TW201116939A - Multi-step contact printing process - Google Patents

Multi-step contact printing process Download PDF

Info

Publication number
TW201116939A
TW201116939A TW98137863A TW98137863A TW201116939A TW 201116939 A TW201116939 A TW 201116939A TW 98137863 A TW98137863 A TW 98137863A TW 98137863 A TW98137863 A TW 98137863A TW 201116939 A TW201116939 A TW 201116939A
Authority
TW
Taiwan
Prior art keywords
contact
layers
transfer
pattern
transfer process
Prior art date
Application number
TW98137863A
Other languages
Chinese (zh)
Other versions
TWI386761B (en
Inventor
Yung-Chun Lee
Chun-Hung Chen
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW98137863A priority Critical patent/TWI386761B/en
Publication of TW201116939A publication Critical patent/TW201116939A/en
Application granted granted Critical
Publication of TWI386761B publication Critical patent/TWI386761B/en

Links

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Thin Film Transistor (AREA)

Abstract

A multi-step contact printing process including the following steps is described. A mold is provided, wherein a surface of the mold includes a pattern structure. The pattern structure is a step structure, the pattern structure includes a plurality of step surfaces, and a top one of the step surfaces is located in the surface of the mold. A plurality of imprint material layers are formed to respectively cover the step surfaces. A plurality of substrates are provided, wherein one surface of each substrate is covered with a contact adhesive layer. A plurality of imprint steps are performed to respectively transfer the imprint material layers onto the contact adhesive layers on the substrates from high to low.

Description

201116939 六、發明說明·_ 【發明所屬之技術領域】 本發明是有關於一種轉印製程,且特別是有關於一種 多階式接觸轉印製程。 【先前技術】 在一般的接觸式圖案轉印技術中,通常係提供一模 仁,其中此模仁之表面設有圖案結構。圖案結構的圖案為 待轉印之圖案’圖案結構具有頂部與底^在模仁之表面 ’儿積轉印材料層’接著將模仁與待轉印之基板、或基板上 之阻劑層微接觸’此時模仁表面的頂部所沉積的轉印材料 層會黏附至待轉印之基板、絲板上之阻劑層^然後進行 脫模’此時模仁表面的頂部所沉積的轉印材料層會轉印至 至基板或基板上的阻劑層上。然後,利用蝕刻方式移除沒 有轉印材料層作為蝕刻遮罩的阻劑殘餘層,並進行舉離製 程或是直接钱刻基板,而完成接觸式轉印製程。 然而’在目前的接觸式轉印技術中,一個模仁只轉印 出與模仁相同圖案的轉印圖形若欲產生互補的轉印圖 形,則需翻印出互補模仁後,再進行轉印,大致上一個模 仁僅利用其表面頂部沉積的轉印材料層進行轉印。因此’ 無法達到利用單一模仁進行多次轉印的效果。故’傳統接 觸式轉印製程的生產效率不佳,也無法製作出多樣化的轉 印圖案’不僅増加製程的複雜度,更影響製程良率。 此外’除了一般的接觸式圖案轉印技術中有上述缺點 外’傳統的奈米壓印製程,如熱壓印或是紫外光(uv)壓印 201116939 亦具有待克服的缺點。傳統的奈米壓印製程,通常係提供 ' 一模仁,其中此模仁之表面設有圖案結構。圖案結構的圖 ' 案為待轉印之圖案。接下來,將圖案結構壓入待轉印之基 板、或基板上之阻劑層上。再進行脫模,而將模仁自基板 上移開,即可將模仁之圖案結構轉印至基板或基板上的阻 劑層上。然後,利用蝕刻方式移除阻劑殘餘層,而完成壓 印製程。 然而,由上述的製程可知,傳統奈米壓印製程有光阻 Φ 殘餘層可能過厚的問題。 【發明内容】 因此,本發明之一態樣就是在提供一種多階式接觸轉 印製程,其利用多階層式的立體模仁來進行轉印。故,僅 利用單一模仁,即可達到多次轉印的效果。 本發明之另一態樣是在提供一種多階式接觸轉印製 程,藉由多階層式立體模仁的採用,可產生數量與模仁之 • 圖案結構的階數相同的具轉印圖案的基板。因此,不僅可 降低製程成本,更可達到高量產、高效率、以及轉印圖案 多樣化的目標。 本發明之又一態樣是在提供一種多階式接觸轉印製 程,其轉印完成之圖案具有多重互補性。因此,應用在光 罩製作上,可直接形成高精準度的對準記號,有利於光罩 的製作。 本發明之再一態樣是在提供一種多階式接觸轉印製 程,其在轉印過程中可以轉印材料層作為蝕刻遮罩,因此 201116939 可避免光阻殘餘層厚度過大的問題。 根據本發明之上述目的,提出一種多階式接觸轉印製 . 程,其包含下列步驟。提供模仁,其中模仁之一表面設有 一圖案結構。此圖案結構係一階梯狀結構,且此圖案結構 包含複數個階梯面,這些階梯面之一最高者位於前述模仁 之表面。形成複數個轉印材料層分別覆蓋在前述之階梯面 上。提供複數個基板,其中每一基板之一表面上覆蓋有一 接觸黏附層。進行複數個轉印步驟,以使前述階梯面上之 • 轉印材料層由高而低地分別轉移至前述基板之接觸黏附層 上。 依據本發明之一實施例,上述之接觸黏附層與基板可 為相同的材質。 應用本揭示,可延伸為模仁之一表面設有一圖案結 構。此圖案結構所包含的階梯面可延伸為多階層的階梯 面,達到利用單一模仁達到多次轉印,而可降低製程成本, 並可提高量產與生產效率,更可達到使轉印圖案多樣化的 • 目標。而且,轉印過程中可使用轉印材料層作為蝕刻遮罩, 因此可避免光阻殘餘層厚度過大的問題。此外,本揭示可 應用來直接形成高精準度的對準記號,因此有利於光罩的 製作。 【實施方式】 % 請參照第 ΙΑ、2A、3、4B、5A、6、7A、8、9A 與 10圖,其係繪示依照本發明之第一實施方式的一種多階^ 接觸轉印製程的流程圖。在本實施方式中,進行多階式接 201116939 觸轉印製程時,先提供轉印用之模仁100a。模仁100a之表 面102a預設有圖案結構104a。圖案結構104a係階梯狀結 構,且包含第一階梯面106a、第二階梯面108a與第三階梯 面110a。其中,如第1A圖所示’第一階梯面106a位於模 仁100a之表面102a中’第二階梯面l〇8a低於第一階梯面 106a,而第三階梯面ii〇a則低於第二階梯面i〇8a。在其他 實施例中,模仁之階梯狀結構亦可包含更多階層,或者可 僅包含二個階層。 在一實施例中’如第1A圖所示,第—階梯面1〇6a、 第二階梯面108a與第三階梯面11如可為平面。在另一實 施例中,如第1B圖所示,在模仁100b中,圖案結構1〇仙 之第-階梯面lG6b、第二階梯面嶋與第三階梯面議 可為曲面。當然’在其他實施例中,圖案結構之各個階梯 面可不全為平面或曲面’而可一些階梯面為平面,另一些 Psb梯面則為曲面。為避免重複’以下係以苐ia圖之模仁 100a作為例子來進行本揭示之實施方式的說明。 、 模仁馳之材料可㈣本身具有抗㈣特性的材 :。模仁驗之材料亦可採用不具有抗沾黏特性的材 :二tit言’模仁1〇〇a之材料可例如包含矽、高分子聚 材料、塑膠材料、半導體材料、金屬 玻:材料,材料、 中任一者或任二者以上所合成之材料。 可直仁_本身具有抗沾黏特性時, 叮直接轉印材料層112、$二 三轉印材料層116分別覆蓋在圖荦 材枓:14 ”第 口系、、、。構l〇4a之第一階梯面 201116939 驗、第二階梯面職與第三階梯面11()&上。立中,模 =物為t有抗沾點特性的金屬、無機材料、高分 子聚合物(polymer)系列材質、跑玄^ 陶瓷材料、半導體材料、有 機材料^ 4中任二者或任二者以上所合成之材料。 r 1〇〇a本身不具有抗沾黏特性時,則可先 上。其中^ 術之圖案結構购 機材料、古八早分以、θ 之材料可例如為有機材料、無 =二材料、金屬材料、鐵弗龍材料、 ===(CXFy)經電聚解離後之沉積材料、 者以上之合成材料。接著,形成第-轉印 八^蓋在料層114與第三轉印材料層116 之第―階梯面驗第二階梯面 108a與第一 I1自梯面1 l〇a上方的於、μ利 . 上方的抗沾黏祺層118上,如第 且有r、:點:而’為避免重複’以下係以模仁100a本身 明有黏特性作為例子來進行本揭示之實施方式的說 材料ΐ 一二I材料層112、第二轉印材料層114與第三轉印 材料層116之材料可例如包含石夕、高分 料、有機材料、塑膠材料、半導體材料、口石二 玻:材料、陶咖、無機材料、上述材材二、2任 二者以上所合成之材料。 彳干任-者或任 在基板⑶。朗絲—接觸黏附層 黏附層124之材tt20八f/j22上。其中,第-接觸 固化性材料。材=熱㈣㈣或感光 任實施例中,第一接觸點附層124之材料 201116939 ::如分子聚合物系列材料、光P且材料、有機 :陶;=材料、石英、玻璃材 上所合成之材料者或任二者以 第一基板具有相同 =層也可與 黏附層。 Η卩弟絲直接做為第-接觸 ^第^所示之實施例中,第一基板m之表面122 面。油二’在另一實施例中’第一基板之表面可為曲 以’第—基板可例如為具有曲面之柱狀結構, ^製作滾賴仁。第-基板12G之材料可例如包含石夕、 :刀子聚合物系列材料、有機材料、塑膠材料、半導體材 料金屬材料、石英、玻璃材料、陶究材料、無機材料、 上述材料中任二者或任二者以上所合成之材料。 接下來,進行轉印步驟,而先將模仁100a之表面102a 與第-基板12G上之表面122相面對地壓合,藉以使第一 轉印材料層112與第—接觸黏附層124接合。再施加預壓 力,以使第-轉印材料層112與第一接觸黏附層124緊密 接觸。如第4A圖所示,此預壓力可為均佈壓力126。在另 -實施例中,如第4B圖所示,此預壓力亦可為集中壓力 13〇°其中」此集中壓力13〇可利用滾筒128來提供。除此 之外’在前述或是之後所敘述的滾筒128所產生的集中壓 =30施壓的位置可減仁端、基板端或是兩端皆施壓。 Li 128之材料可例如包含矽、高分子聚合物系列材料、 料、塑膠材料、半導體材料、金屬材料、石英、玻 璃材料、㈣材料、無機材料、上述材料中任二者或任二 201116939 者以上所合成之材料 光材質,或可為不BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a transfer process, and more particularly to a multi-step contact transfer process. [Prior Art] In the general contact pattern transfer technique, a mold is usually provided, wherein the surface of the mold is provided with a pattern structure. The pattern of the pattern structure is the pattern to be transferred. The pattern structure has a top and a bottom surface. The surface of the mold core is formed by a transfer material layer. The mold core is then in microcontact with the substrate to be transferred or the resist layer on the substrate. 'At this time, the layer of transfer material deposited on the top of the surface of the mold will adhere to the substrate to be transferred, the resist layer on the board, and then demolded. At this time, the transfer material deposited on the top of the surface of the mold is deposited. The layer is transferred to a resist layer on the substrate or substrate. Then, the resist residue layer having no transfer material layer as an etch mask is removed by etching, and the lift-off process is performed or the substrate is directly etched to complete the contact transfer process. However, in the current contact transfer technology, a mold is only transferred to the transfer pattern of the same pattern as the mold core. If a transfer pattern is to be produced, the complementary mold must be reprinted and then transferred. In general, a mold core is transferred using only a layer of transfer material deposited on the top of its surface. Therefore, the effect of multiple transfer using a single mold core cannot be achieved. Therefore, the production efficiency of the conventional contact transfer process is not good, and it is impossible to produce a variety of transfer patterns, which not only increases the complexity of the process, but also affects the process yield. In addition to the above-mentioned shortcomings in the conventional contact pattern transfer technology, the conventional nanoimprint process, such as hot stamping or ultraviolet (uv) imprinting 201116939, also has disadvantages to be overcome. The traditional nanoimprint process usually provides a mold core in which the surface of the mold has a patterned structure. The pattern of the pattern structure is the pattern to be transferred. Next, the pattern structure is pressed onto the substrate to be transferred, or the resist layer on the substrate. The mold release is carried out, and the mold core is transferred from the substrate to transfer the pattern structure of the mold to the substrate or the resist layer on the substrate. Then, the residual layer of the resist is removed by etching to complete the imprint process. However, as can be seen from the above process, the conventional nanoimprint process has a problem that the photoresist Φ residual layer may be too thick. SUMMARY OF THE INVENTION Accordingly, it is an aspect of the present invention to provide a multi-step contact transfer process that utilizes a multi-layered three-dimensional mold for transfer. Therefore, the effect of multiple transfer can be achieved by using only a single mold core. Another aspect of the present invention provides a multi-step contact transfer process which, by employing a multi-layered stereo mold, can produce a substrate having a transfer pattern of the same order as the pattern structure of the mold core. . Therefore, not only the process cost can be reduced, but also the goal of high mass production, high efficiency, and diversification of transfer patterns can be achieved. Yet another aspect of the present invention is to provide a multi-step contact transfer process in which the transferred pattern has multiple complementarities. Therefore, the application of the reticle can directly form a high-precision alignment mark, which is beneficial to the fabrication of the reticle. Still another aspect of the present invention is to provide a multi-step contact transfer process which can transfer a material layer as an etch mask during transfer, so that 201116939 can avoid the problem of excessive thickness of the photoresist residual layer. In accordance with the above object of the present invention, a multi-step contact transfer process is proposed which comprises the following steps. A mold core is provided, wherein a surface of one of the mold cores is provided with a pattern structure. The pattern structure is a stepped structure, and the pattern structure comprises a plurality of step faces, one of the highest of which is located on the surface of the mold core. A plurality of layers of the transfer material are formed to cover the aforementioned step faces, respectively. A plurality of substrates are provided, wherein one of the surfaces of each of the substrates is covered with a contact adhesion layer. A plurality of transfer steps are carried out to transfer the transfer material layer on the step surface from the high and low portions to the contact adhesion layer of the substrate. According to an embodiment of the invention, the contact adhesion layer and the substrate may be the same material. With the present disclosure, it is possible to extend a surface of one of the mold cores to provide a pattern structure. The step surface included in the pattern structure can be extended into a multi-level step surface, so that multiple transfer can be achieved by using a single mold core, the process cost can be reduced, mass production and production efficiency can be improved, and the transfer pattern can be achieved. Diversified • Goals. Moreover, the transfer material layer can be used as an etch mask during the transfer process, so that the problem of excessive thickness of the photoresist residual layer can be avoided. In addition, the present disclosure can be applied to directly form high-precision alignment marks, thereby facilitating the fabrication of the mask. [Embodiment] % Please refer to the drawings, 2A, 3, 4B, 5A, 6, 7A, 8, 9A and 10, which illustrate a multi-step ^ contact transfer process according to the first embodiment of the present invention. Flow chart. In the present embodiment, when the multi-step connection 201116939 touch transfer process is performed, the mold core 100a for transfer is first provided. The surface 102a of the mold core 100a is preliminarily provided with a pattern structure 104a. The pattern structure 104a is a stepped structure and includes a first step surface 106a, a second step surface 108a, and a third step surface 110a. Wherein, as shown in FIG. 1A, the first step surface 106a is located in the surface 102a of the mold core 100a. The second step surface l8a is lower than the first step surface 106a, and the third step surface ii〇a is lower than the first step surface 106a. Two step faces i〇8a. In other embodiments, the stepped structure of the mold core may also contain more layers, or may include only two levels. In an embodiment, as shown in Fig. 1A, the first step surface 1〇6a, the second step surface 108a and the third step surface 11 may be planar. In another embodiment, as shown in Fig. 1B, in the mold core 100b, the first step surface lG6b, the second step surface 嶋, and the third step surface of the pattern structure 1 may be curved surfaces. Of course, in other embodiments, each step of the pattern structure may not be entirely planar or curved, and some of the steps may be planar, while other Psb are curved. In order to avoid repetition, the following description of the embodiments of the present disclosure is made by taking the model 100a of the 苐ia diagram as an example. The material of the model can be (4) materials with anti-(four) characteristics: The material of the mold test can also be made of a material that does not have anti-stick properties: the material of the two-tit said that the material of the mold can be, for example, a crucible, a polymer material, a plastic material, a semiconductor material, a metal glass material, or the like. A material synthesized from any one or more of the materials. When the straight bar has its anti-adhesive property, the direct transfer material layer 112 and the two-third transfer material layer 116 are respectively covered in the figure clam: 14", the first system, the first, the first A step surface 201116939 test, a second step face and a third step face 11 () & on the center, the mold = material is a metal, inorganic material, polymer series (polymer) with resistance characteristics Materials such as materials, running Xuan ^ ceramic materials, semiconductor materials, organic materials ^ 4 or more of them. When r 1〇〇a itself does not have anti-stick properties, it can be applied first. The pattern structure purchase material, the ancient eight early, θ material can be, for example, an organic material, no = two materials, a metal material, Teflon material, === (CXFy) deposited material after electropolymerization dissociation And a synthetic material of the above. Next, a first transfer surface is formed on the first step surface 108a of the material layer 114 and the third transfer material layer 116, and the first I1 self-latitude surface 1 l〇 On the top of the anti-adhesive layer 118 on the upper side of the μ, as in the first, there are r,: point: and 'to avoid repetition The following is a description of the material of the present disclosure by taking the adhesive property of the mold core 100a as an example. The material of the material layer 112, the second transfer material layer 114 and the third transfer material layer 116 may be For example, it includes materials such as Shi Xi, high-distillation materials, organic materials, plastic materials, semiconductor materials, and stone materials: materials, ceramic coffee, inorganic materials, and materials of two or more of the above materials. Or on the substrate (3). Langs-contact adhesive layer adhesion layer 124 on the material tt20 eight f / j22. Among them, the first contact curing material. Material = heat (four) (four) or photosensitive embodiment, the first contact point attached Material of layer 124 201116939 :: such as molecular polymer series material, light P and material, organic: ceramic; = material, quartz, glass material synthesized on the glass or both of them have the same layer on the first substrate = In the embodiment shown as the first-contact, the surface of the first substrate m is the surface of the first substrate m. In another embodiment, the surface of the first substrate may be The curved first substrate can be, for example, a columnar structure having a curved surface ^Manufacture of roller lining. The material of the first substrate 12G may include, for example, Shi Xi, : knive polymer series materials, organic materials, plastic materials, semiconductor materials, metal materials, quartz, glass materials, ceramic materials, inorganic materials, the above materials. a material synthesized by any two or more of them. Next, a transfer step is performed, and the surface 102a of the mold core 100a is first pressed against the surface 122 of the first substrate 12G, thereby making the first A transfer material layer 112 is bonded to the first contact adhesion layer 124. A pre-pressure is applied to bring the first transfer material layer 112 into close contact with the first contact adhesion layer 124. As shown in Figure 4A, this pre-pressure can be a uniform pressure 126. In another embodiment, as shown in Fig. 4B, the pre-pressure may also be a concentrated pressure of 13 〇, wherein the concentrated pressure 13 〇 may be provided by the drum 128. In addition to the above, the position of the concentrated pressure generated by the drum 128 described above or later = 30 can be applied to reduce the pressure at the end, the substrate end or both ends. The material of Li 128 may, for example, comprise ruthenium, polymer series materials, materials, plastic materials, semiconductor materials, metal materials, quartz, glass materials, (4) materials, inorganic materials, any of the above materials or any of the above 201116939 The material of the material is synthesized, or it may be

可透光材質。為避免重= 二過滾筒128來施加 隼中懕六1 Μ <货’以下係M W ^說明。、方式作為例子,來進行本揭示之實施方式 接著’進仃熱固 以使第一轉印材料 層112貼合在第一社 X尤固化爽跟Light transmissive material. In order to avoid heavy = two over rollers 128 to apply 隼 懕 1 1 1 货 货 货 货 货 货 货 货 货 货 货 货 货 货 货 以下 以下 以下 以下By way of example, the embodiment of the present disclosure is carried out, and then the heat transfer is performed so that the first transfer material layer 112 is adhered to the first society.

接觸黏附層U4上。舉例而言’如第5A :, 订光固化處理時,可提供光源132a,並使光源 132a透過滾筒12只从甘 8的聚光,而以集中照射的方式來照射並Contact the adhesive layer U4. For example, as in the 5A:, in the photosetting curing process, the light source 132a can be provided, and the light source 132a can be illuminated by the concentrated illumination by the concentrating light from the gantry 8 through the roller 12.

产:接觸黏附I 124,並藉此將第-轉印材料層112 ^ 接觸黏附層124中。光源132a的波長範圍可例 如」於1 nm至1〇7 μιη之間。在另一實施例中,如第5B圖 ^斤不’可提供多個光源l;32a,且這些光源132a可不透過滾 筒128的聚光’而以分散照射的方式來照射並固化第-接 觸黏附層124。 其中’在前述或是之後所敘述的光固化的實施例中, 光源132a的入射位置可為模仁端、基板端或是兩端皆入 • 射。 在另一些實施例中,進行熱固化處理時,可利用加熱 源,例如第5A圖或第5B圖所示之光源132a做為加熱源, 來加熱第一接觸黏附層124,或是如第5C圖所示之非光源 式加熱源,例如加熱源132b,以將第一接觸黏附層124加 熱至玻璃轉換溫度(Tg)的熔融狀。接著,將模仁l〇〇a之圖 案結構104a壓入第一接觸黏附層124中。再冷卻固化第一 接觸黏附層124,以藉此將第一轉印材料層112固定在第 一接觸黏附層124中,或是將液狀第一接觸黏附層124加 201116939 熱使其達到熱固化,以藉此將第一轉印材料層112固定在 第一接觸黏附層124中,此時的加熱溫度可小於玻璃轉換 溫度(Tg)。加熱源可例如為雷射光式加熱源、燈源照光式 加熱源、熱電阻式加熱源、渦電流式加熱源、微波式加熱 源或超音波式加熱源。其中,雷射光式加熱源或燈源照光 式加熱源之波長範圍例如可介於1 nm至ΙΟ7 μιη之間。在 前述或是之後所敘述的熱固化的實施例中,加熱源的加熱 來源位置可為模仁端、基板端或是兩端皆加熱。 • 接下來,進行脫模步驟,以將模仁l〇〇a自第一基板 120上之第一接觸黏附層124上移開。由於,在轉印步驟 中,第一轉印材料層已固定在第一接觸黏附層124上。 因此,模仁l00a移開後,第一轉印材料層112可自模仁i〇〇a 脫離,而轉移至第一接觸黏附層124上,如第6圖所示。 接著’繼續進行下一階的圖案轉印。首先,提供第二 基板134。並形成第二接觸黏附層138覆蓋在第二基板134 之表面136上。第二接觸黏附層138之材料可包含熱塑性 • 材料、熱固性材料或感光固化性材料。在一實施例中,第 二接觸黏附層138之材料可例如包含矽、高分子聚合物系 列材料、光阻材料、有機材料、塑膠材料、半導體材料、 金屬材料、石英、玻璃材料、陶瓷材料、無機材料、上述 材料中任二者或任二者以上所合成之材料。在一實施例 中,第二接觸黏附層也可與第二基板具有相同的材質,即 第二基板直接做為第二接觸黏附層。 第二基板134之表面136可為平面、或曲面。例如, 第二基板134可為具有曲面之柱狀結構,以供製作滾筒模 201116939 仁。第二基板134之材料可例如包含矽、高分子聚合物系 列材料、有機材料、塑膠材料、半導體材料、金屬材料、 石英、玻璃材料、陶瓷材料、無機材料、上述材料中任二 者或任二者以上所合成之材料。 接著,利用同一模仁100a進行另一階層之轉印步驟。 先將模仁l〇〇a之圖案結構104a放置於第二基板134上方 的第二接觸黏附層138上,此時的第二接觸黏附層138應 具有可流動性,或是先行加熱第二接觸黏附層138至熔融 φ 狀。接著將模仁100a之圖案結構104a壓入第二基板134 上方的第二接觸黏附層138中,藉以使第二轉印材料層114 與第二接觸黏附層138接合。再施加預壓力,以使第二轉 印材料層114與第二接觸黏附層138緊密接觸。此預壓力 可如同第7A圖所示之均佈壓力302,或者如同第4B圖所 示之集中壓力130。 接下來,進行熱固化或光固化處理,此時所施加的預 壓力以均佈壓力302進行本揭示之實施方式的說明。如第 φ 7A圖所示,以使第二轉印材料層114貼合在第二接觸黏附 層138上。進行光固化處理時,可提供光源300a,而以如 第7A圖所示之分散照射的方式,來照射並固化第二接觸 黏附層138。光源300a的波長範圍可例如介於1 nm至107 μιη之間。在另一些實施例中,施加的預壓力為集中壓力 130時,進行熱固化或光固化處理,所使用之入射光源可 如同第5Α圖或第5Β圖所示之光源132a方式進行入射。 在前述或是之後所敘述的光固化的實施例中,光源 132a與光源300a的入射位置可為模仁端、基板端或是兩端 12 201116939 皆入射。 在另一些實施例中,進行熱固化處理時,可利用加熱 ' 源,例如第7A圖所示之光源300a或是第5A圖或第5B圖 所示之光源132a,來加熱第二接觸黏附層138,或是如第 7B圖所示之非光源式加熱源,例如加熱源300b,以將第二 接觸黏附層138加熱使其達到熱固化,再冷卻第二接觸黏 附層138,以藉此將第二轉印材料層114固定在第二接觸 黏附層138中。此時的加熱溫度可小於玻璃轉換溫度(Tg)。 φ 若是進行熱固化處理前,已經先行加熱第二接觸黏附層138 至熔融狀,此時在進行熱固化處理時直接冷卻第二接觸黏 附層138使其固化,以藉此將第二轉印材料層114固定在 第二接觸黏附層138中。 加熱源可例如為雷射光式加熱源、燈源照光式加熱 源、熱電阻式加熱源、渦電流式加熱源、微波式加熱源或 超音波式加熱源。其中,雷射光式加熱源或燈源照光式加 熱源之波長範圍例如可介於1 nm至107 μιη之間。在前述 Β 或是之後所敘述的熱固化的實施例中,加熱源的加熱來源 位置可為模仁端、基板端或是兩端皆加熱。 接下來,進行脫模步驟,以將模仁l〇〇a自第二基板 134上之第二接觸黏附層138上移開。由於,在轉印步驟 中,第二轉印材料層114已固定在第二接觸黏附層138上。 因此,模仁l〇〇a移開後,第二轉印材料層114可自模仁100a 脫離,而轉移至第二接觸黏附層138上,如第8圖所示。 請參照第8圖,第二階段之圖案轉印步驟在第二基板 134之第二接觸黏附層138中,形成階梯狀結構164。此階 13 201116939 梯狀結構164包含第一階梯部146與第二階梯部140。其 中’第一階梯部146包含第一部分142與第二部分144。 第一轉印材料層114貼合在第一階梯部146之第一部分142 上,並使第二轉印材料層114之第二部分144暴露出來。 接著,再繼續進行下一階的圖案轉印。首先,提供第 二基板148。並形成第三接觸黏附層152覆蓋在第三基板 148之表面150上。第三接觸黏附層152之材料可包含熱 塑性材料、熱固性材料或感光固化性材料。在一實施例中, Φ 第一接觸黏附層152之材料可例如包含石夕、高分子聚合物 系列材料、光阻材料、有機材料、塑膠材料、半導體材料、 金屬材料、石英、玻璃材料、陶瓷材料、無機材料、上述 材料中任一者或任二者以上所合成之材料。在一實施例 中1三接觸黏附層也可與第三基板具有相同的材質,即 第二基板直接做為第三接觸黏附層。 一第二基板148之表面150可為平面、或曲面。例如, 第二基板148可為具有曲面之柱狀結構,以供製作滚筒模 仁。第三基板148之材料可例如包含碎、高分子聚合物系 歹巧料、有機材料、塑膠材料、半導體材料、金屬材料、 :英、玻璃材料、陶究材料、無機材料、上述材料中任二 或任二者以上所合成之材料。 接下來’可再利用同一模仁1〇〇a進行下一階層之轉印 步驟。先將模仁1〇〇a之圖案結構l〇4a放置於第三基板148 亡方的第三接觸黏附層152上,此時的第三接觸黏附層152 -%具有可流動性,或是絲加熱第三接觸黏附層152至炫 .融狀。接著將模仁崎之圖㈣構1G4a壓人第三基板148 201116939 上方的第三接觸黏附層152中,藉以使第三轉印材料層116 與第三接觸黏附層152接合。再施加預壓力,以使第三轉 印材料層116與第三接觸黏附層152緊密接觸。此預壓力 可如同第9A圖所示之均佈壓力154,或者如同第4B圖所 示之集中壓力130。 然後,進行熱固化或光固化處理,以使第三轉印材料 層116貼合在第三接觸黏附層152上。此時所施加的預壓 力以均佈壓力154進行本揭示之實施方式的說明。如第9A 圖所示,進行光固化處理時,可提供光源156a,而以如第 9A圖所示之分散照射的方式,來照射並固化第三接觸黏附 層152。光源的波長範圍可例如介於1 nm至107 μιη之間。 在另一些實施例中,施加的預壓力為集中壓力130時,進 行熱固化或光固化處理,所使用之入射光源可如同第5A 圖或第5B圖所示之光源132a方式進行入射。 在前述或是之後所敘述的光固化的實施例中,光源 132a與光源156a的入射位置可為模仁端、基板端或是兩端 皆入射。 在其他實施例中,進行熱固化處理時,可利用加熱源, 例如第9A圖所示之光源156a或是第5A圖或第5B圖所示 之光源132a,來加熱第三接觸黏附層152,或是如第9B圖 所示之非光源式加熱源,例如加熱源156b,以將第三接觸 黏附層152加熱使其達到熱固化,再冷卻第三接觸黏附層 152,以藉此將第三轉印材料層116固定在第三接觸黏附層 152中。此時的加熱溫度可小於玻璃轉換溫度(Tg)。若是進 行熱固化處理前,已經先行加熱第三接觸黏附層152至熔 15 201116939 -Γ二進行熱固化處理時直接冷卻第三接觸黏附層 152使其固化,以藉此將第三轉印材料層U6固定在第三 -接觸,附層152中。加熱源可例如為雷射光式加孰源、燈 熱電阻式加熱源、渦電流式加熱源、微 土式加熱源或超音波式加熱源。其中,雷射光式加執源或 燈源照光式加熱源之波長範圍例如可介於! nm至1〇7叫 之間。在前述或是之後所敘述的熱固化的實施例中,加孰 源的加熱來源位置可為模仁蠕、基板端或是兩端皆加熱;; • 接著,進行脫模步驟,以將模仁100a自第三芙板148 上之第三接觸黏附層152上移開。由於,在^ 第三轉印材料層U6已料在第三接觸黏附層;;=中因 此,模仁100a移開後,第三轉印材料層116可 脫離,而轉移至第三接觸黏附層152上, 、一 α 第10圖所示。 如第10圖所示,第三階段之圖案轉印步 148之第三接觸黏附層152中,形成階梯 任第二暴板 梯狀結構166包含第一階梯部162、第二二冓166。此階 • 三階梯部I58。其中,第三轉印材料層部16〇與第 梯部162上。 116貼合在第-階 _請參照第η圖與第12圖’其係繪示依照本發明之第 一實施方式的一種多階式接觸轉印製程的流程圖 ^ 、 參照第6圖。在本實施方式中,將模仁i0〇a之第一二印材 料層112轉移至第一基板120之第一接觸黏附層 利用例如蝕刻方式’並以第一轉印材料層〗: •^马單’來 , 移除部分之第一接觸黏附層124,而暴露出第一基板12〇 • 之表面122的一部分168,如第11圖所示。移除部分之第 201116939 -接觸黏附層124後’可將第一轉印材料層u 移至第一接觸黏附層124中。 夂圖案轉 接下來,移除第一轉印材料層112。如此,即 -基板120上形成由第一接觸黏附| 124所構=第 構170’如第12圖所示。目案結構17〇之圖案係轉:自、: 一轉印材料層112之圖案。 移自第Production: Contact adhesion I 124, and thereby the first transfer material layer 112 ^ is contacted in the adhesion layer 124. The wavelength range of the light source 132a can be, for example, between 1 nm and 1 〇 7 μηη. In another embodiment, a plurality of light sources l; 32a may be provided as shown in FIG. 5B, and the light sources 132a may illuminate and cure the first-contact adhesion in a dispersed manner without transmitting the light of the drum 128. Layer 124. In the embodiment of the photocuring described above or after, the incident position of the light source 132a may be at the end of the mold, at the end of the substrate, or at both ends. In other embodiments, when the heat curing process is performed, the first contact adhesion layer 124 may be heated by using a heating source such as the light source 132a shown in FIG. 5A or FIG. 5B as a heating source, or as in the 5C. The non-source heat source shown in the drawing, for example, the heat source 132b, heats the first contact adhesion layer 124 to a molten state of the glass transition temperature (Tg). Next, the pattern structure 104a of the mold 1a is pressed into the first contact adhesion layer 124. The first contact adhesion layer 124 is cooled and cured to thereby fix the first transfer material layer 112 in the first contact adhesion layer 124, or the liquid first contact adhesion layer 124 is added to the 201116939 heat to be thermally cured. Thereby, the first transfer material layer 112 is thereby fixed in the first contact adhesion layer 124, and the heating temperature at this time may be smaller than the glass transition temperature (Tg). The heating source may be, for example, a laser light heating source, a lamp source heating source, a thermistor heating source, an eddy current heating source, a microwave heating source or an ultrasonic heating source. The wavelength range of the laser light source or the light source illumination source may be, for example, between 1 nm and ΙΟ7 μηη. In the thermally cured embodiment described above or later, the heating source may be heated to the end of the mold, the substrate end or both ends. • Next, a demolding step is performed to remove the mold core 10a from the first contact adhesion layer 124 on the first substrate 120. Since, in the transfer step, the first transfer material layer has been fixed on the first contact adhesion layer 124. Therefore, after the mold core 100a is removed, the first transfer material layer 112 can be detached from the mold core i〇〇a and transferred to the first contact adhesion layer 124 as shown in FIG. Then, the next-order pattern transfer is continued. First, a second substrate 134 is provided. A second contact adhesion layer 138 is formed overlying the surface 136 of the second substrate 134. The material of the second contact adhesion layer 138 may comprise a thermoplastic material, a thermosetting material or a photocurable material. In an embodiment, the material of the second contact adhesion layer 138 may include, for example, germanium, polymer series materials, photoresist materials, organic materials, plastic materials, semiconductor materials, metal materials, quartz, glass materials, ceramic materials, A material synthesized by any one or both of an inorganic material and the above materials. In an embodiment, the second contact adhesion layer may also have the same material as the second substrate, that is, the second substrate directly serves as the second contact adhesion layer. The surface 136 of the second substrate 134 can be planar, or curved. For example, the second substrate 134 may be a columnar structure having a curved surface for making a roll mold 201116939. The material of the second substrate 134 may include, for example, tantalum, a polymer series material, an organic material, a plastic material, a semiconductor material, a metal material, a quartz, a glass material, a ceramic material, an inorganic material, or any two of the above materials. The materials synthesized above. Next, another transfer step of the same layer is performed using the same mold core 100a. First, the pattern structure 104a of the mold 1a is placed on the second contact adhesion layer 138 above the second substrate 134. At this time, the second contact adhesion layer 138 should have flowability or heat the second contact first. Adhesion layer 138 is melted into a φ shape. The pattern structure 104a of the mold core 100a is then pressed into the second contact adhesion layer 138 over the second substrate 134, thereby bonding the second transfer material layer 114 to the second contact adhesion layer 138. A pre-pressure is applied to bring the second layer of transfer material 114 into intimate contact with the second contact adhesion layer 138. This pre-pressure can be as uniform pressure 302 as shown in Figure 7A, or as concentrated pressure 130 as shown in Figure 4B. Next, thermal curing or photocuring treatment is carried out, and the applied pre-pressure at this time is described by the uniform pressure 302 to the embodiment of the present disclosure. As shown in Fig. φ 7A, the second transfer material layer 114 is attached to the second contact adhesion layer 138. When the photocuring treatment is performed, the light source 300a is provided, and the second contact adhesion layer 138 is irradiated and cured in a dispersed manner as shown in Fig. 7A. The wavelength range of the light source 300a may be, for example, between 1 nm and 107 μm. In other embodiments, when the applied pre-pressure is the concentrated pressure 130, thermal curing or photo-curing is performed, and the incident light source used can be incident as the light source 132a shown in Fig. 5 or Fig. 5 . In the photocuring embodiment described above or later, the incident position of the light source 132a and the light source 300a may be incident on the terminal end, the substrate end, or both ends. In other embodiments, when the thermal curing process is performed, the second contact adhesion layer may be heated by using a heating source such as the light source 300a shown in FIG. 7A or the light source 132a shown in FIG. 5A or 5B. 138, or a non-source heating source as shown in FIG. 7B, such as heat source 300b, to heat the second contact adhesion layer 138 to thermal cure, and then to cool the second contact adhesion layer 138, thereby The second transfer material layer 114 is fixed in the second contact adhesion layer 138. The heating temperature at this time may be less than the glass transition temperature (Tg). φ If the second contact adhesion layer 138 has been heated to melt before the thermal curing treatment, the second contact adhesion layer 138 is directly cooled and solidified during the thermal curing treatment, thereby thereby transferring the second transfer material. Layer 114 is secured in second contact adhesion layer 138. The heating source may be, for example, a laser light heating source, a light source illumination heating source, a thermal resistance heating source, an eddy current heating source, a microwave heating source or an ultrasonic heating source. The wavelength range of the laser light source or the light source illumination source may be, for example, between 1 nm and 107 μm. In the foregoing embodiment of the thermal curing described herein or later, the heating source may be heated to the end of the mold, the substrate end or both ends. Next, a demolding step is performed to remove the mold core 10a from the second contact adhesion layer 138 on the second substrate 134. Since, in the transfer step, the second transfer material layer 114 has been fixed on the second contact adhesion layer 138. Therefore, after the mold core l〇〇a is removed, the second transfer material layer 114 can be detached from the mold core 100a and transferred to the second contact adhesion layer 138 as shown in FIG. Referring to Fig. 8, the pattern transfer step of the second stage forms a stepped structure 164 in the second contact adhesion layer 138 of the second substrate 134. This step 13 201116939 ladder structure 164 includes a first step portion 146 and a second step portion 140. The first step portion 146 includes a first portion 142 and a second portion 144. The first transfer material layer 114 is attached to the first portion 142 of the first step portion 146 and exposes the second portion 144 of the second transfer material layer 114. Then, the pattern transfer of the next step is continued. First, a second substrate 148 is provided. A third contact adhesion layer 152 is formed overlying the surface 150 of the third substrate 148. The material of the third contact adhesion layer 152 may comprise a thermoplastic material, a thermosetting material or a photosensitive curable material. In an embodiment, the material of the first contact adhesion layer 152 may include, for example, Shi Xi, polymer series materials, photoresist materials, organic materials, plastic materials, semiconductor materials, metal materials, quartz, glass materials, ceramics. A material synthesized from any one or more of a material, an inorganic material, and the above materials. In one embodiment, the three-contact adhesive layer may also have the same material as the third substrate, that is, the second substrate directly serves as the third contact adhesion layer. The surface 150 of a second substrate 148 can be planar, or curved. For example, the second substrate 148 may be a columnar structure having a curved surface for making a roller mold. The material of the third substrate 148 may include, for example, a crushed polymer material, an organic material, a plastic material, a semiconductor material, a metal material, an English material, a glass material, a ceramic material, an inorganic material, or any of the above materials. Or a material synthesized by either or both. Next, the transfer process of the next layer can be performed by using the same mold 1〇〇a. First, the pattern structure l〇4a of the mold 1a is placed on the third contact adhesion layer 152 of the third substrate 148. At this time, the third contact adhesion layer 152-% has flowability or silk. The third contact adhesion layer 152 is heated to a dazzle. Next, the image of the mold (4) is pressed into the third contact adhesion layer 152 above the third substrate 148 201116939, whereby the third transfer material layer 116 is bonded to the third contact adhesion layer 152. A pre-pressure is applied to bring the third layer of transfer material 116 into intimate contact with the third contact adhesion layer 152. This pre-pressure can be as uniform pressure 154 as shown in Figure 9A, or as concentrated pressure 130 as shown in Figure 4B. Then, heat curing or photocuring treatment is performed to bond the third transfer material layer 116 on the third contact adhesion layer 152. The pre-pressure applied at this time is described in the embodiment of the present disclosure at a uniform pressure 154. As shown in Fig. 9A, when the photocuring treatment is performed, the light source 156a is provided, and the third contact adhesive layer 152 is irradiated and cured in a manner of dispersion irradiation as shown in Fig. 9A. The wavelength range of the light source can be, for example, between 1 nm and 107 μm. In other embodiments, when the applied pre-pressure is concentrated pressure 130, thermal curing or photo-curing is performed, and the incident light source used can be incident as the light source 132a shown in Fig. 5A or Fig. 5B. In the light-curing embodiment described above or later, the incident position of the light source 132a and the light source 156a may be incident on the terminal end, the substrate end, or both ends. In other embodiments, when the heat curing process is performed, the third contact adhesion layer 152 may be heated by using a heating source such as the light source 156a shown in FIG. 9A or the light source 132a shown in FIG. 5A or FIG. 5B. Or a non-source heating source as shown in FIG. 9B, such as heating source 156b, to heat the third contact adhesion layer 152 to thermally cure, and then to cool the third contact adhesion layer 152, thereby The transfer material layer 116 is fixed in the third contact adhesion layer 152. The heating temperature at this time may be less than the glass transition temperature (Tg). If the third contact adhesion layer 152 is heated before the heat curing treatment, the third contact adhesion layer 152 is directly cooled and cured by heating the third contact adhesion layer 152 to the fuse 15 201116939 - thereby performing the third transfer material layer. U6 is fixed in the third-contact, layer 152. The heating source may be, for example, a laser light source, a lamp thermal resistance source, an eddy current source, a micro-heat source or an ultrasonic heat source. Among them, the wavelength range of the laser light source or the light source heat source can be, for example,! Between nm and 1〇7 is called. In the heat curing embodiment described above or later, the heating source of the twisting source may be heated by the mold, the substrate end or both ends;; then, the demolding step is performed to remove the mold 100a is removed from the third contact adhesive layer 152 on the third slab 148. Because the third transfer material layer U6 has been expected to be in the third contact adhesion layer;; = therefore, after the mold core 100a is removed, the third transfer material layer 116 can be detached and transferred to the third contact adhesion layer 152, , and α are shown in Figure 10. As shown in Fig. 10, in the third contact adhesion layer 152 of the pattern transfer step 148 of the third stage, a step is formed. Any of the second step ladder structures 166 includes a first step portion 162 and a second second portion 166. This step • Three steps I58. Among them, the third transfer material layer portion 16 is formed on the first step portion 162. 116 is attached to the first stage. _ Referring to FIG. 11 and FIG. 12', a flow chart of a multi-step contact transfer process according to the first embodiment of the present invention is shown. In the present embodiment, the first two-imprint material layer 112 of the mold core i0〇a is transferred to the first contact adhesion layer of the first substrate 120 by, for example, etching method and the first transfer material layer: • A portion of the first contact adhesion layer 124 is removed to expose a portion 168 of the surface 122 of the first substrate 12, as shown in FIG. The first transfer material layer u can be moved into the first contact adhesion layer 124 after the portion 201116939 - the contact adhesion layer 124 is removed.夂 Pattern Turning Next, the first transfer material layer 112 is removed. Thus, the substrate 120 is formed by the first contact adhesion | 124 = the first structure 170' as shown in Fig. 12. The pattern of the structure of the object is rotated: from: a pattern of the layer 112 of the transfer material. Moved from the first

請參照« 13圖與f 14 ,其係繪示依照本 三實施方式的-種多階式接觸轉印製程的流程圖第 11圖所不之結毅’可利用第一轉印材料層112為=第 蝕刻第一基板120之表面122所暴露出的部分·、、、 除部分之第-基板m。因而,在第—基板12G中开^移 陷區172,如第13圖所示。 战凹 接著,移除第一轉印材料層112。如此,即可形 第一接觸黏附層124與第一基板120共同構成之圖^結構 174,如第14圖所示。圖案結構174之圖案同樣係轉^自 第一轉印材料層112之圖案。 在另一實施例中,請參照第15圖,完成第14圖所示 之結構後,可進一步移除剩餘之第一接觸黏附層124。如 此,即可在第一基板120中形成圖案結構176。圖案結構 176之圖案亦轉移自第一轉印材料層112之圖案。 請參照第16圖與第17圖,其係繪示依照本發明之第 五實施方式的一種多階式接觸轉印製程的流程圖。完成第 13圖所示之結構後,可先形成圖案材料層178與18〇分別 覆蓋在第一轉印材料層112與凹陷區172所暴露出之第一 基板120的部分上,如第16圖所示。 17 201116939 接著,進行舉離步驟,以移除第一轉印材料層112、 與位於第一轉印材料層112上之圖案材料層178。如此, ' 即可形成由第一接觸黏附層124、圖案材料層180與第一 基板120共同構成之圖案結構182,如第17圖所示。圖案 結構182之圖案同樣係轉移自第一轉印材料層丨12之圖案。 請參照第18圖’完成第17圖所示之結構後,可進一 步移除剩餘之第一接觸黏附層124。如此,即可形成由圖 案材料層180與第一基板120共同構成之圖案結構丨84, φ 如第18圖所示。圖案結構184之圖案同樣係轉移自第一轉 印材料層112之圖案。 請參照第19圖與第20圖,其係繪示依照本發明之第 七實施方式的一種多階式接觸轉印製程的流程圖。完成第 11圖所示之結構後,可先形成圖案材料層186與188分別 覆蓋在第一轉印材料層112與第一基板120之表面丨22的 暴露部分168上,如第19圖所示。 接者,進彳亍舉離步驟,而移除第一轉印材料層112、 • 與位於第一轉印材料層112上之圖案材料層186。如此, 即可形成由第一接觸黏附層124與圖案材料層188共同構 成之圖案結構190,如第20圖所示。圖案結構19〇之圖案 同樣係轉移自第一轉印材料層112之圖案。 在另一實施例中,請參照第21圖,完成第19圖所示 之結構後,所進行之舉離步驟除了移除第一轉印材料層 112、與位於第一轉印材料層112上之圖案材料層186外, 更可包3移除剩餘之第一接觸黏附層124。如此,即可形 成由圖案材料層188所構成之圖案結構192,如第21圖所 201116939 示。圖案結構192之圖案大致上與第一轉印材料層Π2之 圖案互補。 請參照第22圖與第23圖,其係繪示依照本發明之第 九實施方式的一種多階式接觸轉印製程的流程圖。請一併 參照第8圖。在本實施方式中,將模仁l〇〇a之第二轉印材 料層114轉移至第二基板134之第二接觸黏附層138後, 利用例如蝕刻方式,並以第二轉印材料層114為遮罩,來Please refer to «13 and f14, which show the flow chart of the multi-step contact transfer process according to the third embodiment, which is not shown in Fig. 11. The first transfer material layer 112 can be utilized. The first portion of the surface of the first substrate 120 exposed by the surface 122 is etched, and the portion of the first substrate m is removed. Thus, the depressed region 172 is opened in the first substrate 12G as shown in Fig. 13. Warfare Next, the first transfer material layer 112 is removed. Thus, the first contact adhesion layer 124 and the first substrate 120 can be formed to form the structure 174 as shown in FIG. The pattern of the pattern structure 174 is also rotated from the pattern of the first transfer material layer 112. In another embodiment, referring to Fig. 15, after the structure shown in Fig. 14 is completed, the remaining first contact adhesion layer 124 can be further removed. Thus, the pattern structure 176 can be formed in the first substrate 120. The pattern of pattern structure 176 is also transferred from the pattern of first transfer material layer 112. Referring to Figures 16 and 17, there is shown a flow chart of a multi-step contact transfer process in accordance with a fifth embodiment of the present invention. After the structure shown in FIG. 13 is completed, the pattern material layers 178 and 18〇 may be formed to cover the portions of the first substrate 120 exposed by the first transfer material layer 112 and the recess region 172, respectively, as shown in FIG. Shown. 17 201116939 Next, a lift-off step is performed to remove the first transfer material layer 112 and the pattern material layer 178 on the first transfer material layer 112. Thus, a pattern structure 182 composed of the first contact adhesion layer 124, the pattern material layer 180, and the first substrate 120 can be formed as shown in FIG. The pattern of the pattern structure 182 is also transferred from the pattern of the first transfer material layer 12 . Referring to Fig. 18, after the structure shown in Fig. 17 is completed, the remaining first contact adhesion layer 124 can be further removed. Thus, the pattern structure 丨 84 formed by the pattern material layer 180 and the first substrate 120 can be formed as shown in Fig. 18. The pattern of pattern structure 184 is also transferred from the pattern of first layer of transfer material 112. Referring to Figures 19 and 20, there is shown a flow chart of a multi-step contact transfer process in accordance with a seventh embodiment of the present invention. After the structure shown in FIG. 11 is completed, the pattern material layers 186 and 188 may be formed to cover the first transfer material layer 112 and the exposed portion 168 of the surface 丨 22 of the first substrate 120, respectively, as shown in FIG. . The pick-up step is performed to remove the first transfer material layer 112, and the pattern material layer 186 on the first transfer material layer 112. Thus, the pattern structure 190 formed by the first contact adhesion layer 124 and the pattern material layer 188 can be formed as shown in FIG. The pattern of the pattern structure 19 is also transferred from the pattern of the first transfer material layer 112. In another embodiment, referring to FIG. 21, after the structure shown in FIG. 19 is completed, the lifting step is performed except that the first transfer material layer 112 is removed and the first transfer material layer 112 is disposed. Outside the pattern material layer 186, the remaining first contact adhesion layer 124 can be removed. Thus, the pattern structure 192 formed by the pattern material layer 188 can be formed as shown in Fig. 21, 201116939. The pattern of the pattern structure 192 is substantially complementary to the pattern of the first transfer material layer Π2. Referring to Figures 22 and 23, there is shown a flow chart of a multi-step contact transfer process in accordance with a ninth embodiment of the present invention. Please refer to Figure 8 together. In the present embodiment, after the second transfer material layer 114 of the mold core 10a is transferred to the second contact adhesion layer 138 of the second substrate 134, for example, an etching method is used, and the second transfer material layer 114 is used. For the mask, come

移除第二接觸黏附層138之第二階梯部140與第一階梯部 146之第二部分144的一部分,而暴露出第二階梯部14〇 下方之第二基板134的表面136部分,如第22圖所示。 饮Γ 冲不一付叩啊竹僧 i i崎。刘此, 二基板134上形成由第二接觸黏附層138所構成之-圖案結構194,如第23圖所示。 二'維 請參照第24圖與第25圖,其係繪示依照本 十實施方式的一種多階式接觸轉印製程的流程圖。^之 22圖所示之結構後,可利用第二轉印材料層丨μ與7"^成: 觸黏附層138之第一階梯部ΐ4ό的第二部分144 ^第〜, 蝕刻第二基板134之表面136所暴露出的部分,了遮罩 分之第二基板134。因而,在第二基板134 :移除、 ,如第24圖所示。 少成凹陷丨 接著,移除第二轉印材料層114。如此’即 第二接觸黏附層138與第二基板134共同構 °形成〗 案結構198,如第25圖所示。 體的丨 請參照第26圖,完成第25圖所示之結構後,口、 步移除剩餘之第二接觸黏附層138 ^如此,即可在$進- 201116939 板134中形成圖案結構200。 請參照第27圖與第28圖,其係繪示依照本發明之第 ' 十二實施方式的一種多階式接觸轉印製程的流程圖。完成 第24圖所示之結構後’可先形成圖案材料層202、206與 204分別覆蓋在凹陷區196所暴露出之第二基板134的部 分、第一階梯部146之第二部分144、與第二轉印材料層 114上,如第27圖所示。 接著’進行舉離步驟,以移除第二轉印材料層114、 • 與位於第二轉印材料層114上之圖案材料層204。如此, 即可形成由第二接觸黏附層138之第一階梯部146、圖案 材料層202與206、以及第二基板丨34共同構成之三維的 圖案結構208,如第28圖所示。 請參照第29圖,完成第28圖所示之結構後,可進一 步移除剩餘之第二接觸黏附層138。如此,即可形成由圖 案材料層202與第二基板134共同構成之三維的圖案結構 210,如第29圖所示。 • 請參照第3〇圖與第31圖,其係繪示依照本發明之第 十四實施方式的一種多階式接觸轉印製程的流程圖。完成 第22圖所示之結構後,可先形成圖案材料層212、214與 216分別覆蓋在第二基板134之表面136的暴露部分、第 二轉印材料層114、與第一階梯部146之第二部分144上, 如第30圖所示。 接著,進行舉離步驟,而移除第二轉印材料層114、 • 與位於第二轉印材料層U4上之圖案材料層214。如此, 即可形成由第二接觸黏附層138之第-pg梯部146、以及 20 201116939 圖案材料層212與216共同構成之三維的圖案結構218, 如第31圖所示。 在另一實施例中,請參照第32圖,完成第30圖所示 之結構後,所進行之舉離步驟除了移除第二轉印材料層 114、與位於第二轉印材料層114上之圖案材料層214外, 更可包含移除剩餘之第二接觸黏附層138與其上之圖案材 料層216。如此,即可形成由圖案材料層212所構成之圖 案結構220,如第32圖所示。 請參照第33圖與第34圖,其係繪示依照本發明之第 十六實施方式的一種多階式接觸轉印製程的流程圖。請一 併參照第8圖。在本實施方式中,將模仁100a之第二轉印 材料層114轉移至第二基板134之第二接觸黏附層138 後,利用例如蝕刻方式,並以第二轉印材料層114為遮罩, 來移除第二接觸黏附層138之第一階梯部146的第二部分 144與第二階梯部140,而暴露出第一階梯部146的第二部 分144與第二階梯部140下方之第二基板134的表面136 部分,如第33圖所示。移除第二接觸黏附層138之第一階 梯部146之第二部分144與第二階梯部140後,可將第二 轉印材料層114之圖案轉移至第二接觸黏附層138中。 接下來,移除第二轉印材料層114。如此,即可在第 二基板134上形成由第一階梯部146之第一部分142所構 成之圖案結構222,如第34圖所示。圖案結構222之圖案 係轉移自第二轉印材料層114之圖案。 請參照第35圖與第36圖,其係繪示依照本發明之第 十七實施方式的一種多階式接觸轉印製程的流程圖。完成 201116939 第33圖所示之結構後,可利用第二轉印材料層114為遮 罩,蝕刻第二基板134之表面136的暴露部分,以移除部 ' 分之第二基板134。因而,在第二基板134中形成凹陷區 226,如第35圖所示。 接著,移除第二轉印材料層114。如此,即可形成由 第二接觸黏附層138之第一階梯部146的第一部分142與 第二基板134共同構成之圖案結構228,如第36圖所示。 圖案結構228之圖案同樣係轉移自第二轉印材料層114之 鲁 圖案。 在另一實施例中,請參照第37圖,完成第36圖所示 之結構後,可進一步移除剩餘之第二接觸黏附層138。如 此,即可在第二基板134中形成圖案結構230。圖案結構 230之圖案亦轉移自第二轉印材料層114之圖案。 請參照第38圖與第39圖,其係繪示依照本發明之第 十九實施方式的一種多階式接觸轉印製程的流程圖。完成 第35圖所示之結構後,可先形成圖案材料層232與234分 B 別覆蓋在凹陷區226所暴露出之第二基板134的部分與第 二轉印材料層114上,如第38圖所示。 接著,進行舉離步驟,以移除第二轉印材料層114、 與位於第二轉印材料層114上之圖案材料層234。如此, 即可形成由第二接觸黏附層138之第一階梯部146的第一 部分142、圖案材料層232與第二基板134共同構成之圖 案結構236,如第39圖所示。圖案結構236之圖案同樣係 轉移自第二轉印材料層114之圖案。 Λ 在另一實施例中,請參照第40圖,完成第38圖所示 22 201116939 之結構後,所進行之舉離步驟除了移除移除第二轉印材料 層114與其上之圖案材料層234外,更可包含移除剩餘之 一 第二接觸黏附層138。如此,即可形成由圖案材料層232 與第二基板134共同構成之圖案結構238,如第40圖所示。 請參照第41圖與第42圖,其係繪示依照本發明之第 二Η 實施方式的一種多階式接觸轉印製程的流程圖。完 成第33圖所示之結構後,可先形成圖案材料層240與242 分別覆蓋在第二基板134之表面136的暴露部分與第二轉 φ 印材料層II4上,如第41圖所示。 接著,進行舉離步驟,而移除第二轉印材料層114、 與位於第二轉印材料層114上之圖案材料層242。如此, 即可形成由第二接觸黏附層138之第一階梯部146的第一 部分142與圖案材料層24〇共同構成之圖案結構224,如 第42圖所示。 在另一實施例中,請參照第43圖,完成第41圖所示 之結構後,所進行之舉離步驟除了移除第二轉印材料層114 Φ 與其上之圖案材料層242外,更可包含移除剩餘之第二接 觸黏附層138。如此,即可形成由圖案材料層240所構成 之圖案結構244,如第43圖所示。圖案結構244之圖案大 致上與第二轉印材料層114之圖案互補。 請參照第44圖與第45圖,其係繪示依照本發明之第 二十三實施方式的一種多階式接觸轉印製程的流程圖。請 一併參照第10圖。在本實施方式中,將模仁100a之第三 轉印材料層116轉移至第三基板148之第三接觸黏附層ι52 . 後’利用例如蝕刻方式,並以第三轉印材料層116為遮罩, 23 201116939 來移除第三接觸黏附層152之第三階梯部158與第二階梯 部160之一部分,而暴露出第三階梯部158下方之第三基 • 板148的表面246部分,如第44圖所示。 接下來,移除第二轉印材料層116。如此,即可在第 三基板148上形成由第三接觸黏附層152之第一階梯部162 與第二階梯部160所構成之三維的圖案結構248,如第45 圖所示。 請參照第46圖與第47圖,其係繪示依照本發明之第 • 二十四實施方式的一種多階式接觸轉印製程的'流程圖。完 成第44圖所示之結構後,可利用第三轉印材料層116與第 二接觸黏附層152之第一階梯部16〇為遮罩,餘刻第三基 板148之表面246的暴露部分,以移除部分之第三基板 148。因而,在第三基板148中形成凹陷區25〇,如第46 圖所示。 接著’移除第二轉印材料層116。如此,即可形成由 第二接觸黏附層152之第一階梯部162與第二階梯部160、 鲁 以及第二基板148共同構成之立體的圖案結構m2,如第 47圖所示。 請參照第48圖,完成第47圖所示之結構後,可進一 步移除剩餘之第三接觸黏附層152。如此,即可在第三基 板148中形成圖案結構254。 & δ月參照第49圖與第50圖,其係繪示依照本發明之第 二十六實施方式的一種多階式接觸轉印製程的'流^圖。完 成第46圖所示之結構後,可先形成圖案材料層256、258 與260分別覆蓋在凹陷區250所暴露出之第三1板148的 24 201116939 部分、第二階梯部160、與第三轉印材料層116上,如第 49圖所示。 严 接著’進行舉離步驟,以移除第三轉印材料層116、 與位於第三轉印材料層114上之圖案材料層260。如此, 即可形成由第三接觸黏附層152之第一階梯部162與第二 階梯部160、圖案材料層256與258、以及第三基板148共 同構成之三維的圖案結構262,如第50圖所示。 在另一實施例中,請參照第51圖,完成第49圖所示 • 之結構後’所進行之舉離步驟除了移除第三轉印材料層116 與其上之圖案材料層260外,更可包含移除剩餘之第三接 觸黏附層152。如此,即可形成由圖案材料層256與第三 基板148共同構成之三維的圖案結構264’如第51圖所示。 請參照第52圖與第53圖’其係緣示依照本發明之第 二十八實施方式的一種多階式接觸轉印製程的流程圖。完 成第44圖所示之結構後,可先形成圖案材料層266、268 與270分別覆蓋在第三基板148之表面246的暴露部分、 • 第二階梯部16〇、與第三轉印材料層110上,如第52圖所 示。 接著,進行舉離步驟,而移除第三轉印材料層1丨6、 與位於第三轉印材料層116上之圖案材料層27〇。如此, 即可形成由第二接觸點附層15〇之第一階梯部162與第二 階梯部160、以及圖案材料層266與268共同構成之三維 的圖案結構272,如第53圖所示。 一、 在另-實施例中’睛參照第54圖’完成第52圖所示 之結構後,所進行之舉離步驟除了移除第三轉印材料層116 25 201116939 與其上之圖案材料層270外,更可包含移除剩餘之第三接 觸黏附層152與其上之圖案材料層268。如此,即可形成 由圖案材料層266所構成之圖案結構274,如第54圖所示。 凊參照第55圖與第56圖,其係繪示依照本發明之第 三十實施方式的-種多階式接觸轉印製程的流程圖。請一 併參照第1G圖。在本實施方式中,將模仁丨之第三轉 印材料層116轉移至第二基板148之第三接觸黏附層152 後,利用例如㈣方式’並以第三轉印材料層116為遮罩, 來移除第三接觸黏附層152之第二階梯部⑽與第三階梯 部158,而暴露出第二階梯邱& & 曰诉。Ρ 160與第三階梯部158下方 之第三基板148的表面246邱八,你 #分’如第55圖所示。移除第 三接觸黏附層152之第二卩比极& 匕梯部160與第三階梯部158 後’可將第二轉印材料層 β ^ 6之圖案轉移至第三接觸黏附 層152中。 接下來,移除第三轉印耔nr 1何枓層11 ό。如此,即可在第 二基板148上形成由第〜ρ昏姐加、m …^ θ - 1自梯部162所構成之圖案結構 276 ’如第56圖所不。圖宰钍 系結構276之圖案係轉移自第三 轉印材料層116之圖案。 請參照第57圖與第58圄廿〆^ 二本一眘β古々沾一接夕圖,其係繪示依照本發明之第 一 & 夕階式接觸轉印製程的流程圖。完 成第55圖所示之結構後,可免丨田故 ^ ^ j利用第三轉印材料層116為遮 罩,蝕刻第三基板148之表而,“ 衣面246的暴露部分,以移除部 分之第三基板14S。因而,在笙—甘j 丄 在第二基板148中形成凹陷區 278,如第57圖所示。 接著’移除第三轉印材粗s ,, 何料層116。如此,即可形成由 26 201116939 第二接觸黏附層152之第一階梯部162與第三基板148共 同構成之圖案結構280,如第58圖所示。 在另一實施例中,請參照第59圖,完成第58圖所示 之結構後’可進一步移除剩餘之第三接觸黏附層152。如 此,即可在第三基板148中形成圖案結構282。圖案結構 282之圖案亦轉移自第三轉印材料層116之圖案。 請參照第60圖與第61圖’其係繪示依照本發明之第 二十二實施方式的一種多階式接觸轉印製程的流程圖。完 • 成第57圖所示之結構後,可先形成圖案材料層284與286 分別覆蓋在凹陷區278所暴露出之第三基板148的部分與 第三轉印材料層116上,如第60圖所示。 接著,進行舉離步驟,以移除第三轉印材料層116、 與位於第二轉印材料層1丨6上之圖案材料層286。如此, 即可形成由第三接觸黏附層152之第一階梯部162、圖案 材料層284與第三基板148共同構成之圖案結構288,如 第61圖所示。 • 在另一實施例中,請參照第62圖,完成第60圖所示 之結構後,所進行之舉離步驟除了移除移除第三轉印材料 層116與其上之圖案材料層286外,更可包含移除剩餘之 第三接觸黏附層152。如此,即可形成由圖案材料層284 與第二基板148共同構成之圖案結構29〇,如第62圖所示。 請參照第63圖與第64圖,其係繪示依照本發明之第 二十五實施方式的一種多階式接觸轉印製程的流程圖。完 成第55圖所示之結構後’可先形成圖案材料層292與294 分別覆蓋在第三基板M8之表面246的暴露部分與第三轉 27 201116939 印材料廣116上,如第63圖所示。 & 進行舉離步驟,而移除第三轉印材料層116、 Γ=:ΓΡ材料層116上之圖案材料層294。如此, 第二接觸黏附層152之第一階梯部162與圖案 材料廣292共同構成之圖案結構296,如第64圖所示。 v 65 ® ^ 63 斑:上之圖幸二 步驟除了移除第三轉印材料層叫 152 此即可形成由圖案材料層292斛摄1 :=構::第65圖所示。圖案.二二= 致上與第二轉印材料層116之圖案互補。 案大 由上述之實施方式可知,本發明之 接=T;:j_b層式的立,來^ 果。 j用早1仁,即可達到多次轉印的效 藉由多階層式立體模ί::用本:優點就是因為 製程成本,更可達到高量二案因此’不僅可降低 化的目標。 回效率、以及轉印圖案多樣 士政由上述之實施方式可知,本發明之又一優㈣日m 本發明之多階式接觸轉印製程轉印完成之圓因為 對準記號,有利於光罩的^作。,可直接形成高精準度的 由上述之實施方式可知’本發明之再-優點就是因為 28 201116939 本發明之多階式接觸轉印製程在轉印過程中可以轉印材料 層作為蝕刻遮罩,因此可避免光阻殘餘層厚度過大的問題。 雖然本發明已以實施方式揭露如上,然其並非用以限 定本發明,任何在此技術領域中具有通常知識者,在不脫 離本發明之精神和範圍内,當可作各種之更動與潤飾,因 此本發明之保護範圍當視後附之申請專利範圍所界定者為 準。 • 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之說明如下: 第 ΙΑ、2A、3、4B、5A、6、7A 、8、9A 與 10 圖係 繪示依照本發明之第一實施方式的一種多階式接觸轉印製 程的流程圖。 第1B圖係繪示依照本發明之另一實施例的一種模仁 的剖面示意圖。 • 第2B圖係繪示依照本發明之另一實施例的一種模仁 經設置抗沾黏膜層與轉印材料層後的剖面示意圖。 第4A圖係繪示依照本發明之另一實施例的一種模仁 與基板之壓合示意圖。 第5B圖係繪示依照本發明之另一實施例的一種照射 方式的裝置示意圖。 第5C圖係繪示依照本發明之又一實施例的一種加熱 • 方式的裝置示意圖。 - 第7B圖係繪示依照本發明之另一實施例的一種加辦 29 201116939 方式的裝置示意圖。 第9B圖係繪示依照本發明之另一實施例的一種加熱 ' 方式的裝置示意圖。 第11圖與第12圖係繪示依照本發明之第二實施方式 的一種多階式接觸轉印製程的流程圖。 第13圖與第14圖係繪示依照本發明之第三實施方式 的一種多階式接觸轉印製程的流程圖。 第15圖係繪示依照本發明之第四實施方式的一種基 # 板經圖案轉印後之剖面圖。 第16圖與第17圖係繪示依照本發明之第五實施方式 的一種多階式接觸轉印製程的流程圖。 第18圖係繪示依照本發明之第六實施方式的一種基 板經圖案轉印後之剖面圖。 Α 第19圖與第20圖係繪示依照本發明之第七實施方式 的一種多階式接觸轉印製程的流程圖。 第21圖係繪示依照本發明之第八實施 •板經圖案轉印後之剖面圖。 ^祕 第22圖與第23圖係繪示依照本發明之第九實施方式 的一種多階式接觸轉印製程的流程圖。 第24圖與第25圖係繪示依照本發明之第十實施方式 的一種多階式接觸轉印製程的流程圖。 第26圖係繪示依照本發明之第十一實施方式的一種 基板經圖案轉印後之剖面圖。 第27圖與第28圖係繪示依照本發明之第十二實施方 30 201116939 式的一種多階式接觸轉印製程的流程圖。 , 帛29圖騎示依照本發明之第十三實 , 基板經圖案轉印後之剖面圖。 ^ 第30圖與第31圖係繪示依照本發明之第十四實施方 式的一種多階式接觸轉印製程的流程圖。 第32圖係緣示依照本發明之第十五實施方式的一種 基板經圖案轉印後之剖面圖。 第33圖與第34圖係繪示依照本發明之第十 式的一種多階式接觸轉印製程的流程圖。 、 第35圖與f 36圖係繚示依照本發明之第十七方 式的一種多階式接觸轉印製程的流程圖。 第37圖係緣示依照本發明之第十八實 基板經圖案轉印後之剖面圖。 飞的禋 第38圖與# 39圖係繪示依照本發明之第十九 式的一種多階式接觸轉印製程的流程圖。 第40圖係繪示依照本發明之第二 基板經圖㈣印後之剖面圖。 實腌方式的-種 第41圖與第42圖係繪示依照本發明之第 方式的一種多階式接觸轉印製程的流程圖。 第43圖係繪示依照本發明之第二 種基板經圖案轉印後之剖面圖。 ~貫施方式的- 第44圖與第45圖係繪示依照本發明之第 方式的-種乡階讀觸轉印製程的流程圖。 一 第46圖與第47圖係緣示依照本發明之第二十四實施 31 201116939 方式的-種多階式接觸轉印製程的流程圖。 種轉示依照本發明之第二十五實施方式的一 種基板經圖案轉印後之剖面圖。 =49圖與第50圖係緣示依照本發明之第二十六實施 方式的一種多階式接觸轉印製程的流程圖。 圖係繪示依照本發明之第二十七實施方式的一 種基板經圖案轉印後之剖面圖。Removing a portion of the second step portion 140 of the second contact adhesion layer 138 and the second portion 144 of the first step portion 146 to expose a portion of the surface 136 of the second substrate 134 below the second step portion 14? Figure 22 shows. Drinking Γ 冲 不 叩 叩 叩 僧 僧 僧 i i 崎. Liu, the second substrate 134 is formed with a pattern structure 194 formed by the second contact adhesion layer 138, as shown in FIG. Referring to Figures 24 and 25, there is shown a flow chart of a multi-step contact transfer process in accordance with the tenth embodiment. After the structure shown in FIG. 22, the second transfer material layer 丨μ and 7" can be used: the second portion 144 of the first step portion 触4 of the adhesion layer 138 is etched, and the second substrate 134 is etched. The portion of the surface 136 that is exposed is covered by the second substrate 134. Thus, the second substrate 134 is removed, as shown in Fig. 24. The sacrificial depression 丨 Next, the second transfer material layer 114 is removed. Thus, the second contact adhesion layer 138 and the second substrate 134 form a structure 198 as shown in FIG. Body 丨 Referring to Figure 26, after completing the structure shown in Fig. 25, the remaining second contact adhesion layer 138 is removed by mouth and step. Thus, the pattern structure 200 can be formed in the $11616939 board 134. Referring to Figures 27 and 28, there is shown a flow chart of a multi-step contact transfer process in accordance with a '12th embodiment of the present invention. After the structure shown in FIG. 24 is completed, the pattern material layers 202, 206 and 204 may be formed to cover the portion of the second substrate 134 exposed by the recessed region 196, the second portion 144 of the first step portion 146, and The second transfer material layer 114 is as shown in Fig. 27. Next, a lift-off step is performed to remove the second transfer material layer 114, and the pattern material layer 204 on the second transfer material layer 114. Thus, a three-dimensional pattern structure 208 composed of the first step portion 146 of the second contact adhesion layer 138, the pattern material layers 202 and 206, and the second substrate 丨 34 can be formed as shown in FIG. Referring to Fig. 29, after the structure shown in Fig. 28 is completed, the remaining second contact adhesion layer 138 can be further removed. Thus, a three-dimensional pattern structure 210 composed of the pattern material layer 202 and the second substrate 134 can be formed as shown in Fig. 29. • Referring to Figures 3 and 31, there is shown a flow chart of a multi-step contact transfer process in accordance with a fourteenth embodiment of the present invention. After the structure shown in FIG. 22 is completed, the patterned material layers 212, 214, and 216 may be formed to cover the exposed portions of the surface 136 of the second substrate 134, the second transfer material layer 114, and the first step portion 146, respectively. The second portion 144 is shown in Figure 30. Next, a lift-off step is performed to remove the second transfer material layer 114, and the pattern material layer 214 on the second transfer material layer U4. Thus, a three-dimensional pattern structure 218 formed by the first-pg ladder portion 146 of the second contact-adhesion layer 138 and the 201116939 pattern material layers 212 and 216 can be formed as shown in FIG. In another embodiment, referring to FIG. 32, after the structure shown in FIG. 30 is completed, the lifting step is performed except that the second transfer material layer 114 is removed and the second transfer material layer 114 is disposed. The pattern material layer 214 may further include removing the remaining second contact adhesion layer 138 and the pattern material layer 216 thereon. Thus, the pattern structure 220 composed of the pattern material layer 212 can be formed as shown in Fig. 32. Referring to Figures 33 and 34, there is shown a flow chart of a multi-step contact transfer process in accordance with a sixteenth embodiment of the present invention. Please refer to Figure 8 together. In the present embodiment, after the second transfer material layer 114 of the mold core 100a is transferred to the second contact adhesion layer 138 of the second substrate 134, the second transfer material layer 114 is masked by, for example, etching. The second portion 144 and the second step portion 140 of the first step portion 146 of the second contact adhesion layer 138 are removed to expose the second portion 144 of the first step portion 146 and the second portion below the second step portion 140. The surface 136 portion of the second substrate 134 is as shown in Fig. 33. After the second portion 144 and the second step portion 140 of the first step 146 of the second contact adhesion layer 138 are removed, the pattern of the second transfer material layer 114 can be transferred into the second contact adhesion layer 138. Next, the second transfer material layer 114 is removed. Thus, the pattern structure 222 formed by the first portion 142 of the first step portion 146 can be formed on the second substrate 134 as shown in Fig. 34. The pattern of the pattern structure 222 is transferred from the pattern of the second transfer material layer 114. Referring to Figures 35 and 36, there is shown a flow chart of a multi-step contact transfer process in accordance with a seventeenth embodiment of the present invention. After completing the structure shown in Fig. 33 of 201116939, the second transfer material layer 114 can be used as a mask to etch the exposed portion of the surface 136 of the second substrate 134 to remove the portion of the second substrate 134. Thus, the recessed region 226 is formed in the second substrate 134 as shown in Fig. 35. Next, the second transfer material layer 114 is removed. Thus, the pattern structure 228 formed by the first portion 142 of the first step portion 146 of the second contact adhesion layer 138 and the second substrate 134 can be formed as shown in Fig. 36. The pattern of the pattern structure 228 is also transferred from the second pattern of the second transfer material layer 114. In another embodiment, referring to Fig. 37, after the structure shown in Fig. 36 is completed, the remaining second contact adhesion layer 138 can be further removed. Thus, the pattern structure 230 can be formed in the second substrate 134. The pattern of pattern structure 230 is also transferred from the pattern of second transfer material layer 114. Referring to Figures 38 and 39, there is shown a flow chart of a multi-step contact transfer process in accordance with a nineteenth embodiment of the present invention. After the structure shown in FIG. 35 is completed, the pattern material layers 232 and 234 may be formed to cover the portion of the second substrate 134 and the second transfer material layer 114 exposed by the recessed region 226, such as the 38th. The figure shows. Next, a lift-off step is performed to remove the second transfer material layer 114 and the pattern material layer 234 on the second transfer material layer 114. Thus, the pattern structure 236 formed by the first portion 142 of the first step portion 146 of the second contact adhesion layer 138, the pattern material layer 232 and the second substrate 134 can be formed as shown in FIG. The pattern of pattern structure 236 is also transferred from the pattern of second transfer material layer 114.另一 In another embodiment, referring to FIG. 40, after the structure of 22 201116939 shown in FIG. 38 is completed, the lifting step is performed except that the second transfer material layer 114 and the pattern material layer thereon are removed. In addition to 234, one of the remaining second contact adhesion layers 138 may be included. Thus, the pattern structure 238 formed by the pattern material layer 232 and the second substrate 134 can be formed as shown in FIG. Referring to Figures 41 and 42, there is shown a flow chart of a multi-step contact transfer process in accordance with a second embodiment of the present invention. After the structure shown in Fig. 33 is completed, the pattern material layers 240 and 242 may be formed to cover the exposed portion of the surface 136 of the second substrate 134 and the second φ printing material layer II4, respectively, as shown in Fig. 41. Next, the lift-off step is performed to remove the second transfer material layer 114 and the pattern material layer 242 on the second transfer material layer 114. Thus, the pattern structure 224 formed by the first portion 142 of the first step portion 146 of the second contact adhesion layer 138 and the pattern material layer 24A can be formed as shown in FIG. In another embodiment, referring to FIG. 43, after the structure shown in FIG. 41 is completed, the lifting step is performed except that the second transfer material layer 114 Φ is removed from the pattern material layer 242 thereon. Removing the remaining second contact adhesion layer 138 can be included. Thus, the pattern structure 244 composed of the pattern material layer 240 can be formed as shown in Fig. 43. The pattern of pattern structure 244 is substantially complementary to the pattern of second transfer material layer 114. Referring to Figures 44 and 45, there is shown a flow chart of a multi-step contact transfer process in accordance with a twenty-third embodiment of the present invention. Please refer to Figure 10 together. In the present embodiment, the third transfer material layer 116 of the mold core 100a is transferred to the third contact adhesion layer ι52 of the third substrate 148. After the etching, the third transfer material layer 116 is used as a mask. The cover, 23 201116939 to remove a portion of the third step 158 and the second step 160 of the third contact adhesive layer 152 to expose a portion 246 of the third base plate 148 below the third step 158, such as Figure 44 shows. Next, the second transfer material layer 116 is removed. Thus, a three-dimensional pattern structure 248 composed of the first step portion 162 and the second step portion 160 of the third contact adhesion layer 152 can be formed on the third substrate 148 as shown in Fig. 45. Referring to Figures 46 and 47, there is shown a flow chart of a multi-step contact transfer process in accordance with a twenty-fourth embodiment of the present invention. After the structure shown in FIG. 44 is completed, the first step portion 16 of the third transfer material layer 116 and the second contact adhesion layer 152 may be used as a mask, leaving the exposed portion of the surface 246 of the third substrate 148, A portion of the third substrate 148 is removed. Thus, a recessed region 25A is formed in the third substrate 148 as shown in Fig. 46. Next, the second transfer material layer 116 is removed. Thus, a three-dimensional pattern structure m2 composed of the first step portion 162 of the second contact adhesion layer 152, the second step portion 160, and the second substrate 148 can be formed as shown in Fig. 47. Referring to Fig. 48, after the structure shown in Fig. 47 is completed, the remaining third contact adhesion layer 152 can be further removed. Thus, the pattern structure 254 can be formed in the third substrate 148. & δ Months Referring to Figs. 49 and 50, there is shown a flow diagram of a multi-step contact transfer process in accordance with a twenty-sixth embodiment of the present invention. After the structure shown in FIG. 46 is completed, the pattern material layers 256, 258, and 260 may be formed to cover the 24 201116939 portion, the second step portion 160, and the third portion of the third 1 plate 148 exposed by the recess region 250, respectively. The transfer material layer 116 is as shown in Fig. 49. The lift-off step is performed to remove the third transfer material layer 116 and the pattern material layer 260 on the third transfer material layer 114. Thus, the three-dimensional pattern structure 262 formed by the first step portion 162 and the second step portion 160 of the third contact adhesion layer 152, the pattern material layers 256 and 258, and the third substrate 148 can be formed, as shown in FIG. Shown. In another embodiment, referring to FIG. 51, after performing the structure shown in FIG. 49, the lifting step is performed except that the third transfer material layer 116 and the pattern material layer 260 thereon are removed. Removing the remaining third contact adhesion layer 152 can be included. Thus, a three-dimensional pattern structure 264' formed by the pattern material layer 256 and the third substrate 148 can be formed as shown in Fig. 51. Referring to Figures 52 and 53, a flowchart of a multi-step contact transfer process in accordance with a twenty-eighth embodiment of the present invention is shown. After the structure shown in FIG. 44 is completed, the pattern material layers 266, 268, and 270 may be formed to cover the exposed portions of the surface 246 of the third substrate 148, respectively, the second step portion 16A, and the third transfer material layer. 110, as shown in Figure 52. Next, the lift-off step is performed to remove the third transfer material layer 1丨6 and the pattern material layer 27〇 on the third transfer material layer 116. Thus, the three-dimensional pattern structure 272 formed by the first step portion 162 and the second step portion 160 of the second contact point layer 15 and the pattern material layers 266 and 268 can be formed as shown in Fig. 53. 1. In another embodiment, after the structure shown in FIG. 52 is completed by referring to FIG. 54, the lifting step is performed except that the third transfer material layer 116 25 201116939 and the pattern material layer 270 thereon are removed. In addition, the remaining third contact adhesion layer 152 and the pattern material layer 268 thereon may be removed. Thus, the pattern structure 274 composed of the pattern material layer 266 can be formed as shown in Fig. 54. Referring to Figures 55 and 56, there is shown a flow chart of a multi-step contact transfer process in accordance with a thirtieth embodiment of the present invention. Please refer to Figure 1G together. In the present embodiment, after the third transfer material layer 116 of the mold core is transferred to the third contact adhesion layer 152 of the second substrate 148, for example, the fourth transfer material layer 116 is used as a mask. , the second step portion (10) and the third step portion 158 of the third contact adhesion layer 152 are removed to expose the second step Qiu &&& The surface 246 of the third substrate 148 below the Ρ160 and the third step portion 158 is as shown in Fig. 55. After removing the second turns of the third contact adhesion layer 152 and the third step portion 158, the pattern of the second transfer material layer β ^ 6 can be transferred to the third contact adhesion layer 152. . Next, the third transfer 耔nr 1 layer 11 移除 is removed. Thus, the pattern structure 276' formed of the first step 162 and the step 162 can be formed on the second substrate 148 as shown in Fig. 56. The pattern of the graphic structure 276 is transferred from the pattern of the third transfer material layer 116. Please refer to Fig. 57 and Fig. 58 for the second embodiment of the present invention, which is a flow chart showing the first & une stage contact transfer process in accordance with the present invention. After the structure shown in FIG. 55 is completed, the third transfer material layer 116 can be used as a mask to etch the surface of the third substrate 148, and the exposed portion of the clothing surface 246 is removed. A portion of the third substrate 14S. Thus, a recessed region 278 is formed in the second substrate 148, as shown in Fig. 57. Next, the third transfer material is removed, and the layer 116 is removed. Thus, the pattern structure 280 formed by the first step portion 162 of the second contact adhesion layer 152 and the third substrate 148 of 26 201116939 can be formed as shown in Fig. 58. In another embodiment, please refer to the 59th. After the structure shown in FIG. 58 is completed, the remaining third contact adhesion layer 152 can be further removed. Thus, the pattern structure 282 can be formed in the third substrate 148. The pattern of the pattern structure 282 is also transferred from the third. A pattern of the transfer material layer 116. Referring to Figures 60 and 61, there is shown a flow chart of a multi-step contact transfer process in accordance with a twenty-second embodiment of the present invention. After the structure shown in the figure, the pattern material layers 284 and 286 may be formed to be respectively covered. The portion of the third substrate 148 exposed on the recessed portion 278 and the third transfer material layer 116 are as shown in Fig. 60. Next, a lift-off step is performed to remove the third transfer material layer 116, and The pattern material layer 286 on the second transfer material layer 1丨6. Thus, the pattern structure formed by the first step portion 162 of the third contact adhesion layer 152, the pattern material layer 284 and the third substrate 148 can be formed. 288, as shown in Fig. 61. • In another embodiment, referring to Fig. 62, after the structure shown in Fig. 60 is completed, the lifting step is performed except that the third transfer material layer is removed. 116, in addition to the pattern material layer 286 thereon, may further include removing the remaining third contact adhesion layer 152. Thus, a pattern structure 29 共同 formed by the pattern material layer 284 and the second substrate 148 may be formed, such as the 62nd Please refer to FIG. 63 and FIG. 64, which are flowcharts showing a multi-step contact transfer process according to a twenty-fifth embodiment of the present invention. After the structure shown in FIG. 55 is completed, 'The pattern material layers 292 and 294 can be formed first on the third substrate M8 The exposed portion of the surface 246 and the third turn 27 201116939 printed material 116, as shown in Fig. 63. & performing the lift-off step while removing the third transfer material layer 116, Γ =: ΓΡ material layer 116 The pattern material layer 294. Thus, the first step portion 162 of the second contact adhesion layer 152 and the pattern material 292 together form a pattern structure 296, as shown in Fig. 64. v 65 ® ^ 63 spot: the picture on the map In addition to removing the third transfer material layer 152, the pattern is formed by the pattern material layer 292: = =:: Figure 65. The pattern. 22 = is complementary to the pattern of the second transfer material layer 116. The case of the above embodiment shows that the connection of the present invention is a combination of the =T;:j_b layer. j use the early 1 kernel, you can achieve the effect of multiple transfer. By multi-level stereo mode ί:: use this: the advantage is because of the process cost, can reach the high volume of the second case, so not only can reduce the goal. The efficiency of the return, and the transfer pattern are diverse. According to the above embodiments, another advantageous (four) day of the present invention is that the multi-step contact transfer process of the present invention is completed by the transfer mark because of the alignment mark, which is advantageous for the mask. ^作. The invention can be directly formed with high precision. The re-exposure of the present invention is that the multi-step contact transfer process of the present invention can transfer the material layer as an etch mask during the transfer process, as described in 28 201116939. Therefore, the problem that the thickness of the residual layer of the photoresist is excessively large can be avoided. The present invention has been disclosed in the above embodiments, and is not intended to limit the present invention. Any one of ordinary skill in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS In order to make the above and other objects, features, advantages and embodiments of the present invention more obvious, the description of the drawings is as follows: ΙΑ, 2A, 3, 4B, 5A, 6, 7A, 8, 9A and 10 are flow charts showing a multi-step contact transfer process in accordance with a first embodiment of the present invention. Fig. 1B is a cross-sectional view showing a mold core according to another embodiment of the present invention. • Fig. 2B is a schematic cross-sectional view showing a mold core provided with an anti-adhesion layer and a transfer material layer in accordance with another embodiment of the present invention. Figure 4A is a schematic view showing the pressing of a mold core and a substrate in accordance with another embodiment of the present invention. Fig. 5B is a schematic view showing an apparatus of an illumination mode according to another embodiment of the present invention. Figure 5C is a schematic view of a device for heating in accordance with still another embodiment of the present invention. - Figure 7B is a schematic diagram of an apparatus for adding 29 201116939 in accordance with another embodiment of the present invention. Figure 9B is a schematic view of a device for heating in accordance with another embodiment of the present invention. 11 and 12 are flow charts showing a multi-step contact transfer process in accordance with a second embodiment of the present invention. Figures 13 and 14 are flow charts showing a multi-step contact transfer process in accordance with a third embodiment of the present invention. Figure 15 is a cross-sectional view showing a base plate after pattern transfer according to a fourth embodiment of the present invention. Fig. 16 and Fig. 17 are flow charts showing a multi-step contact transfer process in accordance with a fifth embodiment of the present invention. Figure 18 is a cross-sectional view showing a substrate after pattern transfer according to a sixth embodiment of the present invention. 19 and 20 are flow charts showing a multi-step contact transfer process in accordance with a seventh embodiment of the present invention. Figure 21 is a cross-sectional view showing the eighth embodiment of the present invention after the pattern has been transferred. BRIEF DESCRIPTION OF THE DRAWINGS Figures 22 and 23 are flow charts showing a multi-step contact transfer process in accordance with a ninth embodiment of the present invention. Fig. 24 and Fig. 25 are flow charts showing a multi-step contact transfer process in accordance with a tenth embodiment of the present invention. Figure 26 is a cross-sectional view showing a substrate after pattern transfer according to an eleventh embodiment of the present invention. Figures 27 and 28 are flow diagrams showing a multi-step contact transfer process in accordance with the twelfth embodiment of the present invention 30 201116939. Figure 29 is a cross-sectional view of the substrate after pattern transfer according to the thirteenth embodiment of the present invention. Figure 30 and Figure 31 are flow charts showing a multi-step contact transfer process in accordance with a fourteenth embodiment of the present invention. Figure 32 is a cross-sectional view showing a substrate after pattern transfer according to a fifteenth embodiment of the present invention. Figures 33 and 34 are flow charts showing a multi-step contact transfer process in accordance with a tenth embodiment of the present invention. Figures 35 and 36 show a flow chart of a multi-step contact transfer process in accordance with the seventeenth aspect of the present invention. Figure 37 is a cross-sectional view showing the eighteenth solid substrate in accordance with the present invention after pattern transfer. Fig. 38 and Fig. 39 are flow charts showing a multi-step contact transfer process according to the nineteenth aspect of the present invention. Figure 40 is a cross-sectional view showing the second substrate in accordance with the present invention after printing (Fig. 4). The present invention is a flow chart showing a multi-step contact transfer process in accordance with the first aspect of the present invention. Figure 43 is a cross-sectional view showing the second substrate in accordance with the present invention after pattern transfer. - Figure 44 - Figure 45 is a flow chart showing a state-of-the-art touch printing process in accordance with the first mode of the present invention. A drawing of a multi-step contact transfer process in accordance with a twenty-fourth embodiment of the invention of the twenty-fourth embodiment 31 201116939 is incorporated herein by reference. A cross-sectional view of a substrate according to a twenty-fifth embodiment of the present invention after pattern transfer. Fig. 50 is a flow chart showing a multi-step contact transfer process in accordance with a twenty-sixth embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 7 is a cross-sectional view showing a substrate after pattern transfer according to a twenty-seventh embodiment of the present invention.

第52圖與f 53圖係緣示依照本發明之第二十八實施 方式的一種多階式接觸轉印製程的流程圖。 第54圖係繪示依照本發明之第二十九實施方式的一 種基板經圖案轉印後之剖面圖。 第55圖與第56圖係繪示依照本發明之第三十實施方 式的一種多階式接觸轉印製程的流程圖。 第57圖與第58圖係繪示依照本發明之第三十一實施 方式的一種多階式接觸轉印製程的流程圖。 第59圖係繪示依照本發明之第三十二實施方式的一 種基板經圖案轉印後之剖面圖。 第60圖與第61圖係繪示依照本發明之第三十三實施 方式的一種多階式接觸轉印製程的流程圖。 第62圖係繪示依照本發明之第三十四實施方式的一 種基板經圖案轉印後之剖面圖。 第63圖與第64圖係繪示依照本發明之第三十五實施 方式的一種多階式接觸轉印製程的流程圖。 第65圖係繪示依照本發明之第三十六實施方式的一 32 201116939 種基板經圖案轉印後之剖面圖。Fig. 52 and Fig. 53 are flowcharts showing a multi-step contact transfer process in accordance with a twenty-eighth embodiment of the present invention. Figure 54 is a cross-sectional view showing a substrate after pattern transfer according to a twenty-ninth embodiment of the present invention. 55 and 56 are flow charts showing a multi-step contact transfer process in accordance with a thirtieth embodiment of the present invention. 57 and 58 are flow charts showing a multi-step contact transfer process in accordance with a thirty-first embodiment of the present invention. Figure 59 is a cross-sectional view showing a substrate after pattern transfer according to a thirty-second embodiment of the present invention. Fig. 60 and Fig. 61 are flow charts showing a multi-step contact transfer process in accordance with a thirty-third embodiment of the present invention. Figure 62 is a cross-sectional view showing a substrate after pattern transfer according to a thirty-fourth embodiment of the present invention. Figures 63 and 64 are flow diagrams showing a multi-step contact transfer process in accordance with a thirty-fifth embodiment of the present invention. Figure 65 is a cross-sectional view showing a substrate of a 32 201116939 substrate after pattern transfer according to a thirty-sixth embodiment of the present invention.

【主要元件符號說明】 100a =模仁 100b 102a :表面 102b 104a :圖案結構 104b 106a :第一階梯面 106b 108a :第二階梯面 108b 110a :第三階梯面 110b 112 第一轉印材料層 114 : 116 第三轉印材料層 118 : 120 第一基板 122 124 第一接觸黏附層 126 128 滾筒 130 : 132a :光源 132b 134 第二基板 136 138 第二接觸黏附層 140 142 第一部分 144 146 第一階梯部 148 150 表面 152 154 均佈壓力 156a 156b :加熱源 158 : 160 第二階梯部 162 : 164 階梯狀結構 166 : 168 部分 170 : :模仁 :表面 :圖案結構 :第一階梯面 :第二階梯面 :第三階梯面 第二轉印材料層 抗沾黏膜層 表面 均佈壓力 集中壓力 :加熱源 表面 第二階梯部 第二部分 第三基板 第三接觸黏附層 :光源 第三階梯部 第一階梯部 階梯狀結構 圖案結構 33 201116939[Main element symbol description] 100a = mold core 100b 102a: surface 102b 104a: pattern structure 104b 106a: first step surface 106b 108a: second step surface 108b 110a: third step surface 110b 112 first transfer material layer 114: 116 third transfer material layer 118 : 120 first substrate 122 124 first contact adhesion layer 126 128 roller 130 : 132a : light source 132b 134 second substrate 136 138 second contact adhesion layer 140 142 first portion 144 146 first step portion 148 150 Surface 152 154 Uniform pressure 156a 156b: Heating source 158: 160 Second step 162: 164 Stepped structure 166: 168 Part 170: : Mold: Surface: Pattern structure: First step surface: Second step surface : third step surface second transfer material layer anti-adhesive layer surface uniform pressure concentration pressure: heating source surface second step portion second portion third substrate third contact adhesion layer: light source third step portion first step portion Stepped structure pattern structure 33 201116939

172 : 凹陷區 174 : 圖案結構 176 : 圖案結構 178 : 圖案材料層 180 : 圖案材料層 182 : 圖案結構 184 : 圖案結構 186 : 圖案材料層 188 : 圖案材料層 190 : 圖案結構 192 : 圖案結構 194 : 圖案結構 196 : 凹陷區 198 : 圖案結構 200 : 圖案結構 202 : 圖案材料層 204 : 圖案材料層 206 : 圖案材料層 208 : 圖案結構 210 : 圖案結構 212 : 圖案材料層 214 : 圖案材料層 216 : 圖案材料層 218 : 圖案結構 220 : 圖案結構 222 : 圖案結構 224 : 圖案結構 226 : 凹陷區 228 : 圖案結構 230 : 圖案結構 232 : 圖案材料層 234 : 圖案材料層 236 : 圖案結構 238 : 圖案結構 240 : 圖案材料層 242 : 圖案材料層 244 : 圖案結構 246 : 表面 248 : 圖案結構 250 : 凹陷區 252 : 圖案結構 254 : 圖案結構 256 : 圖案材料層 258 : 圖案材料層 260 : 圖案材料層 262 : 圖案結構 264 : 圖案結構 266 : 圖案材料層 268 : 圖案材料層 270 : 圖案材料層 272 : 圖案結構 274 : 圖案結構 34 201116939 276 圖案結構 278 280 圖案結構 282 284 圖案材料層 286 288 圖案結構 290 292 圖案材料層 294 296 圖案結構 298 300a :光源 300b 302 :均佈壓力 凹陷區 圖案結構 圖案材料層 圖案結構 圖案材料層 圖案結構 :加熱源172 : recessed region 174 : pattern structure 176 : pattern structure 178 : pattern material layer 180 : pattern material layer 182 : pattern structure 184 : pattern structure 186 : pattern material layer 188 : pattern material layer 190 : pattern structure 192 : pattern structure 194 : Pattern structure 196 : recessed area 198 : pattern structure 200 : pattern structure 202 : pattern material layer 204 : pattern material layer 206 : pattern material layer 208 : pattern structure 210 : pattern structure 212 : pattern material layer 214 : pattern material layer 216 : pattern Material layer 218 : pattern structure 220 : pattern structure 222 : pattern structure 224 : pattern structure 226 : recessed area 228 : pattern structure 230 : pattern structure 232 : pattern material layer 234 : pattern material layer 236 : pattern structure 238 : pattern structure 240 : Pattern material layer 242 : Pattern material layer 244 : Pattern structure 246 : Surface 248 : Pattern structure 250 : Depression area 252 : Pattern structure 254 : Pattern structure 256 : Pattern material layer 258 : Pattern material layer 260 : Pattern material layer 262 Pattern structure 264 : Pattern structure 266 : Pattern material layer 268 : Pattern material layer 270 : Pattern material layer 272 : Pattern structure 274 : Pattern structure 34 201116939 276 Pattern structure 278 280 Pattern structure 282 284 Pattern material layer 286 288 Pattern structure 290 292 Pattern Material layer 294 296 pattern structure 298 300a: light source 300b 302: uniform pressure depression pattern pattern structure pattern material layer pattern structure pattern material layer pattern structure: heating source

3535

Claims (1)

201116939 七、申請專利範圍: " 1. 一種多階式接觸轉印製程,包含: ’ 提供一模仁,其中該模仁之一表面設有一圖案結構, 該圖案結構係一階梯狀結構,且該圖案結構包含複數個階 梯面,該些階梯面之一最高者位於該模仁之該表面; 形成複數個轉印材料層分別覆蓋在該些階梯面上; 提供複數個基板,其中每一該些基板之一表面上覆蓋 有一接觸黏附層;以及 • 進行複數個轉印步驟,以使該些階梯面上之該些轉印 材料層由高而低地分別轉移至該些基板之該些接觸黏附層 上。 2. 如請求項1所述之多階式接觸轉印製程,更包含分 別以該些轉印材料層作為遮罩,蝕刻該些接觸黏附層,以 完全移除該些接觸黏附層中未受到該些轉印材料層遮罩的 部分,而暴露出每一該些基板之該表面的一部分。 3. 如請求項2所述之多階式接觸轉印製程,於蝕刻該 些接觸黏附層之步驟後,更包含自該些接觸黏附層上移除 該些轉印材料層。 4. 如請求項2所述之多階式接觸轉印製程,於蝕刻該 些接觸黏附層之步驟後,更包含分別以該些轉印材料層作 為遮罩,蝕刻每一該些基板之該表面暴露之該部分。 36 201116939 5. 如請求項4所述之多階式接觸轉印製程,於蝕刻該 些基板之步驟後,更包含自該些接觸黏附層上移除該些轉 印材料層。 6. 如請求項5所述之多階式接觸轉印製程,於移除該 些轉印材料層之步驟後,更包含移除剩餘之該些接觸黏附 層。 7. 如請求項4所述之多階式接觸轉印製程,於蝕刻該 些基板之步驟後,更包含形成複數個圖案材料層分別覆蓋 在該些轉印材料層與該些基板暴露出之該些表面上。 8. 如請求項7所述之多階式接觸轉印製程,於形成該 些圖案材料層後,更包含進行複數個舉離步驟,以分別移 除剩餘之該些接觸黏附層、以及位於該些接觸黏附層上方 之該些轉印材料層與該些圖案材料層。 9. 如請求項2所述之多階式接觸轉印製程,於蝕刻該 些接觸黏附層之步驟後,更包含形成複數個圖案材料層分 別覆蓋在該些轉印材料層與該些基板之該些表面暴露之該 些部分上。 10. 如請求項9所述之多階式接觸轉印製程,於形成 該些圖案材料層後,更包含進行複數個舉離步驟,以分別 37 201116939 移除剩餘之該些接觸黏附層、以及位於該些接觸黏附層上 ' 方之該些轉印材料層與該些圖案材料層。 11. 如請求項1所述之多階式接觸轉印製程,更包含 分別以該些轉印材料層作為遮罩,蝕刻該些接觸黏附層, 以移除未受到該些轉印材料層遮罩之該些接觸黏附層中的 一部分,其中蝕刻該些接觸黏附層之步驟進行至暴露出每 一該些基板之該表面的一部分即停止。 12. 如請求項11所述之多階式接觸轉印製程,於蝕刻 該些接觸黏附層之步驟後,更包含自該些接觸黏附層上移 除該些轉印材料層。 13. 如請求項11所述之多階式接觸轉印製程,於蝕刻 該些接觸黏附層之步驟後,更包含分別以該些轉印材料層 與剩餘之該些接觸黏附層作為遮罩,蝕刻每一該些基板之 鲁 該表面暴露之該部分。 14. 如請求項13所述之多階式接觸轉印製程,於蝕刻 該些基板之步驟後,更包含自該些接觸黏附層上移除該些 轉印材料層。 15. 如請求項14所述之多階式接觸轉印製程,於移除 • 該些轉印材料層之步驟後,更包含移除剩餘之該些接觸黏 . 附層。 38 201116939 16.如請求項13所述之多階式接觸轉印製程,於蝕刻 該些接觸黏附層之步驟後,於蝕刻該些基板之步驟後,更 包含形成複數個圖案材料層分別覆蓋在該些轉印材料層、 暴露出之該些接觸黏附層與該些基板暴露出之該些表面 上。 17. 如請求項16所述之多階式接觸轉印製程,於形成 該些圖案材料層後,更包含進行複數個舉離步驟,以分別 移除剩餘之該些接觸黏附層、以及位於該些接觸黏附層上 方之該些轉印材料層與該些圖案材料層。 18. 如請求項11所述之多階式接觸轉印製程,於蝕刻 該些接觸黏附層之步驟後,更包含形成複數個圖案材料層 分別覆蓋在該些轉印材料層、暴露出之該些接觸黏附層與 該些基板之該些表面暴露之該些部分上。 19. 如請求項18所述之多階式接觸轉印製程,於形成 該些圖案材料層後,更包含進行複數個舉離步驟,以分別 移除剩餘之該些接觸黏附層、以及位於該些接觸黏附層上 方之該些轉印材料層與該些圖案材料層。 20. 如請求項1所述之多階式接觸轉印製程,其中該 模仁之材料包含矽、高分子聚合物系列材料、有機材料、 塑膠材料、半導體材料、金屬材料、石英、玻璃材料、陶 39 201116939 究材料、無機材料、上述材料中任二者或任二者以上所合 成之材料。 21. 如請求項1所述之多階式接觸轉印製程,其中該 些階梯面的形狀結構種類包含平面、曲面或其組合。 22. 如請求項1所述之多階式接觸轉印製程,其中該 模仁之該表面覆蓋有一抗沾黏膜層。 23. 如請求項22所述之多階式接觸轉印製程,其中該 抗沾黏膜層之材料為有機材料、無機材料、南分子材料、 陶瓷材料、金屬材料、鐵弗龍材料、類鑽碳材料、碳氟化 合物(CxFy)經電漿解離後之沉積材料、或其中兩者或兩者以 上之合成材料。 24. 如請求項1所述之多階式接觸轉印製程,其中該 ® 些基板之材料包含砂、高分子聚合物系列材料、有機材料、 塑膠材料、半導體材料、金屬材料、石英、玻璃材料、陶 瓷材料、無機材料、上述材料中任二者或任二者以上所合 成之材料。 25. 如請求項1所述之多階式接觸轉印製程,其中該 些轉印材料層之材料包含矽、高分子聚合物系列材料、有 機材料、塑膠材料、半導體材料、金屬材料、石英、玻璃 材料、陶瓷材料、無機材料、上述材料中任二者或任二者 40 201116939 以上所合成之材料。 26. 如請求項1所述之多階式接觸轉印製程,其中該 些接觸黏附層之材料包含熱塑性材料、熱固性材料或感光 固化性材料。 27. 如請求項1所述之多階式接觸轉印製程,其中該 些接觸黏附層之材料包含矽、高分子聚合物系列材料、光 阻材料、有機材料、塑膠材料、半導體材料、金屬材料、 石英、玻璃材料、陶瓷材料、無機材料、上述材料中任二 者或任二者以上所合成之材料。 28. 如請求項1所述之多階式接觸轉印製程,其中該 些轉印步驟更包含利用一加熱源對該些接觸黏附層進行一 加熱處理,使得與該些轉印材料層接觸貼合的該些接觸黏 附層固化。 29. 如請求項28所述之多階式接觸轉印製程,其中該 加熱源為一雷射光式加熱源、一燈源照光式加熱源、一熱 電阻式加熱源、一渦電流式加熱源、一微波式加熱源或一 超音波式加熱源。 30. 如請求項29所述之多階式接觸轉印製程,其中該 雷射光式加熱源與該燈源照光式加熱源的波長範圍介於1 nm至ΙΟ7 μιη之間。 201116939 31. 如請求項1所述之多階式接觸轉印製程,其中該 些轉印步驟更包含利用一光源對該些接觸黏附層進行一光 固化處理,使得與該些階梯面上的該些轉印材料層接觸貼 合的該些接觸黏附層固化。 32. 如請求項31所述之多階式接觸轉印製程,其中該 光源的波長範圍介於1 nm至107 μηι之間。 33. 如請求項1所述之多階式接觸轉印製程,其中每 一該些轉印步驟更包含施加一集中壓力或均佈壓力。 34. 如請求項33所述之多階式接觸轉印製程,其中施 加該集中壓力之步驟包含利用一滾筒在該模仁之相對於該 表面之另一表面、及/或每一該些基板之相對於該表面之另 一表面上進行一施壓步驟。 35. 如請求項1所述之多階式接觸轉印製程,其中該 模仁之材料為具有抗沾黏特性的金屬、無機材料、高分子 聚合物(polymer)系列材質、陶瓷材料、半導體材料、有機 材料或上述材料中任二者或任二者以上所合成之材料。 36. 如請求項1所述之多階式接觸轉印製程,其中每 一該些轉印步驟更包含: 42 201116939 利用一加熱源對該接觸黏附層進行一加熱處理,使該 接觸黏附層達到熔融狀;以及 將該圖案結構壓入該接觸黏附層中。 37.如請求項36所述之多階式接觸轉印製程,其中該 加熱處理包含使該些接觸黏附層達到玻璃轉變溫度(Tg)。201116939 VII. Patent application scope: " 1. A multi-step contact transfer process comprising: 'providing a mold core, wherein one surface of the mold core is provided with a pattern structure, the pattern structure is a stepped structure, and the pattern structure The pattern structure comprises a plurality of step surfaces, wherein the highest one of the step surfaces is located on the surface of the mold core; forming a plurality of transfer material layers respectively covering the step surfaces; providing a plurality of substrates, wherein each of the substrates One surface is covered with a contact adhesion layer; and • a plurality of transfer steps are performed to cause the transfer material layers on the step surfaces to be transferred from the high and low layers to the contact adhesion layers of the substrates . 2. The multi-step contact transfer process of claim 1, further comprising etching the contact adhesion layers with the transfer material layers as masks to completely remove the contact adhesion layers from being unaffected The portions of the transfer material layer are masked to expose a portion of the surface of each of the substrates. 3. The multi-step contact transfer process of claim 2, after the step of etching the contact adhesion layers, further comprising removing the transfer material layers from the contact adhesion layers. 4. The multi-step contact transfer process of claim 2, after the step of etching the contact adhesion layers, further comprising etching the each of the substrates by using the transfer material layers as masks This part of the surface is exposed. 36 201116939 5. The multi-step contact transfer process of claim 4, after the step of etching the substrates, further comprising removing the layers of the transfer material from the contact adhesion layers. 6. The multi-step contact transfer process of claim 5, after the step of removing the layers of transfer material, further comprising removing the remaining contact adhesion layers. 7. The multi-step contact transfer process of claim 4, after the step of etching the substrates, further comprising forming a plurality of pattern material layers respectively covering the transfer material layers and exposing the substrates On these surfaces. 8. The multi-step contact transfer process of claim 7, after forming the pattern material layer, further comprising performing a plurality of lift-off steps to separately remove the remaining contact adhesion layers, and Some of the transfer material layers above the adhesion layer and the pattern material layers. 9. The multi-step contact transfer process of claim 2, after the step of etching the contact adhesion layers, further comprising forming a plurality of pattern material layers respectively covering the transfer material layers and the substrates The surfaces are exposed to the portions. 10. The multi-step contact transfer process of claim 9, after forming the pattern material layer, further comprising performing a plurality of lift-off steps to remove the remaining contact adhesion layers, respectively, 37 201116939, and The transfer material layer on the contact adhesion layer and the pattern material layer. 11. The multi-step contact transfer process of claim 1, further comprising etching the contact adhesion layers with the transfer material layers as masks to remove uncovered layers of the transfer material A portion of the contact adhesion layers of the mask, wherein the step of etching the contact adhesion layers proceeds until a portion of the surface of each of the substrates is exposed. 12. The multi-step contact transfer process of claim 11, after the step of etching the contact adhesion layers, further comprising removing the transfer material layers from the contact adhesion layers. 13. The multi-step contact transfer process of claim 11, after the step of etching the contact adhesion layer, further comprising respectively using the transfer material layer and the remaining contact adhesion layers as a mask, The portion of each of the substrates that is exposed to the surface is etched. 14. The multi-step contact transfer process of claim 13, after the step of etching the substrates, further comprising removing the layers of transfer material from the contact adhesion layers. 15. The multi-step contact transfer process of claim 14, after the step of removing the layers of transfer material, further comprising removing the remaining contact bonds. 38 201116939 16. The multi-step contact transfer process of claim 13, after the step of etching the contact adhesion layers, after the step of etching the substrates, further comprising forming a plurality of pattern material layers respectively covering The transfer material layer, the exposed contact adhesion layer and the surfaces exposed by the substrates. 17. The multi-step contact transfer process of claim 16, after forming the pattern material layer, further comprising performing a plurality of lift-off steps to remove the remaining contact adhesion layers, respectively, and Some of the transfer material layers above the adhesion layer and the pattern material layers. 18. The multi-step contact transfer process of claim 11, after the step of etching the contact adhesion layers, further comprising forming a plurality of pattern material layers respectively covering the transfer material layers and exposing the layer The contact adhesion layer and the portions of the substrates on which the surfaces are exposed. 19. The multi-step contact transfer process of claim 18, after forming the pattern material layer, further comprising performing a plurality of lift-off steps to remove the remaining contact adhesion layers, respectively, and Some of the transfer material layers above the adhesion layer and the pattern material layers. 20. The multi-step contact transfer process of claim 1, wherein the material of the mold comprises bismuth, polymer series materials, organic materials, plastic materials, semiconductor materials, metal materials, quartz, glass materials, ceramics 39 201116939 Materials, inorganic materials, materials of either or both of the above materials. 21. The multi-step contact transfer process of claim 1, wherein the shape structure of the step faces comprises a plane, a curved surface, or a combination thereof. 22. The multi-step contact transfer process of claim 1, wherein the surface of the mold core is covered with an anti-stick layer. 23. The multi-step contact transfer process of claim 22, wherein the anti-adhesion layer is made of an organic material, an inorganic material, a southern molecular material, a ceramic material, a metal material, a Teflon material, a diamond-like carbon. A material, a deposited material of a fluorocarbon (CxFy) after plasma dissociation, or a synthetic material of two or more thereof. 24. The multi-step contact transfer process of claim 1, wherein the material of the substrate comprises sand, polymer series materials, organic materials, plastic materials, semiconductor materials, metal materials, quartz, glass materials. A material synthesized from any one or more of a ceramic material, an inorganic material, and the above materials. 25. The multi-step contact transfer process of claim 1, wherein the materials of the transfer material layer comprise bismuth, polymer series materials, organic materials, plastic materials, semiconductor materials, metal materials, quartz, Any of the glass materials, ceramic materials, inorganic materials, any of the above materials, or both, 40 201116939. 26. The multi-step contact transfer process of claim 1, wherein the material of the contact adhesion layer comprises a thermoplastic material, a thermosetting material, or a photosensitive curable material. 27. The multi-step contact transfer process of claim 1, wherein the material of the contact adhesion layer comprises germanium, a polymer series material, a photoresist material, an organic material, a plastic material, a semiconductor material, a metal material. , quartz, glass material, ceramic material, inorganic material, material of any two or more of the above materials. 28. The multi-step contact transfer process of claim 1, wherein the transferring step further comprises: heating a contact adhesion layer with a heat source to contact the transfer material layer The contact adhesive layers are cured. 29. The multi-step contact transfer process of claim 28, wherein the heating source is a laser light heating source, a light source illumination heating source, a thermal resistance heating source, and an eddy current heating source. , a microwave heating source or an ultrasonic heating source. 30. The multi-step contact transfer process of claim 29, wherein the laser light source and the source illumination source have a wavelength in the range of 1 nm to 7 μm. The multi-step contact transfer process of claim 1, wherein the transferring step further comprises: performing a photocuring treatment on the contact adhesion layers by using a light source, so as to be associated with the step surfaces The portions of the transfer material are cured in contact with the contact adhesive layers that are in contact with each other. 32. The multi-step contact transfer process of claim 31, wherein the source has a wavelength in the range of from 1 nm to 107 μm. 33. The multi-step contact transfer process of claim 1, wherein each of the transfer steps further comprises applying a concentrated pressure or a uniform pressure. 34. The multi-step contact transfer process of claim 33, wherein the step of applying the concentrated pressure comprises utilizing a roller on the other surface of the mold relative to the surface, and/or each of the substrates A pressing step is performed on the other surface of the surface. 35. The multi-step contact transfer process of claim 1, wherein the material of the mold is a metal, an inorganic material, a polymer material, a ceramic material, a semiconductor material, and the like. An organic material or a material synthesized by any two or more of the above materials. 36. The multi-step contact transfer process of claim 1, wherein each of the transfer steps further comprises: 42 201116939 performing a heat treatment on the contact adhesion layer with a heating source to achieve the contact adhesion layer Melting; and pressing the pattern structure into the contact adhesion layer. 37. The multi-step contact transfer process of claim 36, wherein the heat treating comprises bringing the contact adhesion layers to a glass transition temperature (Tg). 4343
TW98137863A 2009-11-06 2009-11-06 Multi-step contact printing process TWI386761B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98137863A TWI386761B (en) 2009-11-06 2009-11-06 Multi-step contact printing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98137863A TWI386761B (en) 2009-11-06 2009-11-06 Multi-step contact printing process

Publications (2)

Publication Number Publication Date
TW201116939A true TW201116939A (en) 2011-05-16
TWI386761B TWI386761B (en) 2013-02-21

Family

ID=44935027

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98137863A TWI386761B (en) 2009-11-06 2009-11-06 Multi-step contact printing process

Country Status (1)

Country Link
TW (1) TWI386761B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7396475B2 (en) * 2003-04-25 2008-07-08 Molecular Imprints, Inc. Method of forming stepped structures employing imprint lithography
GB2436163A (en) * 2006-03-10 2007-09-19 Seiko Epson Corp Device fabrication by ink-jet printing materials into bank structures, and embossing tool
TWI335490B (en) * 2007-06-01 2011-01-01 Univ Nat Cheng Kung Nano-imprinting process

Also Published As

Publication number Publication date
TWI386761B (en) 2013-02-21

Similar Documents

Publication Publication Date Title
TWI335490B (en) Nano-imprinting process
US7997890B2 (en) Device and method for lithography
JP4448195B2 (en) Mold, imprint method, and chip manufacturing method
US10189203B2 (en) Method for forming micropattern of polyimide using imprinting
JP2000194142A (en) Pattern forming method and production of semiconductor device
TW200848956A (en) Devices and methods for pattern generation by ink lithography
JP2007103915A (en) Mold, imprint method, and method of manufacturing chip
TW200523666A (en) Imprint lithography templates having alignment marks
TW200538867A (en) A method of forming a deep-featured template employed in imprint lithography
JP2008296579A (en) Mask mold, its manufacturing method and molding method of large-area micro-pattern using manufactured mask mold
JP5891814B2 (en) Pattern structure manufacturing method and pattern forming substrate used therefor
CN101801652A (en) Mass production of micro-optical devices, corresponding tools, and resultant structures
JPWO2012029843A1 (en) Transfer system and transfer method
CN102311094A (en) Method for producing nano fluid pathway with large area and available size base on SU-8 photosensitive resist
JP4641835B2 (en) Method of manufacturing phase shifter optical element and element obtained
KR101086083B1 (en) A method for manufacturing of the transparent roll mold for uv roll nanoimprint lithography
US20080217819A1 (en) Micro/Nano-Pattern Film Contact Transfer Process
TW200901188A (en) Method of making an optical disc
TW201116939A (en) Multi-step contact printing process
TWI264823B (en) Thin film transistor manufacture method and structure therefor
JP2010228174A (en) Method for manufacturing microfine resin structure, microfine resin structure manufactured by the same, optical waveguide, microlens, microlens array, and microfluid device
KR20080097499A (en) Imprinted good and its production method
JP7378824B2 (en) Fine pattern molding method, imprint mold manufacturing method, imprint mold, and optical device
JP2005353926A (en) Cleaning method and manufacturing method of substrate
TWI412891B (en) Method for photo-curing contact printing micro/nano patterns

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees