TW201117611A - Time delay integration based MOS photoelectric pixel sensing circuit - Google Patents

Time delay integration based MOS photoelectric pixel sensing circuit Download PDF

Info

Publication number
TW201117611A
TW201117611A TW98137684A TW98137684A TW201117611A TW 201117611 A TW201117611 A TW 201117611A TW 98137684 A TW98137684 A TW 98137684A TW 98137684 A TW98137684 A TW 98137684A TW 201117611 A TW201117611 A TW 201117611A
Authority
TW
Taiwan
Prior art keywords
pixel
sub
photoelectric
signal
metal oxide
Prior art date
Application number
TW98137684A
Other languages
Chinese (zh)
Other versions
TWI400945B (en
Inventor
Weng-Lyang Wang
Sheng-Min Lin
Chi-Pin Lin
Feng-Ke Hsiao
Original Assignee
Cmos Sensor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cmos Sensor Inc filed Critical Cmos Sensor Inc
Priority to TW98137684A priority Critical patent/TWI400945B/en
Publication of TW201117611A publication Critical patent/TW201117611A/en
Application granted granted Critical
Publication of TWI400945B publication Critical patent/TWI400945B/en

Links

Abstract

A time delay integration (TDI) based MOS photoelectric pixel sensing circuit (TDIPSC) is proposed. The TDIPSC includes multi-element photoelectric pixel sensor (MEPS) having sub-pixel sensor elements SPSE1, .., SPSEM respectively converting a portion of pixel light into sub-pixel photoelectric signals (SPPES1, .., SPPESM). The TDIPSC also includes intermediate photoelectric signal accumulators (PESA1, .., PESAM) where any PESAk can be switchably coupled to any SPSEj via switching transistors for receiving a corresponding SPPESj</sub> from it and accruing an accumulated photoelectric signal ACPESk. A readout circuit (ROC) switchably coupled to any PESAk serves to remove and read the ACPESk. A TDI-sequence controller (TDISC) coupled to the SPSEs, the PESAs and the ROC executes a time sequence of cyclic coupling among them. The TDISC produces, via the ROC, a final time signal SQTS equal to the time delayed summation of the (SPPES1,.., SPPESM) with a reduced SNR.

Description

201117611 六、發明說明: 【發明所屬之技術領域】 本發明係關於電子影像技術’尤指一種用於一金屬氧化物半導 體影像感測器的系統架構及訊號處理方法。 【先前技術】 電子影像裝置透過光電轉換,轉換一輸入光影像為一輸出電子 輸出訊號。一般來說,訊雜比(signal t0 noiseratio ’ SNR)為度量 轉換後之電子輸出訊號之品質的指標。訊雜比越高代表訊號品質越 佳0 為提升電子影像裝置的靈敏度,先前之技術是採用時間延遲積 •分式(timedelay integration,TDI)電荷耦合器(Chargecoupled device ’ CCD) ’來提升訊雜比’及提升靈敏度。一般來說,一 n個 分階時間延遲積分式感測器包含N個光電感測單元,用來根據一時 間延遲累積時序機制,產生一最終之影像訊號輸出。N個分階時間 延遲積分式感測器之影像訊號輸出為個別光電感測單元輸出訊號之 總合(N倍)。另外,當最終影像訊號輸出增加為^^倍時,其雜訊 成分僅增加#倍,換言之,時間延遲積分式電雜合器可提升訊雜 比i倍。 [S1 5 201117611 如欲將時間延遲累積機制應用至一金屬氧化物半導 裝置時,其基礎組成單做大幅度調^也就是說,—= 物半=體光電感測單元(例如光電二極體、光電電晶體)之結構與 -電·合器基礎單元大不_。為了實現時間延遲積分式麵氧 化物半導體’對應㈣贿構及訊號處理方式亦須同步調整,也就 是本發明的主要目的。 【發明内容】 , 本發明提供一種時間延遲積分式金屬氧化物半導體光電像素感 測電路,包含有: ' &quot; (a) —多兀件光電像素感測器,包含有複數個子光電感測單元 (SPSEi、SPSE2、…、SPS马、…、SPSEM,M&gt; 1)。該複數 個子光電感測單元之位置相鄰,但彼此間被隔絕,分別用來累 積一像素光線於空間中之光影像訊號,以轉換為對應之子像素 光電訊號(SPPESi、SPPES2、…、SPPESj、…、SPPESM,Μ &gt; i) ’其中該像素光線照射於該多元件光電像素感測器。 (b) 複數個中繼光電訊號累加器(PESAi、pESA2、 、pESAk、、 pesam)。該每一中繼光電訊號累加器PESAk可透過該金屬氧 化物半導體切換電晶體,耦接於該任一子光電感測單元 SPSEj ’用來接收對應之該子像素光電訊號sppESj,及產生一 累加中繼光電訊號ACPESk。更具體的說,該金屬氧化物半導 201117611 體切換電晶體可為-互補金屬氧化物半導體(c〇mplementary201117611 VI. Description of the Invention: [Technical Field] The present invention relates to electronic imaging technology, and more particularly to a system architecture and signal processing method for a metal oxide semiconductor image sensor. [Prior Art] An electronic imaging device converts an input optical image into an output electronic output signal by photoelectric conversion. In general, the signal t0 noise ratio (SNR) is an indicator of the quality of the converted electronic output signal. The higher the signal-to-noise ratio, the better the signal quality. To improve the sensitivity of the electronic imaging device, the previous technique used a time delay integration (TDI) charge coupled device (CCD) to enhance the signal. Than 'and improve sensitivity. In general, an n-order time-delay integral sensor includes N photo-sensing units for generating a final image signal output according to a time delay accumulation timing mechanism. The output signal of the N-order time delay integral sensor is the sum of the output signals of the individual photo-sensing unit (N times). In addition, when the final image signal output is increased to ^^ times, the noise component is only increased by # times. In other words, the time delay integral type electric hybrid device can increase the signal-to-noise ratio by i times. [S1 5 201117611 If you want to apply the time delay accumulation mechanism to a metal oxide semiconductor device, the basic composition of the unit is greatly adjusted. That is, -= half of the body = body photoinductance unit (such as photodiode) The structure of the body, the photoelectric transistor, and the basic unit of the electric and the combined device are not large. In order to realize the time delay integral type oxide semiconductor semiconductor, the corresponding (four) bribe and signal processing methods must also be adjusted simultaneously, which is the main purpose of the present invention. SUMMARY OF THE INVENTION The present invention provides a time delay integrated metal oxide semiconductor photo pixel sensing circuit, comprising: ' &quot; (a) - a multi-component photo pixel sensor comprising a plurality of sub-optical sensing units (SPSEi, SPSE2, ..., SPS Ma, ..., SPSEM, M&gt; 1). The plurality of sub-optical sensing units are adjacent to each other but are isolated from each other for accumulating optical image signals of a pixel of light in space to be converted into corresponding sub-pixel photoelectric signals (SPPESi, SPPES2, ..., SPPESj, ..., SPPESM, Μ &gt; i) 'where the pixel light is illuminated by the multi-element photoelectric pixel sensor. (b) Multiple relay optoelectronic signal accumulators (PESAi, pESA2, pESAk, pesam). Each of the relay photo-electrical signal accumulators PESAk can be coupled to the MOS transistor switching transistor SPSEj' for receiving the corresponding sub-pixel photoelectric signal sppESj, and generating a cumulative Relay photoelectric signal ACPESk. More specifically, the metal oxide semiconducting 201117611 bulk switching transistor can be a -complementary metal oxide semiconductor (c〇mplementary

Metal-Oxide-Semiconductor,CMOS)電晶體。 (c ) 一讀取電路。透過切換操作耦接於該任一中繼光電訊號累加器 PESAk ’用來移除及讀取對應之該累加中繼光電訊號ACpESk。 ⑷-時間延遲累積相式控彻。雛於該複數個子光電感測單 元SPSE〗、…、SPSEM、該複數個中繼光電訊號累加器 PESA!、…、PESAM及該讀取電路,用來影響一預設之循環時 間序列。如此一來,該時間延遲積分式金屬氧化物半導體光電 像素感測電路可透過該讀取電路,產生最終乏複數個時序訊 號,進而增加訊雜比,該每一時序訊號係等於該子像素光電訊 號SPPES!、…、SPPESM之時間延遲之總合。 在一實施例中,該複數個子光電感測單元SPSE!、...、SPSEm 及該複數個中繼光電訊號累加器PESAl、…、PESAm間之耦合之該 循環時間序列之一次循環係: (SPSEr PESAb SPSE2- PESA2,.., SPSEM- PESAM); (SPSEr PESA2, SPSE2- PESA3,. .,SPSEM- PESA!); ;以及 (SPSEi- PESAM,SPSE2- PESA丨,..,SPSEM- PESAm])。 在一實施例中,該複數個中繼光電訊號累加器pesa,、...、 pesam及該讀取電路間之耦合之該循環時間序列之一次循環係: (PESArROC);Metal-Oxide-Semiconductor, CMOS) transistor. (c) A read circuit. The relay photo-electrical accumulator PESAk ’ is coupled to the corresponding relay photo-electric signal ACpESk through a switching operation. (4) - Time delay cumulative phase control. The plurality of sub-optical sensing units SPSE, ..., SPSEM, the plurality of relay photoelectric signal accumulators PESA!, ..., PESAM and the reading circuit are used to influence a predetermined cyclic time sequence. In this way, the time-delay integrated metal oxide semiconductor photo-pixel sensing circuit can generate a final plurality of timing signals through the read circuit, thereby increasing the signal-to-noise ratio, and each timing signal is equal to the sub-pixel photoelectric The sum of the time delays of the signals SPPES!,..., SPPESM. In one embodiment, the cycle of the plurality of sub-optical sensing units SPSE!, . . . , SPSEm and the plurality of relay photo-signal accumulators PESAl, . . . , PESAm is cyclically cycled: SPSEr PESAb SPSE2-PESA2,.., SPSEM-PESAM); (SPSEr PESA2, SPSE2-PESA3, . . , SPSEM-PESA!); and (SPSEi-PESAM, SPSE2-PESA丨,..,SPSEM-PESAm] ). In one embodiment, the looping sequence of the cyclic time series of the plurality of relayed photoelectric signal accumulators pesa, ..., pesam and the reading circuit is: (PESArROC);

[SI 7 201117611 (PESA2-ROC); ....,以及 (PESAM-ROC )。 在一實施例中,該每一子光電感測單元SPSEj係一光電二極體 或一光電電晶體。 在一實施例中’該每一中繼光電訊號累加器PESAk包含有一玎 重δ又之電谷性轉阻放大器及一充電電容,用來透過時間累積,可_重 設地轉換該子像素光電訊號SPPESj為該累加中繼光電訊號 ACPESk,其中該充電電容之容量於該複數個子像素光電訊號 SPPESi、…、SPPESM之時間延遲之總合所造成之一延長時間,須 足以減輕通過該電容性轉阻放大器之一充電訊號於像素間因漏電流 不同所造成之影像衰減效應。除此之外,該每一中繼光電訊號累加 器PESAk另包含有一單位增益放大器,用來緩衝該電容性轉阻放大 器對該子像素感測器單元SPSEj之影響,以轉換該子像素光電訊號 SPPESj為一對應之光電電壓,進而避免影像衰減效應。 在一較詳細實施例中,該每一讀取電路另包含有串連之一像素 關聯雙取樣電路及一類比數位轉換器,用來取得所需之該累加中繼 光電訊號ACPESk ’及將該累加中繼光電訊號ACPESk數位化為—视 訊輪出資料。 201117611 【實施方式】 請參考第1圖,第1圖為本發明實施例,四個分階之時間延遲 積分式(time delay integration,TDI)金屬氧化物半導體 (Metal-Oxide-Semiconductor,MOS)光電像素感測電路1之示意 圖。按光電訊號產生及進行的順序,光電像素感測電路1包含有一 子像素感測單元區3、一光電訊號累加區5及一讀取電路區7。子像 素感測單元區3包含有多元件光電像素感測器MEPSi、MEPS2、 ® MEPS3。多元件光電像素感測器MEPS!包含有子光電感測單元 SPSE„、SPSEn、SPSEls、SPSEM。子光電感測單元 SPSE„、SPSE12、 SPSEU、SPSEH之位置相鄰,但彼此間被隔絕。相似地,多元件光 電像素感測器MEPS2包含有相鄰又彼此獨立的子光電感測單元 SPSE”、SPSE22、SPSE23、SPSE24。在本實施例中,每一子光電感 測早元為一光電一極體’但不限於此’例如亦可為一光電電晶體。 子光電感測單元SPSE„、SPSEu、SPSEls、SPSEH分別累積一像素 # 光線hv於空間中之光影像訊號,以轉換為對應之子像素光電訊號 SPPES,、SPPES2、sppes3、SPPES4,其中像素光線hv照射於多元 件光電像素感測器MEPSi。 光電訊號累加區5中之中繼光電訊號累加器pESAu、pESAi2、 PESAu、PESAM可提供多元件光電像素感測器]y[EpSi處理光電訊 號時’所需之訊號。在此實施例中,每一中繼光電訊號累加器包含 一可重設之電容性轉阻放大器及一充電電容,用來透過時間累積, 2〇1117611 可重設地轉換對應之一子像素光電訊號SPPESj為一累加中繼光電 訊號ACPES。在第1圖中,任一中繼光電訊號累加器可透過切換一 開關矩陣’連接並接收一對應之子像素光電訊號,進而產生累加中 繼光電訊號ACPES。舉例來說,中繼光電訊號累加器PESA22可透 過切換操作’連接至子像素光電訊號SPPES24,以產生一累加中繼 光電訊號ACPES22。較佳地,組成開關矩陣之開關可為金屬氧化物 半導體開關電晶體’更具體的說,為互補金屬氧化物半導體 (Complementary Metal-Oxide-Semiconductor,CMOS )電晶體。 讀取電路區7包含一讀取電路9,可透過切換開關矩陣,耦接 至任一中繼光電訊號累加器PESAk,用來移除及讀取一對應之累加 中繼光電訊號ACPESk。舉例來說,可在讀取後,透過重新設定電 谷性轉阻放大器,移除累加中繼光電訊號ACPESk。針對多元件光 電像素感測器MEPSi、MEPS2、MEPS3,讀取電路9可分別產生對 應之時序光電時間訊號SQTSi、SQTS2、S(JTS3。 在第1圖中’光電像素感測電路!包含有一時間延遲累積序列 控制器1卜透過開關矩陣,叙接於子光電感測單元SPSE、中繼光 電訊號累㈣PESA及電路9,用來影響—職之循環時間序 Ά此-來,透過讀取電路9 ’賴像素感測電路丨可產生多元 件光電像素感測器蕭S1所需之時序光電時間訊號SQTS1,讀等 ^子像素找峨 S聰u、SPPESi2、SPPESi3、sppESi4 目似地,光電像素感測電路i可分別針對多元件光電像素感測器 201117611 MEPS2、MEPS3,分別產生時序光電時間訊號SQTS2、SQTS3,其 中光電時間訊號sqts2之值等於子像素光電訊號SPPES21、 SPPES22、SPPESu、SPPES24的總合,而光電時間訊號SQTS3之值 等於子像素光電訊號sppes31、SPPES32、SPPES33、SPPES34的總合。 請繼續參考第2A圖至第2H圖,第2A圖至第2H圖分別為時 間延遲累積序列控制器11之耦合狀態之一循環時間序列之第一幀 至第八幀之示意圖。在第2A圖至第2H圖中,為方便說明:子光電 感測單元SPSEu之子像素光電訊號sppESu標示為「#1」;子光電 感測單元SPSE1Z之子像素光電訊號sppeSu標示為「#2」;子光電 感測單元SPSEn之子像素光電訊號sppeSu標示為「#3」;子光電 感測單元SPSEM之子像素光電訊號sppesm標示為「#4」。子光電 感測單元SPSE與中繼光電訊號累加器PESA間之訊號耦合由指向 下方的箭頭表示。 舉例來說,在第2A圖之第一幀中,子光電感測單元spSEi4耦 合至中繼光電訊號累加iiPESA14;在第2C圖之第三巾貞中,子光電 感測單το SPSE^耦合至中繼光電訊號累加器pESAi4。另外,讀取 電路9與中繼找訊號累加器PESA間之訊號耗合亦由向下指的箭 頭表示。舉例來說,在第2Β圖之第二巾貞中,中繼光電訊號累加器 PESAu耦合至讀取電路9,並由讀取電路9讀取;在第犯圖之第 七情中’巾繼光電訊號累加器PESAi3輕合至讀取電路9,並由讀取 電路9讀取。追縱時間延遲累積序列控制器u從第―賴至第八=之 i S 1 11 201117611 操作’時序光電時間訊號SQTSk時序可表示為: 幀數 SQTSi 第一幀 #1 第二幀 #1+#2 第二幀 #1+#2 + #3 第四幀 #ι+#2 + #3 + #4 第五幀 #1+#2 + #3 + #4 第六幀 #1 + #2 + #3 + #4 第七幀 #1+#2 + #3 + #4 · 第八幀 #1+#2 + #3 + #4 由上可知,除了初始狀態外,時序光電時間訊號SQTSi之時序 呈現一穩定狀態,等於子像素光電訊、SppESi2、 SPPESU、SPPESM之時間延遲總合。.相似地,時序光電時間訊號 SQTS2之時序達到穩態後,等於子像素光電訊號SppES^、sppESu、 SPPES23、SPPES24之時間延遲總合。 以此類推,本發明可應用在N個分階之時間延遲積分式金屬氧 化物半導體光電像素感測電路中,其尹N為任何大於】的整數。另 外,多元件光電像素感測器MEPS的數量可為任意正整數,並在空 間安排上,可較佳地以線性的二維矩陣實現,但不限於此。 請繼續參考第3圖,第3圖為四個分階之光電像素感測電路工 12 201117611 中,子光電感測單元SPSE與讀取電路9間之訊號路徑之示意圖。 如第3圖所示,每一中繼光電訊號累加器PESA包含一重設之電容 性轉阻放大器及一充電電容cf。舉例來說,子光電感測單元SpSEn 及一電容性轉阻放大器CTL·^間透過一轉傳控制開關TR1及一轉傳 選擇開關TR一SEL1串接;電容性轉阻放大器CTIAi及讀取電路9 間透過一讀取選擇開關RD一SEL1串接。如欲重設電容性轉阻放大 器CTIA丨,可關閉-重設關reSET卜以重置一累加中繼光電訊 _號ACPESn。讀取電路9包含串接之像素關聯雙取樣電路及一類比 數位轉換器(未繪於第3圖中),用絲得所需之累加中繼光電訊號 ACPES,並數位化為一視訊輸出資料。相關之細節可參考美國專利 申明案US12/171,351之第1圖及第4圖。須注意的是,子像素光電 訊號SPPESn、SPPESu、SPPESn、SPPESM之時間延遲之總合所造 成之-延長時間。因此’儘管大電容之以會浪費電路面積及降低累 加中繼光電§fl號ACPES之準位,在設計電路時,^^乃須選擇夠大的 充電電容Cf’以在延長咖,減輕通過電雜轉阻放大$⑶八之 隹一充電訊號因漏電流所造成之影像衰減效應。 如欲避免使用大面積之充電電容Cf,每一中繼光電訊號累加器 PESA另可包含-可重設之單位增益放大器U(JA,如第4圖所示。 單位增益放大器UGA用來緩衝電容性轉阻放大器對子像素感測器 單tgSPSE之影響,以轉換子像素光電訊號31&gt;1&gt;£8為一對應之光電 電壓,進而避免影像衰減效應。舉例來說,在第*圖中一單位增 盈放大器UGA^衝電容性轉阻放大器CTIAi對子像素感測器單元[SI 7 201117611 (PESA2-ROC); ...., and (PESAM-ROC). In one embodiment, each of the sub-photonic sensing units SPSEj is a photodiode or an optoelectronic transistor. In an embodiment, each of the relay photo-signal accumulators PESAk includes a δ δ electric valley transimpedance amplifier and a charging capacitor for accumulating time, and the sub-pixel photoelectric can be _reset-converted The signal SPPESj is the accumulated relay photoelectric signal ACPESk, wherein the capacity of the charging capacitor is caused by the sum of the time delays of the plurality of sub-pixel photoelectric signals SPPESi, . . . , SPPESM, which is sufficient to reduce the capacitive transfer. The image attenuation effect caused by the difference in leakage current between the pixels of one of the resistance amplifiers. In addition, each of the relay photo signal accumulators PESAk further includes a unity gain amplifier for buffering the influence of the capacitive transimpedance amplifier on the sub-pixel sensor unit SPSEj to convert the sub-pixel photoelectric signals. SPPESj is a corresponding photoelectric voltage to avoid image attenuation effects. In a more detailed embodiment, each of the read circuits further includes a series of pixel-associated double sampling circuits and an analog-to-digital converter for obtaining the required accumulated relay optical signal ACPESk 'and The accumulated relay photoelectric signal ACPESk is digitized into a video round-off data. 201117611 [Embodiment] Please refer to FIG. 1. FIG. 1 is a diagram showing four time-delayed time delay integration (TDI) metal-oxide-semiconductor (MOS) photovoltaics according to an embodiment of the present invention. A schematic diagram of the pixel sensing circuit 1. In the order in which the photoelectric signals are generated and performed, the photoelectric pixel sensing circuit 1 includes a sub-pixel sensing unit region 3, an optical signal accumulating region 5, and a read circuit region 7. The subpixel sensing unit area 3 includes multi-element photoelectric pixel sensors MEPSi, MEPS2, ® MEPS3. The multi-element photoelectric pixel sensor MEPS! includes sub-photoelectric sensing units SPSE„, SPSEn, SPSEls, SPSEM. The sub-optical sensing units SPSE„, SPSE12, SPSEU, SPSEH are located adjacent to each other but are isolated from each other. Similarly, the multi-element photoelectric pixel sensor MEPS2 includes adjacent and independent sub-photonic sensing units SPSE", SPSE22, SPSE23, SPSE24. In this embodiment, each sub-photon sensor is an optical element. The one-pole body 'but not limited to this' may be, for example, a photovoltaic transistor. The sub-optical sensing units SPSE „, SPSEu, SPSEls, and SPSEH respectively accumulate a light image signal of a pixel # ray hv in space to be converted into a corresponding The sub-pixel photoelectric signals SPPES, SPPES2, sppes3, SPPES4, wherein the pixel light hv is irradiated to the multi-element photoelectric pixel sensor MEPSi. The relay photoelectric signal accumulators pESAu, pESAi2, PESAu, and PESAM in the photoelectric signal accumulation area 5 can provide signals required for the multi-element photoelectric pixel sensor y [EpSi when processing the photoelectric signal]. In this embodiment, each of the relay photo-signal accumulators includes a resettable capacitive transimpedance amplifier and a charging capacitor for accumulating time, and 2〇1117611 reconfigurably converts one of the sub-pixels. The signal SPPESj is an accumulated relay photoelectric signal ACPES. In Fig. 1, any of the relay photo-signal accumulators can connect and receive a corresponding sub-pixel photo-electric signal by switching a switch matrix' to generate an accumulated relay photo-electric signal ACPES. For example, the relay opto-electronic accumulator PESA 22 can be coupled to the sub-pixel optoelectronic SPPES 24 via a switching operation to generate an accumulated relay opto-electronic signal ACPES 22. Preferably, the switch constituting the switch matrix may be a metal oxide semiconductor switching transistor ‘specifically, a Complementary Metal-Oxide-Semiconductor (CMOS) transistor. The read circuit area 7 includes a read circuit 9 coupled to any of the relay photo signal accumulators PESAk through the switch matrix to remove and read a corresponding accumulated relay optical signal ACPESk. For example, after the reading, the accumulated relay photoelectric signal ACPESk can be removed by resetting the valley transimpedance amplifier. For the multi-element photoelectric pixel sensors MEPSi, MEPS2, MEPS3, the read circuit 9 can respectively generate corresponding timing photoelectric time signals SQTSi, SQTS2, S (JTS3. In Fig. 1 'photopixel sensing circuit! contains a time The delay accumulation sequence controller 1 is transmitted through the switch matrix, and is connected to the sub-photo-sensing unit SPSE, the relay photo-signal-tired (four) PESA, and the circuit 9 for affecting the cycle time sequence of the job, and the read circuit 9 'Lai pixel sensing circuit 丨 can produce multi-element photoelectric pixel sensor Xiao S1 required timing photoelectric time signal SQTS1, read ^ sub-pixel find 峨 S Cong u, SPPESi2, SPPESi3, sppESi4 Vision, photoelectric pixel sense The measuring circuit i can respectively generate the timing photoelectric time signals SQTS2 and SQTS3 for the multi-element photoelectric pixel sensors 201117611 MEPS2 and MEPS3, wherein the value of the photoelectric time signal sqts2 is equal to the sum of the sub-pixel photoelectric signals SPPES21, SPPES22, SPPESu and SPPES24. The value of the photoelectric time signal SQTS3 is equal to the sum of the sub-pixel photoelectric signals sppes31, SPPES32, SPPES33, SPPES34. Please continue to refer to the 2A to 2H 2A to 2H are schematic diagrams showing the first frame to the eighth frame of one cycle time series of the coupling state of the time delay accumulation sequence controller 11, respectively. In the 2A to 2H diagrams, for convenience of explanation: The sub-pixel photoelectric signal sppESu of the sub-optical sensing unit SPSEu is marked as "#1"; the sub-pixel photoelectric signal sppeSu of the sub-optical sensing unit SPSE1Z is marked as "#2"; the sub-pixel photoelectric signal sppeSu of the sub-optical sensing unit SPSEn is marked as " #3"; The sub-pixel photoelectric signal sppesm of the sub-photoelectric sensing unit SPSEM is marked as "#4". The signal coupling between the sub-optical sensing unit SPSE and the relay photo-signal accumulator PESA is indicated by an arrow pointing downwards. In the first frame of FIG. 2A, the sub-photonic inductance measuring unit spSEi4 is coupled to the relay photoelectric signal accumulating iiPESA14; in the third frame of the second drawing, the sub-photonic inductance measuring unit το SPSE^ is coupled to the relay photoelectric The signal accumulator pESAi4. In addition, the signal consumption between the read circuit 9 and the relay lookup accumulator PESA is also indicated by the downward pointing arrow. For example, in the second frame of the second figure, the relay Light The signal accumulator PESAu is coupled to the read circuit 9 and is read by the read circuit 9; in the seventh case of the first map, the wiper photoelectric signal accumulator PESAi3 is lightly coupled to the read circuit 9, and is read by the circuit. 9 read. The tracking time delay accumulation sequence controller u from the first to the eighth = i S 1 11 201117611 operation 'timing photoelectric time signal SQTSk timing can be expressed as: frame number SQTSi first frame #1 second frame #1+#2 Second frame #1+#2 + #3 Fourth frame #ι+#2 + #3 + #4 Fifth frame #1+#2 + #3 + #4 Sixth frame #1 + #2 + #3 + #4 7th frame #1+#2 + #3 + #4 · 8th frame #1+#2 + #3 + #4 It can be seen from the above that in addition to the initial state, the timing photoelectric time signal The timing of SQTSi presents a steady state, which is equal to the time delay sum of sub-pixel optoelectronics, SppESi2, SPPESU, and SPPESM. Similarly, after the timing of the timing photoelectric time signal SQTS2 reaches a steady state, it is equal to the time delay sum of the sub-pixel photoelectric signals SppES^, sppESu, SPPES23, and SPPES24. By analogy, the invention can be applied to N stepped time delay integrated metal oxide semiconductor photopixel sensing circuits, with Yin N being any integer greater than 。. In addition, the number of multi-element photo pixel sensors MEPS may be any positive integer and may be preferably arranged in a linear two-dimensional matrix, but is not limited thereto. Please refer to FIG. 3 again. FIG. 3 is a schematic diagram of the signal path between the sub-photonic sensing unit SPSE and the reading circuit 9 in the four-step photoelectric pixel sensing circuit 12 12176176. As shown in Fig. 3, each relay photoelectric signal accumulator PESA includes a reset capacitive transimpedance amplifier and a charging capacitor cf. For example, the sub-optical sensing unit SpSEn and a capacitive transimpedance amplifier CTL·^ are connected in series through a transfer control switch TR1 and a transfer selection switch TR-SEL1; the capacitive transimpedance amplifier CTIAi and the read circuit 9 is connected in series through a read selection switch RD-SEL1. To reset the capacitive transimpedance amplifier CTIA, you can turn off-reset the reSET to reset an accumulative relay __ACPESn. The read circuit 9 includes a series-connected pixel-associated double-sampling circuit and an analog-to-digital converter (not shown in FIG. 3), which is used to obtain the required accumulated relay optical signal ACPES and digitized into a video output data. . For details, refer to Figures 1 and 4 of U.S. Patent Application Serial No. US 12/171,351. It should be noted that the sum of the time delays of the sub-pixel photoelectric signals SPPESn, SPPESu, SPPESn, SPPESM - extended time. Therefore, although the large capacitance will waste circuit area and reduce the level of accumulating relay photoelectric §fl number ACPES, when designing the circuit, ^^ must select a large enough charging capacitor Cf' to extend the coffee and reduce the electricity. The hybrid resistance is amplified by the image attenuation effect caused by the leakage current of the charging signal of (3) eight. To avoid the use of large-area charging capacitors Cf, each relay photo-signal accumulator PESA can also include a resettable unity-gain amplifier U (JA, as shown in Figure 4. Unity gain amplifier UGA is used to buffer capacitors The effect of the transimpedance amplifier on the sub-pixel sensor single tgSPSE is to convert the sub-pixel photoelectric signal 31 &gt; 1 &gt; £8 to a corresponding photoelectric voltage, thereby avoiding the image attenuation effect. For example, in the figure Unit gain amplifier UGA ^ punch capacitive transimpedance amplifier CTIAi to sub-pixel sensor unit

[SI 13 201117611 SPSEU之影響。另外,串接之一讀取開關肋丨及一關聯雙取樣電路 CDS1設置於單位增益放大n UGAi及電容性轉阻放大器CTJAi 間,用來移除每當重置時’單位增益放大㈣叫所產生之一重置 kTC雜訊失真。相關細節可參考美國專利申請案usll/869,732 (公 開號2009-0091648)之第9圖及第η圖。 比較第1圖及美國專利申請案usll/869,732之第2圖,本發明 可透過重新安排元件,提升效能。具體來說,若子光電感測單元 SPSE&quot;、SPSEu、SPSEn、SPSEH線性地沿-子像素感測器線設置,肇 可將: (a)編號為奇數的中繼光電訊號累加器、pESAu及對應之 部分讀取電路9設置於子像素感測器線之一第一側; ⑻編號為偶數的中繼光電訊號累加器pESAi2、pESAi4及對應之 部分讀取電路9設置於子像素感測器線之一第二側。 如此來^子光電感測早元之線性空間解析度受限於相關之訊號 累加及讀取電路時,由於相關訊號累加及讀取電路之線性集成密度鲁 降低,線性空間解析度可獲得提升。 綜上所述,本發明提供一種時間延遲積分式金屬氧化物半導體 光電像素感測電路,可以高訊雜比來實現光電影像感測。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍 所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 201117611 【圖式簡單說明】 物半2^本發0_例’四彳_之時岐遲積分式金屬氧化 +導體光電像素感測電路之示意圖。[SI 13 201117611 SPSEU impact. In addition, one of the serial read switch ribs and an associated double sampling circuit CDS1 are disposed between the unity gain amplifier n UGAi and the capacitive transimpedance amplifier CTJAi to remove the unity gain amplifier (four) whenever reset. One of the generated kTC noise distortions is generated. For details, refer to Figure 9 and Figure η of US Patent Application No. ll. 869,732 (publication number 2009-0091648). Comparing Figure 1 with Figure 2 of U.S. Patent Application Serial No. ll. 869,732, the present invention can improve performance by rearranging components. Specifically, if the sub-photonic sensing units SPSE&quot;, SPSEu, SPSEn, and SPSEH are linearly arranged along the sub-pixel sensor line, 肇 can: (a) the odd-numbered relay photo-signal accumulator, pESAu, and corresponding The partial read circuit 9 is disposed on one side of the sub-pixel sensor line; (8) the even-numbered relay photo-signal accumulators pESAi2, pESAi4 and the corresponding partial read circuit 9 are disposed on the sub-pixel sensor line One of the second sides. In this way, the linear spatial resolution of the optical sensor is limited by the associated signal. When the circuit is accumulated and read, the linear spatial resolution can be improved because the linear integration density of the associated signal accumulation and read circuit is reduced. In summary, the present invention provides a time delay integrated metal oxide semiconductor photo pixel sensing circuit capable of realizing photoelectric image sensing with high signal to noise ratio. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should fall within the scope of the present invention. 201117611 [Simple description of the diagram] Schematic diagram of the semiconductor photoelectric oxidation + conductor photo-pixel sensing circuit when the object half 2^ is 0_example 'four 彳 _.

第2A圖至第2H圖為第1圖之光電像素感測電路之主要元件間 搞合狀態之—棘時間序狀示意圖。 B 訊 第3圖為第1圖之光電像素感測電路之一較詳細實施例之一 號路徑之示意圖。 第4圖為第1圖之光電像素感測電路之另一較詳細實施例之一 訊號路徑之示意圖。 【主要元件符號說明】Fig. 2A to Fig. 2H are schematic diagrams showing the state of the engagement between the main components of the photoelectric pixel sensing circuit of Fig. 1 . B. Figure 3 is a schematic diagram of one of the more detailed embodiments of the photo-pixel sensing circuit of Figure 1. Figure 4 is a schematic illustration of one of the more detailed embodiments of the photodiode sensing circuit of Figure 1 . [Main component symbol description]

7 9 光電像素感測電路 子像素感測單元區 光電訊號累加區 讀取電路區 讀取電路 11 時間延遲累積序列控制器 #1、#2、#3、#4 子像素光電訊號 MEPSi、MEPS2、MEPS3 多元件光電像素感測器 SPSE„、SPSE12、SPSE13、SPSE14、SPSE21、spse22、spse24、spse31、7 9 Photoelectric pixel sensing circuit Sub-pixel sensing unit area Photoelectric signal accumulating area Reading circuit area reading circuit 11 Time delay accumulation sequence controller #1, #2, #3, #4 Sub-pixel photoelectric signal MEPSi, MEPS2 MEPS3 multi-element photoelectric pixel sensor SPSE„, SPSE12, SPSE13, SPSE14, SPSE21, spse22, spse24, spse31,

[SI 15 201117611 SPSE32 ' SPSE34 子光電感測單元 sppesu、sppes12、sppes14 、SPPES21、SPPES22、SPPES24、SPPES SPPES32' SPPES34 子像素光電訊號 PESA„、PESA12、PESA13、 pesa14、pesa21、pesa22、pesa24 PESA31 ' PESA32 ' PESA34 中繼光電訊號累加器 ACPESn ' ACPES12 ' ACPES14 ' ACPES21 ' ACPES22 ' ACPES24 ACPES31、ACPES32、ACPES34累加中繼光電訊號 Vr、Vb 參考電壓 SQTSi &gt; SQTS2 ' SQTS3 時序光電時間訊號 TR1 ' TR2 轉傳控制開關 TR_SEL1 ' TR_SEL2 轉傳選擇開關 RD_SEL1 ' RD_SEL2 讀取選擇開關 CTIA! ' CTIA2 電容性轉阻放大器 UGAi ' UGA2 單位增益放大器 RSTj ' RST2 開關 CDS 卜 CDS2 關聯雙取樣電路 RESET1 ' RESET2 重設開關 Cf 充電電容 hv 像素光線[SI 15 201117611 SPSE32 ' SPSE34 sub-optical sensing unit sppesu, sppes12, sppes14, SPPES21, SPPES22, SPPES24, SPPES SPPES32' SPPES34 sub-pixel photoelectric signal PESA„, PESA12, PESA13, pesa14, pesa21, pesa22, pesa24 PESA31 'PESA32 ' PESA34 relay photoelectric signal accumulator ACPESn ' ACPES12 ' ACPES14 ' ACPES21 ' ACPES22 ' ACPES24 ACPES31 , ACPES32 , ACPES34 cumulative relay photoelectric signal Vr , Vb reference voltage SQTSi &gt; SQTS2 ' SQTS3 timing photoelectric time signal TR1 ' TR2 transfer control switch TR_SEL1 ' TR_SEL2 Transposition selection switch RD_SEL1 ' RD_SEL2 Read selection switch CTIA! ' CTIA2 Capacitive transimpedance amplifier UGAi ' UGA2 Unity gain amplifier RSTj ' RST2 Switch CDS Bu CDS2 Associated double sampling circuit RESET1 ' RESET2 Reset switch Cf Charging capacitor hv Pixel light

1616

Claims (1)

2〇1117611 七、申請專利範圍: L 一種時間延遲積分式金屬氧化物半導體 (metal-oxide-semiconductor,MOS)光電像素感測電路,包含 有: (a) —多元件光電像素感測器,包含有複數個子光電感測單元 (SPSEi、SPSE2、…、SPSEj、…、SPSEM,M&gt; 1),該 φ 複數個子光電感測單元之位置相鄰,但彼此間被隔絕,分 別用來累積一像素光線於空間甲之光影像訊號,以轉換為 對應之子像素光電訊號(SPPESi、SPPES2、...、SPPESj、...、 SPPESm’M&gt; 1),其中該像素光線照射於該多元件光電像 素感測器; (b) 複數個中繼光電訊號累加器(pESAi、PESa2、…、 PESAk、…、PESAM) ’該每一 _繼光電訊號累加器PESAk 可透過切換操作,耦接於該任一子光電感測單元SPSEj , • 用來接收對應之該子像素光電訊號SPPESj,及產生一累加 中繼光電訊號ACPESk ; (c) 一言買取電路,透過切換操作耦接於該任一中繼光電訊號累 加器PESAk,用來移除及讀取對應之該累加中繼光電訊號 ACPESk ;以及 ⑷—時間延遲累積序列式控制II,祕於該複數個子光電感 - 測單元SPSEl、...、spSEM、該複數個中繼光電訊號累加 器PESAi、…、PESAM及該讀取電路,用來產生一預設之 [S I 17 201117611 循環時間序列; 其中透過該讀取電路,可產生最終之複數個時序訊號,進而提 升訊雜比,該每一時序訊號係等於該子像素光電訊號 SPPES1、...、SPPESm之時間延遲之總合。 2·如請求項1所述之時間延遲積分式金屬氧化物半導體光電像素 感測電路,其中該複數個子光電感測單元spsEi、...、SPSEM 及該複數個中繼光電訊號累加器PESA1、..、PESAM間之 之該循環時間序列之一次循環係: (SPSEr PESAh SPSEr PESA2,. .,SPSEm- PESAM); (SPSEr PESA2, SPSE2- PESA3,. , SPSEm- PESAi); ;以及 (SPSEr PESAM,SPSEr PESAh · ., SPSEM- PESAM])。 3.如請求項1所述之時間延遲積分式金屬氧化物半導體光電像素 感測電路’其巾該魏個+繼錢職g加H PESAi、...、 PESAM及該讀取電路間之輕合之該循環時間序列之一次循環 係: (PESArROC); (PESA2-ROC); ...*,以及 (PESAM-ROC ) 〇 201117611 4. 如請求項1所述之時間延遲積分式金屬氧化物半導體光電像素 感測電路,其中該每一子光電感測單元SPSEj係一光電二極體 或一光電電晶體。 5. 如凊求項1所述之時間延遲積分式金屬氧化物半導體光電像素 感測電路,其中該每一中繼光電訊號累加器PESAk包含有一可 重设之電容性轉阻放大器及一充電電容,用來透過時間累積, 可重設地轉換該子像素光電訊號SPPESj為該累加中繼光電訊 _ 號ACPESk ’其中該充電電容之容量於該複數個子像素光電訊 號SPPESi、…、SPPESM之時間延遲之總合所造成之一延長時 間,須足以減輕通過該電容性轉阻放大器之一充電訊號於像素 間因漏電流不同所造成之影像衰減效應。 6. 如請求項5所述之時間延遲積分式金屬氧化物半導體光電像素 感測電路,其中該每一中繼光電訊號累加器pESAk另包含有一 # 單位增盈放大器,用來緩衝該電容性轉阻放大器對該子像素感 測器單元SPSEj之影響’以轉換該子像素光電訊號SPPESj為一 對應之光電電壓,進而避免影像衰減效應。 7·如請求項1所述之時間延遲積分式金屬氧化物半導體光電像素 感測電路,其中該每一讀取電路另包含有串連之一像素關聯雙 取樣電路及一類比數位轉換器,用來取得所需之該累加中繼光 電訊號ACPESk ’及將該累加中繼光電訊號ACpESk數位化為一 201117611 視輪出資料。 咸·目it項1所述之時間延遲積分式金屬氧化物半導體光電像素 ^魏’其找細目子像她懈元眶!、、δρ§ΕΜ 係/σ —子像素感測線設置,而: ()、扁成為奇數之光電訊號累加器PE%、卩說3、pESA5、… 及。P刀該5買取電路係沿該子像素感測器線之一第一側設 置;以及 、扁號為偶數之光電訊號累加器pESA2、pEs乂、PE%、... 及。P刀該項取電路係沿該子像素感測器線之一第二側設 置; 其中當該子像素感測單元SPSEi、…、奶〜之一線性空間解 析度受限於其訊號累加及讀取電路時,增加該線性空間解析度。 如明求項1所述之時間延遲積分式金屬氧化物半導體光電像素 感測電路’其另包含有一金屬氧化物半導體 (MetaK)xide_Semic〇nduct〇r,M〇s)電晶體矩陣,用來透過切 換操作’鶴接該任-光電訊號累加器至該任一子像素感 測器單元SPSEj。 月长項9所述之咖延遲積分式金屬氧化物半導體光電像素 感測電路,其中該金屬氧化物半導體電晶體矩陣另包含有一互 補金屬氧化物半導體(C〇mplementar^ 20 201117611 Metal-OxK^Semiconductor·,CM〇s)電晶體矩陣。 11.如請求項1所述之_延遲積分式金屬氧化物半導體光電像素 感測電路,其另包含有複數個金屬氧化物半導體電晶體,用來 透過切換操作,耗接該讀取電路至該任一光電訊號累加器 PESAk。 12·如請求項11所述之時間延遲積分式金屬氧化物半導體光電像 # 素感測電路,其中該複數個金屬氧化物半導體電晶體另包含有 複數個互補金屬氧化物半導體電晶體。 八、圖式: 212〇1117611 VII. Patent application scope: L A time-delay integrated metal-oxide-semiconductor (MOS) photoelectric pixel sensing circuit, comprising: (a) a multi-element photoelectric pixel sensor, including There are a plurality of sub-optical sensing units (SPSEi, SPSE2, ..., SPSEj, ..., SPSEM, M&gt; 1), the positions of the φ plurality of sub-optical sensing units are adjacent, but are isolated from each other, respectively for accumulating a pixel The light is transmitted to the corresponding sub-pixel photoelectric signal (SPPESi, SPPES2, ..., SPPESj, ..., SPPESm'M> 1), wherein the pixel light is incident on the multi-element photoelectric pixel (b) a plurality of relay photoelectric signal accumulators (pESAi, PESa2, ..., PESAk, ..., PESAM) 'each of the _ subsequent photoelectric signal accumulators PESAk can be coupled to any of the switching operations The sub-optical sensing unit SPSEj, • is configured to receive the corresponding sub-pixel photoelectric signal SPPESj, and generate an accumulated relay photoelectric signal ACPESk; (c) a buy circuit, coupled to the switch operation a relay photoelectric signal accumulator PESAk for removing and reading the corresponding accumulated relay photoelectric signal ACPESk; and (4) - time delay accumulation sequential control II, secretive to the plurality of sub-optical inductance-measuring units SPSEl,. .., spSEM, the plurality of relay photoelectric signal accumulators PESAi, ..., PESAM and the reading circuit for generating a preset [SI 17 201117611 cycle time sequence; wherein the read circuit can generate a final The plurality of timing signals further increase the signal-to-noise ratio, and each timing signal is equal to a sum of time delays of the sub-pixel photoelectric signals SPPES1, . . . , SPPESm. 2. The time delay integrated metal oxide semiconductor photo pixel sensing circuit of claim 1, wherein the plurality of sub-optical sensing units spsEi, . . . , SPSEM and the plurality of relay photoelectric signal accumulators PESA1 .., one cycle of the cyclic time series between PESAM: (SPSEr PESAh SPSEr PESA2, . . , SPSEm-PESAM); (SPSEr PESA2, SPSE2-PESA3,., SPSEm-PESAi); ; and (SPSEr PESAM) , SPSEr PESAh · ., SPSEM-PESAM]). 3. The time delay integral metal oxide semiconductor photo-pixel sensing circuit as described in claim 1 is characterized by a wipe between the Wei and the second, and the light between the PE and the read circuit. One cycle of the cycle time series: (PESArROC); (PESA2-ROC); ...*, and (PESAM-ROC) 〇201117611 4. Time-delay integral metal oxide as described in claim 1 The semiconductor photo-electric pixel sensing circuit, wherein each of the sub-photoelectric sensing units SPSEj is a photodiode or a photo-electric crystal. 5. The time delay integrated metal oxide semiconductor photo pixel sensing circuit of claim 1, wherein each of the relay photo signal accumulators PESAk comprises a resettable capacitive transimpedance amplifier and a charging capacitor For accumulating time, the sub-pixel photoelectric signal SPPESj is resettable for the accumulated relay photoelectric signal_ACPESk', wherein the capacity of the charging capacitor is delayed by the plurality of sub-pixel photoelectric signals SPPESi, ..., SPPESM One of the extensions caused by the summation must be sufficient to alleviate the image attenuation effect caused by the difference in leakage current between the pixels through the charging signal of one of the capacitive transimpedance amplifiers. 6. The time delay integrated metal oxide semiconductor photo pixel sensing circuit of claim 5, wherein each of the relay photo signal accumulators pESAk further comprises a # unit gain amplifier for buffering the capacitive transfer The effect of the resistive amplifier on the sub-pixel sensor unit SPSEj is to convert the sub-pixel photoelectric signal SPPESj to a corresponding photoelectric voltage, thereby avoiding the image attenuation effect. The time-delay integrated metal oxide semiconductor photo-pixel sensing circuit of claim 1, wherein each of the read circuits further comprises a pixel-connected double-sampling circuit and an analog-to-digital converter. To obtain the required accumulated relay photoelectric signal ACPESk 'and digitize the accumulated relay photoelectric signal ACpESk into a 201117611 visual round-out data. The time-delay integral metal oxide semiconductor photo-pixels described in the item 1 of the salt-item item 1 is the same as the sub-pixel sensing line setting, and: ), the flat becomes an odd-numbered photoelectric signal accumulator PE%, 卩 say 3, pESA5, ... and. The P-Purchase 5 buy circuit is disposed along a first side of the sub-pixel sensor line; and the even-numbered photoelectric signal accumulators pESA2, pEs乂, PE%, ... and . The P-knife circuit is disposed along a second side of the sub-pixel sensor line; wherein when the sub-pixel sensing unit SPSEi, ..., milk~ one linear spatial resolution is limited by its signal accumulation and reading Increase the linear spatial resolution when taking the circuit. The time delay integrated metal oxide semiconductor photo pixel sensing circuit as described in claim 1 further comprises a metal oxide semiconductor (MetaK) xide_Semic〇nduct〇r, M〇s) transistor matrix for transmitting The switching operation 'heaves the -to-signal accumulator to any of the sub-pixel sensor units SPSEj. The coffee delay integrated metal oxide semiconductor photoelectric pixel sensing circuit according to the item 9 of the present invention, wherein the metal oxide semiconductor transistor matrix further comprises a complementary metal oxide semiconductor (C〇mplementar^ 20 201117611 Metal-OxK^Semiconductor ·, CM〇s) transistor matrix. 11. The delay integrated metal oxide semiconductor photo-pixel sensing circuit of claim 1, further comprising a plurality of metal oxide semiconductor transistors for consuming the read circuit to the switching operation Any photoelectric signal accumulator PESAk. 12. The time delay integrated metal oxide semiconductor photo-electric image sensing circuit of claim 11, wherein the plurality of metal oxide semiconductor transistors further comprise a plurality of complementary metal oxide semiconductor transistors. Eight, schema: 21
TW98137684A 2009-11-06 2009-11-06 Time delay integration based mos photoelectric pixel sensing circuit TWI400945B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98137684A TWI400945B (en) 2009-11-06 2009-11-06 Time delay integration based mos photoelectric pixel sensing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98137684A TWI400945B (en) 2009-11-06 2009-11-06 Time delay integration based mos photoelectric pixel sensing circuit

Publications (2)

Publication Number Publication Date
TW201117611A true TW201117611A (en) 2011-05-16
TWI400945B TWI400945B (en) 2013-07-01

Family

ID=44935289

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98137684A TWI400945B (en) 2009-11-06 2009-11-06 Time delay integration based mos photoelectric pixel sensing circuit

Country Status (1)

Country Link
TW (1) TWI400945B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595067A (en) * 2012-03-07 2012-07-18 天津大学 Analog-and-digital mixed accumulating time-delay integrating type complementary metal-oxide semiconductor image sensor
CN113055617A (en) * 2021-05-08 2021-06-29 长春长光辰芯光电技术有限公司 Image sensor with a plurality of pixels

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898332A (en) * 1997-03-28 1999-04-27 Northern Telecom Limited Time delay charge integration circuit
US6906749B1 (en) * 1998-09-16 2005-06-14 Dalsa, Inc. CMOS TDI image sensor
US6563539B1 (en) * 1998-09-18 2003-05-13 Nortel Networks Limited Charge transfer circuit for use in imaging systems
US7268814B1 (en) * 1999-10-05 2007-09-11 California Institute Of Technology Time-delayed-integration imaging with active pixel sensors
US7675561B2 (en) * 2006-09-28 2010-03-09 Cypress Semiconductor Corporation Time delayed integration CMOS image sensor with zero desynchronization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595067A (en) * 2012-03-07 2012-07-18 天津大学 Analog-and-digital mixed accumulating time-delay integrating type complementary metal-oxide semiconductor image sensor
CN113055617A (en) * 2021-05-08 2021-06-29 长春长光辰芯光电技术有限公司 Image sensor with a plurality of pixels

Also Published As

Publication number Publication date
TWI400945B (en) 2013-07-01

Similar Documents

Publication Publication Date Title
CN109698917B (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
CN109769083B (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
US8686339B2 (en) Solid-state imaging device, driving method thereof, and electronic device
US20110019044A1 (en) Time Delay Integration Based MOS Photoelectric Pixel Sensing Circuit
TWI381726B (en) Solid-state image sensing device, method for reading signal of solid-state image sensing device, and image pickup apparatus
US8687099B2 (en) Imaging device, imaging method, and electronic device
JP4821921B2 (en) Solid-state imaging device and electronic apparatus
JP4691930B2 (en) PHYSICAL INFORMATION ACQUISITION METHOD, PHYSICAL INFORMATION ACQUISITION DEVICE, PHYSICAL QUANTITY DISTRIBUTION SENSING SEMICONDUCTOR DEVICE, PROGRAM, AND IMAGING MODULE
JP5288965B2 (en) Solid-state imaging device and driving method thereof
JP5596888B1 (en) Imaging apparatus, endoscope system, and noise removal method
US20100271517A1 (en) In-pixel correlated double sampling pixel
US20070008206A1 (en) Analog-to-digital converter and semiconductor device
US8059173B2 (en) Correlated double sampling pixel and method
US20120327281A1 (en) Electronic apparatus and driving method therefor
CN104054328A (en) Semiconductor Device, Solid-state Imaging Device, And Camera System
US8085324B2 (en) Solid-state imaging apparatus
CN102164252B (en) Solid-state image pickup apparatus and driving method therefor
KR101838894B1 (en) Image sensor, and image processing device including the same
CN103259509A (en) Comparator, analog-to-digital convertor, solid-state imaging device, camera system, and electronic apparatus
CN103259511A (en) Comparator, analog-to-digital convertor, solid-state imaging device, camera system, and electronic apparatus
US20090213259A1 (en) Correlation Double Sampling Circuit for Image Sensor
KR100842513B1 (en) Solid-state image pickup device
TW201143414A (en) Column output circuits for image sensors
CN103179356A (en) Solid-state image capture device, drive method therefor, and electronic apparatus
TW200906173A (en) Sample and hold circuits for CMOS imagers

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees