TW201116355A - Method and apparatus for compensating for off-axis focal spot distortion - Google Patents

Method and apparatus for compensating for off-axis focal spot distortion Download PDF

Info

Publication number
TW201116355A
TW201116355A TW98138537A TW98138537A TW201116355A TW 201116355 A TW201116355 A TW 201116355A TW 98138537 A TW98138537 A TW 98138537A TW 98138537 A TW98138537 A TW 98138537A TW 201116355 A TW201116355 A TW 201116355A
Authority
TW
Taiwan
Prior art keywords
laser
power
axis
substrate
point
Prior art date
Application number
TW98138537A
Other languages
Chinese (zh)
Other versions
TWI487588B (en
Inventor
Philip Thomas Rumsby
Original Assignee
M Solv Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M Solv Ltd filed Critical M Solv Ltd
Priority to TW098138537A priority Critical patent/TWI487588B/en
Publication of TW201116355A publication Critical patent/TW201116355A/en
Application granted granted Critical
Publication of TWI487588B publication Critical patent/TWI487588B/en

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

A method and apparatus is described that allows accurate control of the width of fine line structures ablated by lasers in thin films on substrates when using scanner and focussing lens systems. The method provides dynamic compensation for optical distortions introduced by the scan lens at off axis points by increasing the laser power or energy in the beam in order to overcome the reduction in power or energy density.

Description

201116355 六、發明說明: 【發明所屬之技術領域】201116355 VI. Description of the invention: [Technical field to which the invention pertains]

本發明係有關於一種用於補償離軸(off-axis)焦點 (focal spot)畸變的方法和設備,該畸變係在使用掃描器及透 鏡藉由直接寫入燒蝕(direct write ablation)之方式在一基板 中形成細線條結構時產生。特別是關於在該透鏡之掃描區 域上焦點#差之修正以控帝卜被燒餘線條圖樣之寬度。本 發明特別適用於在玻璃、聚合物、金屬、或其他平面基板 上之材料的薄膜或層之高解析度、細線條圖案化。 【先前技術】 藉由利用射束掃描器以及聚焦透鏡之雷射燒蝕以對平 面基板進行刻記或圖案化之技術極其普遍,且許多不同之 配置可資運用以執行此動作。 所使用之雷射涵蓋了波長從位於193奈米(nm)之 DUV(deeP uitra vi〇let;深紫外線)到1〇 6微米㈧⑷之 FIR(far infra_red;遠紅外線)的幾乎所有普遍可取得之雷 射,其脈衝長度從飛秒(femto-sec〇nd;千萬億分之一秒)到 連續波(CW)運作之範圍中’且平均功率的範圍介於幾分之 一瓦(Watt)到數百瓦的等級。 雷射光束掃描器單元通常係以由冑流計(galvan〇崎〇 或其他馬達所驅動之雙軸式振鏡(dual axis 〇seillating mirror)為基礎’其條件係必須能在一二維區域上進行刻記 或圖案化°只需要在單—軸上掃描之情況通常係使用旋轉 式多面鏡(rotating polyg0nai mirror)。 201116355 其利用各種不同之透鏡以將射束聚焦於基板表面之 上。透鏡之種類包括普通的單件式透鏡到複雜的多構件透 鏡。該等透鏡可以放置於掃描器單元之前或之後。就放置 於掃描器單元之後的情形而言,其通常使用一遠心式 (telecentric)透鏡。 所有這些掃描光學系統之一共同特徵在於:在一平面 基板表面上離開掃描區域中心之離轴點處產生的焦點品 質,相對於在掃描區域中心之軸上產生者,就最小尺寸和 最佳形狀而言,經常是較差的。此等離軸焦點畸變效應係 由於雷射光束以某個角度通過掃描透鏡構件時所導致的像 差。此畸變效應在透鏡掃描區域之邊緣更形嚴重。 一主要之掃描透鏡像差問題係像域彎曲(field curvature)。此種情況下,相對於軸上之點,在離軸點可獲 得的最小焦點出現於距透鏡不同之距離處。此意味形成於 平面基板離軸點之焦點與形成於軸上者具有不同直徑之現 象導致掃描區域上功率和能量密度之變異。這種像差可以 藉由對掃描器單元以一種動態控制可變伸縮鏡組(telesc〇pe) 之形式加入一額外之軸而輕易地加以修正。此單元改變射 束之準直度(collimation)並使得進入透鏡之射束發散或收 斂而讓焦點距透鏡之距離得以被控制。藉由此種方法,其 可以使得最佳射束焦點被配置成在遠及其邊緣上所有點之 掃描區域内精確地與一平面基板之表面交疊。此種像域平 化技術係眾所習知的,且可以動態修正像域彎曲之適當設 備亦是不難取得。 201116355 • …。’尚有其他嚴重之離軸透鏡像差問題無法被輕易 隹點形狀題係當射束自像域中央移動至邊緣時造成 二象:差。其最簡單之形式中,此等像差相對 、 央而5在像域邊緣導致高斯分佈焦點直徑之增 加。在其較為常見之形式中,此等像差由於形成-tt星^ Ή &成離轴焦點形狀之畸變。功率或能量密度分佈可 能嚴重地背離高斯式分佈(―此⑽此 〇例差之主要影響在於其使得雷射光束功率或脈衝能量 刀散於—較大之區域,因而相較於轴上之焦點而言降低了 •離軸焦點之峰值功率或峰值脈衝能量密度。 < -材料之雷射燒蝕處理在雷射功率或能量密度上一般而 言均具有-明確定義之間值,因此在材料之薄膜或層中燒 姓之任何線條結構之寬度均取決於功率或能量密度位準等 ;s、燒冑值時之焦點直。故而導致雷射功率或能量分 散於-較大區域或是偏離高斯分佈而在分佈圖形之兩翼具 ❹《I、A i量或功率位準之任何透鏡像差均將造成焦點上之 力率或I量密度降低,並可能致使燒姓閾值所設定之 焦點直佚之大小改變以及燒蝕線條結構寬度上相對之變 取決於相較於峰值功率或能量密度之燒蝕閾值之等 ::,此種線條寬度之變化可以是增加或減少。在最壞之情 况下’其燒敍間功率或能量密度等級接近峰值數值之水 2,且就從最大到最小功率或能量密度所允許之變異度而 、處理區間極為微小,則焦點峰值功率或能量密度之任 °顯著減J/均可以致使峰值位準滑落至燒敍閾值以下而無 201116355 法燒姓任何線條。 · 對於諸如印刷電路板(printed circuit board)、觸控式螢 幕(touch screen)、顯示器、感測器(sensor)、太陽能面板以 及其他微電子裝置之薄膜或厚膜式功能裝置内之高解析度 線條結構而言’燒蝕結構寬度之精確控制對於確保可靠之 運作係居於最重要之地位。在此情況下,其需要一種用以 克服離軸之無法修正透鏡像差之方法。加入更多構件至透 鏡可以降低離軸畸變效應並顯著地改善透鏡之效能,但此 種辦法巨幅地增加系統複雜度和成本,且並未完全解決問 f) 題。 本說明書揭示之發明旨在提出一種替代性方式以補償 , 出現於標準掃描透鏡中之離轴、焦點畸變像差。 > 【發明内容】 依據本發明之一第一特色’其提出一種用於補償離軸 焦點畸變的設備’該畸變係在使用掃描器及透鏡藉由直接 寫入雷射燒蝕之方式在一基板中形成細線條結構時產生, 該設備包含: ϋ 一雷射單元,用以提供一雷射光束; 知描器單元’用以在一基板上自一在軸(〇n_ax is)位置 掃描該雷射光束至離轴位置; 一聚焦透鏡,用以聚焦該雷射光束至該基板上; 功率改變裝置,用以改變雷射輸出功率或脈衝能量; 以及 一控制器單元,用以控制該功率改變裝置以依據相對 6 201116355 於該在轴位置之焦點位置動態地改變 衝能量,而使;^ # μ雷射輪出功率或脈 而使件位於該點之燒餘線條 上相同於位於一在轴點之寬度。 傳之見度維持實質 依據本發明之_第二梧@, 焦、點畸變的方法' ,、如出—種用於補償離軸 寫入雷射㈣之方式在—基板巾 ^錢藉由直接 該方法包含: 緣條結構時產生, ❹ 提供一雷射光束; 在-基板上自一在軸位置掃描該雷射光束至離轴位 置, 聚焦該雷射光束至該基板上;以及 依據相對於該在轴位置之焦點位置動態地改變雷射輸 出功率或脈衝能量,以使得位於該點之燒餘線條結構之寬 度維持實質上相同於位於一在軸點上之寬度。 本發明係有關於一種包含一雷射單元、一雷射光束掃 描器單元和-雷射光束聚焦透鏡之系统之運作。此系統可 、用以在^^•面基板上以燒姓之方式寫入細線條於材料之薄 膜或其他層之中。用於雷射處理之適當材料實例包含透明 導電氧化物(例如,氧化銦踢(Inc(ium_tin 〇xide ; IT〇)、Sn〇2、 Zn〇等等)之薄層、金屬、例如非結晶矽(a _Si)、微結晶矽 (micro-crystalline silicon c_si)、多結晶梦 (poly-crystalline silicon ’· po丨y_si)、硫化銅銦鎵 (copper-indium-galiium_sulphide; cigs)、碲化鎘(cadmium teiluride,· CdTe)等之無機半導體、有機半導體、有機發光 201116355 二極體(organic light emitting diodes ; OLEDs)等等,以及聚 合物之較厚層和可用於印刷電路板(PCB)之合成樹脂。 此雷射可以運作於從193奈米深紫外線到1〇 6微米遠 紅外線範圍中的任何波長。其可以是脈衝形式且運作於任 何調變式、Q型開關(Q-switched)或鎖模(mode_1〇cked)脈衝 模式。或者,該雷射可以是連續(CW)形式而運作於連續式、 調變連續式或超高重複率準連續模式(quasi_c〇ntinu〇us mode)。雷射光束掃描器單元可以在單軸或雙軸方向移動雷 射光束,且可以是振鏡或旋轉式多面鏡之形式。雷射光束 聚焦透鏡可以之任何簡單或複雜形式,且可以置放於掃描 器單元之前或之後。 所揭示設備之一重要特徵在於該裝置使得其可以改變 掃描區域内離開基轴之點上的雷射功率或脈衝能量密度, 由透鏡引發於該處之光學畸變效應致使基板上之焦點面積 增加,從而使得峰值功率或能量密度降低且在基板材料層 中燒蝕之線條結構寬度值產生變化而不同於在透鏡基轴上 之點所獲得之值。 當雷射光束於掃描範圍内被漸次掃描時,其可以動雜 地改變雷射輸出功率或脈衝能量,使得掃描區域内所有點 上的射束功率或能量被維持於預定之數值。 在較佳實施例中,每一離軸點上之雷射光束功率或脈 衝能量相較於在軸位置處之改變量得以使點上 結構寬度完全或實質上地被回復至透鏡基轴上之點所= 之數值。 201116355 本發明構想二種主要方法用以改變雷射功率或脈衝能 量。其一,一聲光式(acousto_optic)或光電式(e〗ectr〇 〇ptic) 雷射光束調變器單元被放置於雷射輸出孔之後。此方式適 用於所有内含適當傳導式調變器之雷射形式,但最適用於 c W或是準c W式雷射。其極易於取得波長範圍從266奈米 到10.6微米的此種設備。另一種用以調變雷射輸出的方法 適用於Q型開關二極體激發式固態雷射,其具有適當之電 子機能,可以藉由一系列適當之電氣脈衝自外部觸發,個 別電氣脈衝之能量位準可以利用改變觸發脈衝之寬度而加 以控制。其很容易取得運作於355奈米、532奈米以及丨.〇6 微米波長的此種雷射。 無淪採用何種方法改變雷射輸出功率或脈衝能量,均 必須以一系列適當之電子信號動態地驅動該裝置,該等電 子仏號與掃描區域中每一點所需之功率或脈衝能量之特定 數值相關。顯而可知,其必須決定任一離軸點所需之雷射 Q 功率或脈衝能量變異,以將燒蝕線條之寬度回復至與在轴 之情況相同。在一較佳之配置方式中,其可以藉由在一測 試樣本的整個掃描範圍中配合運作於固定功率或脈衝能量 之雷射製作一參考細線圖樣,而後在選定的離軸位置量測 燒蝕線條寬度之變異(相較於在軸上之處)。此等量測繼而被 用以形成一校準資料集之基礎,其被加入掃描器控制軟 體’並於後續被用來驅動控制雷射輸出功率或脈衝能量之 裝置,以調整射束聚焦中之能量或功率,從而在掃描區域 内維持固定之線條寬度。 201116355 對特疋薄膜樣本決定正確之校準資料集可能需要多 次測試樣本產生之重複程序,因為線條寬度對雷射功率或 能量密度之相關性可能是一正相關或一負相關函數,且兩 種情況均不太可能呈線性。因此,為了使線條寬度完全維 持固定而對功率或脈衝能量所需改變之最終程度最好以實 驗決定。 從以下之說明以及本說明書後附之申請專利範圍,本 發明之其他較佳及選擇性特徵將趨於明顯。 【實施方式】 圖1 圖1顯示本發明可以適用的一種雷射及掃描器系統之 實例發自一雷射之一射束11在一伸縮鏡組12中被擴 大,並繼而藉由裝配於一電流計馬達14之一反射鏡13在 一範圍内之角度產生偏轉。裝配於一第二電流計馬達16之 一第一反射鏡15在一正交於上述第一反射鏡13的方向上 之一範圍内之角度偏轉該射束。一掃描透鏡17接受該射束 並將其聚焦至-平面基板18以形成—小焦點19。此圖顯示 - 2軸掃描器在一平面基板18的表面上二條彼此正交之轴 上移動焦點19。藉由將一飼服馬達驅動(未顯示於圖中)加 入至伸縮鏡組12中的一個透鏡構件中,可以很容易地使該 系統升級成一個二軸系統,其能夠沿著光軸移動焦點19並 補償掃描透鏡1 7之像域彎曲。 圖2 圖2顯不二個理論上的焦點2D形狀的電腦產生圖形, 10 201116355 其係產生於—1 r Λ 1:)ϋ毫米焦距長度之典, A 奈米)掃描透鏡像域内的不同點上。;:構件紫外線(355 的,,點圖",立中+ a ' 該等圖形之形式係所謂 A、B、C_圖八予c號的密度表示功率或能量密Η中 —圖刀別對應至一在軸點21、— 上之點22以及-位於5。毫米半 位:25毫未半- 楚地顯示,當射h… 之點23。該等圖形清 朝耆遠離中心點的方向移動時,隹點之 形狀顯著地變#, 砂勒呀焦點之 邊區域而能量漸次地自焦點中央移向焦點的周 Ο Ο 的電個焦點内的理論功率或能量密度分佈概況 其係產生於一 150毫米焦距長度之典型 、外線(355奈米)掃描透鏡17之像域内的不同點 Η圖形3U32分別是在軸上和4G毫米半徑處焦點分佈 。彳面。該等圖形清楚地顯示,當射束朝著遠離中心點 f向移動時’焦點分佈圖顯著地變差並偏離高斯分佈, 而旎量漸次地自焦點中央移向焦點的邊翼處。 圖4 圖4顯示一掃描透鏡像域内不同半徑點上三個可能雷 射功率或能量密度分佈之簡單表示方式。此例中,其分佈 均假設為高斯形式。所有情況中,雷射光束之功率或能量 均相同,0此當從在轴上的一點(曲線41)移到轴上與像域 邊緣間中途上的-點(曲線42)及最後到—邊緣上的點(曲線 )其刀佈之寬度以及焦點直徑增加,而分佈之峰值數值 減少。此圖顯示基於功率或能量密度觀點之燒蝕閾值位準 201116355 44相當接近分佈圖峰值之情形,其發生於最佳材料燒蝕位 準與燒触其下基板之閾值間的差異很小之時。在所例示的 簡易實例中,其假設燒蝕位準44與功率或能量密度分佈曲 線的相交點界定了燒钱線條結構之寬度。曲線41及42與 閣值直線44之交點清楚地顯示出#射束之移動遠離透鏡轴 而焦點擴大,峰值功率或能量密度從而減少,超過燒蝕閾 值的焦點區域之直徑降低,導致燒㈣條寬度之減小。 由圖4亦可看出,藉由將雷射光束之功率或能量增加 到使得燒㈣值位準44上的焦點直徑增加至其在軸數值, 可以使燒㈣條寬度增加至其在軸之數值。該圖同時亦例 丁極端之)·月況(曲線43),其中當射束更遠離透鏡軸而焦點 更形擴大’則分佈曲線之峰值跌落燒㈣I料,導致不再 有材料燒蝕發生之情況。 ^顯不在-知描透鏡17像域中的不同半徑處之點肩 -個可能雷射功率或能量密度分佈之另—簡單表示方式。 :例中,其分佈亦均假設為高斯形式。二個情況中,雷射 =之:率或能量均相同,因此當從在轴上的—點(曲線Μ :到-邊緣上的點(曲,線52),其分佈之寬度以及焦點直徑 ::,而分佈之峰值數值減少。此圖顯示基於功率或能量 :度觀點之燒敍間值位準53顯著地低於分佈圖之峰值,盆 =於最佳材料燒幻立準顯著地高於燒㈣下基板間值: 能量密度分佈曲線的相交點界定了燒㈣條結構之寬 12 201116355 該圖清楚地顯示出,此種情況下,當射束之移動遠離透鏡 軸而焦點擴大’峰值功率或㊣量密度從而減少、,超過燒钱 間值53的焦點區域之直徑增加,故燒料條結構之寬度亦 增加。由圖中同時亦可理解,藉由將雷射光束之功率或能 量減少到使得燒_值位準53上的焦點直徑減少至其在轴 數值,可以使燒蝕線條寬度回復至其在軸之數值。 圖 6 ❹ ❹ 圖6顯示在一掃描透鏡17像域中的不同半徑處之點上 二個可能雷射功率或能量密度分佈之另—簡單表示方式。 此例中,在軸點之分# 61假設係高斯形式,但離轴點之分 佈Μ則非高斯形式’且在峰值之―側具有較另—側顯著較 局之能量。由於二個位置之雷射光束功率或能量相同,且 燒敍閾值位準63極為接近分佈之峰值,故超過燒㈣值之 焦點區域之直徑減小,而當射束自軸上移動至一離轴點 時,燒银線條之寬度減小。由此圖同時亦可理解,藉由將 雷射光束之功率或能量增加到使得燒㈣值位準Μ上的焦 點直徑回復至其在轴數值,可以使燒料條寬度回復至其 在軸之數值。 a_i —圖7顯示-運用任何形式之雷射實施本發明之設備。 雷射系統71發出一射走79 采72通過一調變器73,其中光學 傳輪之角度可以被控制。射束擴大伸縮鏡組74調整射束直 :以符合應用之需求。一掃描器單元75具有二正交之移動 反射鏡使得射束在二轴上偏轉。一透鏡76將射束聚焦至一 13 201116355 平面基板77之表面。掃描器反射鏡被系統主控 _ J窃早7^78 所驅動。此單元輸入一信號至一驅動器單元79, 磁獎彳击h 、控制調 變器之傳輸角度。主控制器78包含一校準檔幸 _ ^ 未其内含將 一維掃描區域中之每一位置關聯至在該點燒蝕—特定寬产 之線條所需雷射功率或能量之資訊。當主控制器78驅動: 描器反射鏡使得射束在該二維掃描區域上移動時,同時亦 輸入適當之信號至調變器驅動器79以調整調變器73之傳 輸而將燒蝕線條圖樣寬度維持固定。 圖8 圖"員示另-用以實施本發明之設備,其使用一脈衝 雷射且發自雷射之個別脈衝之能量可以藉由調整個別雷射 觸發脈衝之寬度而加以控制…雷射系統81 #出一射: 82。一射束擴大伸縮鏡組83調整射束直#以符合應用之需 求。-掃描器單元84具有二正交之移動反射鏡使得射束在 轴上偏轉。一透鏡85將射束聚焦至一平面基板%之表 面。掃描器反射鏡被系統主控制器單元87所驅動。此單元 同時亦將控制仏號輸入至—脈衝產生器單元^,其發 用以觸發Q型開關雷射81之脈衝。主控制器87包含一校 ::案1内含將二維掃描區域中之每一位置關聯至在該 •,姓-特定寬度之線條所需雷射功率或能量之資訊。當 主控制器87驅動掃描器反射鏡使得射束在該二維掃描區域 上移動時,同時亦輸入適當之信號至觸發脈衝產生器以以 發脈衝之寬度以及每一脈衝中之能量,從而使得燒 姓線條圖樣寬度維持固定。 201116355 以上所述之配置因此提出一種用於補償離軸焦點畸變 誤差的方法,該畸變誤差係在使用雷射掃描透鏡藉由直接 寫入雷射燒蝕之方式在平面基板上之材料層中建立細線條 結構時產生,使得在整個掃描區域實質上維持該結構之線 條寬度,該方法包含: 改變掃描區域中偏離基軸之點之雷射光束功率或脈 衝能量,其中由透鏡引起之光學畸變效應導致基板上焦點 之面積增大,使得峰值功率或能量密度降低,以及基板上 〇 之燒蝕線條結構之寬度產生變化而不同於位於透鏡基軸上 之點所獲得之數值; b·改變每一離軸點上之雷射光束功率或脈衝能量,其 改變之量使得該點上之燒蝕線條結構寬度被完全回復至在 該透鏡基軸上之點所獲得之數值; c •當雷射光束於掃描範圍内被漸次掃描時,動態地改 變雷射輸出功率或脈衝能量,使得掃描區域内所有點上的 射束功率或能量被維持於正確之數值以讓燒蝕線條結構之 ◎ 寬度保持固定;以及 d.在一測試樣本的整個掃描範圍中配合運作於固定功 率或脈衝能量之雷射製作一參考細線圖樣,並在選定的離 轴位置量測燒蝕線條寬度之變異(相較於在轴上之處),且利 用此等量測構成一校準資料集之基礎’其後續被用來在掃 描區域改變能量或功率而使線條寬度維持固定。 所揭示之用以實行此方法之設備包含: a· —雷射單元; 15 201116355 b. 雷射光束掃描器單元; c. 一雷射光束聚焦透鏡; d. —調變器’控制該雷射之輸出; e. —快速控制系統,其連結該調變器之運作至該雷射 焦點在該透鏡之像域内之運動並迅速地改變該雷射之輪出 功率或脈衝能量。 【圖式簡單說明】 本發明已經藉由範例的方式並參照所附之圖式而進一 步地說明,其中: 圖1係一典型2-D掃描器以及相關聚焦透鏡配置之— 示意性立體圖; 圖2A、2B和2C顯示對一典型掃描透鏡之焦點所計算 出之點點圖(spot diagram); 圖3A和3B之圖形顯示對一典型掃描透鏡計算出之焦 點能量密度分佈概況; 圖4之圖形顯示如何在焦點直徑增加時,燒蝕之線條 寬度可以減小; ' 圖5之圖形顯示如何在焦點直徑增加時,燒蝕之線條 寬度可以增加; 圖ό之圖形顯示如何在焦點發生畸變時,燒姓之線條 寬度可以減小; 圖7係一用以動態地控制雷射輸出之設備之示意圖; 以及 圖8係一用以動態地控制一 q型開關雷射的輸出脈衝 16 201116355 能量之設備之示意圖。 【主要元件符號說明】The present invention relates to a method and apparatus for compensating for off-axis focal spot distortion by using a scanner and a lens by direct write ablation. Produced when a thin line structure is formed in a substrate. In particular, regarding the correction of the focus # difference on the scanning area of the lens to control the width of the burnt line pattern. The invention is particularly applicable to high resolution, thin line patterning of films or layers of materials on glass, polymers, metals, or other planar substrates. [Prior Art] The technique of engraving or patterning a planar substrate by laser ablation using a beam scanner and a focusing lens is extremely common, and many different configurations can be employed to perform this action. The lasers used cover almost all of the commonly available wavelengths from DUV (deeP uitra vi〇let; deep ultraviolet) at 193 nm (nm) to FIR (far infra_red; far infrared) at 1 〇 6 μm (8) (4). Laser, whose pulse length ranges from femto-sec〇d to a continuous wave (CW) operation' and the average power range is a fraction of a watt (Watt) To the level of hundreds of watts. The laser beam scanner unit is usually based on a dual axis 〇seillating mirror driven by a galvanometer or other motor. The condition must be on a two-dimensional area. To perform engraving or patterning, it is only necessary to scan on a single-axis. Rotating polyg0ii mirrors are usually used. 201116355 It uses a variety of different lenses to focus the beam on the surface of the substrate. The types range from conventional one-piece lenses to complex multi-component lenses. These lenses can be placed before or after the scanner unit. Typically, after placement in the scanner unit, a telecentric lens is used. One of the features of all of these scanning optical systems is that the quality of the focus produced at the off-axis point away from the center of the scanning area on the surface of a planar substrate is the smallest and best relative to the generator on the axis of the center of the scanning area. In terms of shape, it is often poor. These off-axis focus distortion effects are due to the scanning of the laser beam at an angle. Aberration caused by the component. This distortion effect is more severe at the edge of the lens scanning area. A major scanning lens aberration problem is field curvature. In this case, relative to the point on the axis, The minimum focus that can be obtained at the off-axis point occurs at a different distance from the lens. This means that the focus of the off-axis point of the planar substrate and the different diameters formed on the axis result in variations in power and energy density on the scanned area. This aberration can be easily corrected by adding an additional axis to the scanner unit in the form of a dynamically controlled variable telescope (telesc〇pe). This unit changes the collimation of the beam (collimation). And causing the beam entering the lens to diverge or converge to allow the distance of the focus from the lens to be controlled. By this method, it is possible to have the optimal beam focus configured to scan the area at all points on the far and its edges. Accurately overlaps the surface of a planar substrate. This image area flattening technique is well known and can be used to dynamically correct the appropriate curvature of the image field. 201116355 • .... 'There are other serious off-axis lens aberration problems that cannot be easily smashed. When the beam moves from the center of the image field to the edge, it causes a second image: poor. In its simplest form, These aberrations are relative, and the 5 causes an increase in the diameter of the Gaussian distribution focus at the edge of the image domain. In its more common form, these aberrations are distorted by the formation of the -tt star ^ Ή & The power or energy density distribution may be heavily deviated from the Gaussian distribution (the (10). The main effect of this difference is that it causes the laser beam power or pulse energy to be scattered over a larger area, thus compared to the focus on the axis. In this case, the peak power or peak pulse energy density of the off-axis focus is reduced. < - Laser ablation treatment of materials generally has a well-defined value between the laser power or the energy density, so the width of any line structure burning in the film or layer of the material depends on the power Or energy density level; s, the focus when burning 胄 is straight. As a result, the laser power or energy is dispersed in a large area or deviated from the Gaussian distribution. Any lens aberrations in the two wings of the distribution pattern, "I, A, or power level, will cause a force rate in focus or The decrease in the amount of I and the possible change in the size of the direct focus set by the burnt threshold and the relative change in the width of the ablation line structure depend on the ablation threshold compared to the peak power or energy density::, The variation in the width of the lines can be increased or decreased. In the worst case, the power or energy density level of the burn-in is close to the peak value of the water 2, and the variability allowed from the maximum to the minimum power or energy density, and the processing interval is extremely small, then the peak power of the focus or A significant decrease in the energy density, °, can cause the peak level to slip below the burn-in threshold without any lines of the 201116355 method. · High resolution in thin film or thick film functional devices such as printed circuit boards, touch screens, displays, sensors, solar panels and other microelectronic devices In terms of line structure, the precise control of the ablation structure width is the most important factor in ensuring reliable operation. In this case, it requires a method for overcoming the off-axis that cannot correct the lens aberration. Adding more components to the lens reduces the effects of off-axis distortion and significantly improves the performance of the lens, but this approach dramatically increases system complexity and cost and does not completely solve the problem. The invention disclosed in this specification is intended to suggest an alternative way to compensate for off-axis, focus distortion aberrations that occur in standard scanning lenses. SUMMARY OF THE INVENTION According to a first feature of the present invention, a device for compensating for off-axis focus distortion is proposed. The distortion is achieved by directly writing laser ablation using a scanner and a lens. Produced when a thin line structure is formed in the substrate, the apparatus comprises: ϋ a laser unit for providing a laser beam; the scanner unit is configured to scan the substrate from a position at the axis (〇n_ax is) a laser beam to an off-axis position; a focusing lens for focusing the laser beam onto the substrate; a power changing device for varying the laser output power or pulse energy; and a controller unit for controlling the power Changing the device to dynamically change the rush energy according to the focus position of the relative position of 201116355, so that the ^^μ laser wheel outputs power or pulse so that the piece is located at the point of the burnt line at the same point The width of the pivot point. According to the present invention, the method of "focusing on the focal point and the distortion of the point" is as follows: The method comprises: generating a beam structure, ❹ providing a laser beam; scanning the laser beam from an axis position to an off-axis position on the substrate, focusing the laser beam onto the substrate; The focus position at the axial position dynamically changes the laser output power or pulse energy such that the width of the burnt line structure at that point remains substantially the same as the width at a pivot point. The present invention relates to the operation of a system comprising a laser unit, a laser beam scanner unit and a laser beam focusing lens. The system can be used to write thin lines on a thin film or other layer of material on a ^^• surface substrate. Examples of suitable materials for laser processing include transparent conductive oxides (eg, indium oxide kicks (IT), Sn(R), Zn(R), etc., thin layers, metals, such as amorphous germanium. (a _Si), micro-crystalline silicon c_si, poly-crystalline silicon '· po丨y_si, copper-indium-galiium_sulphide (cigs), cadmium telluride (cadmium) Teiluride, · CdTe) and other inorganic semiconductors, organic semiconductors, organic light emitting diodes (201116355), and thicker layers of polymers and synthetic resins that can be used in printed circuit boards (PCBs). The laser can operate at any wavelength from 193 nm deep ultraviolet to 1 〇 6 micron far infrared. It can be pulsed and operates in any modulation, Q-switched or mode-locked (Q-switched) or mode-locked ( Mode_1〇cked) pulse mode. Alternatively, the laser can be in continuous (CW) form and operate in continuous, modulated continuous or ultra-high repetition rate quasi-continuous mode (quasi_c〇ntinu〇us mode). The unit can move the laser beam in a uniaxial or biaxial direction and can be in the form of a galvanometer or a rotating polygon mirror. The laser beam focusing lens can be in any simple or complex form and can be placed in front of the scanner unit. Or after. An important feature of one of the disclosed devices is that the device is such that it can change the laser power or pulse energy density at a point away from the base axis in the scanning region, where the optical distortion effect caused by the lens causes the focus on the substrate The area is increased such that the peak power or energy density is reduced and the value of the line structure width ablated in the substrate material layer varies from the value obtained at the point on the base axis of the lens. When the laser beam is scanned within the scanning range During progressive scanning, it can variably change the laser output power or pulse energy such that the beam power or energy at all points in the scanning region is maintained at a predetermined value. In the preferred embodiment, each off-axis point The laser beam power or pulse energy is compared to the amount of change at the axis position so that the structure of the point is completely or substantially The value of the point on the base axis of the lens = 201116355 The present invention contemplates two main methods for changing the laser power or pulse energy. One, one acoustic (acousto_optic) or photoelectric (e〗 ectr〇〇 Ptic) The laser beam modulator unit is placed behind the laser output aperture. This method is suitable for all lasers with appropriate conduction modulators, but is best suited for c W or quasi-c W lasers. . It is extremely easy to obtain such devices with wavelengths ranging from 266 nm to 10.6 microns. Another method for modulating the laser output is suitable for Q-switched diode-excited solid-state lasers, which have appropriate electronic functions that can be externally triggered by a series of appropriate electrical pulses, the energy of individual electrical pulses. The level can be controlled by changing the width of the trigger pulse. It is easy to obtain such lasers operating at 355 nm, 532 nm, and 丨.〇6 micron wavelengths. The method used to change the laser output power or pulse energy must dynamically drive the device with a series of appropriate electronic signals that are specific to the power or pulse energy required at each point in the scan region. Numerical correlation. It is apparent that it must determine the laser Q power or pulse energy variation required for any off-axis point to restore the width of the ablation line to the same as in the case of the axis. In a preferred configuration, a reference thin line pattern can be created by cooperating with a laser operating at a fixed power or pulse energy over the entire scan range of the test sample, and then the ablation line is measured at the selected off-axis position. Variation in width (compared to on the axis). These measurements are then used to form the basis of a calibration data set that is added to the scanner control software 'and subsequently used to drive the device that controls the laser output power or pulse energy to adjust the energy in the beam focus. Or power to maintain a fixed line width within the scan area. 201116355 Determining the correct calibration data set for a characteristic film sample may require multiple iterations of the test sample generation, as the correlation of line width to laser power or energy density may be a positive or negative correlation function, and two The situation is unlikely to be linear. Therefore, in order to maintain the line width completely fixed, the final degree of change in power or pulse energy required is preferably determined experimentally. Other preferred and optional features of the present invention will be apparent from the description and appended claims. 1 shows an example of a laser and scanner system to which the present invention is applicable. A beam 11 of a laser is enlarged in a telescope group 12 and then assembled by a One of the mirrors 13 of the galvanometer motor 14 deflects at an angle within a range. A first mirror 15 mounted to a second galvanometer motor 16 deflects the beam at an angle in a direction orthogonal to the direction of the first mirror 13. A scanning lens 17 receives the beam and focuses it onto the -plane substrate 18 to form a small focus 19. This figure shows that the 2-axis scanner moves the focus 19 on two mutually orthogonal axes on the surface of the planar substrate 18. By incorporating a feed motor drive (not shown) into one of the lens members in the telescoping mirror set 12, the system can be easily upgraded to a two-axis system that can move the focus along the optical axis. 19 and compensates for the curvature of the image field of the scanning lens 17. Figure 2 Figure 2 shows two theoretical points of the 2D shape of the computer generated graphics, 10 201116355 The system is generated by -1 r Λ 1:) ϋ mm focal length length, A nano) scanning lens image field different points on. ;: Component UV (355,, dot map ", Lizhong + a ' The form of the graphic is the so-called A, B, C_ Figure 8 to the density of the c number indicates the power or energy density - the knife Corresponding to a point 22 on the axis point 21, - and - is located at 5. The half position of the millimeter: 25 millimeters and a half - shows the point 23 when shooting h... The graphics are moving away from the center point. At that time, the shape of the defect is significantly changed to #, the area of the focus of the focus of the sander, and the energy gradually shifts from the center of the focus to the focus of the focus. The theoretical power or energy density distribution in the focus of the electricity is generated in one. The typical point of the 150 mm focal length length, the outer line (355 nm) of the different angles in the image area of the scanning lens 17 is the focus distribution on the axis and the radius of 4 Gmm. The figures clearly show that when shooting When the beam moves away from the center point f, the focus distribution map degrades significantly and deviates from the Gaussian distribution, while the amount of the gradual shift gradually moves from the center of the focus to the edge of the focus. Figure 4 Figure 4 shows a different image within a scanning lens Three possible laser powers or energy at the radius A simple representation of the density distribution. In this case, the distribution is assumed to be Gaussian. In all cases, the power or energy of the laser beam is the same, 0 when moving from a point on the axis (curve 41) to the axis. The width of the knives and the diameter of the focus increase with the point (curve 42) midway between the edge of the image domain and the point (curve) on the edge to the edge, and the peak value of the distribution decreases. This figure shows the power or energy density based on the power or energy density. The ablation threshold level of 201116355 44 is quite close to the peak of the profile, which occurs when the difference between the optimal material ablation level and the threshold of the lower substrate is small. In the simplified example illustrated It assumes that the intersection of the ablation level 44 and the power or energy density profile defines the width of the burnt line structure. The intersection of curves 41 and 42 with the grid line 44 clearly shows that the movement of the beam is far from the lens axis. When the focus is enlarged, the peak power or energy density is reduced, and the diameter of the focal region exceeding the ablation threshold is decreased, resulting in a decrease in the width of the burnt strip. As can also be seen from FIG. 4, by using the laser light The power or energy is increased such that the diameter of the focus at the level of the burnt (four) value 44 is increased to its value at the axis, which can increase the width of the burnt (four) strip to its value at the axis. The graph is also exemplified by the extremes. (Curve 43), where the beam is more distant from the lens axis and the focus is more magnified' then the peak of the distribution curve drops (4) I material, resulting in no more material ablation. ^Significant - the point of the different radii at the different radii of the image lens 17 - another possible representation of the possible laser power or energy density distribution. In the example, the distribution is also assumed to be Gaussian. In both cases, the laser = the rate or energy is the same, so when the point from the on-axis (curve Μ: to the point on the edge (curve, line 52), the width of its distribution and the diameter of the focus: :, and the peak value of the distribution is reduced. This graph shows that the burn-in value level 53 based on the power or energy:degree of view is significantly lower than the peak of the distribution map, and the basin = significantly higher than the best material burnt level. Burning (4) Inter-substrate value: The intersection of the energy density distribution curve defines the width of the burnt (four) structure. 12 201116355 This figure clearly shows that in this case, when the beam moves away from the lens axis and the focus expands, the peak power Or the positive density is reduced, and the diameter of the focal region exceeding the burnout value 53 is increased, so the width of the filler strip structure is also increased. It can also be understood from the figure that the power or energy of the laser beam is reduced. By reducing the focus diameter on the burn-value level 53 to its on-axis value, the ablation line width can be restored to its value at the axis. Figure 6 ❹ ❹ Figure 6 shows the difference in the image area of a scanning lens 17 Two possible lasers at the point of the radius Another simple representation of the rate or energy density distribution. In this example, the sub-point of the axis point #61 is assumed to be Gaussian, but the distribution of off-axis points is not Gaussian' and there is more on the side of the peak. The side is significantly more energy. Since the power or energy of the laser beam at the two positions is the same, and the burn-in threshold level 63 is very close to the peak of the distribution, the diameter of the focus region exceeding the burnt (four) value is reduced, and when the beam is When moving from the axis to an off-axis point, the width of the burnt silver line is reduced. This figure can also be understood by increasing the power or energy of the laser beam to a focal diameter on the burnt (four) value level. Reverting to its value in the axis, the width of the rod can be restored to its value at the axis. a_i - Figure 7 shows - the device of the invention is implemented using any form of laser. The laser system 71 emits a shot of 79. The angle of the optical transmission wheel can be controlled by a modulator 73. The beam expanding telescope group 74 adjusts the beam straightness to meet the needs of the application. A scanner unit 75 has two orthogonal moving mirrors for shooting Beam deflected on two axes A lens 76 focuses the beam onto the surface of a 13 201116355 planar substrate 77. The scanner mirror is driven by the system master _J stealing 7^78. This unit inputs a signal to a driver unit 79, magnetic prize 彳Hit h, control the transmission angle of the modulator. The main controller 78 contains a calibration file. _ ^ It does not include the association of each position in the one-dimensional scanning area to the ablation at that point. Information on the power or energy of the laser is required. When the main controller 78 drives: the mirror mirror moves the beam over the two-dimensional scanning area, an appropriate signal is also input to the modulator driver 79 to adjust the modulator. The transmission of 73 maintains the width of the ablation line pattern fixed. Figure 8 Figure "Others--A device for implementing the invention, which uses a pulsed laser and the energy of individual pulses from the laser can be adjusted Individual lasers trigger the width of the pulse to control... Laser system 81 #出一射: 82. A beam expands the telescopic mirror set 83 to adjust the beam straightness to meet the needs of the application. - The scanner unit 84 has two orthogonal moving mirrors such that the beam is deflected on the axis. A lens 85 focuses the beam onto the surface of a planar substrate. The scanner mirror is driven by the system main controller unit 87. The unit also inputs the control nickname to the -pulse generator unit ^, which is used to trigger the pulse of the Q-switch laser 81. The main controller 87 contains a school: case 1 containing information relating the laser power or energy required to map each of the two-dimensional scanning areas to the line of the last name-specific width. When the main controller 87 drives the scanner mirror to move the beam over the two-dimensional scanning area, an appropriate signal is also input to the trigger pulse generator to pulse the width and the energy in each pulse, thereby The width of the burnt line pattern remains fixed. 201116355 The configuration described above therefore proposes a method for compensating for off-axis focus distortion errors which are established in a material layer on a planar substrate by direct writing laser ablation using a laser scanning lens. The thin line structure is generated such that the line width of the structure is substantially maintained throughout the scanning area, the method comprising: changing a laser beam power or pulse energy at a point deviating from the base axis in the scanning area, wherein an optical distortion effect caused by the lens causes The area of the focus on the substrate is increased such that the peak power or energy density is reduced, and the width of the ablation line structure on the substrate varies from the value obtained at a point on the base axis of the lens; b. changing each off-axis The laser beam power or pulse energy at the point, the amount of change such that the ablation line structure width at that point is fully restored to the value obtained at the point on the base axis of the lens; c • when the laser beam is in the scanning range Dynamically changing the laser output power or pulse energy when progressively scanning, so that all points in the scan area The beam power or energy is maintained at a correct value to keep the width of the ablation line structure fixed; and d. to make a reference for laser operation with fixed power or pulse energy over the entire scan range of a test sample Thin line pattern and measure the variation of ablation line width at the selected off-axis position (as compared to the on-axis) and use these measurements to form the basis of a calibration data set whose subsequent use is to scan The area changes energy or power to keep the line width fixed. The apparatus disclosed for carrying out the method comprises: a. - a laser unit; 15 201116355 b. a laser beam scanner unit; c. a laser beam focusing lens; d. a modulator controlling the laser Output; e. - a fast control system that couples the operation of the modulator to the movement of the laser focus within the image area of the lens and rapidly changes the power or pulse energy of the laser. BRIEF DESCRIPTION OF THE DRAWINGS The invention has been further described by way of example and with reference to the accompanying drawings in which: FIG. 1 is a schematic diagram of a typical 2-D scanner and associated focusing lens configuration; 2A, 2B, and 2C show a spot diagram calculated for the focus of a typical scanning lens; Figures 3A and 3B show an overview of the focus energy density distribution calculated for a typical scanning lens; Shows how the ablation line width can be reduced as the focus diameter increases; 'Figure 5 shows how the ablation line width can increase as the focus diameter increases; the graph of the figure shows how the focus is distorted, The line width of the burned surname can be reduced; Figure 7 is a schematic diagram of a device for dynamically controlling the laser output; and Figure 8 is a device for dynamically controlling the output pulse of a q-switch laser 16 201116355 Energy device Schematic diagram. [Main component symbol description]

11 射束 12 伸縮鏡組 13 反射鏡 14 電流計馬達 15 反射鏡 16 電流計馬達 17 掃描透鏡 18 平面基板 19 焦點 21 軸點 22 點 23 點 31 圖形 32 圖形 41 曲線 42 曲線 43 曲線 44 閾值位準/閾線 51 曲線 52 曲線 53 位準/閾值 61 分佈 17 201116355 62 分佈 63 閾值位準 71 雷射系統 72 射束 73 調變器 74 伸縮鏡組 75 掃描器單元 76 透鏡 77 平面基板 78 主控制器 79 單元 81 雷射 82 射束 83 伸縮鏡組 84 單元 85 透鏡 86 基板 87 單元 88 產生器 1811 Beam 12 Telescopic mirror 13 Mirror 14 Ammeter motor 15 Mirror 16 Ammeter motor 17 Scanning lens 18 Planar substrate 19 Focus 21 Pivot point 22 point 23 point 31 Figure 32 Figure 41 Curve 42 Curve 43 Curve 44 Threshold level /Threshold line 51 Curve 52 Curve 53 Level/Threshold 61 Distribution 17 201116355 62 Distribution 63 Threshold level 71 Laser system 72 Beam 73 Modulator 74 Telescopic mirror 75 Scanner unit 76 Lens 77 Flat substrate 78 Main controller 79 Unit 81 Laser 82 Beam 83 Telescopic lens set 84 Unit 85 Lens 86 Substrate 87 Unit 88 Generator 18

Claims (1)

201116355 七、申請專利範圍: 1. 一種用於補償離軸焦點畸變的設備,該畸變係在使用 掃描器及透鏡藉由直接寫入雷射燒蝕之方式在一基板中形 成細線條結構時產生,該設備包含: 一雷射單元,用以提供一雷射光束; 一掃描器單元,用以在一基板上自一在軸位置掃描該 雷射光束至離軸位置; 一聚焦透鏡’用以聚焦該雷射光束至該基板上;201116355 VII. Patent application scope: 1. A device for compensating for off-axis focus distortion, which is generated when a thin line structure is formed in a substrate by direct writing laser ablation using a scanner and a lens. The device comprises: a laser unit for providing a laser beam; a scanner unit for scanning the laser beam from an axis position to an off-axis position on a substrate; a focusing lens Focusing the laser beam onto the substrate; 功率改變裝置’用以改變該雷射之輸出功率或脈衝能 量;以及 一控制器單元,用以控制該功率改變裝置以依據相對 於該在軸位置之焦點位置動態地改變該雷射輸出功率或脈 衝旎置,而使得位於該點之燒蝕線條結構之 上相同於位於-在軸點之寬度。 寺實質 _ •如申請專利範圍第1項所述之設備,其中該控制器單 :及功率改變裝置係配置以補償該雷射光束在離轴之掃描 區域中之點的功率或脈衝能量之改變,其中由該透鏡引起 之光學畸變效應導致在該基板上焦點之面積增大,使得峰 或#量密度降低,且使得該基板上之燒#線條結構 X產生變化而不同於位於在軸點所獲得之數值。 m —中%專利範圍第1項或第2項所述之設備,其中該 控制器單开;id? ij.雄 校準以依據實驗決定之參考資料控制該功率 P又變震置。 4.如申請專利範圍第 1 項或第2項所述之設備,其中該 201116355 雷射單元包含一調變式、Q型開 Y主间關或鎖模雷射, 一 續或準連續模式雷射光束。 钕供一連 搞:t申請專利範圍第1項或第2項所述之設借,其中該 田器早το能夠在-個、二個或三個軸中掃描該雷射。 6·如申請專利範圍第1 肀隹读Μ π 項次第2項所述之設備,其中該 聚’、,、透鏡係一簡皁或複雜形式, 且係置放於該掃描器單元 义刖或之後。 7·如申請專利範圍第1 巧次弟2項所述之設備,其中該 功率改變裝置包含一射束調變 、 ,、 笑盗皁凡,例如聲光式或光電 式之形式。 8. 如申請專利範圍第【項或第2項所述之設備,… 雷射單元包含—Q型開關形式之雷射,且該功率改變裝置 包含-電子單元’其經配置以調整施加至該雷射腔内之一 聲光式或光電式形式的Q型開關之觸發脈衝之寬度。 9. -種用於補償離軸焦點畸變的方法,該畸變係在使用 掃描器及透鏡藉由直接寫人雷射燒#之方式在—基板中形 成細線條結構時產生,該方法包含以下步驟: 提供一雷射光束; 在一基板上自一在軸位置掃描該雷射光束至離軸位 置; 聚焦該雷射光束至該基板上;以及 依據相對於該在軸位置之焦點位置動態地改變該雷射 之輸出功率或脈衝能量,以使得位於該點之燒蝕線條結構 之寬度維持實質上相同於位於一在軸點上之寬度。 20 201116355 1 0.如申請專利範圍第9項所述之方法,其中—批 /、 授制器 单元及功率改變裝置係配置以補償該雷射光束在 神之掃 描區域中之點的功率或脈衝能量之改變,其中由該透於 起之光學畸變效應導致在該基板上焦點之面積增^ 峰值功率或能量密度降低,且使得該基板上 構之寬度產生變化而不同於位 線條… 位於在軸點所獲得之數值。 1 1 _如申請專利範圍第9項或 ^ ^ μ ^ Φ φ j. * 次第10項所述之方法,其中 »亥W射光束中功率或脈输^ ❹ 描於一測試基板且運作於;之改變係依據當該雷射被掃 所實驗決定之校m 上1之功率或脈衝能量時 八、圖式: (如次頁)a power changing device 'to change the output power or pulse energy of the laser; and a controller unit for controlling the power changing device to dynamically change the laser output power according to a focus position relative to the at-axis position or The pulse is set such that the ablation line structure at that point is the same as the width at the on-axis point. The apparatus of claim 1, wherein the controller unit and the power changing device are configured to compensate for a change in power or pulse energy of the laser beam at a point in the off-axis scanning region. , wherein the optical distortion effect caused by the lens causes an increase in the area of the focus on the substrate, such that the peak or the amount of density decreases, and the burnt line structure X on the substrate changes differently from the point at the pivot point. The value obtained. m - The apparatus of item 1 or 2 of the patent scope, wherein the controller is single-open; id? ij. male calibration controls the power P to be set again according to experimentally determined reference data. 4. The device of claim 1 or 2, wherein the 201116355 laser unit comprises a modulation, Q-type open Y main or mode-locked laser, a continuous or quasi-continuous mode mine Shoot the beam.钕 一 一 t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t 6. The device of claim 2, wherein the poly', , or lens is a simple soap or a complex form, and is placed in the scanner unit or after that. 7. The apparatus of claim 2, wherein the power changing device comprises a beam modulation, a sneak peek, such as an acousto-optic or an opto-electronic form. 8. The apparatus of claim [2] or [2], wherein the laser unit comprises a laser in the form of a Q-type switch, and the power changing device comprises an electronic unit configured to adjust to apply thereto The width of the trigger pulse of an acousto-optic or photoelectric Q-switch in the laser cavity. 9. A method for compensating for off-axis focus distortion, which is produced by using a scanner and a lens to form a thin line structure in a substrate by directly writing a laser firing method, the method comprising the following steps Providing a laser beam; scanning the laser beam from an axial position to an off-axis position on a substrate; focusing the laser beam onto the substrate; and dynamically changing according to a focus position relative to the at-axis position The output power or pulse energy of the laser is such that the width of the ablation line structure at the point remains substantially the same as the width at a pivot point. The method of claim 9, wherein the batch/, the controller unit and the power changing device are configured to compensate for the power or pulse of the laser beam at a point in the scanning area of the god. a change in energy in which the area of the focus on the substrate is increased by the optical distortion effect, and the peak power or energy density is lowered, and the width of the substrate is varied to be different from the bit line... at the axis The value obtained by the point. 1 1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The change is based on the power or pulse energy of 1 on the school m determined by the experiment of the laser being scanned. 8. Schema: (such as the next page) 21twenty one
TW098138537A 2009-11-13 2009-11-13 Method and apparatus for compensating for off-axis focal spot distortion TWI487588B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098138537A TWI487588B (en) 2009-11-13 2009-11-13 Method and apparatus for compensating for off-axis focal spot distortion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098138537A TWI487588B (en) 2009-11-13 2009-11-13 Method and apparatus for compensating for off-axis focal spot distortion

Publications (2)

Publication Number Publication Date
TW201116355A true TW201116355A (en) 2011-05-16
TWI487588B TWI487588B (en) 2015-06-11

Family

ID=44934787

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098138537A TWI487588B (en) 2009-11-13 2009-11-13 Method and apparatus for compensating for off-axis focal spot distortion

Country Status (1)

Country Link
TW (1) TWI487588B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9441945B2 (en) 2013-05-07 2016-09-13 National Taiwan University Scan lens, interferometric measuring device using same
TWI577484B (en) * 2014-11-20 2017-04-11 財團法人工業技術研究院 Three-dimension laser processing apparatus and positioning error correction method
TWI724640B (en) * 2019-11-20 2021-04-11 財團法人工業技術研究院 Scanning laser system with capability of laser dynamic compensation and method of scanning laser dynamic compensation
CN114488526A (en) * 2022-04-18 2022-05-13 杭州灵西机器人智能科技有限公司 Optical system for laser 3D scanning and design method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4928284A (en) * 1988-09-28 1990-05-22 Lasa Industries, Inc. Laser power control system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9441945B2 (en) 2013-05-07 2016-09-13 National Taiwan University Scan lens, interferometric measuring device using same
TWI577484B (en) * 2014-11-20 2017-04-11 財團法人工業技術研究院 Three-dimension laser processing apparatus and positioning error correction method
TWI724640B (en) * 2019-11-20 2021-04-11 財團法人工業技術研究院 Scanning laser system with capability of laser dynamic compensation and method of scanning laser dynamic compensation
CN114488526A (en) * 2022-04-18 2022-05-13 杭州灵西机器人智能科技有限公司 Optical system for laser 3D scanning and design method

Also Published As

Publication number Publication date
TWI487588B (en) 2015-06-11

Similar Documents

Publication Publication Date Title
US9796046B2 (en) Method and apparatus for compensating for off-axis focal spot distortion
Hong et al. Selective laser direct patterning of silver nanowire percolation network transparent conductor for capacitive touch panel
CN101977722B (en) Laser processing a workpiece
JP5094994B2 (en) Wafer
US10276388B2 (en) Laser machining device and laser machining method
AU2016325992B2 (en) A beam director
Wlodarczyk et al. Scalable stacked array piezoelectric deformable mirror for astronomy and laser processing applications
KR102045776B1 (en) Patterning conductive films using variable focal plane to control feature size
US9889523B2 (en) Method and device for processing a workpiece using laser radiation
TWI829703B (en) Laser-processing apparatus, methods of operating the same, and methods of processing workpieces using the same
WO2015152156A1 (en) Laser processing device and laser processing method
CN102665999B (en) Laser processing method
US7705268B2 (en) Method and system for laser soft marking
US20110017280A1 (en) Partially transparent solar panel
CN101011780A (en) Method of forming via hole using laser beam
JP2006113185A (en) Laser processing apparatus
CN102791419A (en) Method and apparatus for scribing a line in a thin film using a series of laser pulses
US20100314367A1 (en) Methods and systems for laser-scribed line alignment
CN109732223A (en) The device of wafer cutting
US11079571B2 (en) Laser processing apparatus
TW201116355A (en) Method and apparatus for compensating for off-axis focal spot distortion
JPWO2009022649A1 (en) Oil film detector
WO2020225810A1 (en) Lift printing using thin donor foils
EP3503221A1 (en) Processing method for removing film and apparatus for removing film
Düsing et al. Laser surface processing of integrated thin film systems on arbitrarily shaped components