TW201116600A - Dopant diffusion solution, paste composition for electrode of solar cell using the same and method of forming doping area of solar cell - Google Patents

Dopant diffusion solution, paste composition for electrode of solar cell using the same and method of forming doping area of solar cell Download PDF

Info

Publication number
TW201116600A
TW201116600A TW099129389A TW99129389A TW201116600A TW 201116600 A TW201116600 A TW 201116600A TW 099129389 A TW099129389 A TW 099129389A TW 99129389 A TW99129389 A TW 99129389A TW 201116600 A TW201116600 A TW 201116600A
Authority
TW
Taiwan
Prior art keywords
doping
group
solution
diffusion solution
solar cell
Prior art date
Application number
TW099129389A
Other languages
Chinese (zh)
Other versions
TWI525162B (en
Inventor
Jin-Gyeong Park
In-Jae Lee
Soon-Gil Kim
Jun-Phil Eom
Original Assignee
Lg Innotek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Innotek Co Ltd filed Critical Lg Innotek Co Ltd
Publication of TW201116600A publication Critical patent/TW201116600A/en
Application granted granted Critical
Publication of TWI525162B publication Critical patent/TWI525162B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A dopant diffusion solution according to the embodiment includes an organic solvent and a compound including a group III dopant or a group V dopant.

Description

201116600 ‘ 六、發明說明: 【發明所屬之技術領域】 本發明係主張關於2009年09月02日申請之韓國專利案號 10-2009-0082712之優先權,藉以引用的方式併入本文用作參 考。 本發明係關於一種摻雜擴散溶液,使用摻雜擴散溶液於 作為太陽能電池電極之㈣組成物和形成太陽㈣池捧雜區 之方法。 【先前技術】 近來,肇始於化石燃料之缺乏,因而次世代潔淨能源之 P錢已變得更為重要。於眾多的次世代潔淨能源之中,作為 解決未來能源問題之能縣_太陽能電池成為眾所囑目之 焦點,㈣其鮮少對環境造成科及具有準永久性壽命,並 且對太陽能電池而言存有著無限的資源。 經由具有N型半導鹽r 、 場(射極)⑽p料導體(背表面 每_層)㈣基板上形成上(tGP)電極和背 而製作出太陽能電池。在太陪4 )電極 而开 1㈣聊Μ 電池中’藉由透過簡單製程 4射極、BSF層、以及電極使其具有 先電轉化效率是非常重要。 生术徒幵 【發明内容】 本實施例提供峰以太⑽電池的 陽能電池製程的一種摻雜妒、、 間化形成太 作為太陽能電池電極之^ 使用S亥摻雜擴散溶液於 水科組成物和形成太陽能電池摻雜區 201116600 ’ 之方法 .根據本發明實施例’―種摻雜擴散溶液包括一有機溶 劑,以及包括III族換雜或v族摻雜的—化合物。 111族摻雜可包括選自由m銦核所植成之 Γ組二麟财叫括_、氮、坤、録縣所組成之群 組。有機心劑可包括一揮發性溶劑。 摻雜擴散轉可制㈣為太料電 物。此外,包含V族摻雜 聚科、、且成 =Γ=Γ包含111族摻雜之摻雜擴散溶液可被用 以形成-太電池的BSF (背表面場)層。 屬f、末康::例:用於太陽能電池電極之漿料組成物包括金 擴散溶純括一有機 洛劑及〇括III婦雜或v族捧雜的一化合物。 摻雜擴散溶液的量依撼g ⑽(重量百分比成物總量大約為2至12 成物總1大約為4至6計%。 III族摻雜可以包括登 ^ v 匕栝&自由硼、鋁、鎵、銦及鉈所組成 之群、、且。V族摻雜可以包括 成之群組。有機溶劑可以包括括由鱗、氮、珅、銻及賴組 ^ 匕括一揮發性溶劑。 水料組成物更包括一有機 . 仏他姑4*, — > / ⑱戰體(organic vehicle),且該 摻雜擴散鉍液係包含在有機 ^ 载體之中。漿料組成物更包括一 =機㈣和-添加劑,且摻雜擴散溶液係包含在添加劑之 201116600 ' 括制f實施例—種形成太陽能電池換雜區的方法之步驟包 族換雜匕合有機溶劑的推雜擴散溶液和具有111族掺雜或v 化合物於基板上;以及熱傳(thenDally)m族摻雜 或v族摻雜至基板中。 邗 雜擴^液τ藉由浸潰基板於摻雜擴散溶液之中而在 基板^以製備或塗覆摻雜擴散溶液料板上。 池二散溶液可被用以形成一太陽能電 .族摻雜之摻雜擴散溶液可被用以形成一 场錢池的BSF (背表面場)層。 =板上製備摻雜擴散溶液的步驟可包括塗覆包含V族 型擴散溶液於基板之第—表面上的步驟、塗覆包含 及敎2 賴散雜於基板之第二表面上的步驟、以[Technical Field] The present invention claims priority to Korean Patent Application No. 10-2009-0082712, filed on Sep. 2, 2009, which is hereby incorporated by reference herein . SUMMARY OF THE INVENTION The present invention relates to a doping diffusion solution using a doping diffusion solution as a (four) composition of a solar cell electrode and a method of forming a solar (four) cell. [Prior Art] Recently, the lack of fossil fuels has begun, and the P money of the next generation of clean energy has become more important. Among the many next-generation clean energy sources, solar energy cells have become the focus of attention in solving future energy problems. (4) They rarely cause environmental impact and have a quasi-permanent life, and for solar cells. There are unlimited resources. A solar cell was fabricated by forming an upper (tGP) electrode and a back on a substrate having an N-type semiconductive salt r, a field (emitter) (10) p-material conductor (back surface per layer) (4). It is very important to have the first electrical conversion efficiency by the simple process 4 emitter, BSF layer, and electrode. The present invention provides a doping 妒 of a solar cell process of a peak Ether (10) battery, and an inter-distribution of a solar cell electrode as a solar cell electrode. And a method of forming a solar cell doped region 201116600'. According to an embodiment of the present invention, a doping diffusion solution includes an organic solvent, and a compound including a group III or a group of v doping. The Group 111 doping may comprise a group consisting of a group consisting of m, 氮, N, and 县, which are planted by the m indium nucleus. The organic core agent can include a volatile solvent. Doping diffusion can be made (4) as a material. Further, a doping diffusion solution containing a Group V doped poly group, and having = Γ = Γ containing a group 111 doping can be used to form a BSF (back surface field) layer of a -cell.属 f, 末康:: Example: The slurry composition for the solar cell electrode includes a gold diffusion-dissolving pure organic compound and a compound comprising a compound or a v group. The amount of the doping diffusion solution depends on 撼g (10) (the total amount of the product is about 2 to 12% of the total amount of the product is about 4 to 6 %. The III group doping may include 登 匕栝 amp & The group consisting of aluminum, gallium, indium and antimony, and the V group doping may comprise a group. The organic solvent may include a volatile solvent including a scale, a nitrogen, a ruthenium, a ruthenium and a ruthenium. The water composition further includes an organic 仏 姑 4 4*, — > / 18 organic vehicle, and the doped diffusion mash is contained in the organic carrier. The slurry composition further includes a = machine (four) and - additive, and the doped diffusion solution is included in the additive 201116600 'including the f embodiment - the method of forming a solar cell exchange zone step of the package family mixed organic solvent doping diffusion solution And having a group 111 doping or v compound on the substrate; and a heat-transfer (thenDally) m-doping or a group-v doping into the substrate. The doping diffusion liquid τ is impregnated into the substrate by doping the diffusion solution And on the substrate to prepare or coat the doped diffusion solution plate. The pool two dispersion solution can be used to form The solar-electric doped diffusion solution can be used to form a BSF (back surface field) layer of a money pool. The step of preparing the doped diffusion solution on the plate can include coating a diffusion solution containing a V group. a step on the first surface of the substrate, a step of coating and covering the second surface of the substrate,

及熱傳该111族株雜θ P 形成射極和BSFt 嶋㈣,從而個別地 in ^ 此,歸雜中所以換雜擴散溶液可以有疏水性。因 擴散雜擴政洛液中之摻雜能夠容易地在疏水性梦基板中 =據實關’當㈣摻轉散魏⑽成太陽 射極時,該製程可以被簡化並的 夠均勻地擴散。 穋雜T透過心貝和塗覆而能 太陽例,當使用摻雜擴散溶液以初步地形成 太k電池的腳層時,背電極厚度得以減少,並且可2 f 201116600 止太陽能電池的翹曲(b〇wing) 以延長。 _ ’太陽能電池的壽命得 可藉由乾驗覆於絲板之—表面上的N _散 同時形成射極和BSF|,藉由乾燥塗覆於石夕基板之另二表面 上的p騎散減,_實施_散_。因此 簡化且射極和BSF層可以有優越之特性。 主于 w括掺_散溶液之漿料組成物被用於 形成太I電池的電極時,㈣形成高濃度摻雜區 太陽能電池中的電位差(PQtential diffe職e)得以改盖。 因此’太·電池的開路麵(VQe)可以被提昇 _ 能電池的效率能夠被強化。 入’ 【實施方式】 以下 ’將詳細贿轉㈣狀—轉雜舰溶液,使 用4雜擴散溶液於作為太陽能電池電極之漿料組成物和形成 太陽能電池換雜區之方法。 根據實施例之摻雜擴散溶液包括具有III族摻雜或V族 摻雜之-化合物和具有有機溶劑之一化合物。 如果摻雜擴散溶液包括具有m族摻雜的化合物,雜 雜擴散溶液可作為1 p型擴散減。這_化合物可以是 氧化物或氮化物’其包括至少—或兩個選自_、銘、鎵、 銦及朗構成之III族摻雜的群組。 y III轉雜之化合物的量’依據雜擴散溶液總量 W · 1至5 Wt〆。如果化合物的量超過5Wt%時,則導電 > 201116600 擴散特 性下降。相反地’如果化合物的量少於0. lWt%時, 性呈現劣化。 如果摻雜擴散溶液包括具有V族摻雜的化合物,該彳參雜 擴散溶液可作為一種N型擴散溶液。這類的化合物可以是氧 化物或氮化物包括至少一或兩個選自由磷、氮、砷、銻及鉍 所構成之V族推雜的群組。 ' 包含V族摻雜之化合物的量,依據摻雜擴散溶液總量可 為0.1至5 Wt%。如果化合物的量超過5Wt%時,則導電性 下降。相反地’如果化合物的量少於〇· 1Wt%時,擴散 呈現劣化。 '月’ 有機溶劑在隨後的製程中會揮發,使得摻雜能夠被均句 地顯現。關於這點’有機溶劑可包括一揮發性溶劑。最好有 機溶劑可包括具有低沸點之一揮發性溶劑。這樣的揮發性溶 知丨!可以包括酒精(alcohol)或丙酮(acetone)。 N型擴散溶液可包括胺類(amine-based)溶液,如、、由醇 胺(oleyl amine)、三乙醇(triethan〇1⑽丨此)或三辛胺 (trioctyl amine)。 根據實施例之摻雜擴散溶液可被用於形成太陽能電池電 極或摻雜區。町,根據實_,將說明採尋雜擴散溶液 的太陽能電池之範例。圖1係為太陽能電池之剖視圖。 5月麥閲圖] 有—N型半導體n (以下簡稱為“射極”),—上(t〇p)電極 12電性連接到射極u以及—背(rear)電極13電性連接到p 201116600 型石夕基板10。-抗反射層14可被形成於 面,除了形成上電極12以外的區域。此外,一亟11的上表 成於矽基板10的背電極13上。 —BSF層15形 根據實施例之摻雜擴散溶液可用以形成捧 太陽能電池的射極11及/或BSF層15, °° s,例如 電極12或背電極13。 一疋電極’例如上 以下,將詳細說明藉由使用摻雜擴 的方法。 散溶液形成摻 雜區域 欽 如上所述,摻雜擴散溶液可包括有機溶劑和包八 推雜或v族推雜的化合物。此外,-無機添加劑可姨 摻雜溶液以改善摻雜的擴散特性,以這種方式可以容,、、0到 =擴散’即便是進行低溫度的熱處理或短時間的熱處=地1 這類的無機添加劑可包括氧化銃(SC203)、三氧化 (Ti2〇3)、鎳、銅、Sc〇5 ’及類似物質。 如果摻雜擴散溶紋包括具有v族掺雜之化合物的N型 擴散溶液,射極u可經由使歸雜擴散溶液而形成。亦即, =基板1G被浸潰於N型擴散紐或者是N型擴散溶液被塗 復在石夕基板的-表面上’然後實施乾燥製程和熱擴散製程以 形成射極11。 N型擴散溶液能夠經由旋轉塗覆、蒸鍍、平版印刷 (offset printing)、網印或移印(pad printing)而得以塗覆 在發基板10的一表面上。 此外,可使用各種乾燥方法◦例如,可利用帶式熱烘 201116600 相、紅外線烘箱,或箱式烘箱。乾燥溫度約為15〇至烈〇 C,烘乾時間為2至3分鐘,但實施例並非用以限 明。 χ 再者,各種熱擴散製程可用來擴散包含在Ν型擴散溶液 中的摻雜到矽基板10中。 舉例而言,熱擴散製程能夠在溫度800至1000 π,持 續50秒至3分鐘之條件下實施。如果製雜件超出上述範 圍,將對轉板10的表面造成不良影響。此外,如果製程條 件低於上述範圍内,摻雜可能擴散不足,但實施例並非用以 限定本發明。 根據實施例,射極11可透過浸潰或塗覆製程而形成。因 此’當與制含贼體的傳統方法相比較時,製程時間可被 縮短,且因利用帶式設備而使製程可被簡化。此外,與使用 含碟氣體的傳統方法相味時,摻雜能夠被均勻地擴散。 根據實施例’摻雜擴散溶液包括有機溶劑,所以換雜擴 散八有&水1±目此’摻雜擴散溶液可以很容易地形成在疏 水石夕基板10上。根擔土此 很像无則技術,起因於含磷化合物的親水 性,當含磷化合物注 夕基板10時,一多孔層被形成在石夕基 板10上。就此觀之,士 相較於先前技術該實施例可以簡化製 程。此外,根據先前枯化 ⑴枝術,矽基板10的硬度由於多孔層而可 以降低,所以矽基板in 双iU在此製程中可能被破壞,而該實施例 可以防止上述問題。 此外Θ摻㈣散溶液是包括具有III族摻雜之化合物 201116600 · 的P型擴散溶液時, 土㈣减時,BSF層15可藉由使用摻雜擴^㈣And heat transfer of the 111 family of θ P to form the emitter and BSFt 嶋 (4), so that in this case, the hybridization solution can be hydrophobic. The doping in the diffusion heterodispersion can easily be carried out in the hydrophobic dream substrate = when the (four) doping is spread (10) into the solar emitter, the process can be simplified and spread evenly. The doping T can pass through the heart and the coating can be used in the solar case. When the doping diffusion solution is used to initially form the foot layer of the tera-cell battery, the thickness of the back electrode can be reduced, and the warpage of the solar cell can be stopped by 2 f 201116600 ( B〇wing) to extend. _ 'The life of the solar cell can be obtained by dry inspection over the surface of the silk plate - N _ scattered on the surface while forming the emitter and BSF |, by drying the p-sand on the other two surfaces of the Shi Xi substrate Subtract, _ implementation _ scattered _. Therefore, the simplification and the emitter and BSF layers can have superior characteristics. When the slurry composition mainly composed of the doped dispersion solution is used to form the electrode of the Tai I battery, (4) forming a high concentration doping region, the potential difference (PQtential diffee e) in the solar cell can be modified. Therefore, the open surface of the battery (VQe) can be upgraded. _ The efficiency of the battery can be enhanced. [Embodiment] The following is a detailed method of bridging a (four) shape-turning ship solution, using a 4-hetero-diffusion solution as a slurry composition of a solar cell electrode and forming a solar cell exchange region. The doping diffusion solution according to the embodiment includes a compound having a group III doping or a group V doping and a compound having one of organic solvents. If the doped diffusion solution comprises a compound having a m-type doping, the hetero-diffusion solution can be reduced as a 1 p-type diffusion. This compound may be an oxide or a nitride which comprises at least one or two groups of Group III dopings selected from the group consisting of _, Ming, gallium, indium and lan. The amount of the compound of the y III compound is 'based on the total amount of the heterodiffusion solution W · 1 to 5 Wt 〆. If the amount of the compound exceeds 5 wt%, then the conductivity > 201116600 diffusion characteristic decreases. Conversely, if the amount of the compound is less than 0. lWt%, the sex exhibits deterioration. If the doping diffusion solution includes a compound having a group V doping, the cerium doped diffusion solution can function as an N type diffusion solution. Such compounds may be oxides or nitrides comprising at least one or two groups selected from the group consisting of phosphorus, nitrogen, arsenic, antimony and bismuth. The amount of the compound containing the group V doping may be 0.1 to 5 Wt% depending on the total amount of the doping diffusion solution. If the amount of the compound exceeds 5 wt%, the conductivity is lowered. Conversely, if the amount of the compound is less than 〇·1 Wt%, the diffusion exhibits deterioration. The 'month' organic solvent will volatilize in the subsequent process so that the doping can be uniformly expressed. In this regard, the organic solvent may include a volatile solvent. Preferably, the organic solvent may comprise a volatile solvent having a low boiling point. Such volatile solubility can include alcohol or acetone. The N-type diffusion solution may include an amine-based solution such as, for example, oleyl amine, triethanol (triethan 〇 1 (10) )) or trioctyl amine. The doped diffusion solution according to the embodiment can be used to form a solar cell electrode or doped region. In the town, according to the actual _, an example of a solar cell using a hetero-diffusion solution will be described. Figure 1 is a cross-sectional view of a solar cell. In May, there is an N-type semiconductor n (hereinafter referred to as "emitter"), and the upper (t〇p) electrode 12 is electrically connected to the emitter u and the rear electrode 13 is electrically connected to p 201116600 type Shi Xi substrate 10. - The anti-reflection layer 14 can be formed on the surface except for the region where the upper electrode 12 is formed. Further, the upper surface of a stack 11 is formed on the back electrode 13 of the ruthenium substrate 10. - BSF layer 15 shape The doping diffusion solution according to the embodiment can be used to form the emitter 11 and/or BSF layer 15, of the solar cell, for example, the electrode 12 or the back electrode 13. A tantalum electrode ', for example, hereinafter, will be described in detail by using a doping method. The dispersed solution forms a doped region. As described above, the doped diffusion solution may include an organic solvent and a compound of a quaternary or v group. In addition, the inorganic additive may be doped with a doping solution to improve the diffusion characteristics of the doping, in such a way that it can accommodate, and 0 to = diffusion 'even if a low temperature heat treatment or a short time heat = ground 1 The inorganic additives may include cerium oxide (SC203), trioxide (Ti2 〇 3), nickel, copper, Sc 〇 5 ' and the like. If the doped diffusion solvate comprises an N-type diffusion solution having a group V doped compound, the emitter u can be formed via a doped diffusion solution. That is, the = substrate 1G is immersed in an N-type diffusion nucleus or an N-type diffusion solution is coated on the surface of the slate substrate, and then a drying process and a thermal diffusion process are performed to form the emitter 11. The N-type diffusion solution can be coated on one surface of the hair substrate 10 via spin coating, evaporation, offset printing, screen printing or pad printing. In addition, various drying methods can be used, for example, a belt-type hot-bake 201116600 phase, an infrared oven, or a box oven. The drying temperature is about 15 Torr to 〇C, and the drying time is 2 to 3 minutes, but the examples are not intended to be limiting. Further, various thermal diffusion processes can be used to diffuse the doping into the germanium substrate 10 contained in the germanium type diffusion solution. For example, the thermal diffusion process can be carried out at a temperature of 800 to 1000 π for 50 seconds to 3 minutes. If the miscellaneous parts are outside the above range, the surface of the rotary plate 10 will be adversely affected. Further, if the process conditions are lower than the above range, the doping may be insufficiently diffused, but the embodiment is not intended to limit the present invention. According to an embodiment, the emitter 11 can be formed by an impregnation or coating process. Therefore, when compared with the conventional method of making a thief, the process time can be shortened, and the process can be simplified by using the belt type device. In addition, the doping can be uniformly diffused when compared with the conventional method using a dish containing gas. According to the embodiment, the doping diffusion solution includes an organic solvent, so that the doped diffused solution can be easily formed on the hydrophobic substrate 10. The root-bearing soil is very similar to the technique, which is caused by the hydrophilicity of the phosphorus-containing compound. When the phosphorus-containing compound is implanted on the substrate 10, a porous layer is formed on the stone substrate 10. In this regard, the embodiment can simplify the process compared to the prior art. Further, according to the previous dehumidification (1), the hardness of the crucible substrate 10 can be lowered due to the porous layer, so that the crucible substrate in the double iU may be destroyed in this process, and this embodiment can prevent the above problem. In addition, the bismuth doped (four) dispersion solution is a P-type diffusion solution including a compound having a group III doping 201116600 ·, when the soil (four) is subtracted, the BSF layer 15 can be expanded by using doping (4)

型擴散溶液的塗覆、乾燥和熱擴散過程是類似於N型 擴散溶液的製程,所以其詳細說明將省略以避免贅述。p型 擴散溶液的_散溫賴850至lim:,略高於N型擴散溶 液的熱擴散溫度。 ' / 根據實施例,當藉由使用摻雜擴散溶液所形成的BSF層 15比月電極13之前被形成,背電極13的厚度得以減少並且 可以預防太陽能電池的翹曲問題。更詳言之,根據先前技 術’由於用於背電極13材料與魏板1G材料之間的熱_ 係數差異,太陽能電池的翹曲會發生在用於形成背電極13 之烘烤和冷卻製程期間。當背電極13的厚度增加時,這樣的 翹曲會更加嚴重。根據實施例,背電極13的厚度得以減少, 所以可預防太陽能電池的翹曲。因此,由於翹曲現象所造成 的裂縫不會出現在太陽能電池巾,從岐太陽㈣池的壽命 可以延長。 藉i乾燥塗覆在矽基板10之一表面的N型擴散溶液、乾 燥塗覆在矽基板10之另一表面的P型擴散溶液、以及執行熱 擴散製程,射極丨丨和BSF層15可同時被形成。因此,製程 可被簡化並且射極11和BSF層15可具有優良的特性。 201116600 然而,實施例並非侷限於以上所述。如果有必要加厚 大於射極U的厚度’於N型擴散溶液的熱擴散 衣私業已貫施之後’再實施p型擴散溶液的熱擴散製程。 β以下’將根據實施例詳細描述使用摻雜擴散溶液於作為 太陽能電池電極之漿料組成物的方法。 漿料組成物包括金屬粉末和摻雜擴散溶液。聚料組成物 可包括-有機載體、一有機或無機添加劑、以及一玻璃料 (glass frit)。此外,摻雜擴散溶液可包含在一有機載體或 添加劑。 金屬粉末可包括銀粉末或具有重量輕和優越導電性的銘 粉末。如果金屬粉末包含銀粉末,_纟以物絲形成上電 極12。此外,如果金屬粉末包含歸末,_組成物用來形 成背電極13,但實施例並非用以限定本發明。 金屬粉末可具有球狀、板狀、鐘形或薄片狀。金屬粉末 可由具有相同形狀或不同形狀的粒子所構成。 金屬粉末的平均粒徑(means grain size)約1 5至1〇以 m。如果平均粒徑小於1.5/im,有機物質由於金屬粉末的凝 聚力而無法滲透到金屬粉末,使得金屬粉末不能容易地分 散。此外,如果平均粒徑超過l〇;am,金屬粉末中將形成許 多的小孔,所以金屬粉末的密度降低且電極的電阻將因而增 加。 有機載體使得漿料組成物具有適合於塗覆在石夕基板上的 钻度及流變特性(Rheological property)。 201116600 有機載體可包括一溶劑和溶解於該溶劑之一聚合物。此 外,有機載體可包括一觸變劑(thixotropic agent)、一均染 劑(leveling agent),以及一抗發泡劑(anti-foaming agent)。該有機載體亦可以包括摻雜擴散溶液。 聚合物可包括丙卸酸樹脂(acrylate resin)、乙基纖維 素(ethylcellulous)、硝基纖維素(nitroceiiui〇us)、乙基 纖維素(ethylcellulous)和酚醛樹脂(phen〇i)之聚合物、 木松香(wood rosin)以及酒精(alcohol)之聚甲基丙烯酸 酉旨(polymethacrylate) 〇 該溶劑可以包括選自由乙酸丁基二甘醇酯 (butylcarbitolacetate)、丁基卡必醇(butylcarbitol)、丁 基溶纖劑 (butylcellosolve)、醋酸丁酯纖維素溶劑 (butylcellosolveacetate)、丙二醇單甲(基)韃薄荷酯 (propyleneglycolmonomethylether)、二丙 二醇單甲(基)醚 薄荷酯(dipropyleneglycolmonomethylether)、丙二醇單曱 (基)丙酸(?1'〇口716116旦17(:〇1111〇11〇11161:1^1口]:0^〇1^七6)、乙醚丙 酸(6让丫161;1^叮1*0?1〇1^七6)、松油醇(^6叩11^〇1)、丙二醇 單乙醚 醋酸薄 荷 酯 (propy1eneglyco1monomethy1etheracetate)、二曱胺基 (dimethylamino)、曱酸·(formaldehyde)、曱乙酮 (methylethylketone)、7-丁 内酉旨(gamma-butyrolactone)、 乳酸乙醋(ethy 1 lactate)、2,3, 4_三曱基_1,3_戍二酵早異丁 酸醋(texanol)所組成的群組。 12 201116600 * 觸變劑可包括尿素類(urea type)、酰胺類(帥池 type)或聚氨酯類(urethane type)聚合物/有機物質 機(二氧化)矽。 一… 各種材料可被用於玻璃料。舉例而言,具有4〇〇至6〇〇 °c軟化點的硼矽酸鹽玻璃(borosilicate glass)、矽酸鉛玻 璃(lead silicate glass)、鉍玻璃(bismuth glass)或鋰玻 璃可用作為玻璃料。更詳而言之,玻璃料可以包括至少一個 或兩個選自由氧化鉍(Bi2〇3)、氧化硼(B2〇3)、二氧化矽 (Si〇2)、氧化鋁(A1203)、氧化鎘(Cd0)、氧化鈣(Ca〇)、氧 化鋇(BaO)、氧化鋅(zn0)、氧化鈉(Na2〇)、氧化鋰 (Li2〇)、氧化鉛(Pb〇)及氧化锆(Zr〇)所組成的群組。此 外’玻璃料具有的粒徑約1至1〇。 根據實施例之漿料組成物更可包括各種添加劑以改善其 所需之特性。舉例而言,漿料組成物更可括燒結添加劑 (sintering additive)、增稠劑(thicker)、穩定劑 (stabilizer)或表面活性劑(surfactant)。此外,漿料組成 物可包括摻雜擴散溶液。 例如,太陽能電池可以包括60至95Wt%之金屬粉末, 0.3至15Wt%的玻璃料,4至39Wt%的有機戴體,以及〇 i 至12Wt%的添加劑。 如果金屬粉末量超過95Wt%時,該化合物可能無法製備 成漿料形態。如果金屬粉末量少於60Wt%時,由於導電材料 的量降低,使得背電極的電阻會增加。亦即,當太陽能電、也The coating, drying and thermal diffusion processes of the type of diffusion solution are similar to those of the N-type diffusion solution, so detailed description thereof will be omitted to avoid redundancy. The _-dissipation temperature of the p-type diffusion solution is 850 to lim: slightly higher than the thermal diffusion temperature of the N-type diffusion solution. According to the embodiment, when the BSF layer 15 formed by using the doping diffusion solution is formed before the moon electrode 13, the thickness of the back electrode 13 is reduced and the warpage problem of the solar cell can be prevented. More specifically, according to the prior art 'the warpage of the solar cell occurs during the baking and cooling process for forming the back electrode 13 due to the difference in the heat coefficient between the material for the back electrode 13 and the material of the Wei 1G material. . Such warpage is more serious when the thickness of the back electrode 13 is increased. According to the embodiment, the thickness of the back electrode 13 is reduced, so warpage of the solar cell can be prevented. Therefore, the crack caused by the warpage phenomenon does not appear in the solar cell towel, and the life from the sun (four) pool can be prolonged. The N-type diffusion solution coated on one surface of the ruthenium substrate 10 is dried, the P-type diffusion solution coated on the other surface of the ruthenium substrate 10 is dried, and a thermal diffusion process is performed, and the emitter B and BSF layer 15 may be Also formed at the same time. Therefore, the process can be simplified and the emitter 11 and BSF layer 15 can have excellent characteristics. 201116600 However, embodiments are not limited to the above. If it is necessary to thicken the thickness greater than the emitter U' after the heat diffusion of the N-type diffusion solution has been applied, the thermal diffusion process of the p-type diffusion solution is carried out. The following will be described in detail based on the embodiment using a doping diffusion solution to a slurry composition as a solar cell electrode. The slurry composition includes a metal powder and a doped diffusion solution. The polymeric composition can include an organic carrier, an organic or inorganic additive, and a glass frit. Further, the doped diffusion solution may be contained in an organic vehicle or an additive. The metal powder may include silver powder or a powder having a light weight and superior electrical conductivity. If the metal powder contains silver powder, the upper electrode 12 is formed by the filament. Further, if the metal powder contains a final, _ composition is used to form the back electrode 13, the embodiment is not intended to limit the invention. The metal powder may have a spherical shape, a plate shape, a bell shape or a flake shape. The metal powder may be composed of particles having the same shape or different shapes. The metal powder has a mean grain size of about 15 to 1 Torr. If the average particle diameter is less than 1.5/im, the organic substance cannot penetrate the metal powder due to the cohesive force of the metal powder, so that the metal powder cannot be easily dispersed. Further, if the average particle diameter exceeds 1 〇; am, many small pores are formed in the metal powder, so the density of the metal powder is lowered and the electric resistance of the electrode is thus increased. The organic vehicle is such that the slurry composition has a degree of drilling and rheological properties suitable for coating on a stone substrate. The 201116600 organic vehicle can include a solvent and a polymer dissolved in the solvent. Further, the organic vehicle may include a thixotropic agent, a leveling agent, and an anti-foaming agent. The organic vehicle can also include a doped diffusion solution. The polymer may include a polymer of acrylate resin, ethylcellulous, nitroceiiui〇us, ethylcellulous, and phenolic resin, Wood rosin and alcohol polymethacrylate 〇 The solvent may comprise a solvent selected from the group consisting of butylcarbitolacetate, butylcarbitol, butyl cellosolve. Butyl cellosolve, butylcellosolveacetate, propylene glycol monomethyl propylglycol monomethylether, dipropylene glycol monomethylglycolate (dipropyleneglycolmonomethylether), propylene glycol monoterpene (yl) propionic acid (?1'〇口716116旦17(:〇1111〇11〇11161:1^1 mouth):0^〇1^七6), diethyl ether propionic acid (6 let 丫161; 1^叮1*0?1 〇1^七6), terpineol (^6叩11^〇1), propylene 1 ethyl ester monoester (methymethanol), dimethylamino, decanoic acid (formaldehyde), acetophenone (methylethylketone), 7-butyrolactone, ethy 1 lactate, 2,3, 4_tridecyl_1,3_戍二酵早 Ibutyrate (texanol) The group consisting of 12 201116600 * The thixotropic agent may include urea type, amide type or urethane type polymer / organic substance machine (dioxide) 一. The material can be used for glass frits. For example, borosilicate glass, lead silicate glass, bismuth glass having a softening point of 4 to 6 ° C Or lithium glass can be used as the glass frit. More specifically, the glass frit may include at least one or two selected from the group consisting of bismuth oxide (Bi2〇3), boron oxide (B2〇3), and cerium oxide (Si〇2). Alumina (A1203), cadmium oxide (Cd0), calcium oxide (Ca〇), barium oxide (BaO), zinc oxide (zn0), sodium oxide (Na2〇), lithium oxide (Li2〇), lead oxide (Pb) 〇) and a group of zirconia (Zr〇). Further, the glass frit has a particle size of about 1 to 1 Torr. The slurry composition according to the embodiment may further include various additives to improve the properties required thereof. For example, the slurry composition may further include a sintering additive, a thicker, a stabilizer, or a surfactant. Additionally, the slurry composition can include a doped diffusion solution. For example, the solar cell may include 60 to 95 wt% of metal powder, 0.3 to 15 wt% of glass frit, 4 to 39 wt% of organic wear, and 〇i to 12 wt% of additive. If the amount of the metal powder exceeds 95% by weight, the compound may not be prepared into a slurry form. If the amount of the metal powder is less than 60% by weight, the resistance of the back electrode is increased due to a decrease in the amount of the conductive material. That is, when solar power, also

S -13- 201116600 具有上述成分比例時,聚料組成物的燒結性得以改善因而提 昇太1¼能電池的效率。 如果玻璃料的量其範圍在〇. 3至i5Wt%時,附著性、燒 結性及太陽能電池的後製程處理特性可得到改善。 如果有機載體的量超過39Wt%時,由於金屬粉末的量減 少,使得電極的電阻會增加,因此降低太陽能電池的效率。 此外,如果有機載體的量少於4Wt%時,金屬粉末可能無法 容易地混合和分佈。在這種情況下,金屬粉末可能無法塗覆 在基板上。因此,藉由使用該種漿料組成物所形成電極之圖 案精密度將會降低。 如果添加劑的量超過腹%時,由於金屬粉末的量減 少,使得背電極的電阻會增加,從而降低太陽能電池的效 率。此外’如果添加劑的量少於〇.册%時,從添加劑所衍 生的效果將會降低。 根據實施例’摻雜擴散溶液被包含在有機載體及/或毁料 組成物的添加劑中。亦即,摻雜擴散溶液能夠被包含在㈣ 組成物的有機載體及/或摻雜擴散溶液能夠被包含在聚料組成 物而與有機載體分開。 在这種情況下’摻雜擴散紐量,依據t料組成物之總 置大約2至12Wt%。如果摻雜擴散溶液的量超過服糾, 由於金屬粉末的量減少’使得電極電阻會降低,從而降低太 陽能電池的效率。此外,如果摻雜擴散溶液量少於m% 時’由於_量不足’使得太陽能電池效率會下降。 •14· 201116600 為了進-步改善藉由使用漿料組成物所形成電極的電阻 特性’依據射枝成物的總量添加4至6Wt%的摻雜擴散溶 液。 根據實施例,如果藉由使用包括N型擴散溶液的裝料组 成物所形成的上電極12,v族摻_含量增加,使得重度推 雜,N + +區域可形成在上電極12的週圍區域。因此二太 陽能,池的電位差得⑽善,使得開路麵—得以改善並 且太%能電池的效率可得到增強。 ’ 此外’根射施例,如果藉由使用包括p型擴散溶液的 聚料組成物所形成㈣電極13,⑴婦_含量增加,使 得BSF層15的厚度可以變大。再者,⑴族換雜以液相 (hqind phase)添加,而不是固相(s〇lid ρ1ι_,使得漿料 組成物的分佈得以改善。所以,卿層15能夠被均句地形 成。按照月’j述’太陽能電池的電位差可得到改善,使得開路 電£ Voc得以改善並且太陽能電池的效率可得到增強。 以下例子僅用於提供解說之目的,實施例並非侷限所述 之實施例。 <實施例1> 漿料組成物藉由添加P型擴散溶液到含有7〇Wt%鋁粉 末、3Wt%的玻璃料和27^%的有機載體之化合物而加以製 備。依據該漿料組成物總量,P型擴散溶液為2 wt%。該p 型擴散溶液經由在丙酮(acetone)中溶解硼酸(b〇ric扣丨幻而 被製備。棚酸和丙鲖的比例為3〇:7〇 wt%。S -13- 201116600 With the above composition ratio, the sinterability of the polymer composition is improved and the efficiency of the battery is increased by 11⁄4. If the amount of the glass frit ranges from 〇. 3 to i5 Wt%, the adhesion, the sintering property, and the post-process treatment characteristics of the solar cell can be improved. If the amount of the organic vehicle exceeds 39% by weight, since the amount of the metal powder is reduced, the electric resistance of the electrode is increased, thereby lowering the efficiency of the solar cell. Further, if the amount of the organic vehicle is less than 4% by weight, the metal powder may not be easily mixed and distributed. In this case, the metal powder may not be coated on the substrate. Therefore, the pattern precision of the electrode formed by using the slurry composition will be lowered. If the amount of the additive exceeds the abdominal percentage, since the amount of the metal powder is reduced, the electric resistance of the back electrode is increased, thereby reducing the efficiency of the solar cell. Further, if the amount of the additive is less than 5% by volume, the effect derived from the additive will be lowered. The doped diffusion solution is included in the additive of the organic vehicle and/or the reject composition according to the embodiment. That is, the doping diffusion solution can be contained in the (IV) composition of the organic vehicle and/or the doping diffusion solution can be contained in the polymer composition to be separated from the organic carrier. In this case, the doping diffusion amount is about 2 to 12 wt% depending on the total composition of the t-material. If the amount of the doped diffusion solution exceeds the correction, the amount of the metal powder decreases, so that the electrode resistance is lowered, thereby reducing the efficiency of the solar cell. Further, if the amount of the doping diffusion solution is less than m%, the solar cell efficiency is lowered due to insufficient amount. • 14· 201116600 To further improve the resistance characteristic of the electrode formed by using the slurry composition, '4 to 6 wt% of the doping diffusion solution is added depending on the total amount of the shoot product. According to the embodiment, if the content of the v-type doping is increased by using the upper electrode 12 formed by using the charge composition including the N-type diffusion solution, the heavily doped, the N + + region can be formed in the peripheral region of the upper electrode 12. . Therefore, the solar energy, the potential difference of the pool is (10) good, so that the road surface can be improved and the efficiency of the battery can be enhanced. Further, in the case of the root-spraying application, if the (four) electrode 13 is formed by using the polymer composition including the p-type diffusion solution, the (1) content of the woman is increased, so that the thickness of the BSF layer 15 can be made large. Further, the group (1) is added in a liquid phase (hqind phase) instead of a solid phase (s〇lid ρ1ι_, so that the distribution of the slurry composition is improved. Therefore, the layer 15 can be uniformly formed. The potential difference of the solar cell can be improved, so that the open circuit voltage VVO can be improved and the efficiency of the solar cell can be enhanced. The following examples are only for the purpose of providing explanation, and the embodiments are not limited to the embodiments described. Example 1> A slurry composition was prepared by adding a P-type diffusion solution to a compound containing 7 Å of Wt% aluminum powder, 3% by weight of glass frit, and 27% by weight of an organic vehicle. The P-type diffusion solution is 2 wt%. The p-type diffusion solution is prepared by dissolving boric acid in acetone (b〇ric 丨 丨 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .

-15· S 201116600 〈實施例2&gt; 實施例2類似於實施例1,除了根據該漿料組成物總量 之P型擴散溶液為4 Wt%。 〈實施例3&gt; 實施例3類似於實施例1,除了根據該漿料組成物總量 之P型擴散溶液為6 Wt%。 〈實施例4&gt; 實施例4類似於實施例1,除了根據該漿料組成物總量 之P型擴散溶液為8 Wt%。 〈實施例5&gt; 實施例5類似於實施例1,除了根據該漿料組成物總量 之P型擴散溶液為1〇 Wt%。 〈實施例6&gt; 實施例6類似於實施例1,除了根據該漿料組成物總量 之P型擴散溶液為12 Wt%。 〈比較實施例〉 漿料組成物藉由添加固相B2〇3到含有70 Wt%|呂粉末、3 Wt%的玻璃料和27 Wt%有機載體之化合物而加以製備。依 據該漿料組成物總量,固相B2〇3的量為2 Wt%。 藉由塗覆實施例1至6與比較實施例所述的漿料組成物 於石夕基板上的所形成的背電極,然後乾燥該漿料组成物。在 這種狀態下,針對BSF層的厚度、背電極的表面電阻、背電 極的厚度、BSF比例(BSF厚度/電極厚度)及表面電阻率-15·S 201116600 <Example 2> Example 2 is similar to Example 1, except that the P-type diffusion solution according to the total amount of the slurry composition was 4 Wt%. <Example 3> Example 3 was similar to Example 1, except that the P-type diffusion solution according to the total amount of the slurry composition was 6 Wt%. <Example 4> Example 4 was similar to Example 1, except that the P-type diffusion solution according to the total amount of the slurry composition was 8 Wt%. <Example 5> Example 5 was similar to Example 1, except that the P-type diffusion solution according to the total amount of the slurry composition was 1 〇 Wt%. <Example 6> Example 6 was similar to Example 1, except that the P-type diffusion solution according to the total amount of the slurry composition was 12 Wt%. <Comparative Example> The slurry composition was prepared by adding a solid phase B2〇3 to a compound containing 70 Wt% of Lu powder, 3 Wt% of glass frit, and 27 Wt% of organic vehicle. The amount of the solid phase B2〇3 was 2 Wt%, based on the total amount of the slurry composition. The slurry composition was coated by applying the slurry compositions described in Examples 1 to 6 and Comparative Examples to the formed back electrode on the Shih-Hs. substrate. In this state, the thickness of the BSF layer, the surface resistance of the back electrode, the thickness of the back electrode, the BSF ratio (BSF thickness/electrode thickness), and the surface resistivity

16 S 201116600 (表面電阻/月電極厚度)進行測量。為了實驗的精確性,經 由使用相同的㈣組成物製備電極3次。其結果請見表i所 載。根據紐驗含4的卿_如® 2解,而根據紐 溶液含量的BSF厚度如圖3所示。 表1 BSF 厚度〔//in〕 〜· 背電極表面電阻〔m 背電極厚度 BSF 表面 Ω/Q] 〔em〕 比例 電阻 1 2 3 平均 1 ? 平均 1 〇 Q 平均 比例 π — U U L 〇 一 — 實施例1 3.71 30.7 3.3 3.36 12.17 11.96 11.87 12.00 25.86 24.75 25.57 25.39 0.132 0.473 實施例2 3.54 3.71 3.71 3.65 9.97 9.43 9.45 9.62 23.83 23.88 21.8 23.17 0.157 0 415 實施例3 3.94 2.78 3.71 3.48 9.91 10.32 10 44 10.22 18.9 20.7 18.9 19.50 〇 178 Π ROA 實施例4 3.54 3.65 4.17 3.79 10.54 10.88 11.02 10.81 25.22 23.01 24.4 24.21 0.156 0.447 實施例5 3.25 3.52 3.42 3.39 9.64 — 9.82 9.86 9.77 23.85 22.74 22.69 23.09 0.147 0.423 實施例6 3.48 4.12 3.19 3.60 11.49 11.50 11.46 11.48 ?? 84 22.61 22.09 22.51 0 160 〇 510 比較 實施例 2.32 2.84 2.49 3.55 15.17 14.75 13.14 14.35 28.64 27.94 26.26 27.61 0.092 0.520 參閱表1,實施例1至6與比較實施例相比較下,實施例1 至6的BSF比例和表面電阻比例顯示出卓越特性。作為參考,如 果背電極的厚度增加時’ bsf厚度增加而表面電阻降低。所以, 最好疋依據BSF比例和表面電阻比例來比較特性。尤其是,就實 施例2及3而言(即’ 4至6 Wt%的擴散溶液量),BFS比例和表 面電阻比例的特性是被改善。此外,參閱圖2和3,如果擴散溶 液量約6 Wt%或以上時,BFS比例和表面電阻比例的特性就不再16 S 201116600 (surface resistance / month electrode thickness) is measured. For the accuracy of the experiment, the electrode was prepared 3 times by using the same (four) composition. The results are shown in Table i. According to New York's 4, the thickness of BSF according to the solution content of New Zealand is shown in Fig. 3. Table 1 BSF thickness [/ / in] ~ · Back electrode surface resistance [m back electrode thickness BSF surface Ω / Q] [em] Proportional resistance 1 2 3 Average 1 ? Average 1 〇 Q Average ratio π - UUL 〇 - Implementation Example 1 3.71 30.7 3.3 3.36 12.17 11.96 11.87 12.00 25.86 24.75 25.57 25.39 0.132 0.473 Example 2 3.54 3.71 3.71 3.65 9.97 9.43 9.45 9.62 23.83 23.88 21.8 23.17 0.157 0 415 Example 3 3.94 2.78 3.71 3.48 9.91 10.32 10 44 10.22 18.9 20.7 18.9 19.50 〇 178 Π ROA Example 4 3.54 3.65 4.17 3.79 10.54 10.88 11.02 10.81 25.22 23.01 24.4 24.21 0.156 0.447 Example 5 3.25 3.52 3.42 3.39 9.64 — 9.82 9.86 9.77 23.85 22.74 22.69 23.09 0.147 0.423 Example 6 3.48 4.12 3.19 3.60 11.49 11.50 11.46 11.48 84 22.61 22.09 22.51 0 160 〇510 Comparative Example 2.32 2.84 2.49 3.55 15.17 14.75 13.14 14.35 28.64 27.94 26.26 27.61 0.092 0.520 Referring to Table 1, Examples 1 to 6 are compared with Comparative Examples, Examples 1 to 6 The BSF ratio and surface resistance ratio show excellent characteristics. For reference, if the thickness of the back electrode is increased, the thickness of bsf is increased and the surface resistance is lowered. Therefore, it is best to compare characteristics based on BSF ratio and surface resistance ratio. In particular, with respect to Examples 2 and 3 (i.e., '4 to 6 Wt% of the amount of the diffusion solution), the characteristics of the BFS ratio and the surface resistance ratio were improved. In addition, referring to Figures 2 and 3, if the amount of diffusion solution is about 6 Wt% or more, the characteristics of BFS ratio and surface resistance ratio are no longer

S 17* 201116600 * 有改善,但維持穩定。 【圖式簡單說明】 圖1係為太陽能電池之剖視圖。 圖2係為依據擴散溶液含量所顯示之BSF比例曲線圖 形。 圖3係為依據擴散溶液含量所顯示之BSF厚度曲線圖 形。 【主要元件符號說明】 10 : P型矽基板 11 : N型半導體 12 :上電極 13 :背電極 14 :抗反射層 15 : BSF 層 -18-S 17* 201116600 * Improved, but stable. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view of a solar cell. Fig. 2 is a graph showing the BSF ratio curve shown by the content of the diffusion solution. Fig. 3 is a graph showing the BSF thickness curve according to the content of the diffusion solution. [Main component symbol description] 10 : P type germanium substrate 11 : N type semiconductor 12 : upper electrode 13 : back electrode 14 : antireflection layer 15 : BSF layer -18-

Claims (1)

201116600 七、申請專利範圍: 1. 一種摻雜擴散溶液,包括: 一有機溶劑;以及 一化合物包含—111族摻雜或-V族摻雜。 2. tr專魏㈣1韻述之摻雜擴散溶液,其中該川 婦雜包含選自由蝴、紹、鎵、銦及蛇所組成之群組。 申請專利範圍第1項所述之摻雜擴散溶液,其中該V族 /雜包含選自由磷、氮、坤、録及Μ所組成之群組。 4.Γ請專利顧第1項所述之摻雜擴散溶液,其中該有機 / 谷劑包含一揮發性溶劑。 5·如申請專利第1項所述之摻雜擴散溶液,其中該摻雜 擴散溶液係使用於作為太陽能電池電極之-聚料組成物。 申π專條圍第1項所述之摻轉散溶液,其中該摻雜 擴散溶液包含有V族摻雜姻以形成太陽能電池的一射 極。 7·如申請專利範㈣i項所述之摻雜擴散溶液,其中該換雜 擴散溶液包含有ΙΠ族摻雜被用以形成太陽能電池的一 BSF (背表面場)層。 8.種用於太陽能電池電極之II料組成物,賴料組成物包 括: 金屬粉末;以及 -19- 201116600 摻雜擴散溶液包含一有機溶劑和一化合物,該化合 物包含一 Iπ族摻雜或一 V族摻雜。 9. ^請專利範圍第8項所述之_組成物,其中該摻雜擴 政、谷液的量依據該製料組成物的總量為2至a計%(重量 百分比)。 10.如申4專概圍第9賴狀料城物,其巾該換雜擴 散溶液的量依據該㈣組成物的總量為4至6 Wt%。 12.如申請專利範圍第8 雜包含選自由磷、氮 13·如申請專利範圍第8 劑包含一揮發性溶劑 項所述之漿料組成物,其中該v族摻 、砷、銻及鉍所組成之群組。 項所述之漿料組成物,其中該有機溶 14·如申請專利範圍第 載體,其中該摻雜 15·如申請專利範圍第 载體及一添加劑, 之中。 8項所述之漿料組成物,更包括一有機 擴散溶液被包含於該有機載體之中。 8項所述之漿料組成物,更包括一有機 其中該摻雜擴散溶液被包含於該添加物 種幵/成太IW成電池摻 雜區域之方法,該方法包括: 製備一摻雜擴散 夜包含一有機溶劑和一化合物於一 基板上,該化合物里女 物具有一 III族摻雜或一 V族摻 •20· 16. 201116600 雜; 以及 …、傳。亥III族摻雜或該v族摻雜至該基板中。 17·如申請專利範圍第16項所述之方法, 基板上是藉由浸潰該基板於該;=: m覆5亥摻雜擴散溶液至該基板上。 18. = :專利範圍第16項所述之方法,其中 液包含有該V族摻雜被用以形成太陽能電池的-射極 19·如申睛專利範圍第16項所述之方法’其中 液包含有該v族摻雜被用以形成太陽能電池的 表面場)層。 、月 20.如申⑺專他圍第16項所述之方法’其中於製備該換雜 擴散溶液於該基板上包含: 塗覆包含該V族摻雜之一 Ν型擴散溶液於該基板之 一第一表面; 塗覆包合戎ΙΗ族摻雜之一 ρ型擴散溶液於該基板 之一第二表面; 熱傳該III族摻雜或該V族摻雜到該基板中,因而 分別形成一射極和一 BSF層。 -21 -201116600 VII. Patent application scope: 1. A doping diffusion solution comprising: an organic solvent; and a compound comprising -111 group doping or -V group doping. 2. tr-specific Wei (4) 1 rhyme-doped diffusion solution, wherein the Chuan maternal contains a group selected from the group consisting of butterfly, sau, gallium, indium and snake. The doped diffusion solution of claim 1, wherein the group V/hetero contains a group selected from the group consisting of phosphorus, nitrogen, kun, and strontium. 4. The doped diffusion solution of claim 1, wherein the organic/troche comprises a volatile solvent. 5. The doping diffusion solution of claim 1, wherein the doping diffusion solution is used as a polymer composition as a solar cell electrode. The doping dispersion solution of claim 1, wherein the doping diffusion solution comprises a group V doping to form an emitter of the solar cell. 7. The doping diffusion solution of claim 4, wherein the hybrid diffusion solution comprises a BSF (back surface field) layer used to form a solar cell. 8. A material composition for a solar cell electrode, the material composition comprising: a metal powder; and -19-201116600 doped diffusion solution comprising an organic solvent and a compound comprising an Iπ group doping or a Group V doping. 9. The composition of claim 8, wherein the amount of the doping and the solution is from 2 to a% by weight based on the total amount of the composition. 10. If the amount of the mixed solution is 4 to 6 Wt%, the amount of the mixed dispersion solution is based on the total amount of the (4) composition. 12. The scope of claim 8 includes a slurry composition selected from the group consisting of phosphorus, nitrogen, and the like, wherein the v-type doping, arsenic, antimony, and antimony are included in the eighth agent of the patent application. The group that makes up. The slurry composition of the present invention, wherein the organic solvent is as in the scope of the patent application, wherein the doping is as described in the patent carrier and an additive. The slurry composition of item 8 further comprising an organic diffusion solution contained in the organic vehicle. The slurry composition of claim 8, further comprising a method wherein the doping diffusion solution is included in the doped region of the additive species ,/成太 IW into a battery, the method comprising: preparing a doped diffusion night containing An organic solvent and a compound are on a substrate, and the compound in the compound has a group III doping or a group V doping • 20· 16. 201116600 miscellaneous; and ..., pass. The Group III doping or the Group V doping into the substrate. 17. The method of claim 16, wherein the substrate is coated with the substrate by dipping the substrate; =: m overlaid with a diffusion solution onto the substrate. 18. The method of claim 16, wherein the liquid comprises the V-type doping used to form the solar cell - the emitter 19 is as described in claim 16 of the scope of the invention. A layer 5 layer containing the v-doping is used to form a solar cell. The method of claim 16, wherein the method for preparing the mixed diffusion solution comprises: coating a diffusion solution containing the V group doping on the substrate; a first surface; coating a ruthenium-doped one of the p-type diffusion solution on a second surface of the substrate; thermally transferring the group III doping or the group V doping into the substrate, thereby forming respectively An emitter and a BSF layer. -twenty one -
TW099129389A 2009-09-02 2010-09-01 Dopant diffusion solution, paste composition for electrode of solar cell using the same and method of forming doping area of solar cell TWI525162B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090082712A KR20110024639A (en) 2009-09-02 2009-09-02 Dopant diffusion solution, and use thereof

Publications (2)

Publication Number Publication Date
TW201116600A true TW201116600A (en) 2011-05-16
TWI525162B TWI525162B (en) 2016-03-11

Family

ID=43649788

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099129389A TWI525162B (en) 2009-09-02 2010-09-01 Dopant diffusion solution, paste composition for electrode of solar cell using the same and method of forming doping area of solar cell

Country Status (3)

Country Link
KR (1) KR20110024639A (en)
TW (1) TWI525162B (en)
WO (1) WO2011028034A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104137227A (en) * 2012-02-23 2014-11-05 日立化成株式会社 Composition for forming n-type diffusion layer, method for producing semiconductor substrate having n-type diffusion layer, and method for producing solar cell element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8853438B2 (en) * 2012-11-05 2014-10-07 Dynaloy, Llc Formulations of solutions and processes for forming a substrate including an arsenic dopant
WO2016136474A1 (en) * 2015-02-25 2016-09-01 東レ株式会社 P-type impurity diffusion composition, method for manufacturing semiconductor element using said composition, solar cell, and method for manufacturing said solar cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270248A (en) * 1992-08-07 1993-12-14 Mobil Solar Energy Corporation Method for forming diffusion junctions in solar cell substrates
US6632730B1 (en) * 1999-11-23 2003-10-14 Ebara Solar, Inc. Method for self-doping contacts to a semiconductor
US8066805B2 (en) * 2007-05-30 2011-11-29 Kovio, Inc. Metal inks, methods of making the same, and methods for printing and/or forming metal films

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104137227A (en) * 2012-02-23 2014-11-05 日立化成株式会社 Composition for forming n-type diffusion layer, method for producing semiconductor substrate having n-type diffusion layer, and method for producing solar cell element
CN104137227B (en) * 2012-02-23 2018-05-18 日立化成株式会社 N-type diffusion layer forms with composition, has the manufacturing method of semiconductor substrate of n-type diffusion layer and the manufacturing method of solar cell device

Also Published As

Publication number Publication date
KR20110024639A (en) 2011-03-09
WO2011028034A2 (en) 2011-03-10
TWI525162B (en) 2016-03-11
WO2011028034A3 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
TWI353062B (en) Aluminum thick film composition(s), electrode(s),
CN105679400B (en) A kind of electrocondution slurry and preparation method for solar cell
TWI404780B (en) Silver paste composition and solar cell using the same
TWI461496B (en) Solar cell and paste composition for rear electrode of the same
TW201007771A (en) Aluminum pastes and use thereof in the production of silicon solar cells
TW201246577A (en) Paste composition for electrode of solar cell and solar cell including the same
KR20100029063A (en) Paste and manufacturing method of solar cell using the same
KR101206250B1 (en) Paste for preparing mask patterns and Manufacturing method of silicon solar cell using screen-printing of the same
JP2012532474A (en) Using silicon nanoparticle fluids to control a series of dopant diffusion profiles in situ
US20120152343A1 (en) Aluminum paste compositions comprising siloxanes and their use in manufacturing solar cells
TW201123464A (en) Solar cell and paste composition for electrode of solar cell
TW201015589A (en) Aluminum pastes and use thereof in the production of silicon solar cells
WO2015048197A1 (en) Solar cell contact structures formed from metal paste
KR20130051422A (en) Thick film conductive composition and use thereof
TW201110377A (en) Process of forming a grid electrode on the front-side of a silicon wafer
TW201116600A (en) Dopant diffusion solution, paste composition for electrode of solar cell using the same and method of forming doping area of solar cell
TWI401298B (en) Solar cell and paste composition for the same
KR20130078667A (en) Inorganic additive for front electrode of silicon solar cell and silicon solar cell prepared using same
US20130160835A1 (en) Back-side electrode of p-type solar cell and method for forming the same
RU2303831C2 (en) Aluminum active material for silicon solar cells
WO2011163534A1 (en) Process for the formation of a silver back anode of a silicon solar cell
US9640298B2 (en) Silver paste composition for forming an electrode, and silicon solar cell using same
TWI419177B (en) Paste composition and electrode of solar cell using the same
KR101053913B1 (en) Conductive paste composition and manufacturing method of electrode for solar cell using same
US20110212564A1 (en) Method for producing photovoltaic cell

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees