KR20110024639A - Dopant diffusion solution, and use thereof - Google Patents

Dopant diffusion solution, and use thereof Download PDF

Info

Publication number
KR20110024639A
KR20110024639A KR1020090082712A KR20090082712A KR20110024639A KR 20110024639 A KR20110024639 A KR 20110024639A KR 1020090082712 A KR1020090082712 A KR 1020090082712A KR 20090082712 A KR20090082712 A KR 20090082712A KR 20110024639 A KR20110024639 A KR 20110024639A
Authority
KR
South Korea
Prior art keywords
dopant
diffusion solution
solution
diffusion
dopant diffusion
Prior art date
Application number
KR1020090082712A
Other languages
Korean (ko)
Inventor
박진경
이인재
김순길
엄준필
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020090082712A priority Critical patent/KR20110024639A/en
Priority to TW099129389A priority patent/TWI525162B/en
Priority to PCT/KR2010/005957 priority patent/WO2011028034A2/en
Publication of KR20110024639A publication Critical patent/KR20110024639A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: A dopant diffusion solution is provided to improve diffusion uniformity and productivity compared with the case of using diffusion gas when used in an emitter layer diffusion process and to enhance photonic efficiency through the improvement of N++ layer or P+ layer when used as an additive in the paste for forming an electrode. CONSTITUTION: A dopant diffusion solution comprises a compound including dopants and organic solvent. The dopant is one or more selected from Group 5 elements including phosphorous(P) or one or more selected from Group 3 elements including boron(B). The organic solvent is a low-boiling-point volatile solvent.

Description

도펀트 확산용액, 및 이의 용도{DOPANT DIFFUSION SOLUTION, AND USE THEREOF}DOPANT DIFFUSION SOLUTION, AND USE THEREOF}

본 발명은 반도체 기재 상에 도펀트를 확산시킬 수 있는 도펀트 확산용액, 및 이의 활용 용도에 관한 것이다.The present invention relates to a dopant diffusion solution capable of diffusing a dopant on a semiconductor substrate, and use thereof.

태양전지 산업 생산량의 80% 이상을 차지하고 있는 결정질 실리콘 태양전지의 대체적인 제조과정은, ① 웨이퍼 장착/웨이퍼 세정,② 표면조직화, ③ POCl3 확산(n-형), ⑤ 산화막 PSG 제거, ⑥ 반사방지막 PECVD SiNx 형성, ⑦ 전면전극형성, ⑧ 후면전극형성의 단계를 포함한다.Alternative manufacturing processes for crystalline silicon solar cells, which account for more than 80% of the solar cell industry's production, include: ① wafer mounting / wafer cleaning, ② surface organization, ③ POCl 3 diffusion (n-type), ⑤ oxide film PSG removal, ⑥ reflection Protective film PECVD SiN x formation, ⑦ front electrode formation, ⑧ back electrode formation.

이 중, ③ POCl3 확산단계는, 통상적으로, 확산로 내에 실리콘 웨이퍼를 안치시킨 후, 오산화인, 또는 염화산화인의 확산가스를 주입함과 동시에, 850 ~ 950℃로 열처리하는 방법을 사용한다. Among these, ③ POCl 3 diffusion step, after placing the silicon wafer in the diffusion furnace, injecting a diffusion gas of phosphorus pentoxide or phosphorus chloride oxide, and at the same time, a method of heat treatment at 850 ~ 950 ℃ .

이와 같은 방법은, 에미터층 형성방법에 있어서 매우 통상적인 것으로, 이에 대한 선행기술의 예시로 한국 특허 공개 10-2007-0071060을 들 수 있다. 상기 한국 특허 공개 10-2007-0071060는 반도체 기판의 제 1 면에 에미터층을 형성하는 단계; 상기 에미터층 위에 절연막을 형성하는 단계; 상기 절연막 위에 상기 에미터층과 동일한 전도형의 도펀트를 함유하는 화합물을 임의의 패턴으로 형성하는 단계; 상기 화합물이 형성된 부분의 절연막을 제거하면서 상기 도펀트를 확산시키는 고농도 에미터부를 형성하는 단계; 상기 화합물을 제거하는 단계; 및 상기 고농도 에미터부에 전기적으로 연결되도록 제 1 전극을 형성하는 단계를 포함하는 태양 전지의 제조 방법에 관한 것을 개시하고 있다.Such a method is very common in the method of forming an emitter layer, and Korean Patent Laid-Open Publication No. 10-2007-0071060 can be cited as an example of the prior art. Korean Patent Publication 10-2007-0071060 discloses forming an emitter layer on a first surface of a semiconductor substrate; Forming an insulating film on the emitter layer; Forming a compound containing a dopant of the same conductivity type as the emitter layer in an arbitrary pattern on the insulating film; Forming a high concentration emitter portion for diffusing the dopant while removing the insulating film on the portion where the compound is formed; Removing the compound; And forming a first electrode to be electrically connected to the high concentration emitter unit.

그런데, 상기한 종래 방법의 문제점은, 확산로 내에 확산가스의 농도가 일정하지 않다는 것이다. 즉, 확산로 내의 중앙부와 외곽부 사이에는 농도 구배가 발생하고, 중앙부에 위치한 웨이퍼와 외곽부에 위치한 웨이퍼가 균일하게 에미터층을 형성하지 못하는 것이다. However, a problem with the above-described conventional method is that the concentration of the diffusion gas in the diffusion furnace is not constant. That is, a concentration gradient occurs between the center portion and the outer portion in the diffusion path, and the wafer positioned at the center portion and the wafer positioned at the outer portion do not form an emitter layer uniformly.

이러한 종래 방법의 문제점을 해결하기 위해서, 더미 웨이퍼(dummy wafer)를 외곽부에 투입하기도 하나, 이렇게 되면 더미 웨이퍼가 차지하는 만큼 생산성이 저하되는 문제점이 있다. 또한, 염화산화인 등의 유독한 확산가스로 인해 작업자가 인에 중독될 수 있는 문제점도 있다.In order to solve the problem of the conventional method, a dummy wafer may be put in the outer portion, but this causes a problem that productivity decreases as much as the dummy wafer occupies. In addition, there is a problem that the worker can be addicted to phosphorus due to toxic diffusion gas such as phosphorus chloride.

이와 같은 확산가스를 사용한 에미터층 형성의 문제점을 해결하기 위해 확산용액을 사용하는 방법이 개발되었다. In order to solve the problem of the emitter layer formation using the diffusion gas, a method using a diffusion solution has been developed.

이에 대한 선행기술의 예시로 한국 특허 공개 10-2007-0099840 을 들 수 있다. 상기 특허 공개 문헌은 반도체 기판의 일면에 다공성막을 형성하는 단계; 상기 다공성막에 도펀트를 함유하는 화합물을 분사하는 단계; 및 상기 도펀트를 확산시켜 상기 반도체 기판의 일면에 에미터층을 형성하는 단계를 포함하는 태양 전지의 제조 방법에 관한 것을 개시하고 있다.An example of this prior art is Korean Patent Publication No. 10-2007-0099840. The patent publication includes forming a porous film on one surface of a semiconductor substrate; Spraying a compound containing a dopant on the porous membrane; And diffusing the dopant to form an emitter layer on one surface of the semiconductor substrate.

인 함유 화합물은 친수성으로서 소수성인 반도체 기판 위에 도펀트 함유 화합물이 잘 도포되기 어렵다. 따라서, 다공성막을 먼저 형성하고 이것에 스프레이법으로 인함유 화합물을 도포하여 인이 실리콘 기판에 잘 확산되도록 하는 것이다.The phosphorus-containing compound is hydrophilic and difficult to apply the dopant-containing compound well onto a hydrophobic semiconductor substrate. Therefore, a porous film is first formed and a phosphorus-containing compound is applied to the phosphor so that phosphorus diffuses well on the silicon substrate.

그런데, 이와 같은 한국 특허 공개 10-2007-0099840 의 방법도 문제점이 없는 것은 아니다.However, the method of Korean Patent Publication No. 10-2007-0099840 is not without problems.

우선, 다공성막 형성을 위한 추가적인 공정이 발생하고, 다공성 막으로 인해 태양전지의 경도가 저하될 수 있는 바, 인쇄 및 소성공정에서 파손율이 증가하게 된다. 또한, 다공성 막 형성시 기공이 규칙적이지 않고, 랜덤하게 발생하여 에미터 저항의 균일성 관리에 어려움이 생기는 문제점도 있다.First, an additional process for forming a porous membrane occurs, and the hardness of the solar cell may be reduced due to the porous membrane, thereby increasing the breakage rate in the printing and firing process. In addition, when the porous membrane is formed, the pores are not regular, and randomly occur, which causes difficulty in managing uniformity of emitter resistance.

이에, 본 발명은, 상기한 종래기술들의 문제점을 해결하기 위해, 도펀트를 포함하는 화합물을 유기용매에 녹인 도펀트 확산용액을 제공하고자 한다.Accordingly, the present invention is to provide a dopant diffusion solution in which a compound containing a dopant is dissolved in an organic solvent in order to solve the problems of the prior art.

본 발명은 상기한 종래기술의 문제점을 해결하기 위해 안출된 것으로서,The present invention has been made to solve the above problems of the prior art,

도펀트를 포함하는 화합물, 및 유기용매를 포함하는 도펀트 확산용액에 있어서, 상기 도펀트는 인(P)을 포함하는 제 5 족 원소에서 선택되어지는 하나 이상의 것, 또는 붕소(B)를 포함하는 제 3 족 원소에서 선택되어지는 하나 이상의 것임을 특징으로 하는 도펀트 확산용액을 제공한다.A compound containing a dopant, and a dopant diffusion solution containing an organic solvent, wherein the dopant is at least one selected from a Group 5 element containing phosphorus (P), or a third containing boron (B) It provides a dopant diffusion solution, characterized in that at least one selected from the group elements.

또한, 본 발명에 있어서, 상기 유기용매는 저비점 휘발성 용매인 것임을 특징으로 하는 도펀트 확산용액을 제공한다.In addition, the present invention provides a dopant diffusion solution, characterized in that the organic solvent is a low boiling point volatile solvent.

또한, 본 발명에 있어서, 상기 도펀트 확산용액의 용도는, 태양전지 전극 제조에 사용되는 페이스트 조성물의 첨가제로서 사용되는 것임을 특징으로 하는 도펀트 확산용액을 제공한다.In addition, the present invention provides a dopant diffusion solution, wherein the dopant diffusion solution is used as an additive of a paste composition used for manufacturing a solar cell electrode.

또한, 본 발명에 있어서, 상기 확산용액은 상기 페이스트 조성물 대비 2 ~ 12 중량% 포함되어 사용되는 것임을 특징으로 하는 도펀트 확산용액을 제공한다.In addition, in the present invention, the diffusion solution provides a dopant diffusion solution, characterized in that used to contain 2 to 12% by weight relative to the paste composition.

또한, 본 발명에 있어서, 상기 확산용액은 페이스트 조성물 대비 4 ~ 6 중량% 포함되어 사용되는 것임을 특징으로 하는 도펀트 확산용액을 제공한다.In addition, in the present invention, the diffusion solution provides a dopant diffusion solution, characterized in that used to contain 4 to 6% by weight relative to the paste composition.

또한, 본 발명에 있어서, 상기 도펀트 확산용액의 용도는, 태양전지 제조공 정 중 에미터 형성공정의 도핑용액으로서 사용되는 것임을 특징으로 하는 도펀트 확산용액을 제공한다.In addition, in the present invention, the use of the dopant diffusion solution provides a dopant diffusion solution, characterized in that it is used as the doping solution of the emitter forming process in the solar cell manufacturing process.

본 발명의 도펀트 확산용액은, 에미터층 확산 공정에 사용되는 경우, 확산가스를 사용하는 경우에 비해 확산 균일도 및 생산성 향상을 기할 수 있고, 전극 형성 페이스트에 첨가제로서 사용되는 경우, N++층 또는 P+층 향상으로 인해 광효율을 향상시키는 효과가 있다.When the dopant diffusion solution of the present invention is used in the emitter layer diffusion process, the diffusion uniformity and productivity can be improved as compared with the case of using the diffusion gas, and when used as an additive in the electrode forming paste, the N ++ layer or the P + layer. The improvement has an effect of improving the light efficiency.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은, 도펀트를 포함하는 화합물, 및 유기용매를 포함하는 도펀트 확산용액에 관한 것이다.The present invention relates to a compound containing a dopant, and a dopant diffusion solution containing an organic solvent.

상기 도펀트 확산용액은 N형 확산용액과, P형 확산용액을 포함하는 것이다. 상기 N형 확산용액은 인(P)을 포함하는 제 5 족 원소에서 선택되어지는 하나 이상의 것을 유기용매에 포함한다. 즉, 상기 N형 확산용액은, Phosphorus, Nitrogen, Arsenic, Antimony,Bismuth 등의 제 5 족 원소의 하나 또는 이들의 2 이상의 조합을 알코올, 아세톤 등의 유기용매에 용해시켜 제조될 수 있다. 특히, N형 확산용액의 경우 상기 용매로 Oleyl amine, triethanol amine, trioctyl amine 등의 아민계 용매를 예로 들 수 있다.The dopant diffusion solution includes an N-type diffusion solution and a P-type diffusion solution. The N-type diffusion solution contains at least one selected from the group 5 element containing phosphorus (P) in the organic solvent. That is, the N-type diffusion solution may be prepared by dissolving one or two or more combinations of Group 5 elements such as Phosphorus, Nitrogen, Arsenic, Antimony, and Bismuth in an organic solvent such as alcohol and acetone. In particular, in the case of the N-type diffusion solution, an amine solvent such as Oleyl amine, triethanol amine, trioctyl amine may be mentioned as the solvent.

또한, P형 확산용액은 붕소(B)를 포함하는 제 3 족 원소에서 선택되어지는 하나 이상의 것을 유기용매에 포함한다. 즉, P형 확산용액은, Aluminum, Gallium, Indium, Thallium 등의 제 3 족 원소의 하나 또는 이들의 2 이상의 조합을 알코올, 아세톤 등의 유기용매에 용해시켜 제조될 수 있다.In addition, the P-type diffusion solution contains at least one selected from the group 3 element containing boron (B) in the organic solvent. That is, the P-type diffusion solution may be prepared by dissolving one or two or more combinations of Group 3 elements such as Aluminum, Gallium, Indium, and Thallium in an organic solvent such as alcohol and acetone.

상기 유기용매는 저비점 휘발성 용매인 것임이 바람직하다. 용매는 추후 공정에서 휘발되어 도펀트만을 대상물에 균일하게 잔류시켜야 하는 것이어야 하기 때문이다. 이러한 저비점 용매의 예로, 알코올, 아세톤 등을 예로 들 수 있다.It is preferable that the organic solvent is a low boiling point volatile solvent. This is because the solvent must be volatilized in a later process so that only the dopant remains uniformly in the object. As an example of such a low boiling point solvent, alcohol, acetone, etc. are mentioned.

본 발명에 있어서, 상기 도펀트 확산용액의 용도는, 태양전지 전극 제조에 사용되는 페이스트 조성물의 첨가제로서 사용되는 것; 또는 태양전지 제조공정 중 에미터 형성공정의 도핑용액으로서 사용되는 것일 수 있다.In the present invention, the use of the dopant diffusion solution is used as an additive of the paste composition used in the production of solar cell electrodes; Or it may be used as a doping solution of the emitter forming process of the solar cell manufacturing process.

특히, 상기 도펀트 확산용액의 용도가 태양전지 전극 제조에 사용되는 페이스트 조성물의 첨가제로서 사용되는 것일 경우에는, 상기 확산용액은 상기 페이스트 조성물 대비 2 ~ 12 중량% 포함되어 사용되는 것이 바람직하고, 4 ~ 6 중량% 포함되어 사용되는 것이 더 바람직하다(이에 대해서는 실시예를 참조).In particular, when the use of the dopant diffusion solution is used as an additive of the paste composition used to manufacture the solar cell electrode, the diffusion solution is preferably used containing 2 to 12% by weight relative to the paste composition, 4 ~ It is more preferable to include 6% by weight (see Examples).

이하, 본 발명에 대하여 실시예를 들어 더 상세히 설명한다. 본 명세서상에 기재된 실시예는 발명의 상세한 설명을 위한 것일뿐 권리범위를 제한하기 위한 것이 아님을 분명히 한다.Hereinafter, an Example is given and this invention is demonstrated in detail. It is apparent that the embodiments described herein are only for the detailed description of the invention and are not intended to limit the scope of the rights.

실시예 1Example 1

고형분 함량 73 wt%의 페이스트 조성물(알루미늄 파우더 70wt%, 글라스 프릿(glass frit) 3wt%, 유기비히클 27wt%) 에 P형 확산용액을 페이스트 조성물 전체 대비 2 중량% 첨가하였다. 상기 P형 확산용액은 붕산(boric acid)를 아세톤(acetone)에 녹 인 것으로서, 붕산 30 wt%와 아세톤 70 wt% 포함한 것이다.To the paste composition having a solid content of 73 wt% (70 wt% of aluminum powder, 3 wt% of glass frit, and 27 wt% of organic vehicle), a 2 wt% P-type diffusion solution was added to the paste composition. The P-type diffusion solution is a solution of boric acid (boric acid) dissolved in acetone (acetone), containing 30 wt% of boric acid and 70 wt% of acetone.

실시예 2Example 2

고형분 함량 73%의 페이스트 조성물에 P형 확산용액을 페이스트 조성물 전체 대비 4 중량% 첨가하였다. 상기 P형 확산용액은 상기 실시예 1과 조성이 같은 것이다.4% by weight of the P-type diffusion solution was added to the paste composition having a solid content of 73%. The P-type diffusion solution is the same composition as in Example 1.

실시예 3Example 3

고형분 함량 73%의 페이스트 조성물에 P형 확산용액을 페이스트 조성물 전체 대비 6 중량% 첨가하였다. 상기 P형 확산용액은 상기 실시예 1과 조성이 같은 것이다.The P-type diffusion solution was added to the paste composition having a solid content of 73% by weight of 6% by weight relative to the whole paste composition. The P-type diffusion solution is the same composition as in Example 1.

실시예 4Example 4

고형분 함량 73%의 페이스트 조성물에 P형 확산용액을 페이스트 조성물 전체 대비 8 중량% 첨가하였다. 상기 P형 확산용액은 상기 실시예 1과 조성이 같은 것이다.The P-type diffusion solution was added to the paste composition having a solid content of 73% by weight of 8% by weight relative to the whole paste composition. The P-type diffusion solution is the same composition as in Example 1.

실시예 5Example 5

고형분 함량 73%의 페이스트 조성물에 P형 확산용액을 페이스트 조성물 전체 대비 10 중량% 첨가하였다. 상기 P형 확산용액은 상기 실시예 1과 조성이 같은 것이다.The P-type diffusion solution was added to the paste composition having a solid content of 73% by 10% by weight relative to the whole paste composition. The P-type diffusion solution is the same composition as in Example 1.

실시예 6Example 6

고형분 함량 73%의 페이스트 조성물에 P형 확산용액을 페이스트 조성물 전체 대비 12 중량% 첨가하였다. 상기 P형 확산용액은 상기 실시예 1과 조성이 같은 것이다.The P-type diffusion solution was added to the paste composition having a solid content of 73% by weight of 12% by weight relative to the whole paste composition. The P-type diffusion solution is the same composition as in Example 1.

비교예Comparative example

고형분 함량 73%의 페이스트 조성물에 고체 형태의 B2O3를 첨가하였다. P형 확산용액은 첨가하지 아니하였다.B 2 O 3 in solid form was added to a paste composition of 73% solids. No P-type diffusion solution was added.

[ 전극 형성 및 전극 특성 테스트 ][Electrode Formation and Electrode Property Test]

상기 실시예 1 내지 실시예 6, 및 비교예의 페이스트 조성물을 실리콘 기판상에 도포·건조하여 전극을 형성하였다. 형성된 전극의 물성을 측정하였고, 결과는 하기 표 1과 같았다. 실험의 정밀도를 위해, 동일한 페이스트 조성물에 대해 전극 형성을 총 3회 실시하였다.The paste compositions of Examples 1 to 6 and Comparative Examples were applied and dried on a silicon substrate to form electrodes. The physical properties of the formed electrode were measured, and the results are shown in Table 1 below. For the precision of the experiment, electrode formation was carried out a total of three times for the same paste composition.

Figure 112009054193195-PAT00001
Figure 112009054193195-PAT00001

상기 표 1에 나타난 바와 같이, 확산용액의 함량은 4 ~ 6 중량%에서 최적을 보인다. 특히, 도 1에 나타나듯이, 6 중량% 이상에서는 특성이 수렴하는 형상을 보인다.As shown in Table 1, the content of the diffusion solution is optimal at 4 ~ 6% by weight. In particular, as shown in Fig. 1, at 6 wt% or more, the characteristics converge.

도 1은 실시예 1 내지 실시예 6, 및 비교예의 확산용액 함량별 BSF 두께, 및 BSF Ratio 를 나타낸 그래프.1 is a graph showing the BSF thickness, and BSF Ratio for each diffusion solution content of Examples 1 to 6, and Comparative Example.

Claims (6)

도펀트를 포함하는 화합물, 및 유기용매를 포함하는 도펀트 확산용액에 있어서, A compound containing a dopant, and a dopant diffusion solution containing an organic solvent, 상기 도펀트는 인(P)을 포함하는 제 5 족 원소에서 선택되어지는 하나 이상의 것, 또는 붕소(B)를 포함하는 제 3 족 원소에서 선택되어지는 하나 이상의 것임을 특징으로 하는 도펀트 확산용액.The dopant is a dopant diffusion solution, characterized in that at least one selected from the group 5 element containing phosphorus (P), or at least one selected from the group 3 element containing boron (B). 제 1 항에 있어서, 상기 유기용매는 저비점 휘발성 용매인 것임을 특징으로 하는 도펀트 확산용액.The dopant diffusion solution of claim 1, wherein the organic solvent is a low boiling volatile solvent. 제 1 항에 있어서, 상기 도펀트 확산용액의 용도는, 태양전지 전극 제조에 사용되는 페이스트 조성물의 첨가제로서 사용되는 것임을 특징으로 하는 도펀트 확산용액.The dopant diffusion solution according to claim 1, wherein the dopant diffusion solution is used as an additive of a paste composition used for manufacturing a solar cell electrode. 제 3 항에 있어서, 상기 확산용액은 상기 페이스트 조성물 대비 2 ~ 12 중량% 포함되어 사용되는 것임을 특징으로 하는 도펀트 확산용액.The dopant diffusion solution of claim 3, wherein the diffusion solution is used in an amount of 2 to 12 wt% based on the paste composition. 제 4 항에 있어서, 상기 확산용액은 페이스트 조성물 대비 4 ~ 6 중량% 포함되어 사용되는 것임을 특징으로 하는 도펀트 확산용액.The dopant diffusion solution according to claim 4, wherein the diffusion solution is used in an amount of 4 to 6 wt% based on the paste composition. 제 1 항에 있어서, 상기 도펀트 확산용액의 용도는, 태양전지 제조공정 중 에미터 형성공정의 도핑용액으로서 사용되는 것임을 특징으로 하는 도펀트 확산용액.The dopant diffusion solution according to claim 1, wherein the dopant diffusion solution is used as a doping solution in an emitter formation step in a solar cell manufacturing process.
KR1020090082712A 2009-09-02 2009-09-02 Dopant diffusion solution, and use thereof KR20110024639A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020090082712A KR20110024639A (en) 2009-09-02 2009-09-02 Dopant diffusion solution, and use thereof
TW099129389A TWI525162B (en) 2009-09-02 2010-09-01 Dopant diffusion solution, paste composition for electrode of solar cell using the same and method of forming doping area of solar cell
PCT/KR2010/005957 WO2011028034A2 (en) 2009-09-02 2010-09-02 Dopant diffusion solution, paste composition for electrode, and method of forming doping area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090082712A KR20110024639A (en) 2009-09-02 2009-09-02 Dopant diffusion solution, and use thereof

Publications (1)

Publication Number Publication Date
KR20110024639A true KR20110024639A (en) 2011-03-09

Family

ID=43649788

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090082712A KR20110024639A (en) 2009-09-02 2009-09-02 Dopant diffusion solution, and use thereof

Country Status (3)

Country Link
KR (1) KR20110024639A (en)
TW (1) TWI525162B (en)
WO (1) WO2011028034A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2819149A4 (en) * 2012-02-23 2015-11-25 Hitachi Chemical Co Ltd Composition for forming n-type diffusion layer, method for producing semiconductor substrate having n-type diffusion layer, and method for producing solar cell element
US8853438B2 (en) * 2012-11-05 2014-10-07 Dynaloy, Llc Formulations of solutions and processes for forming a substrate including an arsenic dopant
MY179365A (en) * 2015-02-25 2020-11-05 Toray Industries P-type impurity-diffusing composition, method for manufacturing semiconductor device using said composition, solar cell, and method for manufacturing said solar cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270248A (en) * 1992-08-07 1993-12-14 Mobil Solar Energy Corporation Method for forming diffusion junctions in solar cell substrates
US6632730B1 (en) * 1999-11-23 2003-10-14 Ebara Solar, Inc. Method for self-doping contacts to a semiconductor
WO2008151094A1 (en) * 2007-05-30 2008-12-11 Kovio, Inc. Metal inks, methods of making the same, and methods for printing and/or forming metal films

Also Published As

Publication number Publication date
WO2011028034A3 (en) 2011-06-30
TWI525162B (en) 2016-03-11
TW201116600A (en) 2011-05-16
WO2011028034A2 (en) 2011-03-10

Similar Documents

Publication Publication Date Title
US9181615B2 (en) Coating fluid for boron diffusion
US20140065764A1 (en) Method for manufacturing a photovoltaic cell with a locally diffused rear side
US9048374B1 (en) Method for manufacturing an interdigitated back contact solar cell
JP2012532474A (en) Using silicon nanoparticle fluids to control a series of dopant diffusion profiles in situ
WO2012151422A1 (en) Ceramic boron-containing doping paste and methods therefor
KR20130051422A (en) Thick film conductive composition and use thereof
KR101484833B1 (en) n-TYPE DIFFUSION LAYER-FORMING COMPOSITION, n-TYPE DIFFUSION LAYER PRODUCTION METHOD AND SOLAR CELL COMPONENT PRODUCTION METHOD
KR20110024639A (en) Dopant diffusion solution, and use thereof
JP5830143B1 (en) Method for manufacturing solar battery cell
KR101541660B1 (en) Composition that forms n-type diffusion layer, n-type diffusion layer manufacturing method and solar cell element manufacturing method
US9196486B2 (en) Inorganic phosphate containing doping compositions
KR20190049685A (en) Polysiloxanes, materials for semiconductors, semiconductors and solar cell manufacturing methods
KR101194064B1 (en) Paste composition for etching and doping
KR20110024638A (en) Paste composition for manufacturing solar-cell electrode comprising phosphoric dispersant
US20150083209A1 (en) Coatable diffusing agent composition, method for producing coatable diffusing agent composition, solar cell, and method for manufacturing solar cell
KR20130066613A (en) N-type diffusion layer forming composition, method of producing n-type diffusion layer, and method of producing solar cell element
JP2017069316A (en) Paste composition
TWI681566B (en) Solar cell and its manufacturing method
US9306088B1 (en) Method for manufacturing back contact solar cells
JP6114170B2 (en) Manufacturing method of solar cell
WO2023190084A1 (en) Conductive aluminum paste composition for topcon-type solar cell electrode and topcon-type solar cell layered with reverse surface electrode being fired body of composition
US20200185552A1 (en) Solar cell and solar cell module

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application