TW201118424A - Active 3D glasses with OLED shutters - Google Patents
Active 3D glasses with OLED shutters Download PDFInfo
- Publication number
- TW201118424A TW201118424A TW99113571A TW99113571A TW201118424A TW 201118424 A TW201118424 A TW 201118424A TW 99113571 A TW99113571 A TW 99113571A TW 99113571 A TW99113571 A TW 99113571A TW 201118424 A TW201118424 A TW 201118424A
- Authority
- TW
- Taiwan
- Prior art keywords
- light valve
- signal
- exemplary embodiment
- glasses
- liquid crystal
- Prior art date
Links
Landscapes
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
Description
201118424 六、發明說明: 【發明所屬之技術領域】 本發明係關於用於呈現在觀看者看來為三維的視訊影像 之影像處理系統。 本申請案主張2009年5月18曰申請之美國臨時專利申請 案第61/179,248號(代理人案號第092847.000020號)的申請 曰期之權利,該申請案之内容以引用的方式併入本文中。 本申請案主張2009年10月20曰申請之美國臨時專利申請 案第61/253,150號(代理人案號第092847.000067號)的申請 曰期之權利,該申請案之内容係以引用方式併入本文中。 本申請案主張以下均在2009年11月16曰申請之美國實用 專利申請案之每一者的申請日期之權利:第12/619,518 號、第 12/619,517號、第 12/619,309號、第 12/619,415號、 第 12/619,400 號、第 12/619,431號、第 12/619,163 號、第 12/619,456號、第12/619,102號,所有該等申請案之内容係 以引用方式併入本文中。 本申請案主張20 09年11月16曰申請之美國臨時專利申請 案第61/261,663號(代理人案號第092847.000098號)的申請 曰期之權利,該申請案之内容係以引用方式併入本文中。 本申請案主張2009年12月9曰申請之美國臨時專利申請 案第61/285,048號(代理人案號第092847.000094號)的申請 曰期之權利,該申請案之内容係以引用方式併入本文中。 【實施方式】 在以下圖式及描述中,相同部件在說明書及圖式中始終 147657.doc 201118424 为別用相同參考數字標記。諸圖未必按比例繪製。本發明 之特定特徵可以誇大的比例或以稍微示意性之形式展示, 且為清楚及簡明起見,可能不展示習知元件之一些細節。 本發明可能具有不同形式之實施例。特定實施例將被詳細 描述且展示於圖式中,但應瞭解,本發明内容被視為本發 明之原理之一範例,且不欲將本發明限於本文中所說明及 所“述者。應充分s忍識到,下文所論述之實施例之不同教 不可單獨地或以任何合適組合使用以產生所要結果。熟習 此項技術者將在閱讀實施例之以下詳細描述及參考隨附圖 式之後容易瞭解上文所提及之各種特性,以及下文將較詳 細描述之其他特徵及特性。 先參看圖1,一種用於觀看一電影螢幕1〇2上的三維 (「3D」)電影之系統1 〇〇包括一副三維眼鏡丨〇4,其具有一 左光閥106及一右光閥ι〇8。在一例示性實施例中,三維眼 鏡104包括一框架,且光閥1〇6及1〇8被設置成安裝且支撐 於該框架内之左觀看透鏡及右觀看透鏡。 在一例示性實施例中’光閥106及108為液晶單元,其在 單元自不透明轉至透明時打開,且在單元自透明轉回至不 透明時關閉。在此情況下,透明被定義為透射足以使三維 眼鏡104之使用者看到一投射在電影螢幕1〇2上之影像的 光。在一例示性實施例中’三維眼鏡104之使用者可能能 夠在二維眼鏡104之光閥106及/或108之液晶單元變為25% 至30%透射時看到投射在電影螢幕ι〇2上之影像。因此, 在光閥106及/或108之液晶單元變為25。/。至30%透射時,嘴 147657.doc 201118424 為液晶單元打開。在光閥106及/或108之液晶單元打開 時’液晶單元亦可能透射多於25%至30%之光。 在一例示性實施例中,三維眼鏡1〇4之光閥106及108包 括利用低黏度、面折射率之液晶材料(諸如,Merck m /卜·丨土貝 MLL6〇80)之具有PI單元組態的液晶單 施例中’調整PI單元厚度,使得該PI單元在其鬆弛狀態下 形成%波阻滯器。在—例示性實施例中,將ρι單元製造地 較厚,使得在不到完全鬆弛時達成%波狀態。合適液晶材 料中之一者為由Merck製造之MLC6080,但可使用具有足 夠高光學各向異性、低旋轉黏度及/或雙折射率之任何液 晶。三維眼鏡104之光閥1〇6及1〇8亦可使用小單元間隙, 包括(例如)4微米之間隙。此外,具有足夠高折射率及低黏 度之液晶亦可適合用於三維眼鏡1〇4之光閥1〇6及1〇8中。 在一例示性實施例中,三維眼鏡1〇4之光閥1〇6及1〇8之 二單元基於電控雙折射(「ECB」)原理玉作。雙折射意謂 著當不施加電藶或施加一小止擋電壓(catch沖夺,Η 單元對於偏振方向平行於叫元分子之長維之光及偏振方 向垂直於長維之光具有不同折射率⑽及…—為 光學各向異性。ΔηΜ為光學厚度,其中“單元之厚度。 田ΔηΜ-ΐαλ時,當將Pi單元相對於偏光器之軸線成^。置 放時’該單元充當1/2波阻滯器。因此,光學厚度是重要的 (不僅是厚度)。在-例示性實施例中,三維眼鏡之光間 1〇6及1〇8之W元被製造成光學上過厚,此意謂著 △nxd>H較南的光學各向異性意謂著單元愈薄單元鬆 147657.doc 201118424 弛愈快。在一例示性實施例中,當施加電壓時,三維眼鏡 104之光閥1〇6及108之Pi單元之分子的長軸垂直於基板垂 直配向(homeotropic alignment),因此此狀態下無雙折 射’且因為偏光器之透射軸線交又,所以不透射光。在一 例示性實施例中,將偏光器交叉之Pi單元稱為以常白模式 (normally white mode)工作且其在不施加電壓時透射光。 偏光器之透射軸線彼此平行地定向的pi單元以常黑模式 (normally black mode)工作,亦即,該等單元在施加一電 壓時透射光。 在一例示性實施例中’當自Pi單元移除高電壓時,光閥 106及/或1〇8之打開開始。此為一鬆弛過程,意謂著pi單元 中之液晶(「LC」)分子轉回至平衡狀態,亦即,分子與配 向層(亦即,基板之摩擦方向)對準。pi單元之鬆弛時間取 決於單元厚度及流體之旋轉黏度。 -般而言,Pi單元愈薄,鬆弛愈快。在一例示性實施例 中,重要參數並非Pi單元間隙3本身,而是乘積Δηίΐ,其中 △η為LC流體之雙折射率。在一例示性實施例中,為了提 供打開狀態下之最大光透射,pi單元之對正光學阻滯 (head-on optical retardati〇n)(And)應為 λ/2。較高之雙折射 率允許較薄單元且因此允許較快之單元鬆他。為了提供可 能的最快切換,使用具有低旋轉黏度及較高雙折射率如之 流體(諸如,EM industries 生產之 MLC 6080)。 在-例示性實施例中’除了在叫元中使用具有低旋轉 黏度及較高雙折射率之切換流體之外,為了達成自不透明 I47657.doc -6 - 201118424 至透明狀態之較快切換,亦將Pi單元製造成光學上過厚, 使得在不到完全鬆弛時達成%波狀態。通常,調整pi單元 厚度’使得該Pi單元在其鬆弛狀態下形成1/4波阻滞器。然 後,將Pi單元製造成光學±過厚冑得在不到完全鬆他時達 成%波狀態導致自不透明至透明狀態之較快切換。以此方 式,例示性實施例之光閥106及108提供與先前技術lx光閥 裝置相比而言增強之打開速度,其在一例示性實驗實施例 中提供了預期之外的結果。 在一例示性實施例中,可接著使用一止擋電壓以在…單 元中之LC分子旋轉過頭之前停止該等]1(:分子之旋轉。藉 由以此方式停止Pi單元中之LC分子之旋轉,光透射得以保 持在其華值或其峰偯附近。 在一例示性實施例中,系統1〇〇進一步包括一具有—中 央處理單元(「CPU」)110a之信號傳輸器11〇,其將—信號 傳輸向電影螢幕102。在一例示性實施例中,該傳輪作號 反射離開電影螢幕102而射向一信號感測器112。該傳輸作 號可為(例如)紅外線(「IR」)信號、可見光信號、多 號或白光中之—或多者。在—些實施射,該傳輪信號被 直接傳輸向信號感測器112,且因此可能不反射離開電影 螢幕102。在一些實施例中,該傳輸信號可為(例如射2 (「RF」)信號,其不反射離開電影螢幕丨〇2。 , 信號感測器112可操作地輕接至cpu 114。t 一 - 伯· 例不性實 施例中,信號感測器U2谓測該傳輸信號且將該信號之广 在傳達至CPU m。CPU UOa及CPU 114可(例如)各自。包括子 147657.doc 201118424 一通用可程式化控制器、一特殊應用積體電路(「Asic」、 一類比控制器、一局域化控制器、一分散式控制器、一可 程式化狀態控制器及/或前述裝置之一或多個組合。 CPU 114可操作地耦接至一左光閥控制器116及一右光閥 控制器118以用於監視及控制該等光閥控制器之操作。在 一例示性實施例中,左光閥控制器116及右光閥控制器ιΐ8 又可操作地耦接至三維眼鏡104之左光閥1〇6及右光閥1〇8 以用於監視及控制左光閥及右光閥之操作。光閥控制器 Π6及118可(例如)包括一通用可程式化控制器、一 ASIC、 一類比控制器、一類比或數位開關、一局域化控制器、一 分散式控制器、一可程式化狀態控制器及/或前述裝置之 一或多個組合。 一電池120可操作地耦接至至少CPU 114且提供用於操作 三維眼鏡104之CPU、信號感測器112及光閥控制器116及 118中之一或多者的電力。一電池感測器122可操作地耦接 至CPU 114及電池12〇以用於監視該電池中剩餘的電力之 量。201118424 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to an image processing system for presenting a video image that is three-dimensional to a viewer. The present application claims the benefit of the filing date of the U.S. Provisional Patent Application Serial No. 61/179,248 (Attorney Docket No. 092847.000020) filed on May 18, 2009, the content of which is hereby incorporated by reference. in. The present application claims the benefit of the filing date of the U.S. Provisional Patent Application Serial No. 61/253,150 (Attorney Docket No. 092847.000067) filed on Oct. 20, 2009, the content of which is incorporated herein by reference. in. This application claims the following claims on the filing date of each of the US utility patent applications filed on November 16, 2009: No. 12/619,518, No. 12/619,517, No. 12/619,309, No. 12 The contents of all of these applications are incorporated herein by reference in their entirety by reference in their entirety in the entirety the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the This application claims the benefit of the filing date of the U.S. Provisional Patent Application Serial No. 61/261,663 (Attorney Docket No. 092847.000098) filed on Nov. 16, 2009, the content of which is incorporated by reference. In this article. The present application claims the benefit of the filing date of the U.S. Provisional Patent Application Serial No. 61/285,048 (Attorney Docket No. 092847.000094) filed on Dec. 29, 2009, the content of which is hereby incorporated by reference. in. [Embodiment] In the following drawings and descriptions, the same components are always indicated in the specification and drawings. 147657.doc 201118424 is not labeled with the same reference numerals. The figures are not necessarily drawn to scale. The specific features of the present invention may be shown in an exaggerated proportion or in a somewhat schematic form, and some details of the conventional elements may not be shown for clarity and conciseness. The invention is susceptible to embodiments in various forms. The specific embodiments are described in detail and shown in the drawings, and in the claims It is sufficient to understand that the various teachings of the embodiments discussed below may not be used individually or in any suitable combination to produce the desired result. Those skilled in the art will be described in the following detailed description of the embodiments and with reference to the accompanying drawings. It is easy to understand the various features mentioned above, as well as other features and characteristics which will be described in more detail below. Referring first to Figure 1, a system for viewing a three-dimensional ("3D") movie on a movie screen 1〇2 The 〇〇 includes a pair of three-dimensional eyeglasses 4 having a left light valve 106 and a right light valve 〇8. In an exemplary embodiment, the three-dimensional eyepiece 104 includes a frame, and the light valves 1〇6 and 1〇8 are configured to mount and support the left and right viewing lenses within the frame. In an exemplary embodiment, light valves 106 and 108 are liquid crystal cells that open when the unit is turned from opaque to transparent and closed when the unit is turned from transparent to opaque. In this case, transparency is defined as transmitting light sufficient for the user of the 3D glasses 104 to see an image projected on the movie screen 1〇2. In an exemplary embodiment, a user of the 3D glasses 104 may be able to see the projection on the movie screen when the liquid crystal cells of the light valves 106 and/or 108 of the two-dimensional glasses 104 become 25% to 30% transmissive. The image on the top. Therefore, the liquid crystal cells at the light valves 106 and/or 108 become 25. /. At 30% transmission, the nozzle 147657.doc 201118424 is open for the liquid crystal cell. The liquid crystal cell may also transmit more than 25% to 30% of the light when the liquid crystal cells of the light valves 106 and/or 108 are open. In an exemplary embodiment, the light valves 106 and 108 of the 3D glasses 1 包括 4 comprise a PI unit group using a low viscosity, surface refractive index liquid crystal material such as Merck m / M 〇 贝 M MLL6 〇 80 In the liquid crystal single embodiment, the PI cell thickness is adjusted such that the PI cell forms a % wave retarder in its relaxed state. In the exemplary embodiment, the cells are made thicker so that the % wave state is achieved when not fully relaxed. One of suitable liquid crystal materials is MLC6080 manufactured by Merck, but any liquid crystal having sufficiently high optical anisotropy, low rotational viscosity, and/or birefringence can be used. The light valves 1〇6 and 1〇8 of the 3D glasses 104 may also use small cell gaps, including, for example, 4 micron gaps. Further, a liquid crystal having a sufficiently high refractive index and a low viscosity can also be suitably used in the light valves 1〇6 and 1〇8 of the 3D glasses 1〇4. In an exemplary embodiment, the two units of light valves 1〇6 and 1〇8 of the 3D glasses 1〇4 are based on the principle of electronically controlled birefringence (“ECB”). Birefringence means that when no electric charge is applied or a small stop voltage is applied (catch rush, the unit has a different refractive index for the long-dimensional light whose polarization direction is parallel to the called element and the polarization direction is perpendicular to the long-dimensional light. (10) and ... are optical anisotropy. ΔηΜ is the optical thickness, where “the thickness of the unit. When the field ΔηΜ-ΐαλ, when the Pi unit is formed with respect to the axis of the polarizer, the unit acts as 1/2. Wave retarders. Therefore, the optical thickness is important (not only the thickness). In the exemplary embodiment, the W elements of the light between the light of the three-dimensional glasses of 1〇6 and 1〇8 are made optically too thick, It means that the optical anisotropy of △nxd>H means that the thinner the cell is 147657.doc 201118424. In an exemplary embodiment, when a voltage is applied, the light valve 1 of the 3D glasses 104 The long axes of the molecules of the Pi cells of 〇6 and 108 are perpendicular to the homeotropic alignment of the substrate, so that there is no birefringence in this state and the light is not transmitted because the transmission axis of the polarizer overlaps. In an exemplary embodiment In the middle of the crossover of the polarizer The i unit is said to operate in a normally white mode and transmits light when no voltage is applied. The pi unit in which the transmission axes of the polarizers are oriented parallel to each other operates in a normally black mode, that is, The cells transmit light when a voltage is applied. In an exemplary embodiment, when the high voltage is removed from the Pi cell, the opening of the light valve 106 and/or 1 〇 8 begins. This is a relaxation process, meaning The liquid crystal ("LC") molecules in the pi unit are turned back to equilibrium, that is, the molecules are aligned with the alignment layer (ie, the rubbing direction of the substrate). The relaxation time of the pi unit depends on the thickness of the cell and the rotation of the fluid. Viscosity - In general, the thinner the Pi unit, the faster the relaxation. In an exemplary embodiment, the important parameter is not the Pi cell gap 3 itself, but the product Δηίΐ, where Δη is the birefringence of the LC fluid. In an exemplary embodiment, the head-on optical retardation (And) of the pi unit should be λ/2 in order to provide maximum light transmission in the open state. Higher birefringence allows Thinner unit and therefore allowed The unit is fast. In order to provide the fastest possible switching, a fluid with a low rotational viscosity and a high birefringence such as MLC 6080 produced by EM industries is used. In the exemplary embodiment, 'except in the call In addition to using a switching fluid having a low rotational viscosity and a high birefringence in the element, in order to achieve a faster switching from the opaque I47657.doc -6 - 201118424 to the transparent state, the Pi unit is also made optically too thick, so that A % wave state is achieved when not fully relaxed. Typically, the pi cell thickness is adjusted such that the Pi cell forms a quarter wave retarder in its relaxed state. Then, the Pi cell is fabricated to be optically ± too thick to achieve a % wave state when not fully relaxed, resulting in a faster switching from opaque to transparent state. In this manner, the light valves 106 and 108 of the illustrative embodiments provide enhanced opening speeds as compared to prior art lx light valve devices, which provide unexpected results in an exemplary experimental embodiment. In an exemplary embodiment, a stop voltage can then be used to stop the rotation of the LC molecules before the LC molecules in the unit are rotated over the head. (In this way, the LC molecules in the Pi unit are stopped. Rotating, the light transmission is maintained near its value or its peak. In an exemplary embodiment, system 1 further includes a signal transmitter 11 having a central processing unit ("CPU") 110a, The signal is transmitted to the movie screen 102. In an exemplary embodiment, the wheel is reflected off the movie screen 102 and directed to a signal sensor 112. The transmission number can be, for example, infrared ("IR") - one or more of a signal, a visible light signal, a multiple number or a white light. In some implementations, the transmission signal is transmitted directly to the signal sensor 112, and thus may not be reflected off the movie screen 102. In some implementations In an example, the transmitted signal can be (e.g., a 2 ("RF") signal that is not reflected off the movie screen 。 2. The signal sensor 112 is operatively lightly connected to the cpu 114. t - 伯 · Example In the non-limiting embodiment, The sensor U2 pre-measures the transmission signal and communicates the signal to the CPU m. The CPU UOa and the CPU 114 can, for example, each include a sub-147657.doc 201118424 a universal programmable controller, a special application One or more combinations of integrated circuits ("Asic", an analog controller, a localized controller, a distributed controller, a programmable state controller, and/or the aforementioned devices. CPU 114 is operatively Coupling to a left light valve controller 116 and a right light valve controller 118 for monitoring and controlling the operation of the light valve controllers. In an exemplary embodiment, the left light valve controller 116 and the right light The valve controller ΐ8 is operatively coupled to the left light valve 1〇6 and the right light valve 1〇8 of the 3D glasses 104 for monitoring and controlling the operation of the left and right light valves. 118 can, for example, include a universal programmable controller, an ASIC, an analog controller, an analog or digital switch, a localized controller, a distributed controller, a programmable state controller, and/or Or one or more combinations of the foregoing devices. Power is coupled to at least the CPU 114 and provides power for operating one or more of the CPU of the 3D glasses 104, the signal sensor 112, and the light valve controllers 116 and 118. A battery sensor 122 is operatively It is coupled to the CPU 114 and the battery 12 for monitoring the amount of power remaining in the battery.
在一例示性實施例中,CPU 114可監視及/或控制信號感 測器112、光閥控制器116及11 8及電池感測器122中之-或 多者的操作。替代性地或額外地,信號感測器丨丨2、光閥 控制器116及118及電池感測器122中之一或多者可包括一 單獨的專用控制器及/或複數個控制器,其可能亦或可能 不監視及/或控制信號感測器112、光閥控制器116及118及 電’也感測器122中之一或多者。替代性地或額外地,CPU 147657.doc 201118424 114之操作可至少部分地分散⑨三維眼鏡1〇4之其他元件中 之或多者之間。 在一例示性實施例中,信號感測器112、CPU 114、光閥 控制器116及118、電池120及電池感測器122安裝且支撐在 三維眼鏡104之框架内。若電影螢幕1〇2位於一電影院内, 則可提供一投影器130以用於將一或多個視訊影像投射於 該電影螢幕上。在-例示性實施例巾,信號傳輸器】1〇可 緊接投影器130定位或可包括於投影器13〇内。在一例示性 貫施例中’投影器13〇可包括(例如)下列各者中之一或多 者:一電子放映裝置、一機電放映裝置、一電影投影器、 一數位視訊投影器,或用於將一或多個視訊影像顯示於電 衫螢幕102上的一電腦顯示器。替代性地,或除了電影螢 幕102之外,亦可使用一電視(「τν」)或其他視訊顯示裝 置,諸如一平面螢幕TV、一電漿丁V、一 LCD TV,或用於 顯示影像以供三維眼鏡之使用者觀看的其他顯示裝置,其 可(例如)包括可緊接該顯示裝置之顯示器表面定位及/或位 於該顯不裝置之顯示器表面内的信號傳輸器11〇或用於發 信號至三維眼鏡104之一額外信號傳輸器。 在一例示性實施例中’在系統1 〇〇之操作期間,CPU 114 依據由信號感測器112自信號傳輸器no接收之信號及/或 依據由CPU自電池感測器122接收之信號而控制三維眼鏡 104之光閥106及108之操作。在一例示性實施例中,CPU 114可指導左光閥控制器116打開左光閥1〇6及/或指導右光 閥控制器118打開右光閥1 〇8。 J47657.doc -9- 201118424 在:例示性實施例中’光閥控制器116及ιΐ8藉由在光閥 之液晶單元上施加-電壓來分別控制光閥106及108之操 作。在-例示性實施例t ’施加在光閥1〇6及1〇8之液晶單 元上的電壓在負與正之間交替。在—例示性實施例中,不 #所轭加之電壓為正或是為負,光閥1〇6及ι〇8之液晶單元 均以相同方式打開及關閉。交替所施加的電壓防止光閥 106及108之液晶單元之材料於單元之表面析出。 在一例示性實施例中,在系統1〇〇之操作期間,如圖2及 圖3申所說明’该系統可實施一左右光閥方法,在該方 法中,若在202a中,左光閥106關閉且右光閥1〇8打開,則 在202b中,分別藉由光閥控制器116及118將一高電壓 202ba施加至左光閥1〇6及將無電壓2〇2bb隨後接著一小止 擋電壓202bc施加至右光閥108。在—例示性實施例中,將 高電壓202ba施加至左光閥106使左光閥關閉,且不施加電 壓至右光閥1 〇 8會開始打開右光閥。在一例示性實施例 中’隨後將小止擋電壓202bc施加至右光閥108可防止右光 閥中之液晶在右光閥1 〇 8之打開期間旋轉過頭。結果,在 202b ’左光閥106被關閉且右光閥1〇8被打開。 若在202c中,左光閥106被打開且右光閥log被關閉,則 在202d中,分別藉由光閥控制器118及116,將一高電壓 202da施加至右光閥1〇8且將無電壓202db隨後接著一小止 擋電壓202dc施加至左光閥106。在一例示性實施例中,將 高電壓202da施加至右光閥108使右光閥關閉,且不施加電 壓至左光閥1 〇 6會開始打開左光閥。在一例示性實施例 147657.doc .10- 201118424 中,隨後將小止擋電壓2〇2dc施加至左光閥106可防止左光 閥中之液晶在左光閥106之打開期間旋轉過頭。結果,在 202d ’左光閥106被打開且右光閥108被關閉。 在一例示性實施例中,202b及202d中所使用的止檔電壓 之量值在202b及202d中所使用的高電壓之量值的約1〇%至 20%的範圍内。 在一例示性實施例中,在系統100之操作期間,在方法 200期間,在202b中左光閥1〇6關閉且右光閥1〇8打開的時 間期間,為右眼呈現一視訊影像,且在2〇2d中左光閥^ 〇6 打開且右光閥108關閉的時間期間,為左眼呈現一視訊影 像。在一例示性實施例中,視訊影像可顯示於下列各者中 之或多者上·電影院螢幕102、一 LCD電視螢幕、一數 位光源處理(「DLP」)電視、一數位光源處理投影器、一 電漿螢幕及其類似者。 在一例示性實施例中,數位光源處理投影器併有可自 Texas Instruments購得的習知i晶片數位光源處理投影系統 及/或習知3晶片數位光源處理投影系統。 在-例示性實施例中,在系統1〇〇之操作期間,cpu ιΐ4 將指導每-光閥106及⑽在呈現意欲用於該光閥及觀看者 眼睛之影像時打開·»在—例示性實施例中―同步信號可 用以使光閥106及108在正確時間打開。 化 在-例示性實施例中,一同步信號係由信號傳輸器Η。 傳輸且該同步信號可(例如)包括—紅外光n示㈣ 施例中,信號傳輸器110將該同步信號傳輸至一反射性表 147657.doc 201118424 面,且該表面將該信號反射至^位且安裝於三維眼鏡ι〇4 之框架内的信號感測器112。該反射性表面可(例如)為電影 院螢幕H)2或位於電影螢幕上或附近的另一反射性裝置, 以使得三維眼鏡104之使用者在觀看電影時大體上面對該 反射體。在一例示性實施财,信號傳輸器U0可將該同 步信號直接發送至感測器112。纟—例示性實施例中,信 號感測器m可包括—安裝且支撐在三維眼鏡1〇4之框架上 的光電二極體。 該同步彳5號可在每一左右鏡頭光閥序列2〇〇開始時提供 一脈衝。該同步信號可更為頻繁,(例如)提供一脈衝以指 導每一光閥106或108之打開。該同步信號可較不頻繁, (例如)每光閥序列200、每五個光閥序列或每1〇〇個光閥序 列提供一次脈衝。CPU 114可具有一内部計時器以在同步 L號不存在的情況下維持適當光閥定序。 在一例示性實施例中,光閥106及1〇8中之黏性液晶材料 與窄單元間隙之組合可產生一光學上過厚之單元。光閥 106及1〇8中之液晶在施加有電壓時阻擋光透射。在移除施 加之電壓後,光閥106及1〇8中之液晶中的分子旋轉回至對 準層之定向。對準層將該等液晶單元中之分子定向以允許 光透射《在一光學上過厚之液晶單元中,該等液晶分子在 移除電力之後迅速地旋轉且因此使光透射迅速地增加,但 是接著分子旋轉過頭且光透射減小。自液晶單元分子之旋 轉開始直至光透射穩定(亦即,液晶分子旋轉停止)的時間 為真正的切換時間。 147657.doc •12· 201118424 在一例示性實施例中,當光閥控制器116及118將小的止 擋電壓施加至光閥106及108時,此止擋電壓在該等光閥中 之該等液晶單元旋轉過頭之前停止該等液晶單元之旋轉。 藉由在光閥106及108中之該等液晶單元中之分子旋轉過頭 之前停止該等分子之旋轉,穿過該等光閥中之該等液晶單 元中之該等分子的光透射保持在其峰值或峰值附近。因 此’有效的切換時間為自光閥106及1〇8中之液晶單元開始 其旋轉’直至液晶單元中之分子之旋轉停止在峰值光透射 點處或附近。 現參看圖4,透射指代透射穿過光閥1〇6或1〇8之光的 置,其中透射率值1指代穿過光閥1〇6或1〇8之液晶單元之 最大或接近最大光透射點。因此,對於能夠最多透射37% 之光的光閥1〇6或108而言’透射位準"旨示光閥1〇6或1〇8 正透射可用光之最大量(亦即,37%)。當然,視所使用的 特定液晶單元而定’域1()6或⑽所透射之光的最大量可 為任意量’包括(例如)33%、3G%或者顯著較多或較少。 如圖4中所說明,在一例示,Μ:普私_ h 例不〖生實驗實施例中,操作光閥 106或108,且在方法2〇〇之操作湘 祕作期間量測光透射4〇(^在光 閥106或108之例示性實驗實施 J τ 尤閥在大約0 · 5毫秒 内關閉,接著在光閥循環的前一 牛中在約7毫秒内保持關 閉,j後光閥在約1毫秒内打開 Β ^ 玎開至最大光透射的約90〇/〇, 且接者光閥在約7毫.秒内伴牲ρ目 、 円保持打開,且然後關閉。作為比 較,亦在方法200之操作期間 刃〗保作一可購得光間, 展現光透射402。在方法2〇〇之操作 二先閥 、4間’本例示性實施例 147657.doc 201118424 之光閥106及108之光透射在約1毫秒内達到約25°/。至30%之 透射性(亦即,最大光透射之約90%),如圖4所示’而另一 光閥僅在約2.5毫秒之後達到約25%至30°/。之透射性(亦即, 最大光透射之約90%),如圖4所示。因此,本例示性實施 例之光閥106及108比可購得光閥提供一顯著較快回應之操 作。此為一意外結果。 現參看圖5,在一例示性實施例中,系統100實施一操作 方法500,在該方法中,在502中,信號感測器114自信號 傳輸器110接收一紅外線同步(「sync」)脈衝。在504中, 若三維眼鏡104不處於執行模式(RUN MODE),則在506中 CPU 114判定三維眼鏡104是否處於關閉模式(0FF MODE)。在506中若CPU 11 4判定三維眼鏡104不處於關閉 模式下,則在508中CPU 114繼續正常處理,然後返回 502。在506中若CPU 114判定三維眼鏡104處於關閉模式 下’則CPU 114在5 10中清除同步反相器(「SI」)及驗證旗 標以為下一個加密信號準備CPU 114,在5 12中起始光閱 106及108之一暖機序列,然後繼續進行正常操作508且返 回 502。 在504中右二維眼鏡1〇4處於執行模式’則在514中CPU 114判定三維眼鏡1〇4是否已經組態以用於加密。在514中 若三維眼鏡104已經組態以用於加密,則CPU 114繼續508 中之正常操作且進行至5〇2。在514中若三維眼鏡1〇4未經 組態以用於加密,則在516*CPU 114檢查以判定傳入信號 是否為三脈衝同步信號。在516中若傳入信號並非三脈衝 147657.doc -14- 201118424 同步信號,則CPU 114繼續508中之正常操作且進行至 502。在516中若傳入信號為三脈衝同步信號,則在518中 CPU 114使用信號感測器112自信號傳輸器110接收組態資 料。在520中CPU 114接著將該接收到的組態資料解密以判 定其是否有效。在520中’若該接收到的組態資料有效, 則在522中CPU 114檢查以查看新的組態id(「CONID」)是 否匹配先前CONID。在一例示性實施例中,先前c〇niD可 儲存於一記憶體裝置(諸如,非揮發性記憶體裝置)中,該 記憶體裝置在三維眼鏡104之製造或現場程式化期間可操 作地耦接至CPU 114 »在522中,若新的CONID不匹配先前 CONID,則在5之4中CPU 指導三維眼鏡1〇4之光閥1〇6及 108進入透明模式(CLEAR MODE)。在522中,若新的 CONID匹配先前C0NID,則在526中cpu 114設定§1及 CONID旗標以觸發正常模式光閥序列以用於觀看三維影 像。 在一例示性實_巾,在執行或正常模式T,三維眼鏡 1 〇兀王可“作9在一例不性實施例中,在關閉模式下, 該三維眼鏡不可操作。在—例示性實施例中,在正常模式 下,該三維眼鏡可操作且可實施方法2〇〇。 在:例不性實施例中,信號傳輸器110可靠近影院投影 益二30疋位」在_例示性實施例中,信號傳輸器尤其) ^ 同步L 5虎(Sync信號」)發送至三維眼鏡104之信號感 1二2。信號傳輪器11 〇可改為或額外地自影院投影器 及或任何顯示器及,或任何發射器裝置接收同步信號。 147657.doc •15· 201118424 在一例示性實施例中,一加密信號可用以防止三維眼鏡 104與不含有正確加密信號之信號傳輸器11〇一起操作。此 外’在一例示性實施例中,該加密傳輸器信號將不會正破 地致動未經配備以接收及處理加密信號之三維眼鏡1〇4。 在一例示性實施例中,信號傳輸器11 0亦可將加密資料發 送至三維眼鏡1 04。 現參看圖6 ’在一例示性實施例中,在操作期間,系統 1 〇〇實施一操作方法600 ’在該方法中,在602中,該系統 判定信號傳輸器i 1 〇是否因為恰好在602中傳來電力而被重 設。在602中,若信號傳輸器丨10因為恰好傳來電力而被重 設,則在604中該信號傳輸器產生一新的隨機同步反相旗 才示在602中,右仏號傳輸器11〇不具有一通電重設狀況, 則在606中信號傳輸器110之CPU 110a判定是否已使用相同 同步編碼超出一預定時間量。在一例示性實施例中,606 中之預定時間可為四個小時,或一典型電影之長度,或任 何其他合適時間。在6〇6中,若相同同步編碼已被使用了 4 小時以上,則在604中信號傳輸器u〇2Cpu 11〇&產生一新 的同步反相旗標。 在6〇8中,信號傳輸器11〇之cPU 11〇a接著判定該信號傳 輸器是否仍在從投影器13〇接收一信號。在6〇8中,若信號 傳輸器110並非仍在從投影器13G接收—信號則在㈣中 “虎傳輪110可使用其自身的内部同步產生器繼續在適 當時間將同步信號發送至信號感測器112。 在‘作期#號傳輸i i Q可(例如)在兩脈衝同步信號 147657.doc 201118424 與三脈衝同步信號之間交替。在一例示性實施例中,兩脈 衝同步信號指導三維眼鏡104打開左光閥108,且三脈衝同 步信號指導三維眼鏡i〇4打開右光閥106。在一例示性實施 例中’信號傳輸器110可在每η個信號之後發送一加密信 號。 在612中,若信號傳輸器110判定其應發送三脈衝同步信 號’則在614中該信號傳輸器判定自上一個加密循環起的 信號計數。在一例示性實施例中,信號傳輸器u 〇在每十 個h號中僅發送一次加密信號。然而’在一例示性實施例 中 加在' k號之間可存在較多或較少信號循環。在614 中’若信號傳輸器110之CPU 110a判定此並非第n個三脈衝 同步信號,則在616中CPU指導該信號傳輸器發送一標準 的三脈衝同步信號。若該同步信號為第η個三脈衝信號, 則在618中信號傳輸器11〇之cpu ii〇a將該資料加密且在 620中CPU 11 〇a發送一具有嵌入的組態資料之三脈衝同步 信號。在612中,若信號傳輸器11〇判定其不應發送三脈衝 同v彳。號,則在622中該信號傳輸器發送兩脈衝同步信 號。 現參看圖7及圖8,在一例示性實施例中,在系統1〇〇之 操作期間,信號傳輸器11〇實施一操作方法7〇〇,在該方法 中,組合該等同步脈衝與經編碼組態資料,然後由信號傳 輸益11〇加以傳輸。詳言之,信號傳輸器ιι〇包括一產生一 時脈信號8GG之勃體内部時鐘。在術中,信號傳輸器ιι〇 之CPU ll〇a判疋時脈信號嶋是否處於時脈循環之開始 147657.doc •17- 201118424 處。在搬中’若信號傳輪器政咖㈣判定時脈 800處於時脈猶環之間私飱 ' CP·則在704中該信號傳輸器之 . Π態貢枓化號804是高還是低 貧料信號804為高,則在7〇 澴〜、 Α 一〜± 〜隹〇6中將一貧料脈衝信號806設定 馮一咼值。若組態資料信號8〇4 衝信號_設^為-低值。在―例干性^ ^將資料脈 ii- 〇. Qn,__ '眭貫施例中,資料脈 衝^嶋可^包括时錢。因此,在71〇巾纟且合資料 脈衝信號806與同步作號曰户…八丄 貝4 傳輸。、 乜虎且在710中由信號傳輸器110加以 ^-例示性實施例中,在加密操作之前或之後,組態資 料k號804之加密形式可在每一〜 母個冋步化號序列期間、在 疋數目個同步信號序列之後、嵌入同步信號序列中、盘 同步信號序列重疊或與同步信號序馳合地發送。此外:、 ^身料信號804之加密形式可在兩脈衝同步信號或三脈 ^同步信號或其兩者上或任何其他數目個脈衝之信號上發 門另外不s疋否在傳輪之任一端加密同步信號,可在 。步信號序列之傳輸之間傳輸該加密組態資料。 例不性實施例中,可(例如)使用曼徹斯特編碼提供 ,、且態資料信號m之編碼(具有或不具有同步信號序列)。 現參看圖2、圖5、圖8、圖9及圖1〇,在一例示性實施例 在統10G之操作期間,三維眼鏡i咐施—操作方法 —在°亥方法中,在902中,三維眼鏡1〇4之CPU 114檢查 “ 1醒拉式逾時。在一例不性實施例中,在9〇2中的喚醒 式I B寺之存在由—時脈信號9仏提供,該時脈信號具有 147657.doc -18· 201118424 一持續時間為100蒼紗之宾Βι?也Λ 耄办之间脈衝902aa,其可每兩秒或1他 預定時間段出現。在一例千批— 一 ^ 不丨生貫施例中,咼脈衝9〇2aa之 存在指示一喚醒模式逾時。 在902中,若CPU 114债測到—喚醒逾時,則在904中該 CPU使用信號感測器112檢查—同步信號之存在或不存 在。在9〇4中,若CPU 114债测到一同步信號,則在906中 該CPU使三維眼鏡1Q4處於—透明操作模式ρ在—例示 性實施例中’在透明操作模式下,該三維眼鏡實施方法 2〇0及50时的—或多者的至少幾個部分:接收同步脈衝, 及/或處理組態資料綱。在一例示性實施例中,在透明操 作模式下’該三維眼鏡至少可提供方法测之操作,如下 文所描述。 在904中,若CPU 114未偵測到—同步信號,則在卯8中 。亥CPU使二維眼鏡1〇4處於一關閉操作模式下,且接著在 9〇2中’該CPU檢查一喚醒模式逾時。在一例示性實施例 中’在關閉操作模式下,該三維眼鏡不提供正常操作模式 或透明操作模式之特徵。 ^在一例示性實施例中,當三維眼鏡處於關閉模式或透明 模式時,三維眼鏡104實施方法9〇〇。 現參看圖11及圖12,在一例示性實施例中,在系統1〇〇 之操作期間,三維眼鏡1〇4實施一暖機操作方法11〇〇,在 該方法中,在1102中,三維眼鏡之cpu 114檢查三維眼鏡 之通電》在一例示性實施例中’可藉由一使用者啟動—通 電開關或藉由一自動喚醒序列將三維眼鏡1〇4通電。在三 147657.doc -19- 201118424 維眼鏡104通電的情況下’三維眼鏡之光閥1〇6及1〇8可能 (例如)需要一暖機序列。在一時間段中不具有電力的光閥 106及108之液晶單元之分子可能處於一不明確狀態下。 在1102中,若三維眼鏡1〇4之CPU 114偵測到該三維眼鏡 之通電,則在1104中該CPU分別將交變電壓信號H04a及 1104b施加至光閥1〇6及108。在一例示性實施例中,施加 至光閥106及108之電壓在正峰值與負峰值之間交替以避免 光閥之液晶單元中的離子化問題。在一例示性實施例中, 電壓信號1104a及11 〇4b彼此至少部分地不同相。或者,電 壓信號1104a及11 〇4b可能同相或完全不同相。在一例示性 實施例中,電壓信號1104a及1104b中之一者或兩者可在一 零電壓與一峰值電塵之.間交替。在一例示性實施例中,可 將其他形式之電壓信號施加至光閥1〇6及108,以使得光閥 之液晶單元處於一明確操作狀態。在一例示性實施例中, 施加電壓信號1104a及11 〇4b至光閥106及108使該等光闊同 時或在不同時間打開及關閉。或者,施加電壓信號1 1 〇4 a 及1104b使光閥106及108—直關閉。 在施加電壓信號1104a及1104b至光閥1〇6及1〇8期間,在 1106中,〇?1;114檢查一暖機逾時。在1106中,若(:1>1;114 偵測到一暖機逾時’則在1108中該CPU將停止將電壓信號 11 04a及1104b施加至光閥106及108。 在一例示性實施例中,在1104及1106中,CPU 114在一 足以致動該等光閥之該等液晶單元之時間段中將電壓彳古號 1104a及1104b施加至光閥106及108。在一例示性實施例 147657.doc -20- 201118424 中,CPU 114在兩秒之逾時時段中將電壓信號11〇43及 1104b施加至光閥106及108。在一例示性實施例中,電壓 仏號1104a及ll〇4b之最大量值可為u伏特。在一例示性實 施例中,11()6中之逾時時段可為兩秒。在_例示性實施例 中,電壓信號1104a及1104b之最大量值可大於或小於丨斗伏 特,且逾時時段可更長或更短。在一例示性實施例中,在 方法議期間,CPU m可以-不同於用於觀看電影之速 率的速率打開及關閉光閥106及108。在一例示性實施例 中,在1104中,施加至光閥106及1〇8之電壓信號11〇4&及 ll〇4b以一不同於用於觀看電影之速率的速率交替。在一 例示性實施例中,在1104中,施加至光閥1〇6及1〇8之電壓 信號不交替,且在暖機時間段期間被持續施加,且因此該 等光閥之液晶單元在整個暖機時段中可保持不透明。在一 例示性實施例中,暖機方法1100可在同步信號存在或不存 在的情況下發生。因此,方法1100為三維眼鏡1〇4提供一 暖機操作模式。在一例示性實施例中,在實施暖機方法 1100之後,二維眼鏡處於一正常執行操作模式下且接著可 實施方法200。或者,在一例示性實施例中,在實施暖機 方法1100之後,三維眼鏡處於一透明操作模式下且接著可 實施下文所描述之方法1300。 現參看圖13及圖14,在一例示性實施例中,在系統1〇〇 之操作期間’三維眼鏡1〇4實施一操作方法13〇〇,在該方 法中,在1302中,CPU 114檢查以查看由信號感測器i丨2偵 測到的同步信號是有效還是無效。在1302中,若CPU 114 147657.doc 21 201118424 判定同步信號無效,則在1304中該CPU將電壓信號1304a 及1304b施加至三維眼鏡1〇4之光閥1〇6及1〇8。在一例示性 實施例中’施加至光閥106及1〇8之電壓在正峰值與負峰值 之間交替以避免光閥之液晶單元中的離子化問題。在一例 示性實施例t ’電壓信號ll〇4a及i1〇4b中之一者或兩者可 在一零電壓與一峰值電壓之間交替。在一例示性實施例 中,可將其他形式之電壓信號施加至光閥1〇6及1〇8,以使 得光閥之液晶單元保持打開,使得三維眼鏡1〇4之使用者 可透過光閥正常地查看。在一例示性實施例中,施加電壓 k號1104a及1 l〇4b至光閥106及108使該等光閥打開。 在施加電壓信號1304a及1304b至光閥106及1〇8期間,在 1306 中,CPU 114 檢查一清除逾時(clearing Ume 〇ut)。在 1306中,若CPU 114偵測到一清除逾時,則在13〇8中該 將停止將電壓信號13〇4&及1304b施加至光閥1〇6及1〇8。 因此,在一例示性實施例中,若三維眼鏡1〇4未偵測到 一有效同步信號,則該三維眼鏡可轉至—透明操作模式且 實施方法·。在透明操作模式下,在—例示性實二例 中,三維眼鏡104之光閥106及1〇8均保持打開,使得觀看 者可通過三維眼鏡之光閥正常地觀看。在—例示性實施例 中’施加-正負交替的怪定電壓以將三維眼鏡之光閥ι〇6 及⑽之液晶單it維持在-透明狀態。該恆定電壓可(例如) 在2至3伏特之範圍内,但該恆定電壓可為適合維持適产透 明光闊之任何其他電壓。在一例示性實施例中,三维目:鏡 HM之光閥106及108可保持透明,直至該三維目請能夠: 147657-doc •22· 201118424 證一加密信號。在一例示性實施例中,可以允許三維眼鏡 之使用者正常地觀看之—速率交替地打開及關閉三維眼鏡 之光閥106及108。 因此’方法1300提供一種清除三維眼鏡i 〇4之操作之方 法,且藉此提供一透明操作模式。 現參看圖1 5,在一例示性實施例中,在系統丨〇〇之操作 期間,二維眼鏡104實施一種監視電池丨2〇之方法丨5〇〇,在 該方法中’在1502中,三維眼鏡之cpu 11 4使用電池感測 器122判定電池之剩餘可用壽命。在丨5〇2中,若三維眼鏡 之CPU 114判定電池12〇之剩餘可用壽命不足,則在15〇4中 CPU提供低電池壽命狀況之一指示。 在一例示性實施例中,不足的剩餘電池壽命可(例如)為 小於3小時之任何時段.在一例示性實施例中,充足的剩 餘電池壽命可由三維眼鏡之製造商預先設定及/或由三維 眼鏡之使用者程式化。 在一例示性實施例中,在i5〇4中,三維眼鏡i〇4之CPU Π4將藉由使三維眼鏡之光閥1〇6及1〇8緩慢閃爍、藉由使 光閥同時以可被三維眼鏡之使用者看見之一中等速率閃 爍、藉由使一指示燈閃光、藉由產生一可聽聲音及其類似 動作而指示一低電池壽命狀況 在一例示性實施例中,若三維眼鏡1〇4之cpu 114偵測到 剩餘電池壽命不足以持續—規定時間段’則在15〇4中三維 眼鏡之CPU將指示一電池電力偏低狀況且接著防止使用者 開啟三維眼鏡。 147657.doc -23- 201118424 在一例示性實施例中,每當三維眼鏡轉變至透明操作模 式時,三維眼鏡1〇4之CPU 114判定剩餘電池壽命是否足夠。 在一例示性實施例中’若三維眼鏡之CPu 114判定電池 將持續至少預定足夠時間量’則三維眼鏡將繼續正常操 作。正常操作可包括保持在透明操作模式下五分鐘,同時 檢查來自彳s號傳輸器110之有效信號,然後轉至一關閉模 式’在該模式中三維眼鏡104週期性地醒來以檢查來自信 號傳輸器之信號。 在一例示性實施例中’三維眼鏡104之CPU 114恰在關掉 三維眼鏡之前檢查電池電力偏低狀況。在一例示性實施例 中’若電池120將不能持續該預定的足夠剩餘壽命時間, 則光閥1 06及1 〇8將開始緩慢閃爍。 在—例示性實施例中,若電池120將不能持續該預定的 足夠剩餘壽命時間,則光閥106及/或108將在兩秒内處於 一不透明狀況(亦即,液晶單元關閉)且接著在十分之一秒 内處於—透明狀況(亦即,液晶單元打開)。光閥106及/或 108關閉及打開的時間段可為任何時間段。 在—例示性實施例中’三維眼鏡1〇4可在任何時間(包括 在暖機期間、在正常操作期間、在透明模式期間、在斷電 模式期間’或於任何狀況之間轉變時)檢查電池電力偏低 狀況。在一例示性實施例中’若在觀看者可能在看電影之 中途時傾測到一低電池壽命狀況,則三維眼鏡1 〇4可不立 即指示該電池電力偏低狀況。 在—些實施例中,若三維眼鏡104之CPU 114偵測到一電 147657.doc -24- 201118424 池電力偏低位準,則使用者將不能夠將三維眼鏡通電。 現參看圖16,在一例示性實施例中,一測試器丨6〇〇可緊 接三維眼鏡1〇4定位以便證實三維眼鏡在正常工作。在— 例示性實施例中,測試器160〇包括用於將測試信號l6〇〇b 傳輸至該三維眼鏡之信號感測器丨12的一信號傳輸器 1600a。在一例示性實施例中,測試信號16〇〇b可包括一同 步信號’其具有一低頻率速率以使三維眼鏡1 〇4之光閥1 〇6 及108以可被三維眼鏡之使用者看見之一低速率閃爍。在 一例示性實施例中,光閥106及1〇8不能回應於測試信號 1 600b而閃爍可指示三維眼鏡1 〇4不能正常操作。 現參看圖17,在一例示性實施例中,三維眼鏡1 〇4進一 步包括一可操作地耦接至CPU 114、光閥控制器116及 118、電池120之電荷泵1700,其用於將電池之輸出電壓轉 換成一較高輸出電壓以供操作光閥控制器之用。 參看圖18、圖18a、圖18b、圖18c及圖18d,提供三維眼 鏡1 800之一例示性實施例,該三維眼鏡在設計及操作上實 質上專同於上文所說明及描述之三維眼鏡104,惟下文所 說明的方面除外。三維眼鏡1 800包括一左光閥1 802、一右 光閥1804、一左光閥控制器1806、一右光閥控制器1808、 一 CPU 1810、一電池感測器1812、一信號感測器1814及一 電荷泵1816。在一例示性實施例中,三維眼鏡18〇〇之左光 閥1802、右光閥1804、左光閥控制器1806、右光閥控制器 1808、CPU 1810、電池感測器1812、信號感測器1814及電 荷泵1816的設計及操作實質上等同於上文所描述及說明的 147657.doc -25- 201118424 三維眼鏡104之左光閥106、右光閥108、左光閥控制器 116、右光閥控制器118、CPU 114、電池感測器122、信號 感測器112及電荷泵1700。 在一例示性實施例中,三維眼鏡1 800包括以下組件:In an exemplary embodiment, CPU 114 may monitor and/or control the operation of one or more of signal sensor 112, light valve controllers 116 and 118, and battery sensor 122. Alternatively or additionally, one or more of signal sensor 丨丨 2, light valve controllers 116 and 118, and battery sensor 122 may include a separate dedicated controller and/or a plurality of controllers. It may or may not monitor and/or control one or more of signal sensor 112, light valve controllers 116 and 118, and also 'electrical sensor 122. Alternatively or additionally, the operation of CPU 147657.doc 201118424 114 may at least partially disperse between or among other elements of the 9-dimensional glasses 1〇4. In an exemplary embodiment, signal sensor 112, CPU 114, light valve controllers 116 and 118, battery 120, and battery sensor 122 are mounted and supported within the framework of three-dimensional glasses 104. If the movie screen 1 is located in a movie theater, a projector 130 can be provided for projecting one or more video images onto the movie screen. In the exemplary embodiment, the signal transmitter can be positioned next to the projector 130 or can be included in the projector 13A. In an exemplary embodiment, the 'projector 13' may include, for example, one or more of: an electronic projection device, an electromechanical projection device, a movie projector, a digital video projector, or A computer display for displaying one or more video images on the shirt screen 102. Alternatively, or in addition to the movie screen 102, a television ("τν") or other video display device may be used, such as a flat screen TV, a plasma D, an LCD TV, or for displaying images. Other display devices for viewing by a user of the 3D glasses, which may, for example, include a signal transmitter 11 that can be positioned next to the display surface of the display device and/or located within the display surface of the display device or for use in transmitting The signal is sent to one of the 3D glasses 104 as an additional signal transmitter. In an exemplary embodiment, during operation of system 1, CPU 114 is responsive to signals received by signal sensor 112 from signal transmitter no and/or based on signals received by CPU from battery sensor 122. The operation of the light valves 106 and 108 of the three-dimensional glasses 104 is controlled. In an exemplary embodiment, CPU 114 may direct left light valve controller 116 to open left light valve 1〇6 and/or direct right light valve controller 118 to open right light valve 1〇8. J47657.doc -9- 201118424 In the exemplary embodiment, the light valve controllers 116 and ι 8 control the operation of the light valves 106 and 108, respectively, by applying a voltage to the liquid crystal cells of the light valve. The voltage applied to the liquid crystal cells of the light valves 1〇6 and 1〇8 in the exemplary embodiment t' alternates between negative and positive. In the exemplary embodiment, the liquid crystal cells of the light valves 1〇6 and ι8 are turned on and off in the same manner, without the voltage of the yoke being positive or negative. The alternating applied voltage prevents the material of the liquid crystal cells of the light valves 106 and 108 from being deposited on the surface of the cell. In an exemplary embodiment, during operation of the system 1, as illustrated in Figures 2 and 3, the system can implement a left and right light valve method, in which, if in 202a, the left light valve 106 is closed and the right light valve 1〇8 is opened, then in 202b, a high voltage 202ba is applied to the left light valve 1〇6 by the light valve controllers 116 and 118, respectively, and no voltage 2〇2bb is followed by a small The stop voltage 202bc is applied to the right light valve 108. In the exemplary embodiment, applying a high voltage 202ba to the left shutter 106 causes the left shutter to close, and applying no voltage to the right shutter 1 〇 8 will begin to open the right shutter. In an exemplary embodiment, the subsequent application of the small stop voltage 202bc to the right shutter 108 prevents the liquid crystal in the right shutter from rotating over the opening of the right shutter 1 〇 8 . As a result, the left light valve 106 is closed at 202b' and the right light valve 1〇8 is opened. If in 202c, the left shutter 106 is opened and the right shutter log is closed, then in 202d, a high voltage 202da is applied to the right shutter 1〇8 by the shutter controllers 118 and 116, respectively, and The no voltage 202db is then applied to the left shutter 106 followed by a small stop voltage 202dc. In an exemplary embodiment, applying a high voltage 202da to the right shutter 108 causes the right shutter to close, and applying no voltage to the left shutter 1 〇 6 will begin to open the left shutter. In an exemplary embodiment 147657.doc.10-201118424, subsequent application of a small stop voltage 2〇2dc to the left shutter 106 prevents the liquid crystal in the left shutter from rotating over the opening of the left shutter 106. As a result, the left shutter 106 is opened and the right shutter 108 is closed at 202d'. In an exemplary embodiment, the magnitude of the stop voltage used in 202b and 202d is in the range of about 1% to 20% of the magnitude of the high voltage used in 202b and 202d. In an exemplary embodiment, during operation of system 100, during the method 200, during a time when left light valve 1〇6 is closed and right light valve 1〇8 is open in 202b, a video image is presented for the right eye, And during the time when the left light valve ^ 〇 6 is turned on and the right light valve 108 is turned off in 2 〇 2d, a video image is presented for the left eye. In an exemplary embodiment, the video image may be displayed on one or more of the following: a cinema screen 102, an LCD television screen, a digital light source processing ("DLP") television, a digital light source processing projector, A plasma screen and the like. In an exemplary embodiment, the digital light source processes the projector and has a conventional i-chip digital light source processing projection system and/or a conventional 3-wafer digital light source processing projection system commercially available from Texas Instruments. In an exemplary embodiment, cpu ιΐ4 will direct each of the light valves 106 and (10) to open when presenting an image intended for the light valve and the viewer's eye during operation of the system 1〇〇. In the embodiment - the sync signal can be used to cause the shutters 106 and 108 to open at the correct time. In an exemplary embodiment, a synchronization signal is signaled by a signal transmitter. The synchronization signal can be transmitted, for example, including - infrared light (4). In the embodiment, the signal transmitter 110 transmits the synchronization signal to a reflective table 147657.doc 201118424, and the surface reflects the signal to the position And a signal sensor 112 installed in the frame of the three-dimensional glasses 〇4. The reflective surface can be, for example, a cinema screen H) 2 or another reflective device located on or near the movie screen such that a user of the 3D glasses 104 generally faces the reflector while viewing the movie. In an exemplary implementation, the signal transmitter U0 can send the synchronization signal directly to the sensor 112. In an exemplary embodiment, the signal sensor m can include a photodiode that is mounted and supported on the frame of the three-dimensional glasses 1〇4. The sync 彳 5 can provide a pulse at the beginning of each left and right lens light valve sequence 2 。. The synchronization signal can be more frequent, for example, providing a pulse to direct the opening of each light valve 106 or 108. The synchronization signal can be less frequent, for example, providing one pulse per light valve sequence 200, every five light valve sequences, or every one light valve sequence. CPU 114 may have an internal timer to maintain proper light valve sequencing in the absence of a synchronized L number. In an exemplary embodiment, the combination of the viscous liquid crystal material in the light valves 106 and 1 and the narrow cell gap produces an optically overly thick unit. The liquid crystals in the light valves 106 and 1B block the transmission of light when a voltage is applied. After the applied voltage is removed, the molecules in the liquid crystals in the light valves 106 and 1 are rotated back to the orientation of the alignment layer. The alignment layer orients the molecules in the liquid crystal cells to allow light transmission "in an optically thick liquid crystal cell that rapidly rotates after removal of power and thus causes a rapid increase in light transmission, but The molecule then rotates over and the light transmission decreases. The time from the rotation of the liquid crystal cell molecules until the light transmission is stabilized (i.e., the liquid crystal molecules are stopped) is the true switching time. 147657.doc • 12· 201118424 In an exemplary embodiment, when the light valve controllers 116 and 118 apply a small stop voltage to the light valves 106 and 108, the stop voltage is in the light valves The rotation of the liquid crystal cells is stopped before the liquid crystal cells are rotated too far. By stopping the rotation of the molecules before the molecules in the liquid crystal cells in the light valves 106 and 108 rotate over the head, the light transmission through the molecules in the liquid crystal cells in the light valves is maintained Near the peak or peak. Therefore, the 'effective switching time is that the liquid crystal cells in the light valves 106 and 1'8 start their rotation' until the rotation of the molecules in the liquid crystal cell stops at or near the peak light transmission point. Referring now to Figure 4, transmission refers to the placement of light transmitted through the light valve 1〇6 or 1〇8, where the transmittance value 1 refers to the maximum or close proximity of the liquid crystal cells passing through the light valve 1〇6 or 1〇8. Maximum light transmission point. Therefore, for a light valve 1〇6 or 108 capable of transmitting up to 37% of light, the 'transmission level' means that the light valve 1〇6 or 1〇8 is the maximum amount of available light (ie, 37%). ). Of course, the maximum amount of light transmitted by 'field 1() 6 or (10) depending on the particular liquid crystal cell used may be any amount ' including, for example, 33%, 3G% or significantly more or less. As illustrated in FIG. 4, in an example, the light valve 106 or 108 is operated in the example of the experiment, and the light transmission is measured during the operation of the method 2 〇 (^ In the exemplary experiment implementation of the light valve 106 or 108, the J τ valve is closed in about 0 · 5 milliseconds, and then remains closed in about 7 milliseconds in the first cow of the light valve cycle, after the j light valve is Open Β ^ within about 1 millisecond to open to a maximum light transmission of about 90 〇 / 〇, and the light valve in about 7 milliseconds with ρ mesh, 円 keep open, and then close. For comparison, also in During operation of method 200, the blade is guaranteed to be a commercially available light exhibiting light transmission 402. Operation 2 of the method 2, first valve, 4 light valves 106 and 108 of the present exemplary embodiment 147657.doc 201118424 The light transmission reaches about 25°/. to 30% transmittance (i.e., about 90% of the maximum light transmission) in about 1 millisecond, as shown in Figure 4, and the other light valve only after about 2.5 milliseconds. A transmittance of about 25% to 30% is achieved (i.e., about 90% of the maximum light transmission), as shown in Figure 4. Thus, the light valve 106 of the present exemplary embodiment And 108 provide a significantly faster response than the commercially available light valve. This is an unexpected result. Referring now to Figure 5, in an exemplary embodiment, system 100 implements an operational method 500 in which In 502, the signal sensor 114 receives an infrared sync ("sync") pulse from the signal transmitter 110. In 504, if the 3D glasses 104 are not in the RUN MODE, the CPU 114 determines the 3D glasses at 506. 104 is in the off mode (0FF MODE). If the CPU 11 determines in 506 that the 3D glasses 104 are not in the off mode, then the CPU 114 continues normal processing in 508 and then returns to 502. In 506, if the CPU 114 determines the 3D glasses 104 is in the off mode, then the CPU 114 clears the sync inverter ("SI") and the verification flag in 5 10 to prepare the CPU 114 for the next encrypted signal, and starts the warm reading 106 and 108 in 5 12 The sequence of machines then proceeds to normal operation 508 and returns to 502. In 504, the right 2D glasses 1〇4 are in the execution mode' then the CPU 114 determines in 514 whether the 3D glasses 1〇4 have been configured for encryption. Zhongruo three-dimensional eye 104 has been configured for encryption, then the CPU 114 proceeds to normal operation in 508 and proceeds to 5〇 2. If the 3D glasses 1〇4 are not configured for encryption in 514, then the CPU 516 checks at 516* To determine if the incoming signal is a three-pulse sync signal. If the incoming signal is not a three-pulse 147657.doc -14-201118424 sync signal at 516, then the CPU 114 continues with normal operation in 508 and proceeds to 502. If the incoming signal is a three-pulse sync signal at 516, the CPU 114 receives the configuration data from the signal transmitter 110 using the signal sensor 112 at 518. The CPU 114 then decrypts the received configuration data at 520 to determine if it is valid. If the received configuration data is valid at 520, the CPU 114 checks in 522 to see if the new configuration id ("CONID") matches the previous CONID. In an exemplary embodiment, the previous c〇niD may be stored in a memory device (such as a non-volatile memory device) that is operatively coupled during manufacture or field staging of the 3D glasses 104. Connected to CPU 114 » In 522, if the new CONID does not match the previous CONID, then in 5 4 the CPU directs the light valves 1〇6 and 108 of the 3D glasses 1〇4 to enter the transparent mode (CLEAR MODE). In 522, if the new CONID matches the previous C0NID, then in 526 cpu 114 sets the § 1 and CONID flags to trigger the normal mode light valve sequence for viewing the three dimensional image. In an exemplary embodiment, in the execution or normal mode T, the 3D glasses may be "in a non-limiting embodiment, in the off mode, the 3D glasses are inoperable. In an exemplary embodiment In the normal mode, the 3D glasses are operable and the method 2 can be implemented. In the exemplary embodiment, the signal transmitter 110 can be close to the cinema projection 2" in the exemplary embodiment. The signal transmitter is especially) ^ Synchronous L 5 Tiger (Sync Signal) sends a signal sense to the 3D glasses 104 1 2 . The signal transmitter 11 can alternatively or additionally receive a synchronization signal from the cinema projector and or any display and or any transmitter device. 147657.doc • 15· 201118424 In an exemplary embodiment, an encrypted signal can be used to prevent the 3D glasses 104 from operating with the signal transmitter 11 that does not contain the correct encrypted signal. Further, in an exemplary embodiment, the encrypted transmitter signal will not actuate the 3D glasses 1〇4 that are not equipped to receive and process the encrypted signal. In an exemplary embodiment, signal transmitter 110 may also transmit encrypted material to 3D glasses 104. Referring now to Figure 6 'in an exemplary embodiment, during operation, system 1 implements an operational method 600'. In the method, in 602, the system determines if signal transmitter i 1 〇 is at exactly 602 It was reset by the transmission of electricity. In 602, if the signal transmitter 丨 10 is reset because power is just transmitted, then at 604 the signal transmitter generates a new random sync inverted flag, which is shown in 602, right 仏 transmitter 11〇 Without a power-on reset condition, the CPU 110a of the signal transmitter 110 determines in 606 whether the same synchronization code has been used for more than a predetermined amount of time. In an exemplary embodiment, the predetermined time in 606 can be four hours, or the length of a typical movie, or any other suitable time. In 6〇6, if the same sync code has been used for more than 4 hours, then at 604 the signal transmitter u〇2Cpu 11〇& generates a new sync inversion flag. In 〇8, the cPU 11〇a of the signal transmitter 11 then determines whether the signal transmitter is still receiving a signal from the projector 13A. In 6-8, if the signal transmitter 110 is not still receiving the signal from the projector 13G, then in (4) "the tiger wheel 110 can continue to send the synchronization signal to the signal sense at the appropriate time using its own internal synchronization generator. Detector 112. The 'schedule # number transmission ii Q can alternate between, for example, the two-pulse synchronization signal 147657.doc 201118424 and the three-pulse synchronization signal. In an exemplary embodiment, the two-pulse synchronization signal directs the three-dimensional glasses 104 opens the left shutter 108 and the three-pulse sync signal directs the 3D glasses i〇4 to open the right shutter 106. In an exemplary embodiment, the 'signal transmitter 110 can transmit an encrypted signal after every n signals. If the signal transmitter 110 determines that it should transmit a three-pulse synchronization signal, then the signal transmitter determines the signal count from the last encryption cycle in 614. In an exemplary embodiment, the signal transmitter u is in each Only one encrypted signal is sent out of the ten h numbers. However, there may be more or less signal cycles between the 'k numbers in an exemplary embodiment. In 614, the CPU of the signal transmitter 110 110a determines that this is not the nth three-pulse synchronization signal, and the CPU instructs the signal transmitter to transmit a standard three-pulse synchronization signal in 616. If the synchronization signal is the nth three-pulse signal, then the signal transmitter in 618 The data is encrypted and the CPU 11 〇a sends a three-pulse synchronization signal with embedded configuration data in 620. In 612, if the signal transmitter 11 determines that it should not send three pulses. Similarly, the signal transmitter transmits a two-pulse synchronization signal at 622. Referring now to Figures 7 and 8, in an exemplary embodiment, during operation of the system 1 signal transmitter 11 An operation method 7 is implemented in which the synchronization pulses and the encoded configuration data are combined and then transmitted by the signal transmission. In particular, the signal transmitter ιι〇 includes a clock signal. 8GG's internal clock. During the operation, the signal transmitter ι〇〇CPU ll〇a determines whether the clock signal is at the beginning of the clock cycle 147657.doc •17- 201118424. In the move, if the signal transmission政政咖(4) The timing pulse 800 is in the private loop between the clock and the loop. CP is in the signal transmitter in 704. If the state of the Gonggaization 804 is high or low, the signal 804 is high, then at 7〇澴~, Α One ~ ± ~ 隹〇 6 will set a lean pulse signal 806 to Feng Yi value. If the configuration data signal 8 〇 4 rush signal _ set ^ is - low value. In the "example dry ^ ^ will be the data pulse Ii- 〇. Qn, __ 'In the case of the application, the data pulse ^ 嶋 can be included in the time. Therefore, in the 71 〇 纟 资料 资料 脉冲 脉冲 脉冲 806 806 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .... In the exemplary embodiment, the encrypted form of the configuration data k number 804 may be in the sequence of each parental step number before or after the encryption operation. After the number of synchronization signal sequences, embedded in the synchronization signal sequence, the disc synchronization signal sequence overlaps or is transmitted in synchronization with the synchronization signal sequence. In addition: the encrypted form of the body signal 804 can be sent on the two-pulse sync signal or the three-pulse sync signal or both or any other number of pulses. Encrypted sync signal is available at. The encrypted configuration data is transferred between transmissions of the step signal sequence. In an exemplary embodiment, the encoding of the state data signal m (with or without a synchronization signal sequence) may be provided, for example, using Manchester coding. Referring now to Figures 2, 5, 8, 9, and 1 , during an exemplary embodiment of the operation of the system 10G, the method of operating the lens - in the ° method, in 902, The CPU 114 of the 3D glasses 1〇4 checks “1 wake-up timeout. In one example, the presence of the wake-up IB temple in 9〇2 is provided by the clock signal 9仏, the clock signal 147657.doc -18· 201118424 A duration of 100 苍 之 Β Β Λ Λ 脉冲 脉冲 脉冲 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 In the embodiment, the presence of the chirped pulse 9〇2aa indicates that the wake-up mode is timed out. In 902, if the CPU 114 claims to measure the wake-up timeout, then in 904 the CPU uses the signal sensor 112 to check-synchronize The presence or absence of a signal. In 9.4, if the CPU 114 detects a synchronization signal, then in 906 the CPU places the 3D glasses 1Q4 in a transparent operation mode ρ - in an exemplary embodiment - in a transparent operation In the mode, the 3D glasses implement the method 2〇0 and 50°—or at least some parts of the plurality: receiving the same Step pulse, and/or processing configuration profile. In an exemplary embodiment, in a transparent mode of operation, the 3D glasses may provide at least a method of measuring the operation, as described below. In 904, if the CPU 114 is not Detected - the sync signal is in 卯 8. The CPU causes the 2D glasses 1 〇 4 to be in a shutdown mode of operation, and then in 9 〇 2 'the CPU checks an awake mode timeout. In an exemplary In the embodiment, the 3D glasses do not provide the features of the normal operation mode or the transparent operation mode in the off operation mode. In an exemplary embodiment, the 3D glasses 104 are implemented when the 3D glasses are in the off mode or the transparent mode. Referring now to Figures 11 and 12, in an exemplary embodiment, during operation of the system 1, the 3D glasses 1〇4 implement a warm-up operation method 11〇〇, in which, In 1102, the cpu 114 of the 3D glasses checks the energization of the 3D glasses. In an exemplary embodiment, the 3D glasses 1〇4 can be powered by a user-activated switch or by an automatic wake-up sequence. .d Oc -19- 201118424 When the dimensional glasses 104 are energized, the '3D glasses light valves 1〇6 and 1〇8 may, for example, require a warm-up sequence. Light valves 106 and 108 that do not have power for a period of time The molecules of the liquid crystal cell may be in an ambiguous state. In 1102, if the CPU 114 of the 3D glasses 1〇4 detects the power of the 3D glasses, the CPU applies the alternating voltage signals H04a and 1104b in 1104, respectively. To the light valves 1〇6 and 108. In an exemplary embodiment, the voltages applied to the light valves 106 and 108 alternate between positive and negative peaks to avoid ionization problems in the liquid crystal cells of the light valve. In an exemplary embodiment, voltage signals 1104a and 11 〇 4b are at least partially out of phase with one another. Alternatively, voltage signals 1104a and 11 〇 4b may be in phase or completely out of phase. In an exemplary embodiment, one or both of voltage signals 1104a and 1104b may alternate between a zero voltage and a peak electrical dust. In an exemplary embodiment, other forms of voltage signals can be applied to the light valves 1〇6 and 108 such that the liquid crystal cells of the light valve are in an unambiguous operating state. In an exemplary embodiment, voltage signals 1104a and 11 〇 4b are applied to light valves 106 and 108 to cause the light to open and close at the same time or at different times. Alternatively, application of voltage signals 1 1 〇 4 a and 1104b causes light valves 106 and 108 to be closed. During the application of voltage signals 1104a and 1104b to light valves 1〇6 and 1〇8, in 1106, 〇1; 114 checks for a warm-up timeout. In 1106, if (:1>1;114 detects a warm-up timeout) then the CPU will stop applying voltage signals 11 04a and 1104b to light valves 106 and 108 at 1108. In an exemplary embodiment In 1104 and 1106, the CPU 114 applies voltage signals 1104a and 1104b to the light valves 106 and 108 during a period of time sufficient to actuate the liquid crystal cells of the light valves. In an exemplary embodiment 147657 In .doc -20-201118424, CPU 114 applies voltage signals 11〇43 and 1104b to light valves 106 and 108 during a two second time period. In an exemplary embodiment, voltage numbers 1104a and 11〇4b The maximum magnitude may be u. In an exemplary embodiment, the timeout period in 11() 6 may be two seconds. In an exemplary embodiment, the maximum magnitude of voltage signals 1104a and 1104b may be greater than Or less than the bucket volt, and the timeout period may be longer or shorter. In an exemplary embodiment, during the method session, the CPU m may open and close the light valve 106 at a different rate than the rate at which the movie is viewed. And 108. In an exemplary embodiment, in 1104, voltage signals applied to light valves 106 and 1〇8 The numbers 11〇4& and 11〇4b alternate at a rate different from the rate at which the movie is viewed. In an exemplary embodiment, in 1104, the voltage signals applied to the light valves 1〇6 and 1〇8 are not Alternating, and being continuously applied during the warm-up period, and thus the liquid crystal cells of the light valves may remain opaque throughout the warm-up period. In an exemplary embodiment, the warm-up method 1100 may be present at a sync signal or The method 1100 provides a warm-up mode of operation for the 3D glasses 1〇4. In an exemplary embodiment, after the warm-up method 1100 is implemented, the 2D glasses are in a normal execution mode of operation. The method 200 can then be implemented. Alternatively, in an exemplary embodiment, after the warm-up method 1100 is implemented, the 3D glasses are in a transparent mode of operation and then the method 1300 described below can be implemented. Referring now to Figure 13 and 14. In an exemplary embodiment, during operation of the system 1 '3D glasses 1 实施 4 implements an operational method 13 〇〇 in which, in 1302, the CPU 114 checks to view the signal Whether the sync signal detected by sensor i丨2 is valid or invalid. In 1302, if CPU 114 147657.doc 21 201118424 determines that the sync signal is invalid, then in 1304 the CPU applies voltage signals 1304a and 1304b to the 3D glasses. 1〇4 light valves 1〇6 and 1〇8. In an exemplary embodiment, the voltage applied to light valves 106 and 1〇8 alternates between positive and negative peaks to avoid liquid crystal cells in the light valve. Ionization problem. One or both of the exemplary embodiment t' voltage signals 11a4a and i1〇4b may alternate between a zero voltage and a peak voltage. In an exemplary embodiment, other forms of voltage signals can be applied to the light valves 1〇6 and 1〇8 such that the liquid crystal cell of the light valve remains open, allowing the user of the 3D glasses 1〇4 to pass through the light valve. View it normally. In an exemplary embodiment, voltages k1 1104a and 1 l〇4b are applied to shutters 106 and 108 to cause the shutters to open. During the application of voltage signals 1304a and 1304b to light valves 106 and 1〇8, in 1306, CPU 114 checks for a clearing timeout (clearing Ume 〇ut). In 1306, if CPU 114 detects a clear timeout, then in 13〇8 it will stop applying voltage signals 13〇4& and 1304b to light valves 1〇6 and 1〇8. Therefore, in an exemplary embodiment, if the 3D glasses 1〇4 does not detect a valid synchronization signal, the 3D glasses can be transferred to the transparent operation mode and the method is implemented. In the transparent mode of operation, in the exemplary two examples, the light valves 106 and 1〇8 of the 3D glasses 104 remain open so that the viewer can view normally through the light valve of the 3D glasses. In the exemplary embodiment, the application-positive-negative alternating voltage is applied to maintain the liquid crystal singles of the light valves ι6 and (10) of the three-dimensional glasses in a transparent state. The constant voltage can be, for example, in the range of 2 to 3 volts, but the constant voltage can be any other voltage suitable to maintain a suitable transparency. In an exemplary embodiment, the three-dimensional mesh: MG light valves 106 and 108 can remain transparent until the three-dimensional object can: 147657-doc • 22· 201118424 proves an encrypted signal. In an exemplary embodiment, the user of the 3D glasses may be allowed to view the shutters 106 and 108 of the 3D glasses alternately at a rate that is normally viewed. Thus, the method 1300 provides a method of clearing the operation of the 3D glasses i 〇 4 and thereby providing a transparent mode of operation. Referring now to Figure 15, in an exemplary embodiment, during operation of the system, the two-dimensional glasses 104 implement a method of monitoring the battery 〇〇2〇〇, in which the 'in 1502, The cpu 11 4 of the 3D glasses uses the battery sensor 122 to determine the remaining useful life of the battery. In 丨5〇2, if the CPU 114 of the 3D glasses determines that the remaining usable life of the battery 12 is insufficient, the CPU provides an indication of a low battery life condition at 15〇4. In an exemplary embodiment, insufficient remaining battery life may, for example, be any period of less than 3 hours. In an exemplary embodiment, sufficient remaining battery life may be pre-set by the manufacturer of the 3D glasses and/or by Stylized user of 3D glasses. In an exemplary embodiment, in i5〇4, the CPU Π4 of the 3D glasses i〇4 will be slowed by blinking the light valves 1〇6 and 1〇8 of the 3D glasses, by making the light valve simultaneously A user of the 3D glasses sees a medium rate flash, indicating a low battery life condition by flashing an indicator light, by generating an audible sound, and the like, in an exemplary embodiment, if the 3D glasses 1 The cpu 114 of 〇4 detects that the remaining battery life is not enough to last - the specified time period'. At 15 〇 4, the CPU of the 3D glasses will indicate a low battery condition and then prevent the user from turning on the 3D glasses. 147657.doc -23- 201118424 In an exemplary embodiment, whenever the 3D glasses transition to the transparent mode of operation, the CPU 114 of the 3D glasses 1.4 determines whether the remaining battery life is sufficient. In an exemplary embodiment, if the CPu 114 of the 3D glasses determines that the battery will continue for at least a predetermined amount of time, the 3D glasses will continue to operate normally. Normal operation may include maintaining the transparent operation mode for five minutes while checking the valid signal from the 彳s transmitter 110, and then moving to an off mode in which the 3D glasses 104 wake up periodically to check for signal transmission. Signal of the device. In an exemplary embodiment, the CPU 114 of the 3D glasses 104 checks for a low battery condition just before turning off the 3D glasses. In an exemplary embodiment, if the battery 120 will not last for the predetermined sufficient remaining life time, the light valves 106 and 1 〇 8 will begin to flash slowly. In an exemplary embodiment, if the battery 120 will not last for the predetermined sufficient remaining life time, the shutters 106 and/or 108 will be in an opaque condition within two seconds (ie, the liquid crystal cell is off) and then Within one tenth of a second - in a transparent condition (ie, the liquid crystal cell is turned on). The period of time during which the shutters 106 and/or 108 are closed and opened may be any period of time. In an exemplary embodiment, 'three-dimensional glasses 1〇4 can be inspected at any time, including during warm-up, during normal operation, during transparent mode, during power-down mode, or between any conditions. Battery power is low. In an exemplary embodiment, if a low battery life condition is detected when the viewer is likely to be in the middle of watching a movie, the 3D glasses 1 〇 4 may not immediately indicate that the battery power is low. In some embodiments, if the CPU 114 of the 3D glasses 104 detects a low battery level of 147657.doc -24 - 201118424, the user will not be able to power the 3D glasses. Referring now to Figure 16, in an exemplary embodiment, a tester 丨6〇〇 can be positioned next to the 3D glasses 1〇4 to verify that the 3D glasses are functioning properly. In an exemplary embodiment, tester 160A includes a signal transmitter 1600a for transmitting test signal 16B to the signal sensor 丨12 of the 3D glasses. In an exemplary embodiment, the test signal 16〇〇b may include a synchronization signal 'which has a low frequency rate such that the light valves 1 〇 6 and 108 of the 3D glasses 1 〇 4 are visible to the user of the 3D glasses. One of the low speeds flashes. In an exemplary embodiment, the light valves 106 and 1〇8 are not responsive to the test signal 1 600b and flashing may indicate that the 3D glasses 1 〇 4 are not operating properly. Referring now to Figure 17, in an exemplary embodiment, the 3D glasses 1 further includes a charge pump 1700 operatively coupled to the CPU 114, the light valve controllers 116 and 118, and the battery 120 for use in the battery The output voltage is converted to a higher output voltage for operation of the light valve controller. Referring to Figures 18, 18a, 18b, 18c and 18d, an exemplary embodiment of a 3D glasses 1 800 is provided which is substantially similar in design and operation to the 3D glasses described and described above. 104, except for the aspects described below. The 3D glasses 1 800 includes a left light valve 1 802, a right light valve 1804, a left light valve controller 1806, a right light valve controller 1808, a CPU 1810, a battery sensor 1812, and a signal sensor. 1814 and a charge pump 1816. In an exemplary embodiment, the left light valve 1802, the right light valve 1804, the left light valve controller 1806, the right light valve controller 1808, the CPU 1810, the battery sensor 1812, and the signal sensing The design and operation of the device 1814 and the charge pump 1816 are substantially identical to the 147657.doc -25- 201118424 left light valve 106, right light valve 108, left light valve controller 116, right of the three-dimensional glasses 104 described and illustrated above. Light valve controller 118, CPU 114, battery sensor 122, signal sensor 112, and charge pump 1700. In an exemplary embodiment, 3D glasses 1 800 includes the following components:
名稱 值/ID R12 I OK R9 100K D3 BAS7004 R6 4.7K D2 BP104FS R1 10M C5 luF R5 20K U5-2 MCP6242 R3 10K C6 • luF C7 •OOluf C10 •33uF R7 1M D1 BAS7004 R2 330K U5-1 MCP6242 R4 1M R11 330K U6 MCP111 R13 100K U3 PIC16F636 Cl 47uF C2 • luF R8 10K RIO 20K R14 10K R15 100K 01 NDS0610 D6 MAZ31200 D5 BAS7004 LI lmh Cll luF C3 luF U1 4052 R511 470 C8 .luF C4 • luF 147657.doc -26- 201118424 名稱 值/ID U2 4052 R512 470 C1 C11 Tuf " 左透鏡 LCD 1 右透鏡 LCD 2 ' BT1 3V Li '~~' 在一例示性實施例中,左光閥控制器1806包括—數位控 制類比開關U1 ’該開關在CPU 1810的控制下,視操作模 式而在左光閥1802上施加一電壓以用於控制左光閥之操 作。以類似方式,右光閥控制器1808包括一數位控制類比 開關U2,該開關在CPU 1810的控制下,視操作模式而在 右光閥1804上施加一電壓以用於控制右光閥之操作。在一 例示性實施例中’ U1及U2為習知的可自unisonic Technologies或Texas Instruments購得的零件號碼分別為 UTC 4052及TI 4052的數位控制類比開關。 如一般熟習此項技術者將認識到,4052數位控制類比開 關包括控制輸入信號A、B及INHIBIT(禁止)(「INH」)、開 關 I/O 信號 X〇、XI、X2、X3、Y0、Yl、Y2 及 Y3,以及輸 出信號X及Y,且進一步提供以下真值表: 真值表Name Value / ID R12 I OK R9 100K D3 BAS7004 R6 4.7K D2 BP104FS R1 10M C5 luF R5 20K U5-2 MCP6242 R3 10K C6 • luF C7 • OOluf C10 • 33uF R7 1M D1 BAS7004 R2 330K U5-1 MCP6242 R4 1M R11 330K U6 MCP111 R13 100K U3 PIC16F636 Cl 47uF C2 • luF R8 10K RIO 20K R14 10K R15 100K 01 NDS0610 D6 MAZ31200 D5 BAS7004 LI lmh Cll luF C3 luF U1 4052 R511 470 C8 .luF C4 • luF 147657.doc -26- 201118424 Name Value / ID U2 4052 R512 470 C1 C11 Tuf " Left Lens LCD 1 Right Lens LCD 2 'BT1 3V Li '~~' In an exemplary embodiment, the left light valve controller 1806 includes a digital control analog switch U1 ' The switch, under the control of the CPU 1810, applies a voltage to the left shutter 1802 depending on the mode of operation for controlling the operation of the left shutter. In a similar manner, the right light valve controller 1808 includes a digital control analog switch U2 that, under the control of the CPU 1810, applies a voltage to the right light valve 1804 depending on the mode of operation for controlling the operation of the right light valve. In an exemplary embodiment, U1 and U2 are conventional digitally controlled analog switches of the UTC 4052 and TI 4052 parts available from unsonic Technologies or Texas Instruments. As will be appreciated by those skilled in the art, the 4052 digital control analog switch includes control input signals A, B and INHIBIT ("INH"), switch I/O signals X〇, XI, X2, X3, Y0, Yl, Y2 and Y3, and output signals X and Y, and further provide the following truth table: truth table
It制輸入 接通開關 禁止 選擇 B A 0 0 0 Y0 xo 0 0 1 Yl XI 0 1 0 Y2 X2 0 1 1 Y3 X3 1 X X 益 »»»% *X=任意值 147657.doc -27· 201118424 且,如圖19中所說明,4〇52數位控制類比開關亦提供一功 能圖1900。因此,4052數位控制類比開關提供各自具有兩 個獨立開關的數位控制類比開關,其准許左光閥控制器 1806及右光閥控制器18〇8選擇性地在左光閥18〇2及右光閥 1 804上施加一受控電壓以控制光閥之操作。 在一例示性實施例中,CPU 181〇包括一微控制器仍, 其用於產生用於控制左光閥控制器丨8〇6及右光閥控制器 1808之數位控制類比開關⑴及们之操作的輸出信號a、 B、C、D及E。微控制器U3i輸出控制信號a、B&c將以 下輸入控制信號A及B提供給數位控制類比開關⑴及仍中 之每一者: U3-輸出控制信號 U1-輸入控制信號 U2-輸入控制信號 A A - B A " C B -- B ' 在一例示性實施例中,微控制器U3之輸出控制信號1)及 E提供或以其他方式實現數位控制類比開關⑴及U2之開關 I/O信號 X0、XI、X2、X3、Y0、Y1、Y2及 Y3 〇 U3-輸出控制信號 U1-開關I/O信號 U2-開關I/O信號 D X3,Y1 Χ0,Υ2 E Χ3, Υ1 Χ0,Υ2 在一例示性貫施例中’ CPU 1 8 1 0之微控制器U3為可自 Microchip購得的可程式化微控制器,型號&pi(:16F636。 在一例示性實施例中,電池感測器1812包括用於感測電 池120之電壓的一電力偵測器U6。在一例示性實施例中, 電力偵測器U6為可自Microchip購得之型號為Mcpm的微 147657.doc -28- 201118424 功率電壓偵測器。 在一例示性實施例中’信號感測器1814包括用於感測信 號傳輸器110對信號(包括同步信號及/或組態資料)之傳輪 的一光電二極體D2。在一例示性實施例中,光電二極體 D2為可自〇sram購得之型號為bp1〇4FS的光電二極體。在 一例示性實施例中’信號感測器1814進一步包括運算放大 器U5-1及U5-2,及相關信號調節組件:電阻器ri、R2、 R3、R4、R5、R0、R7、R9、R11 及 R12、電容器 C5、 C6、C7及CIO,以及肖特基二極體di及D3。 在一例示性實施例中’電荷泵1816使用一電荷泵將電池 120之輸出電壓之量值自3 V放大至-12 V。在一例示性實 施例中’電荷泵1816包括一 MOSFET Q1、一肖特基二極體 D5 ' —電感器L1及一齊納二極體〇6。在一例示性實施例 中’提供電荷泵1816之輸出信號以作為左光閥控制器丨8〇6 之數位控制類比開關U1之開關I/O信號χ2及Y0之輸入信 號’及右光閥控制器1 808之數位控制類比開關U2之開關 I/O信號X3及Y1之輸入信號。 如圖20中所說明’在一例示性實施例中,在三維眼鏡 1800之操作期間’在CPU 1810之控制信號A、B、C、D及 E的控制下’數位控制類比開關川及^之可在左光閥1802及 右光閥1804中之一者或兩者上提供各種電壓。詳言之,在 CPU 1810之控制信號a、B、C、D及E的控制下,數位控 制類比開關U1及U2可提供:1)左光閥1802及右光閥1804中 之一者或兩者上的正或負15伏特;2)左光閥及右光閥中之 147657.doc -29- 201118424 一者或兩者上的在2至3伏特範圍内之正或負電壓;或3)在 左光閥及右光閥中之一者或兩者上提供〇伏特(亦即,中性 狀態)。在一例示性實施例中,在CPU 18 10之控制信號A、 B、C、D及E的控制下,數位控制類比開關υι及U2可藉由 (例如)組合+3伏特與-12伏特來提供15伏特,從而達成左光 閥1802及右光閥1804中之一者或兩者上的15伏特之差異 (differential)。在一例示性實施例中,在cpu J 8 1〇之控制 h號A、B、C、D及£的控制下,數位控制類比開關⑴及 U2可(例如)藉由用一分壓器(包括組件r8及R1〇)將電池12〇 之3伏特輸出電壓減少至2伏特來提供2伏特止擋電壓。 或者,在CPU 1810之控制信號a、b、C、D及E的控制 下,數位控制類比開關U1及U2可提供:1)左光閥丨8〇2及右 光閥1804中之一者或兩者上的正或負15伏特;2)左光閥及 右光閥中之一者或兩者上的約2伏特之正或負電壓;3)左 光閥及右光閥中之一者或兩者上的約3伏特之正或負電 壓,或4)在左光閥及右光閥中之一者或兩者上提供〇伏特 (亦即,中性狀態)。在一例示性實施例中,在Cpu 181 〇之 控制信號A、B、C、D及E的控制下,數位控制類比開關 U1及U2可藉由(例如)組合+3伏特與_12伏特來提供】5伏 特’從而達成左光閥1802及右光閥1804中之一者或兩者上 的15伏特之差異。在一例示性實施例中,在cpu i8i〇之控 制L唬A、B、C、D及E的控制下,數位控制類比開關⑴ 及U2可(例如)藉由用一分壓器(包括組件r8&ri〇)將電池 12〇之3伏特輸出電壓減少至2伏特來提供2伏特止擋電壓。 147657.doc •30· 201118424 現參看圖21及圖22,在一例示性實施例中,在三維眼鏡 1800之操作期間,該三維眼鏡執行一正常執行操作模式 2100,在該模式中,將由CPU 18 10產生之控制信號a、 B、C、D及E用以控制左光閥控制器1806及右光閥控制器 1808之操作,從而又依據信號感測器1814所偵測到的同步 信號之類型來控制左光閥1802及右光閥1804之操作。 詳言之,在2102中,若CPU 1810判定信號感測器ι814已 接收一同步信號,則在2104中,該CPU判定所接收的同步 信號之類型。在一例示性實施例中,一包括3個脈衝之同 步信號指示左光閥1802應關閉且右光閥1804應打開,而一 包括2個脈衝之同步信號指示該左光閥應打開且該右光閥 應關閉。更一般而言’可將任何數目個不同脈衝用以控制 左光閥1802及右光閥1804之打開及關閉。 在2104中,若CPU 181〇判定所接收的同步信號指示左光 閥1802應關閉且右光閥18〇4應打開,則在21〇6中,該cpu 將控制彳5號A、B、C、D及E傳輸至左光閥控制器丨8〇6及右 光閥控制器1808 電壓隨後接著一 性實施例中,在 ’以將一高電壓施加至左光閥18〇2且將無 小止擋電壓施加至右光閥丨8〇4。在一例示 ’在2106中施加至左光閥1802的高電壓之量值 為15伏特。在—例示性實施例中,在21G6中施加至右光閥 8〇4的止播電壓之量值為2伏特。在-例示性實施例中, 在21 06中,藉由將控制信號D之操作狀態<其可&低、高或 1 ’)控制為打開’藉此啟用分麗器組件R8及R10之操作,It input input switch prohibits selection BA 0 0 0 Y0 xo 0 0 1 Yl XI 0 1 0 Y2 X2 0 1 1 Y3 X3 1 XX Benefit»»»% *X=arbitrary value 147657.doc -27· 201118424 As illustrated in Figure 19, the 4〇52 digital control analog switch also provides a functional map 1900. Thus, the 4052 digital control analog switch provides digital control analog switches each having two independent switches that permit the left light valve controller 1806 and the right light valve controller 18〇8 to selectively be in the left light valve 18〇2 and right light. A controlled voltage is applied to valve 1 804 to control the operation of the light valve. In an exemplary embodiment, the CPU 181A includes a microcontroller for generating digital control analog switches (1) for controlling the left shutter controller 丨8〇6 and the right shutter controller 1808. Operating output signals a, B, C, D and E. The microcontroller U3i outputs control signals a, B&c to provide the following input control signals A and B to each of the digital control analog switches (1) and still: U3-output control signal U1-input control signal U2-input control signal AA - BA " CB - B ' In an exemplary embodiment, the output control signals 1) and E of the microcontroller U3 provide or otherwise implement the digitally controlled analog switch (1) and the switch I/O signal X0 of U2. , XI, X2, X3, Y0, Y1, Y2 and Y3 〇 U3- output control signal U1-switch I/O signal U2-switch I/O signal D X3, Y1 Χ0, Υ2 E Χ3, Υ1 Χ0, Υ2 in one In an exemplary embodiment, the CPU U3 of the CPU 1 8 10 is a programmable microcontroller available from Microchip, Model & pi (: 16F636. In an exemplary embodiment, battery sensing The device 1812 includes a power detector U6 for sensing the voltage of the battery 120. In an exemplary embodiment, the power detector U6 is a micro-type 147657.doc -28- available from Microchip. 201118424 Power Voltage Detector. In an exemplary embodiment, 'signal sensor 1814 includes for sensing No. 110 is a photodiode D2 of the transmission of the signal (including the synchronization signal and/or the configuration data). In an exemplary embodiment, the photodiode D2 is a model available from 〇sram. A photodiode of bp1 〇 4 FS. In an exemplary embodiment, the 'signal sensor 1814 further includes operational amplifiers U5-1 and U5-2, and associated signal conditioning components: resistors ri, R2, R3, R4 , R5, R0, R7, R9, R11, and R12, capacitors C5, C6, C7, and CIO, and Schottky diodes di and D3. In an exemplary embodiment, 'charge pump 1816 uses a charge pump to charge the battery. The magnitude of the output voltage of 120 is amplified from 3 V to -12 V. In an exemplary embodiment, 'charge pump 1816 includes a MOSFET Q1, a Schottky diode D5' - an inductor L1 and a Zener diode Body 6. In an exemplary embodiment, 'the output signal of the charge pump 1816 is provided as the input signal of the switch I/O signals χ2 and Y0 of the digital control switch U8〇6 of the left light valve controller 〇8〇6 and The right light valve controller 1 808 digital control analog switch U2 switch I / O signal X3 and Y1 input letter As illustrated in FIG. 20, 'in an exemplary embodiment, during operation of the 3D glasses 1800', under the control of the control signals A, B, C, D, and E of the CPU 1810, the digital control analog switch and the ^ Various voltages may be provided on one or both of the left and right shutters 1802 and 1804. In detail, under the control of the control signals a, B, C, D and E of the CPU 1810, the digital control analog switches U1 and U2 can provide: 1) one or both of the left light valve 1802 and the right light valve 1804 Positive or negative 15 volts on the person; 2) 147657.doc -29- 201118424 in the left and right light valves, positive or negative voltage in the range of 2 to 3 volts on one or both; or 3) A volt (i.e., neutral state) is provided on one or both of the left and right shutters. In an exemplary embodiment, under the control of the control signals A, B, C, D, and E of the CPU 18 10, the digital control analog switches υι and U2 can be combined, for example, by +3 volts and -12 volts. 15 volts is provided to achieve a differential of 15 volts on one or both of the left and right shutters 1802 and 1804. In an exemplary embodiment, under the control of cpu J 8 1〇 control h Nos. A, B, C, D, and £, the digital control analog switches (1) and U2 can be used, for example, by using a voltage divider ( Included components r8 and R1〇) reduce the 3 volt output voltage of the battery 12 to 2 volts to provide a 2 volt stop voltage. Alternatively, under the control of the control signals a, b, C, D and E of the CPU 1810, the digital control analog switches U1 and U2 may provide: 1) one of the left light valve 丨8〇2 and the right light valve 1804 or Positive or negative 15 volts on both; 2) positive or negative voltage of approximately 2 volts on one or both of the left and right shutters; 3) one of the left and right shutters A positive or negative voltage of about 3 volts on either or both, or 4) providing a volt (i.e., neutral state) on one or both of the left and right shutters. In an exemplary embodiment, under the control of the control signals A, B, C, D, and E of the CPU 181, the digital control analog switches U1 and U2 can be combined, for example, by +3 volts and _12 volts. A [5 volts] is provided to achieve a difference of 15 volts on one or both of the left and right shutters 1802 and 1804. In an exemplary embodiment, under the control of cpu i8i〇 control L唬A, B, C, D, and E, the digital control analog switches (1) and U2 can be used, for example, by using a voltage divider (including components) R8&ri〇) reduces the 3 volt output voltage of the battery 12 volts to 2 volts to provide a 2 volt stop voltage. 147657.doc • 30· 201118424 Referring now to Figures 21 and 22, in an exemplary embodiment, during operation of the 3D glasses 1800, the 3D glasses perform a normal execution mode of operation 2100, in which mode by the CPU 18 The generated control signals a, B, C, D, and E are used to control the operation of the left light valve controller 1806 and the right light valve controller 1808, thereby depending on the type of synchronization signal detected by the signal sensor 1814. To control the operation of the left light valve 1802 and the right light valve 1804. In particular, in 2102, if CPU 1810 determines that signal sensor ι 814 has received a synchronization signal, then in 2104, the CPU determines the type of synchronization signal received. In an exemplary embodiment, a synchronization signal comprising 3 pulses indicates that the left light valve 1802 should be closed and the right light valve 1804 should be open, and a synchronization signal comprising 2 pulses indicates that the left light valve should be open and the right The light valve should be closed. More generally, any number of different pulses can be used to control the opening and closing of the left and right shutters 1802, 1804. In 2104, if the CPU 181 determines that the received synchronization signal indicates that the left shutter 1802 should be closed and the right shutter 18〇4 should be open, then in 21〇6, the cpu will control 彳5 A, B, C , D and E are transmitted to the left light valve controller 丨8〇6 and the right light valve controller 1808 voltage, and then in the first embodiment, in 'to apply a high voltage to the left light valve 18〇2 and there will be no small The stop voltage is applied to the right light valve 丨8〇4. The magnitude of the high voltage applied to the left shutter 1802 in 2106 is 15 volts. In the exemplary embodiment, the stop voltage applied to the right shutter 8〇4 in 21G6 is 2 volts. In an exemplary embodiment, in 21 06, by controlling the operational state of the control signal D <<>&&&> operating,
147657.doc 201118424 閥1 804。在一例示性實施例中,2106中該止擋電壓至右光 閥1804之施加被延遲一預定時間段,以允許該右光閥之液 晶内之分子在該預定時間段期間較快速地旋轉。在該預定 時間段期滿之後隨後施加該止擋電壓接著防止右光閥丨8〇4 中之液晶内之分子在右光閥之打開期間旋轉過頭。 或者,在2104中,若CPU 1820判定所接收的同步信號指 示左光閥1 802應打開且右光閥1 8〇4應關閉,則在2108中, 該CPU將控制信號A、B、C、D及E傳輸至左光閥控制器 1 806及右光閥控制器18〇8 ’以將一高電壓施加至右光閥 1804且將無電壓隨後接著一小止擋電壓施加至左光閥 1802。在一例示性實施例中,在21〇8中施加至右光閥18〇4 的向電壓之置值為1 5伏特。在一例示性實施例中,在2 1 〇 8 中施加至左光閥1802的止擋電壓之量值為2伏特。在一例 不性實施例中’在2108中,藉由將控制信號d控制為打 開,藉此啟用分壓器組件R8&R1〇之操作,且將控制信號 E維持在一高位準而將該止擋電壓施加至左光閥丨8〇2。在 一例不性實施例中,2丨〇8中該止擋電壓至左光閥〖8〇2之施 加被延遲一預定時間段,以允許左光閥之液晶内之分子在 该預定時間段期間較快速地旋轉。在該預定時間段期滿之 後Ik後施加止擋電壓接著防止左光閥丨8 〇2中之液晶内之分 子在左光閥之打開期間旋轉過頭。 在一例不性實施例中,在方法2 100期間,在步驟2106及 2108之後續重複中,施加至左光閥1802及右光閥1804之電 壓交替地為正及負’以防止對左光閥及右光閥之液晶單元 147657.doc •32- 201118424 之損害。 因此’方法2100為三維眼鏡1800提供一正常或執行操作 模式》 現參看圖23及圖24,在一例示性實施例中,在三維眼鏡 1800之操作期間’三維眼鏡實施一暖機操作方法23〇〇,在 該方法中’將由CPU 1810產生之控制信號A、B、C、D及 E用以控制左光閥控制器丨8〇6及右光閥控制器丨8〇8之操 作’從而又控制左光閥18〇2及右光閥丨8〇4之操作。 在2302中,三維眼鏡之CPU 1810檢查該三維眼鏡之通 電。在一例示性實施例中,三維眼鏡丨8丨〇可透過一使用者 啟動一通電開關或透過一自動喚醒序列而通電。在三維眼 鏡1810通電的情況下,三維眼鏡之光閥18〇2及18〇4可能 (例如)需要一暖機序列。在一時間段中不具有電力的光閥 1 8〇2及1 804之液晶單元可能處於一不明確狀態下。 在2302中,若三維眼鏡ι800之CPU 181〇偵測到該三維眼 鏡之通電,則在2304中,該CPU分別將交變電壓信號 2304a及2304b施加至左光閥ι802及右光閥18〇4。在一例示 性實施例中,施加至左光閥1802及右光閥1804之電壓在正 峰值與負峰值之間交替以避免光閥之液晶單元中的離子化 問題。在一例示性實施例中,電壓信號23〇乜及23〇4b可彼 此至少部分地不同相。在一例示性實施例中,電壓信號 2304a及2304b中之一者或兩者可在一零電壓與一峰值電壓 之間交替。在一例示性實施例中,可將其他形式之電壓信 號施加至左光閥1 802及右光閥1804,以使得光閥之液晶單 147657.doc -33· 201118424 元處於一明確操作狀態。在一例示性實施例中,施加電壓 信號2304a及2304b至左光閥1802及右光閥1804使該等光閥 同時或在不同時間打開及關閉。或者,施加電壓信號 23 04a及2304b至左光閥1802及右光閥1804可使該等光閥保 持關閉。 在施加電壓信號2304a及2304b至左光閥1802及右光閥 1804期間’在2306中,CPU 1810檢查一暖機逾時。在2306 中’若CPU 1810偵測到一暖機逾時,則在2308中,CPU將 停止施加電壓信號2304a及2304b至左光閥1 802及右光閥 1804 ° 在一例示性實施例中,在23 04及2306中,CPU 1810在一 足以致動該等光閥之液晶單元之時間段中將電壓信號 23 04a及23 04b施加至左光閥1802及右光閥1804。在一例示 性貫施例中’ CPU 1 810在兩秒之時段中將電壓信號2304a 及2304b施加至左光閥1802及右光閥1804。在一例示性實 施例中,電壓信號2304a及2304b之最大量值可為15伏特。 在一例示性實施例中’ 2306中之逾時時段可為兩秒。在一 例示性實施例中,電壓信號2304a及2304b之最大量值可大 於或小於15伏特’且逾時時段可更長或更短。在一例示性 實施例中’在方法2300期間,CPU 18 10可以一不同於可用 於觀看電影之速率的速率打開及關閉左光閥丨8〇2及右光閥 1804。在一例示性實施例中,在2304中,施加至左光閥 1802及右光閥1804之電壓信號不交替,且在暖機時間段期 間持續施加,且因此該等光閥之液晶單元在整個暖機時段 147657.doc •34- 201118424 中可保持不透明。在一例示性實施例中,暖機方法2300可 在同步信號存在或不存在的情況下發生。因此,方法2300 為二維眼鏡1 800提供一暖機操作模式。在一例示性實施例 中,在貫施暖機方法2300之後,三維眼鏡1800處於一正常 或執行操作模式下且接著可實施方法21〇〇。或者,在一例 示性貫施例中’在實施暖機方法23〇〇之後,三維眼鏡丨8〇〇 處於一透明操作模式下且接著可實施下文所描述之方法 2500 〇 現參看圖25及圖26 ’在一例示性實施例中,在三維眼鏡 1800之操作期間,三維眼鏡實施一操作方法25〇〇,在該方 法中’由CPU 1810產生之控制信號a、B、C、D及E用以 控制左光閥控制器1806及右光閥控制器1808之操作,從而 又依據由信號感測器1814接收的同步信號來控制左光閥 1802及右光閥1804之操作。 在2502中,CPU 18 10檢查以查看信號感測器1814所偵測 到的同步信號是有效還是無效。在2502中,若CPU 1 810判 定同步信號無效’則在2504中,CPU將電壓信號2504a及 2504b施加至三維眼鏡1800之左光閥1802及右光閥1804。 在一例示性實施例中,施加至左光閥丨8〇2及右光閥丨8〇4之 電壓25 04a及2 5 04b在正峰值與負峰值之間交替以避免光閥 之液晶單元中的離子化問題。在一例示性實施例中,電麼 信號25 04a及25 04b中之一者或兩者可在一零電壓與一峰值 電壓之間交替β在一例示性實施例中,可將其他形式之電 壓信號施加至左光閥1802及右光閥1804,以使得光闊之液 147657.doc -35- 201118424 晶單元保持打開,因此三維眼鏡丨800之使用者可透過光閥 正常地觀看。在一例示性實施例中,施加電壓信號25〇4a 及2504b至左光閥1802及右光閥18〇4使該等光閥打開。 在施加電壓信號2504a及2504b至左光閥18〇2及右光閥 1804期間,在2506中,CPU 1810檢查一清除逾時。在25〇6 中,若CPU 1810偵測到一清除逾時,則在25〇8中,cpu 1 8 1 0將停止將電廢彳§號2504a及2504b施加至光閥18〇2及 1804 〇 因此,在一例示性實施例中,若三維眼鏡18〇〇未偵測到 一有效同步信號,則三維眼鏡可轉至一透明操作模式且實 施方法2500。在透明操作模式下,在一例示性實施例中, 三維眼鏡1800之光閥1802及1804均保持打開,使得觀看者 可透過二維眼鏡之光閥正常地觀看。在一例示性實施例 中,施加一正負交替之恆定電壓以將三維眼鏡18〇〇之光閥 1802及1804之液晶單元維持在一透明狀態。該恆定電壓可 (例如)在2至3伏特之範圍内,但該恆定電壓可為適合維持 適度透明光閥之任何其他電壓。在一例示性實施例中,三 維眼鏡1800之光閥1802及1804可保持透明,直至三維眼鏡 能夠驗證一加密信號及/或直至一清除模式逾時。在一例 示性實施例中,三維眼鏡18〇〇之光閥18〇2及18〇4可保持透 明’直至二維眼鏡能夠驗證一加密信號,且然後可實施方 法2 100及/或在2506中若發生一逾時,則可實施方法9〇〇。 在一例示性實施例中’三維眼鏡18〇〇之光閥18〇2及18〇4可 以允許二維眼鏡之使用者正常地觀看之速率交替地打開及 147657.doc -36- 201118424 關閉。 因此,方法2500提供一種清除三維眼鏡18〇〇之操作的方 法,且藉此提供一透明操作模式。 現參看圖27及圖28,在一例示性實施例中,在三維眼鏡 1800之操作期間,三維眼鏡實施一種監視電池12〇之方法 2700,在該方法中,將由cpu 181〇產生之控制信號a、 B、C、D及E用以控制左光閥控制器18〇6及右光閥控制器 1808之操作,從而又依據由電池感測器1812偵測到的電池 120之狀況來控制左光閥18〇2及右光閥18〇4之操作。 在2702中,三維眼鏡之CPU 1810使用電池感測器1812判 疋電池120之剩餘可用壽命。在2702中,若三維眼鏡18〇〇 之CPU 1810判定電池120之剩餘可用壽命不足,則在27〇4 t ’該CPU提供一低電池壽命狀況之一指示。 在一例示性實施例中,不足的剩餘電池壽命可(例如)為 小於3小時之任何時段。在一例示性實施例中,足夠的剩 餘電池壽命可由三維眼鏡1800之製造商預先設定及/或由 三維眼鏡之使用者程式化。 在一例示性實施例中’在2704中,三維眼鏡1800之CPU 1810將藉由使三維眼鏡之左光閥1802及右光閥18〇4緩慢閃 爍、It由使光閥以可被三維眼鏡之使用者看見之一中等速 率同時閃爍、藉由使一指示燈閃光、藉由產生一可聽聲音 及其類似動作來指示一低電池壽命狀況。 在一例示性實施例中,若三維眼鏡1800之CPU 1810偵測 到剩餘電池壽命不足以持續一規定時間段,則在2704中, 147657.doc -37· 201118424 三維眼鏡之CPU將指示—電池電力偏低狀況且接著防止使 用者開啟三維眼鏡。 在-例示性實施例中’每當該三維眼鏡轉變至關閉模式 及/或透明操作模式時,三維眼鏡1800之CPU 1810判定剩 餘電池壽命是否足夠。 在一例示性實施例中,若三維眼鏡1800之CPU 1810判定 該電池將持續至少該預定足夠時間量,則該三維眼鏡將繼 續正常操作。舉例而言,正常操作可包括在五分鐘内保持 在透明操作模式下,同時檢查來自信號傳輪器110之信 號,然後轉至關閉模式或開啟模式,在該模式中三維眼鏡 1 800週期性地醒來以檢查來自該信號傳輸器之一信號。 在一例示性實施例中,三維眼鏡丨800之CPU i 8丨〇恰在關 掉該二維眼鏡之前檢查一電池電力偏低狀況。在一例示性 實施例中,若電池120不能持續該預定的足夠剩餘壽命時 間’則光閥1 802及1 804將開始緩慢閃爍。 在一例示性實施例中,若電池120不能持續該預定的足 夠剩餘壽命時間’則光閥1802及/或1804將在兩秒中處於 一不透明狀況(亦即’液晶單元關閉)且接著在十分之一秒 中處於一透明狀況(亦即’液晶單元打開)。光閥丨8〇2及/或 1 804關閉及打開的時間段可為任何時間段。在一例示性實 施例中’光閥1802及1804之閃爍同步於提供電力至信號感 測器1814,以准許該信號感測器檢查一來自信號傳輸器 110之信號。 在一例示性實施例中,三維眼鏡1 800可在任何時間(包 147657.doc -38· 201118424 括在暖機期間、在正當招t ^ 、 社吊知作期間、在透明模式期間、在斷 電模式期間,或於任何狀況之間轉變時)檢查一電池電力 =低狀况。在_例示性實施例中,若在觀看者可能在看電 中途時價測到-低電池壽命狀況,則三維眼鏡^ 8⑼可 不立即指示該電池電力偏低狀況。 在一些實施例中,若三維眼鏡18〇〇iCpu i8i〇偵測到一 電池電力偏低位準,則使用者將不能夠將該三維眼鏡通 電。 現參看圖29,在一例示性實施例甲’在三維眼鏡18〇〇之 操作期間,三維眼鏡實施一使三維眼鏡停機之方法,在該 方法申,將由CPU 1810產生之控制信號A、B、c、〇及£ 用以控制左光閥控制器1806及右光閥控制器18〇8之操作, 從而又依據電池感測器1 812所偵測到的電池12〇之狀況來 控制左光閥1802及右光閥1804之操作。詳言之,若三維眼 鏡1800之使用者選擇使該三維眼鏡停機或CPU 1810選擇使 該三維眼鏡停機’則施加至三維眼鏡之左光閥1802及右光 閥1804之電壓均被設定為零。 參看圖30、圖30a、圖30b及圖30c,提供三維眼鏡3〇〇〇 之一例示性實施例,該三維眼鏡在設計及操作上實質上等 同於上文所說明及描述的三維眼鏡104,惟下文所說明的 方面除外。三維眼鏡3000包括一左光閥3002、一右光閥 3 004、一左光閥控制器3006、一右光閥控制器3008、一共 同光閥控制器3010、一 CPU 3012、一信號感測器3014、一 電荷泵3016及一電壓供應器3018。在一例示性實施例中, 147657.doc • 39 - 201118424 三維眼鏡3000之左光閥3002、右光閥3004、左光閥控制器 3006、右光閥控制器3008、CPU 3012、信號感測器30 14及 電荷泵3016之設計及操作實質上等同於上文所描述及說明 的三維眼鏡104之左光閥106、右光閥108、左光閥控制器 116、右光閥控制器118、CPU 114、信號感測器112及電荷 泵1700,惟下文所描述且本文中所說明的方面除外。 在一例示性實施例中,三維眼鏡3000包括以下組件: 名稱 值/ID R13 10K D5 BAS7004 R12 100K D3 BP104F R10 2.2M U5-1 MIC863 R3 10K R7 10K R8 10K R5 1M C7 .OOluF R9 47K R11 1M C1 .luF C9 • luF D1 BAS7004 R2 330K U5-2 MIC863 U3 MIC7211 U2 PIC16F636 C3 • luF C12 47uF C2 • luF LCD1 左光閥 C14 • luF LCD2 右光閥 U1 4053 147657.doc -40- 201118424 mD :: U6 4053 — C4 • luF U4 4053 R14 10K ~ R15 100K Q1 NDS0610 L1 lmh D6 BAS7004 D7 MAZ31200 C13 luF C5 luF 02 R16 1M R1 1M BT1 3V Li 在一例示性實施例中,左光閥控制器3006包括一數位控 制類比開關υι,該開關在共同控制器3〇1〇(其包括一數位 控制類比開關U4)及CPU 3012的控制下,視操作模式而在 左光閥3002上施加一電壓以用於控制左光閥之操作。以類 似方式,右光閥控制器3008包括一數位控制類比開關u6, 該開關在共同控制器3010及CPU 3012的控制下,視操作模 式而在右光閥3004上施加一電壓以用於控制右光閥3〇〇4之 操作。在一例示性實施例中,m、⑸及U6為習知可自 Umsomc Technologies購得之零件號碼為UTc 4〇53的數位 控制類比開關。 如一般熟習此項技術者將認識到,UTC; 4〇53數位控制類 比開關包括控制輪入信號A、B、INHIBIT(「INH」)、 開關1/0½號χο、X1、γ〇、Y1、2〇及21和輸出信號χ、γ 及Ζ,且進一步提供如下真值表·· 147657.doc •41· 201118424 真值表 控制輸入 接通開關 禁止 選擇 C Β A UTC 4053 0 0 0 0 Z0 Y0 X0 0 0 0 1 Z0 Y0 XI 0 0 1 0 Z0 Y1 X0 0 0 1 1 Z0 Y1 XI 0 1 0 0 Z1 Y0 X0 0 1 0 1 Z1 Y0 XI 0 1 1 0 Z1 Y1 X0 0 1 1 1 Z1 Y1 XI 1 X X X 無 χ=任意值 且,如圖31中所說明,UTC 4053數位控制類比開關亦提供 一功能圖3100。因此,UTC 4053提供各自具有三個獨立開 關的數位控制類比開關,其准許左光閥控制器3〇〇6及右光 閥控制器3008及共同光閥控制器3〇1〇在cpu 3012的控制下 在左光閥3002及右光閥30〇4上選擇性地施加一受控電壓, 以控制該等光閥之操作。 在一例示性實施例中,CPU 3012包括一微控制器U2’ 其用於產生用於控制左光閥控制器3〇〇6及右光閥控制器 3008之數位控制類比開關υ! ' U6及共同光閥控制器3〇 1〇 之數位控制類比開關U4之操作的輸出信號A、B、cD、 E、F及 G。 微控制器U2之輸出控制信號A、B、c、d、e、叹〇將 以下輸入控制信號A、B、c及! N H提供給數位控制類比開 關U1、U6及U4中之每一者: 147657.doc •42· 201118424 U2-輸出控制信號 U1-輸入控制信號 U6-輸入控制信號 U4-輸入控制信號 A A,B B A,B C C INH D A E F C G B 在一例示性實施例中,將U1之輸入控制信號INH接地, 且將U6之輸入控制信號C及INH接地。 在一例示性實施例中,數位控制類比開關Ul、U6及U4 之開關I/O信號X0、XI ' Y0、Y1、Z0及Z1具備以下輸 入: U1-開關 I/O信號 U1之輸入 U6-開關 I/O信號 U6之輸入 U4-開關 I/O信號 U4之輸入 X0 U4之X xo Ul之z U4之Y XO U4之Z XI V-bat XI V-bat XI 電荷泵3016之輸出 Y0 V-bat Y0 V-bat Y0 U4之Z Y1 U4之X Y1 Ul之Z U4之Y Y1 電荷泵3016之輸出 Z0 GND zo GND zo U2之E Z1 U4之X Z1 GND Z1 電壓供應器3018之 輸出 在一例示性實施例中,CPU 3012之微控制器U2為可自147657.doc 201118424 Valve 1 804. In an exemplary embodiment, the application of the stop voltage to the right shutter 1804 in 2106 is delayed for a predetermined period of time to allow the molecules within the liquid crystal of the right shutter to rotate faster during the predetermined period of time. Subsequent application of the stop voltage after the expiration of the predetermined period of time then prevents the molecules in the liquid crystal in the right shutter 丨8〇4 from rotating excessively during the opening of the right shutter. Alternatively, in 2104, if the CPU 1820 determines that the received synchronization signal indicates that the left light valve 1 802 should be open and the right light valve 1 8〇4 should be closed, then in 2108, the CPU will control signals A, B, C, D and E are transmitted to left light valve controller 1 806 and right light valve controller 18〇8' to apply a high voltage to right light valve 1804 and apply no voltage followed by a small stop voltage to left light valve 1802 . In an exemplary embodiment, the set voltage applied to the right shutter 18〇4 in 21〇8 is set to 15 volts. In an exemplary embodiment, the magnitude of the stop voltage applied to the left shutter 1802 in 2 1 〇 8 is 2 volts. In an exemplary embodiment, 'in 2108, by controlling the control signal d to be turned on, thereby enabling operation of the voltage divider component R8 & R1〇, and maintaining the control signal E at a high level The blocking voltage is applied to the left light valve 丨8〇2. In an exemplary embodiment, the application of the stop voltage to the left light valve [8〇2] in 2丨〇8 is delayed for a predetermined period of time to allow molecules within the liquid crystal of the left light valve during the predetermined time period. Rotate faster. Applying a stop voltage after Ik after the expiration of the predetermined period of time then prevents the molecules in the liquid crystal in the left shutter 丨8 〇2 from rotating excessively during the opening of the left shutter. In an exemplary embodiment, during method 2 100, in subsequent iterations of steps 2106 and 2108, the voltages applied to left and right shutters 1802 and 1804 are alternately positive and negative 'to prevent left light valves. And the damage of the liquid crystal unit 147657.doc •32- 201118424 of the right light valve. Thus, the method 2100 provides a normal or operational mode of operation for the 3D glasses 1800. Referring now to Figures 23 and 24, in an exemplary embodiment, during operation of the 3D glasses 1800, the 3D glasses implement a warm-up operation method. In the method, the control signals A, B, C, D and E generated by the CPU 1810 are used to control the operation of the left light valve controller 丨8〇6 and the right light valve controller 丨8〇8 and thus The operation of the left light valve 18〇2 and the right light valve 丨8〇4 is controlled. In 2302, the CPU 1810 of the 3D glasses checks the power of the 3D glasses. In an exemplary embodiment, the three-dimensional eyeglasses can be powered by a user to activate a power switch or by an automatic wake-up sequence. In the case where the three-dimensional eyeglasses 1810 are energized, the light valves 18〇2 and 18〇4 of the three-dimensional glasses may, for example, require a warm-up sequence. The liquid crystal cells of the light valves 1 8〇2 and 1 804 that do not have power for a period of time may be in an ambiguous state. In 2302, if the CPU 181 of the 3D glasses ι800 detects the power of the 3D glasses, in 2304, the CPU applies the alternating voltage signals 2304a and 2304b to the left light valve ι802 and the right light valve 18〇4, respectively. . In an exemplary embodiment, the voltage applied to left and right shutters 1802 and 1804 alternates between a positive peak and a negative peak to avoid ionization problems in the liquid crystal cell of the light valve. In an exemplary embodiment, voltage signals 23A and 23〇4b may be at least partially out of phase with each other. In an exemplary embodiment, one or both of voltage signals 2304a and 2304b may alternate between a zero voltage and a peak voltage. In an exemplary embodiment, other forms of voltage signals can be applied to the left and right shutters 1 802 and 1804 such that the liquid crystals of the shutters are in a state of operative operation 147657.doc -33. In an exemplary embodiment, applying voltage signals 2304a and 2304b to left shutter 1802 and right shutter 1804 causes the shutters to open and close simultaneously or at different times. Alternatively, application of voltage signals 23 04a and 2304b to left shutter 1802 and right shutter 1804 may cause the shutters to remain closed. During the application of voltage signals 2304a and 2304b to left shutter 1802 and right shutter 1804, in 2306, CPU 1810 checks for a warm-up timeout. In 2306, 'If CPU 1810 detects a warm-up timeout, then in 2308, the CPU will stop applying voltage signals 2304a and 2304b to left light valve 1 802 and right light valve 1804°. In an exemplary embodiment, In 23 04 and 2306, CPU 1810 applies voltage signals 23 04a and 23 04b to left and right light valves 1802 and 1804 during a period of time sufficient to actuate the liquid crystal cells of the light valves. In an exemplary embodiment, the CPU 1 810 applies voltage signals 2304a and 2304b to the left and right shutters 1802 and 1804 for a period of two seconds. In an exemplary embodiment, the maximum magnitude of voltage signals 2304a and 2304b can be 15 volts. The timeout period in '2306' may be two seconds in an exemplary embodiment. In an exemplary embodiment, the maximum magnitude of voltage signals 2304a and 2304b may be greater than or less than 15 volts' and the timeout period may be longer or shorter. In an exemplary embodiment, during method 2300, CPU 18 10 can open and close left and right light valves 〇8, 2, 1804 at a different rate than can be used to view the movie. In an exemplary embodiment, in 2304, the voltage signals applied to the left and right shutters 1802 and 1804 are not alternated and are continuously applied during the warm-up period, and thus the liquid crystal cells of the shutters are throughout The warm-up period 147657.doc •34- 201118424 can remain opaque. In an exemplary embodiment, the warm-up method 2300 can occur in the presence or absence of a synchronization signal. Thus, method 2300 provides a warm-up mode of operation for two-dimensional glasses 1 800. In an exemplary embodiment, after the warm-up method 2300, the 3D glasses 1800 are in a normal or operational mode of operation and then the method 21 can be implemented. Alternatively, in an exemplary embodiment, 'after performing the warm-up method 23〇〇, the 3D glasses 8 is in a transparent mode of operation and then the method 2500 described below can be implemented. Referring now to Figures 25 and 26 In an exemplary embodiment, during operation of the 3D glasses 1800, the 3D glasses implement an operational method 25 in which the control signals a, B, C, D, and E generated by the CPU 1810 are used. The operation of the left shutter valve 1806 and the right shutter controller 1808 is controlled to control the operation of the left and right shutters 1802 and 1804 in accordance with the synchronization signals received by the signal sensor 1814. In 2502, CPU 18 10 checks to see if the sync signal detected by signal sensor 1814 is active or inactive. In 2502, if the CPU 1 810 determines that the synchronization signal is invalid, then in 2504, the CPU applies voltage signals 2504a and 2504b to the left and right shutters 1802 and 1804 of the 3D glasses 1800. In an exemplary embodiment, the voltages 25 04a and 2 5 04b applied to the left shutter 丨8〇2 and the right shutter 〇8〇4 alternate between positive and negative peaks to avoid liquid crystal cells in the light valve. Ionization problem. In an exemplary embodiment, one or both of the electrical signals 25 04a and 25 04b may alternate between a zero voltage and a peak voltage. In an exemplary embodiment, other forms of voltage may be used. The signal is applied to the left shutter 1802 and the right shutter 1804 so that the 147657.doc -35 - 201118424 crystal unit remains open, so that the user of the 3D glasses 丨 800 can normally view through the light valve. In an exemplary embodiment, applying voltage signals 25〇4a and 2504b to left light valve 1802 and right light valve 18〇4 causes the light valves to open. During the application of voltage signals 2504a and 2504b to left shutter 18〇2 and right shutter 1804, in 2506, CPU 1810 checks for a clearout. In 25〇6, if the CPU 1810 detects a clear timeout, then in 25〇8, the cpu 1 8 1 0 will stop applying the electrical waste § 2504a and 2504b to the light valves 18〇2 and 1804 〇 Thus, in an exemplary embodiment, if the 3D glasses 18 do not detect a valid synchronization signal, the 3D glasses can be rotated to a transparent mode of operation and method 2500 can be implemented. In the transparent mode of operation, in an exemplary embodiment, the light valves 1802 and 1804 of the 3D glasses 1800 remain open so that the viewer can view normally through the light valve of the 2D glasses. In an exemplary embodiment, a positive and negative alternating constant voltage is applied to maintain the liquid crystal cells of the light valves 1802 and 1804 of the 3D glasses 18 in a transparent state. The constant voltage can be, for example, in the range of 2 to 3 volts, but the constant voltage can be any other voltage suitable to maintain a moderately transparent light valve. In an exemplary embodiment, the light valves 1802 and 1804 of the three dimensional glasses 1800 can remain transparent until the 3D glasses are capable of verifying an encrypted signal and/or until a clear mode timeout. In an exemplary embodiment, the light valves 18〇2 and 18〇4 of the 3D glasses 18 can remain transparent until the 2D glasses are capable of verifying an encrypted signal, and then the method 2 100 and/or 2506 can be implemented. If a timeout occurs, then method 9 can be implemented. In an exemplary embodiment, the light valves 18〇2 and 18〇4 of the 3D glasses 18 can be alternately opened at a rate that allows the user of the two-dimensional glasses to view normally and closed at 147657.doc -36-201118424. Thus, method 2500 provides a method of clearing the operation of 3D glasses 18 and thereby providing a transparent mode of operation. Referring now to Figures 27 and 28, in an exemplary embodiment, during operation of the 3D glasses 1800, the 3D glasses implement a method 2700 of monitoring the battery 12, in which the control signal a generated by the cpu 181 is applied. , B, C, D, and E are used to control the operation of the left light valve controller 18〇6 and the right light valve controller 1808, thereby controlling the left light according to the condition of the battery 120 detected by the battery sensor 1812. Operation of valve 18〇2 and right light valve 18〇4. In 2702, the CPU 1810 of the 3D glasses uses the battery sensor 1812 to determine the remaining useful life of the battery 120. In 2702, if the CPU 1810 of the 3D glasses 18 determines that the remaining usable life of the battery 120 is insufficient, the CPU provides an indication of a low battery life condition at 27〇4 t'. In an exemplary embodiment, insufficient remaining battery life may, for example, be any period of less than 3 hours. In an exemplary embodiment, sufficient remaining battery life may be pre-set by the manufacturer of the 3D glasses 1800 and/or programmed by the user of the 3D glasses. In an exemplary embodiment, 'in 2704, the CPU 1810 of the 3D glasses 1800 will slowly blink by making the left and right shutters 1802 and 1B of the 3D glasses, and it will be made possible by the 3D glasses. The user sees a medium rate flickering at the same time, indicating a low battery life condition by flashing an indicator light, by generating an audible sound, and the like. In an exemplary embodiment, if the CPU 1810 of the 3D glasses 1800 detects that the remaining battery life is insufficient for a predetermined period of time, then in 2704, the CPU of the 147657.doc -37·201118424 3D glasses will indicate - battery power The situation is low and then the user is prevented from turning on the 3D glasses. In the exemplary embodiment, the CPU 1810 of the 3D glasses 1800 determines whether the remaining battery life is sufficient whenever the 3D glasses transition to the off mode and/or the transparent mode of operation. In an exemplary embodiment, if the CPU 1810 of the 3D glasses 1800 determines that the battery will continue for at least the predetermined amount of time, the 3D glasses will continue to operate normally. For example, normal operation may include maintaining the signal in the transparent mode of operation for five minutes while checking the signal from the signal wheeler 110, and then moving to the off mode or the on mode, in which the 3D glasses 1 800 are periodically Wake up to check for a signal from one of the signal transmitters. In an exemplary embodiment, the CPU i 8 of the 3D glasses 800 checks for a low battery condition just prior to turning off the 2D glasses. In an exemplary embodiment, light valves 1 802 and 1 804 will begin to flash slowly if battery 120 is unable to sustain the predetermined sufficient remaining life time. In an exemplary embodiment, if the battery 120 is unable to sustain the predetermined sufficient remaining life time' then the light valve 1802 and/or 1804 will be in an opaque condition for two seconds (ie, the 'liquid crystal cell is off) and then at ten It is in a transparent condition in one second (ie, 'liquid crystal cell is on). The period of time during which the light valve 丨8〇2 and/or 1804 is closed and opened may be any period of time. In an exemplary embodiment, the flashing of 'light valves 1802 and 1804 is synchronized with providing power to signal sensor 1814 to permit the signal sensor to inspect a signal from signal transmitter 110. In an exemplary embodiment, the 3D glasses 1 800 can be included at any time (package 147657.doc -38· 201118424 included during warm-up, during legitimate recruitment, during the transparent mode, during the transparent mode, at break Check battery power = low condition during electrical mode, or when transitioning between any conditions. In an exemplary embodiment, if the viewer is likely to be in the midst of a power-on-the-battery-low battery life condition, the 3D glasses ^8(9) may not immediately indicate that the battery power is low. In some embodiments, if the 3D glasses 18〇〇iCpu i8i〇 detect a low level of battery power, the user will not be able to power the 3D glasses. Referring now to Figure 29, in an exemplary embodiment, during operation of the 3D glasses 18, the 3D glasses implement a method of stopping the 3D glasses, in which the control signals A, B generated by the CPU 1810, c, 〇 and £ are used to control the operation of the left light valve controller 1806 and the right light valve controller 18〇8, thereby controlling the left light valve according to the condition of the battery 12 detected by the battery sensor 1 812. Operation of 1802 and right light valve 1804. In detail, if the user of the three-dimensional eyeglass 1800 chooses to stop the 3D glasses or the CPU 1810 selects to stop the 3D glasses, the voltages applied to the left and right shutters 1802 and 1804 of the 3D glasses are set to zero. Referring to Figures 30, 30a, 30b, and 30c, an exemplary embodiment of a 3D glasses 3 is provided that is substantially identical in design and operation to the 3D glasses 104 illustrated and described above. Except for the aspects described below. The 3D glasses 3000 includes a left light valve 3002, a right light valve 3 004, a left light valve controller 3006, a right light valve controller 3008, a common light valve controller 3010, a CPU 3012, and a signal sensor. 3014. A charge pump 3016 and a voltage supply 3018. In an exemplary embodiment, 147657.doc • 39 - 201118424 3D glasses 3000 left light valve 3002, right light valve 3004, left light valve controller 3006, right light valve controller 3008, CPU 3012, signal sensor The design and operation of the 30 14 and charge pump 3016 are substantially identical to the left shutter 106, the right shutter 108, the left shutter controller 116, the right shutter controller 118, the CPU of the 3D glasses 104 described and illustrated above. 114, signal sensor 112 and charge pump 1700, except as described below and as described herein. In an exemplary embodiment, the 3D glasses 3000 includes the following components: Name Value / ID R13 10K D5 BAS7004 R12 100K D3 BP104F R10 2.2M U5-1 MIC863 R3 10K R7 10K R8 10K R5 1M C7 .OOluF R9 47K R11 1M C1 .luF C9 • luF D1 BAS7004 R2 330K U5-2 MIC863 U3 MIC7211 U2 PIC16F636 C3 • luF C12 47uF C2 • luF LCD1 left light valve C14 • luF LCD2 right light valve U1 4053 147657.doc -40- 201118424 mD :: U6 4053 — C4 • luF U4 4053 R14 10K ~ R15 100K Q1 NDS0610 L1 lmh D6 BAS7004 D7 MAZ31200 C13 luF C5 luF 02 R16 1M R1 1M BT1 3V Li In an exemplary embodiment, the left light valve controller 3006 includes a digital control analogy Switch υ, the switch applies a voltage on the left light valve 3002 for controlling the left light valve depending on the operation mode under the control of the common controller 3〇1〇 (which includes a digital control analog switch U4) and the CPU 3012. Operation. In a similar manner, the right light valve controller 3008 includes a digital control analog switch u6 that, under the control of the common controller 3010 and the CPU 3012, applies a voltage to the right light valve 3004 for controlling the right depending on the mode of operation. The operation of the light valve 3〇〇4. In an exemplary embodiment, m, (5), and U6 are digitally controlled analog switches available from Umsomc Technologies under the part number UTC 4〇53. As will be appreciated by those skilled in the art, UTC; 4〇53 digital control analog switches include control wheeling signals A, B, INHIBIT ("INH"), switches 1/01⁄2 χο, X1, γ〇, Y1. 2〇 and 21 and output signals χ, γ and Ζ, and further provide the following truth table·· 147657.doc •41· 201118424 Truth meter control input on switch prohibits selection C Β A UTC 4053 0 0 0 0 Z0 Y0 X0 0 0 0 1 Z0 Y0 XI 0 0 1 0 Z0 Y1 X0 0 0 1 1 Z0 Y1 XI 0 1 0 0 Z1 Y0 X0 0 1 0 1 Z1 Y0 XI 0 1 1 0 Z1 Y1 X0 0 1 1 1 Z1 Y1 XI 1 XXX No χ = any value and, as illustrated in Figure 31, the UTC 4053 digital control analog switch also provides a functional diagram 3100. Therefore, the UTC 4053 provides digital control analog switches each having three independent switches that permit control of the left light valve controller 3〇〇6 and the right light valve controller 3008 and the common light valve controller 3〇1〇 in the cpu 3012. A controlled voltage is selectively applied to the left light valve 3002 and the right light valve 30〇4 to control the operation of the light valves. In an exemplary embodiment, the CPU 3012 includes a microcontroller U2' for generating a digital control analog switch for controlling the left shutter controller 3〇〇6 and the right shutter controller 3008! The digital light control controller 3〇1〇 controls the output signals A, B, cD, E, F, and G of the analog switch U4. The output control signals A, B, c, d, e, and sigh of the microcontroller U2 provide the following input control signals A, B, c, and ! NH to each of the digital control analog switches U1, U6, and U4: 147657.doc •42· 201118424 U2-output control signal U1-input control signal U6-input control signal U4-input control signal AA, BBA, BCC INH DAEFCGB In an exemplary embodiment, the input control signal INH of U1 is grounded And ground the input control signals C and INH of U6. In an exemplary embodiment, the digital control analog switches U1, U6, and U4 switch I/O signals X0, XI 'Y0, Y1, Z0, and Z1 have the following inputs: U1-switch I/O signal U1 input U6- Switch I/O signal U6 input U4-switch I/O signal U4 input X0 U4 X xo Ul z U4 Y XO U4 Z XI V-bat XI V-bat XI Charge pump 3016 output Y0 V- Bat Y0 V-bat Y0 U4 Z Y1 U4 X Y1 Ul Z U4 Y Y1 Charge pump 3016 output Z0 GND zo GND zo U2 E Z1 U4 X Z1 GND Z1 The output of the voltage supply 3018 is shown as an example In an embodiment, the microcontroller U2 of the CPU 3012 is self-contained.
Microchip購得的可程式化微控制器,型號為PIC16F636。 在一例示性實施例中,信號感測器3014包括用於感測信 號傳輸器110對信號(包括同步信號及/或組態資料)之傳輸 的一光電二極體D3。在一例示性實施例中,光電二極體 D3為可自Osram購得之型號為BP104FS的光電二極體。在 一例示性實施例中,信號感測器3014進一步包括運算放大 器U5-1、U5-2及U3,及相關信號調節組件:電阻器R2、 147657.doc -43- 201118424 R3、R5、R7、R8、R9、Rl〇、Rii、R12及 R13、電容器 Cl ' C7及C9和肖特基二極體D1&D5,該等組件可(例如) 藉由透過控制增益而防止對感測到的信號之削波(clipping) 來調節信號。 在一例示性實施例中,電荷泵3016使用一電荷泵將電池 120之輸出電壓之量值自3 v放大至_丨2 V。在一例示性實 施例中’電荷泵3016包括一MOSFETQ1、一肖特基二極體 D6、一電感器L1及一齊納二極體»在一例示性實施例 中’提供電荷泵3016之輸出信號以作為共同光閥控制器 30 10之數位控制類比開關U4之開關1/〇信號乂1及丫丨的輸入 信號’及左光閥控制器3〇〇6、右光閥控制器3008及共同光 閥控制器3010之數位控制類比開關ui、U6及U4的輸入電 壓 VEE。 在一例示性實施例中,電壓供應器3〇1 8包括一電晶體 Q2、一電容器C5及電阻器R1及r16。在一例示性實施例 中’電壓供應器3018提供1 V信號以作為共同光閥控制器 3010之數位控制類比開關U4之開關1/〇信號Z1的輸入信 號。在一例示性實施例中,電壓供應器3〇18提供一不接地 (ground lift) 〇 如圖3 2中所說明,在一例示性實施例中,在三維眼鏡 3000之操作期間,在CPU 3012之控制信號a、B、C、D、 E、F及G的控制下,數位控制類比開關、1;6及…可在 左光閥3002及右光閥3004中之一者或兩者上提供各種電 壓。詳言之,在〇卩113012之控制信號八、;6、(:、〇、£、1? 147657.doc • 44 - 201118424 及G的控制下,數位控制類比開關ui、U6及U4可提供:υ 左光閥3002及右光閥3004中之一者或兩者上的正或負15伏 特;2)左光閥及右光閥中之一者或兩者上的正或負2伏 特;3)左光閥及右光闊中之一者或兩者上的正或負3伏 特;及4)在左光閥及右光閥中之一者或兩者上提供〇伏特 (亦即,中性狀態)。 在一例示性實施例中,如圖32中所說明,藉由分別控制 數位控制類比開關U1及U6中之產生施加在左光閥及右光 閥上的輸出彳§號X及Υ之開關之操作,控制信號Α控制左光 閥3002之操作且控制信號B控制右光閥3〇〇4之操作。在一 例示性實施例中,將數位控制類比開關1;1及1;6中之每一 者的控制輸入A及B連接在一起,使得兩對輸入信號之間 的切換同時發生,且將選定輸入轉送至左光閥3〇〇2及右光 閥3004之端子。在一例示性實施例中,來自cpu 3〇12之控 制k號A控制數位控制類比開關υι中的前兩個開關,且來 自該CPU之控制信號B控制數位控制類比開關U6中的前兩 個開關。 在一例示性貫施例中,如圖32中所說明,左光閥3〇〇2及 右光閥3004中之母一者的端子中之一者始終連接至3 v。 因此,在一例示性實施例中,在cpu 3〇12之控制信號A、 B、C、D、E、F及G的控制下,操作數位控制類比開關A programmable microcontroller available from Microchip, model number PIC16F636. In an exemplary embodiment, signal sensor 3014 includes a photodiode D3 for sensing the transmission of signals (including synchronization signals and/or configuration data) by signal transmitter 110. In an exemplary embodiment, the photodiode D3 is a photodiode of the type BP104FS available from Osram. In an exemplary embodiment, signal sensor 3014 further includes operational amplifiers U5-1, U5-2, and U3, and associated signal conditioning components: resistors R2, 147657.doc-43-201118424 R3, R5, R7, R8, R9, Rl〇, Rii, R12 and R13, capacitors Cl' C7 and C9 and Schottky diodes D1 & D5, which can prevent the sensed signal by, for example, transmitting control gain Clipping to adjust the signal. In an exemplary embodiment, charge pump 3016 uses a charge pump to amplify the magnitude of the output voltage of battery 120 from 3v to _丨2V. In an exemplary embodiment, 'charge pump 3016 includes a MOSFET Q1, a Schottky diode D6, an inductor L1, and a Zener diode» in an exemplary embodiment to provide an output signal for charge pump 3016. The input signal 'and the left light valve controller 3〇〇6, the right light valve controller 3008 and the common light of the switch 1/〇 signal 乂1 and 丫丨 of the analog switch U4 as the common light valve controller 30 10 The digital control of the valve controller 3010 controls the input voltage VEE of the analog switches ui, U6 and U4. In an exemplary embodiment, voltage supply 3〇18 includes a transistor Q2, a capacitor C5, and resistors R1 and r16. In an exemplary embodiment, the voltage supply 3018 provides a 1 V signal as an input signal to the digital control of the common light valve controller 3010 to control the switch 1/〇 signal Z1 of the analog switch U4. In an exemplary embodiment, voltage supply 3 〇 18 provides a ground lift 〇 as illustrated in FIG. 3 2 , in an exemplary embodiment, during operation of 3D glasses 3000, at CPU 3012 Under the control of the control signals a, B, C, D, E, F and G, the digital control analog switches, 1; 6 and ... can be provided on one or both of the left light valve 3002 and the right light valve 3004. Various voltages. In particular, under the control of 〇卩113012's control signals VIII,6, (:, 〇, £, 1? 147657.doc • 44 - 201118424 and G, the digital control analog switches ui, U6 and U4 provide:正 positive or negative 15 volts on one or both of the left and right light valves 3002 and 3004; 2) positive or negative 2 volts on one or both of the left and right light valves; a positive or negative 3 volts on one or both of the left and right louvers; and 4) providing volts on one or both of the left and right shutters (ie, Sexual state). In an exemplary embodiment, as illustrated in FIG. 32, by controlling the digital control analog switches U1 and U6 to generate the outputs of the left and right shutters, the switches X and Υ are respectively controlled. Operation, control signal Α controls the operation of left light valve 3002 and control signal B controls the operation of right light valve 3〇〇4. In an exemplary embodiment, the digital control analog switches are connected to control inputs A and B of each of switches 1; 1 and 1; 6 such that switching between the two pairs of input signals occurs simultaneously and will be selected The input is forwarded to the terminals of the left light valve 3〇〇2 and the right light valve 3004. In an exemplary embodiment, the control k number A from the cpu 3〇12 controls the first two switches of the analog switch analog switch, and the control signal B from the CPU controls the first two of the digital control analog switch U6. switch. In an exemplary embodiment, as illustrated in Fig. 32, one of the terminals of the one of the left light valve 3〇〇2 and the right light valve 3004 is always connected to 3 v. Therefore, in an exemplary embodiment, the digital control analog switch is operated under the control of the control signals A, B, C, D, E, F, and G of the cpu 3〇12.
Ul、U6及U4以將-12 V、3 V、1 V或〇 v送至左光閥3002 及右光閥3004之其他端子。結果,在一例示性實施例中, 在CPU 3 012之控制信號a、B、c、D、E、F及G的控制 147657.doc •45· 201118424 下,操作數位控制類比開關、U6& U4以在左光閥3〇〇2 及右光閥3004之端子上產生15 v、〇 v、2 乂或3 v之電位 差。 在一例示性實施例中,不使用數位控制類比開關U6之第 三開關,且將該第三開關之所有端子接地。在一例示性實 施例中,使用數位控制類比開關m之第三開關以便省電。 詳言之,在一例示性實施例中,如圖32中所說明,控制 信號c控制數位控制類比開關m中之產生輸出信號z的開 關之操作。結果,當控制信號C為一數位高值時,數位控 制類比帛關U4之輸入信號INH亦為一數位高值,藉此使數 位控制類比開關U4之所有輸出通道關閉。結果,當控制信 號c為一數位高值時,左光閥3〇〇2及右光閥3〇〇4短路,藉 此准許一半的電荷在光閥之間轉移,藉此省電且延長電池 12〇之壽命。 在一例不性實施例中,藉由使用控制信號C使左光閥 3002及右光閥3004短路,在處在關閉狀態下的一個光閥上 所收集之大量電荷可用以恰在另一光閥轉至關閉狀態之前 使該另一光閱部分地帶電,藉此節約原本必須完全由電池 120提供的電荷之量。 在一例示性實施例中,當由CPU 3〇12產生之控制信號c 為一數位尚值時,例如,當時處於關閉狀態下且其上具有 15 V電位差的左光閥3〇〇2之帶負電的板卜12 被連接至當 時處於打開狀態下且仍充電至+1 v且其上具有2 v電位差 的右光閥3004之帶更多負電之板。在一例示性實施例中, 147657.doc -46· 201118424 光閥3002及3004兩者上之帶正電的板將被充電至+3 v。在 一例示性實施例中,由CPU 3012產生之控制信號C在接近 左光閥3002之關閉狀態的結束時且恰在右光閥3〇〇4之關閉 狀態之前的一短時間段中轉至一數位高值。當由CPU 3012 產生之控制信號C為一數位高值時,數位控制類比開關U4 上之禁止端子INH亦為一數位高值。結果,在一例示性實 施例中’ U4之所有輸出通道χ、γ及z皆處於關閉狀態下。 此允許儲存在左光閥3002及右光閥3004之板上之電荷分散 在該等光閥之間’使得兩個光閥上之電位差為大約1 7/2 V 或8.5 V。由於光閥3〇〇2及3〇〇4的一個端子始終連接至3 V ’光閥3002及3004之負端子於是處在_5 5 V。在一例示 性實施例中,由CPU 3 0 12產生之控制信號c接著變為一數 位低值,且藉此將光閥30〇2及3〇〇4之負端子彼此斷開。接 著’在一例示性實施例中,右光閥3〇〇4之關閉狀態開始, 且藉由操作數位控制類比開關U4,電池12〇進一步將右光 閥之負端子充電至-12 V。結果,在一例示性實驗實施例 中,在二維眼鏡3000之正常執行操作模式(如下文參考方 法3300所描述)期間達成大約40%之電力節約。 在一例示性實施例中,提供由CPU 3〇12產生之控制信號 C以作為一在由CPU產生之控制信號A*B自高轉變至低或 自低轉變至高時自高轉變至低的短持續時間脈衝,以藉此 開始下一個左光閥打開/右光閥關閉或右光閥打開/左光閥 關閉。 現參看圖33及圖34,在一例示性實施例中,在三維眼鏡 147657.doc •47- 201118424 3000之操作期間,該三維眼鏡執行一正常執行操作模式 3300,在該模式中,將由cpu 3〇12產生之控制信號A、 B、C、D、E、F及G用以控制左光閥控制器3〇〇6及右光閥 控制器3008以及中央光閥控制器3〇1〇之操作,從而又依據 信號感測器3014所偵測到的同步信號之類型來控制左光閥 3002及右光閥3004之操作。 洋5之,在3302中,若CPU 3012判定信號感測器3〇 14已 接收同步號,則在3304中,使用由(^pu 3012產生之控 制信號A、B、C、D、E、F^G控制左光閥控制器3〇〇6及 右光閥控制器3008以及中央光閥控制器3〇1〇之操作,以在 左光閥3002與右光閥3004之間轉移電荷,如上文參看圖32 所描述。 在一例示性實施例中,在3304中,在大約〇 2毫秒中將 由CPU 3012產生之控制信號c設定為一高數位值,以藉此 使左光閥3002及右光閥3004之端子短路,且因此在左光閥 與右光閥之間轉移電荷。在一例示性實施例中,在33〇4 中,在大約0.2毫秒中將由CPU 3〇12產生之控制信號c設定 為一高數位值,以藉此使左光閥3〇〇2及右光閥3〇〇4之帶更 多負電之端子短路,1111此在左光閱與纟光閥之間轉移電 荷。因此,提供控制信號C以作為一短持續時間脈衝,其 在控制信號A或B自高轉變至低或自低轉變至高時或在此 之刖自向轉變至低。結果,在交替於打開左光閥/關閉右 光閥與關閉左光閥/打開右光閥之間的循環期間,在三維 眼鏡3000之操作期間提供電力節約。 147657.doc • 48 - 201118424 在3306中,CPU 3012接著判定所接收的同步信號之類 型。在一例示性實施例中’ 一包括2個脈衝之同步信號指 示左光閥3002應打開且右光閥3004應關閉,而一包括3個 脈衝之同步信號指示該右光閥應打開且該左光閥應關閉。 在一例示性實施例中’可使用其他不同數目及格式之同步 信號來控制左光閥3002及右光閥3004之交替打開及關閉。 在3306中’若CPU 3012判定所接收的同步信號指示左光 閥3002應打開且右光閥3004應關閉,則在3308中,該CPU 將控制信號A、B、C、D、E、F及G傳輸至左光閥控制器 3〇〇6及右光閥控制器3008以及共同光閥控制器3〇1〇,以在 右光閥3004上施加一高電壓且將無電壓隨後接著一小止擋 電壓施加至左光閥3002。在一例示性實施例中,在3308中 施加在右光閥3004上的高電壓之量值為15伏特。在一例示 性實施例中,在3308中施加至左光閥3002的止擋電壓之量 值為2伏特。在一例示性實施例中,在3 3 〇 8中,藉由將控 制信號D之操作狀態控制為低及將控制信號ρ·之操作狀態 (其可為低或高)控制為高,將該止擋電壓施加至左光閥 3002。在一例示性實施例中,33〇8中之該止擋電壓至左光 閥3002之施加被延遲一預定時間段,以允許該左光閥之液 晶内之分子較快速地旋轉。在該預定時間段期滿之後,隨 後施加止擋電壓將防止左光閥3〇〇2中之液晶内之分子在左 光閥之打開期間旋轉過頭。在一例示性實施例中,在33〇8 中s亥止擋電壓至左光閥3〇〇2之施加被延遲約1毫秒。 或者’在3306中,若CPU 3012判定所接收的同步信號指 147657.doc • 49· 201118424 示左光閥3002應關閉且右光閥3004應打開,則在3310中, 該CPU將控制信號A、B、C、D、E、F及G傳輸至左光閥 控制器3006及右光閥控制器3008以及共同光閥控制器 3010,以在左光閥3002上施加一高電壓且將無電壓隨後接 著一小止擋電壓施加至右光閥3004。在一例示性實施例 中,在3310中施加在左光閥3002上的高電壓之量值為15伏 特。在一例示性實施例中,在33 10中施加至右光閥3〇〇4的 止檔電壓之量值為2伏特》在一例示性實施例中,在3 3 1 〇 中’藉由將控制信號F控制為高且將控制信號G控制為低, 將該止擋電壓施加至右光閥3 004。在一例示性實施例中, 在3310中該止擋電壓至右光閥30〇4之施加被延遲一預定時 間¥又’以允奸5亥右光閥之液晶内之分子較快速地旋轉。在 該預定時間段期滿之後,隨後施加止擋電壓將防止右光閥 3004中之液晶内之分子在右光閥之打開期間旋轉過頭。在 _例示性實施例中,在3310中該止擋電壓至右光閥3〇〇4之 施加被延遲約1毫秒。 在一例示性實施例中’在方法3300期間,在步驟3308及 3310之後續重複中’施加至左光閥3〇〇2及右光閥3〇〇4之電 壓交替地為正及負,以防止對左光閥及右光閥之液晶單元 之損害。 因此,方法3300為三維眼鏡3000提供一正常或執行操作 模式。 現參看圖3 5及圖3 6 ’在一例示性實施例中,在三維眼鏡 3000之操作期間,該三維眼鏡實施一暖機操作方法35〇〇, 147657.doc -50- 201118424 在該方法中,將由CPU 3012產生之控制信號A、B、c、 D、E、F及G用以控制左光閥控制器3〇〇6及右光閥控制器 3008以及中央光閥控制器3010之操作,從而又控制左光閥 3002及右光閥3004之操作。 在3502中,該三維眼鏡之cpu 3〇12檢查該三維眼鏡之通 電。在一例示性實施例中,三維眼鏡3〇〇〇可藉由一使用者 啟動一通電開關、藉由_自動喚醒序列及/或藉由信號感 測器3014感測一有效同步信號而通電。在三維眼鏡3〇〇〇通 電的情況下,該三維眼鏡之光閥3〇〇2及3〇〇4可能(例如)需 要一暖機序列。在一時間段中不具有電力的光閥3〇〇2及 3004之液晶單元可能處於一不明確狀態下。 在3502中,若三維眼鏡3〇〇〇iCpu 3〇12偵測到該三維眼 鏡之通電,則在3504中,該CPU分別將交變電壓信號施加 至左光閥3002及右光閥3004。在一例示性實施例中,施加 至左光閥3002及右光閥3〇〇4之電壓在正峰值與負峰值之間 交替以避免光閥之液晶單元中的離子化問題。在一例示性 實施例中,施加至左光閥3〇〇2及右光閥3〇〇4之電壓信號可 彼此至少部分地不同相。在一例示性實施例中,施加至左 光閥3002及右光閥3_之電壓信號中之一者或兩者可在一 零電壓與-峰值電壓之間交替。在一例示性實施例中,可 將其他形式之電Μ信號施加至左光閥遞及右光閥3〇〇4, 以使得光閥之液晶單元處於一明確操作狀態。在一例示性 實施例中,施加電壓信號至左光閥3002及右光間3_使該 等光閥同時或在不同時間打開及關閉。 147657.doc •51 - 201118424 在施加電壓信號至左光閥3002及右光閥3004期間,在Ul, U6, and U4 send -12 V, 3 V, 1 V, or 〇 v to the left light valve 3002 and the other terminals of the right light valve 3004. As a result, in an exemplary embodiment, under the control of the control signals a, B, c, D, E, F, and G of the CPU 3 012, 147657.doc • 45· 201118424, the digital control analog switch, U6 & U4 A potential difference of 15 v, 〇v, 2 乂 or 3 v is generated at the terminals of the left light valve 3〇〇2 and the right light valve 3004. In an exemplary embodiment, the third switch of analog control switch U6 is not used and the terminals of the third switch are grounded. In an exemplary embodiment, the third switch of the analog switch m is digitally controlled to save power. In particular, in an exemplary embodiment, as illustrated in Figure 32, control signal c controls the operation of the digital control analog switch m to generate a switch for output signal z. As a result, when the control signal C is a digital high value, the digital control analog input U1 input signal INH is also a high bit value, thereby causing all of the output channels of the digital control analog switch U4 to be turned off. As a result, when the control signal c is a digital high value, the left light valve 3〇〇2 and the right light valve 3〇〇4 are short-circuited, thereby permitting half of the charge to be transferred between the light valves, thereby saving power and extending the battery. 12 years of life. In an exemplary embodiment, the left light valve 3002 and the right light valve 3004 are shorted by using the control signal C, and a large amount of charge collected on one of the light valves in the closed state can be used to just another light valve. The other light reading portion is charged before turning to the off state, thereby saving the amount of charge that would otherwise have to be completely provided by the battery 120. In an exemplary embodiment, when the control signal c generated by the CPU 3〇12 is a digital value, for example, the left light valve 3〇〇2 with the potential difference of 15 V at that time in the off state. The negatively charged panel 12 is connected to a more negatively charged panel of the right shutter 3004 that is then open and still charged to +1 volts and has a potential difference of 2 volts thereon. In an exemplary embodiment, the positively charged plates on both 147657.doc - 46 · 201118424 light valves 3002 and 3004 will be charged to +3 v. In an exemplary embodiment, the control signal C generated by the CPU 3012 is transferred to a short period of time near the end of the closed state of the left shutter 3002 and just before the closed state of the right shutter 3〇〇4. A high number of digits. When the control signal C generated by the CPU 3012 is a digital high value, the digital control analog switch U4 also has a digital high value. As a result, all of the output channels ’, γ, and z of ' U4 are in the off state in an exemplary embodiment. This allows the charge stored on the plates of the left and right light valves 3002 and 3004 to be dispersed between the light valves such that the potential difference across the two light valves is about 1 7/2 V or 8.5 V. Since one terminal of the light valves 3〇〇2 and 3〇〇4 is always connected to the negative terminals of the 3 V 'light valves 3002 and 3004, it is at _5 5 V. In an exemplary embodiment, the control signal c generated by the CPU 310 is then changed to a digital low value, and thereby the negative terminals of the light valves 30〇2 and 3〇〇4 are disconnected from each other. Next, in an exemplary embodiment, the closed state of the right light valve 3〇〇4 begins, and by operating the digital control analog switch U4, the battery 12 further charges the negative terminal of the right light valve to -12 volts. As a result, in an exemplary experimental embodiment, approximately 40% power savings are achieved during the normal execution mode of operation of the two-dimensional glasses 3000 (as described below with reference to method 3300). In an exemplary embodiment, the control signal C generated by the CPU 3〇12 is provided as a short transition from high to low when the control signal A*B generated by the CPU transitions from high to low or from low to high. The duration pulse is used to initiate the next left light valve open/right light valve closed or right light valve open/left light valve closed. Referring now to Figures 33 and 34, in an exemplary embodiment, during operation of the 3D glasses 147657.doc • 47- 201118424 3000, the 3D glasses perform a normal execution mode of operation 3300, in which mode, by cpu 3 The control signals A, B, C, D, E, F and G generated by 〇12 are used to control the operation of the left light valve controller 3〇〇6 and the right light valve controller 3008 and the central light valve controller 3〇1〇. Therefore, the operation of the left light valve 3002 and the right light valve 3004 is controlled according to the type of the synchronization signal detected by the signal sensor 3014. In the 3302, if the CPU 3012 determines that the signal sensor 3〇14 has received the synchronization number, in 3304, the control signals A, B, C, D, E, F generated by (^pu 3012) are used. ^G controls the operation of the left light valve controller 3〇〇6 and the right light valve controller 3008 and the central light valve controller 3〇1〇 to transfer charge between the left light valve 3002 and the right light valve 3004, as above Referring to Figure 32. In an exemplary embodiment, in 3304, the control signal c generated by the CPU 3012 is set to a high digit value in approximately 毫秒2 milliseconds to thereby cause the left shutter 3002 and the right light. The terminal of valve 3004 is shorted, and thus the charge is transferred between the left and right shutters. In an exemplary embodiment, in 33〇4, the control signal c generated by CPU 3〇12 will be generated in approximately 0.2 milliseconds. It is set to a high digit value to thereby short the terminals of the left light valve 3〇〇2 and the right light valve 3〇〇4 with more negative power, and 1111 transfers the charge between the left light reading and the calender valve. Therefore, the control signal C is provided as a short duration pulse which transitions from high to low or low since the control signal A or B At high or after this, the self-conversion changes to low. As a result, during the cycle between the opening of the left light valve/closing the right light valve and closing the left light valve/closing the right light valve, during operation of the 3D glasses 3000 Power saving is provided. 147657.doc • 48 - 201118424 In 3306, CPU 3012 then determines the type of synchronization signal received. In an exemplary embodiment, a synchronization signal comprising 2 pulses indicates that left light valve 3002 should be open. And the right light valve 3004 should be closed, and a synchronization signal comprising 3 pulses indicates that the right light valve should be open and the left light valve should be closed. In an exemplary embodiment, other different numbers and formats of synchronization signals can be used. To control the alternate opening and closing of the left light valve 3002 and the right light valve 3004. In 3306, if the CPU 3012 determines that the received synchronization signal indicates that the left light valve 3002 should be open and the right light valve 3004 should be closed, then in 3308, The CPU transmits control signals A, B, C, D, E, F, and G to the left light valve controller 3〇〇6 and the right light valve controller 3008 and the common light valve controller 3〇1〇 to the right. A high voltage is applied to the light valve 3004 and will be absent The pressure is then applied to the left shutter 3002. In an exemplary embodiment, the amount of high voltage applied to the right shutter 3004 in 3308 is 15 volts. In an exemplary embodiment. The magnitude of the stop voltage applied to the left shutter 3002 in 3308 is 2 volts. In an exemplary embodiment, in 3 3 〇8, by controlling the operating state of the control signal D to be low and The operating state of the control signal ρ· (which may be low or high) is controlled to be high, and the stop voltage is applied to the left shutter 3002. In an exemplary embodiment, the application of the stop voltage in 33〇8 to the left shutter 3002 is delayed for a predetermined period of time to allow the molecules within the liquid crystal of the left shutter to rotate faster. Subsequent application of the stop voltage after the expiration of the predetermined period of time will prevent the molecules in the liquid crystal in the left shutter 3〇〇2 from rotating excessively during the opening of the left shutter. In an exemplary embodiment, the application of the stop voltage to the left light valve 3〇〇2 in 33〇8 is delayed by about 1 millisecond. Or 'in 3306, if the CPU 3012 determines that the received synchronization signal refers to 147657.doc • 49· 201118424, the left light valve 3002 should be closed and the right light valve 3004 should be open, then in 3310, the CPU will control signal A, B, C, D, E, F, and G are transmitted to the left light valve controller 3006 and the right light valve controller 3008 and the common light valve controller 3010 to apply a high voltage on the left light valve 3002 and will be no voltage subsequently A small stop voltage is then applied to the right shutter 3004. In an exemplary embodiment, the amount of high voltage applied to left light valve 3002 in 3310 is 15 volts. In an exemplary embodiment, the magnitude of the stop voltage applied to the right shutter 3〇〇4 in 33 10 is 2 volts. In an exemplary embodiment, in 3 3 1 ' 'by The control signal F is controlled to be high and the control signal G is controlled to be low, and the stop voltage is applied to the right light valve 3 004. In an exemplary embodiment, the application of the stop voltage to the right shutter 30〇4 is delayed by a predetermined time in 3310 to cause the molecules in the liquid crystal of the 5th right shutter to rotate faster. Subsequent to the expiration of the predetermined period of time, subsequent application of the stop voltage will prevent the molecules in the liquid crystal in the right shutter 3004 from rotating over the opening during the opening of the right shutter. In the exemplary embodiment, the application of the stop voltage to the right shutter 3〇〇4 is delayed by about 1 millisecond in 3310. In an exemplary embodiment, during the method 3300, the voltages applied to the left and right shutters 〇〇2 and 〇〇4 are alternately positive and negative during subsequent iterations of steps 3308 and 3310. Prevent damage to the liquid crystal cells of the left and right shutters. Thus, method 3300 provides a normal or operational mode of operation for 3D glasses 3000. Referring now to Figures 3 5 and 3' in an exemplary embodiment, during operation of the 3D glasses 3000, the 3D glasses implement a warm-up operation method 35〇〇, 147657.doc-50-201118424 in the method The control signals A, B, c, D, E, F, and G generated by the CPU 3012 are used to control the operation of the left light valve controller 3〇〇6 and the right light valve controller 3008 and the central light valve controller 3010, Thereby, the operation of the left light valve 3002 and the right light valve 3004 is controlled. In 3502, the cpu 3〇12 of the 3D glasses checks the power of the 3D glasses. In an exemplary embodiment, the 3D glasses 3 can be powered by a user initiating a power on switch, by an automatic wake-up sequence, and/or by sensing a valid synchronization signal by the signal sensor 3014. In the case where the 3D glasses are powered, the light valves 3〇〇2 and 3〇〇4 of the 3D glasses may, for example, require a warm-up sequence. The liquid crystal cells of the light valves 3〇〇2 and 3004 which do not have electric power for a period of time may be in an ambiguous state. In 3502, if the 3D glasses 3〇〇〇iCpu 3〇12 detect the energization of the 3D eyeglasses, in 3504, the CPU applies an alternating voltage signal to the left light valve 3002 and the right light valve 3004, respectively. In an exemplary embodiment, the voltage applied to the left and right shutters 3002, 3, 4 alternates between a positive peak and a negative peak to avoid ionization problems in the liquid crystal cell of the light valve. In an exemplary embodiment, the voltage signals applied to the left and right shutters 3, 2, 3, 4, 4 may be at least partially out of phase with one another. In an exemplary embodiment, one or both of the voltage signals applied to the left shutter 3002 and the right shutter 3_ may alternate between a zero voltage and a peak voltage. In an exemplary embodiment, other forms of electrical signals may be applied to the left and right shutters 3〇〇4 such that the liquid crystal cells of the shutter are in an operational state. In an exemplary embodiment, a voltage signal is applied to the left light valve 3002 and the right light 3_ such that the light valves are opened and closed simultaneously or at different times. 147657.doc •51 - 201118424 During the application of the voltage signal to the left and right light valves 3002 and 3004,
3506中,CPU 3012檢查一暖機逾時。在35〇6中,若CPU 3012偵測到一暖機逾時,則在35〇8中,該cpu將停止將電 壓信號施加至左光閥3002及右光閥3004。 在一例示性實施例中,在35〇4及35〇6中,cpu 3〇12在一 足以致動該等光閥之該等液晶單元之時間段中將電壓信號 施加至左光閥3002及右光閥3004。在—例示性實施例中, CPU 3012在㈣之時段中將電壓信號施加至左光閥3〇〇2及 右光閥3G04。在-例示性實施例中,施加至左光閥纖及 右光閥綱4之電壓信號之最大量值可為15伏特。在一例示 性實施例中,3506中之逾時時段可為兩秒。在一例示性實 施例中’施加至左光閥3002及右光閥3〇〇4之電壓信號之最 大量值可大於或小於15伏特’且逾時時段可更長或更短。 在-例示性實施财,在方法35_間,cpu3Qi2可以一 不同於可用於觀看電影之速率的速率打開及_左光闊 3〇02及右光閥3〇04。在一例示性實施例中,在3504中,施 加至左光閥3002及右光閥3004之電壓信號在暖機時間段期 間不交替且被怪定施加,且因此該等光閥之該等液晶單元 在整個暖機時段中可保持不透明。在—例示性實施例中, 暖機方法测可在同步信號存在或不存在的情況下發生。 因此,方法3500為三維眼鏡3〇〇〇提供—暖機操作模式。在 -例示性實施例中’在實施暖機方法35〇〇之後 3刪處於一正常操作模式、執行操作模式或透明操作模式 下,且接著可實施方法3300。 147657.doc -52- 201118424 現參看圖37及圖38,在一例示性實施例中,在三維眼鏡 3000之操作期間’該三維眼鏡實施一操作方法37〇〇,在該 方法中’將由CPU 3012產生之控制信號a、b、C、d、 E、F及G用以控制左光閥控制器3〇〇6及右光閥控制器3〇〇8 以及共同光閥控制器3010之操作,從而又依據由信號感測 器3014接收的同步信號來控制左光閥3002及右光閥3004之 操作。 在3702中,CPU 3012檢查以查看信號感測器3014所偵測 到的同步信號是有效還是無效。在37〇2中,若CPU 3 0 12判 定同步信號無效’則在3704中,該CPU將電壓信號施加至 二維眼鏡3000之左光閥3002及右光閥3004。在一例示性實 施例中’在3704中施加至左光閥3002及右光閥3004之電壓 在正峰值與負峰值之間交替以避免光閥之液晶單元中的離 子化問題。在一例示性實施例中,在37〇4中施加至左光閥 3002及右光閥3004之電壓在正峰值與負峰值之間交替以提 供一頻率為60 Hz的方波信號。在一例示性實施例中,該 方波彳s说在+ 3 V與-3 V之間交替。在一例示性實施例中, 在3704中施加至左光閥3〇〇2及右光閥3004之電壓信號中之 一者或兩者可在一零電壓與一峰值電壓之間交替。在一例 示性實施例中,在3704中,可將其他形式(包括其他頻率) 之電壓信號施加至左光閥3002及右光閥3004,以使得光閥 之液晶單元保持打開,因此三維眼鏡3〇〇〇之使用者可透過 光閥正常地觀看。在一例示性實施例中,在3704中施加電 壓信號至左光閥3002及右光閥3004使該等光閥打開。 147657.doc •53· 201118424 在3704中施加電壓信號至左光閥3〇〇2及右光閥3〇〇4期 間,在3706中,CPU 3012檢查一清除逾時。在3706中,若 CPU 3012偵測到一清除逾時,則在37〇8中,cpu 3〇12將 停止施加電壓信號至光閥3002及3004,此可接著使三維眼 鏡3000處於一關閉操作模式。在一例示性實施例中,該清 除逾時之持續時間可長達(例如)約4小時。 因此,在一例示性實施例中,若三維眼鏡3〇〇〇未偵測到 一有效同步信號,則該三維眼鏡可轉至一透明操作模式且 實施方法3700。在透明操作模式下,在一例示性實施例 中,二維眼鏡3000之光閥3〇〇2及3004均保持打開,使得觀 看者可透過三維眼鏡之光閥正常地觀看。在一例示性實施 例中,施加一正負交替的恆定電壓以將三維眼鏡3〇〇〇之光 閥3002及3004之液晶單元維持在一透明狀態。該恆定電壓 可(例如)為2伏特,但該恆定電壓可為適合維持適度透明光 閥之任何其他電壓。在一例示性實施例中三維眼鏡3 之光閥3002及3004可保持透明,直至該三維眼鏡能夠驗證 -加密信號。在-例示性實施例中,可以允許三維眼鏡之 使用者正常地觀看之一i亲盡;4 „ 迷丰父替地打開及關閉三維眼鏡 3000之光閥 3002及 3004。 因此,方法3700提供一種清除三維眼鏡3〇〇〇之操作的; 法,且藉此提供一透明操作模式。In 3506, the CPU 3012 checks for a warm-up timeout. In 35〇6, if the CPU 3012 detects a warm-up timeout, then in 35〇8, the cpu will stop applying the voltage signal to the left light valve 3002 and the right light valve 3004. In an exemplary embodiment, in 35〇4 and 35〇6, cpu 3〇12 applies a voltage signal to left light valve 3002 and right during a period of time sufficient to actuate the liquid crystal cells of the light valves. Light valve 3004. In the exemplary embodiment, CPU 3012 applies a voltage signal to left light valve 3〇〇2 and right light valve 3G04 during the period of (d). In an exemplary embodiment, the maximum magnitude of the voltage signal applied to the left and right shutters can be 15 volts. In an exemplary embodiment, the timeout period in 3506 can be two seconds. In an exemplary embodiment, the maximum amount of voltage signals applied to left and right shutters 3002 and 3b may be greater than or less than 15 volts and the timeout period may be longer or shorter. In an exemplary implementation, between methods 35_, cpu3Qi2 can be opened at a rate different from the rate at which the movie can be viewed, and _ left wide 3 〇 02 and right light valve 3 〇 04. In an exemplary embodiment, in 3504, the voltage signals applied to the left and right shutters 3002, 3004 are not alternated during the warm-up period and are applied, and thus the liquid crystals of the shutters The unit remains opaque throughout the warm-up period. In an exemplary embodiment, the warm-up method measurement may occur in the presence or absence of a synchronization signal. Thus, method 3500 provides a warm-up mode of operation for the 3D glasses. In the exemplary embodiment, 'after performing the warm-up method 35', the third mode is in a normal mode of operation, an operational mode of operation, or a transparent mode of operation, and then method 3300 can be implemented. 147657.doc -52- 201118424 Referring now to Figures 37 and 38, in an exemplary embodiment, during operation of the 3D glasses 3000, the 3D glasses implement an operational method 37 in which 'by the CPU 3012 The generated control signals a, b, C, d, E, F, and G are used to control the operation of the left light valve controller 3〇〇6 and the right light valve controller 3〇〇8 and the common light valve controller 3010, thereby The operation of the left light valve 3002 and the right light valve 3004 is also controlled in accordance with the synchronization signal received by the signal sensor 3014. In 3702, the CPU 3012 checks to see if the sync signal detected by the signal sensor 3014 is active or inactive. In 37〇2, if the CPU 301 determines that the synchronization signal is invalid, then in 3704, the CPU applies a voltage signal to the left and right shutters 3002 and 3004 of the two-dimensional glasses 3000. In an exemplary embodiment, the voltage applied to left light valve 3002 and right light valve 3004 in 3704 alternates between a positive peak and a negative peak to avoid ionization problems in the liquid crystal cell of the light valve. In an exemplary embodiment, the voltage applied to left light valve 3002 and right light valve 3004 at 37〇4 alternates between a positive peak and a negative peak to provide a square wave signal having a frequency of 60 Hz. In an exemplary embodiment, the square wave s is said to alternate between + 3 V and -3 V. In an exemplary embodiment, one or both of the voltage signals applied to left and right shutters 3, 2, and 3004 in 3704 may alternate between a zero voltage and a peak voltage. In an exemplary embodiment, in 3704, other forms (including other frequencies) of voltage signals may be applied to the left and right light valves 3002, 3004 such that the liquid crystal cells of the light valve remain open, thus the 3D glasses 3 Users of 〇〇〇 can be viewed normally through the light valve. In an exemplary embodiment, applying a voltage signal to the left shutter 3002 and the right shutter 3004 in 3704 causes the shutters to open. 147657.doc •53· 201118424 During the application of the voltage signal to the left light valve 3〇〇2 and the right light valve 3〇〇4 in 3704, in 3706, the CPU 3012 checks for a clear timeout. In 3706, if the CPU 3012 detects a clear timeout, then in 37〇8, the cpu 3〇12 will stop applying a voltage signal to the light valves 3002 and 3004, which may then cause the 3D glasses 3000 to be in a shutdown mode of operation. . In an exemplary embodiment, the duration of the clearing time may be as long as, for example, about 4 hours. Thus, in an exemplary embodiment, if the 3D glasses 3 do not detect a valid synchronization signal, the 3D glasses can be rotated to a transparent mode of operation and method 3700 can be implemented. In the transparent mode of operation, in an exemplary embodiment, the light valves 3〇〇2 and 3004 of the two-dimensional glasses 3000 remain open so that the viewer can view normally through the light valves of the three-dimensional glasses. In an exemplary embodiment, a positive and negative alternating constant voltage is applied to maintain the liquid crystal cells of the shutters 3002 and 3004 of the 3D glasses 3 in a transparent state. The constant voltage can be, for example, 2 volts, but the constant voltage can be any other voltage suitable to maintain a moderately transparent light valve. In an exemplary embodiment, the light valves 3002 and 3004 of the 3D glasses 3 can remain transparent until the 3D glasses are capable of verifying - the encrypted signal. In an exemplary embodiment, the user of the three-dimensional glasses may be allowed to view one of the glasses normally; 4 „ 迷 丰 father opens and closes the light valves 3002 and 3004 of the three-dimensional glasses 3000. Thus, the method 3700 provides a The method of clearing the operation of the 3D glasses is performed, and thereby providing a transparent operation mode.
現參看圖39及圖,在一例示性實施例中,在三維眼在 3議之操仙n料鏡m作方法测,在言 方法中,將由CPU 3012產生之控制信號A、B、c、D 147657.doc -54- 201118424 E、F及G用以在光閥3002與3〇〇4之間轉移電荷。在39〇2 中,CI>U 3012判定-有效同步信號是否已由信號感測器 3014偵測到。若CPU3〇12判定一有效同步信號已由信號感 測器3014偵測到,則在3904中,該(:1>1;產生控制信號匸, 其形式為一持續(在一例示性實施例中)約2〇〇叩之短持續 時間脈衝。在一例示性實施例中,在方法39〇〇期間,電荷 在光閥3002與3004之間的轉移在控制信號c之短時脈衝期 間發生’實質上如上文參看圖33及圖34所描述。 在3906中,CPU 3 012判定控制信號C是否已自高轉變至 低。若CPU 3012判定控制信號C已自高轉變至低,則在 3908中,CPU改變控制信號八或8之狀態,然後三維眼鏡 3000可繼續其正常操作,(例如)如上文參看圖33及圖“所 描述及說明。 現參看圖30a、圖40及圖41,在一例示性實施例中,在 二維眼鏡3000之操作期間,該三維眼鏡實施一操作方法 4000,在該方法中,將由CPU 3012產生之控制信號rc4及 RC 5用以在二維眼鏡3 0 0 〇之正常或暖機操作模式期間操作 電荷泵3016 ’如上文參看圖32、圖33、圖34、圖35及圖36 所描述及說明。在4002中,CPU 3012判定一有效同步信號 是否已由信號感測器30 14偵測到。若CPU 3012判定一有效 同步信號已由信號感測器3014偵測到,則在4004中,該 CPU產生呈一系列短持續時間脈衝之形式的控制信號 RC4。 在一例示性實施例中,控制信號RC4之脈衝控制電晶體 H7657.doc -55- 201118424 Q1之操作,以藉此將電荷轉移至電容器⑴,直到該電容 器上之電位達到-預定位準。特別而言,當控制信號rc4 切換至—低值時,電晶體Qi將電感m連接至電池12〇。 結果’電感器L1儲存來自電池12〇之能量。接著,當控制 L號RC4切換至-局值時,儲存於電感中之能量被轉 移至電容器C13。目此’控制信號RC4之脈衝不斷地將電 何轉移至電容器C13,直至電容器cn上之電位達到一預 定位準。在一例示性實施例中,控制信號rc4繼續,直至 電容器C13上之電位達到_12v。 在一例示性實施例中,在4〇〇6中,cpu 3〇12產生一控制 k號RC5。結果,提供一輸入信號RA3,其具有—隨電容 器C13上之電位增加而減小之量值。詳言之當電容器 C1 3上之電位接近該預定值時,齊納二極體D7開始導電, 藉此減少輸入控制信號RA3之量值。在4008中,cpu 3〇12 判定輸入控制信號RA3之量值是否小於一預定值。若cpu 3 012判疋輸入控制信號RA3之量值小於該預定值,則在 4010中’該CPU停止產生控制信號RC4及RC5。結果,電 荷向電容器C13之轉移停止。 在一例示性實施例中,在三維眼鏡3〇〇〇之操作期間,方 法4000可在方法3900之後實施。 現參看圖30a、圖42及圖43 ’在一例示性實施例中,在 三維眼鏡3000之操作期間,該三維眼鏡實施—操作方法 4200 ’在該方法中,將由CPU 3012產生之控制信號A、 B、C、D、E、F、G、RA4、RC4及RC5用以判定當三維眼 147657.doc -56- 201118424 鏡3000已切換至一關閉狀況時電池12〇之操作狀態。在 4202中’ CPU 3012判定三維眼鏡3000是關閉還是打開。若 CPU 3 012判定三維眼鏡3000關閉,則在4204中,該CPU判 定是否已經過一預定逾時時段。在一例示性實施例中,該 逾時時段長度為2秒。 若CPU 3012判定已經過該預定逾時時段,則在42〇6中, 該CPU判定信號感測器3 014在一預定先前時間段中所偵測 到的同步脈衝之數目是否超過一預定值。在一例示性實施 例中’在4206中,預定先前時間段為自電池之最近替換以 來已經過的時間段。 若CPU 3012判定信號感測器3014在一預定先前時間段中 偵測到的同步脈衝之數目超過一預定值,則在42〇8中,該 CPU產生作為一短持續時間脈衝的控制信號e,在42 i 〇 中’該CPU將作為一短持續時間脈衝的控制信號RA4提供 給信號感測器3014 ’且在4212中,該CPU分別雙態觸發控 制信號A及B之操作狀態。在一例示性實施例中,若信號 感測器3014在一預定先前時間段中所偵測到的同步脈衝之 數目超過一預定值,則此可指示電池120中之剩餘電力為 低。 或者’若CPU 3012判定信號感測器3014在一預定先前時 間段中偵測到的同步脈衝之數目未超過一預定值,則在 4210中’該CPU將作為一短持續時間脈衝的控制信號RA4 提供給信號感測器3014,且在4212中,該CPU分別雙態觸 發控制信號A及B之操作狀態。在一例示性實施例中,若 147657.doc •57· 201118424 信號感測器3014在一預定先前時間段中偵測到的同步脈衝 之數目未超過一預定值,則此可指示電池12〇中之剩餘電 力不為低。 在一例示性實施例中,在4208及4212中,控制信號八及 B雙態觸發與控制信號E之短持續時間脈衝之組合使三維眼 鏡3000之光閥3002及3004關閉(在控制信號£之短持續時間 脈衝期間除外)。結果,在一例示性實施例中,藉由在一 短時間段中使三維眼鏡之光閥急速打開(祕。㈣,光間 3002及3004將電池12〇中剩餘之電力為低的—視覺指示提 供給三維眼鏡3000之使用者。在一例示性實施例中,在 4210中將作為一短持續時間脈衝的控制信號RA4提供給信 號感測器3〇14准許該信號感測器在所提供的脈衝之持續時 間期間搜尋及偵測同步信號。 在一例示性實施例中’控制信號A及B之雙態觸發(並不 亦提供控制信號E之短持續時間脈衝)使三维眼鏡3〇〇〇之光 閥3002及3004保持關閉。結果,在一例示性實施例中,藉 由不在一短時間段中使三維眼鏡之光閥急速打開,光閥 3002及3004將電池120中剩餘之電力不為低的一視覺指示 k供給二維眼鏡3 〇 〇 〇之使用者。 在缺少-時序時脈之實施例中,可根據同步脈衝來量測 時間。CPU 3〇12可將電池120中之剩餘時間判定為電池可 繼續操作經過的同步脈衝之數目之一因數且接著藉由使光 閥3002及3004急速打開及關閉而將一視覺指示提供給三維 眼鏡3000之使用者。 147657.doc -58- 201118424 現參看圖44至圖55,在一例示性實施例中,三維眼鏡 104、1800及3000中之一或多者包括一框架前部44〇2、一 鼻樑架4404、右鏡腿4406及左鏡腿4408。在一例示性實施 例中,框架前部4402容納三維眼鏡104、1800及3000中之 一或多者之控制電路及電源供應器(如上所述),且進一步 界定用於固持上述右ISS光閥及左ISS光閥之右透鏡開口 4410及左透鏡開口 4412。在一些實施例中,框架前部4402 抱合以形成一右翼4402a及一左翼4402b。在一些實施例 中,三維眼鏡104、1800及3000之控制電路的至少部分容 納於翼4402a及4402b之任一者或兩者中。 在一例示性實施例中,右鏡腿4406及左鏡腿4408自框架 前部4402延伸且包括隆脊4406a及4408a,且各自具有一蛇 形形狀,鏡腿之遠端與鏡腿之至框架前部之各別連接處相 比靠得較近。以此方式,當一使用者佩戴三維眼鏡1〇4、 1800及3000時,鏡腿4406及4408之末端緊靠使用者之頭部 且固定就位。在一些實施例中,鏡腿44〇6及44〇8之彈簧率 由雙重彎曲來增強,而隆脊4406a及4408a的間距及深度控 制該彈簧率。如圖55所示,一些實施例不使用雙彎曲形 狀,而是使用一簡單的曲線型鏡腿4406及44〇8。 現參看圖48至圖55,在一例示性實施例中’三維眼鏡 104、1800及3000中之一或多者之控制電路容納於框架前 部(其包括右翼44〇2a)中,且電池容納於右翼44〇2a中。此 外,在一例示性實施例中,經由一在右翼4402a之内側上 的開口提供對三維眼鏡3000之電池120之取用,該開口由 I47657.doc 59· 201118424 一蓋4414封閉,該蓋4414包括用於緊密配合及密封式嚙合 右翼4402a之一 〇型環密封件4416。 參看圖49至圖55,在一些實施例中,電池位於一由蓋 4414及蓋内部4415形成之電池蓋總成中。電池蓋4414可藉 由(例如)超音波熔接而附接至電池蓋内部4415。觸點 可自蓋内部44 15伸出以將電自電池12〇傳導至(例如)位於右 翼4402a内之觸點。 蓋内部441 5在該蓋之一内部部分上可具有周向間隔開之 位向楔緊元件(keying element)4418。蓋4414可具有定位於 該蓋之一外部表面上的周向間隔開之凹陷442〇。 在一例示性實施例中,如圖49至圖51中所說明,可使用 一鑰匙(key)4422操控蓋4414,該鑰匙包括用於緊密配合及 嚙合該蓋之凹陷4420的複數個突起4424。以此方式可將 蓋4414相對於三維眼鏡1〇4、18〇〇及3〇〇〇之右翼44心自一 關閉(或鎖定)位置旋轉至一打開(或解鎖)位置。因此,可 藉由使用鑰匙4422將蓋4414與三維眼鏡3〇〇〇之右翼44〇2a 嚙合而相對於環境封閉三維眼鏡1〇4、丨8〇〇及3〇〇〇之控制 電路及電池。參看圖55,在另一實施例中,可使用錄匙 4426 ° 現多看圖56 號感測器5600之一例示性實施例包括 - -可操作地純至-解碼器测之窄帶通滤波器56〇2。信 號感測器5600又可操作地耦接至一 cpu 56〇4。窄帶通濾波 器5602可為一類比及/或數位帶通濾波器,其可具有適於 准許-同步串列資料信號通過而攄出及移除頻帶外雜訊之 147657.doc -60· 201118424 通帶。 在-例示性實施例中,CPU 56〇4可(例如)為三維眼鏡 104、18G〇或 3_)之 CPU 114、cpu 181G或 cpu 3〇12。 在-例示性實施财,在操作期間,信號感測器56〇〇自 一信號傳輸器5606接收一信號。在一例示性實施例中,信 號傳輸器5606可(例如)為信號傳輸器11〇。 在-例示性實施例中’由信號傳輸器56〇6傳輸至信號感 測器测之信號5700包括-或多個資料位元57〇2,其各自 由一時脈脈衝5 7 0 4居先。在—例示性實施例中,在信號感 測器湖之操作期間,因為f料之每―位元則由一時脈 脈衝5704居先’所以信號感測器之解碼器$刚可容易地解 碼長資料位元字組。因此’信號感測器5_能夠容易地接 收及解碼來自信號傳輸器5_之同步串列資料傳輸。與之 相比,為非同步資料傳輸之長資料位元字組通常難以以一 有效及/或無錯方式傳輸及解碼。因此,信號感測器湖 提供用於接收資料傳輸之—改良式系統。此外,在信號感 測器56GG之操作中使用同步串列資料傳輸確保可容易地解 碼長資料位元字組。 現參看圖58 ’ -種用於調節__使用於三維眼鏡3_之同 步信號之系統5800之一也丨;& + 之例不性貫施例包括用於感測一同步 U自U傳輪益i 1G之傳輸的—信號感測器則2。在— j示I·生實施例中’仏號感测器彻2經調適以感測該同步信 5虎自"is说傳輸器1 1 〇之值於 、I 之傳輸,邊同步信號具有主要在電磁 波》曰之可見光部分中的分量。在若干替代實施例中,信號 147657.doc • 61 · 201118424 感測器5802可經調適 之傳輸,該同舟信芸走 以感測該同步信號自信號傳輸器u 〇 具有可能並非主#在電磁波譜之可 之可見 光部分中的分量’諸如紅外線信號。 規器5804可操作地輕接至信號感㈣器5802及三維眼Referring now to FIG. 39 and FIG. 39, in an exemplary embodiment, the three-dimensional eye is measured by a method, and in the method, the control signals A, B, and c generated by the CPU 3012 are used. D 147657.doc -54- 201118424 E, F and G are used to transfer charge between light valves 3002 and 3〇〇4. In 39〇2, CI> U 3012 determines if the valid sync signal has been detected by signal sensor 3014. If the CPU 3 判定 12 determines that a valid sync signal has been detected by the signal sensor 3014, then in 3904, the (: 1 >1; generates a control signal 匸 in the form of a continuation (in an exemplary embodiment) a short duration pulse of about 2 Torr. In an exemplary embodiment, during method 39, the transfer of charge between light valves 3002 and 3004 occurs during a short pulse of control signal c. The above is described above with reference to Figures 33 and 34. In 3906, CPU 3 012 determines whether control signal C has transitioned from high to low. If CPU 3012 determines that control signal C has transitioned from high to low, then in 3908, The CPU changes the state of the control signal eight or eight, and then the 3D glasses 3000 can continue its normal operation, for example as described and illustrated above with reference to Figures 33 and Figures. Referring now to Figures 30a, 40 and 41, an example is shown In an embodiment, during operation of the two-dimensional glasses 3000, the three-dimensional glasses implement an operation method 4000 in which the control signals rc4 and RC 5 generated by the CPU 3012 are used in the two-dimensional glasses 300. During normal or warm-up mode of operation The charge pump 3016' is as described and illustrated above with reference to Figures 32, 33, 34, 35, and 36. In 4002, the CPU 3012 determines whether an active sync signal has been detected by the signal sensor 30 14 . If the CPU 3012 determines that an active synchronization signal has been detected by the signal sensor 3014, then in 4004, the CPU generates a control signal RC4 in the form of a series of short duration pulses. In an exemplary embodiment, The pulse of the control signal RC4 controls the operation of the transistor H7657.doc-55-201118424 Q1, whereby the charge is transferred to the capacitor (1) until the potential on the capacitor reaches a predetermined level. In particular, when the control signal rc4 is switched At the low value, the transistor Qi connects the inductor m to the battery 12 〇. The result 'the inductor L1 stores the energy from the battery 12 。. Then, when the control L RC4 is switched to the - local value, it is stored in the inductor. The energy is transferred to capacitor C13. The pulse of control signal RC4 continuously transfers power to capacitor C13 until the potential on capacitor cn reaches a predetermined level. In an exemplary embodiment, control signal rc4 Continued until the potential on capacitor C13 reaches _12v. In an exemplary embodiment, in 4〇〇6, cpu 3〇12 generates a control k number RC5. As a result, an input signal RA3 is provided, which has The potential on capacitor C13 increases and decreases. In particular, when the potential on capacitor C1 3 approaches the predetermined value, Zener diode D7 begins to conduct, thereby reducing the magnitude of input control signal RA3. In 4008, cpu 3〇12 determines whether the magnitude of the input control signal RA3 is less than a predetermined value. If cpu 3 012 determines that the magnitude of the input control signal RA3 is less than the predetermined value, then in 4010 the CPU stops generating control signals RC4 and RC5. As a result, the transfer of the charge to the capacitor C13 is stopped. In an exemplary embodiment, method 4000 may be performed after method 3900 during operation of 3D glasses 3〇〇〇. Referring now to Figures 30a, 42 and 43 'in an exemplary embodiment, during operation of the 3D glasses 3000, the 3D glasses implement-operation method 4200', in which the control signal A generated by the CPU 3012, B, C, D, E, F, G, RA4, RC4, and RC5 are used to determine the operational state of the battery 12 when the three-dimensional eye 147657.doc - 56 - 201118424 mirror 3000 has been switched to a closed condition. In 4202, the CPU 3012 determines whether the 3D glasses 3000 are closed or open. If the CPU 3 012 determines that the 3D glasses 3000 is off, then in 4204, the CPU determines whether a predetermined timeout period has elapsed. In an exemplary embodiment, the timeout period is 2 seconds in length. If the CPU 3012 determines that the predetermined timeout period has elapsed, then in 42〇6, the CPU determines whether the number of synchronization pulses detected by the signal sensor 3 014 in a predetermined previous period exceeds a predetermined value. In an exemplary embodiment, 'in 4206, the predetermined previous time period is the time period that has elapsed since the most recent replacement of the battery. If the CPU 3012 determines that the number of synchronization pulses detected by the signal sensor 3014 in a predetermined previous period exceeds a predetermined value, then in 42〇8, the CPU generates a control signal e as a short duration pulse, In 42 i ' 'the CPU supplies control signal RA4 as a short duration pulse to signal sensor 3014 ' and in 4212 the CPU toggles the operational states of control signals A and B, respectively. In an exemplary embodiment, if the number of sync pulses detected by signal sensor 3014 during a predetermined previous time period exceeds a predetermined value, this may indicate that the remaining power in battery 120 is low. Or if 'the CPU 3012 determines that the number of synchronization pulses detected by the signal sensor 3014 in a predetermined previous time period does not exceed a predetermined value, then in 4210 the CPU will act as a short duration pulse control signal RA4. The signal sensor 3014 is provided, and in 4212, the CPU toggles the operational states of the control signals A and B, respectively. In an exemplary embodiment, if the number of sync pulses detected by the 147657.doc • 57· 201118424 signal sensor 3014 in a predetermined previous time period does not exceed a predetermined value, this may indicate that the battery is in the middle of the battery. The remaining power is not low. In an exemplary embodiment, in 4208 and 4212, the combination of the control signal eight and B toggles and the short duration pulse of the control signal E causes the shutters 3002 and 3004 of the 3D glasses 3000 to be turned off (in the control signal) Except for short duration pulse periods). As a result, in an exemplary embodiment, the light valve of the 3D glasses is rapidly opened by a short period of time (secret. (4), and the remaining power in the battery 12 is low in the optical interval 3002 and 3004. Provided to a user of the 3D glasses 3000. In an exemplary embodiment, a control signal RA4, which is a short duration pulse, is provided to the signal sensor 3〇14 in 4210 to permit the signal sensor to be provided Searching and detecting the synchronization signal during the duration of the pulse. In an exemplary embodiment, the two-state triggering of control signals A and B (which also provides a short duration pulse of control signal E) causes the 3D glasses 3〇〇〇 The light valves 3002 and 3004 remain closed. As a result, in an exemplary embodiment, the light valves 3002 and 3004 leave the remaining power in the battery 120 not by rapidly opening the light valve of the 3D glasses in a short period of time. A low visual indication k is supplied to the user of the two-dimensional glasses 3. In the embodiment of the missing-timing clock, the time can be measured based on the sync pulse. The CPU 3〇12 can store the remaining time in the battery 120. determination The battery can continue to operate as one of the number of passing sync pulses and then provide a visual indication to the user of the 3D glasses 3000 by rapidly opening and closing the light valves 3002 and 3004. 147657.doc -58- 201118424 See now 44-55, in an exemplary embodiment, one or more of the three-dimensional glasses 104, 1800, and 3000 include a frame front portion 44A, a nose bridge 4404, a right temple 4406, and a left temple 4408. In an exemplary embodiment, the frame front portion 4402 houses a control circuit and a power supply (as described above) of one or more of the three-dimensional glasses 104, 1800, and 3000, and is further defined to hold the right ISS light described above. The right lens opening 4410 and the left lens opening 4412 of the valve and the left ISS light valve. In some embodiments, the frame front portion 4402 is engaged to form a right wing 4402a and a left wing 4402b. In some embodiments, the 3D glasses 104, 1800 and At least a portion of the control circuitry of 3000 is housed in either or both of the wings 4402a and 4402b. In an exemplary embodiment, the right temple 4406 and the left temple 4408 extend from the frame front portion 4402 and include a ridge 4406a and 4408a, and each has a serpentine shape, the distal end of the temple is closer to the respective joints of the temple to the front of the frame. In this way, when a user wears the 3D glasses 1〇4, At 1800 and 3000, the ends of temples 4406 and 4408 abut the user's head and are fixed in place. In some embodiments, the spring rates of temples 44〇6 and 44〇8 are enhanced by double bending. The spacing and depth of the ridges 4406a and 4408a control the spring rate. As shown in Figure 55, some embodiments do not use a double curved shape, but instead use a simple curved temple 4406 and 44A8. Referring now to FIGS. 48-55, in one exemplary embodiment, the control circuitry of one or more of the 'three-dimensional glasses 104, 1800, and 3000 is housed in the front of the frame (which includes the right wing 44〇2a) and the battery is housed In the right wing 44〇2a. Moreover, in an exemplary embodiment, access to the battery 120 of the 3D glasses 3000 is provided via an opening on the inside of the right wing 4402a, the opening being closed by a cover 4414 of I47657.doc 59·201118424, the cover 4414 including A snap ring seal 4416 for a tight fit and sealing engagement of the right wing 4402a. Referring to Figures 49-55, in some embodiments, the battery is located in a battery cover assembly formed by a cover 4414 and a cover interior 4415. The battery cover 4414 can be attached to the battery cover interior 4415 by, for example, ultrasonic welding. The contacts may extend from the interior of the cover 44 15 to conduct electricity from the battery 12 turns to, for example, contacts located within the right wing 4402a. The cover interior 441 5 may have a circumferentially spaced apart keying element 4418 on an inner portion of the cover. Cover 4414 can have circumferentially spaced recesses 442A positioned on an exterior surface of one of the covers. In an exemplary embodiment, as illustrated in Figures 49-51, a cover 4414 can be manipulated using a key 4422 that includes a plurality of protrusions 4424 for tightly engaging and engaging the recesses 4420 of the cover. In this manner, the cover 4414 can be rotated from a closed (or locked) position to an open (or unlocked) position relative to the right-hand 44 of the 3D glasses 1〇4, 18〇〇, and 3〇〇〇. Therefore, the control circuit and the battery of the three-dimensional glasses 1〇4, 丨8〇〇, and 3〇〇〇 can be closed with respect to the environment by engaging the cover 4414 with the right wing 44〇2a of the 3D glasses 3〇〇〇 by using the key 4422. Referring to FIG. 55, in another embodiment, a key 4426 can be used. An exemplary embodiment of the sensor 5600 is shown in FIG. 55. The exemplary embodiment includes an operatively pure-to-decoder narrowband pass filter. 56〇2. Signal sensor 5600 is in turn operatively coupled to a cpu 56〇4. The narrow bandpass filter 5602 can be an analog and/or digital bandpass filter, which can have a suitable for permitting and synchronizing the serial data signals to pass and remove out-of-band noise. 147657.doc -60· 201118424 band. In an exemplary embodiment, CPU 56〇4 may, for example, be CPU 114, cpu 181G or cpu 3〇12 of 3D glasses 104, 18G〇 or 3_). In an exemplary implementation, signal sensor 56 receives a signal from a signal transmitter 5606 during operation. In an exemplary embodiment, signal transmitter 5606 can be, for example, a signal transmitter 11A. In the exemplary embodiment, the signal 5700 transmitted by the signal transmitter 56 〇 6 to the signal sensor includes - or a plurality of data bits 57 〇 2, each of which is preceded by a clock pulse 5 704. In the exemplary embodiment, during operation of the signal sensor lake, since each bit of the f-material is preceded by a clock pulse 5704, the decoder $ of the signal sensor can be easily decoded long. Data bit block. Therefore, the 'signal sensor 5' can easily receive and decode the synchronous serial data transmission from the signal transmitter 5_. In contrast, long data bit blocks for asynchronous data transmission are often difficult to transmit and decode in an efficient and/or error-free manner. Therefore, the Signal Sensor Lake provides an improved system for receiving data transmissions. In addition, the use of synchronous serial data transmission in the operation of signal sensor 56GG ensures that long data bit blocks can be easily decoded. Referring now to FIG. 58', one of the systems 5800 for adjusting the synchronization signal used for the 3D glasses 3_ is also used to detect a synchronous U-U transmission. The signal sensor of the transmission of the wheel Yi i 1G is 2. In the embodiment of the invention, the 仏 感 感 彻 经 仏 仏 仏 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 is is is is is is is is is is is is is is is is is is is is is is is is is The component mainly in the visible light portion of the electromagnetic wave. In a number of alternative embodiments, the signal 147657.doc • 61 · 201118424 sensor 5802 can be adapted for transmission, the same boat walks to sense the synchronization signal from the signal transmitter u 〇 has the potential to be not the main # in the electromagnetic spectrum The component in the visible light portion is such as an infrared signal. The gauge 5804 is operatively lightly connected to the signal sense (four) device 5802 and the three-dimensional eye
.........穴丨5狐馱凋器5802之間的間距在正常使用中 月b大巾田變化,則二維眼鏡3 〇 〇 〇之信號感測器所偵測到的 。因此’用於正規化信號感測 同步信號之振幅可大幅變化 斋5802所偵測到的一同步信號之振幅及/或形狀之構件將 增強三維眼鏡3〇〇〇之操作。 用於調節一輸入信號以正規化該輸入信號之振幅及/或 形狀之系統之實例揭示於(例如)以下美國專利中:第 3,124’797 號、第 3,488,604 號、第 3,652,944 號、第 3,927,663 號、第 4,27〇,223 號、第 6,〇81,565 號及第 6,272,103號’該等專利之揭示内容以引用的方式併入本文 中。此等美國專利之揭示内容及/或教示可全部或部分地 組合以實施正規器58〇4之全部或一部分。在—例示性實施 例中’正規器5804之功能性之全部或一部分可由cpu 3012 147657.doc -62- 201118424 實施。 在一例示性實施例中,正規器5804可另外地或替代性地 自信號感測器5802接收傳入同步信號,且調整該傳入同步 k號之放大及/或使該傳入同步信號之峰間振幅穩定以產 生一隨後自該正規器傳輸至cpu 3〇12之輸出信號。在一替 代實施例中,CPU 114及/4CPU 181〇可取代cpu 3〇12, 或除CPU 3012之外,還可使用CPU 114及/或cpu 181〇。 現參看圖59’在一例*性實施例中,正規器58〇4包括一 增益控制元件5806、一放大器及脈衝調節元件581〇及一同 步振幅及形狀處理單元5812。 在一例示性實施例中,增益控制元件58〇6接收並處理由 k號感測器5802提供的同步輸入信號及由同步振幅及形狀 處理單元5812提供的增益調整信號,以產生一衰減輸出信 號以供放大器及脈衝調節元件581〇處理。 在一例示性實施例中,放大器及脈衝調節元件581〇處理 由增益控制元件5806輸出的信號以產生一正規化同步信號 以傳輸至CPU 3012。 在一例示性實施例中,用於調節同步信號之系統58〇〇巧 用於三維眼鏡104、1800或3000中。 現參看圖59a至圖59d,在系統5800之一例示性實驗實摊 例中,-能量主要在可見光譜内之電磁同步信號由信號感 測器5802感測及/或被處理以產生一信號59〇2以傳輸至增 益控制元件5806。在一例示性實驗實施例中,同步信號 5902之峰間振幅在約! 111¥至1 v之範圍中。在一例示性實 147657.doc •63· 201118424 驗實施例中’信號接著由增益控制元件鳩處理以產 生一信號侧以傳輸至放大器及脈衝調節元件刪。在一 例不性實驗實施例中’信號59〇4之振幅高達約…。在一 例示性實驗實施例中’信號侧接著由放大器及脈衝調節 -件8 10處理以產生一彳5號59〇6以傳輸至cpu 3〇12。在一 例示性實施例中,信號5906之峰間振幅高達約3 v。在一 例示㈣驗實施例中’信號5906被回饋至同步振幅及形狀 處理單元5812以產生-回饋控制信號测以傳輸至增益控 制元件5806。在一例示性實驗實施例中,回饋控制信號 5908為一緩慢變化之信號或dc信號。 因此’系統5800之例示性實驗實施例表明,㈣統可調 整感測到的同步信號之放大且使感測到的同步信號之蜂間 振幅穩定。參看圖58、圖59、圖59a、圖5外、圖59c及圖 59d所說明及描述的系統58〇〇之操作之例示性實驗結果是 預期之外的。 現參看圖60、圖60a及圖60b,三維眼鏡6〇〇〇之一例示性 實施例實質上等同於上文所描述之三維眼鏡18〇〇,惟下文 所說明的方面除外。 在一例示性實施例中,三維眼鏡6〇〇〇包括三維眼鏡之左 . 光閥1802、右光閥1804、左光閥控制器18〇6、右光閥控制 器1808、CPU 1810及電荷泵1816,該等組件包括其對應功 能性。 三維眼鏡6000包括一信號感測器6〇〇2,其實質上類似於 二維眼鏡1800之信號感測器1814、經修改以包括增益控制 147657.doc -64 - 201118424 元件5806、放大器及脈衝調節元件581〇及同步振幅及形狀 處理單元5812,該信號感測器可操作地耦接至微控制器 U4。在一例示性實施例中,微控制器U4為一可自丁以犯......... The spacing between the 5 驮 驮 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 580 . Therefore, the amplitude used to normalize the signal sensing sync signal can vary greatly. The amplitude and/or shape of a sync signal detected by the fast 5802 will enhance the operation of the 3D glasses. Examples of systems for adjusting an input signal to normalize the amplitude and/or shape of the input signal are disclosed, for example, in U.S. Patent Nos. 3,124'797, 3,488,604, 3,652,944, 3,927,663. No. 4, 27, 223, 6, 6, 81, 565, and 6, 272, 103, the disclosures of each of which are incorporated herein by reference. The disclosures and/or teachings of such U.S. patents may be combined in whole or in part to implement all or a portion of the normalizer 58〇4. In the exemplary embodiment, all or a portion of the functionality of the 'normalizer 5804 can be implemented by cpu 3012 147657.doc -62-201118424. In an exemplary embodiment, the normalizer 5804 may additionally or alternatively receive an incoming synchronization signal from the signal sensor 5802 and adjust the amplification of the incoming synchronization k number and/or cause the incoming synchronization signal to The peak-to-peak amplitude is stabilized to produce an output signal that is subsequently transmitted from the normalizer to cpu 3〇12. In an alternate embodiment, CPU 114 and /4 CPU 181 may replace CPU 3, 12 or, in addition to CPU 3012, CPU 114 and/or CPU 181. Referring now to Figure 59', in an exemplary embodiment, the normalizer 58A includes a gain control component 5806, an amplifier and pulse conditioning component 581, and a sync amplitude and shape processing unit 5812. In an exemplary embodiment, gain control component 58A6 receives and processes the sync input signal provided by k-sensor 5802 and the gain adjustment signal provided by sync amplitude and shape processing unit 5812 to produce an attenuated output signal. It is processed by the amplifier and the pulse adjusting component 581〇. In an exemplary embodiment, the amplifier and pulse conditioning component 581 processes the signal output by the gain control component 5806 to produce a normalized synchronization signal for transmission to the CPU 3012. In an exemplary embodiment, system 58 for adjusting the synchronization signal is used in 3D glasses 104, 1800 or 3000. Referring now to Figures 59a-59d, in an exemplary experimental embodiment of system 5800, an electromagnetic synchronization signal whose energy is primarily in the visible spectrum is sensed by signal sensor 5802 and/or processed to produce a signal 59. 〇 2 is transmitted to gain control element 5806. In an exemplary experimental embodiment, the peak-to-peak amplitude of the sync signal 5902 is about! In the range of 111 ¥ to 1 v. In an exemplary embodiment, the signal is then processed by the gain control element 以 to generate a signal side for transmission to the amplifier and pulse conditioning element deletion. In an example of an inaccurate experiment, the amplitude of the signal 59〇4 is as high as about... In an exemplary experimental embodiment, the 'signal side' is then processed by an amplifier and pulse conditioning unit 8 10 to produce a 彳5#59〇6 for transmission to cpu 3〇12. In an exemplary embodiment, the peak-to-peak amplitude of signal 5906 is as high as about 3 volts. In an exemplary (four) embodiment, the signal 5906 is fed back to the sync amplitude and shape processing unit 5812 to generate a feedback control signal for transmission to the gain control element 5806. In an exemplary experimental embodiment, feedback control signal 5908 is a slowly varying signal or dc signal. Thus, the exemplary experimental embodiment of system 5800 shows that (iv) the amplification of the sensed synchronization signal is adjusted and the amplitude of the sensed sync signal is stabilized. Exemplary experimental results of the operation of system 58 illustrated and described with reference to Figures 58, 59, 59a, 5, 59c, and 59d are unexpected. Referring now to Figures 60, 60a and 60b, an exemplary embodiment of the 3D glasses 6 is substantially identical to the 3D glasses 18 described above except for the aspects described below. In an exemplary embodiment, the 3D glasses 6〇〇〇 include the left side of the 3D glasses. The light valve 1802, the right light valve 1804, the left light valve controller 18〇6, the right light valve controller 1808, the CPU 1810, and the charge pump 1816, these components include their corresponding functionality. The 3D glasses 6000 includes a signal sensor 6〇〇2 that is substantially similar to the signal sensor 1814 of the two-dimensional glasses 1800, modified to include gain control 147657.doc -64 - 201118424 component 5806, amplifier and pulse conditioning Element 581 and synchronous amplitude and shape processing unit 5812 are operatively coupled to microcontroller U4. In an exemplary embodiment, the microcontroller U4 is a self-defeating
Instruments購付之 Texas Instruments MSP430F2011PWR積 體電路。在一例不性實施例中,微控制器U4亦可搡作地耦 接至CPU 1810。在一例示性實施例中,信號感測器6〇〇2之 光電二極體D2能夠偵測具有在可見光譜中之分量的電磁信 號。 在一例示性實施例中,增益控制元件58〇6包括場效電晶 體 Q100。 在一例示性實施例中,放大器及脈衝調節元件581〇包括 運算放大器U5及U6、電阻器R2 ' R3、R5、R6、R7、 RIO ' R12、R14及 R16 ' 電容器 C5、C6、C7、C8、cl〇、 C12、C14及C15,及肖特基障壁二極體D1 e 在一例示性實施例中,同步振幅及形狀處理單元5 8丨2包 括NPN電晶體Q101、電阻BR1〇〇、R1〇1&R1〇2 ,和電容 器 C13及C100。 在一例示性實施例中,在三維眼鏡6〇〇〇之操作期間,信 號感測器6002自信號傳輸器!丨0接收信號,該等信號可(例 如)包括用於操作三維眼鏡6〇〇〇之組態資料及/或同步信 號。 在一例示性實施例中,在三維眼鏡6〇〇〇之操作期間, Q100控制光電二極體D2之信號輸出。詳言之,在—例示 性實施例中,當Ql00之閘極上之電壓(其為C13上之電壓) 147657.doc -65- 201118424 為0 V時’ Ql〇〇斷開且光電二極體D2之信號輸出不被衰 減。隨著Q100之閘極上之電壓增加,q1〇〇接通且將電流 之部为自光電一極體D2傳導至接地,藉此使光電二極體 D2之信號輸出衰減。輸出偵測器Q1〇1偵測來自光電二極 體D2之所得輸出信號之量值且調整Q1〇〇之閘極上之電壓 以使來自光電二極體D2之輸出信號穩定。 在一例示性實施例中,在三維眼鏡6〇〇〇之操作期間若 光電二極體D2之信號輸出具有過大振幅,則來自放大器及 脈衝調節元件5810(包括場效電晶體Q1〇〇)之輸出將開始一 大擺動電壓。當放大器及脈衝調節元件581〇(包括場效電 晶體Q100)之擺動電壓變得過高時,^〇1將一適當修改之 電壓信號傳遞至Q100之閘極,此將可控地使流過Qi〇〇之 電流之一適當部分傳至接地。因此,在一例示性實施例 中,在二維眼鏡6000之操作期間,放大器及脈衝調節元件 58 1 〇之輸出處的電壓溢流〇verfi〇w)愈大,自光電 二極體D2經由Qi〇0傳導至接地的電流之百分比愈大。結 果卩迎後被&供給放大器及脈衝調節元件5 8 10之所得信號 不會將運算放大器U5及U6過激勵至飽和。 在一例示性實施例中,在三維眼鏡6〇〇〇之操作期間,微 控制器U4比較輸入信號IN_A與IN—B以判定是否存在一傳 入同步脈衝。若微控制器114判定該傳入同步脈衝為用於打 開左光閥1802之一同步脈衝,則該微控制器將該傳入同步 脈衝轉換成一 2脈衝同步脈衝。或者,若微控制器判定 X傳入同步脈衝為用於打開右光閥18之一同步脈衝,則 147657.doc • 66 · 201118424 該微控制器將該傳入同步脈衝轉換成一3脈衝同步脈衝。 因此,微控制器U4解碼該傳入同步脈衝以操作三維眼鏡 6000之左光閥1802及右光閥1804。 在一例示性實施例中,在三維眼鏡6〇〇〇之操作期間,微 控制器U4進一步提供一額外鎖定迴路,即使該同步信號在 一段時間中不存在(諸如,若該三維眼鏡之佩戴者注視偏 離於該傳入同步仏號之方向的方向),該鎖定迴路亦使得 三維眼鏡6000能夠操作。 現參看圖61 ’ 一種用於調節使用於三維眼鏡、 1800、3000或6000之一同步信號之系統61 〇〇之一例示性實 施例包括用於感測一同步信號自信號傳輸器u 〇之傳輸的 信號感測器5802。在一例示性實施例中,信號感測器58〇2 經調適以感測具有主要在電磁波譜之可見光部分中的分量 的同步信號自信號傳輸器11 〇之傳輸。 一習知動態範圍減小及對比度增強元件6丨〇2可操作地麵 接至信號感測器5802及三維眼鏡3〇〇〇之CPU 3012以用於減 小該信號感測器所偵測到的同步信號之動態範圍及增強該 同步信號内之對比度,以及將該正規化同步信號傳輸至該 CPU »或者’ CPU 114及/或1810可取代CPU 3012,或除 CPU 3012之外’還可使用CPU 114及/或CPU 1 810。 在一例示性實施例中,在三維眼鏡3000中使用動態範圍 減小及對比度增強元件6102增強了該三維眼鏡感測及處理 由信號傳輸器110傳輸的具有主要在電磁波譜之可見光部 分中的分量之同步信號之能力。 I47657.doc •67- 201118424 現參看圖62,一種用於觀看一顯示器上之三維影像之系 統6200之一例示性實施例包含用於將用於使用者之左眼及 右眼之一影像及一同步信號傳輸至一顯示表面62〇4上的投 影器6202。系統6200之使用者可佩戴三維眼鏡1〇4 ' 1 800、3 000或6000(其可根據或可不根據圖58至圖61之實 施例之教示進一步加以修改)’以藉此可控地准許將左眼 影像及右眼影像呈現給該使用者之左眼及右眼。 在一例示性實施例中,投影器62〇2可為可購得之Texas Instruments三維數位光源處理投影器。如一般熟習此項技 術者將認識到,該Texas Instruments三維數位光源處理投 影器藉由以下方式操作:將一投影器之丨2〇 Hz輸出劃分在 左眼與右眼之間(每一者60 Hz),而同步信號在主動資料傳 輸之間的超短黑暗時間期間傳出。以此方式,呈現用於觀 看者之左眼及右眼之影像,且該等影像與用於指導三維眼 鏡3000打開左觀看光閥或右觀看光閥之同步信號交錯。 在一例示性實施例中,該Texas Instruments(「TI」)三維 數位光源處理投影器可為一丨晶片數位光源處理投影系統 及/或一 3晶片數位光源處理投影系統。 在一例示性實施例中,由投影器62〇2產生之該等同步信 號包括主要在可見光譜内之電磁能量。 在一例示性實施例中,投影器62〇2包括一 TI 3晶片數位 光源處理投影系統及一内建檔案伺服器62〇2a,該内建檔 案伺服器可操作地耦接至用於將三維影像散發至投影器 6202的雲端或其他類型之一網路6206。 147657.doc ,68- 201118424 在一例示性實施例中,系統6200經進一步調適以提供對 以下三維格式中之一或多者的支援:丨)並列式(side-by_ side) ; 2)上下式(over_under) ; 3)棋盤型;4)翻頁式;及5) 多視圖視訊編碼。在一例示性實施例中,系統62〇〇進一步 經δ周適而以每秒96個圖框(「fps」)、120 FPS或144 FPS之 速率將影像提供給該系統之使用者。 現參看圖63及圖64 ’ 一投影顯示系統6300之一例示性實 施例包括一空間光調變器,更具體言之,一光調變器陣列 6305,其中光調變器陣列63〇5中之個別光調變器採取對應 於正由顯示系統6300顯示之一影像之影像資料的一狀態。 光调變器陣列6305可(例如)包括一數位微鏡面裝置 (「DMD」),其中每一光調變器為一定位微鏡面。舉例而 言,在光調變器陣列6305中之光調變器為微鏡面光調變器 之顯示系統中,來自一光源63 1〇之光可反射離開或反射向 一顯示平面6315。來自光調變器陣列6305中之光調變器之 反射光之組合產生對應於影像資料之一影像。 一控制器6320協調該影像資料至光調變器陣列63〇5中之 載入、控制光源6310等。控制器63 20可耦接至一前端單元 6325 ’該前端單元可負責對輸入視訊信號之操作,諸如, 將類比輸入信號轉換為數位輸入信號、Y/c分離、自動色 度控制、自動消色器(automatic color killer)等。前端單元 6325可接著將已處理視訊信號提供給控制器632〇,該已處 理視訊信號可含有來自待顯示的多個影像串流之影像資 料。舉例而言,當用作為一立體顯示系統時,前端單元 147657.doc •69- 201118424 6325可將來自兩個影 “象串流的衫像資料提供給控制器 ,,母-串流含有相同場景之不同視角之影像。或者, :::為多視圖顯示系統—如㈣as—時, 則端早TC 6325可將來自多個影像串流的影像資料提供給控 制器6320 ’其中每—串流含有非相_容之影像。控制: _可為一特殊應用積體電路(「ASK:」)、一通用處理器 等’且可用以控制投影顯示系統6300之-般操作…記憶 體6330可用以健存影像資料、序列色彩資料,及影像之顯 示中所使用的各種其他資訊。 如圖64中所說明,控制器6320可包括一序列產生器 同步尨说產生器6355及一脈寬調變(pwM)單元 6360。序列產生器635G可用以產生色序㈣。r 叫, 其規定將由光源631G產生的色彩及持續時間,以及控制被 載入至光調變器陣列6305中之影像資料。除產生色序之 外’序列產生器6350亦可具有將該等色序(及其部分)重新 排序且重新組織之能力,以幫助減少可能負面影響影像品 質之雜訊(PWM雜訊)。 同步佗號產生器6355可產生使三維眼鏡(例如,其可為 三維眼鏡104、18〇〇、3_或6剛)與正被顯示的影像同步 之信號。該#同步信號可插入至由序列產生器635〇產生之 色序中且接著可由投影顯示系統63〇〇顯示。根據一實施 例,因為由同步信號產生器6355產生之該等同步信號係由 投影顯示系統6300顯示,所以通常在三維眼鏡(例如,其 可包括三雄眼鏡1〇4、18〇〇、3〇〇〇或6〇〇〇)處於一阻斷觀看 147657.doc 201118424 狀態時(例如,當三維眼鏡(例如,其可包括三維眼鏡1〇4、 1800、3000或6000)之光閥均處於關閉狀態時),將該等同 步信號插入至色序中。此可允許同步信號由三維眼鏡(例 如,其可包括三維眼鏡1〇4、1800、3〇〇〇或6〇〇〇)偵測,但 防止使用者實際看到同步信號。可將含有同步信號之色序 提供給PWM單元6360,其可將色序轉換為一pwM序列, 該PWM序列被提供給光調變器陣列63〇5及光源631〇。 投影顯示系統6300所投射之影像可由佩戴(例如)三維眼 鏡104、1800、3000或6000之使用者觀看到。 觀看器機構之其他實例可為根據本例示性實施例之教示 加以修改的護目鏡、眼鏡、冑目鏡之頭盘等。該等觀看器 機構可含有可允許觀看器機㈣測由投影顯示系統63〇〇顯 示之同步信號的-或多個感測器。該等觀看器機構可利用 多種光閥以使❹者能夠及不能夠看到投影顯示系統所顯 示之影像。該等光閥可為電子光閥、機械光閥、液晶光閥 等。電子光閥可阻斷光或使光通過,或可基於施加的電位 之極性而改變電子偏光器之極性。液晶光閥可以一類似方 式操作’其中電位改變液晶之定向。機械光閥可在⑽如) ^達《械光_器移人及移出位置時阻斷光或使光通 若投影顯示系統6 3 〇 〇以一基於(例如)一晶體參考的固定 速率操作,則可存在-優點。輸人至該投影顯示系統的信 號之圖框率可經轉換以匹配投影顯示系統㈣0之圖框率。 /轉換過程通*丟棄及/或添加多個行以彌補任何時序 147657.doc -71 · 201118424 差。最後,可能需要重複及/或丟棄一完整圖框。從觀看 器機構之觀點來看,一優點可為較易於追蹤一 PWM序列之 黑暗時間及使同步信號同步。此外,此可使觀看器機構能 夠渡出干擾且長時間地保持鎖定至PWM序列。此可能在觀 看器機構未能偵測到同步信號時發生。舉例而言,此可在 正常操作狀況下’在觀看器機構上之偵測器被阻斷或方向 偏離顯示平面的情況下發生。 現參看圖65及圖66,其展示一觀看器機構(例如,其可 為二維眼鏡104、1800、3000或6000,其可根據或可不根 據圖58至圖61之教示加以修改)之例示性的左眼光閥狀態 65 10及右眼光閥狀態652〇,及由(例如)PWM單元產生之 PWM序列之一高階視圖6530。在一例示性實施例中,在任 何給定時間’應僅有觀看器機構(例如,其可為三維眼鏡 104、1800、3 000或6000,其可根據或可不根據圖58至圖 61之教示加以修改)的兩個光閥中的一者處於打開狀態。 然而,在一例示性實施例中,觀看器機構(例如,其可為 三維眼鏡104、1800、3000或6000,其可根據或可不根據 圖5 8至圖61之教示加以修改)之兩光閥可同時處於關閉或 打開狀態。 在一例示性實施例中,觀看器機構(例如,其可為三維 眼鏡104、1800、3 000或6000,其可根據或可不根據圖58 至圖61之教示加以修改)之光閥狀態之單一循環65包括 左眼光閥狀態65 1 0及右眼光閥狀態6520之單一彳盾環。在循 環6540開始時,左眼光閥自關閉狀態轉變至打開狀態,一 147657.doc -72- 201118424 間隔6542說明發生該狀態轉變之時間跨度。在一段時間之 後,左眼光閥在一狀態轉變間隔6544期間轉變回至關閉狀 態。當左眼光閥自打開狀態轉變至關閉狀態時,右眼之光 間狀態開始在狀態轉變間隔6544期間自關閉狀態轉變至打 開狀態。 當左眼光閥在一間隔6546期間打開時,可顯示與一將由 左眼觀看之影像相關之影像資料。因此,pWM序列含有用 以顯示意欲供左眼觀看之影像的控制指令。 一狀態圖6530包括一表示用於顯示一左眼影像之pwM控 制才曰令之方框6548,其涵蓋間隔6546。間隔6546通常在左 眼光閥70成其至打開狀態之轉變之後開始。此可歸因於觀 看器機構(例如’其可為三維眼鏡1〇4、ι8〇〇、3〇〇〇或 6000 ’其可根據或可不根據圖58至圖61之教示加以修改) 之打開狀態與關閉狀態之間的有限轉變時間。在左眼光閥 開始其向關閉狀態之轉變之後發生一類似延遲。接著,當 左眼光閥關閉且右眼光閥開啟時’例如,在脈衝6 5 5 〇及 6552期間,可顯示與一將由右眼觀看之影像相關之影像資 料。狀態圖6530包括一表示用於顯示一右眼影像之pwM控 制指令之方框6554 ’其涵蓋間隔6556。 在狀態圖6530中’用於左眼之PWM序列6548與用於右眼 之PWM序列6554之間的時間通常可留空而沒有任何pwM 控制指令。舉例而言,方框6558在光閥轉變時間(諸如, 間隔6544及6560)期間發生。可進行此操作(例如)以防止在 間隔6544期間當左眼光閥自打開狀態轉變至關閉狀態時, 147657.doc -73· 201118424 右眼看見模糊的左眼資料,及在 及在間隔6560期間當右眼光閥Instruments purchased Texas Instruments MSP430F2011PWR integrated circuit. In an exemplary embodiment, microcontroller U4 can also be coupled to CPU 1810. In an exemplary embodiment, photodiode D2 of signal sensor 6〇〇2 is capable of detecting an electromagnetic signal having a component in the visible spectrum. In an exemplary embodiment, gain control element 58A6 includes field effect transistor Q100. In an exemplary embodiment, the amplifier and pulse conditioning component 581A includes operational amplifiers U5 and U6, resistors R2' R3, R5, R6, R7, RIO 'R12, R14, and R16' capacitors C5, C6, C7, C8. , cl〇, C12, C14, and C15, and Schottky barrier diode D1 e In an exemplary embodiment, the synchronous amplitude and shape processing unit 5 8丨2 includes NPN transistor Q101, resistor BR1〇〇, R1 〇1&R1〇2, and capacitors C13 and C100. In an exemplary embodiment, signal sensor 6002 is self-transmitting during operation of the 3D glasses 6〇〇〇!丨0 receives signals which may, for example, include configuration data and/or synchronization signals for operating the 3D glasses. In an exemplary embodiment, Q100 controls the signal output of photodiode D2 during operation of the 3D glasses 6〇〇〇. In particular, in the exemplary embodiment, when the voltage on the gate of Ql00 (which is the voltage on C13) 147657.doc -65- 201118424 is 0 V 'Ql〇〇 disconnected and photodiode D2 The signal output is not attenuated. As the voltage on the gate of Q100 increases, q1 turns on and conducts the current portion from the photo-electric body D2 to ground, thereby attenuating the signal output of the photodiode D2. The output detector Q1〇1 detects the magnitude of the resulting output signal from the photodiode D2 and adjusts the voltage across the gate of Q1〇〇 to stabilize the output signal from the photodiode D2. In an exemplary embodiment, if the signal output of the photodiode D2 has an excessive amplitude during operation of the 3D glasses 6〇〇〇, then from the amplifier and the pulse conditioning component 5810 (including the field effect transistor Q1〇〇) The output will start with a large swing voltage. When the swing voltage of the amplifier and the pulse adjusting component 581 (including the field effect transistor Q100) becomes too high, the voltage signal is transmitted to the gate of Q100, which will controllably flow through One of the Qi's currents is properly transmitted to ground. Thus, in an exemplary embodiment, during operation of the two-dimensional glasses 6000, the greater the voltage overflow 〇verfi〇w) at the output of the amplifier and pulse-regulating element 58 1 ,, from the photodiode D2 via Qi The greater the percentage of current that 〇0 conducts to ground. The result is that the resulting signal from the & supply amplifier and pulse conditioning component 5 8 10 does not overdrive the operational amplifiers U5 and U6 to saturation. In an exemplary embodiment, during operation of the 3D glasses 6, the microcontroller U4 compares the input signals IN_A and IN_B to determine if an incoming sync pulse is present. If the microcontroller 114 determines that the incoming sync pulse is a sync pulse for opening the left shutter 1802, the microcontroller converts the incoming sync pulse into a 2-pulse sync pulse. Alternatively, if the microcontroller determines that the X incoming sync pulse is for opening a sync pulse of the right shutter 18, then the microcontroller converts the incoming sync pulse into a 3-pulse sync pulse. Thus, the microcontroller U4 decodes the incoming sync pulse to operate the left and right shutters 1802, 1804 of the 3D glasses 6000. In an exemplary embodiment, during operation of the 3D glasses 6 , the microcontroller U4 further provides an additional locked loop even if the synchronization signal does not exist for a period of time (such as if the wearer of the 3D glasses is present Looking at the direction deviating from the direction of the incoming sync nickname, the lock loop also enables the 3D glasses 6000 to operate. Referring now to Figure 61, an exemplary embodiment for adjusting a synchronization signal for use in three-dimensional glasses, 1800, 3000 or 6000 includes an embodiment for sensing the transmission of a synchronization signal from a signal transmitter. Signal sensor 5802. In an exemplary embodiment, signal sensor 58A is adapted to sense the transmission of a synchronization signal having a component primarily in the visible portion of the electromagnetic spectrum from signal transmitter 11A. A conventional dynamic range reduction and contrast enhancement component 6丨〇2 is operatively coupled to the signal sensor 5802 and the CPU 3012 of the 3D glasses 3 for reducing the detected by the signal sensor The dynamic range of the sync signal and the enhancement of the contrast within the sync signal, and the transfer of the normalized sync signal to the CPU » or 'CPU 114 and / or 1810 can replace the CPU 3012, or in addition to the CPU 3012' can also be used CPU 114 and/or CPU 1 810. In an exemplary embodiment, the use of the dynamic range reduction and contrast enhancement element 6102 in the 3D glasses 3000 enhances the 3D glasses sensing and processing of components having transmissions in the visible portion of the electromagnetic spectrum that are transmitted by the signal transmitter 110. The ability to synchronize signals. I47657.doc • 67- 201118424 Referring now to Figure 62, an exemplary embodiment of a system 6200 for viewing a three-dimensional image on a display includes an image for one of the left and right eyes of the user and one The sync signal is transmitted to a projector 6202 on a display surface 62〇4. A user of system 6200 can wear 3D glasses 1〇4' 1 800, 3 000 or 6000 (which may be further modified depending on or may not be modified in accordance with the teachings of the embodiments of Figures 58-61) to thereby controllably permit The left eye image and the right eye image are presented to the left and right eyes of the user. In an exemplary embodiment, projector 62A2 may be a commercially available Texas Instruments three-dimensional digital light source processing projector. As will be appreciated by those of ordinary skill in the art, the Texas Instruments three-dimensional digital light source processing projector operates by dividing the 〇 2 Hz output of a projector between the left and right eyes (each of which 60 Hz), while the sync signal is transmitted during the ultra-short dark time between active data transmissions. In this manner, images for the left and right eyes of the viewer are presented, and the images are interleaved with the synchronization signals used to direct the three-dimensional eyepiece 3000 to open the left or right viewing light valve. In an exemplary embodiment, the Texas Instruments ("TI") three-dimensional digital light source processing projector can process a projection system for a wafer digital light source processing projection system and/or a 3-wafer digital light source. In an exemplary embodiment, the synchronization signals produced by projector 62 〇 2 include electromagnetic energy primarily within the visible spectrum. In an exemplary embodiment, projector 62〇2 includes a TI 3 wafer digital light source processing projection system and a built-in file server 62〇2a operatively coupled to the three-dimensional The image is transmitted to the cloud of projector 6202 or to one of the other types of networks 6206. 147657.doc, 68-201118424 In an exemplary embodiment, system 6200 is further adapted to provide support for one or more of the following three-dimensional formats: 丨) side-by_side; 2) top and bottom (over_under); 3) checkerboard type; 4) flipping page; and 5) multiview video encoding. In an exemplary embodiment, system 62 further provides images to the user of the system at a rate of 96 frames per second ("fps"), 120 FPS, or 144 FPS. Referring now to Figures 63 and 64', an exemplary embodiment of a projection display system 6300 includes a spatial light modulator, and more particularly, a light modulator array 6305, wherein the light modulator array 63〇5 The individual light modulators take a state corresponding to the image data being displayed by one of the images displayed by display system 6300. The light modulator array 6305 can, for example, comprise a digital micromirror device ("DMD"), wherein each light modulator is a positioning micromirror. For example, in a display system in which the light modulator in the light modulator array 6305 is a micromirror light modulator, light from a light source 63 1 可 can be reflected off or reflected toward a display plane 6315. The combination of the reflected light from the optical modulator in the optical modulator array 6305 produces an image corresponding to one of the image data. A controller 6320 coordinates the loading of the image data into the optical modulator array 63〇5, controls the light source 6310, and the like. The controller 63 20 can be coupled to a front end unit 6325. The front end unit can be responsible for the operation of the input video signal, such as converting the analog input signal into a digital input signal, Y/c separation, automatic color control, and automatic color reduction. (automatic color killer) and so on. The front end unit 6325 can then provide the processed video signal to the controller 632, which can contain image data from a plurality of video streams to be displayed. For example, when used as a stereoscopic display system, the front-end unit 147657.doc •69-201118424 6325 can provide the image data from the two images of the image stream to the controller, and the mother-stream contains the same scene. Image of different viewing angles. Or, ::: is a multi-view display system - such as (4) as - when the TC 6325 can provide image data from multiple video streams to the controller 6320 'each of which contains - stream Non-phase_capacity image. Control: _ can be a special application integrated circuit ("ASK:"), a general-purpose processor, etc. and can be used to control the general operation of the projection display system 6300... the memory 6330 can be used to Store image data, sequence color data, and various other information used in the display of images. As illustrated in Figure 64, the controller 6320 can include a sequence generator sync generator 6355 and a pulse width modulation (pwM) unit 6360. Sequence generator 635G can be used to generate a color sequence (4). r, which specifies the color and duration to be produced by source 631G, and controls the image data loaded into optical modulator array 6305. In addition to producing a color sequence, the sequence generator 6350 can also have the ability to reorder and reorganize the color sequences (and portions thereof) to help reduce noise (PWM noise) that can negatively impact image quality. The sync apostrophe generator 6355 can generate a signal that causes the 3D glasses (e.g., it can be 3D glasses 104, 18 〇〇, 3 _ or 6 just) to be synchronized with the image being displayed. The #sync signal can be inserted into the color sequence produced by sequence generator 635 and can then be displayed by projection display system 63. According to an embodiment, since the synchronization signals generated by the synchronization signal generator 6355 are displayed by the projection display system 6300, they are typically in 3D glasses (for example, they may include Sanxiong glasses 1〇4, 18〇〇, 3〇〇). 〇 or 6〇〇〇) when in a blocking view 147657.doc 201118424 state (for example, when the light valve of 3D glasses (for example, it may include 3D glasses 1〇4, 1800, 3000 or 6000) is off) ), the synchronization signals are inserted into the color sequence. This may allow the sync signal to be detected by the 3D glasses (e.g., it may include 3D glasses 1〇4, 1800, 3〇〇〇 or 6〇〇〇), but prevents the user from actually seeing the sync signal. The color sequence containing the sync signal can be provided to a PWM unit 6360 which converts the color sequence into a pwM sequence which is provided to the light modulator array 63〇5 and the light source 631〇. The image projected by projection display system 6300 can be viewed by a user wearing, for example, three-dimensional eyepieces 104, 1800, 3000 or 6000. Other examples of viewer mechanisms may be goggles, eyeglasses, eyepieces, and the like that are modified in accordance with the teachings of the illustrative embodiments. The viewer mechanisms may contain - or a plurality of sensors that may allow the viewer to (4) measure the synchronization signals displayed by the projection display system 63. The viewer mechanisms utilize a variety of light valves to enable the viewer to view images displayed by the projection display system. The light valves may be electronic light valves, mechanical light valves, liquid crystal light valves, and the like. The electronic light valve can block or pass light, or can change the polarity of the electronic polarizer based on the polarity of the applied potential. The liquid crystal light valve can be operated in a similar manner 'where the potential changes the orientation of the liquid crystal. The mechanical light valve can be operated at (10), for example, at a fixed rate based on, for example, a crystal reference, when the mechanical light is moved and removed from the position. Then there can be - advantages. The frame rate of the signal input to the projection display system can be converted to match the frame rate of the projection display system (4). /Conversion process pass* discards and/or adds multiple rows to compensate for any timing. 147657.doc -71 · 201118424 Poor. Finally, it may be necessary to repeat and/or discard a complete frame. From the standpoint of the viewer mechanism, one advantage may be that it is easier to track the dark time of a PWM sequence and synchronize the synchronization signals. In addition, this allows the viewer mechanism to interfere with interference and remain locked to the PWM sequence for extended periods of time. This may occur when the viewer mechanism fails to detect the sync signal. For example, this can occur under normal operating conditions where the detector on the viewer mechanism is blocked or the direction is off the display plane. 65 and 66, which illustrate an exemplary viewer mechanism (eg, which may be two-dimensional glasses 104, 1800, 3000, or 6000, which may or may not be modified in accordance with the teachings of FIGS. 58-61). The left eye light valve state 65 10 and the right eye light valve state 652 〇, and a high order view 6530 of a PWM sequence generated by, for example, a PWM unit. In an exemplary embodiment, there should be only a viewer mechanism at any given time (eg, it may be 3D glasses 104, 1800, 3 000 or 6000, which may or may not be based on the teachings of FIGS. 58-61) One of the two light valves that have been modified) is in an open state. However, in an exemplary embodiment, the viewer mechanism (eg, which may be 3D glasses 104, 1800, 3000, or 6000, which may or may not be modified in accordance with the teachings of FIGS. 58-61), may be Can be turned off or on at the same time. In an exemplary embodiment, the viewer mechanism (eg, which may be 3D glasses 104, 1800, 3 000, or 6000, which may or may not be modified in accordance with the teachings of FIGS. 58-61), has a single light valve state Loop 65 includes a single 彳 shield ring for left eye light valve state 65 1 0 and right eye light valve state 6520. At the beginning of the cycle 6540, the left-eye light valve transitions from the closed state to the open state, and a time interval of 6452 indicates the time span at which the state transition occurs. After a period of time, the left eye light valve transitions back to a closed state during a state transition interval 6544. When the left-eye light valve transitions from the open state to the closed state, the light-to-light state of the right eye begins to transition from the closed state to the open state during the state transition interval 6544. When the left eye light valve is opened during an interval 6546, image data associated with an image to be viewed by the left eye can be displayed. Thus, the pWM sequence contains control commands for displaying images intended for viewing by the left eye. A state diagram 6530 includes a block 6548 representing a pwM control command for displaying a left eye image, which covers the interval 6546. Interval 6546 typically begins after the left eye light valve 70 has transitioned to its open state. This can be attributed to the open state of the viewer mechanism (eg, which can be 3D glasses 1〇4, ι8〇〇, 3〇〇〇 or 6000 'which may or may not be modified according to the teachings of Figures 58-61) Limited transition time between the closed state and the closed state. A similar delay occurs after the left eye light valve begins its transition to the closed state. Then, when the left eye light valve is closed and the right eye light valve is open, e.g., during pulses 6 5 5 〇 and 6552, image information associated with an image to be viewed by the right eye can be displayed. State diagram 6530 includes a block 6554' indicating the pwM control command for displaying a right eye image, which covers an interval of 6556. The time between the PWM sequence 6548 for the left eye and the PWM sequence 6554 for the right eye in state diagram 6530 can typically be left blank without any pwM control instructions. For example, block 6558 occurs during a light valve transition time, such as intervals 6544 and 6560. This can be done, for example, to prevent the left eye light valve from seeing the blurred left eye data during the interval 6544 when the left eye light valve transitions from the open state to the closed state, and during and during the interval 6560 Right eye light valve
示同步信號所需的PWM控制指令, 由方框6558表示之時間可含有顯 制指令’以及同步信號可能需要 提供的任何資料及操作模式資訊。 如圖66中所說明,在方框6558之時間間隔期間,可傳輸 且顯示一例示性同步信號66〇〇 ’其包括一可用以表示何時 開始光閥狀態之下一循環的簡單時序同步信號。舉例而 s ,當觀看器機構(例如,其可為三維眼鏡丨〇4、1、 3000或6000,其可根據或可不根據圖58至圖61之教示加以 修改)偵測到同步信號時,該觀看器機構可開始左眼光閥 自關閉狀態至打開狀態之轉變、保持一規定(可能經預先 程式化)之時間量,開始左眼光閥自打開狀態至關閉狀態 之轉變,開始右眼光閥自關閉狀態至打開狀態之轉變、保 持一規定(可能經預先程式化)之時間量,且開始右眼光閥 自打開狀態至關閉狀態之轉變。在一例示性實施例中,左 眼光閥轉變及右眼光閥轉變可同時發生或可按需要交錯。 可在方框6558期間發生的圖66中所說明之同步信號66〇〇 可(例如)在PWM控制序列在約時間6605處結束之後大約 270微秒時開始。舉例而言,同步信號6600可接著轉變至 一高狀態歷時約6微秒,且接著轉變回至一低狀態歷時約 24微秒。舉例而言,同步信號6600可接著轉變回至高狀態 歷時約6微秒,且接著轉變回至低狀態,直至方框6558妗 147657.doc -74- 201118424 束。 可顯示可能更複雜之同步信 規…打開持續時間、應開始轉變 光間應首先轉變、顯示系統 π又眼之 或多視圖)、控制資料、資,广式(诸如,三維影像 號,使得僅經授權之觀看μ㈣步信 韦盗機構(例如,盆 104'刪、3_或6_ ,、為-維眼鏡 、根據或可不根據圖58至圖 61之教示加以修改)能夠處理 ^ 步仏唬中所含之資訊。同 ^總體複雜性可取決於許多因素,其包括··同步信 號之所需功能、維持對與顯示系統—起使用之周邊設備之 控制的需要、可㈣同步信號發信持續時間等。 同步信號可顯示為可由顯示系統產生之任何色彩。在利 :二定色序之顯示系統(諸如,-使用色輪之顯示系統) ,早-色彩可用以顯示同步信號。舉例而言,在一使用 紅色、綠色、藍色、青色、洋紅色、黃色及白色的七色多 原色顯示系統中’該等色彩中之任—者皆可用以顯示同步 信號。然而,在一例示性實施例中,色彩可為黃色,因為 :色為較明亮色彩中之一者,且使用其對其他色彩之顯示 :成的負面影響可較小。或者,—較暗的色彩(諸如藍色) 可用以顯示同步信號。使用藍色可為較佳的因為使用較 暗色彩可使同步信號較不容易由觀看者债測。雖然較佳使 用單—色彩來顯示同步信號,但可使用多個色彩。舉例而 。’可此以用以顯示同步信號之色彩來編碼資訊。在—未 利用固定色序之顯示系統中,可使用任何色彩。另外,雖 147657.doc -75- 201118424 然論述了七色多原色顯示系統,但可使用具有不同數目個 顯不色彩之其他顯示系統’且其不應被解釋為侷限於本例 示性實施例之範疇或精神。 在一例示性實施例中,為了准許同步信號之顯示及防止 觀看者偵測到同步信號之顯示,可在左眼光閥及右眼光閥 均處於關閉狀態時顯示同步信號。如圖65中所說明,狀態 圖653 0顯不一表示用於顯示同步信號之pWM控制指令的方 框6558,其包含於間隔6544及6560中。間隔6544及6560之 持續時間可取決於許多因素,諸如同步信號之複雜性、同 步k號之任何編碼之存在、同步信號中所載運之資料等。 另外,間隔6544及6560之持續時間可取決於諸如光閥轉變 時間之因素。舉例而言,若光閥轉變時間長,貝|!間隔6544 及6560亦應為長的以確保光閥在同步信號之顯示之前均關 閉。或者’不需要在方框6558所表示之整個間隔中產生同 v L说。雖然希望觀看者不能债測到同步信號,但當續示 系統之黑色位準之亮度中等增加時,同步信號之顯示可能 為可偵測的。 現翏看圖67 期間 〆 在—例示性實施例中,在系統6300之操 該系統實施一方法67〇〇,在該方法中在67〇5中 顯示-來自-第—影像串流之第—影[在—例示性實 例中,在67G5中,漸進式地或交錯地顯 而,限制(諸如,顯示持續時間限制、影像品質^ 能要求顯示該第-影像之—部分。舉例而言,可顯示兮 -影像之-單-場(singlefield)。在已顯示來自該第二 147657.doc -76- 201118424 像串流之該第一影像之後,接著在67丨〇中可顯示一來自 —第二影像串流之第二影像。再一次,可顯示整個第二影 像,或可僅顯示該影像之一部分。然而,所顯示的第一= 像之量及所顯示的第二影像之量較佳實質上相同。或者, 時間可不同。 在顯示該第一影像及該第二影像後,接著在6715中,投 影顯示系統6300可顯示一同步信號。然而,該同步信號之 顯示可在任何時間發生,且用於顯示該同步信號之一例示 陡時間可為當該投影顯示系統之觀看者可能不能在視覺上 偵測該同步信號時。舉例而言,觀看者可能正使用電子光 閥護目鏡,因此可在每一眼上之光閥關閉時顯示該同步信 號。投影顯示系統6300可判定何時關閉光閥,因為(例如) 投影顯不系統通常在一初始組態操作期間、在一先前所顯 示之同步信號中或在一製造商規定之持續時間(其為投影 顯示系統及觀看器機構(例如,其可為三維眼鏡1〇4 ' 1800、3000或6000,其可根據或可不根據圖58至圖61之教 示加以修改)兩者已知)中規定光閥何時將關閉。然而,投 衫顯示系統6300未必需要為了適當操作而判定何時關閉光 閥。通常,只要在沒有意欲用於任一眼之pwM控制序列的 時期(諸如,方框6558)之開始或結束處顯示同步信號,觀 看益機構(例如,其可為三維眼鏡1〇4、18〇〇、3〇〇〇或 6000,其可根據或可不根據圖58至圖61之教示加以修改) 之製造商就可設定光閥轉變之時間以遮蔽(mask out)同步 信號。一旦在67 15中,投影顯示系統63〇〇已顯示同步信 147657.doc -77- 201118424 號,該投影顯示系統就可返回顯示來自該第一影像串流及 該第二影像串流之影像(或影像之部分)。 現參看圖68,在-例示性實施例中,在系⑽⑼之操作 期間,該系統實施一方法68〇〇,在該方法中在_5及 中’觀看器機構(例如,其可為三維眼鏡1〇4、_、 3000或_〇,其可根據或可不根據圖^至圖61之教示加以 修改)尋找同步信號(在_5中),且檢查以查看該機構谓測 :!的信號是否為同步信號(在681〇中)。若該信號並非同步 佗號,則该觀看器機構(例如,其可為三維眼鏡ι〇4、 18〇〇、_或6_,其可根據或可不根據圖58至圖61之教 示加以修改)可返回6805中之尋找同步信號。 若該信號為同步信號,則該觀看器機構(例如,其可為 三維眼鏡104、1800、3_或_〇,其可根據或可不根據 圖58至圖61之教示加以修改)可等待一規定時間量(在Μ。 中)且然後執行一諸如改變狀態轉變之規定第一動作(在 6820中)。s玄繞看器機構(例如,其可為三維眼鏡1 〇4、 1800、3000或6000 ’其可根據或可不根據圖兄至圖61之教 示加以修改)可接著等待另一規定時間量(在中),且然 後執行另一規定第二動作(在683〇中)。在該規定第二動作 A成後’ 3亥觀看器機構(例如,其可為三維眼鏡1 、 1800、3 000或6〇〇〇,其可根據或可不根據圖58至圖61之教 示加以修改)可返回68〇5中之尋找同步信號。 現參看圖69 ’在一例示性實施例中,在系統63〇〇之操作 期間,该系統實施一方法69〇〇,在該方法中在69〇5中, 147657.doc 78· 201118424 顯示一與一左眼影像相關聯之同步信號(在69〇5中),繼而 在6910中顯示該左眼影像。在671〇中顯示該左眼影像之 後’在6915中,顯示系,统6300可顯示一與一右目艮影像相關 聯之同步信號,繼而在6920中顯示該右眼影像。在一例示 性實施例中’可在可能不能確㈣同步信號之偵測的顯示 系統中使用方法6900。在此顯示系統中,不可使用先㈣ 步信號以判定何時轉變,且僅在制到—相關聯同步信號 時發生轉變。 現參看圖7G,在-例示性實施例中,在系⑽⑽之操作 期間,該系統實施一方法7000,在該方法中,在7〇〇5中, 债測一同步信號◊在7005中,若同步信號含有一很少出現 的開始序列及/或停止序列,則可辅助對同步信號之偵 測。另外’若僅在觀看器機構(例如,其可為;維眼鏡 HM、18〇〇、3_或_,其可根據或可不㈣㈣至圖 61之教示加以修改)處於規定狀態(諸如,觀看器機構之光 閥關閉)時顯示同步信f虎’則觀看器機構中之控制硬體可 經組態以在其處於規定狀態時嘗試進行同步信號偵測。一 旦觀看器機構(例如’其可為三維眼鏡1〇4、i綱、膽或 _〇,其可根據或可不根據圖58至囷61之教示加以修改) 债測到同步信號,在7_中可完整地接收同步信號。若有 必要,在7〇15中,可解碼同步信號。在接收及解碼同步信 號後,若需要,在麵中,觀看器機構(例如,盆可為三 維眼鏡1G4、囊、3刚或6咖,其可根據或可不根據圖 58至圖6丨之教示加以修改)可執行由同步信號較或在同 147657.doc -79· 201118424 步信號中規定之動作。 在一例示性實施例中’以上參看圖63至圖70描述的系統 之教示可全部或部分地併入系統62〇〇中及/或取代系統 6200之全部或—些。 現參看圖7 1 ’ 一光閥系統71 〇〇(例如’其可與以上參看The PWM control command required to display the sync signal, the time indicated by block 6558 may contain the display command' and any data and mode of operation information that the sync signal may need to provide. As illustrated in Figure 66, during the time interval of block 6558, an exemplary synchronization signal 66 ’ ' can be transmitted and displayed including a simple timing synchronization signal that can be used to indicate when a cycle below the light valve state is initiated. For example, when a viewer mechanism (eg, which may be a 3D glasses 4, 1, 3000, or 6000, which may or may not be modified according to the teachings of FIGS. 58-61) detects a synchronization signal, The viewer mechanism can start the transition of the left eye light valve from the closed state to the open state, maintain a prescribed amount (possibly pre-programmed), start the transition of the left eye light valve from the open state to the closed state, and start the right eye light valve self-closing. The transition from the state to the open state, the amount of time required to maintain a prescribed (possibly pre-programmed), and the transition from the open state to the closed state of the right eye light valve. In an exemplary embodiment, the left eye light valve transition and the right eye light valve transition may occur simultaneously or may be interleaved as desired. The synchronization signal 66, illustrated in Figure 66, which may occur during block 6558, may begin, for example, at approximately 270 microseconds after the PWM control sequence ends at approximately time 6605. For example, sync signal 6600 can then transition to a high state for about 6 microseconds, and then transition back to a low state for about 24 microseconds. For example, synchronization signal 6600 can then transition back to a high state for about 6 microseconds, and then transition back to a low state until block 6558 147 147657.doc -74 - 201118424 bundle. Can display more complex synchronization signals...open duration, should start to change between light should first change, display system π eye or multi view), control data, capital, wide format (such as 3D image number, so that only Authorized to view the μ (four) step letter thief mechanism (for example, the basin 104' deleted, 3_ or 6_, is - dimensional glasses, according to or may not be modified according to the teachings of Figures 58 to 61) can handle ^ step The information contained in the same ^ complex complexity can depend on many factors, including the required functions of the synchronization signal, the need to maintain control of the peripheral devices used with the display system, and (4) the synchronization signal transmission continues Time, etc. The sync signal can be displayed as any color that can be produced by the display system. In the case of a display system (such as a display system using a color wheel), early-color can be used to display the sync signal. In a seven-color multi-primary display system using red, green, blue, cyan, magenta, yellow, and white, any of these colors can be used to display the sync signal. In an exemplary embodiment, the color may be yellow because the color is one of the brighter colors and its display of other colors may be used: the negative effect may be smaller. Or, the darker color (such as blue) can be used to display the sync signal. It is better to use blue because the use of darker colors makes the sync signal less likely to be measured by the viewer. Although it is better to use single-color to display the sync signal, Multiple colors can be used. For example, 'This can be used to display the color of the sync signal to encode the information. In the display system that does not utilize a fixed color sequence, any color can be used. In addition, although 147657.doc -75- 201118424 A seven-color multi-primary color display system is discussed, but other display systems having a different number of apparent colors can be used' and should not be construed as being limited to the scope or spirit of the exemplary embodiments. In order to permit the display of the synchronization signal and prevent the viewer from detecting the display of the synchronization signal, the synchronization signal can be displayed when both the left eye light valve and the right eye light valve are in the off state. As illustrated in Figure 65, state diagram 653 0 shows a block 6558 indicating the pWM control command for displaying the synchronization signal, which is included in intervals 6544 and 6560. The duration of intervals 6544 and 6560 may depend on a number of factors. Such as the complexity of the sync signal, the presence of any code that synchronizes the k number, the data carried in the sync signal, etc. Additionally, the duration of the intervals 6544 and 6560 may depend on factors such as the light valve transition time. For example, if The light valve transition time is long, and the bays |! intervals 6544 and 6560 should also be long to ensure that the light valve is turned off before the synchronization signal is displayed. Or 'do not need to generate the same v L in the entire interval indicated by block 6558. Although it is desirable for the viewer to be unable to measure the sync signal, the display of the sync signal may be detectable when the brightness of the black level of the continuation system is moderately increased. Referring now to Figure 67, in an exemplary embodiment, the system 6300 implements a method 67 in which the system displays - in the 67 - 5 - the first - the - image stream - Shadows [in the illustrative example, in 67G5, progressively or staggered, restrictions (such as display duration limits, image quality ^ can require the display of the first image - part). For example, Display 兮-image-single-field (singlefield). After the first image from the second 147657.doc -76- 201118424 has been displayed, then one from - 67 can be displayed The second image of the video stream. Once again, the entire second image may be displayed, or only a portion of the image may be displayed. However, the amount of the first image displayed and the amount of the second image displayed are preferably substantially Alternatively, the time may be different. After displaying the first image and the second image, then in 6715, the projection display system 6300 may display a synchronization signal. However, the display of the synchronization signal may occur at any time. And used to display the synchronization letter One of the examples may indicate that the steep time may be when the viewer of the projection display system may not be able to visually detect the synchronization signal. For example, the viewer may be using an electronic light valve goggles, and thus may be on each eye. The synchronization signal is displayed when the light valve is closed. The projection display system 6300 can determine when to close the light valve because, for example, the projection display system is typically during an initial configuration operation, in a previously displayed synchronization signal, or in a manufacturing The duration specified by the quotient (which is a projection display system and a viewer mechanism (for example, it may be 3D glasses 1 〇 4 ' 1800, 3000 or 6000, which may or may not be modified according to the teachings of Figures 58 to 61) It is known in the art to specify when the light valve will be closed. However, the shirt display system 6300 does not necessarily need to determine when to close the light valve for proper operation. Typically, as long as there is no time intended for the pwM control sequence of either eye (such as, A sync signal is displayed at the beginning or end of block 6558) (for example, it may be a 3D glasses 1〇4, 18〇〇, 3〇〇〇 or 6000, The manufacturer may or may not modify according to the teachings of Figures 58-61 to set the time of the light valve transition to mask out the synchronization signal. Once in 6715, the projection display system 63 has displayed synchronization. Letter 147657.doc -77-201118424, the projection display system can return to display images (or portions of images) from the first image stream and the second image stream. Referring now to Figure 68, in an exemplary In an embodiment, during operation of the system (10) (9), the system implements a method 68 in which the 'viewer mechanism is in the _5 and (for example, it can be a 3D glasses 1〇4, _, 3000 or _ 〇, which may or may not be modified according to the teachings of FIG. 2 to FIG. 61) to find a synchronization signal (in _5), and check to see if the signal of the mechanism predicate: ! is a synchronization signal (in 681 )) . If the signal is not a sync nickname, the viewer mechanism (eg, it may be a 3D glasses ι〇4, 18〇〇, _ or 6_, which may or may not be modified according to the teachings of FIGS. 58-61) Return to the search sync signal in 6805. If the signal is a synchronization signal, the viewer mechanism (eg, it may be 3D glasses 104, 1800, 3_ or _〇, which may or may not be modified according to the teachings of FIGS. 58-61) may wait for a rule The amount of time (in Μ.) and then performs a prescribed first action (such as in 6820) such as changing the state transition. The sinistor mechanism (for example, it may be 3D glasses 1 〇 4, 1800, 3000 or 6000 'which may or may not be modified according to the teachings of the figure to Figure 61) may then wait for another specified amount of time (in Medium), and then perform another prescribed second action (in 683〇). After the second action A is specified, the 3H viewer mechanism (for example, it may be 3D glasses 1, 1800, 3 000 or 6 〇〇〇, which may or may not be modified according to the teachings of FIGS. 58 to 61) ) can return to find the sync signal in 68〇5. Referring now to Figure 69, in an exemplary embodiment, during operation of system 63, the system implements a method 69 〇〇 in which 69 〇 5, 147657.doc 78· 201118424 shows a The sync signal associated with a left eye image (in 69〇5) is then displayed in 6910. After the left eye image is displayed in 671 ’, in 6915, the display system 6300 can display a synchronization signal associated with a right eye image, and then display the right eye image in 6920. In an exemplary embodiment, method 6900 can be used in a display system that may not be able to detect the (four) sync signal. In this display system, the first (four) step signal cannot be used to determine when to transition, and the transition occurs only when the associated sync signal is made. Referring now to Figure 7G, in an exemplary embodiment, during operation of the system (10) (10), the system implements a method 7000 in which, in 7〇〇5, the debt-synchronization signal is in the 7005, if The sync signal contains a rarely occurring start sequence and/or stop sequence to assist in the detection of the sync signal. In addition, if only in the viewer mechanism (for example, it may be; dimensional glasses HM, 18〇〇, 3_ or _, which may be modified according to or may not be modified by the teachings of (4) (4) to Figure 61) in a prescribed state (such as a viewer) When the light valve of the mechanism is turned off, the synchronization software is displayed, and the control hardware in the viewer mechanism can be configured to attempt synchronous signal detection when it is in a prescribed state. Once the viewer mechanism (eg, 'which may be 3D glasses 1〇4, i, 胆 or 〇, it may or may not be modified according to the teachings of Figures 58 to 61), the debt is detected to the synchronization signal, in 7_ The sync signal can be completely received. If necessary, the sync signal can be decoded in 7〇15. After receiving and decoding the synchronization signal, if necessary, in the face, the viewer mechanism (for example, the basin may be 3D glasses 1G4, capsule, 3 or 6 coffee, which may or may not be according to the teachings of FIG. 58 to FIG. Modifications can be performed by the synchronization signal or by the action specified in the 147657.doc -79·201118424 step signal. The teachings of the system described above with reference to Figures 63-70 in an exemplary embodiment may be incorporated in whole or in part in system 62 and/or in place of or in whole of system 6200. Referring now to Figure 7 1 ' a light valve system 71 〇〇 (eg, which can be seen above)
I 圖1至圖70所描述之例示性實施例之一或多個態樣組合使 用)之一例示性實施例包括一可操作地耦接至一光閥控制 器7120之光閥總成71〇5,其具有一或多個觀看光閥元件 7110及一或多個顯示光閥元件7〗丨5。 在一例示性實施例中’觀看光閥7丨丨〇可為光閥丨〇6、 108、1802、1804、3002及/或3〇〇4中之一或多者。以此方 式,在光閥控制器7120的控制下,觀看光閥711〇可可控地 透射光。 在—例示性實施例中,顯示光閥7115可由光閥控制器 7120控制以向使用者顯示可為(例如)文字及/或圖形及/或 視訊的資訊》在一例示性實施例中,顯示光閥7115可為一 習知之可購得液晶,諸如一有機發光裝置(「〇led」)。 在一例示性實施例中,顯示光閥7115在操作期間可透光或 不透光。 在—例示性實施例中,光閥控制器712〇可為一可程式化 控制器、一ASIC、一類比控制器、一數位控制器、一分散 式控制系統’及/或可併有控制器114、116、m、18〇6、 1808、1810、3006、3008、3〇1〇及/或3〇12之設計及操作 之一或多個態樣。 147657.doc -80- 201118424 現參看圖72,在一例示性實施例中,在光閥系統71〇〇之 操作期間,該系統可實施一操作方法72〇〇,在該方法中, 在7202中’該系統判定是否應在顯示光閥7115上顯示一影 像。在一例示性實施例中,該影像可包括文字影像、圖形 影像及/或視訊影像中之一或多者。 在7202中’若系統7100判定應在顯示光閥7115上顯示一 衫像,則在7204中,該系統在該顯示光閥上顯示該影像。 在7206中’系統71〇〇判定是否仍應在顯示光閥7115上顯 示該影像。 因此,在7202、7204及7206中,系統7100可控地在顯示 光閥711 5上顯示影像。 在7208中’系統71〇〇判定觀看光閥7Π0是應打開或是關 閉《若觀看光閥7110應打開,則在mo中打開觀看光閥。 或者,若觀看光閥7110應關閉,則在7212中關閉觀看光 閥。 在一例不性實施例中’觀看光閥7丨丨〇之打開及關閉同步 於一影像之顯示’該影像與對應於系統7丨00之光閥總成 7105的使用者之特定觀看眼相關聯。 在一例不性實施例中’在系統之操作期間,顯示光閥 7115可能或可能不同步於觀看光閥711〇之打開及關閉而打 開或關閉。 在一例不性實施例中’可在一具有複數個三維眼鏡(諸 如’三維眼鏡104、1800、3000及/或6〇〇〇)之系統中使用系 統7100 ’其中該等三維眼鏡中之每一者包括可包括光閥總 147657.doc -81 - 201118424 成10之左光閥總成及/或右光閥總成。在一例示性實施 例中在具有複數個二維眼鏡之系統中,該等三維眼鏡之 使用者的各別顯示光閥7115上可各自顯示有可能為唯一的 及/或為對應三維眼鏡之特定使用者客製化的影像。 一液晶光閥具有一液晶,藉由將一電壓施加至該液晶, 其旋轉,且接著該液晶在少於一毫秒的時間内達成至少 2則光透射率。當液晶旋轉至一具有最大光透射之點 時,一裝置將該液晶之旋轉停止在該最大光透射點,且然 後在-時間段中將該液晶保持在該最大光透射點。可將安 裝在-機器可讀媒體上之一電腦程式用以促進此等實施例 中之任一者。 一系統藉由使用一副液晶光閥眼鏡來呈現三維視訊影 像,該眼鏡具有-第-液晶光閥及一第二液晶光閱,及經 調適以打開該第一液晶力閥之一控制電路。豸第一液晶光 閥可在少於-毫秒的時間内打開至一最大光透射點,此 時,該控制電路可施加一止擋電壓以在一第一時間段中將 該第-液晶光閥保持在該最大光透射點,且然後關閉該第 -液晶光閥。接下來,該控制電路打開該第二液晶光閱, 其中該第二液晶光閥在少於一毫秒的時間内打開至一最大 光透射點,且然後施加一止擋電壓以在一第二時間段中將 該第二液晶光閥保持在該最大光透射點,且然後關閉該第 二液晶光閥。該第一時間段對應於為觀看者之一第一眼呈 現一影像,且該第二時間段對應於為觀看者之—第二眼呈 現-影像。可將安裝在-機器可讀媒體上之一電腦程式用 147657.doc •82- 201118424 以促進本文中所描述的實施例中之任一者。 在-例示性實施财,該㈣電路經調適以使用一同步 信號來判定該第-時間段及該第二時間段。在—例示性實 施例中,該止擋電壓為2伏特。 在一例示性實施例中,該最大光透射點透射多於32%的 光。 在-例示性實施例中,—發射器提供—同步信號,且該 同步信號使該控制電路打開該等液晶光間中之一者。在一 例示性實施例中,該同步信號包含一加密信號。在一例示 性實施例中,該三維眼鏡之控制電路將僅在驗證一加密信 號之後進行操作。 在一例示性實施例中’該控制電路具有-電池感測器且 可經調適以提供-電池電力偏低狀況之一指示。電池電力 偏低狀況之及才曰不可為一液晶光闕在一時間段中關閉 '且 然後在一時間段中打開。 在-例示性實施例中,該控制電路經調適以㈣一同步 信號且在制到該同步信號之後開始操作該等液晶光閥。 在-例示性實施例中,該加密信號將僅操作具有經調適 以接收該加密信號之-控制電路的—副液晶眼鏡。 在一例示性實施例中,—職«以可被㈣㈣液晶 光間眼鏡的-人看見的—速率操作該等液晶光闊。 在-例示性實施例中’一副眼鏡具有具有一第一液晶光 闕之一第-透鏡及具有—第二液晶光閥之一第二透鏡。液 晶光間均具有可在少於-毫秒的時間内打開之一液晶及交 147657.docAn exemplary embodiment of one or more of the exemplary embodiments depicted in FIGS. 1 through 70 includes a light valve assembly 71 operatively coupled to a light valve controller 7120. 5, having one or more viewing light valve elements 7110 and one or more display light valve elements 7 丨5. In an exemplary embodiment, the viewing light valve 7' may be one or more of the light valves 、 6, 108, 1802, 1804, 3002, and/or 3〇〇4. In this manner, under the control of the light valve controller 7120, the viewing light valve 711 is controllably transmitted. In an exemplary embodiment, display light valve 7115 can be controlled by light valve controller 7120 to display to the user information that can be, for example, text and/or graphics and/or video. In an exemplary embodiment, display The light valve 7115 can be a conventional commercially available liquid crystal such as an organic light emitting device ("〇led"). In an exemplary embodiment, display light valve 7115 is light transmissive or opaque during operation. In an exemplary embodiment, the light valve controller 712 can be a programmable controller, an ASIC, an analog controller, a digital controller, a distributed control system, and/or a controller One or more aspects of the design and operation of 114, 116, m, 18〇6, 1808, 1810, 3006, 3008, 3〇1〇, and/or 3〇12. 147657.doc -80- 201118424 Referring now to Figure 72, in an exemplary embodiment, during operation of the light valve system 71, the system can implement an operational method 72, in which, in the 7202 'The system determines if an image should be displayed on display light valve 7115. In an exemplary embodiment, the image may include one or more of a text image, a graphic image, and/or a video image. In 7202, if system 7100 determines that a shirt image should be displayed on display light valve 7115, then in 7204, the system displays the image on the display light valve. In 7206, the system 71 determines whether the image should still be displayed on the display light valve 7115. Thus, in 7202, 7204, and 7206, system 7100 controllably displays an image on display shutter 7115. In 7208, the system 71 determines whether the viewing light valve 7 Π 0 should be opened or closed. "If the viewing light valve 7110 should be opened, the viewing light valve is opened in mo. Alternatively, if the viewing light valve 7110 should be closed, the viewing light valve is closed in 7212. In an exemplary embodiment, 'viewing the opening and closing of the light valve 7丨丨〇 is synchronized with the display of an image' associated with a particular viewing eye of the user corresponding to the light valve assembly 7105 of the system 7丨00 . In an exemplary embodiment, during operation of the system, display light valve 7115 may or may not be turned on or off in synchronization with the opening and closing of viewing shutter 711. In an exemplary embodiment, the system 7100 can be used in a system having a plurality of three-dimensional glasses, such as 'three-dimensional glasses 104, 1800, 3000, and/or six inches, 'where each of the three-dimensional glasses Included may include a light valve total 147657.doc -81 - 201118424 into a 10 left light valve assembly and / or right light valve assembly. In an exemplary embodiment, in a system having a plurality of two-dimensional glasses, the respective display light valves 7115 of the users of the three-dimensional glasses may each be displayed to be unique and/or specific to the corresponding three-dimensional glasses. User customized image. A liquid crystal light valve has a liquid crystal which is rotated by applying a voltage to the liquid crystal, and then the liquid crystal achieves at least 2 light transmittances in less than one millisecond. When the liquid crystal is rotated to a point having maximum light transmission, a device stops the rotation of the liquid crystal at the maximum light transmission point, and then maintains the liquid crystal at the maximum light transmission point in the -time period. A computer program installed on a machine readable medium can be used to facilitate any of these embodiments. A system presents a three-dimensional video image by using a pair of liquid crystal shutter glasses having a - liquid crystal light valve and a second liquid crystal light reading, and adapted to open a control circuit of the first liquid crystal force valve. The first liquid crystal light valve can be opened to a maximum light transmission point in less than - milliseconds. At this time, the control circuit can apply a stop voltage to the first liquid crystal light valve in a first period of time. The point of maximum light transmission is maintained, and then the first liquid crystal light valve is closed. Next, the control circuit opens the second liquid crystal light, wherein the second liquid crystal light valve opens to a maximum light transmission point in less than one millisecond, and then applies a stop voltage for a second time The second liquid crystal light valve is held at the maximum light transmission point in the segment, and then the second liquid crystal light valve is closed. The first time period corresponds to presenting an image to a first eye of one of the viewers, and the second time period corresponds to a second-eye presentation-image for the viewer. One of the embodiments described herein can be facilitated by one of the computer programs installed on a machine readable medium 147657.doc • 82- 201118424. In an exemplary implementation, the (four) circuit is adapted to determine the first time period and the second time period using a synchronization signal. In an exemplary embodiment, the stop voltage is 2 volts. In an exemplary embodiment, the maximum light transmission point transmits more than 32% of the light. In an exemplary embodiment, the transmitter provides a sync signal and the sync signal causes the control circuit to turn on one of the liquid crystals. In an exemplary embodiment, the synchronization signal includes an encrypted signal. In an exemplary embodiment, the control circuitry of the 3D glasses will operate only after verifying an encrypted signal. In an exemplary embodiment, the control circuit has a battery sensor and can be adapted to provide an indication of one of the low battery power conditions. The battery power is too low to be turned off for a period of time and then turned on for a period of time. In an exemplary embodiment, the control circuit is adapted to (4) a sync signal and begin operating the liquid crystal shutters after the sync signal is made. In an exemplary embodiment, the encrypted signal will only operate as a pair of liquid crystal glasses having a control circuit adapted to receive the encrypted signal. In an exemplary embodiment, the job is operated at a rate that can be seen by a person of (four) (four) liquid crystal light glasses. In the exemplary embodiment, a pair of glasses has a first lens having a first liquid crystal aperture and a second lens having a second liquid crystal light valve. Liquid crystal light has a liquid crystal and can be turned on in less than - milliseconds. 147657.doc
C -83· 201118424 替地打開該第一液晶光閥及該第二液晶光閥之一控制電 路°當液晶光閥打開時’液晶定向被保持在一最大光透射 點’直至該控制電路關閉光閥。 在一例示性實施例中’一止擋電壓將該液晶保持在該最 大光透射點。該最大光透射點可透射多於32%的光。 在一例示性實施例中,一發射器提供一同步信號,且該 同步信號使該控制電路打開該等液晶光閥中之一者。在一 些實施例中,該同步信號包括一加密信號。在一例示性實 施例中,該控制電路將僅在驗證了該加密信號之後進行操 作。在一例示性實施例中,該控制電路包括一電池感測器 且可經調適以提供一電池電力偏低狀況之一指示。電池電 力偏低狀況之該指示可為液晶光閥在一時間段中關閉且接 著在一時間段中打開。在一例示性實施例中該控制電路 經調適以偵測一同步信號且在其偵測到該同步信號之後開 始操作該等液晶光閥。 該加密信號可僅操作具有經調適以接收該加密信號之一 控制電路的一副液晶眼鏡。 在-例示性實施例中’-測試信號以可被佩戴該副液晶 光閥眼鏡的-人看見的一速率操作該等液晶光閥。 在一例示性實施例中,藉 維視訊影像:使用液晶光閥 打開該第一液晶光閥;在一 閥保持在一最大光透射點; 少於一毫秒的時間内打開該 由以下操作向一觀看者呈現三 眼鏡;在少於一毫秒的時間内 第—時間段中將該第一液晶光 關閉該第—液晶光閥,接著在 第二液晶光閥;且接著在一第 147657.doc -84- 201118424 一時間奴中將該第二液晶光閥保持在一最大光透射點。該 第一時間段對應於為觀看者之一第一眼呈現一影像,且該 第二時間段對應於為觀看者之一第二眼呈現一影像。 在例示性貫施例中,藉由一止擋電壓將該液晶光閥保 持在该最大光透射點。該止擋電壓可為2伏特。在一例示 性實施例中,該最大光透射點透射多於32%的光。 在一例示性實施例中,一發射器提供一同步信號,該同 步信號使該控制電路打開該等液晶光閥中之一者。在一些 實施例中,該同步信號包含一加密信號。 在一例不性實施例中,該控制電路將僅在驗證了該加密 信號之後進行操作。 在m示性實_中’—電池感測器監視電池中的電力 量。在一例示性實施例中,該控制電路經調適以提供一電 池電力偏低狀况之-指示。電池電力偏低狀況之該指示可 為-液晶光閥在-時間段中關閉且接著在—時間段中打 開。 在例7F性實施例中,該控制電路經調適以偵測一同步 信號且在偵:到該同步信號之後開始操作該等液晶光閥。 在例7Γ ί生實施例中,該加密信號將僅操作具有經調適以 接收該加密信號之—控制電路的一副液晶眼鏡。 在一例示性實施你丨由 、, J中’一測試信號以可被佩戴該副液晶 光閥眼鏡的一人看見之_ .古才 _ 兄之—速率刼作該等液晶光閥。 在一例示性實施例中 J Y ’ 一種用於提供三維視訊影像之系 統可包括一副眼鏡,其复古B 士 μ ” 再具有具有一第一液晶光閥之一第一 147657.doc 201118424 透鏡及具有一第二液晶光閥之一第二透鏡。該等液θ光間 可具有一液晶且可在少於一毫秒的時間内打開。一控制電 路可交替地打開該第一液晶光閥及該第二液晶光間,且將 液晶定向保持在一最大光透射點’直至該控制電路關閉該 光閥。此外’該系統可具有一電池電力偏低指示器,其包 括:一電池;一感測器,其能夠判定該電池中剩餘的電力 量;一控制器,其經調適以判定該電池中剩餘的電力量是 否足以讓該副眼鏡在比一預定時間長的時間中操作;及一 指示器,其用以在該副眼鏡不能在比該預定時間長的時間 中操作的情況下向-觀看者發信號。在一例示性實施例 中’該電池電力偏低指示器以-預定速率打開及關閉左液 ,光閥及右液晶光閥。在-例示性實施例中,該預定時間 量為大於三個小時。在-例示性實施例中,在判^該電池 中剩餘的電力量不足以讓該副眼鏡在比該預㈣間量長的 時間中操作之後’該電池電力偏低指示器可操作至少三 天。在一例示性實施例中,芎抑在丨哭 及控制器可藉由按該電池中剩 餘的同步脈衝之數目量測時間夾划 J吟間來判疋邊電池中剩餘的電力 量。 在用於提供三維視訊影像之_例示性實施例中,夢由且 有包括—第—液晶光間及―第二液晶光閥之-副三維觀看 眼鏡,在少於一毫秒的時間 咕备 町间内打開5亥第一液晶光閥;在一 第一時間段中將該第一液曰丰 v a 4 曰先閥保持在-最大光透射點; ^ J'然後在少於-毫秒的時間内打開 該第二液晶光閥;在一第_卩主饥a Ί 第-時間段中將該第二液晶光閥保 147657.doc • 86 · 201118424 持在一最大光透射點而提供影像。該第一時間段對應於為 觀看者之-第-眼呈現—影像,且該第:時間段對應於為 觀看者之第二眼呈現一影像。在此例示性實施例中’該: 維觀看眼鏡感測該電池中剩餘的電力量、判定該電池中剩 餘的電力量是否足以讓該副眼鏡在比—預^時間長的時間 中操作,且接著在該眼鏡不能在比該預定時間長的時間中 操=的情況下向一觀看者指示一電池電力偏低信號。該指 ’、器可以預疋速率打開及關閉該等透鏡。該電池將持續 預疋夺間里可為二個小時以上。在一例示性實施例中, 在判定該電池中剩餘的電力量不足以讓該副眼鏡在比該預 定時間量長的時間中操作之後,胃電池電力偏低指示器操 作至少二天。在一例示性實施例中,該控制器藉由按該電 池可持續經過的同步脈衝之數目量測時間來判定該電池中 剩餘的電力量。 在用於提供二維視訊影像之一例示性實施例中,該系統 包括:—副眼鏡’其包含具有一第一液晶光閥之一第一透 鏡及具有一第二液晶光閥之一第二透鏡,該等液晶光閥具 、、 及】於笔秒之一打開時間。一控制電路可交替 1 u第液晶光閥及該第二液晶光閥,且液晶定向被 保持在-最大光透射點,直至該控制電路關閉該光闊。此 同步裝置包括:一信號傳輸器,其發送一對應於一 第—眼呈現之影像之信號;一信號接收器,其感測該 仏號’及—控制電路’其經調適以在為該第-眼呈現該影 象的彳間敫期間打開該第一光閥。在一例示性實施例 147657.doc • 87- 201118424 中,該信號為一紅外光。 在一例不性實施例中,該信號傳輸器將該信號投射向一 反射器’該信號由該反射器反射,且該信號接收器谓測該 經反射信號。在一些實施例中,該反射器為一電影院營 幕。在一例示性實施例中,該信號傳輸器自一影像投影器 (諸如,電影投影器)接收-時序信號。在-例示性實施例 中礼5虎為射頻信號。在一例示性實施例中,該作號 為具有-預定間隔的—系列脈衝4該信號為具有一預定 間隔的-系列脈衝之例示性實施例中,第一預定數目個脈 衝打開該第-液晶光閥,且第二預定數目個脈衝打開該第 '一液晶光閥。 在用於提供二維視訊影像之__例示性實施例中,提供影 像之方法包括:具有包含—第—液晶光閥及—第二液晶光 閥之副-維觀看眼鏡;在少於-毫秒的時間内打開該第 二液晶光閥m間段中將該第—液晶光閥保持在 :最大光透射點該第一液晶光閥,且然後在少於一 毫秒的時間内打開該第二液晶光閥;在一第二時間段中將 該第二液晶光閥保持在一最大光透射點。言亥第—時間段對 應於為觀看者之左眼呈現一影像’且該第二時間段對應於 為觀看者之右眼呈現一影像。該信號傳輸器可傳輸一對應 於為左眼呈現之該影像的信號,及感測該信號,該三維觀 2眼鏡可使用該信號來判定何時打開該第一液晶光闊。在 -例示性實施例中,該信號為一紅外光。在一例示性實施 例中,該信號傳輸器將該信號投射向—反射器(其將該信 147657.doc 201118424 號反射向該三維觀看眼鏡),且該眼鏡中之該信號接收器 偵測S亥絚反射信號。在一例示性實施例中,該反射器為一 電影院螢幕。 在一例示性實施财,信號傳輸^自—料投影器接收 -時序信號。在-例示性實施例中,該信號為一射頻信 號。在-例示性實施例中’該信號可為具有—預定間隔的 一系列脈衝。第一預定數目個脈衝可打開該第一液晶光 閥,且第二預定數目個脈衝可打開該第二液晶光閥。 在一種用於提供三維視訊影像之系統之一例示性實施例 中,一副眼鏡具有具有一第一液晶光閥之一第一透鏡及具 有-第二液晶A閥之一第二透鏡’料液晶光閥具有一液 晶及小於一毫秒之一打開時間。一控制電路交替地打開該 第一液晶光閥及該第二液晶光閥’且液晶定向被保持在一 最大光透射點,直至該控制電路關閉該光閥。在—例示性 實施例中,-同步系統包含:一反射裝置,其位於該副眼 鏡前方;及一信號傳輸器,其將一信號發送向該反射裝 置。4彳5號對應於一為觀看者之一第一眼呈現之影像。一 信號接收器感測自該反射裝置反射的信號,且然後,一於 制電路在為該第一眼呈現該影像的一時間段期間打開該第 一光閥。 在一例示性實施例中,該信號為一紅外光。在—例示性 實施例中,該反射器為一電影院螢幕.在—例示性實施例 中,該信號傳輸器自一影像投影器接收—時序信號。咳化 號可為具有一預定間隔的一系列脈衝。在一例示性實施例 147657.doc -89· 201118424 中,該信號為具有一預定間隔的一系列脈衝,且第一預定 數目個脈衝打開該第一液晶光閥,且第二預定數目個脈衝 打開該第二液晶光閥》 在用於k供二維視訊影像之一例示性實施例中,可藉由 具有包含一第一液晶光閥及一第二液晶光閥之一副三維觀 看眼鏡;在少於一毫秒的時間内打開該第一液晶光閥;在 一第一時間段中將該第一液晶光閥保持在一最大光透射 點;關閉該第一液晶光閥,且然後在少於一毫秒的時間内 打開S亥第二液晶光閥;且然後在一第二時間段中將該第二 液晶光閥保持在一最大光透射點而提供影像。該第一時間 段對應於為觀看者之一第一眼呈現一影像,且該第二時間 段對應於為觀看者之一第二眼呈現一影像。在一例示性實 施例中,該傳輸器傳輸一對應於為一第一眼呈現之影像的 紅外線信號。該三維觀看眼鏡感測該紅外線信號,且然後 使用該紅外線信號觸發該第一液晶光閥之打開。在一例示 性貫施例中,該信號為一紅外光。在一例示性實施例中 該反射器為一電影院螢幕。在一例示性實施例中,該信 傳輸器自-影像投影器接收_時序信號。該時序信號; 具有一預定間隔的一系列脈衝。在一些實施例中,第一 定數目個脈衝打開該第-液晶光閥,且第二預定數目個 衝打開該第二液晶光閥》 在一例示性實施例中,一種 統包括一副眼鏡,其具有具有 鏡及具有一第二液晶光閥之一 用於提供三維視訊影像之系 —第一液晶光閥之一第一透 第二透鏡,該等液晶光閥具 147657.doc -90· 201118424 有-液晶及小於-毫秒之-打開時間。該^統亦可具有一 控制電路,其交替地打開該第一液晶光閥及該第二液晶光 閥,且將液晶定向保持在-最大光透射點,A至該控制電 路關閉該光閥。該系統亦可具有一測試系統,其包含:一 信號傳輸器;一信號接收器;及一 測試系統控制電路 其 經調適成以可被-觀看者看見之—速率打開及關閉該第一 光閥及該第二光閥H示性實施例中,該信號傳輸器 不自-投影器接收-時序信號。在一例示性實施例中,該 信號傳輸器發射-紅外線信號1紅外線信號可為一系列 脈衝。在另一例示性實施例中’該信號傳輸器發射—射頻 k號。該射頻信號可為一系列脈衝。 在種用於提供二維視訊影像之方法之一例示性實施例 I,該方法可包括:具有包含一第一液晶光閥及一第二液 日曰光閥之一副二維觀看眼鏡;在少於一毫秒的時間内打開 该第-液晶光閥;在-第—時間段中將該第—液晶光間保 持在一最大光透射點;關閉該第一液晶光閥,且然後在少 於一毫秒的時間内#開該第二液晶㈣;及在一第二時間 段中將該第二液晶光閥保持在一最大光透射點。在—例示 性實施例中’該第—時間段對應於為觀看者之__第—眼呈 現衫像,且該第二時間段對應於為觀看者之—第二眼呈 現-影像。在-難性實施例中…傳輸器可將—測試信 號傳輸向該三維觀看眼鏡,該眼鏡接著藉由該三維眼鏡二 之—感測器接收該測試信號,且然後由於該測試信號而使 用-控制電路打開及關閉該第一液晶光閥及該第二液晶光 147657.doc -91 - 201118424 閥’其中该專液晶光閥以佩戴該眼鏡之一觀看者可觀察到 的速率打開及關閉。 在一例示性實施例中,該信號傳輸器不自一投影器接收 一時序信號。在一例示性實施例中,該信號傳輸器發射一 紅外線號’其可為一系列脈衝。在一例示性實施例中, 該信號傳輸器發射一射頻信號。在一例示性實施例中,該 射頻信號為一系列脈衝。 一種用於提供三維視訊影像之系統之一例示性實施例可 包括一副眼鏡,其包含具有一第一液晶光閥之一第一透鏡 及具有一第二液晶光閥之一第二透鏡’該等液晶光閥具有 一液晶及小於一毫秒之一打開時間。該系統亦可具有一控 制電路,其交替地打開該第一液晶光閥及該第二液晶光 閥,將液晶定向保持在一最大光透射點,且然後關閉光 閥。在一例示性實施例中,一自動開啟(auto_on)系統包含 一信號傳輸器、一信號接收器,且其中該控制電路經調適 成以一第一預定時間間隔啟動該信號接收器、判定該信號 接收器是否正在自該信號傳輸器接收一信號、在該信號接 收益在一第二時間段内未自該信號傳輸器接收到該信號的 情況下撤銷啟動該信號接收器,且在該信號接收器自該信 號傳輸器接收到該信號的情況下以一對應於該信號的間隔 交替地打開該第一光閥及該第二光閥。 在一例示性實施例中,該第一時間段為至少兩秒,且該 第一時間段可為不超過丨00毫秒。在一例示性實施例中, 該等液晶光閥保持打開,直至該信號接收器自該信號傳輸 147657.doc •92· 201118424 器接收一信號。 在一例不性實施例中,一種用於提供三維視訊影像之方 法可包括:具有包含-第-液晶光閥及-第二液晶光閥之 田二維觀看眼鏡;在少於一毫秒的時間内打開該第一液 晶光閥;在一第一時間段中將該第一液晶光閥保持在一最 大光透射點;Μ閉該第一液晶光閥,且然後在少於一毫秒 的時間内打開該第二液晶光閥;及在—第二時間段中將該 第二液晶光閥保持在—最大光透射點。在一例示性實施例 中,該第一時間段對應於為觀看者之一第一眼呈現一影 像,且該第二時間段對應於為觀看者之一第二眼呈現一影 像。在-例示性實施例中,該方法可包括以—第—預定時 間間隔啟動一信號接收器、判定該信號接收器是否正在自 該信號傳輸器接收-信號、在該信號接收器在一第二時間 段内未自該信號傳輸器接收到該信號的情況下撤銷啟動該 化號接收益,及在該信號接收器自該信號傳輸器接收到該 信號的情況下以-對應於該信號的間隔打開及關閉該第一 光閥及該第二光閥。在一例示性實施例中,該第一時間段 為至少兩秒。在-例示性實施例中,㈣二時間段為不超 過100毫秒。在-例示性實施例中,料液晶㈣保持打 開’直至該信號接收器自該信號傳輪器接收一信號。 在-例示性實施例中…種用於提供三維視訊影像之系 統可包括-副眼鏡’其包含具有—第一液晶光閥之一第一 透鏡及具有-第二液晶光閥之-第二透鏡,該等液晶光閱 具有-液晶及小於-毫秒之-打開時間。I系統亦可具有 I47657.doc -93. 201118424 控制電路’其可父替地打開該第—液晶光閥及該第二液 晶光閥,且將液晶定向保持在一最大光透射點,直至該控 制電路關閉該光閥。在一例示性實施例中,該控制電路經 調適以保持該第一液晶光閥及該第二液晶光閥打開。在一 例不性實施例中,該控制電路保持該等透鏡打開,直至該 控制電路彳貞測到—同步信號。在—例示性實施例中,施加 至該等液晶光閥之電壓在正負之間交替。 在種用於&供二維視訊影像之裝置之一.實施例中,一 副三維觀看眼鏡包含一第一液晶光閥及一第二液晶光閥, 其中§亥第一液晶光閥可在少於一毫秒的時間内打開,其中 該第二液晶光閥可在少於一毫秒的時間内打開;以一使該 等液晶光閥看上去為透明透鏡之速率打開及關閉該第一液 晶光間及該第二液晶光閥,在一實施例中,該控制電路保 持該等透鏡打開,直至該控制電路偵測到一同步信號。在 一實施例中,該等液晶光閥在正負之間交替。 在一例示性實施例中’一種用於提供三維視訊影像之系 統可包括一副眼鏡,其包含具有一第一液晶光閥之一第— 透鏡及具有一第二液晶光閥之一第二透鏡,該等液晶光閥 具有一液晶及小於一毫秒之一打開時間。該系統亦可包括 一控制電路,其交替地打開該第一液晶光閥及該第二液晶 光閥’且將液晶保持在一最大光透射點,直至該控制電路 關閉該光閥。在一例示性實施例中,一發射器可提供一同 步信號,其中該同步信號之一部分經加密。可操作地連接 至該控制電路之一感測器可經調適以接收該同步信號,且 147657.doc • 94- 201118424 可僅在接收到一加密信號之後才以對應於該同步信號之— 型樣打開及關閉該第一液晶光間及該第二液晶光間。 在一例示性實施例中,該同步信號為具有一預定間隔的 一系列脈衝。在一例示性實施例中,該同步信號為具有 預定間隔的一系列脈衝,且第一預定數目個脈衝打開該第 一液晶光閥,且第二預定數目個脈衝打開該第二液B曰光 閥。在一例示性實施例中,該系列脈衝之—部分經加密。 在一例示性實施例中,該系列脈衝包括預定數目個未經加 密脈衝隨後接著預定數目個經加密脈衝。在一例示性實施" 例中,僅在接收到兩個連續加密信號之後才以對應於該同 步信號之一型樣打開及關閉該第一液晶光閥及該第二液曰曰 在種用於提供二維視訊影像之方法之一例示性實施例 中’該方法可包括:具有包含-第-液晶光閥及-第二液 晶光閥之-副三維觀看眼鏡;在少於—毫秒的時間内打門 該第一液晶光閥;在—第—時間段中將該第-液晶光間: 持在-最大光透射點;!㈣該第_液晶光n然後在少 於-毫秒的時間内打開該第二液晶光間;及在一第二時間 段中將4第—液晶光閥保持在_最大光透射點。在一例示 性實施财’該第一時間段對應於為觀看者之一第一眼呈 現一影像’且該第二時間段對應於為觀看者之一第二眼呈 現 衫像。在一例示性膏Υχ丨丄 | 例中’-發射器提供-同步信 號,其中該同步信號之一部 刀經加岔。在一例示性實施例 忘則器可^作地連接至該控制電路且經調適以接收 I47657.doc •95· 201118424 該同步信號’且僅在接收到一加密信號之後才以對應於該 同步信號之一型樣打開及關閉該第一液晶光閥及該第二液 晶光間。 在一例不性實施例中’該同步信號為具有一預定間隔的 一系列脈衝。在一例示性實施例中’該同步信號為具有一 預定間隔的一系列脈衝,且其中第一預定數目個脈衝打開 該第一液晶光閥’且其中第二預定數目個脈衝打開該第二 液晶光閥》在一例示性實施例中,該系列脈衝之一部分經 加饮。在一例示性實施例中,該系列脈衝包括預定數目個 未經加密脈衝隨後接著預定數目個經加密脈衝。在一例示 性貫施例中,僅在接收到兩個連續加密信號之後才以對應 於該同步信號之一型樣打開及關閉該第一液晶光閥及該第 二液晶光閥。 應理解,在不脫離本發明之範疇的情況下,可對上述内 谷進行改义。儘管已展示且描述了具體實施例,但在不脫 離本發明之精神或教示的情況下,熟習此項技術者可進行 修改。所描述的實施例僅為例示性的且非限制性的。許多 改變及修改係可能的且在本發明之範疇内。此外’該等例 示性實施例之一或多個元素可全部或部分地與其他例示性 實施例中之一或多者之一或多個元素組合或取代其他例示 )生貫施例中之一或多者之一或多個元素。因此,保護範疇 不限於所描述之實施例,而是僅受以下申請專利範圍限 制’申S青專利®_應包括巾請專利範圍之標的的所 有等效物。 147657.doc -96· 201118424 【圖式簡單說明】 圖1為—種用於提供三維影像之系統之一例示性實施例 的說明。 圖2為一種用於操作圖1之系統之方法之一例示性實施例 的流程圖。 圖3為圖2之方法之操作的圖形說明。 圖4為圖2之方法之操作之一例示性實驗實施例的圖形說 明。 圖5為一種用於操作圖1之系統之方法之一例示性實施例 的流程圖》 圖6為種用於操作圖1之系統之方法之一例示性實施例 的流程圖。 例示性實施例 圖7為一種用於操作圖丨之系統之方法之 的流程圖β 圖8為圖7之方法之操作的圖形說明。 圖9為一種用於操作圖 u 士 口 I系,·死之方法之一例示性實施例 的流程圖》 圖1〇為圖9之方法之操作的圖形說明。 例示性實施 圖11為一種用於操作圖1之系統之方法之 例的流程圖。 圖12為圖11之方法之操作的圓形說明。 圖13為一種用於操作圖i之系統之方法 例的流程圖。 例不性貫把 圖14為圖13之方法夕切 古之刼作的圖形說明。 147657.docC-83·201118424 Open the first liquid crystal light valve and one of the second liquid crystal light valve control circuit. When the liquid crystal light valve is opened, the liquid crystal orientation is maintained at a maximum light transmission point until the control circuit turns off the light. valve. In an exemplary embodiment, a stop voltage maintains the liquid crystal at the point of maximum light transmission. The maximum light transmission point can transmit more than 32% of the light. In an exemplary embodiment, a transmitter provides a synchronization signal and the synchronization signal causes the control circuit to open one of the liquid crystal shutters. In some embodiments, the synchronization signal includes an encrypted signal. In an exemplary embodiment, the control circuit will only operate after verifying the encrypted signal. In an exemplary embodiment, the control circuit includes a battery sensor and is adaptable to provide an indication of a low battery condition. This indication of a low battery condition can be that the liquid crystal shutter is closed for a period of time and then opened for a period of time. In an exemplary embodiment, the control circuit is adapted to detect a synchronization signal and to begin operating the liquid crystal shutters after it detects the synchronization signal. The encrypted signal can operate only a pair of liquid crystal glasses having a control circuit adapted to receive the encrypted signal. In the exemplary embodiment, the '-test signal is operated at a rate that can be seen by a person wearing the pair of liquid crystal valve glasses. In an exemplary embodiment, borrowing a video image: opening the first liquid crystal light valve using a liquid crystal light valve; maintaining a maximum light transmission point at a valve; opening the following operation to a time within less than one millisecond The viewer presents three glasses; the first liquid crystal light is turned off in the first time period in less than one millisecond, and then in the second liquid crystal light valve; and then in a 147657.doc - 84- 201118424 The second liquid crystal light valve is kept at a maximum light transmission point for one time slave. The first time period corresponds to presenting an image to the first eye of one of the viewers, and the second time period corresponds to presenting an image to the second eye of one of the viewers. In an exemplary embodiment, the liquid crystal shutter is maintained at the maximum light transmission point by a stop voltage. The stop voltage can be 2 volts. In an exemplary embodiment, the maximum light transmission point transmits more than 32% of the light. In an exemplary embodiment, a transmitter provides a synchronization signal that causes the control circuit to open one of the liquid crystal shutters. In some embodiments, the synchronization signal includes an encrypted signal. In an exemplary embodiment, the control circuit will only operate after verifying the encrypted signal. The battery sensor monitors the amount of power in the battery. In an exemplary embodiment, the control circuit is adapted to provide an indication of a low battery power condition. The indication of a low battery power condition may be that the liquid crystal shutter is closed during the - time period and then opened during the - time period. In the Example 7F embodiment, the control circuit is adapted to detect a synchronization signal and to begin operating the liquid crystal shutters after detecting the synchronization signal. In the example embodiment, the encrypted signal will only operate a pair of liquid crystal glasses having a control circuit adapted to receive the encrypted signal. In an exemplary implementation, a test signal in J can be seen by a person who can be worn by the pair of liquid crystal valve glasses. In an exemplary embodiment, JY 'a system for providing a three-dimensional video image may include a pair of glasses, the retro B s μ" having a first 147657.doc 201118424 lens having a first liquid crystal light valve and having a second lens of a second liquid crystal light valve. The liquid θ light may have a liquid crystal and may be opened in less than one millisecond. A control circuit may alternately open the first liquid crystal light valve and the first Between the two liquid crystals, and maintaining the liquid crystal orientation at a maximum light transmission point ' until the control circuit closes the light valve. In addition, the system may have a battery power low indicator including: a battery; a sensor </ RTI> capable of determining the amount of power remaining in the battery; a controller adapted to determine whether the amount of power remaining in the battery is sufficient for the pair of glasses to operate for a longer period of time than a predetermined time; and an indicator, It is used to signal to the viewer if the pair of glasses cannot operate for a longer period of time than the predetermined time. In an exemplary embodiment, the battery power indicator is low-ordered The rate of opening and closing the left liquid, the light valve and the right liquid crystal light valve. In the exemplary embodiment, the predetermined amount of time is greater than three hours. In the exemplary embodiment, the remaining power in the battery is determined The amount is insufficient to allow the pair of glasses to operate for a period of at least three days after being operated for a longer period of time than the pre-fourth. In an exemplary embodiment, the crying and controller are suppressed. The amount of power remaining in the battery can be judged by measuring the time interval J 按 according to the number of synchronization pulses remaining in the battery. In an exemplary embodiment for providing a three-dimensional video image, the dream is There are a three-dimensional viewing glasses including a first liquid crystal light and a second liquid crystal light valve, and the first liquid crystal light valve is opened in a time interval of less than one millisecond; in a first time period Maintaining the first liquid helium va 4 曰 valve at a maximum light transmission point; ^ J' then opening the second liquid crystal light valve in less than - milliseconds; - the second liquid crystal light valve is guaranteed during the time period 147657.doc • 86 · 201118424 An image is provided at a maximum light transmission point. The first time period corresponds to a video for the viewer's first-eye, and the first time period corresponds to presenting an image for the second eye of the viewer. In the exemplary embodiment, the dimension viewing glasses sense the amount of power remaining in the battery, determine whether the amount of power remaining in the battery is sufficient for the pair of glasses to operate in a time longer than the pre-time, and then The glasses are incapable of indicating a battery power low signal to a viewer for a longer period of time than the predetermined time. The finger can open and close the lenses at a predetermined rate. The battery will continue to be pre-charged. The snatch can be more than two hours. In an exemplary embodiment, after determining that the amount of power remaining in the battery is insufficient to allow the pair of glasses to operate in a time longer than the predetermined amount of time, the stomach battery power The low indicator operates for at least two days. In an exemplary embodiment, the controller determines the amount of power remaining in the battery by measuring the time of the number of synchronization pulses that the battery can continue to pass. In an exemplary embodiment for providing a two-dimensional video image, the system includes: a pair of glasses comprising a first lens having a first liquid crystal light valve and a second liquid crystal valve having a second The lens, the liquid crystal light valve, and the opening time of one of the pen seconds. A control circuit alternates the 1 u liquid crystal light valve and the second liquid crystal light valve, and the liquid crystal orientation is maintained at the - maximum light transmission point until the control circuit turns off the optical width. The synchronization device includes: a signal transmitter that transmits a signal corresponding to an image presented by a first eye; and a signal receiver that senses the apostrophe 'and control circuit' that is adapted to be the first - opening the first light valve during the inter-turn of the image presenting the image. In an exemplary embodiment 147657.doc • 87-201118424, the signal is an infrared light. In an exemplary embodiment, the signal transmitter projects the signal toward a reflector. The signal is reflected by the reflector, and the signal receiver predicts the reflected signal. In some embodiments, the reflector is a cinema camp. In an exemplary embodiment, the signal transmitter receives a timing signal from an image projector, such as a movie projector. In the exemplary embodiment, the tiger is a radio frequency signal. In an exemplary embodiment, in the exemplary embodiment having a series of pulses 4 having a predetermined interval of - a series of pulses having a predetermined interval, the first predetermined number of pulses turns on the first liquid crystal a light valve, and a second predetermined number of pulses opens the first liquid crystal light valve. In an exemplary embodiment for providing a two-dimensional video image, the method of providing an image includes: a sub-dimensional viewing glasses having a first liquid crystal light valve and a second liquid crystal light valve; in less than - milliseconds Opening the second liquid crystal light valve m in the time period to maintain the first liquid crystal light valve at the maximum light transmission point of the first liquid crystal light valve, and then opening the second liquid crystal in less than one millisecond a light valve; maintaining the second liquid crystal light valve at a maximum light transmission point for a second period of time. The haihai-time period corresponds to presenting an image to the viewer's left eye and the second time period corresponds to presenting an image to the viewer's right eye. The signal transmitter can transmit a signal corresponding to the image presented for the left eye and sense the signal, and the three-dimensional view glasses can use the signal to determine when to open the first liquid crystal. In an exemplary embodiment, the signal is an infrared light. In an exemplary embodiment, the signal transmitter projects the signal toward a reflector (which reflects the letter 147657.doc 201118424 to the three-dimensional viewing glasses), and the signal receiver in the glasses detects S絚 絚 reflected signal. In an exemplary embodiment, the reflector is a cinema screen. In an exemplary implementation, the signal transmission receives the - timing signal. In the exemplary embodiment, the signal is a radio frequency signal. In an exemplary embodiment, the signal can be a series of pulses having a predetermined interval. A first predetermined number of pulses can open the first liquid crystal shutter, and a second predetermined number of pulses can open the second liquid crystal shutter. In an exemplary embodiment of a system for providing a three-dimensional video image, a pair of glasses has a first lens having a first liquid crystal light valve and a second lens having a second liquid crystal A valve The light valve has a liquid crystal and an opening time of less than one millisecond. A control circuit alternately opens the first liquid crystal shutter and the second liquid crystal shutter ' and the liquid crystal orientation is maintained at a maximum light transmission point until the control circuit closes the light valve. In an exemplary embodiment, the sync system includes: a reflective device located in front of the secondary eyeglass; and a signal transmitter that transmits a signal to the reflective device. 4彳5 corresponds to an image presented by one of the viewers at the first eye. A signal receiver senses a signal reflected from the reflecting device, and then, the first circuit opens the first light valve during a period of time during which the image is presented to the first eye. In an exemplary embodiment, the signal is an infrared light. In the exemplary embodiment, the reflector is a cinema screen. In an exemplary embodiment, the signal transmitter receives a timing signal from an image projector. The coughing number can be a series of pulses having a predetermined interval. In an exemplary embodiment 147657.doc-89·201118424, the signal is a series of pulses having a predetermined interval, and a first predetermined number of pulses opens the first liquid crystal shutter and a second predetermined number of pulses are opened The second liquid crystal light valve can be used in an exemplary embodiment for a two-dimensional video image, and can have a three-dimensional viewing glasses including a first liquid crystal light valve and a second liquid crystal light valve; Opening the first liquid crystal light valve in less than one millisecond; maintaining the first liquid crystal light valve at a maximum light transmission point in a first period of time; closing the first liquid crystal light valve, and then less than The second liquid crystal light valve is opened for one millisecond; and then the second liquid crystal light valve is maintained at a maximum light transmission point for a second period of time to provide an image. The first time period corresponds to presenting an image to the first eye of one of the viewers, and the second time period corresponds to presenting an image to the second eye of one of the viewers. In an exemplary embodiment, the transmitter transmits an infrared signal corresponding to the image presented for a first eye. The three-dimensional viewing glasses sense the infrared signal and then use the infrared signal to trigger the opening of the first liquid crystal light valve. In an exemplary embodiment, the signal is an infrared light. In an exemplary embodiment the reflector is a cinema screen. In an exemplary embodiment, the signal transmitter receives a _ timing signal from an image projector. The timing signal; a series of pulses having a predetermined interval. In some embodiments, a first predetermined number of pulses opens the first liquid crystal light valve, and a second predetermined number of pulses opens the second liquid crystal light valve. In an exemplary embodiment, the system includes a pair of glasses. The utility model has a mirror and a system for providing a three-dimensional video image, wherein the first liquid crystal light valve is a first through second lens, and the liquid crystal light valve has a 147657.doc -90· 201118424 There are - liquid crystal and less than - millisecond - open time. The system can also have a control circuit that alternately opens the first liquid crystal light valve and the second liquid crystal light valve and maintains the liquid crystal orientation at a maximum light transmission point, A to which the control circuit closes the light valve. The system can also have a test system comprising: a signal transmitter; a signal receiver; and a test system control circuit adapted to open and close the first light valve at a rate that can be seen by a viewer And in the second embodiment of the second light valve H, the signal transmitter does not receive a timing signal from the projector. In an exemplary embodiment, the signal transmitter emits an infrared signal 1 and the infrared signal can be a series of pulses. In another exemplary embodiment, the signal transmitter transmits a radio frequency k number. The RF signal can be a series of pulses. In an exemplary embodiment I for providing a two-dimensional video image, the method may include: having a first two-dimensional viewing glasses including a first liquid crystal light valve and a second liquid day light valve; Opening the first liquid crystal light valve in less than one millisecond; maintaining the first liquid crystal light at a maximum light transmission point in the -first time period; closing the first liquid crystal light valve, and then less than The second liquid crystal (four) is turned on for one millisecond; and the second liquid crystal light valve is maintained at a maximum light transmission point in a second period of time. In the exemplary embodiment, the first time period corresponds to the __first-eye presenting image of the viewer, and the second time period corresponds to the second-eye rendering-image for the viewer. In a difficult embodiment, the transmitter can transmit a test signal to the three-dimensional viewing glasses, the glasses then receiving the test signal by the sensor of the three-dimensional glasses, and then using the test signal - The control circuit opens and closes the first liquid crystal light valve and the second liquid crystal light 147657.doc -91 - 201118424 valve 'where the liquid crystal light valve is opened and closed at a rate observable by a viewer wearing the glasses. In an exemplary embodiment, the signal transmitter does not receive a timing signal from a projector. In an exemplary embodiment, the signal transmitter transmits an infrared number 'which can be a series of pulses. In an exemplary embodiment, the signal transmitter transmits a radio frequency signal. In an exemplary embodiment, the RF signal is a series of pulses. An exemplary embodiment of a system for providing a three-dimensional video image can include a pair of glasses including a first lens having a first liquid crystal light valve and a second lens having a second liquid crystal light valve The liquid crystal light valve has a liquid crystal and an opening time of less than one millisecond. The system can also have a control circuit that alternately opens the first liquid crystal light valve and the second liquid crystal light valve to maintain the liquid crystal orientation at a maximum light transmission point and then close the light valve. In an exemplary embodiment, an auto-on system includes a signal transmitter, a signal receiver, and wherein the control circuit is adapted to activate the signal receiver at a first predetermined time interval to determine the signal. Whether the receiver is receiving a signal from the signal transmitter, and when the signal reception is not received from the signal transmitter for a second period of time, the signal receiver is deactivated and received at the signal The device alternately opens the first light valve and the second light valve at an interval corresponding to the signal when the signal is received by the signal transmitter. In an exemplary embodiment, the first time period is at least two seconds, and the first time period may be no more than 00 milliseconds. In an exemplary embodiment, the liquid crystal shutters remain open until the signal receiver receives a signal from the signal transmission 147657.doc • 92·201118424. In an exemplary embodiment, a method for providing a three-dimensional video image may include: a two-dimensional viewing glasses having a -first liquid crystal light valve and a second liquid crystal light valve; in less than one millisecond Opening the first liquid crystal light valve; maintaining the first liquid crystal light valve at a maximum light transmission point in a first period of time; closing the first liquid crystal light valve, and then opening in less than one millisecond The second liquid crystal light valve; and the second liquid crystal light valve is maintained at a maximum light transmission point during the second time period. In an exemplary embodiment, the first time period corresponds to presenting an image to a first eye of one of the viewers, and the second time period corresponds to presenting an image to a second eye of one of the viewers. In an exemplary embodiment, the method can include initiating a signal receiver at a predetermined time interval, determining whether the signal receiver is receiving a signal from the signal transmitter, and at the signal receiver in a second In the case where the signal is not received from the signal transmitter during the time period, the activation of the signal is cancelled, and in the case where the signal receiver receives the signal from the signal transmitter, the interval corresponding to the signal is - The first light valve and the second light valve are opened and closed. In an exemplary embodiment, the first period of time is at least two seconds. In the exemplary embodiment, the (four) two time period is no more than 100 milliseconds. In the exemplary embodiment, the liquid crystal (4) remains open until the signal receiver receives a signal from the signal wheel. In an exemplary embodiment, a system for providing a three-dimensional video image may include a pair of glasses comprising a first lens having a first liquid crystal light valve and a second lens having a second liquid crystal light valve The liquid crystal light has a liquid crystal and an opening time of less than - millisecond. The I system may also have an I47657.doc-93. 201118424 control circuit 'which can open the first liquid crystal light valve and the second liquid crystal light valve, and maintain the liquid crystal orientation at a maximum light transmission point until the control The circuit closes the light valve. In an exemplary embodiment, the control circuit is adapted to maintain the first liquid crystal shutter and the second liquid crystal shutter open. In an exemplary embodiment, the control circuit keeps the lenses open until the control circuit detects a sync signal. In an exemplary embodiment, the voltage applied to the liquid crystal shutters alternates between positive and negative. In one embodiment of the apparatus for & two-dimensional video images, in an embodiment, a pair of three-dimensional viewing glasses comprises a first liquid crystal light valve and a second liquid crystal light valve, wherein the first liquid crystal light valve is Opened in less than one millisecond, wherein the second liquid crystal light valve can be opened in less than one millisecond; opening and closing the first liquid crystal light at a rate that causes the liquid crystal light valves to appear as transparent lenses And in the second liquid crystal light valve, in an embodiment, the control circuit keeps the lenses open until the control circuit detects a synchronization signal. In one embodiment, the liquid crystal shutters alternate between positive and negative. In an exemplary embodiment, a system for providing a three-dimensional video image can include a pair of glasses including a first lens having a first liquid crystal light valve and a second lens having a second liquid crystal light valve The liquid crystal light valves have a liquid crystal and an opening time of less than one millisecond. The system can also include a control circuit that alternately opens the first liquid crystal shutter and the second liquid crystal shutter ' and maintains the liquid crystal at a point of maximum light transmission until the control circuit closes the light valve. In an exemplary embodiment, a transmitter can provide a synchronization signal wherein a portion of the synchronization signal is partially encrypted. A sensor operatively coupled to the control circuit can be adapted to receive the synchronization signal, and 147657.doc • 94-201118424 can only correspond to the synchronization signal after receiving an encrypted signal Opening and closing between the first liquid crystal light and the second liquid crystal light. In an exemplary embodiment, the synchronization signal is a series of pulses having a predetermined interval. In an exemplary embodiment, the synchronization signal is a series of pulses having a predetermined interval, and a first predetermined number of pulses opens the first liquid crystal light valve, and a second predetermined number of pulses turns on the second liquid B light valve. In an exemplary embodiment, the portions of the series of pulses are encrypted. In an exemplary embodiment, the series of pulses includes a predetermined number of unencrypted pulses followed by a predetermined number of encrypted pulses. In an exemplary implementation, the first liquid crystal light valve and the second liquid helium are opened and closed in a pattern corresponding to one of the synchronization signals only after receiving two consecutive encrypted signals. In an exemplary embodiment of a method for providing a two-dimensional video image, the method may include: a sub-three-dimensional viewing glasses having a -first liquid crystal light valve and a second liquid crystal light valve; in less than - milliseconds The first liquid crystal light valve is internally gated; in the -first time period, the first liquid crystal light is held at - the maximum light transmission point; (4) The first liquid crystal light n is then turned on between the second liquid crystal lights in less than - milliseconds; and the fourth liquid crystal light valve is maintained at the _maximum light transmission point in a second period of time. In an exemplary implementation, the first time period corresponds to presenting an image for one of the viewer's first eyes and the second time period corresponds to presenting a shirt image for one of the viewer's second eyes. In an exemplary embodiment, the '-transmitter provides a sync signal, wherein one of the sync signals is twisted. In an exemplary embodiment, the forgetting device is operatively coupled to the control circuit and adapted to receive the synchronization signal 'I47657.doc • 95 · 201118424' and only after receiving an encrypted signal to correspond to the synchronization signal One of the patterns opens and closes between the first liquid crystal light valve and the second liquid crystal light. In an exemplary embodiment, the synchronization signal is a series of pulses having a predetermined interval. In an exemplary embodiment, the synchronization signal is a series of pulses having a predetermined interval, and wherein a first predetermined number of pulses opens the first liquid crystal light valve ' and wherein a second predetermined number of pulses opens the second liquid crystal Light Valves In an exemplary embodiment, one of the series of pulses is added to the drink. In an exemplary embodiment, the series of pulses includes a predetermined number of unencrypted pulses followed by a predetermined number of encrypted pulses. In an exemplary embodiment, the first liquid crystal light valve and the second liquid crystal light valve are opened and closed in response to one of the synchronization signals only after receiving two consecutive encrypted signals. It will be understood that the above described valleys may be modified without departing from the scope of the invention. While the embodiment has been shown and described, it will be modified by those skilled in the art without departing from the scope of the invention. The described embodiments are merely illustrative and not limiting. Many variations and modifications are possible and are within the scope of the invention. Furthermore, one or more of the elements of the exemplary embodiments may be combined, in whole or in part, with one or more of the other exemplary embodiments, or substituted for one of the other exemplary embodiments. Or one or more elements. Therefore, the scope of protection is not limited to the described embodiments, but is only limited by the scope of the following claims. 申S青专利® _ shall include all equivalents of the scope of the patent application. 147657.doc -96· 201118424 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is an illustration of an exemplary embodiment of a system for providing three-dimensional images. 2 is a flow chart of an exemplary embodiment of a method for operating the system of FIG. 1. Figure 3 is a graphical illustration of the operation of the method of Figure 2. Figure 4 is a graphical illustration of an exemplary experimental embodiment of one of the operations of the method of Figure 2. Figure 5 is a flow diagram of an exemplary embodiment of a method for operating the system of Figure 1. Figure 6 is a flow diagram of an exemplary embodiment of a method for operating the system of Figure 1. EXEMPLARY EMBODIMENT Figure 7 is a flow chart of a method for operating a system of the drawings. Figure 8 is a graphical illustration of the operation of the method of Figure 7. Fig. 9 is a flow chart showing an exemplary embodiment of a method for operating a system of the invention, Fig. 1 is a graphical illustration of the operation of the method of Fig. 9. Illustrative Implementation Figure 11 is a flow diagram of an example of a method for operating the system of Figure 1. Figure 12 is a circular illustration of the operation of the method of Figure 11. Figure 13 is a flow diagram of an example of a method for operating the system of Figure i. Illustrative Example Figure 14 is a graphical illustration of the method of Figure 13. 147657.doc
C -97- 201118424 圖15為一種用於操作圖1之系統之方法之一例示性實施 例的流程圖。 圖1 6為一種用於操作圖1之系統之方法之一例示性實施 例的說明。 圖1 7為圖1之系統的三維眼鏡之一例示性實施例的說 明。 圖18、圖18a、圖18b、圖18c及圖18d為三維眼鏡之一例 示性實施例的示意說明。 圖19為圖18、圖i8a、圖丨此、圖18c及圖18d之三維眼鏡 的光闊控制器之數位控制的類比開關的示意說明。 圖20為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 的光閥控制器之數位控制的類比開關、光閥及CPU之控制 信號的示意說明。 圖21為圖18、圖i8a、圖18b、圖18c及圖18d之三維眼鏡 之刼作之一例示性實施例的流程圖說明。 圖22為圖18'圖18a、圖18b、圖18c及圖18d之三維眼鏡 之钿作之—例示性實施例的圖形說明。 圖23為圖18、圖i8a、圖i8b、圖18c及圖18d之三維眼鏡 之操作之一例示性實施例的流程圖說明。 圖24為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之知作之—例示性實施例的圖形說明。 圖25為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之操作之一例示性實施例的流程圖說明。 圖26為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 147657.doc -98- 201118424 之操作之一例示性實施例的圖形說明。 圖27為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之操作之一例示性實施例的流程圖說明。 圖28為圖18、圖18a'圖18b、圖18c及圖18d之三維眼鏡 之操作之一例示性實施例的圖形說明。 圖29為圖18、圖18a、圖18b、圖18c及圖18d之三維眼鏡 之操作之一例示性實施例的圖形說明。 圖30、圖30a、圖30b及圖30c為三維眼鏡之一例示性實 施例的示意說明。 圖31為圖30、圖30a、圖30b及圖30c之三維眼鏡的光閱 控制器之數位控制的類比開關的示意說明。 圖32為圖30、圖30a、圖30b及圖30c之三維眼鏡的光閱 控制器之數位控制的類比開關之操作的示意說明。 圖33為圖30、圖30a、圖30b及圖30c之三維眼鏡之操作 之一例示性實施例的流程圖說明。 圖34為圖30、圖30a、圖30b及圖30c之三維眼鏡之操作 之一例示性實施例的圖形說明。 圖35為圖30、圖30a、圖30b及圖30c之三維眼鏡之操作 之一例示性實施例的流程圖說明。 圖36為圖3〇、圖30a、圖30b及圖30c之三維眼鏡之操作 之一例示性實施例的圖形說明。 圖37為圖3〇、圖3〇a、圖30b及圖3〇c之三維眼鏡之操作 之一例示性實施例的流程圖說明。 圖38為圖30、圖30a、圖30b及圖30c之三維眼鏡之操作 147657.doc -99- 201118424 之一例示性實施例的圖形說明β 三維眼鏡之操作 三維眼鏡之操作 三維眼鏡之操作 &維眼鏡之操作 Ξ'維眼鏡之操作 圖39為圖3〇、圖30a、圖30b及圖30c之 之一例示性實施例的流程圖說明。 圖40為圖3〇、圖30a、圖30b及圖30c之 之一例示性實施例的流程圖說明。 圖41為圖3〇、圖30a、圖30b及圖30c之 之一例示性實施例的圖形說明。 圖42為圖30、圖30a、圖30b及圖30c之 之一例示性實施例的流程圖說明。 圖43為圖30、圖30a、圖30b及圖30c之 之一例示性實施例的圖形說明。 圖44為三維眼鏡之一例示性實施例的俯視圖。 圖45為圖44之三維眼鏡的後視圖。 圖46為圖44之三維眼鏡的仰視圖。 圖47為圖44之三維眼鏡的正視圖。 圖48為圖44之三維眼鏡的透視圖。 圖49為使用鑰匙來操縱圖44之三維眼鏡之電池的外殼蓋 的透視圖。 圖50為用以操縱圖44之三維眼鏡之電池的外殼蓋之參匙 的透視圖。 圖5 1為圖44之三維眼鏡之電池的外殼蓋之透視圖。 圖52為圖44之三維眼鏡的側視圖。 圖53為圖44之三維眼鏡之外殼蓋、電池及〇型環密封件 之側視透視圖。 147657.doc -100- 201118424 圖54為圖44之三維眼鏡之外殼蓋、電池及〇型環密封件 之仰視透視圖》 圖55為圖44之眼鏡之一替代實施例及用以操縱圖5〇之外 殼蓋的錄匙之一替代實施例的透視圖。 圖56為一在例示性實施例中之一或多者中使用的信號感 測器之一例示性實施例之示意說明。 圖57為一適合使用於圖56之信號感測器的例示性資料信 號之圖形說明。 圖58為一種用於調節用於三維眼鏡中之一同步信號之系 統之一例示性實施例的方塊圖。 圖5 9為一種用於5周郎用於三維眼鏡中之一同步信號之系 統之一例示性實施例的方塊圖。 圖59a至圖59d為圖S8及圖59之系統之操作之例示性實驗 結果的圖形說明。 圖60、圖60a及圖60b為三維眼鏡之一例示性實施例之示 意說明。 圖61為一種用於調節用於三維眼鏡中之一同步信號之系 統之一例示性實施例的方塊圖。 圖6 2為一種供佩戴三維眼鏡之一使用者觀看三維影像之 系統之一例示性實施例的方塊圖。 圖63及圖64為一種用於與三維眼鏡一起使用之顯示系統 之一例示性實施例的方塊圖。 圖65及圖66為圖63及圖64之顯示系統之操作之例示性實 施例的圖形說明。 147657.doc • 101 · 201118424 圖6 7至圖7 0為圖6 3及圖6 4之顯示f、統之操作之例示性實 施例的流程圖說明。 圖7 1為三維眼鏡之一夬關始忐夕一办丨_ 現 尤阀μ成之例不性實施例的說 明 圖72為一種用於操作圖71之光閥總成 實施例的流程圖說明。 【主要元件符號說明】 之方法之一 例示性 100 系統 102 電影螢幕 104 二維眼鏡 106 左光閥 108 右光閥 110 "ί吕破傳輸器 110a 中央處理單元(CPU) 112 信號感測器 114 中央處理單元 116 左光閥控制器 118 右光閥控制器 120 電池 122 電池感剩器 130 投影器 200 左右光閩方法/左右鏡頭光間序 202ba 高電壓 202bb 無電壓 列 147657.doc -102· 201118424 202bc 小止擋電壓 202da 高電壓 202db 無電壓 202dc 小止擋電壓 400 光透射 402 光透射 500 操作方法 600 操作方法 700 操作方法 800 時脈信號 802 時脈循環 804 組態資料信號 806 資料脈衝信號 900 操作方法 902a 時脈信號 902aa 高脈衝 1100 暖機操作方法 1104a 電壓信號 1104b 電壓信號 1300 方法 1304a 電壓信號 1304b 電壓信號 1500 監視電池120之方法 1600 測試 147657.doc -103- 201118424 1600a 信號傳輸器 1600b 測試信號 1700 電荷泵 1800 三維眼鏡 1802 左光閥 1804 右光閥 1806 左光閥控制器 1808 右光閥控制器 1810 中央處理單元 1812 電池感測器 1814 信號感測器 1816 電荷泵 1900 功能圖 2100 方法 2300 暖機操作方法 2304a 電壓信號 2304b 電壓信號 2500 操作方法 2504a 電壓信號 2504b 電壓信號 2700 監視電池120之方法 3000 三維眼鏡 3002 左光閥 3004 右光閥 147657.doc -.104· 201118424 3006 左光閥控制器 3008 右光閥控制器 3010 共同光閥控制器 3012 中央處理單元 3014 信號感測器 3016 電荷泵 3018 電壓供應器 3100 功能圖 3300 方法/正常執行操作模式 3500 暖機操作方法 3700 操作方法 3900 操作方法 4000 操作方法 4200 操作方法 4402 框架前部 4402a 右翼 4402b 左翼 4404 鼻樑架 4406 右鏡腿 4406a 隆脊 4408 左鏡腿 4408a 隆脊 4410 右透鏡開口 4412 左透鏡開口 147657.doc 105· 201118424 4414 蓋 4415 蓋内部 4416 〇型環密封件 4417 觸點 4418 楔緊元件 4420 凹陷 4422 錄匙 4424 突起 4426 錄匙 5600 信號感測器 5602 窄帶通濾波器 5604 解碼器 5604 CPU 5606 信號傳輸器 5700 信號 5702 資.料位元 5704 時脈脈衝 5800 系統 5802 信號感測器 5804 正規器 5806 增益控制元件 5810 放大器及脈衝調節元件 5812 同步振幅及形狀處理單元 5902 同步信號 147657.doc -106- 201118424 5904 5906 5908 6000 6002 6100 6102 6200 6202 6202a 6204 6206 6300 6305 6310 6315 6320 6325 6330 6350 6355 6360 6510 6520 信號 信號 回饋控制信號 三維眼鏡 信號感測器 系統 動態範圍減小及對比度增強元件 用於觀看一顯示器上之三維影像之系統 投影器 内建檔案伺服器 顯示表面 網路 顯示系統 光調變器陣列 光源 顯示平面 控制器 前端單元 記憶體 序列產生器 同步信號產生器 脈寬調變(PWM)單元 左眼光閥狀態 右眼光閥狀態 147657.doc •107- 201118424 6530 高階視圖/狀態圖 6540 光閥狀態之單一循環 6542 間隔 6544 狀態轉變間隔 6546 間隔 6548 方框 6550 脈衝 6552 脈衝 6554 方框 6556 間隔 6558 方框 6560 間隔 6600 同步信號 6605 時間 6700 方法 6800 方法 6900 方法 7000 方法 7100 光閥系統 7105 光閥總成 7110 觀看光閥元件 7115 顯示光閥元件 7120 光閥控制器 7200 方法 147657.doc -108- 201118424 A B C Cl C2 C3 C4 C5 C6 C7 C8 C9 CIO Cll C12 C13 C14 C15 C100 D D1 D2 控制輸入信號/微控制器之輸出信號/控制 信號 控制輸入信號/微控制器之輸出信號/控制 信號 微控制器之輸出信號/控制信號 電容器 電容器 電容器 電容器 電容器 電容器 電容器 電容器 電容器 電容器 電容器 電容器 電容器 電容器 電容器 電容器 微控制器之輸出信號/控制信號 为特基二極體 光電二極體 I47657.doc 109- 201118424 D3 肖特基二極體 D5 肖特基二極體 D6 肖特基二極體 D7 齊納二極體 E 微控制器之輸出信號/控制信號 F 輸出信號 G 輸出信號 IN_A 輸入信號 IN_B 輸入信號 INHIBIT(INH)控制輸入信號 L1 電感器 LCD1 左透鏡/左光閥 LCD2 右透鏡/右光閥 Q1 Q2 Q100 Q101 R1 R2 R3 R4 R5 R6 R7C-97-201118424 Figure 15 is a flow chart of an exemplary embodiment of a method for operating the system of Figure 1. Figure 16 is an illustration of one exemplary embodiment of a method for operating the system of Figure 1. Figure 17 is an illustration of one exemplary embodiment of a 3D glasses of the system of Figure 1. 18, 18a, 18b, 18c and 18d are schematic illustrations of an exemplary embodiment of a 3D glasses. Figure 19 is a schematic illustration of the analog switch of the digital control of the optical controller of Figures 3, i8a, 丨, 18c and 18d. Figure 20 is a schematic illustration of the analog switches, light valves, and CPU control signals for the digital control of the light valve controller of Figures 3, 18a, 18b, 18c, and 18d. Figure 21 is a flow chart illustration of one exemplary embodiment of the three-dimensional glasses of Figures 18, i8a, 18b, 18c, and 18d. Figure 22 is a graphical illustration of an exemplary embodiment of the three-dimensional eyeglasses of Figures 18', 18a, 18b, 18c, and 18d. Figure 23 is a flow chart illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 18, i8a, i8b, 18c and 18d. Figure 24 is a pictorial illustration of an exemplary embodiment of the known three-dimensional eyeglasses of Figures 18, 18a, 18b, 18c, and 18d. Figure 25 is a flow chart illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 18, 18a, 18b, 18c, and 18d. Figure 26 is a graphical illustration of one exemplary embodiment of the operation of 3D glasses 147657.doc-98-201118424 of Figures 18, 18a, 18b, 18c, and 18d. Figure 27 is a flow chart illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 18, 18a, 18b, 18c, and 18d. Figure 28 is a graphical illustration of an exemplary embodiment of the operation of the three-dimensional eyeglasses of Figures 18, 18a, 18b, 18c, and 18d. Figure 29 is a graphical illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 18, 18a, 18b, 18c, and 18d. 30, 30a, 30b and 30c are schematic illustrations of an exemplary embodiment of a 3D glasses. Figure 31 is a schematic illustration of an analog switch for digital control of the light reading controller of the 3D glasses of Figures 30, 30a, 30b and 30c. Figure 32 is a schematic illustration of the operation of the analog switch of the digitally controlled controller of the 3D glasses of Figures 30, 30a, 30b and 30c. Figure 33 is a flow chart illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 30, 30a, 30b, and 30c. Figure 34 is a graphical illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 30, 30a, 30b, and 30c. Figure 35 is a flow chart illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 30, 30a, 30b, and 30c. Figure 36 is a graphical illustration of one exemplary embodiment of the operation of the 3D glasses of Figures 3A, 30a, 30b, and 30c. Figure 37 is a flow chart illustration of an exemplary embodiment of the operation of the 3D glasses of Figures 3A, 3A, 30b, and 3C. Figure 38 is a diagram of the operation of the 3D glasses of Figures 30, 30a, 30b, and 30c. 147657.doc -99-201118424. Graphical illustration of an exemplary embodiment of the operation of the 3D glasses. Operation of the 3D glasses. Operation of the Eyeglasses Operation of the Eyeglasses FIG. 39 is a flow chart illustration of one of the exemplary embodiments of FIGS. 3A, 30a, 30b, and 30c. Figure 40 is a flow chart illustration of one exemplary embodiment of Figures 3A, 30a, 30b, and 30c. Figure 41 is a graphical illustration of one exemplary embodiment of Figures 3A, 30a, 30b, and 30c. Figure 42 is a flow chart illustration of one exemplary embodiment of Figures 30, 30a, 30b, and 30c. Figure 43 is a graphical illustration of one exemplary embodiment of Figures 30, 30a, 30b, and 30c. Figure 44 is a top plan view of one exemplary embodiment of a 3D glasses. Figure 45 is a rear elevational view of the 3D glasses of Figure 44. Figure 46 is a bottom plan view of the 3D glasses of Figure 44. Figure 47 is a front elevational view of the 3D glasses of Figure 44. Figure 48 is a perspective view of the 3D glasses of Figure 44. Figure 49 is a perspective view of the housing cover of the battery of the 3D glasses of Figure 44 using a key. Figure 50 is a perspective view of a key of a housing cover for operating the battery of the 3D glasses of Figure 44. Figure 51 is a perspective view of the housing cover of the battery of the 3D glasses of Figure 44. Figure 52 is a side elevational view of the 3D glasses of Figure 44. Figure 53 is a side elevational view of the housing cover, battery and jaw ring seal of the 3D glasses of Figure 44. 147657.doc -100- 201118424 Figure 54 is a bottom perspective view of the housing cover, battery and 环-ring seal of Figure 3 of Figure 44. Figure 55 is an alternative embodiment of the spectacles of Figure 44 and used to manipulate Figure 5. One of the keys of the housing cover replaces the perspective view of the embodiment. Figure 56 is a schematic illustration of one exemplary embodiment of a signal sensor for use in one or more of the illustrative embodiments. Figure 57 is a graphical illustration of an exemplary data signal suitable for use with the signal sensor of Figure 56. Figure 58 is a block diagram of an exemplary embodiment of a system for adjusting a synchronization signal for use in 3D glasses. Figure 59 is a block diagram of an exemplary embodiment of a system for 5 weeks of use of a synchronization signal in 3D glasses. Figures 59a through 59d are graphical illustrations of exemplary experimental results of the operation of the system of Figures S8 and 59. Figures 60, 60a and 60b are schematic illustrations of one exemplary embodiment of a 3D glasses. Figure 61 is a block diagram of an exemplary embodiment of a system for adjusting a synchronization signal for use in 3D glasses. Figure 6 is a block diagram of an exemplary embodiment of a system for viewing a three-dimensional image by a user wearing a three-dimensional eyeglass. Figures 63 and 64 are block diagrams of one exemplary embodiment of a display system for use with 3D glasses. 65 and 66 are graphical illustrations of illustrative embodiments of the operation of the display system of Figs. 63 and 64. 147657.doc • 101 · 201118424 Figure 6 7 to Figure 7 is a flow chart illustration of an illustrative embodiment of the operation of Figure 6 3 and Figure 64. Figure 7 is an illustration of a three-dimensional eyeglass 夬 忐 丨 丨 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . [Main Element Symbol Description] One of the methods of the exemplary 100 system 102 movie screen 104 two-dimensional glasses 106 left light valve 108 right light valve 110 " ί 破 transmitter 110a central processing unit (CPU) 112 signal sensor 114 Central processing unit 116 left light valve controller 118 right light valve controller 120 battery 122 battery sensor 130 projector 2 left and right diaphragm method / left and right lens light sequence 202ba high voltage 202bb no voltage column 147657.doc -102· 201118424 202bc Small stop voltage 202da High voltage 202db No voltage 202dc Small stop voltage 400 Light transmission 402 Light transmission 500 Operation method 600 Operation method 700 Operation method 800 Clock signal 802 Clock cycle 804 Configuration data signal 806 Data pulse signal 900 Operation Method 902a Clock signal 902aa High pulse 1100 Warm-up operation method 1104a Voltage signal 1104b Voltage signal 1300 Method 1304a Voltage signal 1304b Voltage signal 1500 Method of monitoring battery 120 1600 Test 147657.doc -103- 201118424 1600a Signal transmitter 1600b Test signal 1700 Charge pump 18 00 3D glasses 1802 Left light valve 1804 Right light valve 1806 Left light valve controller 1808 Right light valve controller 1810 Central processing unit 1812 Battery sensor 1814 Signal sensor 1816 Charge pump 1900 Function diagram 2100 Method 2300 Warm-up operation method 2304a Voltage signal 2304b Voltage signal 2500 Operation method 2504a Voltage signal 2504b Voltage signal 2700 Method of monitoring battery 120 3000 3D glasses 3002 Left light valve 3004 Right light valve 147657.doc -.104· 201118424 3006 Left light valve controller 3008 Right light valve Controller 3010 Common Light Valve Controller 3012 Central Processing Unit 3014 Signal Sensor 3016 Charge Pump 3018 Voltage Supply 3100 Function Diagram 3300 Method / Normal Execution Mode 3500 Warm-up Operation Method 3700 Operation Method 3900 Operation Method 4000 Operation Method 4200 Operation Method 4402 Frame front 4402a Right wing 4402b Left wing 4404 Nose bridge 4406 Right temple 4406a Ridge 4408 Left temple 4408a Ridge 4410 Right lens opening 4412 Left lens opening 147657.doc 105· 201118424 4414 Cover 4415 Cover interior 4416 〇-ring Seal 4417 contact 4418 wedge element 4420 recess 4422 record key 4424 protrusion 4426 record key 5600 signal sensor 5602 narrow band pass filter 5604 decoder 5604 CPU 5606 signal transmitter 5700 signal 5702 resource bit 5704 clock pulse 5800 System 5802 Signal Sensor 5804 Normalizer 5806 Gain Control Element 5810 Amplifier and Pulse Conditioning Element 5812 Synchronous Amplitude and Shape Processing Unit 5902 Synchronization Signal 147657.doc -106- 201118424 5904 5906 5908 6000 6002 6100 6102 6200 6202 6202a 6204 6206 6300 6305 6310 6315 6320 6325 6330 6350 6355 6360 6510 6520 Signal signal feedback control signal 3D glasses signal sensor system dynamic range reduction and contrast enhancement component System for viewing 3D images on a display Projector built-in file server display Surface network display system light modulator array light source display plane controller front end unit memory sequence generator sync signal generator pulse width modulation (PWM) unit left eye light valve state right eye light valve state 147657.doc •107- 201118424 6530 high Stage view/state diagram 6540 Single cycle of light valve status 6542 Interval 6544 State transition interval 6546 Interval 6548 Box 6550 Pulse 6552 Pulse 6554 Box 6556 Interval 6558 Box 6560 Interval 6600 Synchronization signal 6605 Time 6700 Method 6800 Method 6900 Method 7000 Method 7100 Light Valve System 7105 Light Valve Assembly 7110 View Light Valve Element 7115 Display Light Valve Element 7120 Light Valve Controller 7200 Method 147657.doc -108- 201118424 ABC Cl C2 C3 C4 C5 C6 C7 C8 C9 C9 CIO C11 C12 C13 C14 C15 C100 D D1 D2 Control input signal / microcontroller output signal / control signal control input signal / microcontroller output signal / control signal microcontroller output signal / control signal capacitor capacitor capacitor capacitor capacitor capacitor capacitor capacitor capacitor capacitor capacitor Capacitor Capacitor Capacitor Capacitor The output signal/control signal of the microcontroller is a special diode diode photodiode I47657.doc 109- 201118424 D3 Schottky diode D5 Schottky diode D6 Schottky diode D7 Qi Diode E Microcontroller Output Signal / Control Signal F Output Signal G Output Signal IN_A Input Signal IN_B Input Signal INHIBIT (INH) Control Input Signal L1 Inductor LCD1 Left Lens / Left Light Valve LCD2 Right Lens / Right Light Valve Q1 Q2 Q100 Q101 R1 R2 R3 R4 R5 R6 R7
MOSFET 電晶體 場效電晶體 NPN電晶體/輸出偵測器 電阻器 電阻器 電阻器 電阻器 電阻器 電阻器 電阻器 147657.doc -110- 201118424 R8 分壓器組件/電阻器 R9 電阻器 RIO 分壓器組件/電阻器 Rll 電阻器 R12 電阻器 R13 電阻器 R14 電阻器 R15 電阻器 R16 電阻器 R100 電阻器 R101 電阻器 R102 電阻器 R511 電阻器 R512 電阻器 RA3 輸入控制信號 RA4 控制信號 RC4 控制信號 RC5 控制信號 U1 數位控制類比開關 U2 數位控制類比開關 U3 微控制器/運算放大器 U4 微控制器 U4 數位控制類比開關 U5 運算放大器 147657.doc - 111 - 201118424 U5-1 運算放大器 U5-2 運算放大器 U6 運算放大器 U6 電力偵測器/數位控制類比開關 VEE 輸入電壓 X 輸出信號 X0 開關I/O信號 XI 開關I/O信號 X2 開關I/O信號 X3 開關I/O信號 Y 輸出信號 Y0 開關I/O信號 Y1 開關I/O信號 Y2 開關I/O信號 Y3 開關I/O信號 Z 輸出信號 Z0 開關I/O信號 Z1 開關I/O信號 147657.doc -112-MOSFET transistor field effect transistor NPN transistor / output detector resistor resistor resistor resistor resistor resistor resistor 147657.doc -110- 201118424 R8 voltage divider component / resistor R9 resistor RIO voltage divider Component / Resistor R11 Resistor R12 Resistor R13 Resistor R14 Resistor R15 Resistor R16 Resistor R100 Resistor R101 Resistor R102 Resistor R511 Resistor R512 Resistor RA3 Input Control Signal RA4 Control Signal RC4 Control Signal RC5 Control Signal U1 Digital Control Analog Switch U2 Digital Control Analog Switch U3 Microcontroller/Operational Amplifier U4 Microcontroller U4 Digital Control Analog Switch U5 Operational Amplifier 147657.doc - 111 - 201118424 U5-1 Operational Amplifier U5-2 Operational Amplifier U6 Operational Amplifier U6 Power Detector / Digital Control Analog Switch VEE Input Voltage X Output Signal X0 Switch I/O Signal XI Switch I/O Signal X2 Switch I/O Signal X3 Switch I/O Signal Y Output Signal Y0 Switch I/O Signal Y1 Switch I/O Signal Y2 Switch I/O Signal Y3 Switch I/O Signal Z Output Signal Z0 switch I/O signal Z1 switch I/O signal 147657.doc -112-
Claims (1)
Applications Claiming Priority (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17924809P | 2009-05-18 | 2009-05-18 | |
US25315009P | 2009-10-20 | 2009-10-20 | |
US26166309P | 2009-11-16 | 2009-11-16 | |
US12/619,309 US20100157031A1 (en) | 2008-11-17 | 2009-11-16 | Synchronization for 3D Glasses |
US12/619,163 US20100157027A1 (en) | 2008-11-17 | 2009-11-16 | Clear Mode for 3D Glasses |
US12/619,518 US20100177254A1 (en) | 2008-11-17 | 2009-11-16 | 3D Glasses |
US12/619,456 US20100149320A1 (en) | 2008-11-17 | 2009-11-16 | Power Conservation System for 3D Glasses |
US12/619,517 US20100157178A1 (en) | 2008-11-17 | 2009-11-16 | Battery Sensor For 3D Glasses |
US12/619,102 US20100165085A1 (en) | 2008-11-17 | 2009-11-16 | Encoding Method for 3D Glasses |
US12/619,415 US20100157029A1 (en) | 2008-11-17 | 2009-11-16 | Test Method for 3D Glasses |
US12/619,431 US20100149636A1 (en) | 2008-11-17 | 2009-11-16 | Housing And Frame For 3D Glasses |
US12/619,400 US20100157028A1 (en) | 2008-11-17 | 2009-11-16 | Warm Up Mode For 3D Glasses |
US28504809P | 2009-12-09 | 2009-12-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201118424A true TW201118424A (en) | 2011-06-01 |
Family
ID=44935647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW99113571A TW201118424A (en) | 2009-05-18 | 2010-04-28 | Active 3D glasses with OLED shutters |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201118424A (en) |
-
2010
- 2010-04-28 TW TW99113571A patent/TW201118424A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2271124A2 (en) | Viewing system | |
EP2315449A2 (en) | Normalization of a synchronization signal for 3D glasses | |
TW201207430A (en) | Improved 3D glasses | |
TW201142359A (en) | 3D projector | |
JP2012016016A (en) | Universal 3d spectacles | |
US20110234775A1 (en) | DLP Link System With Multiple Projectors and Integrated Server | |
TW201223243A (en) | System for providing three dimensional video images | |
US20120050266A1 (en) | Normalization of a synchronization signal for 3d glasses | |
US20110228062A1 (en) | 3D Glasses with OLED Shutters | |
EP2323415A2 (en) | A system for viewing 3D images using 3D glasses having left and right shutters | |
US20110221876A1 (en) | Solar Powered 3D Glasses | |
EP2337360A1 (en) | Solar powered 3D glasses | |
TW201209452A (en) | Universal 3D glasses | |
EP2364033A2 (en) | 3D glasses with RF synchronization | |
TW201119350A (en) | DLP link system with multiple projectors | |
TW201118424A (en) | Active 3D glasses with OLED shutters | |
EP2373047A2 (en) | Universal 3D glasses for use with televisions | |
EP2337369A1 (en) | Active 3D glasses with OLED shutters | |
EP2364034A2 (en) | 3D Shutter Glasses for use with LCD Displays | |
TW201108713A (en) | 3D shutter glasses for use with LCD displays | |
TW201118423A (en) | Solar powered 3D glasses | |
TW201127020A (en) | 3D glasses with RF synchronization | |
CA2735342A1 (en) | Universal 3d glasses for use with televisions | |
TW201140144A (en) | Battery housing and cover for 3D glasses |