TW201118195A - Apparatus for supplying deposition gas - Google Patents

Apparatus for supplying deposition gas Download PDF

Info

Publication number
TW201118195A
TW201118195A TW99128432A TW99128432A TW201118195A TW 201118195 A TW201118195 A TW 201118195A TW 99128432 A TW99128432 A TW 99128432A TW 99128432 A TW99128432 A TW 99128432A TW 201118195 A TW201118195 A TW 201118195A
Authority
TW
Taiwan
Prior art keywords
deposition
deposition material
supplying
supply
gas
Prior art date
Application number
TW99128432A
Other languages
Chinese (zh)
Inventor
Byung-Il Lee
Kyoung-Wan Park
Ho-Young Kang
Cheol-Ho Kim
Jong-Ho Song
Original Assignee
Tera Semicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090079432A external-priority patent/KR101117662B1/en
Priority claimed from KR1020090093425A external-priority patent/KR101117668B1/en
Application filed by Tera Semicon Corp filed Critical Tera Semicon Corp
Publication of TW201118195A publication Critical patent/TW201118195A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Disclosed is a deposition gas supply apparatus capable of supplying a constant amount of deposition gas for every deposition process when thin film deposition is performed for fabricating semiconductor devices or flat panel displays. A deposition gas supply apparatus (100) according to the present invention comprises: a deposition material storing unit (200) in which a deposition material is stored; a deposition material evaporating unit (300) which applies heat to the deposition material to generate evaporation gas; and a carrier gas supply unit (400) which supplies a carrier gas. The deposition gas supply apparatus (100) further comprises a deposition material supply unit (500) interposed between the deposition material storing unit (200) and the deposition material evaporating unit (300).; The deposition material supply unit (500) supplies a constant amount of deposition material to the deposition material evaporating unit (300) for every deposition process.

Description

201118195 六、發明說明: c發明戶斤屬之技術領域3 發明領域 本發明係關於一種用以供給沉積氣體之裝置,可用以 均一供給沉積物質。較詳細而言,本發明係關於一種用以 供給沉積氣體之裝置,可於用以製造半導體元件或平板顯 示器之薄膜沉積步驟時,在每一沉積步驟供給均一量的沉 積氣體。 【先前技術3 發明背景 在製造半導體元件或平板顯示器中,會有各式各樣種 類的薄膜沉積。作為該薄膜之沉積方法,大略可區分為如: 物理氣相沉積法(PVD : Physical Vapor Deposition)、或化學 氣相沉積法(CVD : Chemical Vapor Deposition)。 化學氣相沉積法係一種使將為沉積對象之物質,以氣 體形態在基板表面上移動,並藉由氣體反應使薄膜沉積於 基板表面之方法,可藉由沉積物質之選擇來形成各種薄 膜,並具有可使用較簡單的步驟來進行大量作業處理之優 點,因而廣受利用。 【發明内容】 發明揭示 發明欲解決之課題 在化學氣相沉積法中,沉積壓力會受到由用以供給沉 積氣體之裝置所供給之沉積氣體之流量(即,沉積氣體之壓 201118195 力)直接影響。前述用以供給沉積氣體之裝置係供給欲沉積 之沉積物質者。即,在化學氣相沉積法中,為了適當地控 制沉積壓力,必須非常正確地調整用以供給沉積氣體之裝 置之沉積氣體壓力。沉積氣體之壓力調整在必須以精密且 一定地來調整沉積速度的情況中尤其重要。 但,在習知的用以供給沉積氣體之裝置中,由於因在 發生沉積氣體之沉積物質蒸發部中所殘留之沉積物質量, 會造成沉積物質之蒸發量有所相異,因而無法正確地調整 沉積氣體之壓力。又,由於因加熱沉積物質並重複揮發及 凝聚過程,而使形成於沉積物質之表面的凹凸形狀及表面 積持續變化,造成在沉積物質之表面所發生之沉積氣體的 蒸發量不同,因而無法正確地調整沉積氣體壓力。 如此一來,一在無法正確調整沉積氣體壓力的狀態下 進行沉積步驟,便產生了使形成於基板上之薄膜的重現性 及成品率下降之問題。 爰此,本發明係用以解決上述問題者,且本發明之目 的在於提供一種用以供給沉積氣體之裝置,可將均一量的 沉積物質供給至沉積物質蒸發部,並在每一沉積步驟供給 均一量的沉積氣體。 又,本發明之目的在於提供一種用以供給沉積氣體之 裝置,可於沉積步驟之結束後,使殘留於沉積物質蒸發部 之沉積物質排出外部,並在每一沉積步驟供給均一量的沉 積氣體。 用以解決課題之手段 201118195 為了達成上述目的,本發明之用以供給沉積氣體之裝 置,係具備下述者:沉積物質貯藏部,係儲存沉積物質者; 沉積物質蒸發部,係對前述沉積物質施加熱,使沉積氣體 產生者;及載體氣體供給部,係供給載體氣體者;其特徵 在於:前述用以供給沉積氣體之裝置,另具備沉積物質供 給部,係配置在前述沉積物質貯藏部及前述沉積物質蒸發 部之間者,前述沉積物質供給部會在每一個沉積步驟,對 前述沉積物質蒸發部供給一定的前述沉積物質。 前述用以供給沉積氣體之裝置,另具備沉積物質排出 部,係連結於前述沉積物質蒸發部而配置者。前述沉積物 質排出部可在每一個沉積步驟,將殘留於前述沉積物質蒸 發部之前述沉積物質予以排出。 前述用以供給沉積氣體之裝置可另具備加熱器,配置 在前述沉積物質蒸發部之内側。 前述加熱器可另具備檢查溫度之溫度檢出器。 前述沉積物質貯藏部可具備過濾部,係僅使一定大小 以下的前述沉積物質通過者。 前述沉積物質貯藏部可另具備第1監視窗,係可觀察 已貯藏在内部之前述沉積物質者。 前述用以供給沉積氣體之裝置可另具備第2監視窗, 係可觀察前述沉積物質由前述沉積物質貯藏部,供給至前 述沉積物質供給部者。 前述沉積物質供給部具備:本體;旋轉供給台,係設 置在前述本體之内部呈可旋轉者;填充部,係形成於前述 201118195 旋轉供給台者;隔離板,係將前述本體之内部上下區分者; 及供給孔,係以對應於前述填充部的方式,而形成於前述 隔離板者;一旦前述填充部有填充由外部所供給之前述沉 積物質,且前述旋轉供給台依任意的角度旋轉,使前述填 充部座落到前述供給孔之上部,則已填充在前述填充部之 前述沉積物質會穿透前述供給孔落下,而可供給至前述沉 積物質蒸發部。 前述用以供給沉積氣體之裝置可另具備第1感測器,係 檢查前述旋轉供給台有無旋轉者。 前述用以供給沉積氣體之裝置可另具備第2感測器,係 檢查前述沉積物質有無落下者。 前述用以供給沉積氣體之裝置可另具備回流防止氣體 供給部,係防止沉積氣體由前述沉積物質蒸發部回流到前 述沉積物質供給部者。 前述沉積物質係透過沉積物質供給管而供給至前述填 充部,且前述供給孔係與前述沉積物質供給管隔著任意的 角距(angular distance)而形成。 前述沉積物質排出部具備:沉積物質托架(cradle),係 設置於前述沉積物質蒸發部之内部呈可上下反轉者;反轉 致動器(actuator),係連結於前述沉積物質托架之一端者; 及沉積物質保管筒,係保管由前述沉積物質蒸發部排出之 前述沉積物質者;藉由前述反轉致動器之運作,前述沉積 物質托架可反轉,而前述沉積物質托架上之前述沉積物質 可往前述沉積物質保管筒移動。 201118195 前述用以供給沉積氣體之裝置,另具備管狀的加熱器 連結軸,係形成於前述沉積物質托架,且内側 可 插入前述加熱器者,前述加熱器連結軸與前述反轉致動器 之旋轉軸,可配置在同軸上。 前述用以供給沉積氣體之裝置可另具備第3感測器,係 檢查前述反轉致動器有無旋轉者。 前述用以供給沉積氣體之裝置可另具備:閘閥(gate valve),係與前述沉積物質托架連動而開闔者;及氣壓缸 (pneumatic cylinder),係連結於前述閘閥者;在前述沉積物 質托架之反轉時,前述氣壓缸會使前述閘閥開放,並使前 述沉積物質排出。 前述沉積物質保管筒可另具備第3監視窗,係用以確認 前述沉積物質之排出者。 前述沉積物質蒸發部可另具備分散部,係使前述沉積 物質呈均一分散者。 前述沉積物質蒸發部另具備配置在内側之熱傳導部, 藉由前述熱傳導部,前述加熱器之熱可傳導至前述沉積物 質蒸發部之中心部。 發明效果 依據本發明,在薄膜沉積步驟時,由於可在每一沉積 步驟供給均一量的沉積氣體,因而有使薄膜沉積步驟之重 現性及成品率突破性向上提升之效果。 圖式簡單說明 第1圖係顯示本發明之一實施形態中,用以供給沉積氣 201118195 體之裝置之構成之圖。 第2圖係顯示本發明之一實施形態中,沉積物質貯藏部 之一例之圖。 第3圖係顯示本發明之一實施形態中,沉積物質貯藏部 之其他例之圖。 第4圖係顯示本發明之一實施形態中,沉積物質供給部 之構成的分解立體圖。 第5圖係顯示本發明之一實施形態中,沉積物質供給部 之構成的局部剖面立體圖。 第6圖係顯示本發明之一實施形態中,沉積物質蒸發部 及沉積物質排出部之構成之圖。 第7圖係顯示本發明之一實施形態中,沉積物質蒸發部 及沉積物質排出部之構成的分解立體圖。 第8圖係顯示本發明之一實施形態中,沉積物質蒸發部 及沉積物質排出部之構成的剖面圖。 第9圖係顯示本發明之一實施形態中,用以供給沉積氣 體之裝置之運作之圖。 第10圖係顯示本發明之一實施形態中,用以供給沉積 氣體之裝置之運作之圖。 第11圖係顯示本發明之一實施形態中,用以供給沉積 氣體之裝置之運作之圖。 第12圖係顯示本發明之一實施形態中,用以供給沉積 氣體之裝置之運作之圖。 第13圖係顯示本發明之其他實施形態中,沉積物質供 201118195 給部之構成的剖面圖。 I:實施方式3 用以實施發明之形態 後述之本發明相關詳細説明,將參考以可實施本發明 之特定實施形態為例示而顯示的附件圖式。該等實施形態 係以熟知此項技藝之人士可實施本發明的方式,而充分詳 細地加以説明。本發明之多樣實施形態雖彼此相異,但毋 須為相互排他性。例如,在此所記載之特定形狀、構造及 特性係與一實施形態相關連,可在不脫離本發明精神及範 圍的範圍内以其他實施形態實現。又,務必了解,在各個 所揭示之實施形態中的個別構成要素之位置或配置,係可 在不脫離本發明精神及範圍的範圍内加以變更。因此,勿 將後述之詳細説明理解為限定解釋,且本發明之範圍在受 適當地説明下,僅受限於與其申請專利範圍所主張者為均 等的所有範圍、以及所附屬之申請專利範圍。圖式中,類 似的參考記號係從各式各樣的側面表示同一或類似的功 能、長度及面積、厚度等,其形態在方便解釋上可能會誇 示鋪張。 以下,為了使具有本發明所屬之技術領域中一般知識 人士,可輕易地實施本發明,而就本發明之適當實施形態, 參考所附加之圖式來詳加説明。 第1圖係顯示本發明之一實施形態中,用以供給沉積氣 體之裝置100之構成之圖。 首先,如第1圖所示,本發明之用以供給沉積氣體之裝 201118195 置100’可具備沉積物質貯藏部200、沉積物質蒸發部3〇〇、 載體氣體供給部400、及沉積物質供給部5〇〇而構成。 在此’沉積物質貯藏部200、沉積物質蒸發部3〇〇、 沉積物質供給部500係以沉積物質供給管25〇從上部配置到 下部’而沉積物質可藉由自由落體之原理,從沉積物質貯 藏部200供給至沉積物質供給部500,再從沉積物質供給部 5〇〇供給至沉積物質蒸發部300。 以下,參考第2圖〜第5圖’詳加說明本發明之—實施开多 態中,用以供給沉積氣體之裝置1〇〇之構成。 首先,沉積物質貯藏部200可發揮貯藏預定量之沉積物 質的功能。又,沉積物質貯藏部200可發揮供給沉積物質至 後述之沉積物質蒸發部300的功能。 第2圖係顯示本發明之一實施形態中,沉積物質貯藏部 2〇〇之一例之圖。 所如第2圖所示,ί冗積物質貯藏部200為了可貯藏沉積物 可以具有預定内部容積之容器而構成。沉積物質貯藏 部200宜以不會有外部異f侵人、或内部沉積物質流出的方 式而穩固製成。沉積物質貯藏部之材f可含不錄鋼。 此外’如第2圖所示,可確認沉積物質供給管25〇與沉 積^質貯藏部2_連結。_物質供給管2_以沉積物 =貝丁藏部20()所貯藏之沉積物f可供給至沉義質蒸發部 300的方4 ’將沉積物質貯藏部與沉積物質蒸發部则加 以連結。 未説明之圖式記號「210」乃表示將沖洗氣體(purgegas) 201118195 供給至沉積物質貯藏部200之沖洗氣體供給管。 第3圖係顯示本發明之―實施形態中,沉積物質貯藏部 200之其他例之圖。 如第3圖所#,可於沉積物質貯藏部200之内側,配置 具有預^網目大小的過據部22()。過濾部22()可使用具有一 定網目大小的筛孔(mesh)。過渡部22〇之材f可含鐵或銘。 過渡部22〇係a又置成對沉積物質蒸發部3〇〇僅供給從外 部所供給之沉積物f當中的預定大小-即,㈣孔之網目 更小—之沉積物質。藉此,由於只有預定大小以下的沉積 物質可供給至沉積物質料部·,因而可防止因沉積物質 之粒子大小不均而使沉積物f供給管,阻塞之現象。為了 使過遽部22G之喊效果提升,可配置複數個喊部⑽, 此時’可將各過渡部220之網目大小構成彼此相異。 又,雖未加以圖示,但於沉積物質貯藏部200之一側可 配置可觀察沉積物質貯藏部2_部的第1監視窗。操作員 可透過第1監視窗’目測確認沉積物f貯藏部雇内之沉積 物質量及沉積物質的狀態。 第3圖中所示之沉積物質貯藏部200之構成及作用,除 了過濾部220與第1監視窗以外,皆與第2圖中所示之沉積物 質貯藏部200相同,故省略此部分的相關詳細説明。 另—方面,再次參考第1圖可確認,於連結沉積物質貯 藏°卩200與沉積物質蒸發部300之沉積物質供給管250上,設 置有閥V。閥v可發揮下述兩項功能:在進行用以供給沉積 氣體之裝置100之維護作業(maintenance)時控制由沉積物 11 201118195 質貯藏部200到沉積物質供給部500之沉積物質之供給;或 者,在將定量的沉積物質從沉積物質供給部5〇〇供給至沉積 物質蒸發部300之後,使追加的沉積物質不再供給至沉積物 質蒸發部300,而將沉積物質供給管250完全封鎖。 為了確認對沉積物質供給部500之沉積物質之供給,可 在k沉積物質貯藏部200連接到沉積物質供給部5〇〇的沉積 物質供給管250 ’設置第2監視窗260。操作員可透過設置在 閥V下端的第2監視窗260,確認沉積物質通過閥v而供給至 沉積物質供給部500之過程。第2監視窗26〇之材質可含石英。 又,再一次參考第1圖可知,於連接後述之沉積物質供 給部500與沉積物質蒸發部300之沉積物質供給管250上,可 設置冷卻單元270。冷卻單元270可發揮防止用以在沉積物 質蒸發部300之沉積氣體發生時所施加之熱,透過沉積物質 供給管250而傳達至沉積物質供給部5〇〇的功能。 其次,沉積物質蒸發部3〇〇係以具有預定内部容積之容 益而構成,可發揮對所供給之沉積物質施加熱而使沉積氣 體發生的功能。沉積物質蒸發部3〇〇與沉積物質供給管25〇 之連結部位,可配置密封用〇環302。有關沉積物質蒸發部 3〇〇之具體㈣,將參考第6圖〜第8圖而於後述。 接著,載體氣體供給部4〇〇可發揮將載體氣體供給至沉 積物質蒸發魏。在此,龍_讀揮使在沉積 物質蒸發部300所發生之沉積氣體,往沉積室(未圖示)移動 之功效。 再度參考第1圖可知,載體氣體供給部400可具備氣體 12 201118195 供給管410及氣體排氣管420而構成。 氣體供給管410及氣體排氣管420可連結至沉積物質蒸 發部300之一側。又,可在氣體供給管410及氣體排氣管 420,連結有控制氣體移動之閥。另一方面,作為載體氣體, 可使用具惰性、且可易使沉積氣體往沉積室移動之高純度 氬、氦、或氮(質素)等。 其次,沉積物質供給部500可透過沉積物質供給管 250 ’發揮調整供給至沉積物質蒸發部3〇〇之沉積物質量的 功能。尤其,本發明之沉積物質供給部5〇〇係設成可在每_ 沉積步驟,將均一量的沉積物質供給至沉積物質蒸發部 300。以下,將參考第4圖及第5圖,來說明沉積物質供給部 500之構成及各構成要素的功能。 第4圖及第5圖係顯示本發明之—實施形態中,沉積物 質供給部500之構成的分解立體圖及部分剖面立體圖。 如第4圖及第5圖所示,沉積物質供給部5〇〇基本上可具 備本體510、旋轉供給台520、填充部53〇、隔離板54〇、及 供給孔550而構成。 又,沉積物質供給部5〇〇可另具備第丨感測器56〇及第2 感測器570。 此外,沉積物質供給部5〇〇可另具備回流防止氣體供給 部 580。 首先’本體51G可發揮作為設置有沉積物f供給部5〇〇 之構成要素之骨架的功效。本體5⑴可連結至沉積物質供給 b 250之中間4 ’可構成為在内部具有預定空間之圓筒狀。 13 201118195 又’本體510係以不會有外部異質侵入、或内部沉積物質流 出的方式而穩固製成,且本體510之材質可含不鏽鋼。又, 將本體510之内側下端構置呈逆三角形之剖面形狀,以使沉 積物質可易於排出本體510之外部為宜。 為了修理及管理設置在本體510之内部的構成要素,可 於本體510之上部設置可開闔之蓋512。蓋512之材質可與本 體510同樣包含不鏽鋼。可於蓋512與本體510之連結部位 配置密封用Ο環514。另一方面,可於本體51〇之一側,連結 有一對冷卻管502,且可於本體510之上部,連結有後述之 回流防止氣體供給部580。 其次,旋轉供給台520係設置成可在本體51〇之内部旋 轉,而可發揮使恆量的沉積物質從沉積物質貯藏部2〇〇供給 至>儿積物質蒸發部300的功能。旋轉供給台520可構造呈具 有預定厚度之圓形片狀。旋轉供給台520之中心軸可連結至 旋轉致動器522,而藉由旋轉致動器522之運作,使旋轉供 給台520可旋轉運作。此時,旋轉供給台52〇可依照任意所 設疋之角度—例如,每次各9〇度一來旋轉運作。另一方面, 旋轉致動器522可配置在本體510之外側上部。 為易於旋轉旋轉供給台520,可在旋轉供給台52〇之上 部與下部另配置鐵氟龍(Tefl〇n)材質之環516。 其次,填充部530係形成在旋轉供給台520之預定位置 上,可發揮作為填充有透過沉積物質供給管25〇所供給之沉 積物質之空間的功效。填充部530可構造呈具有預定體積之 圓筒狀空間。填充部53〇之體積以可貯藏一次沉積步驟所需 201118195 的》儿積氣體之生成所需量之沉積物質 此外,如第4圖及第5圖所示, 成具有90度的角距而形成者,但( 以具有更 檟物質的程度範圍内為宜。 禾,係將二個填充部530顯$ 但並非限於此者,以且古 高的角度-例如’ 18G度的角距—而形成亦可。 其次,隔離板540係設置在旋轉供給台52〇之下側 發揮將本體5H)之内部空間區分為上部與下部的功能。又, 如後述,隔純540可發揮調整透過供給孔柳而填充至填 充部530之沉積物質之供給的功能。 、 ' 其次,供給孔550係形成於隔離板54〇 ,可發揮使已通 過填充部5 3 G之沉積物質供給至沉積物f蒸發部_的功 能。供給孔550宜與沉積物質供給管25〇之正下方隔有任音 的角距一例如,填充部530之形成間隔:9〇度角距—而形 成。又,供給孔550之直徑宜與填充部53〇之下端部之直徑 設定成相同。 在具有此種構成之沉積物質供給部5〇〇中,沉積物質係 依序通過旋轉供給台520之填充部530、及隔離板54〇之供給 孔550,而供給至沉積物質蒸發部3〇〇。此時,旋轉供給台 520會旋轉運作,且每當旋轉供給台52〇之填充部53〇座落在 供給孔550之正上方時,會有僅該當於填充部53〇之體積之 量的沉積物質,供給至沉積物質蒸發部3〇〇β在此,填充部 530之體積為恆定,藉此,填充於填充部53〇之沉積物質之 量亦呈恆定,因此可依照旋轉供給台52〇之旋轉週期,將恆 量的沉積物質供給至沉積物質蒸發部3〇〇。 再-人參考弟4圖及第5圖可知,形成於旋轉供給台5 2〇之 15 201118195 填充部530之數量雖為二個,但並非限於此者,可依照每沉 積物質之時間的供給量而作多樣的變更。此時,為了增加 每沉積物質之時間的供給量,可在同數量的填充部530中縮 短旋轉供給台52〇之%轉週期,又亦可使填充部wo之體積 —例如,填充部之直彳空或高度(即,旋轉供給台520之厚 度)一增加。換言之,在本發明中,透過沉積物質供給部5〇〇 而供給至沉積物質蒸發部300之每時間單位的沉積物質之 量,可藉由變更旋轉供給台520之旋轉週期、填充部53〇之 數量、或填充部530之體積等來多樣調整。在本發明中,在 上述任一情況中’皆可使沉積物質蒸發部300中每沉積物質 之時間的供給量呈恆定。 其次,第1感測器560係設置於旋轉供給台520及旋轉致 動器522之連結部位,可發揮檢查旋轉供給台52〇是否有以 所設定之角度旋轉的功能。第1感測器560可由二個感測止 擋(sensor dog)(未圖示)與止擋檢出(dog detecti〇n)部(未圖 示)而構成。感測止擋及止擋檢出部可設置在連結旋轉供給 台520及旋轉致動器522之軸的預定處。此時,操作員可檢 查感測止擋與止擋檢出部是否有接觸,並可確認旋轉供給 台520是否有以既定的旋轉角度—如9〇度—旋轉。 其次,第2感測器570係設置在本體51〇之下部一側,可 發揮檢查沉積物質是否有透過供給孔55〇落下的功能。第2 感測器570可具備利用可視光之光感測器。第2感測器wo可 於已配置在本體510之外側下部的連結帽576之一側,以固 定支架572配置。另一方面,為了易於配置第2感測器57〇及 16 201118195 第1透明窗574,連結帽576係配置於本體51〇之外側下部, 而於本體510與連結帽576之連結部位,另可配置密封用〇 環 518。 其次,回流防止氣體供給部58〇係連結至本體51〇之上 部,可發揮防止在沉積物質蒸發部3〇〇所發生之沉積氣體, 回流至沉積物質供給部500的功能。因此,回流防止氣體供 給部580可將回流防止氣體供給至本體51〇 ^已供給至本體 510之回流防止氣體不僅可發揮以預定壓力狀態來維持本 體510之内側的功能,亦可發揮使殘留在本體51〇内部之沉 積物質排出的功能。回流防止氣體可透過與載體氣體供給 部400同一管線,而供給至回流防止氣體供給部58〇。回流 防止氣體可為氬。 另一方面,再度參考第1圖可知,本發明之用以供給沉 積氣體之裝置1〇〇,另可具備沉積物質排出部6〇〇。 沉積物質排出部600可發揮使殘留於沉積物質蒸發部 300之沉積物質排出的功能。換言之,沉積物質排出部6〇〇 可發揮以自由落體之原理,使已供給至沉積物質蒸發部3〇〇 之沉積物貝S中’未供給至 >儿積室之沉積物質排出的功 能。以下,將參考第6圖〜第8圖’來說明沉積物質蒸發部3〇〇 及沉積物質排出部600之構成及各構成要素的功能。 第6圖、第7圖及第8圖係顯示本發明之—實施形,離、中, 沉積物質蒸發部300及沉積物質排出部600之構成之圖、分 解立體圖及剖面圖。 如第6圖〜第8圖所示,沉積物質蒸發部3〇〇可具備加熱 17 201118195 器310而構成。 加熱器310係配置於沉積物質蒸發部3〇〇之内部,可發 揮使沉積物質之氣化所需之發熱的功能。在加熱器310所產 生之熱’可對載置在後述之沉積物質托架61〇之沉積物質予 以施加。加熱器31〇可構造呈具有預定長度之圓形桿狀。為 了使加熱器310之加熱效果提升,可使發熱集中在加熱器 310之端部,即’與沉積物質托架610接觸之加熱器310之端 部。 於加熱器310,可連結用以使熱發生而供電之電源線 312,以及測定已發熱之熱的溫度測定器314。作為溫度測 足器314,且使用熱電偶(thermocouple)。熱電偶在本技術領 域中為廣知的公知構成要素,因而於此省略熱電偶之構成 及作用的相關詳細説明。 加熱器310之端部可緊密連結於後述之沉積物質托架 610 °有關加熱器310與沉積物質托架61〇之連結將於後述。 另-方面’雖未有圖示’但於沉積物質蒸發部之内 側下部,可配置圓錐狀之分散部(未圖示)。分散部係可發揮 ^已供給之沉積物質,可於裝載至分散部的上部後,均一 刀政在刀散部上的功能。藉此,可使加熱器⑽之熱迅速且 =地傳達至已供給到沉積物質蒸發部3 00内之沉積物 質’因而可使沉積物質更輕易地變換成沉積氣體。 _ 队卟主對稱的傾斜面,可形成階描 模式(未圖示)。階梯开{磁 ' 梯形核式中,沉積物質具有規則性,且7 發揮可分布至分散㈣魏。此時,可形絲位於分散卑 18 201118195 之邊緣部的階段之寬幅,大於位於分散部之中央部的階段 之寬幅。藉由該階梯形模式,加熱器31〇之熱可有效率地傳 達至沉積物質。 又,於在圓錐狀之分散部中呈對稱的傾斜面,亦可形 成1/4球狀模式(未圖示)—而非階梯形模式。在某些情況 下具有直佐的1/4球狀模式,較四角形之階梯形模式更 有利於使沉積物質分散。 另一方面,雖未有圖示,但於沉積物質蒸發部3〇〇之内 側可配置熱傳導部(未圖示)。熱傳導部可發揮使在加熱器 310所發生之熱,從沉積物質蒸發部3〇〇之外壁迅速地傳達 至沉積物質蒸發部300之中心部的功能。藉此,可整體均一 地進行沉積物質之加熱,而防止沉積物質的局部性凝結及 硬化。熱傳導部可構造呈球、篩孔及熱板等形態。熱傳導 部之材質可含銅、鋁或不鏽鋼。 如第6圖〜第8圖所示,沉積物質排出部600可具備沉積 物質托架610、反轉致動器620、及沉積物質保管筒630而構 成。 又,沉積物質排出部600另可具備閘閥650與氣缸660。 首先’沉積物質托架610係設置於沉積物質蒸發部300 之内側呈可上下反轉’可發揮使透過沉積物質供給部500所 供給之沉積物質暫時性滞留的功能。此時,宜將沉積物質 托架610之上面構造呈平板狀,以使沉積物質可輕易地沉積 於沉積物質托架610。又,宜使沉積物質拕架610之邊緣, 密封住沉積物質蒸發部300之内圍面,以使沉積物質無法自 201118195 沉積物質托架610與沉積物質蒸發部300之内壁之間溢出。 於沉積物質托架610之下部可形成加熱器連結軸612。 加熱器連結轴612可構造呈具有預定長度之管狀。於加熱器 連結轴612之内側可插入加熱器310。加熱器連結軸612之中 心軸與後述之反轉致動器620之旋轉軸之中心軸,以同轴為 宜。當加熱器連結軸612插入有加熱器310時,為了防止加 熱器310之離脱及流動荨’可另配置凸緣(fiange)(未圊示) 與固定環(未圖示)。沉積物質托架61〇及加熱器連結軸612 可使用易於熱傳達之金屬材質而構成,且可使用彼此相同 材質而構成。 其次,反轉致動器620係連結於沉積物質托架61〇之一 側,可發揮使沉積物質托架61〇反轉的功能。因此,反轉致 動器620之旋轉軸可連結於沉積物質托架61〇之一側。為了 革固沉積物質托架610與反轉致動器62〇之連結,另可配置 固定凸緣626與固定環628。 反轉致動器620可藉由氣壓而運作。為了該反轉致動器 620之運作,可於反轉致動器620之一側連結一對第i氣壓管 622。於一對第1氣壓管622當中,係以使氣壓供給至任意之 第1氣壓官622、並使氣壓從另一個第1氣壓管622排出的樣 態,而可使反轉致動器620進行旋轉運作。一旦變更第1氣 壓官622之氣壓的供給方向,則反轉致動器62〇之旋轉方向 亦可變更,在本實施形態中,反轉致動器62〇可一次度 旋轉運作。 另—方面,為了檢查反轉致動器62〇之旋轉運作,可設 201118195 置複數個第3感測器624。第3感測器624宜以反轉致動器62〇 之旋轉軸為基準,隔180度之角距而設置。操作員可檢查已 設置於反轉致動器620之旋轉軸的感測止擋625、與第3感測 器624是否有接觸,且可確認反轉致動器620是否有18〇度旋 轉。 藉由具有此種構成之反轉致動器620之運作,沉積物質 托架610可反轉。藉由沉積物質托架610之反轉,已沉積於 沉積物質托架610之沉積物質可往下部落下。 其次,沉積物質保管筒630係配置於沉積物質蒸發部 300之下部,可發揮保管已排出之沉積物質的功能。已保管 在沉積物質保管筒630中的沉積物質,可供以後的沉積步驟 再使用,或亦可完全廢棄。沉積物質保管筒630可構造呈具 有預定内部容積之圓筒狀。只要是可保管沉積物質者,沉 積物質保管筒630除了圓筒狀者以外,可由各式各樣之形態 構成。 於沉積物質保管筒630之一側可依預定大小,形成可目 測確認沉積物質保管筒630内之沉積物質的第3監視窗 640。於第3監視窗640可配置第2透明窗642,其可隔離沉積 物質保管筒630之内部與外部,且易於進行沉積物質之確 認。該第2透明窗642之材質可含石英。 在此’當以配合第3監視窗640之大小來製作第2透明窗 642之大小時’第2透明窗642之外圍面與第3監視窗640之内 圍面之間可能發生間隙。為了防止此情況發生,宜以第2透 明窗642之外圍面可密封住沉積物質保管筒630之内圍面的 21 201118195 方式,來配置第2透明窗642。另一方面,在本實施形態中, 第2透明窗642可配合沉積物質保管筒63〇之形狀而構造呈 圓筒狀。 沉積物質保管筒630與閘閥650可藉由密封用〇環632及 固定板634而穩固連結。 其次,閘閥650係配置於沉積物質蒸發部3〇〇與沉積物 質保管筒630之間,可發揮控制已排出之沉積物質之移動的 功能。閘閥650可與沉積物質托架61〇之運作連動而開闔。 較具體而言,一旦沉積物質托架61〇反轉,則閘閥65〇將開 放以使自沉積物質托架61〇落下之沉積物質可通過,而一旦 沉積物質托架610恢復到原來的位置,則閘閥65〇可封鎖以 使沉積物質無法通過。 此外,如第8圖所示,閘閥65〇可具備閥本體652與閘門 654而構成。 首先,閥本體652可發揮連結沉積物質蒸發部3〇〇與沉 積物質保管筒630的功能。閥本體652係構造呈管狀,可藉 由閘門654而開闔。 其次’閘門654係構造呈平板狀,可發揮藉由氣缸66〇 而水平移動的功能。在此’為便於閘門654之移動及氣缸66〇 之s又置’可於閥本體652之一側連結閘門罩(gaj;e housing) 656。於閘門罩656之内部可形成閘門654可水平移動的空 間。 其次’氣缸660可發揮藉由自外部所供給之氣壓而使閘 閥650水平運作的功能》於氣缸66〇可連結一對第2氣壓管 22 201118195 6.t一對第2氣壓管662當中,可將氣壓供給至任意的第 2祕官662,並將氣壓自其他第2氣壓管662排出的方式, 而使氣缸660可伸縮運作。此時,由於變更第2氣壓管級 氣壓的供給方向,可使氣缸_之運作方向變更,因而可輕 易地變更閘門654之移動方向。 以下,將參考第9圖m圖,來說明本發明之一實施 形態中’用以供給沉積氣體之裴置100之運作。 第9圖〜第12圖係顯示本發明之沉積物質供給部之 運作之圖。在此’第9圖及第10圖係顯示在第5圖之a方向的 構成圖,而第11圖及第12圖係顯示在第5圖之B方向的構成 圖。供參考,在第9圖〜第12圖中以陰影所表示之部分乃表 示沉積物質。 首先,操作員打開已連結至沉積物質供給管25〇上之閥 v,以使沉積物質可透過沉積物質供給管25〇自由移動。 其次,如第9圖所示,沉積物質貯藏部2〇〇中所貯藏的 沉積物質,可依自由落體之原理透過沉積物質供給管25〇往 沉積物負供給部5〇〇移動。爾後,沉積物質供給部5〇〇之旋 轉致動器522,可使旋轉供給台52〇旋轉、並可使旋轉供給 台520之填充部530位於沉積物質供給管250之正下方。藉 此,透過沉積物質供給管25〇所供給之沉積物質,會往填充 部530移動而可填充至填充部530。沉積物質雖會供給填充 至填充部530,但由於填充部530之下端會因隔離板540而封 鎖’因而無法往下部排出。 接著’ 一旦於填充部530之内側沉積物質之填充結束 23 201118195 後,旋轉供給台520可藉由旋轉致動器522而旋轉。如第1〇 圖所示可知’伴隨著旋轉供給台52〇之旋轉,填充部53〇會 從沉積物質供給管250之正下方而有所偏移。 接下來,如第11圖所示,旋轉致動器522可使旋轉供給 台520依所設定之任意角度—如9〇度—旋轉,以使填充部 530座落在隔離板540之供給孔550的正上方。此時,操作員 可藉由第1感測器560 ’檢查旋轉供給台52〇是否有依照所設 定之角度旋轉。由於填充部53〇位於隔離板54〇之供給孔55〇 的正上方,因此填充部53〇中所貯藏之沉積物質,可透過填 充部530之下部的供給孔55〇而供給至沉積物質蒸發部 300。此時’操作員可藉由第2感測器57〇,檢查沉積物質是 否有透過供給孔550落下而供給。 另一方面,當沉積氣體在沉積物質蒸發部3〇〇發生而供 給至沉積室時,必須防止沉積氣體回流至沉積物質供給部 500。又,在結束供給用以進行沉積步驟之沉積氣體後,以 備後續的沉積步驟需求,必須將殘留在沉積物質供給部5〇〇 之沉積物質去除。 因此,如第12圖所示,可透過回流防止氣體供給部· 供給回流防止氣體。即,使填充部530座落在回流防止氣體 供給部580之正下方後,一旦供給回流防止氣體,即可將所 供給之回流防止氣體,透過填充部530而供给至本體51〇之 内部。藉由如此所供給之氣體,本體510之内部可維持在預 定的壓力下,因而可防止沉積氣體自沉積物質蒸發部回 流至沉積物質供給部5〇〇。 24 201118195 又,透過回流防止氣體供給部580所供給之氣體,可使 填充部53G中所殘留的沉積物質排出。經排出之沉積物質係 透過供給孔550往沉積物質蒸發部3〇〇移動,藉此所殘留 的沉積物質可自沉積物質供給部5〇〇排出。 其次,透過沉積物質供給部5〇〇所定量供給之沉積物 質,可沉積於沉積物質蒸發部3〇〇之内側的沉積物質托架 610上。爾後,一旦使加熱器31〇運作,即可將以加熱器⑽ 所發熱之熱’施加敎積物質托架⑽上之沉積物f,°以將 沉積物質料沉積II體化,並連同透過氣體供給管6ι〇所供 給之載體氣體,通過氣體排氣管62〇而供給至沉積室。' 其次,在沉積步驟的結束後,為了排出沉積物質托架 610上所殘留之沉積物質,可藉由將氣壓供給至反轉致動器 620之一側的第1氣壓管622,來使反轉致動器62〇運作。藉 由反轉致動H㈣之旋轉運作,沉積物質托架⑽之上部與 下部將會反轉’故而所殘留的沉積物質將會落下。此時, 操作員可藉由第3感測器624 ’檢查反轉致動器62〇是否有 180度旋轉。 接著’閘閥650可與上述反轉致動器62〇之旋轉運作連 動而開闔運作。即’-旦以反轉致動器_反轉的方式,將 氣壓供給至任意的第1氣壓管622,同時氣壓亦將供給至已 連結於氣缸660之任意的第2氣壓管662。藉此,在沉積物質 托架610反轉時,閘門654會往開放閘門本體652之方向移 動’而使自沉積物質托架61Q落下之沉積物質,可輕易地往 沉積物質保管筒630移動。 25 201118195 接下來,沉積物質落下後,可透過反轉致動器62〇之第 1氣壓管622逆轉供給氣壓,而使沉積物質托架61〇恢復至原 來的狀態。此時,藉由亦將氣壓逆轉供給至氣缸66〇之第2 氣壓管662,可使閘門654往封鎖閘門本體652之方向移動, 而封鎖住往沉積物質保管筒63〇之途徑。 最後,落下之沉積物質可保管在沉積物質保管筒63〇。 此時,操作員可透過第3監視窗640檢查沉積物質之量,而 沉積物質保管筒630中所保管的沉積物質可在後續的沉積 步驟中使用,或亦可完全廢棄。 第13圖係顯示本發明之其他實施形態中,沉積物質供 給部500之構成的剖面圖。沉積物質供給部5〇〇係以中心軸 為基準呈對稱形態而構成,因而在圖式中,為利於把握沉 積物質供給部500之構成,以中心軸為基準,僅有顯示一側。 如第13圖所示可知,於旋轉供給台52〇之上部,以預定 高度形成有飛散防止顎590。 飛散防止顎590可發揮防止自沉積物質供給管25〇供給 至填充部530的沉積物質,飛散於填充部53〇之周圍的功 能。因此,飛散防止顎590係以與旋轉供給台52〇形成同心 圓之態樣而形成,在複數個飛散防止顎59〇之間可設置填充 部530。又,飛散防止顎590與填充部53〇之間可形成飛散防 止溝592。飛散防止溝592係以具有預定容積之態樣而形 成,可發揮使經骯散防止之沉積物質暫時性滯留的功能。 藉由具有此種構成之飛散防止顎59〇及飛散防止溝 592 ’可防止因沉積物質飛散於填充部53〇之周圍而影響到 26 201118195 沉積物質供給部500之運作的情況發生。第13圖中所示之沉 積物質供給部之構成及作用,除了飛散防止顎590與飛散防 止溝592以外,皆與第4圖及第5圖中所示之沉積物質供給部 500相同,因而於此省略此部分之相關詳細説明。 具有此種構成之本發明之用以供給沉積氣體之裝置 100,可在每一沉積步驟將惶量的沉積物質供給至沉積物質 蒸發部3 00。如此一來,在已使已供給至沉積物質蒸發部3 00 之沉積物質全部氣化而供給至沉積室的情況下,可在每一 沉積步驟來恆定維持沉積氣體之壓力,因此可使配置間的 沉積步驟之重現性及成品率突破性地提升。 此外,本發明之用以供給沉積氣體之裝置100,在各沉 積步驟的結束後,可使沉積物質蒸發部300中殘留的沉積物 質排出外部。藉此,可進一步穩定在每一沉積步驟中沉積 氣體之壓力,因而更可使配置間的沉積步驟之重現性及成 品率大幅向上提升。 本發明係以上述適當實施形態為例而圖示及説明,但 並非限於上述實施形態,可在不脫離本發明之精神範圍 内,由具有在當該發明所屬之技術領域之一般知識者,進 行多樣變形及變更。其變形例及變更例,必須視為本發明 及其所附加之專利申請範圍内中所屬。 【圖式簡單說明】 第1圖係顯示本發明之一實施形態中,用以供給沉積氣 體之裝置之構成之圖。 第2圖係顯示本發明之一實施形態十,沉積物質貯藏部 27 201118195 之一例之圖。 第3圖係顯示本發明之一實施形態中,沉積物質貯藏部 之其他例之圖。 第4圖係顯示本發明之一實施形態中,沉積物質供給部 之構成的分解立體圖。 第5圖係顯示本發明之一實施形態中,沉積物質供給部 之構成的局部剖面立體圖。 第6圖係顯示本發明之一實施形態中,沉積物質蒸發部 及沉積物質排出部之構成之圖。 第7圖係顯示本發明之一實施形態中,沉積物質蒸發部 及沉積物質排出部之構成的分解立體圖。 第8圖係顯示本發明之一實施形態中,沉積物質蒸發部 及沉積物質排出部之構成的剖面圖。 第9圖係顯示本發明之一實施形態中,用以供給沉積氣 體之裝置之運作之圖。 第10圖係顯示本發明之一實施形態中,用以供給沉積 氣體之裝置之運作之圖。 第11圖係顯示本發明之一實施形態中,用以供給沉積 氣體之裝置之運作之圖。 第12圖係顯示本發明之一實施形態中,用以供給沉積 氣體之裝置之運作之圖。 第13圖係顯示本發明之其他實施形態中,沉積物質供 給部之構成的剖面圖。 28 201118195 【主要元件符號說明】 100···用以供給沉積氣體之裝 置 200···沉積物質貯藏部 210…沖洗氣體供給管 220…過濾部 250…沉積物質供給管 260…第2監視窗 270…冷卻單元 300…沉積物質蒸發部 302、514、518、632…密封用 Ο 環 310…加熱器 312…電源線 314…溫度測定器 400…載體氣體供給部 410…氣體供給管 420..·氣體排氣管 500…沉積物質供給部 502…冷卻管 510…本體 512…蓋 516…環 520…旋轉供給台 522…旋轉致動器 530…填充部 540…隔離板 550…供給孔 560…第1感測器 570…第2感測器 572…固定支架 574…第1透明窗 576…連結帽 580.. ·回流防止氣體供給部 590···飛散防止顎 592···飛散防止溝 600…沉積物質排出部 610".沉積物質托架 612…加熱器連結軸 620···反轉致動器 622…第1氣壓管 624…第3感測器 625…感測止擋 626.. ·固定凸緣 628…固定環 630…沉積物質保管筒 634…固定板 29 201118195 640…第3監視窗 642…第2透明窗 650…閘閥 652…閥本體 654…間門 656···閘門罩 660…氣缸 662…第2氣壓管 A…方向 B…方向 V…閥 30BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for supplying a deposition gas, which can be used to uniformly supply a deposition material. More particularly, the present invention relates to a device for supplying a deposition gas which is supplied with a uniform amount of deposition gas at each deposition step in a thin film deposition step for fabricating a semiconductor device or a flat panel display. [Prior Art 3] In the manufacture of a semiconductor element or a flat panel display, a wide variety of film depositions are possible. As a deposition method of the film, it can be roughly classified into, for example, PVD (Physical Vapor Deposition) or Chemical Vapor Deposition (CVD: Chemical Vapor Deposition). The chemical vapor deposition method is a method for moving a substance to be deposited on a surface of a substrate in a gas form, and depositing a film on the surface of the substrate by a gas reaction, and forming various films by selecting a deposition material. And it has the advantage of being able to perform a large amount of job processing using relatively simple steps, and thus is widely utilized. SUMMARY OF THE INVENTION The subject of the invention is to solve the problem. In the chemical vapor deposition method, the deposition pressure is directly affected by the flow rate of the deposition gas supplied by the device for supplying the deposition gas (ie, the pressure of the deposition gas 201118195). . The foregoing means for supplying a deposition gas is supplied to a deposition material to be deposited. Namely, in the chemical vapor deposition method, in order to appropriately control the deposition pressure, the deposition gas pressure of the means for supplying the deposition gas must be adjusted very accurately. The pressure adjustment of the deposition gas is particularly important in the case where the deposition rate must be adjusted precisely and necessarily. However, in the conventional device for supplying a deposition gas, since the amount of deposit remaining in the evaporation portion of the deposition material in which the deposition gas is generated may cause the evaporation amount of the deposition material to be different, it is impossible to correctly Adjust the pressure of the deposition gas. Further, since the uneven shape and surface area formed on the surface of the deposited material are continuously changed by heating the deposited material and repeating the volatilization and agglomeration process, the amount of evaporation of the deposition gas occurring on the surface of the deposited material is different, and thus the correctness cannot be correctly performed. Adjust the deposition gas pressure. As a result, the deposition step is performed in a state where the pressure of the deposition gas cannot be properly adjusted, which causes a problem that the reproducibility and the yield of the film formed on the substrate are lowered. Accordingly, the present invention is to solve the above problems, and an object of the present invention is to provide a device for supplying a deposition gas, which can supply a uniform amount of deposition material to a deposition portion of a deposition material, and is supplied at each deposition step. A uniform amount of deposition gas. Further, it is an object of the present invention to provide a device for supplying a deposition gas which, after the deposition step, discharges the deposition material remaining in the evaporation portion of the deposition material to the outside, and supplies a uniform amount of deposition gas in each deposition step. . Means for Solving the Problem 201118195 In order to achieve the above object, the apparatus for supplying a deposition gas of the present invention has the following: a deposit storage portion for storing a deposit material; and a deposition material evaporation portion for the deposit material And a carrier gas supply unit that supplies a carrier gas; wherein the device for supplying a deposition gas further includes a deposition material supply unit disposed in the deposition material storage unit and In the deposition material evaporation portion, the deposition material supply portion supplies a certain amount of the deposition material to the evaporation portion of the deposition material in each deposition step. The apparatus for supplying a deposition gas further includes a deposition material discharge unit and is disposed in connection with the deposition material evaporation unit. The depositing substance discharge portion may discharge the deposition material remaining in the evaporation portion of the deposition material in each deposition step. The apparatus for supplying a deposition gas may be further provided with a heater disposed inside the evaporation portion of the deposition material. The heater may additionally have a temperature detector for checking the temperature. The depositing material storage unit may include a filter unit that allows only the deposition material of a certain size or smaller to pass. The depositing material storage unit may further include a first monitoring window for observing the deposited material stored inside. The apparatus for supplying a deposition gas may further include a second monitor window for observing that the depositing substance is supplied from the deposition substance storage unit to the deposition material supply unit. The deposition material supply unit includes a main body, a rotation supply table that is rotatably provided inside the main body, a filling unit that is formed in the 201118195 rotary supply table, and a partition plate that separates the inside and the inside of the main body. And a supply hole formed in the partition plate so as to correspond to the filling portion; and the filling portion is filled with the deposition material supplied from the outside, and the rotation supply table is rotated at an arbitrary angle. When the filling portion is seated on the upper portion of the supply hole, the deposited material filled in the filling portion may fall through the supply hole and be supplied to the deposition material evaporation portion. The apparatus for supplying a deposition gas may further include a first sensor for inspecting whether or not the rotation supply stage has a rotation. The apparatus for supplying a deposition gas may further include a second sensor for inspecting whether or not the deposited material is dropped. The apparatus for supplying a deposition gas may further include a backflow prevention gas supply portion for preventing the deposition gas from flowing back to the deposition material supply portion by the evaporation portion of the deposition material. The deposition material is supplied to the filling portion through a deposition material supply pipe, and the supply hole is formed at an arbitrary angular distance from the deposition material supply pipe. The deposition material discharge unit includes a deposition material cradle that is vertically reversible inside the deposition material evaporation unit, and a reverse actuator that is coupled to the deposition substance carrier. And a depositing material storage cylinder for storing the depositing material discharged from the evaporation portion of the depositing material; wherein the depositing material carrier is reversed by the operation of the reverse actuator, and the depositing substance bracket The foregoing deposited material can be moved to the deposit storage cartridge. 201118195 The device for supplying a deposition gas, further comprising a tubular heater connecting shaft formed on the deposition substance carrier and inserting the inside into the heater, the heater connecting shaft and the reverse actuator The rotating shaft can be configured on the coaxial. The apparatus for supplying a deposition gas may further include a third sensor for inspecting whether or not the reverse actuator is rotated. The device for supplying a deposition gas may further include: a gate valve that is opened in conjunction with the deposition substance carrier; and a pneumatic cylinder connected to the gate valve; When the bracket is reversed, the pneumatic cylinder opens the gate valve and discharges the deposited material. The deposit storage cylinder may further include a third monitor window for confirming the discharge of the deposit. The deposition substance evaporation portion may further have a dispersion portion for causing the deposition material to be uniformly dispersed. The deposition material evaporation portion further includes a heat conduction portion disposed inside, and the heat of the heater can be conducted to a central portion of the deposition material evaporation portion by the heat conduction portion. EFFECT OF THE INVENTION According to the present invention, in the film deposition step, since a uniform amount of deposition gas can be supplied in each deposition step, there is an effect of making the film deposition step reproducible and the yield is improved upward. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing the configuration of an apparatus for supplying a deposited gas 201118195 in an embodiment of the present invention. Fig. 2 is a view showing an example of a deposit storage portion in an embodiment of the present invention. Fig. 3 is a view showing another example of the depositing material storage portion in an embodiment of the present invention. Fig. 4 is an exploded perspective view showing the configuration of a deposition material supply unit in an embodiment of the present invention. Fig. 5 is a partial cross-sectional perspective view showing the configuration of a deposition material supply unit in an embodiment of the present invention. Fig. 6 is a view showing the configuration of a deposition material evaporation portion and a deposition material discharge portion in an embodiment of the present invention. Fig. 7 is an exploded perspective view showing the configuration of a deposition material evaporation portion and a deposition material discharge portion in an embodiment of the present invention. Fig. 8 is a cross-sectional view showing the configuration of a deposition material evaporation portion and a deposition material discharge portion in an embodiment of the present invention. Fig. 9 is a view showing the operation of a device for supplying a deposited gas in an embodiment of the present invention. Fig. 10 is a view showing the operation of a device for supplying a deposition gas in an embodiment of the present invention. Fig. 11 is a view showing the operation of a device for supplying a deposition gas in an embodiment of the present invention. Fig. 12 is a view showing the operation of a device for supplying a deposition gas in an embodiment of the present invention. Figure 13 is a cross-sectional view showing the configuration of a deposited material for the portion of the 201118195 portion in another embodiment of the present invention. I. Embodiment 3 Mode for Carrying Out the Invention A detailed description of the present invention, which will be described later, will be described with reference to the accompanying drawings which are exemplified by a specific embodiment in which the present invention can be embodied. The embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. The various embodiments of the present invention are different from each other, but need not be mutually exclusive. For example, the specific shapes, structures, and characteristics described herein may be realized in other embodiments without departing from the spirit and scope of the invention. In addition, it is to be understood that the position and arrangement of the individual components in the various embodiments disclosed herein can be modified without departing from the spirit and scope of the invention. Therefore, the detailed description is not to be construed as limiting the scope of the invention, and the scope of the invention is limited only by the scope of the claims and the scope of the appended claims. In the drawings, like reference numerals indicate the same or similar functions, lengths and areas, thicknesses, and the like from various sides, and the form may be exaggerated for convenience of explanation. In the following, the present invention can be easily implemented by a person having ordinary skill in the art to which the present invention pertains, and a detailed description of the present invention will be described in detail with reference to the attached drawings. Fig. 1 is a view showing the configuration of an apparatus 100 for supplying a deposited gas in an embodiment of the present invention. First, as shown in Fig. 1, the apparatus for supplying a deposition gas of the present invention 201118195 may be provided with a deposition material storage unit 200, a deposition material evaporation unit 3, a carrier gas supply unit 400, and a deposition material supply unit. 5〇〇 constitutes. Here, the 'deposited material storage unit 200, the deposition material evaporation unit 3', and the deposition material supply unit 500 are arranged from the upper portion to the lower portion by the deposition material supply tube 25, and the deposited substance can be deposited from the deposited substance by the principle of free fall. The storage unit 200 is supplied to the deposition material supply unit 500, and is supplied from the deposition material supply unit 5 to the deposition material evaporation unit 300. Hereinafter, the configuration of the apparatus for supplying a deposition gas in the open state of the present invention will be described in detail with reference to Figs. 2 to 5'. First, the deposited material storage unit 200 functions to store a predetermined amount of deposited matter. Further, the deposit storage unit 200 functions to supply the deposition material to the deposition material evaporation unit 300 which will be described later. Fig. 2 is a view showing an example of a deposit storage unit 2 in an embodiment of the present invention. As shown in Fig. 2, the cumbersome storage unit 200 is constructed for a container having a predetermined internal volume for storing deposits. The deposited material storage portion 200 is preferably formed in such a manner that no foreign matter invades or the internal deposited material flows out. The material f of the deposited material storage portion may contain unrecorded steel. Further, as shown in Fig. 2, it can be confirmed that the deposition material supply pipe 25A is connected to the deposition storage portion 2_. The material supply pipe 2_ can be supplied to the square 4' of the sedimentation evaporation unit 300 by deposits deposited in the sediment = Bedding reservoir 20 (), and the deposition material storage portion and the deposition material evaporation portion are connected. The unillustrated symbol "210" indicates that the purge gas 201118195 is supplied to the flushing gas supply pipe of the deposit storage unit 200. Fig. 3 is a view showing another example of the deposited material storage unit 200 in the embodiment of the present invention. As shown in Fig. 3, a pass portion 22 () having a mesh size can be disposed inside the deposit storage unit 200. The filter portion 22() can use a mesh having a certain mesh size. The material f of the transition portion 22 may contain iron or inscription. The transition portion 22 is further configured to supply only the deposition material of a predetermined size among the deposits f supplied from the outside to the deposition material evaporation portion 3, that is, the mesh of the (4) holes is smaller. Thereby, since only the deposition material of a predetermined size or less can be supplied to the material portion of the deposition material, it is possible to prevent the deposit f from being supplied to the tube due to the uneven particle size of the deposition material, and the phenomenon of clogging. In order to enhance the shouting effect of the overturning portion 22G, a plurality of shouting portions (10) may be disposed, and at this time, the mesh sizes of the respective transition portions 220 may be different from each other. Further, although not shown, a first monitor window in which the depositing material storage portion 2_ can be observed can be disposed on one side of the deposited material storage unit 200. The operator can visually confirm the deposit quality and the state of the deposited material in the sediment f storage unit through the first monitoring window. The configuration and operation of the deposit storage unit 200 shown in Fig. 3 are the same as those of the deposit storage unit 200 shown in Fig. 2 except for the filter unit 220 and the first monitor window, so the correlation of this portion is omitted. Detailed description. On the other hand, referring again to Fig. 1, it can be confirmed that the valve V is provided on the deposition material supply pipe 250 that connects the deposition material storage 卩200 and the deposition material evaporation unit 300. The valve v can perform two functions of controlling the supply of the deposition material from the deposit 11 201118195 mass storage portion 200 to the deposition material supply portion 500 when performing the maintenance operation of the apparatus 100 for supplying the deposition gas; After the quantitative deposition material is supplied from the deposition material supply unit 5 to the deposition material evaporation unit 300, the additional deposition material is no longer supplied to the deposition material evaporation unit 300, and the deposition material supply tube 250 is completely blocked. In order to confirm the supply of the deposition material to the deposition material supply unit 500, the second monitoring window 260 may be provided in the deposition material supply pipe 250' to which the k deposition material storage unit 200 is connected to the deposition material supply unit 5''. The operator can confirm that the deposited material is supplied to the deposition material supply unit 500 through the valve v through the second monitoring window 260 provided at the lower end of the valve V. The material of the second monitoring window 26 can contain quartz. Further, referring again to Fig. 1, it is understood that the cooling unit 270 can be provided on the deposition material supply pipe 250 to which the deposition material supply portion 500 and the deposition material evaporation portion 300 which will be described later are connected. The cooling unit 270 functions to prevent the heat applied when the deposition gas of the deposition substance evaporation portion 300 from occurring, and is transmitted to the deposition material supply portion 5 through the deposition material supply pipe 250. Next, the deposition material evaporation portion 3 is configured to have a predetermined internal volume, and functions to apply heat to the deposited deposition material to cause deposition gas to be generated. A sealing ring 302 can be disposed at a portion where the deposition material evaporation portion 3 is connected to the deposition material supply pipe 25A. The specific (4) of the deposition substance evaporation unit 3 will be described later with reference to Figs. 6 to 8 . Next, the carrier gas supply unit 4 serves to supply the carrier gas to the evaporation of the deposited material. Here, the dragon_reading effect is effective for moving the deposition gas generated in the deposition material evaporation portion 300 to the deposition chamber (not shown). Referring again to Fig. 1, the carrier gas supply unit 400 may be configured to include a gas 12 201118195 supply pipe 410 and a gas exhaust pipe 420. The gas supply pipe 410 and the gas exhaust pipe 420 can be coupled to one side of the deposition material evaporation portion 300. Further, a valve for controlling the movement of the gas may be connected to the gas supply pipe 410 and the gas exhaust pipe 420. On the other hand, as the carrier gas, high purity argon, helium, or nitrogen (mass) which is inert and which can easily move the deposition gas to the deposition chamber can be used. Next, the deposition material supply unit 500 can function to adjust the quality of the deposit supplied to the deposition material evaporation unit 3 through the deposition material supply pipe 250'. In particular, the deposition material supply portion 5 of the present invention is provided so that a uniform amount of deposition material can be supplied to the deposition material evaporation portion 300 at every deposition step. Hereinafter, the configuration of the deposition material supply unit 500 and the functions of the respective constituent elements will be described with reference to Figs. 4 and 5 . Fig. 4 and Fig. 5 are an exploded perspective view and a partial cross-sectional perspective view showing the configuration of the deposition material supply unit 500 in the embodiment of the present invention. As shown in Figs. 4 and 5, the deposition material supply unit 5a basically has a main body 510, a rotary supply stage 520, a filling portion 53A, a partition plate 54A, and a supply hole 550. Further, the deposition material supply unit 5 may further include a second sensor 56A and a second sensor 570. Further, the deposition material supply unit 5 may further include a backflow prevention gas supply unit 580. First, the main body 51G functions as a skeleton in which the constituent elements of the deposit f supply unit 5 are provided. The body 5 (1) may be coupled to the intermediate portion 4 of the deposition material supply b 250 to be formed in a cylindrical shape having a predetermined space inside. 13 201118195 Further, the body 510 is stably formed in such a manner that no external foreign matter intrudes or internal deposition material flows out, and the material of the body 510 may contain stainless steel. Further, the inner lower end of the body 510 is configured in an inverted triangular cross-sectional shape so that the deposited material can be easily discharged to the outside of the body 510. In order to repair and manage the components disposed inside the body 510, an openable cover 512 may be disposed on the upper portion of the body 510. The material of the cover 512 may include stainless steel as the body 510. A sealing ring 514 can be disposed at a joint portion between the cover 512 and the body 510. On the other hand, a pair of cooling tubes 502 may be coupled to one side of the main body 51, and a backflow prevention gas supply unit 580, which will be described later, may be coupled to the upper portion of the main body 510. Then, the rotary feed table 520 is provided to be rotatable inside the main body 51, and functions to supply a constant amount of deposition material from the deposition material storage unit 2 to the > The rotary feed table 520 can be constructed in the form of a circular sheet having a predetermined thickness. The central shaft of the rotary feed table 520 can be coupled to the rotary actuator 522, and by the operation of the rotary actuator 522, the rotary feed table 520 can be rotated. At this time, the rotary feed table 52 can be rotated in accordance with the angle of any set — - for example, 9 degrees each time. On the other hand, the rotary actuator 522 can be disposed on the outer side of the outer side of the body 510. In order to facilitate the rotation of the rotation supply table 520, a ring 516 of a Teflon material may be further disposed on the upper portion and the lower portion of the rotation supply table 52A. Next, the filling portion 530 is formed at a predetermined position of the rotary supply table 520, and functions as a space filled with the deposition material supplied through the deposition material supply pipe 25A. The filling portion 530 may be configured in a cylindrical space having a predetermined volume. The volume of the filling portion 53 is a depositing material capable of storing the required amount of the gas generated in 201118195 required for the deposition step. Further, as shown in FIGS. 4 and 5, an angular distance of 90 degrees is formed. However, it is preferable to have a more sturdy substance. The tiling of the two filling portions 530 is not limited to this, and the angle of the ancient height - for example, the angular distance of 18 G degrees - is formed. Next, the partition plate 540 is provided on the lower side of the rotary feed table 52A to function to divide the internal space of the main body 5H) into an upper portion and a lower portion. Further, as will be described later, the spacer 540 functions to adjust the supply of the deposition material filled in the filling portion 530 through the supply hole. Next, the supply hole 550 is formed in the partition plate 54A, and functions to supply the deposition material having passed through the filling portion 5 3 G to the evaporation portion _ of the deposit f. The supply hole 550 is preferably formed by an angular interval of an arbitrary sound directly under the deposition material supply pipe 25, for example, an interval of the filling portion 530: 9 turns angular distance. Further, the diameter of the supply hole 550 is preferably set to be the same as the diameter of the lower end portion of the filling portion 53A. In the deposition material supply unit 5 having such a configuration, the deposition material is supplied to the deposition material evaporation unit 3 by sequentially rotating the filling portion 530 of the supply table 520 and the supply hole 550 of the separator 54. . At this time, the rotary feed table 520 is rotated, and each time the filling portion 53 of the rotary supply table 52 is seated directly above the supply hole 550, there is deposition of only the volume of the volume of the filling portion 53. The substance is supplied to the deposition material evaporation unit 3〇〇β. Here, the volume of the filling portion 530 is constant, whereby the amount of the deposition material filled in the filling portion 53〇 is also constant, so that the rotation supply station 52 can be used. During the rotation period, a constant amount of deposition material is supplied to the deposition material evaporation portion 3A. Further, it can be seen that the number of the filling portions 530 of the 201118195 formed on the rotary supply table 5 2 is two, but it is not limited thereto, and the supply amount per time of the deposition material can be obtained. And make a variety of changes. At this time, in order to increase the supply amount per deposition time, the % rotation period of the rotation supply stage 52 may be shortened in the same number of filling portions 530, or the volume of the filling portion wo may be made - for example, the filling portion is straight The hollow or height (i.e., the thickness of the rotary feed table 520) is increased. In other words, in the present invention, the amount of the deposition material per unit time supplied to the deposition material evaporation portion 300 through the deposition material supply portion 5 can be changed by the rotation period of the rotation supply table 520, and the filling portion 53 The number, the volume of the filling portion 530, and the like are variously adjusted. In the present invention, in any of the above cases, the supply amount per deposition time of the deposition substance evaporation portion 300 can be made constant. Next, the first sensor 560 is provided at a connection portion between the rotary feed table 520 and the rotary actuator 522, and functions to check whether or not the rotary feed table 52 is rotated at a set angle. The first sensor 560 can be constituted by two sensor dogs (not shown) and a dog detective portion (not shown). The sensing stopper and the stopper detecting portion may be provided at a predetermined portion that connects the shafts of the rotary supply table 520 and the rotary actuator 522. At this time, the operator can check whether the sensing stopper is in contact with the stopper detecting portion, and can confirm whether or not the rotary supply table 520 is rotated at a predetermined rotation angle, such as 9 degrees. Next, the second sensor 570 is disposed on the lower side of the body 51, and functions to check whether or not the deposited material has fallen through the supply hole 55. The second sensor 570 can be provided with a light sensor that utilizes visible light. The second sensor wo can be disposed on one side of the coupling cap 576 which is disposed on the outer side of the outer side of the body 510 to fix the bracket 572 configuration. On the other hand, in order to facilitate the arrangement of the second sensor 57A and the 16201118195 first transparent window 574, the coupling cap 576 is disposed on the lower portion of the outer side of the body 51, and is connected to the joint portion of the body 510 and the coupling cap 576. The sealing ring 518 is configured. Then, the backflow prevention gas supply unit 58 is connected to the upper portion of the main body 51, and functions to prevent the deposition gas generated in the deposition material evaporation unit 3 from flowing back to the deposition material supply unit 500. Therefore, the backflow prevention gas supply unit 580 can supply the backflow prevention gas to the body 51. The backflow prevention gas that has been supplied to the body 510 can not only function to maintain the inside of the body 510 in a predetermined pressure state, but also can remain in the body. The function of discharging the deposited matter inside the body 51〇. The recirculation preventing gas is supplied to the recirculation preventing gas supply unit 58 through the same line as the carrier gas supply unit 400. Reflux Prevents the gas from being argon. On the other hand, referring again to Fig. 1, it is understood that the apparatus 1 for supplying a deposition gas of the present invention may further include a deposition material discharge portion 6A. The deposition material discharge portion 600 functions to discharge the deposition material remaining in the deposition material evaporation portion 300. In other words, the deposition material discharge portion 6 〇〇 can function to discharge the deposition material that has not been supplied to the > accumulation chamber in the sediment S which has been supplied to the deposition material evaporation portion 3 以 by the principle of free fall. Hereinafter, the configuration of the deposition material evaporation unit 3 and the deposition material discharge unit 600 and the functions of the respective constituent elements will be described with reference to Figs. 6 to 8 . Fig. 6, Fig. 7, and Fig. 8 are views showing a configuration, an exploded view, a sectional view, and a cross-sectional view of the deposition medium 300 and the deposition material discharge unit 600 of the present invention. As shown in Fig. 6 to Fig. 8, the deposition material evaporation unit 3 can be configured by heating 17 201118195. The heater 310 is disposed inside the deposition material evaporation portion 3, and functions to generate heat required for vaporization of the deposition material. The heat generated by the heater 310 can be applied to the deposition material placed on the deposition substance holder 61 to be described later. The heater 31A can be configured in the shape of a circular rod having a predetermined length. In order to increase the heating effect of the heater 310, heat generation can be concentrated at the end of the heater 310, i.e., the end of the heater 310 in contact with the deposition substance holder 610. The heater 310 is connected to a power supply line 312 for supplying heat to generate heat, and a temperature measuring device 314 for measuring the heat generated. As the temperature measuring device 314, and using a thermocouple. Thermocouples are well-known components in the art, and thus detailed descriptions of the constitution and operation of thermocouples are omitted herein. The end portion of the heater 310 can be closely coupled to a deposition material holder 610, which will be described later, and the connection between the heater 310 and the deposition material holder 61 will be described later. The other aspect is not shown, but a conical dispersion portion (not shown) may be disposed on the inner lower portion of the deposition material evaporation portion. The dispersing part can function as a deposited substance that can be applied to the upper part of the dispersing part and then function uniformly on the knives. Thereby, the heat of the heater (10) can be quickly and = communicated to the deposit material which has been supplied to the deposition material evaporation portion 00', thereby making it easier to convert the deposition material into a deposition gas. _ The symmetrical plane of the team's main symmetry can form a step pattern (not shown). In the stepped open {magnetic' trapezoidal nucleus, the sedimentary matter is regular, and 7 can be distributed to the dispersed (four) Wei. At this time, the shape of the shapeable wire is located at the edge of the edge portion of the dispersion 18 201118195, which is larger than the width of the stage at the central portion of the dispersion portion. With this stepped mode, the heat of the heater 31 can be efficiently transferred to the deposited material. Further, in the slanted inclined surface in the conical dispersion portion, a 1/4 spherical pattern (not shown) may be formed instead of the stepped pattern. In some cases, there is a 1/4 globular pattern that is straightforward, which is more conducive to dispersing the deposited material than the trapezoidal pattern of the quadrilateral. On the other hand, although not shown, a heat conduction portion (not shown) may be disposed on the inner side of the deposition material evaporation portion 3A. The heat conduction portion can function to rapidly transfer the heat generated in the heater 310 from the outer wall of the deposition material evaporation portion 3 to the center portion of the deposition material evaporation portion 300. Thereby, the heating of the deposition material can be uniformly performed as a whole, and local condensation and hardening of the deposition material can be prevented. The heat conducting portion can be configured in the form of a ball, a mesh hole, and a hot plate. The material of the heat transfer portion may be copper, aluminum or stainless steel. As shown in Figs. 6 to 8 , the deposition material discharge unit 600 may be provided with a deposition material holder 610, a reverse actuator 620, and a deposition material storage cylinder 630. Further, the deposition material discharge unit 600 may further include a gate valve 650 and a cylinder 660. First, the deposition material holder 610 is provided to be vertically reversed inside the deposition material evaporation unit 300, and functions to temporarily retain the deposition material supplied through the deposition material supply unit 500. At this time, it is preferable that the upper surface of the deposition substance holder 610 is formed in a flat shape so that the deposition material can be easily deposited on the deposition substance holder 610. Further, it is preferable that the edge of the deposition material truss 610 seals the inner peripheral surface of the deposition material evaporation portion 300 so that the deposited material cannot escape from between the 201118195 deposition substance carrier 610 and the inner wall of the deposition material evaporation portion 300. A heater coupling shaft 612 may be formed at a lower portion of the deposition substance carrier 610. The heater coupling shaft 612 can be configured in a tubular shape having a predetermined length. A heater 310 can be inserted inside the heater coupling shaft 612. It is preferable that the central axis of the heater connecting shaft 612 and the central axis of the rotating shaft of the reverse actuator 620 to be described later are coaxial. When the heater coupling shaft 612 is inserted with the heater 310, a flange (not shown) and a fixing ring (not shown) may be additionally disposed in order to prevent the heater 310 from coming off and flowing. The deposition material holder 61 and the heater connection shaft 612 can be constructed using a metal material that is easy to heat transfer, and can be constructed using the same material. Next, the reverse actuator 620 is coupled to one side of the deposition material holder 61, and functions to reverse the deposition material holder 61. Therefore, the rotating shaft of the reverse actuator 620 can be coupled to one side of the deposition substance holder 61. In order to secure the connection between the deposition substance carrier 610 and the reverse actuator 62, a fixing flange 626 and a fixing ring 628 may be disposed. The reverse actuator 620 can operate by air pressure. For the operation of the reverse actuator 620, a pair of i-th pneumatic tubes 622 may be coupled to one side of the reverse actuator 620. In the pair of first air pressure tubes 622, the air pressure is supplied to the arbitrary first air pressure controller 622, and the air pressure is discharged from the other first air pressure tube 622, so that the reverse actuator 620 can be performed. Rotate operation. When the supply direction of the air pressure of the first air pressure controller 622 is changed, the rotation direction of the reverse actuator 62 can be changed. In the present embodiment, the reverse actuator 62 can be rotated once. On the other hand, in order to check the rotation operation of the reverse actuator 62, a plurality of third sensors 624 may be provided in 201118195. The third sensor 624 is preferably provided at an angular interval of 180 degrees with respect to the rotation axis of the reverse actuator 62A. The operator can check whether the sensing stop 625, which has been disposed on the rotating shaft of the reverse actuator 620, is in contact with the third sensor 624, and can confirm whether the reverse actuator 620 has 18 degrees of rotation. The deposition substance holder 610 can be reversed by the operation of the reverse actuator 620 having such a configuration. By the reversal of the deposition substance holder 610, the deposition material deposited on the deposition substance holder 610 can be lowered to the lower side. Next, the deposition material storage cylinder 630 is disposed below the deposition material evaporation unit 300, and functions to store the discharged deposition material. The deposited material that has been stored in the sediment storage cartridge 630 can be reused for subsequent deposition steps or can be completely discarded. The deposition substance storage cylinder 630 can be constructed in a cylindrical shape having a predetermined internal volume. As long as the depositable material can be stored, the deposited matter storage cylinder 630 can be formed in various forms in addition to the cylindrical shape. On the side of one side of the deposition material storage cylinder 630, a third monitoring window 640 for visually confirming the deposition material in the deposition material storage cylinder 630 can be formed in a predetermined size. The third transparent window 642 can be disposed in the third monitor window 640, which can isolate the inside and the outside of the deposited substance storage cylinder 630, and is easy to confirm the deposition material. The material of the second transparent window 642 may contain quartz. Here, when the size of the second transparent window 642 is made to match the size of the third monitor window 640, a gap may occur between the outer surface of the second transparent window 642 and the inner surface of the third monitor window 640. In order to prevent this from occurring, the second transparent window 642 is preferably disposed in such a manner that the outer peripheral surface of the second transparent window 642 can seal the inner peripheral surface of the deposited material storage cylinder 630. On the other hand, in the present embodiment, the second transparent window 642 is formed in a cylindrical shape in accordance with the shape of the deposition material storage cylinder 63. The deposition material storage cylinder 630 and the gate valve 650 can be firmly coupled by the sealing ring 632 and the fixing plate 634. Next, the gate valve 650 is disposed between the deposition material evaporation portion 3 and the deposition material storage cylinder 630, and functions to control the movement of the discharged deposition material. The gate valve 650 can be opened in conjunction with the operation of the deposition substance holder 61. More specifically, once the deposition substance holder 61 is reversed, the gate valve 65A will be opened to allow the deposition material falling from the deposition material holder 61 to pass, and once the deposition substance holder 610 is restored to the original position, Then, the gate valve 65〇 can be blocked to make the deposited material unable to pass. Further, as shown in Fig. 8, the gate valve 65A may be configured to include a valve body 652 and a shutter 654. First, the valve body 652 functions to connect the deposition material evaporation portion 3 and the deposition material storage cylinder 630. The valve body 652 is tubular in configuration and can be opened by a gate 654. Next, the gate 654 has a flat plate structure and functions to move horizontally by the cylinder 66. Here, a gate cover (gaj; e housing) 656 may be coupled to one side of the valve body 652 in order to facilitate movement of the gate 654 and the cylinder 66'. Inside the shutter cover 656, a space in which the gate 654 can move horizontally can be formed. Next, the "cylinder 660 can function to operate the gate valve 650 horizontally by the air pressure supplied from the outside". The cylinder 66 can be coupled to a pair of second air tubes 22 201118195. Among the pair of second air pressure tubes 662, the air pressure can be supplied to any of the second secrets 662, and the air pressure can be discharged from the other second air tubes 662, so that the air cylinder 660 can be operated in a telescopic manner. At this time, since the supply direction of the second pneumatic tube stage air pressure is changed, the operation direction of the cylinder _ can be changed, and the moving direction of the shutter 654 can be easily changed. Hereinafter, the operation of the apparatus 100 for supplying a deposition gas in an embodiment of the present invention will be described with reference to Fig. 9m. Fig. 9 to Fig. 12 are views showing the operation of the deposition material supply portion of the present invention. Here, the ninth and tenth drawings show the configuration in the a direction of Fig. 5, and the eleventh and twelfth drawings show the configuration in the B direction of Fig. 5. For reference, the portions indicated by hatching in Figs. 9 to 12 represent deposition materials. First, the operator opens the valve v that has been attached to the deposition material supply pipe 25 to allow the deposition material to freely move through the deposition material supply pipe 25. Next, as shown in Fig. 9, the deposited material stored in the deposit storage unit 2 can be moved to the sediment negative supply unit 5 through the deposition material supply pipe 25 in accordance with the principle of free fall. Thereafter, the rotary actuator 522 of the deposition material supply unit 5 rotates the rotary supply table 52 and allows the filling portion 530 of the rotary supply table 520 to be positioned directly below the deposition material supply pipe 250. Thereby, the deposited material supplied through the deposition material supply pipe 25 is moved to the filling portion 530 to be filled into the filling portion 530. Although the deposited material is supplied to the filling portion 530, since the lower end of the filling portion 530 is blocked by the partitioning plate 540, it cannot be discharged to the lower portion. Then, once the filling of the deposited material on the inside of the filling portion 530 is completed 23 201118195, the rotary supply table 520 can be rotated by the rotary actuator 522. As shown in Fig. 1, the filling portion 53 is offset from directly below the deposition material supply pipe 250 as the rotation of the rotary supply table 52 is rotated. Next, as shown in FIG. 11, the rotary actuator 522 can rotate the rotary supply table 520 at any angle set, such as 9 degrees, so that the filling portion 530 is seated in the supply hole 550 of the spacer 540. Just above it. At this time, the operator can check whether the rotary feed table 52 is rotated according to the set angle by the first sensor 560'. Since the filling portion 53 is located directly above the supply hole 55〇 of the partition plate 54〇, the deposited material stored in the filling portion 53〇 can be supplied to the deposition material evaporation portion through the supply hole 55〇 at the lower portion of the filling portion 530. 300. At this time, the operator can check whether or not the deposited material is dropped through the supply hole 550 by the second sensor 57 〇. On the other hand, when the deposition gas is generated in the deposition material evaporation portion 3 to be supplied to the deposition chamber, it is necessary to prevent the deposition gas from flowing back to the deposition material supply portion 500. Further, after the supply of the deposition gas for the deposition step is completed, the deposition material remaining in the deposition material supply portion 5 must be removed in order to prepare for the subsequent deposition step. Therefore, as shown in Fig. 12, the gas supply preventing unit can be supplied through the recirculation to supply the backflow prevention gas. In other words, when the filling portion 530 is placed directly under the backflow prevention gas supply unit 580, the supply of the backflow prevention gas can be supplied to the inside of the body 51 by passing through the filling portion 530 once the backflow prevention gas is supplied. With the gas thus supplied, the inside of the body 510 can be maintained at a predetermined pressure, thereby preventing the deposition gas from flowing back to the deposition material supply portion 5 from the evaporation portion of the deposition material. Further, the gas supplied from the gas supply unit 580 is prevented from being discharged by the backflow, and the deposited substances remaining in the filled portion 53G can be discharged. The discharged deposition material is moved to the deposition material evaporation portion 3 through the supply hole 550, whereby the remaining deposition material can be discharged from the deposition material supply portion 5?. Next, the deposit material quantitatively supplied through the deposition material supply portion 5 can be deposited on the deposition material holder 610 inside the deposition material evaporation portion 3A. Thereafter, once the heater 31 is operated, the heat generated by the heater (10) can be applied to deposits f on the sump material carrier (10) to deposit the deposited material, and together with the permeating gas. The carrier gas supplied from the supply pipe 6 is supplied to the deposition chamber through the gas exhaust pipe 62. Next, after the end of the deposition step, in order to discharge the deposition material remaining on the deposition substance carrier 610, the air pressure can be supplied to the first air pressure tube 622 on one side of the reversing actuator 620 to make the reverse The rotary actuator 62 is operated. By the rotation operation of the reverse actuation H (four), the upper and lower portions of the deposition material holder (10) will be reversed, so that the deposited material remaining will fall. At this time, the operator can check whether the reverse actuator 62 is rotated by 180 degrees by the third sensor 624'. Then, the gate valve 650 can be operated in conjunction with the rotation operation of the above-described reverse actuator 62. That is, the air pressure is supplied to the arbitrary first air tube 622 by the reverse actuator_reversal, and the air pressure is also supplied to any second air tube 662 that is connected to the cylinder 660. Thereby, when the deposition substance holder 610 is reversed, the gate 654 is moved toward the open gate body 652, and the deposited material dropped by the deposition material holder 61Q can be easily moved to the deposition substance storage cylinder 630. 25 201118195 Next, after the deposition material is dropped, the first air pressure pipe 622 of the reverse actuator 62 is reversed to supply the air pressure, and the deposition material holder 61 is returned to the original state. At this time, by reversing the air pressure to the second air pressure tube 662 of the cylinder 66, the shutter 654 can be moved in the direction of blocking the shutter body 652, and the way to the deposit storage cylinder 63 is blocked. Finally, the deposited material that has fallen can be stored in the deposit storage unit 63. At this time, the operator can check the amount of the deposited material through the third monitoring window 640, and the deposited material stored in the deposited material storage cylinder 630 can be used in the subsequent deposition step, or can be completely discarded. Fig. 13 is a cross-sectional view showing the configuration of the deposition material supply unit 500 in another embodiment of the present invention. The deposition material supply unit 5 is configured to be symmetrical with respect to the central axis. Therefore, in the drawings, in order to facilitate the configuration of the deposition material supply unit 500, only the display side is based on the central axis. As shown in Fig. 13, it is understood that the scattering prevention 颚 590 is formed at a predetermined height on the upper portion of the rotary supply table 52A. The scattering prevention 颚 590 functions as a deposit preventing the deposition material supplied from the deposition material supply pipe 25 to the filling portion 530 and scattering around the filling portion 53A. Therefore, the scattering prevention 颚 590 is formed in a concentric circle with the rotation supply table 52 , and a filling portion 530 can be provided between the plurality of scattering prevention 颚 59 。. Further, a scattering prevention groove 592 can be formed between the scattering prevention 颚 590 and the filling portion 53A. The scattering prevention groove 592 is formed in a state having a predetermined volume, and functions to temporarily retain the deposited substance which is prevented from being filthy. The scattering prevention 颚 59 〇 and the scattering preventing groove 592 ′ having such a configuration can prevent the deposition of the deposition material supply unit 500 from being affected by the scattering of the deposition material around the filling portion 53 〇. The configuration and operation of the deposition material supply unit shown in Fig. 13 are the same as those of the deposition material supply unit 500 shown in Figs. 4 and 5 except for the scattering prevention 颚590 and the scattering prevention groove 592. This omits the detailed description of this section. The apparatus 100 for supplying a deposition gas of the present invention having such a configuration can supply a deposition amount of the deposition material to the deposition material evaporation portion 300 at each deposition step. In this way, in the case where the deposition material supplied to the deposition material evaporation portion 300 has been completely vaporized and supplied to the deposition chamber, the pressure of the deposition gas can be constantly maintained at each deposition step, so that the configuration can be made The reproducibility of the deposition step and the breakthrough in yield are improved. Further, in the apparatus 100 for supplying a deposition gas of the present invention, the deposition substance remaining in the deposition substance evaporation portion 300 can be discharged to the outside after the end of each deposition step. Thereby, the pressure of the deposition gas in each deposition step can be further stabilized, so that the reproducibility and the yield of the deposition step between the configurations can be greatly increased. The present invention has been described and illustrated by the above-described embodiments, but is not limited to the above-described embodiments, and may be carried out by those having ordinary knowledge in the technical field to which the invention pertains, without departing from the spirit of the invention. Variety of changes and changes. Modifications and modifications thereof are considered to be within the scope of the invention and the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing the configuration of an apparatus for supplying a deposited gas in an embodiment of the present invention. Fig. 2 is a view showing an example of a deposit storage unit 27 201118195 according to an embodiment 10 of the present invention. Fig. 3 is a view showing another example of the depositing material storage portion in an embodiment of the present invention. Fig. 4 is an exploded perspective view showing the configuration of a deposition material supply unit in an embodiment of the present invention. Fig. 5 is a partial cross-sectional perspective view showing the configuration of a deposition material supply unit in an embodiment of the present invention. Fig. 6 is a view showing the configuration of a deposition material evaporation portion and a deposition material discharge portion in an embodiment of the present invention. Fig. 7 is an exploded perspective view showing the configuration of a deposition material evaporation portion and a deposition material discharge portion in an embodiment of the present invention. Fig. 8 is a cross-sectional view showing the configuration of a deposition material evaporation portion and a deposition material discharge portion in an embodiment of the present invention. Fig. 9 is a view showing the operation of a device for supplying a deposited gas in an embodiment of the present invention. Fig. 10 is a view showing the operation of a device for supplying a deposition gas in an embodiment of the present invention. Fig. 11 is a view showing the operation of a device for supplying a deposition gas in an embodiment of the present invention. Fig. 12 is a view showing the operation of a device for supplying a deposition gas in an embodiment of the present invention. Figure 13 is a cross-sectional view showing the configuration of a deposition material supply portion in another embodiment of the present invention. 28 201118195 [Description of main component symbols] 100··· Device for supplying deposition gas 200·· Deposited material storage unit 210... Flush gas supply pipe 220...Filter unit 250...Sedimentary material supply pipe 260...Second monitoring window 270 ...cooling unit 300...deposition substance evaporation unit 302,514,518,632...sealing ring 310...heater 312...power supply line 314...temperature measuring unit 400...carrier gas supply unit 410...gas supply tube 420. . Gas exhaust pipe 500... Depositing material supply unit 502... Cooling pipe 510... Main body 512: Cover 516... Ring 520... Rotating supply table 522... Rotary actuator 530... Filling portion 540... Isolation plate 550... Supply hole 560... 1 sensor 570... second sensor 572... fixed bracket 574... first transparent window 576... link cap 580. .  ·Reflow prevention gas supply unit 590···scattering prevention 颚 592···scattering prevention groove 600...deposited material discharge unit 610". Depositing material bracket 612...heater connecting shaft 620···reverse actuator 622...first air tube 624...3th sensor 625...sensing stop 626. .  Fixed flange 628...Fixed ring 630... Deposited material storage cylinder 634...Fixed plate 29 201118195 640...3rd monitoring window 642...2nd transparent window 650...gate valve 652...valve body 654...door door 656···gate cover 660 ...cylinder 662...second air tube A...direction B...direction V...valve 30

Claims (1)

201118195 七、申請專利範圍: i•一種用以供給沉積氣體之裝置,係具備下述者: 儿積物質貯藏部,係儲存沉積物質者; ’儿積物質洛發部,係對前述沉積物質加熱,使沉積 氣體產生者;及 載體氣體供給部,係供給載體氣體者; 其特徵在於: 則述用以供給沉積氣體之裝置,更具備沉積物質供 給部’係配置在前述沉積物f貯藏部及前述沉積物質蒸 發部之間者, 刖述沉積物質供給部係在每一個沉積步驟,對前述 沉積物質蒸發部供給一定量的前述沉積物質。 2. 如申4專利範圍第丨項之m給沉積氣體之裝置其 更具備沉積物質排出部,係連結於前述沉積物質蒸發部 而配置者, 刖述》儿積物質排出部係在每一個沉積步驟,將殘留 於前述沉積物質蒸發部之前述沉積物質予以排出。 3. 如申請專利範圍第2項之用以供給沉積氣體之裝置,其 更具備加熱器’係配置於前述沉積物質蒸發部之内側 者。 4. 如申請專利範圍第3項之用以供給沉積氣體之裝置,其 中前述加熱器更具備檢查溫度之溫度檢出器。 5. 如申請專利範圍第1項之用以供給沉積氣體之裝置,其 中前述沉積物質貯藏部具備過濾部,係僅使一定大小以 31 201118195 下的前述沉積物質通過者。 6. 如申請專利範圍第1項之用以供給沉積氣體之裝置,其 中前述沉積物質貯藏部更具備第1監視窗,係可觀察已 貯藏在内部之前述沉積物質者。 7. 如申請專利範圍第1項之用以供給沉積氣體之裝置,其 更具備第2監視窗,係可觀察前述沉積物質由前述沉積 物質貯藏部供給至前述沉積物質供給部者。 8. 如申請專利範圍第1項之用以供給沉積氣體之裝置,其 中前述沉積物質供給部具備: 本體; 旋轉供給台,係設置在前述本體之内部呈可旋轉 者; 填充部,係形成於前述旋轉供給台者; 隔離板,係將前述本體之内部上下區分者;及 供給孔,係以對應於前述填充部的方式,而形成於 前述隔離板者; 一旦前述填充部填充由外部所供給之前述沉積物 質,且前述旋轉供給台依任意的角度旋轉,使前述填充 部座落到前述供給孔之上部時,已填充在前述填充部之 前述沉積物質會透過前述供給孔落下,而供給至前述沉 積物質蒸發部。 9. 如申請專利範圍第8項之用以供給沉積氣體之裝置,其 更具備第1感測器,係檢查前述旋轉供給台有無旋轉者。 10. 如申請專利範圍第8項之用以供給沉積氣體之裝置,其 32 201118195 更具備第2感測器,係檢查前述沉積物質有無落下者。 11. 如申請專利範圍第8項之用以供給沉積氣體之裝置,其 更具備回流防止氣體供給部,係防止沉積氣體由前述沉 積物質蒸發部回流到前述沉積物質供給部者。 12. 如申請專利範圍第8項之用以供給沉積氣體之裝置,其 中前述沉積物質係透過沉積物質供給管而供給至前述 填充部,且前述供給孔係與前述沉積物質供給管隔著任 意的角距(angular distance)而形成。 13. 如申請專利範圍第2項之用以供給沉積氣體之裝置,其 中前述沉積物質排出部具備: 沉積物質托架(cradle),係設置於前述沉積物質蒸發 部之内部呈可上下反轉者; 反轉致動器(actuator),係連結於前述沉積物質托架 之一端者;及 沉積物質保管筒,係保管由前述沉積物質蒸發部排 出之前述沉積物質者; 藉由前述反轉致動器之運作,前述沉積物質托架會 反轉,而前述沉積物質托架上之前述沉積物質會移動至 前述沉積物質保管筒。 14. 如申請專利範圍第13項之用以供給沉積氣體之裝置,其 更具備管狀的加熱器連結軸,係形成於前述沉積物質托 架,且内側可插入前述加熱器者, 前述加熱器連結軸與前述反轉致動器之旋轉軸,係 配置在同軸上。 33 201118195 以如_請專利獅第13項之心供給_氣體之裝置龙 更具備第3感測H,係檢查前述反轉致動器有|旋轉者、 认如申請專利範圍第項之用以供給沉積氣體之裝。 更具備: < 閉閥_VaIVe),係與前述沉積物質托架連動而開 闔者;及 氣壓缸(pneumatic cyiinder) ’係連結於前述閘閥者; 、在前述沉積物f托架之反轉時,前述Μ缸會使前 述閘閥開放來使前述沉積物質排出。 17·如申w專利㈣第13項之用以供給沉積氣體之裝置,其 中前述沉積物質保管筒更具備第3監視窗,係用以確認 前述沉積物質之排出者。 18. 如:請專利範圍第1項之用以供給沉積氣體之裝置,其 中刚述/儿積物質4發部更具備分散部,係使前述沉積物 質呈均一分散者。 19. 如申清專利範圍第3項之用以供給沉積氣體之裝置其 中則述沉積物質蒸發部更具備配置在内側之熱傳導部, 藉由引述熱傳導部’前述加熱器之熱會傳導至前述 沉積物質蒸發部之中心部。 34201118195 VII. Scope of application for patents: i• A device for supplying deposition gas, which has the following: a storage unit for children's accumulation materials, which is used to store sedimentary substances; a carrier gas supplier; and a carrier gas supply unit for supplying a carrier gas; wherein: the device for supplying a deposition gas, and the deposition material supply portion is disposed in the deposit f storage portion and Between the deposition material evaporation portions, the deposition material supply portion supplies a predetermined amount of the deposition material to the deposition material evaporation portion in each deposition step. 2. The device for depositing gas according to the fourth paragraph of the patent application of the fourth aspect of the invention is further provided with a deposition material discharge portion, which is connected to the evaporation portion of the deposition material, and is described in the deposition of the deposition material in each deposition. In the step, the deposited substance remaining in the evaporation portion of the deposition material is discharged. 3. The apparatus for supplying a deposition gas according to the second aspect of the patent application, further comprising a heater disposed inside the evaporation portion of the deposition material. 4. The apparatus for supplying a deposition gas according to item 3 of the patent application, wherein the heater is further provided with a temperature detector for checking the temperature. 5. The apparatus for supplying a deposition gas according to the first aspect of the patent application, wherein the depositing material storage portion is provided with a filtering portion for passing only the deposition material of a certain size to 31 201118195. 6. The apparatus for supplying a deposition gas according to the first aspect of the patent application, wherein the depositing material storage unit further includes a first monitoring window for observing the deposited material stored inside. 7. The apparatus for supplying a deposition gas according to the first aspect of the patent application, further comprising a second monitoring window for observing that the depositing substance is supplied from the depositing material storage unit to the depositing material supply unit. 8. The apparatus for supplying a deposition gas according to the first aspect of the patent application, wherein the deposition material supply unit comprises: a body; a rotary supply table provided to be rotatable inside the body; and a filling portion formed in The rotating plate supplier; the partition plate is configured to partition the inside of the main body; and the supply hole is formed in the partition plate so as to correspond to the filling portion; and the filling portion is filled by the outside. The deposition material is rotated at an arbitrary angle, and when the filling portion is seated on the upper portion of the supply hole, the deposition material filled in the filling portion is dropped through the supply hole, and is supplied to the deposition material. The deposition substance evaporation portion. 9. The apparatus for supplying a deposition gas according to item 8 of the patent application, further comprising a first sensor for checking whether the rotary supply table has a rotation. 10. In the case of the device for supplying deposition gas according to item 8 of the patent application, 32 201118195 further has a second sensor for checking whether the deposited material is left or not. 11. The apparatus for supplying a deposition gas according to the eighth aspect of the patent application, further comprising a backflow prevention gas supply portion for preventing the deposition gas from flowing back to the deposition material supply portion by the evaporation portion of the deposition material. 12. The apparatus for supplying a deposition gas according to Item 8 of the patent application, wherein the deposition material is supplied to the filling portion through a deposition material supply pipe, and the supply hole is interposed between the deposition material supply tube and the deposition material supply tube. Formed by an angular distance. 13. The device for supplying a deposition gas according to the second aspect of the patent application, wherein the deposition material discharge portion is provided with: a cradle for depositing material, which is disposed inside the evaporation portion of the deposition material and is vertically reversible a reverse actuator attached to one end of the deposition substance carrier; and a deposition substance storage cylinder for storing the deposition material discharged from the evaporation portion of the deposition material; In the operation of the device, the depositing substance carrier is reversed, and the depositing substance on the deposition substance carrier moves to the depositing substance storage cylinder. 14. The device for supplying a deposition gas according to claim 13 of the patent application, further comprising a tubular heater connecting shaft formed on the deposition substance carrier and inserting the inner side of the heater, the heater connection The shaft and the rotating shaft of the aforementioned reverse actuator are disposed coaxially. 33 201118195 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Supply of deposition gas. Further, there is: < closed valve _VaIVe), which is opened in conjunction with the deposition substance bracket; and a pneumatic cylinder (pneumatic cyiinder) is attached to the gate valve; At the time, the aforementioned cylinder causes the gate valve to open to discharge the deposited material. 17. The apparatus for supplying a deposition gas according to Item 13 of the patent (4), wherein the deposit storage cylinder further includes a third monitoring window for confirming the discharge of the deposit. 18. For example, please refer to the device for supplying deposition gas in the first item of the patent range, in which the four parts of the material/small substance are more provided with a dispersion part, so that the sediment substance is uniformly dispersed. 19. The device for supplying a deposition gas according to item 3 of the patent scope, wherein the evaporation portion of the deposition material further has a heat conduction portion disposed inside, and the heat of the heater is transmitted to the deposition by referring to the heat conduction portion The center of the material evaporation section. 34
TW99128432A 2009-08-26 2010-08-25 Apparatus for supplying deposition gas TW201118195A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090079432A KR101117662B1 (en) 2009-08-26 2009-08-26 Apparatus for Supplying Deposition Gas
KR1020090093425A KR101117668B1 (en) 2009-09-30 2009-09-30 Apparatus for Supplying Deposition Gas

Publications (1)

Publication Number Publication Date
TW201118195A true TW201118195A (en) 2011-06-01

Family

ID=43628591

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99128432A TW201118195A (en) 2009-08-26 2010-08-25 Apparatus for supplying deposition gas

Country Status (4)

Country Link
JP (1) JP2013503256A (en)
CN (1) CN102576665A (en)
TW (1) TW201118195A (en)
WO (1) WO2011025256A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406702B1 (en) 2012-09-20 2014-06-11 한국에너지기술연구원 Effusion cell with shutter discharging source residue and evaporation equipment comprising the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2984085B2 (en) * 1991-05-10 1999-11-29 日本電子株式会社 Powder supply device
JP3380610B2 (en) * 1993-11-30 2003-02-24 株式会社サムコインターナショナル研究所 Liquid source CVD equipment
KR200173175Y1 (en) * 1996-10-17 2000-03-02 김영환 Vaporizer of liquid
JPH10140334A (en) * 1996-11-02 1998-05-26 Ricoh Co Ltd Evaporation material supply device
JPH10310863A (en) * 1997-05-08 1998-11-24 Matsushita Electric Ind Co Ltd Formation of functional thin coating and forming device therefor
JPH11323557A (en) * 1998-05-11 1999-11-26 Kansai Electric Power Co Inc:The Raw material vaporizer for electrochemical vapor-deposition, electrochemical vapor deposition device and solid electrolytic film forming method using the device
KR20000000946A (en) * 1998-06-05 2000-01-15 주재현 Vaporizer and chemical vapor deposition apparatus using the same
KR100360494B1 (en) * 1999-09-21 2002-11-13 삼성전자 주식회사 Bubbler
JP4299286B2 (en) * 2005-10-06 2009-07-22 東京エレクトロン株式会社 Vaporization apparatus, film forming apparatus, and vaporization method
US7993459B2 (en) * 2005-10-24 2011-08-09 Global Oled Technology Llc Delivering particulate material to a vaporization zone
US7638168B2 (en) * 2005-11-10 2009-12-29 Eastman Kodak Company Deposition system using sealed replenishment container
KR20080098277A (en) * 2007-05-04 2008-11-07 주식회사 테라세미콘 Apparatus and method for supplying source gas
JP5200551B2 (en) * 2008-01-18 2013-06-05 東京エレクトロン株式会社 Vaporized raw material supply apparatus, film forming apparatus, and vaporized raw material supply method

Also Published As

Publication number Publication date
JP2013503256A (en) 2013-01-31
CN102576665A (en) 2012-07-11
WO2011025256A2 (en) 2011-03-03
WO2011025256A3 (en) 2011-05-19

Similar Documents

Publication Publication Date Title
TWI304998B (en) Method and apparatus for providing gas to a processing chamber
KR101172931B1 (en) A replaceable film precursor support assembly
TWI428459B (en) Deposition source, deposition apparatus, and forming method of organic film
JP4402016B2 (en) Vapor deposition apparatus and vapor deposition method
JP5449722B2 (en) Heat transfer medium and heat transfer method using the same
TWI451524B (en) A substrate processing apparatus and a substrate processing method
US20060219168A1 (en) Solid precursor vaporization system for use in chemical vapor deposition
US20130059073A1 (en) Apparatus and Method for making atomic layer deposition on fine powders
JP2009299081A (en) Evaporator, film-forming apparatus, method for forming organic thin film
JP2010159448A (en) Film deposition apparatus and film deposition method
TW200816301A (en) Substrate processing method, substrate processing apparatus, and program storage medium
JP2008522033A (en) Multi-tray film precursor vaporization system and thin film deposition system incorporating the system
TW201132776A (en) Apparatus for forming organic thin film and method for forming thin film of organic material
JP2008248362A (en) Selenium vapor depositing apparatus
TW201100583A (en) Methods for determining the quantity of precursor in an ampoule
TW201118195A (en) Apparatus for supplying deposition gas
TW201829808A (en) Measurement assembly for measuring a deposition rate, evaporation source, deposition apparatus, and method therefor
TW200304956A (en) Vapor organic material deposition method and vapor organic material deposition apparatus using the same
JP2013520832A (en) Method for producing polycrystalline silicon layer and metal mixed layer forming apparatus therefor
JP2006249541A (en) Vapor deposition apparatus
JP6870798B2 (en) Film formation equipment and film formation method
KR101117668B1 (en) Apparatus for Supplying Deposition Gas
JP2012127711A (en) Vacuum vapor deposition apparatus and method for manufacturing thin film
TWI424600B (en) Apparatus and method for depositing organic thin film
JP5166946B2 (en) Source gas supply apparatus and method