crystal orientation is maintained at - the maximum light transmission point' until the control circuit closes the light valve. In an exemplary embodiment, the $step system includes: a reflective device located in front of the secondary eyeglass; and a signal transmitter that transmits a signal to the reflective device. The signal corresponds to - the image presented by the viewer - the first eye... 147661. Doc -86 - 201112736 The signal receiver senses the signal reflected from the reflecting device, and then a control circuit opens the first light valve during a period of time during which the (four) image is presented for the first target. In an exemplary embodiment, the signal is an infrared light. In the exemplary embodiment, the reflector is a cinema screen. In an exemplary embodiment, the signal transmitter receives a timing signal from an image projector. The signal can be a series of pulses having a predetermined interval. In an exemplary embodiment, the signal is a series of pulses having a predetermined interval, and a first predetermined number of pulses opens the first liquid crystal shutter and a second predetermined number of pulses opens the second liquid crystal shutter. In an exemplary embodiment for providing a three-dimensional video image, by having a first liquid day light valve and a third liquid crystal, a pair of three (four) 2 glasses; in less than one millisecond Opening the first liquid crystal light valve in time to maintain the first liquid crystal light valve at a maximum light transmission point in the -first time period; closing the first liquid crystal light valve, and then in less than - milliseconds turn on. The first liquid crystal light valve; and then the second liquid crystal light valve is maintained at the -maximum light transmission point for a second period of time to provide an image. The first time period corresponds to a viewer-first-eye presentation-image, and the second time period corresponds to a viewer-second eye presentation-image. In an exemplary embodiment, the transmitter transmits - corresponding to an infrared signal that is an image of the eye. The three-dimensional viewing eyepiece senses the infrared signal, and then uses the infrared signal to trigger the first liquid crystal light. In an exemplary embodiment, the signal is an infrared. In an exemplary embodiment, the reflector is - Cinema screen. In the exemplary embodiment t, the signal is 147661. Doc -87- 201112736 Transmitter self-image projection, receiving - timing signal. The timing signal can be a series of pulses having a predetermined interval. In some embodiments, a first predetermined number of pulses opens the first liquid crystal shutter, and a second predetermined number of pulses opens the second liquid crystal shutter. In an exemplary embodiment, the system for providing a three-dimensional video image includes a pair of glasses having a first lens having a first liquid crystal light valve and a second lens having a second liquid crystal light valve. The liquid crystal light valve has a liquid crystal and less than - milliseconds - the opening time. The system can also have a control circuit that alternately opens the first liquid crystal shutter and the second liquid crystal shutter and maintains the liquid crystal orientation at a maximum light transmission point until the control circuit closes the light valve. ^玄糸#介π ^ 1 D Xuanyuan system can also have a test system, which includes: a signal transmitter; - signal receiving H test system (four) system circuit, which is adapted to be able to be observed g > The viewer sees one of the rates to open and close the first light valve and the second light valve. In an example, the signal transmitter does not receive a - timing signal from the projector. In an exemplary embodiment, the signal transmission 11 emits an infrared signal. The infrared signal can be a - series pulse. In another example, the signal transmitter transmits a radio frequency U. The RF signal can be a series of pulses. The method for providing a three-dimensional video image is exemplary: the method may include: having a ------------------------------------------------------------- Maintaining the first liquid crystal light valve at a maximum light transmission point in the -first time period; closing the first liquid crystal light valve, and then opening the first day without valve in less than - milliseconds And at a second time 147661. Doc -88 - 201112736 'The second liquid crystal light valve is again held at a maximum light transmission point. In an exemplary embodiment, the first time period corresponds to presenting an image for a first eye of one of the viewers, and the second time period corresponds to presenting an image for a second eye of one of the viewers. In an exemplary embodiment, a transmitter can transmit a test signal to the three-dimensional viewing glasses, the glasses then receiving the test signal by one of the sensors on the three-dimensional glasses, and then using the test signal A control circuit opens and closes the first liquid crystal light valve and the second liquid crystal light valve, wherein the liquid crystal light valves are opened and closed at a rate that is viewable by a viewer wearing the glasses. In an exemplary embodiment, the signal transmitter does not receive a timing signal from a projector. In an exemplary embodiment, the signal transmitter emits an infrared signal, which can be a series of pulses. In an exemplary embodiment, the signal transmitter transmits a radio frequency signal. In an exemplary embodiment, the RF signal is a series of pulses. An exemplary embodiment of a system for providing a three-dimensional video image can include a pair of glasses including a first lens having a first liquid crystal light valve and a second lens having a second liquid crystal light valve. The liquid crystal light valve has a liquid crystal and an opening time of less than one millisecond. The system can also have a control circuit that alternately opens the first liquid crystal shutter and the second liquid crystal shutter to maintain the liquid crystal orientation at a point of maximum light transmission and then close the shutter. In an exemplary embodiment, an 'auto_on' system includes a k-th transmitter, a signal receiver' and wherein the control circuit is adapted to activate the signal receiver at a first predetermined time interval, determining the Whether the signal receiver is receiving a signal from the signal transmitter, and the signal is connected to 147661. Doc -89- 201112736 The receiver revokes the signal receiver without receiving the signal from the signal transmitter for a second period of time, and the signal receiver receives the signal from the signal transmitter In the case, the first light valve and the second light valve are alternately opened at an interval corresponding to the signal. In an exemplary embodiment, the first time period is at least two seconds and the second time period may be no more than 100 milliseconds. In an exemplary embodiment, the liquid crystal shutters remain open until the signal receiver receives a signal from the signal transmitter. In an exemplary embodiment, a method for providing a three-dimensional video image may include: having a first two-dimensional viewing glasses including a first liquid crystal light valve and a second liquid crystal light valve; in less than one millisecond Opening the first liquid crystal light valve; maintaining the first liquid crystal light valve at a maximum light transmission point in a first period of time; closing the first liquid crystal light valve, and then opening in less than one millisecond a second liquid crystal light valve; and maintaining the second liquid crystal light valve at a maximum light transmission point in a second period of time. In an exemplary embodiment, the first time period corresponds to presenting an image to a first eye of one of the viewers, and the second time period corresponds to presenting an image to a second eye of one of the viewers. In an exemplary embodiment, the method can include initiating a signal receiver at a first predetermined time interval, determining whether the signal receiver is receiving a signal from the signal transmitter, and at the signal receiver in a second If the signal is not received from the signal transmitter during the time period, the k-receiving is cancelled, and in the case where the signal receiver receives the k-number from the signal transmitter, a signal corresponding to the signal is received. The first light valve and the second light valve are opened and closed at intervals. In an exemplary embodiment, the first time period is 147661. Doc -90· 201112736 is at least two seconds. In an exemplary embodiment, the second time period is no more than 100 milliseconds. In an exemplary embodiment, the liquid crystal shutters remain open until the signal receiver receives a signal from the signal transmitter. In an exemplary embodiment, a system for providing a three-dimensional video image may include a pair of glasses including a first lens having a first liquid crystal light valve and a second lens having a liquid crystal light valve. The liquid crystal light has a liquid crystal and an opening time of less than - millisecond. The system can also have a clamping circuit that alternately opens the first liquid crystal light valve and the second liquid crystal valve and maintains the liquid crystal orientation at a maximum light transmission point until the control circuit closes the light valve. In an exemplary embodiment, the control circuit is adapted to maintain the first liquid crystal shutter and the second liquid crystal shutter open. In a case of 7 Γ steep 16 cases, the control circuit keeps the lenses open until the control circuit 彳贞_- signals. In an exemplary embodiment, the voltage applied to the liquid crystal shutters alternates between positive and negative. In an embodiment of the apparatus for providing a three-dimensional video image, a pair of three-dimensional viewing glasses includes a first liquid crystal light valve and a second liquid crystal light valve, wherein the first liquid crystal light valve can be less than one millisecond Opened in time, wherein the second liquid crystal light valve can be opened in less than - millisecond; to open and close the first liquid at a rate of the transparent lens by causing the liquid crystal light valve to appear as oxygen Pull = t Θ first - liquid crystal light valve. In an embodiment, the control circuit protects the second: > sees open until the control circuit detects a sync signal. In the example: in the example, the liquid crystal light valves alternate between positive and negative. Station scoop & implementation, a system for providing 3D video images, including a ------------- Doc -91- 201112736 A lens and a third lens having a second liquid day day sun valve having a liquid crystal and an opening time of less than one millisecond. The system can also include a control circuit that alternately opens the first liquid crystal light valve and the second liquid crystal light valve and maintains the liquid crystal at a point of maximum light transmission until the control circuit closes the light valve. In an exemplary embodiment, a transmitter can provide a synchronization step in which one of the synchronization signals is partially encrypted. One of the sensors operatively coupled to the control circuit can be adapted to receive the synchronization signal, and can only turn the first liquid crystal on and off in response to one of the synchronization signals after receiving an encrypted signal a light valve and the second liquid crystal light valve. In an exemplary embodiment, the synchronization signal is a series of pulses having a predetermined interval. In an exemplary embodiment, the synchronization signal is a series of pulses having a predetermined interval, and a first predetermined number of pulses opens the first liquid crystal shutter ' and a second predetermined number of pulses opens the second liquid crystal shutter . In an exemplary embodiment, one of the series of pulses is partially encrypted. In an exemplary embodiment, the series of pulses includes a predetermined number of unencrypted pulses followed by a predetermined number of encrypted pulses. In an exemplary embodiment, the first liquid crystal light valve and the second liquid crystal light valve are opened and closed in a pattern corresponding to one of the synchronization signals only after receiving two consecutive encrypted signals. In an exemplary embodiment of a method for providing a three-dimensional video image, the method may include: having a first three-dimensional viewing glasses including a first liquid crystal light valve and a second liquid crystal light valve; in less than one millisecond Opening the first liquid crystal light valve within a time period; maintaining the first liquid crystal light valve at a maximum light transmission point in a first period of time; closing the first liquid crystal light valve, and then 147661. Doc -92- 201112736 opens the second liquid crystal light valve in one second; and maintains the second liquid crystal light valve at a maximum light transmission point in a second period of time. In an exemplary embodiment, the first time period corresponds to presenting a shirt image to one of the viewer's first eyes, and the second time period corresponds to presenting an image for the second eye of one of the viewers. In an exemplary embodiment, a transmitter provides a sync signal wherein one of the sync signals is partially encrypted. In an exemplary embodiment (4), a sensor is operatively coupled to the control circuit and adapted to receive the sync # number, and only after receiving an encrypted signal to correspond to one of the sync signals The first liquid crystal light valve and the second liquid crystal light valve are opened and closed. In an exemplary embodiment, the synchronization signal is a series of pulses having a predetermined interval. In an exemplary embodiment t, the sync signal is a U pulse having a predetermined interval, and a predetermined number of pulses of the towel open the first liquid crystal shutter, and wherein the second predetermined number of pulses opens the second Liquid crystal light valve. In an exemplary embodiment, portions of the series of pulses are encrypted. In an exemplary implementation, the (four) pulse includes a predetermined number of purely encrypted pulses followed by a predetermined number of encrypted pulses. In an example of "only in the case of %", the first liquid crystal light is turned on and off in a pattern corresponding to one of the synchronization signals only after receiving two consecutive encrypted signals. It will be understood that the above changes may be made without departing from the material of the invention. Although specific embodiments have been described, modifications may be made by those skilled in the art without departing from the scope of the invention. The described embodiments are merely illustrative and not limiting. Many 147661. Doc-93- 201112736 Changes and modifications are possible and within the scope of the invention. In addition, one or more of the elements of the exemplary embodiments may be combined in whole or in part with one or more of one or more of the other exemplary embodiments or in place of one of the other exemplary embodiments or One or more elements of multiple. Therefore, the scope of protection is not limited to the described embodiments, but is only limited by the scope of the following patent application. The scope of the patent application scope shall include all equivalents of the subject matter of the patent application scope. [Simplified illustration of the drawings] FIG. 1 is a An illustration of one exemplary embodiment of a system for providing three-dimensional images. 2 is a flow chart of an exemplary embodiment of a method for operating the system of FIG. Figure 3 is a graphical illustration of the operation of the method of Figure 2. Figure 4 is a graphical illustration of an exemplary experimental embodiment of the operation of the method of Figure 2. One Method of Illustrative Embodiments One Mode of Illustrative Embodiments FIG. 5 is a flow chart for operating the system of FIG. 1. Figure 6 is a flow diagram of a system for operating a map. Figure 7 is a flow chart of a system for operating a map. Figure 8 is a graphical illustration of the operation of the method of Figure 7. Figure 9 is a flow chart of a system for operating the map. One of the exemplary methods of the method is 147661 . Doc -94· 201112736 Figure 10 is a graphical illustration of the operation of the method of Figure 9. 11 is a flow chart of an exemplary embodiment of a method for operating the system of FIG. 1. Figure 12 is a graphical illustration of the operation of the method of Figure 11. Figure 13 is an exemplary implementation of a method for operating the system of Figure 1.  The flow chart of the example. Figure 14 is a graphical illustration of the operation of the method of Figure 13. 15 is a flow chart of an exemplary embodiment of a method for operating the system of FIG. 1. Figure 16 is an illustration of one exemplary embodiment of a method for operating the system of Figure 1. Figure 17 is an illustration of one exemplary embodiment of a three-dimensional eyepiece of the system of Figure 1. 18, 18a, 18b, 18c and 18d are schematic illustrations of an exemplary embodiment of a 3D glasses. Figure 19 is a schematic illustration of the analog switch of the digital control of the light valve controller of Figures 3, 18a, 18b, 18c and 18d. Figure 20 is a schematic illustration of the analog switches, light valves, and CPU control signals for the digital control of the light valve controller of Figures 3, 18a, 18b, 18c, and 18d. Figure 21 is a flow chart illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 18, 18a, 18b, 18c, and 18d. Figure 22 is a graphical illustration of an exemplary embodiment of the three-dimensional eyeglasses of Figures 18, 18a, 18b, 18c, and 18d. 147661. Doc-95- 201112736 Figure 23 is a flow chart illustration of one exemplary embodiment of the operation of the 3D glasses of Figures 18, 18a, 18b, 18c and 18d. Figure 24 is a graphical illustration of an exemplary embodiment of the operation of the three-dimensional eyeglasses of Figures 18, 18a, 18b, 18c, and 18d. Figure 25 is a flow chart illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 18, 18a, 18b, 18c, and 18d. Figure 26 is a graphical illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 18, 18a, 18b, 18c, and 18d. Figure 27 is a flow chart illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 18, 18a, 18b, 18c, and 18d. Figure 28 is a graphical illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 18, 18a, 18b, 18c, and 18d. Figure 29 is a graphical illustration of one exemplary embodiment of the operation of Figures 3, 18a, 18b, 18c, and 18d. Figures 30, 30a, 30b and 30c are schematic illustrations of an exemplary embodiment of 3D glasses. Figure 31 is a schematic illustration of an analog switch for digital control of the optical controller of Figures 3, 30a, 30b, and 30c. Figure 32 is a schematic illustration of the operation of the analog switch of the digital control of the three-dimensional eye gold of the present embodiment of Figures 30, 30a, 30b, and 30c. Figure 33 is a flow chart illustration of one exemplary embodiment of the operation of Figure 3A, Figure 3A, Figure 3b, and Figure 3b. Figure 34 is a graphical illustration of an exemplary embodiment of the operation of the glasses of Figures 3A, 3A, 3B, and 3c. 147661. Doc -96- 201112736 Operation of dimensional glasses Operation of dimensional glasses Operation of the eyeglasses Figure 35 is a flow chart illustration of one exemplary embodiment of Figures 30, 30a, 30b and 30c. Figure 36 is a graphical illustration of one exemplary embodiment of Figures 30, 30a, 30b, and 30c. Figure 37 is a flow chart illustration of one exemplary embodiment of Figures 30, 30a, 30b, and 30c. Operation of Two-Dimensional Glasses Figure 38 is a graphical illustration of one exemplary embodiment of Figures 30, 30a, 30b, and 30c. Figure 39 is a flow chart illustration of an exemplary embodiment of the operation of Figure 30, Figure 30a, Figure 30b, and Figure 30c. Figure 40 is a flow chart illustration of one exemplary embodiment of the operation of the 3D glasses of Figures 3A, 30a, 30b, and 30c. Figure 41 is a graphical illustration of one exemplary embodiment of the operation of the 3D glasses of Figures 30, 30a, 30b, and 3c. Figure 42 is a flow chart illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 30, 30a, 30b, and 30c. Figure 43 is a graphical illustration of one exemplary embodiment of the operation of the 3D glasses of Figures 3A, 3A, 3D, and 3(). Figure 44 is a top plan view of an exemplary embodiment of three-dimensional glasses. Figure 45 is a rear elevational view of the 3D glasses of Figure 44. Figure 46 is a bottom plan view of the 3D glasses of Figure 44. Figure 47 is a front elevational view of the 3D glasses of Figure 44. Figure 48 is a perspective view of the 3D glasses of Figure 44. Figure 49 is a housing cover 147661 for the battery of the three-dimensional glasses of Figure 44 with (10) key. Doc -97- 201112736 perspective view. Figure 5 is a perspective view of the key of the housing cover for operating the battery of the 3D glasses of Figure 44. Figure 51 is a perspective view of the housing cover of the battery of the two-dimensional glasses of Figure 44. Figure 52 is a side elevational view of the 3D glasses of Figure 44. Figure 53 is a side perspective view of the housing cover, battery and 〇-ring seal of the two-dimensional eyeglasses of Figure 44. Figure 54 is a bottom perspective view of the housing cover, battery and jaw ring seal of the 3D glasses of Figure 44. Figure 55 is a perspective view of an alternative embodiment of the lens of Figure 44 and an alternative embodiment for manipulating the cover of Figure 5 . Figure 56 is a schematic illustration of one exemplary embodiment of a signal sensor for use in one or more of the illustrative embodiments. Figure 57 is a graphical illustration of an exemplary data signal suitable for use with the signal sensor of Figure 56. Figure 58 is a block diagram of an exemplary embodiment of a system for adjusting a synchronization signal for use in 3D glasses. Figure 59 is a block diagram of an exemplary embodiment of a system for adjusting a synchronization signal for use in 3D glasses. Figures 59a through 59d are graphical illustrations of exemplary experimental results of the operation of the systems of Figures 58 and 59. Figures 60, 60a and 60b are schematic illustrations of one exemplary embodiment of a 3D glasses. Figure 61 is a system for adjusting a synchronization signal used in 3D glasses 14766l. Doc-98- 201112736 A block diagram of an exemplary embodiment. Figure 62 is a block diagram of an exemplary embodiment of a system for viewing a three-dimensional image by a user wearing one of the three-dimensional glasses. Figures 63 and 64 are block diagrams of one exemplary embodiment of a display system for use with 3D glasses. 65 and 66 are graphical illustrations of illustrative embodiments of the operation of the display system of Figs. 63 and 64. 67 to 70 are flowchart illustrations of an exemplary embodiment of the operation of the display system of Figs. 63 and 64. [Key element symbol description] 100 102 102 102 movie screen 104 3D glasses 106 Left light valve 108 Right light valve 110 Signal Transmitter 110a Central Processing Unit (CPU) 112 Signal Sensor 114 Central Processing Unit 116 Left Light Valve Controller 118 Right Light Valve Controller 120 Battery 122 Battery Sensor 130 Projector I47661. Doc 201112736 200 Left and right light valve method / Left and right lens light valve sequence 202ba High voltage 202bb No voltage 202bc Small stop voltage 202da High voltage 202db No voltage 202dc Small stop voltage 400 Light transmission 402 Light transmission 500 Operation method 600 Operation method 700 Operation method 800 clock signal 802 clock cycle 804 configuration data signal 806 data pulse signal 900 operation method 902a clock signal 902aa south pulse 1100 warm-up operation method 1104a voltage signal 1104b voltage signal 1300 method 1304a voltage signal 147661. Doc -100- 201112736 1304b Voltage signal 1500 Method of monitoring battery 120 1600 Test 1600a Signal transmitter 1600b Test signal 1700 Charge pump 1800 3D glasses 1802 Left light valve 1804 Right light valve 1806 Left light valve controller 1808 Right light valve controller 1810 Central Processing Unit 1812 Battery Sensor 1814 Signal Sensor 1816 Charge Pump 1900 Function Diagram 2100 Method 2300 Warm-up Operation Method 2304a Voltage Signal 2304b Voltage Signal 2500 Operation Method 2504a Voltage Signal 2504b Voltage Signal 2700 Method of Monitoring Battery 120 147661. Doc • 101 - 201112736 3000 3D Glasses 3002 Left Light Valve 3004 Right Light Valve 3006 Left Light Valve Controller 3008 Right Light Valve Controller 3010 Common Light Valve Controller 3012 Central Processing Unit 3014 Signal Sensor 3016 Charge Pump 3018 Voltage Supply 3100 Function diagram 3300 Method / Normal execution mode 3500 Warm-up operation method 3700 Operation method 3900 Operation method 4000 Operation method 4200 Operation method 4402 Frame front 4402a Right wing 4402b Left wing 4404 Bridge 4406 Right temple 4406a Ridge 4408 Left temple • 102· 147661 . Doc 201112736 4408a ridge 4410 right lens opening 4412 left lens opening 4414 cover 4415 cover inner 4416 〇 ring seal 4417 contact 4418 wedge element 4420 recess 4422 key 4424 protrusion 4426 key 5600 signal sensor 5602 narrow band pass filter 5604 Decoder 5604 CPU 5606 Signal Transmitter 5700 Signal 5702 Data Bit 5704 Clock Pulse 5800 System 5802 Signal Sensor 5804 Normalizer 5806 Gain Control Element 147661. Doc -103 - 201112736 5810 Amplifier and Pulse Conditioning Element 5812 Synchronous Amplitude and Shape Processing Unit 5902 Synchronization Signal 5904 Signal 5906 Signal 5908 Town Control Signal 6000 3D Glasses 6002 Signal Sensor 6100 System 6102 Dynamic Range Reduction and Contrast Enhancement Element 6202 Projector 6202a Built-in file server 6204 Display surface 6206 Network 6300 Display system 6305 Light modulator array 6310 Light source 6315 Display plane 6320 Controller 6225 Front end unit 6330 Memory 6350 Sequence generator 6355 Synchronization signal generator 6360 Pulse width adjustment Variable (PWM) unit 147661. Doc -104- 201112736 6510 6520 6530 6540 6542 6544 6546 6548 6550 6552 6554 6556 6558 6560 6600 6605 6700 6800 6900 7000 Left eye light valve state right eye light valve state high-order view / state diagram light valve state single cycle interval state transition interval interval Block pulse pulse block interval box interval synchronization signal time method method method method A control input signal / microcontroller output signal / control signal B control input signal / microcontroller output signal / control signal 147661. Doc - 105 - 201112736 c Microcontroller output signal / control signal Cl capacitor C2 capacitor C3 capacitor C4 capacitor C5 capacitor C6 capacitor C7 capacitor C8 capacitor C9 capacitor CIO capacitor C11 capacitor C12 capacitor C13 capacitor C14 capacitor C15 capacitor C100 capacitor D micro control Output signal / control signal D1 Schottky diode D2 Photodiode D3 Schottky diode D5 Schottky diode D6 Schottky diode D7 Zener diode 147661. Doc -106- 201112736 E Microcontroller output signal / control signal F output signal G output signal INHIBIT (INH) control input signal IN_A input signal IN_B input signal LI inductor LCD1 left lens / left light valve LCD2 right lens / right light Valve Qi MOSFET Q2 transistor Q100 field effect transistor Q101 NPN transistor / output detector R1 resistor R2 resistor R3 resistor R4 resistor R5 resistor R6 resistor R7 resistor R8 voltage divider component / resistor R9 Resistor RIO Divider Assembly / Resistor Rll Resistor 147661. Doc -107- 201112736 R12 Resistor R13 Resistor R14 Resistor R15 Resistor R16 Resistor R100 Resistor.   R101 Resistor R102 Resistor R511 Resistor R512 Resistor RA3 Input Control Signal RA4 Control Signal RC4 Control Signal RC5 Control Signal U1 Digital Control Analog Switch U2 Digital Control Analog Switch U3 Microcontroller/Operation Amplifier U4 Digital Control Analog Switch U4 Micro Control U5 operational amplifier U5-1 operational amplifier U5-2 operational amplifier U6 operational amplifier U6 power detector / digital control analog switch 147661. Doc -108- 201112736 VEE Input voltage X Output signal xo Switch I/O signal XI Switch I/O signal X2 Switch I/O signal X3 Switch I/O signal Y Output signal YO Switch I/O signal Y1 Switch I/O signal Y2 switch I/O signal Y3 switch I/O signal Z output signal zo switch I/O signal Z1 switch I/O signal 147661. Doc - 109 -

Claims (1)

201112736 七、申請專利範圍: 1. 一種包括左觀看光閥及右觀看光閥之三維眼鏡,以允許 該三維眼鏡之一使用者觀看三維影像,其包含. 一 k號感測器,其用於感測一所傳輸之同步传號. 一信號處理器,可操作地耦接至該信號感測器,其用 於修改該感測到的同步信號之振幅、形狀、動態範圍及 對比度中之至少一者;及 一控制器,可操作地耦接至該信號處理器,其用於處 理該經修改的同步信號以控制該左觀看光閥及該右觀看 光閥之操作。 2. 如明求項1之二維眼鏡,其中該信號感測器經調適以感 測主要包含在可見光譜内之電磁能量的一所傳輸之同步 信號。 3 ·如明求項丨之二維眼鏡,其中該信號處理器正規化該感 測到的同步信號之該振幅及該形狀。 4.如β求項3之三維眼鏡’其中該信號處理器亦減小該感 測到的同步信號之該動態範圍且增強該感測到的同步信 號之該對比度。 如3求項1之二維眼鏡’其中該信號處理器減小該感測 到的同步信號之該動態範圍且增強該感測到的同步信號 之該對比度。 6_ 士吻求項5之二維眼鏡,其中該信號處理器亦正規化該 感:到的同步信號之該振幅及該形狀。 7’ 士 Η求項1之二維眼鏡,其中該信號處理器經調適以接 147661.doc 201112736 一感測到 峰間振幢 收具有在約1 mV至1 v範圍中的一峰間振幅之 的所傳輸同步信號且產生具有高達約3 V的一 之一經修改同步信號。 8. -種控制包含左光閥及右光閥之三維眼鏡之操作以允, 該三維眼鏡之一使用者觀看三維影像之方法,其包含, 感測一同步信號; 藉由修改該感測到的同步信號之振幅、形狀、動態範 圍及對比度中之至少一者來處理該同步信號;及 使用該經修改的同步信號控制該左光閥及該右光閥之 操作。 9.如請求項8之方法,纟中感測該同步信號包含感測主要 包3在可見光谱内之電磁能量的同步信號。 10·如請求項8之方法’其中處理該同步信號包含正規化該 感測到的同步信號之該振幅及該形狀。 11.如清求項1G之方法,其中處理該同步信號包含減小該感 測到的同步信號之該動態範圍及增強該感測到的同步信 號之該對比度β 12·如请求項8之方法,其中處理該同步信號包含減小該感 測到的同步信號之該動態範圍及增強該感測到的同步信 號之該對比度。 13. 如请求項丨丨之方法,其中處理該同步信號包含正規化該 感測到的同步信號之該振幅及該形狀。 14. 如请求項8之方法,其中處理該同步信號包含接收具有 在勺1 mV至1 V範圍中的—峰間振幅之一同步信號及產 147661.doc 201112736 生具有高達約3 V的一峰間振幅之該經修改的同步信 號。 15. 一種用於控制包含左光閥及右光閥之三維眼鏡之操作以 允許該三維眼鏡之一使用者觀看三維影像之系統,其包 含: ,用於感測一同步信號之構件; 用於藉由修改該感測到的同步信號之振幅、形狀、動 態範圍及對比度中之至少一者來處理該同步信號之構 件;及 16. 17. 18. 19. 20. 用於使用該經修改的同步信號控制 閥之操作之構件 如明求項1 5之系統,其中用於感測該同步信號之構件包 3用於感測主要包含在可見光譜内之電磁能量的同步信 號之構件。 ° ^求項15之系統’其中用於處理該同步信號之構件包 用於正規化该感測到的同步信號之該振幅及該形狀之 構件。 如請求項17之系統, 八 、、 其中用於處理該同步信號之構件包 心列至丨咸貞彳到的同步信號之該動態範圍及增強該 感測到的同步信號之該對比度之構件。 如睛求項1 s #会Μ 含用於 ”、,其中用於處理該同步信號之構件包 感測到的同牛〇的同步“旒之該動態範圍及增強該 广步W之該對比度之構件。如明永項18之系統, ' ,其中用於處理該同步信號之構件包 147661.doc 201112736 含用於正規化該感測到的同步信號之該振幅及該形狀之 構件。 21·如睛求項15之系統,其中用於處理該同步信镜之構件包 含用於接收具有在約i mV至i 乂範圍中的一峰間振幅之 一同步信號之構件,及用於產生具有高達約3 V的一峰 間振幅之一經修改的同步信號之構件。 22· —種二維觀看系統,其包含: 一投影器,其用於傳輸用於一觀看者之一左眼之一影 像、用於該觀看者之一右眼之一影像,及一同步信號;及 一維眼鏡’包括左觀看光閥及右觀看光閥,其用以允 許該二維眼鏡之一使用者觀看該左眼影像或該右影像, 該三維眼鏡包含: 一 k號感測器,其用於感測該所傳輸的同步信號; 一信號處理器’可操作地耦接至該信號感測器,其用 於修改該感測到的同步信號之振幅、形狀、動態範圍及 對比度中之至少一者;及 一控制器’可操作地耦接至該信號處理器,其用於處 理該經修改的同步信號以控制該左觀看光閥及該右觀看 光閥之操作。 23. 如請求項22之三維觀看系統,其中該信號感測器經調適 以感測主要包含在可見光譜内之電磁能量的一所傳輸的 同步信號。 24. 如請求項22之三維觀看系統,其中該信號處理器正規化 該感測到的同步信號之該振幅及該形狀。 147661.doc 201112736 25. 如清求項24之:r維驻H玉么 該感測到的同:;號’、統,其中該信號處理器亦減小 步信號之該=該動態範圍且增強該感測到的同 26. 如請求項22之二給站目表么 〜,准嬈看糸統,其中該信號處理器 感測到的同步作觫 ^ 。唬之該動態範圍且增強該感 信號之該對比度。 ^ 2 7 ·如请求項2 6之三雄龜4么w - ~、隹觀看系統,其中該信號處理器亦 化該感_的同步信號之該振幅及該形狀。 、 28. 如。月求項22之二維觀看系統,其中該信號處理器經調適 乂接收具有在約!心至i v範圍中的一峰間振幅之—成 測到的所傳輸同步信號,且產生具有高達約3 V的—峰 間振幅之一經修改的同步信號。 29. -種控制供佩戴具有左觀看光閥及右觀看光閥之三維眼 兄之使用者觀看二維影像的一系統之操作的方法,盆 包含: 八 傳輸用於一觀看者之一左眼之一影像; 傳輸用於該觀看者之一右眼之一影像; 傳輸一同步信號; 感測該同步信號; 藉由修改該感測到的同步信號之振幅、形狀、動態範 圍及對比度中之至少—者來處理該同步信號;及 使用該經修改的同步信號來控制該左光閥及該右光閥 之操作。 30.如請求項29之方法 其中感測該同步信號包含感測主要 147661.doc 201112736 包含在可見光譜内之電磁能量的同步信號。 31. 如請求項29之方法,其中處理該同步信號包含正規化該 感測到的同步信號之該振幅及該形狀。 32. 如請求項31之方法’其中處理該同步信號包含減小該感 測到的同步信號之該動態範圍及增強該感剛到的同步信 號之該對比度。 33. 如請求項29之方法,其中處理該同步信號包含減小該感 測到的同步信號之該動態範圍及増強該感測到的同步信 號之該對比度。 34. 如請求項33之方法,其中處理該同步信號包含正規化該 感測到的同步信號之該振幅及該形狀。 35. 如明求項29之方法,其中處理該同步信號包含接收具有 在約1 mV至1 V範圍中的一峰間振幅之一同步信號,及 產生具有高達約3 V的一峰間振幅之該經修改的同步信 號。 36. —種用於控制供佩戴具有左觀看光閥及右觀看光閥之三 維眼鏡之一使用者觀看三維影像的一系統之操作的系 統’其包含: 用於傳輸用於一觀看者之一左眼之一影像之構件; 用於傳輸用於該觀看者之一右眼之一影像之構件; 用於傳輸一同步信號之構件; 用於感測一同步信號之構件; 用於藉由修改該感測到的同步信號之振幅、形狀、動 態範圍及對比度中之至少—者來處理該同步信號之構 147661.doc 201112736 件;及 用於使用該經修改的同步信號控制該左光閥及該右光 閥之操作之構件。 37.如叫求項36之系統,其中用於感測該同步信號之構件包 3用於感測主要包含在可見光譜内之電磁能量的同步信 號之構件。 士月求項3 6之系統’其中用於處理該同步信號之構件包 3用於正規化該感測到的同步信號之該振幅及該形狀之 構件。 9.:明求項38之系統,其中用於處理該同步信號之構件包 3用於減小5亥感測到的同步信號之該動態範圍及增強該 感測到的同步信號之該對比度之構件。 A月求項36之系統,其中用於處理該同步信號之構件包 3用於減小該感測到的同步信號之該動態範圍及增強該 感測到的同步信號之該對比度之構件。 月求員40之系統,纟中用於處理該同步信號之構件包 3 i規化㈣測到的同步信號之該振幅及該形狀之 構件。 如月求項36之系統’其中用於處理該同步信號之構件包 3用於接收具有在約【mV至i ^範圍中的一峰間振幅之 5步L號之構件’及用於產生具有高達約3 V的一峰 間振幅之-經修改同步信號之構件。 43. —種用於在一投影g 、 員不糸統上顯示多個影像之方法,該 方法包含: 147661.doc 201112736 在一第一顯示時期期間於一 -影像串流之一第—影像;、‘“平面上顯示來自-第 在一第二顯示時期期間 -等μ 亥顯不平面上顯示來自一第 一〜像串流之一第二影德 ^ , LS 像其中該第一影像及該第二影 像至'部分地顯示於該g μ墙 ± χ..',貝不千面之—相同區域上,且其 中該第一顯示時期及該m _ 我弟—顯不時期不重疊; 在一第三顯示時期期間於 X 貝不平面上顯不一同步 號;及 1d 藉由修改該感測到的同步信號之振幅、形狀、動能範 圍及對比度中之至少一者來處理該同步信號。 44. 如請求項43之方法’其中該第一影像及該第二影像包含 一單一場景之不同視角。 45. 如凊求項43之方法,其中該第一影像串流及該第二影像 串流包含不相關的影像串流。 46·如請求項43之方法,其中該第一影像及該第二影像之該 顯不各自包含:用彩色光之一序列照明該投影顯示系統 中之一光調變器陣列;及將該光調變器陣列中之每—個 別光調變器設定成對應於照明該光調變器陣列之一彩色 光及來自正被顯示的影像之一影像資料的一狀態。 47.如請求項46之方法,其中該同步信號之該顯示包含:用 一單色光照明該光調變器陣列;及將該光調變器陣列中 之個別光調變器設定成一打開狀態,其中該打開狀態允 許照明該陣列且由該光調變器調變之該光達到該顯示平 面0 147661.doc 201112736 48. 如請求項47之方法,其中該單色光包含不同波長之光之 一組合。 49. 如請求項47之方法,其中該光調變器陣列中之每一個光 調變器被設定成該打開狀態。 50. 如請求項46之方法’其中每一㈣光調變器之該狀態係 基於當前照明該光調變器$列之光的—色彩及與光的該 色彩相關聯之影像資料》 .如請求項43之方法,其進一步包含,在顯示該同步信號 之後:於-觀看裝置處偵測該同步信號;及回應於該同 步信號由該觀看裝置執行一動作。 52·如請求項43之方法,其進—步包含,在顯示該同步信號 之後,重複來自-第-影像串流之一第一影像之該顯 示、來自一第二影像串流之一第二影像之該顯示,及一 同步信號之該顯示。 53·如請求項43之方法’其中該第_顯示時期、該第二顯示 時期及該第三顯示時期不重曼。 54. —種用於使一觀看裝置同步於一顯示系統之方法,該方 法包含: 债測顯示於該顯示系統之一顯示平面上之—同步作 號; / ° 接收該同步信號;及 回應於該同步信號執行一動作; 測到的同步信 至少一者來處 其中接收該同步信號包含藉由修改該感 號之振幅、形狀、動態範圍及對比度中之 147661.doc -9· 201112736 理該同步信號。 55. 如請求項54之方法,其進一步包含,在該接收之後,解 碼該同步信號。 56. 如請求項55之方法,其中該執行包含執行由該同步信號 規定之一動作。 5 7.如請求項55之方法,其中該同步信號經加密,且其中該 解碼包含在該執行之前解密該同步信號。 5 8.如請求項54之方法,其中該執行包含致動控制對該顯示 系統之一觀看的一光閥。 147661.doc -10-201112736 VII. Patent Application Range: 1. A 3D glasses comprising a left viewing light valve and a right viewing light valve to allow a user of the 3D glasses to view a 3D image, comprising: a k sensor for Sensing a transmitted synchronization mark. A signal processor operatively coupled to the signal sensor for modifying at least one of an amplitude, a shape, a dynamic range, and a contrast of the sensed synchronization signal And a controller operatively coupled to the signal processor for processing the modified synchronization signal to control operation of the left viewing light valve and the right viewing light valve. 2. The two-dimensional eyeglass of claim 1, wherein the signal sensor is adapted to sense a transmitted synchronization signal of electromagnetic energy primarily contained within the visible spectrum. 3. A two-dimensional eyeglass as claimed, wherein the signal processor normalizes the amplitude and the shape of the sensed sync signal. 4. A 3D glasses as in Equation 3 wherein the signal processor also reduces the dynamic range of the sensed sync signal and enhances the contrast of the sensed sync signal. The two-dimensional glasses of claim 1 wherein the signal processor reduces the dynamic range of the sensed synchronization signal and enhances the contrast of the sensed synchronization signal. 6_ The two-dimensional glasses of the item 5, wherein the signal processor also normalizes the sense: the amplitude of the sync signal to which it is and the shape. 7' The 2D glasses of the 1st item, wherein the signal processor is adapted to 147661.doc 201112736, and the peak-to-peak vibration is sensed to have an amplitude between a peak in the range of about 1 mV to 1 v. The sync signal is transmitted and produces a one of the modified sync signals having up to about 3 V. 8. A method of controlling operation of a 3D glasses comprising a left light valve and a right light valve to allow a user of the 3D glasses to view a 3D image, comprising: sensing a synchronization signal; modifying the sensing Processing the synchronization signal by at least one of amplitude, shape, dynamic range, and contrast of the synchronization signal; and controlling the operation of the left and right shutters using the modified synchronization signal. 9. The method of claim 8, wherein sensing the synchronization signal comprises synchronizing a signal that senses electromagnetic energy of the primary packet 3 in the visible spectrum. 10. The method of claim 8 wherein processing the synchronization signal comprises normalizing the amplitude and the shape of the sensed synchronization signal. 11. The method of claim 1, wherein processing the synchronization signal comprises reducing the dynamic range of the sensed synchronization signal and enhancing the contrast of the sensed synchronization signal. [12] The method of claim 8 Processing the synchronization signal includes reducing the dynamic range of the sensed synchronization signal and enhancing the contrast of the sensed synchronization signal. 13. The method of claim 1, wherein processing the synchronization signal comprises normalizing the amplitude and the shape of the sensed synchronization signal. 14. The method of claim 8, wherein processing the synchronization signal comprises receiving a synchronization signal having a peak-to-peak amplitude in the range of 1 mV to 1 V in the spoon and producing a peak between the peaks of up to about 3 V The modified synchronization signal of the amplitude. 15. A system for controlling operation of a three-dimensional eyeglass comprising a left light valve and a right light valve to allow a user of the three-dimensional eyeglass to view a three-dimensional image, comprising: means for sensing a synchronization signal; Processing the component of the synchronization signal by modifying at least one of amplitude, shape, dynamic range, and contrast of the sensed synchronization signal; and 16. 17. 18. 19. 20. for using the modified A component of the operation of the synchronizing signal control valve is the system of claim 15, wherein the component package 3 for sensing the synchronizing signal is used to sense a synchronizing signal of electromagnetic energy mainly contained in the visible spectrum. The system of claim 15 wherein the component for processing the synchronization signal is used to normalize the amplitude of the sensed synchronization signal and the components of the shape. The system of claim 17, wherein the means for processing the synchronization signal encapsulates the dynamic range of the synchronization signal and the means for enhancing the contrast of the sensed synchronization signal. If the item 1 s #会Μ contains the synchronization of the same burdock sensed by the component package for processing the synchronization signal, the dynamic range of the 旒 is enhanced and the contrast of the step is enhanced. member. For example, the system of the eternal 18, ', wherein the component package for processing the synchronization signal 147661.doc 201112736 includes means for normalizing the amplitude of the sensed synchronization signal and the shape. 21. The system of claim 15, wherein the means for processing the synchronization mirror comprises means for receiving a synchronization signal having a peak-to-peak amplitude in the range of about i mV to i ,, and for generating A component of a modified sync signal that is up to a peak amplitude of about 3 V. 22. A two-dimensional viewing system, comprising: a projector for transmitting an image for one of a viewer's left eye, for one of the viewer's right eye, and a synchronization signal And the one-dimensional glasses include a left viewing light valve and a right viewing light valve for allowing a user of the two-dimensional glasses to view the left eye image or the right image, the three-dimensional glasses comprising: a k sensor Relating to the transmitted synchronization signal; a signal processor operatively coupled to the signal sensor for modifying the amplitude, shape, dynamic range, and contrast of the sensed synchronization signal At least one of; and a controller operably coupled to the signal processor for processing the modified synchronization signal to control operation of the left viewing light valve and the right viewing light valve. 23. The three-dimensional viewing system of claim 22, wherein the signal sensor is adapted to sense a transmitted synchronization signal of electromagnetic energy primarily contained within the visible spectrum. 24. The three dimensional viewing system of claim 22, wherein the signal processor normalizes the amplitude and the shape of the sensed synchronization signal. 147661.doc 201112736 25. As clear as the item 24: r dimension in H Yu, the same sense: ; number ', system, where the signal processor also reduces the step signal = the dynamic range and enhance The sense is the same as 26. If the request item 22 bis gives the station list ~, the commander sees the system, wherein the signal processor senses the synchronization 觫^. This dynamic range is enhanced and the contrast of the sense signal is enhanced. ^ 2 7 · If the request item 2 6 3 male turtle 4 w- ~, 隹 viewing system, wherein the signal processor also modulates the amplitude of the synchronization signal and the shape. , 28. For example. The monthly two-dimensional viewing system of item 22, wherein the signal processor is adapted to receive the 具有 received at about! The amplitude of the peak to the peak in the i v range is measured as the transmitted sync signal, and a modified sync signal having a peak-to-peak amplitude of up to about 3 V is generated. 29. A method of controlling the operation of a system for viewing a two-dimensional image by a user of a three-dimensional eye brother having a left viewing light valve and a right viewing light valve, the basin comprising: eight transmissions for one of the viewers' left eye One image; transmitting an image for one of the viewer's right eyes; transmitting a synchronization signal; sensing the synchronization signal; modifying the amplitude, shape, dynamic range, and contrast of the sensed synchronization signal At least - processing the synchronization signal; and using the modified synchronization signal to control operation of the left and right shutters. 30. The method of claim 29 wherein sensing the synchronization signal comprises sensing a synchronization signal of the electromagnetic energy contained in the visible spectrum of 147661.doc 201112736. 31. The method of claim 29, wherein processing the synchronization signal comprises normalizing the amplitude and the shape of the sensed synchronization signal. 32. The method of claim 31 wherein processing the synchronization signal comprises reducing the dynamic range of the sensed synchronization signal and enhancing the contrast of the synchronization signal to which the sense has just arrived. 33. The method of claim 29, wherein processing the synchronization signal comprises reducing the dynamic range of the sensed synchronization signal and reluctating the contrast of the sensed synchronization signal. 34. The method of claim 33, wherein processing the synchronization signal comprises normalizing the amplitude and the shape of the sensed synchronization signal. 35. The method of claim 29, wherein processing the synchronization signal comprises receiving a synchronization signal having an inter-peak amplitude in a range of about 1 mV to 1 V, and generating the inter-peak amplitude having a peak amplitude of up to about 3 V. Modified sync signal. 36. A system for controlling operation of a system for viewing a three-dimensional image by a user wearing a three-dimensional eyeglass having a left viewing light valve and a right viewing light valve, comprising: for transmitting one of a viewer a member of an image of the left eye; a member for transmitting an image for one of the right eyes of the viewer; a member for transmitting a synchronization signal; a member for sensing a synchronization signal; Detecting at least one of amplitude, shape, dynamic range, and contrast of the synchronization signal to process the synchronization signal; and using the modified synchronization signal to control the left light valve and The component of the operation of the right light valve. 37. The system of claim 36, wherein the component package 3 for sensing the synchronization signal is for sensing a synchronization signal of electromagnetic energy primarily contained within the visible spectrum. The system for processing the synchronization signal 3 is used to normalize the amplitude of the sensed synchronization signal and the shape of the component. 9. The system of claim 38, wherein the component package 3 for processing the synchronization signal is for reducing the dynamic range of the sync signal detected by 5 Hz and enhancing the contrast of the sensed sync signal member. The system of A month 36, wherein the component package 3 for processing the synchronization signal is for reducing the dynamic range of the sensed synchronization signal and enhancing the contrast of the sensed synchronization signal. The system of the monthly requester 40, the component for processing the synchronization signal, and the component of the detected synchronization signal and the shape. The system of claim 36, wherein the component package 3 for processing the synchronization signal is used to receive a component having a 5-step L number in an amplitude of about [mV to i ^ in the range of m ^ to ^ ^ and for generating up to about The amplitude of the peak between 3 V - the component of the modified sync signal. 43. A method for displaying a plurality of images on a projection g, an unmanned system, the method comprising: 147661.doc 201112736 during a first display period in one of the image streams - an image; , 'the display on the plane from the first - during the second display period - the other is displayed on the plane from a first ~ image stream, the second shadow ^, the LS image of the first image and the The second image is displayed in part on the g μ wall ± χ.., on the same area, and wherein the first display period and the m _ my brother-display period do not overlap; A synchronization number is displayed on the X-plane non-plane during a third display period; and 1d processes the synchronization signal by modifying at least one of the amplitude, shape, kinetic energy range, and contrast of the sensed synchronization signal. 44. The method of claim 43, wherein the first image and the second image comprise different perspectives of a single scene. 45. The method of claim 43, wherein the first image stream and the second image string The stream contains irrelevant video streams. The method of claim 43, wherein the displaying of the first image and the second image respectively comprises: illuminating a light modulator array in the projection display system with a sequence of colored lights; and modulating the light modulator Each of the arrays of individual optical modulators is configured to correspond to a state of illuminating one of the color modulator arrays of colored light and one of the image data from the image being displayed. 47. The method of claim 46, wherein The displaying of the synchronization signal includes: illuminating the array of light modulators with a monochromatic light; and setting the individual light modulators in the array of light modulators to an open state, wherein the open state allows illumination of the array and The light modulated by the light modulator reaches the display plane. The method of claim 47, wherein the monochromatic light comprises a combination of light of different wavelengths. 49. The method wherein each of the optical modulators in the array of optical modulators is set to the open state. 50. The method of claim 46, wherein the state of each of the (four) optical modulators is based on current illumination of the light Modulator $column The method of claim 43, further comprising, after displaying the synchronization signal: detecting the synchronization signal at the viewing device; and responding to the The synchronization signal is performed by the viewing device. 52. The method of claim 43, wherein the step of: repeating, after displaying the synchronization signal, repeating the display of the first image from the first image stream from The display of a second image of a second video stream, and the display of a synchronization signal. 53. The method of claim 43, wherein the _ display period, the second display period, and the third display period Not heavy. 54. A method for synchronizing a viewing device to a display system, the method comprising: displaying a debt test on a display plane of one of the display systems - synchronizing a number; / ° receiving the synchronization signal; and responding to The synchronization signal performs an action; at least one of the detected synchronization signals is received therein, wherein the synchronization signal is modified by modifying the amplitude, shape, dynamic range and contrast of the signature 147661.doc -9·201112736 signal. 55. The method of claim 54, further comprising, after the receiving, decoding the synchronization signal. 56. The method of claim 55, wherein the performing comprises performing an action specified by the synchronization signal. The method of claim 55, wherein the synchronization signal is encrypted, and wherein the decoding comprises decrypting the synchronization signal prior to the performing. The method of claim 54, wherein the performing comprises actuating a light valve that is controlled by one of the display systems. 147661.doc -10-
TW99113620A 2009-05-18 2010-04-28 Synchronization signal for use with 3D glasses TW201112736A (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US17924809P 2009-05-18 2009-05-18
US25315009P 2009-10-20 2009-10-20
US26166309P 2009-11-16 2009-11-16
US12/619,456 US20100149320A1 (en) 2008-11-17 2009-11-16 Power Conservation System for 3D Glasses
US12/619,102 US20100165085A1 (en) 2008-11-17 2009-11-16 Encoding Method for 3D Glasses
US12/619,309 US20100157031A1 (en) 2008-11-17 2009-11-16 Synchronization for 3D Glasses
US12/619,415 US20100157029A1 (en) 2008-11-17 2009-11-16 Test Method for 3D Glasses
US12/619,163 US20100157027A1 (en) 2008-11-17 2009-11-16 Clear Mode for 3D Glasses
US12/619,518 US20100177254A1 (en) 2008-11-17 2009-11-16 3D Glasses
US12/619,400 US20100157028A1 (en) 2008-11-17 2009-11-16 Warm Up Mode For 3D Glasses
US12/619,431 US20100149636A1 (en) 2008-11-17 2009-11-16 Housing And Frame For 3D Glasses
US12/619,517 US20100157178A1 (en) 2008-11-17 2009-11-16 Battery Sensor For 3D Glasses

Publications (1)

Publication Number Publication Date
TW201112736A true TW201112736A (en) 2011-04-01

Family

ID=44909359

Family Applications (2)

Application Number Title Priority Date Filing Date
TW99113621A TW201119350A (en) 2009-05-18 2010-04-28 DLP link system with multiple projectors
TW99113620A TW201112736A (en) 2009-05-18 2010-04-28 Synchronization signal for use with 3D glasses

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW99113621A TW201119350A (en) 2009-05-18 2010-04-28 DLP link system with multiple projectors

Country Status (1)

Country Link
TW (2) TW201119350A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI482484B (en) * 2011-06-17 2015-04-21 Wistron Corp 3d display system and method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6286841B2 (en) * 2013-03-18 2018-03-07 セイコーエプソン株式会社 Projector and control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI482484B (en) * 2011-06-17 2015-04-21 Wistron Corp 3d display system and method thereof
US9426454B2 (en) 2011-06-17 2016-08-23 Wistron Corp. 3D display system and method thereof

Also Published As

Publication number Publication date
TW201119350A (en) 2011-06-01

Similar Documents

Publication Publication Date Title
EP2315449A2 (en) Normalization of a synchronization signal for 3D glasses
EP2403260A2 (en) Universal 3D Glasses
US20110234775A1 (en) DLP Link System With Multiple Projectors and Integrated Server
US20120050266A1 (en) Normalization of a synchronization signal for 3d glasses
US20110228062A1 (en) 3D Glasses with OLED Shutters
EP2323415A2 (en) A system for viewing 3D images using 3D glasses having left and right shutters
TW201112736A (en) Synchronization signal for use with 3D glasses
US20110221876A1 (en) Solar Powered 3D Glasses
EP2337360A1 (en) Solar powered 3D glasses
EP2364033A2 (en) 3D glasses with RF synchronization
AU2011203276A1 (en) Universal 3D glasses
EP2373047A2 (en) Universal 3D glasses for use with televisions
EP2337369A1 (en) Active 3D glasses with OLED shutters
TW201108713A (en) 3D shutter glasses for use with LCD displays
EP2364034A2 (en) 3D Shutter Glasses for use with LCD Displays
TW201118424A (en) Active 3D glasses with OLED shutters
TW201118423A (en) Solar powered 3D glasses
TW201140144A (en) Battery housing and cover for 3D glasses
CA2735342A1 (en) Universal 3d glasses for use with televisions