TWI724640B - Scanning laser system with capability of laser dynamic compensation and method of scanning laser dynamic compensation - Google Patents

Scanning laser system with capability of laser dynamic compensation and method of scanning laser dynamic compensation Download PDF

Info

Publication number
TWI724640B
TWI724640B TW108142142A TW108142142A TWI724640B TW I724640 B TWI724640 B TW I724640B TW 108142142 A TW108142142 A TW 108142142A TW 108142142 A TW108142142 A TW 108142142A TW I724640 B TWI724640 B TW I724640B
Authority
TW
Taiwan
Prior art keywords
laser
moving speed
scanning
speed information
laser spot
Prior art date
Application number
TW108142142A
Other languages
Chinese (zh)
Other versions
TW202120239A (en
Inventor
林盈佐
楊映暉
李姿儀
陳智禮
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW108142142A priority Critical patent/TWI724640B/en
Priority to CN201911292290.0A priority patent/CN112825405A/en
Application granted granted Critical
Publication of TWI724640B publication Critical patent/TWI724640B/en
Publication of TW202120239A publication Critical patent/TW202120239A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0007Applications not otherwise provided for

Abstract

A scanning laser system with capability of laser dynamic compensation includes a laser source device, a galvanometer scanning device, a driving voltage processing device and a current ratio controller. The laser source device generates a controllable laser beam. The galvanometer scanning device includes one or more galvanometers operating according one or more driving voltages and controls the laser beam to focus on a focal plane in form of a laser spot. The driving voltage processing device obtains moving speed information of the laser spot according to the one or more driving voltages. The driving voltage processing device generates a triggering parameter based on the moving speed information of the laser spot for determining whether to output a triggering signal. The current ratio controller outputs a pumping driving current and corrects the pumping driving current according to the moving speed information of the laser spot when receiving the triggering signal, so as to regulate power of the laser beam.

Description

具有雷射動態補償功能的掃描式雷射系統及掃描式雷射動態補償方法Scanning laser system with laser dynamic compensation function and scanning laser dynamic compensation method

本發明係關於一種具有雷射動態補償功能的掃描式雷射系統及掃描式雷射動態補償方法,特別是一種針對雷射輸出功率進行調整的掃描式雷射系統及雷射動態補償方法。The invention relates to a scanning laser system with a laser dynamic compensation function and a scanning laser dynamic compensation method, in particular to a scanning laser system and a laser dynamic compensation method that are adjusted for laser output power.

掃描式的雷射光加工技術廣泛應用在各個產業,此類技術的加工品質主要取決於掃描振鏡。一般而言,在理想情況下,光纖雷射與掃描振鏡搭配應用,透過掃描電機依照一定電壓與角度轉換擺動一定角度,使得雷射聚焦點穩定地在加工平面上來回掃描加工。Scanning laser processing technology is widely used in various industries, and the processing quality of this technology mainly depends on the scanning galvanometer. Generally speaking, under ideal conditions, the fiber laser is used in conjunction with the scanning galvanometer, and the scanning motor is converted to a certain angle according to a certain voltage and angle, so that the laser focus point can be scanned back and forth on the processing plane stably.

然而,在實際應用上,掃描式雷射加工系統運作在起始或終止階段、或者是非直線區(例如轉角區),雷射聚焦點在加工平面上的移動速度無法保持穩定,容易發生過度加工而導致加工品質不佳的情形。However, in practical applications, scanning laser processing systems operate at the start or end stage, or in non-straight areas (such as corner areas), and the moving speed of the laser focus point on the processing plane cannot be kept stable, and over processing is prone to occur. And lead to poor processing quality.

本發明提出一種掃描式雷射動態補償系統,透過偵測掃描振鏡的驅動電壓的變化,在速度未穩定階段調變雷射光的輸出功率,使得雷射加工的效果均勻,以避免過度加工的問題。The present invention provides a scanning laser dynamic compensation system. By detecting the change of the driving voltage of the scanning galvanometer, the output power of the laser light is adjusted in the unsteady phase of the speed, so that the effect of laser processing is uniform, so as to avoid excessive processing. problem.

依據本發明之一實施例揭露一種具有雷射動態補償功能的掃描式雷射系統,包括雷射源裝置、振鏡掃描裝置、驅動電壓處理裝置及電流比例控制器。雷射源裝置連續地產生可控式的雷射光束。振鏡掃描裝置包括一或多個振鏡,所述的一或多個振鏡根據一或多個驅動電壓而運作,振鏡掃描裝置控制雷射光束聚焦形成一雷射光點在焦平面上以進行掃描加工。驅動電壓處理裝置連接振鏡掃描裝置,驅動電壓處理裝置依據所述的一或多個驅動電壓取得所述的雷射光點的移動速度資訊,驅動電壓處理裝置更依據所述的雷射光點的移動速度資訊產生觸發參數以決定是否輸出觸發訊號。電流比例控制器連接雷射源裝置及驅動電壓處理裝置,以輸出泵浦驅動電流至該雷射源裝置,電流比例控制器在接收到觸發訊號時依據所述的雷射光點的移動速度資訊調整泵浦驅動電流,以調變雷射光束的功率。According to an embodiment of the present invention, a scanning laser system with laser dynamic compensation function is disclosed, which includes a laser source device, a galvanometer scanning device, a driving voltage processing device, and a current proportional controller. The laser source device continuously generates a controllable laser beam. The galvanometer scanning device includes one or more galvanometers. The one or more galvanometers operate according to one or more driving voltages. The galvanometer scanning device controls the laser beam to focus to form a laser spot on the focal plane. Perform scanning processing. The driving voltage processing device is connected to the galvanometer scanning device, the driving voltage processing device obtains the moving speed information of the laser spot according to the one or more driving voltages, and the driving voltage processing device is further based on the movement of the laser spot The speed information generates trigger parameters to determine whether to output a trigger signal. The current proportional controller is connected to the laser source device and the driving voltage processing device to output the pump driving current to the laser source device. The current proportional controller adjusts according to the moving speed information of the laser spot when the trigger signal is received The driving current is pumped to modulate the power of the laser beam.

依據本發明之一實施例揭露一種掃描式雷射動態補償方法,包括:以雷射源裝置連續地產生可控式的雷射光束;以振鏡掃描裝置的一或多個振鏡接收一或多個驅動電壓,以控制雷射光束聚焦在焦平面的雷射光點進行掃描加工;以驅動電壓處理裝置依據所述的一或多個驅動電壓取得雷射光點的移動速度資訊;以驅動電壓處理裝置依據所述的雷射光點的移動速度資訊產生觸發參數;以驅動電壓處理裝置依據觸發參數決定是否輸出觸發訊號;以及以電流比例控制器輸出泵浦驅動電流到雷射源裝置,並且在電流比例控制器接收到觸發訊號時使用所述的雷射光點的移動速度資訊來調整該泵浦驅動電流,以調變雷射光束的功率。According to an embodiment of the present invention, a scanning laser dynamic compensation method is disclosed, which includes: using a laser source device to continuously generate a controllable laser beam; using one or more galvanometers of the galvanometer scanning device to receive one or more A plurality of driving voltages are used to control the laser beam to focus on the laser spot of the focal plane for scanning processing; the driving voltage processing device obtains the moving speed information of the laser spot according to the one or more driving voltages; and the driving voltage is used for processing The device generates trigger parameters according to the moving speed information of the laser spot; the drive voltage processing device determines whether to output the trigger signal according to the trigger parameters; and the current proportional controller outputs the pump drive current to the laser source device, and the current When the proportional controller receives the trigger signal, it uses the moving speed information of the laser spot to adjust the pump drive current to adjust the power of the laser beam.

綜上所述,在本發明提出的具有雷射動態補償功能的掃描式雷射系統及掃描式雷射動態補償方法中,主要係透過監控振鏡掃描裝置的驅動電壓,透過驅動電壓處理裝置對驅動電壓進行演算及分析來判斷雷射聚焦點在焦平面上的移動速度變化狀態,並且在速度不穩定的階段,藉由電流比例控制器調整泵浦驅動電流的大小,以調控雷射源裝置所輸出的雷射光束的功率,進而避免過度加工的問題且達到均勻的雷射加工效果。In summary, in the scanning laser system with laser dynamic compensation function and the scanning laser dynamic compensation method proposed in the present invention, the driving voltage of the galvanometer scanning device is monitored, and the driving voltage processing device is used to monitor the driving voltage of the galvanometer scanning device. The driving voltage is calculated and analyzed to determine the changing state of the moving speed of the laser focus point on the focal plane, and in the stage of unstable speed, the current proportional controller is used to adjust the pump driving current to control the laser source device The power of the output laser beam, thereby avoiding the problem of over-processing and achieving a uniform laser processing effect.

以上之關於本揭露內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。The above description of the disclosure and the following description of the implementation manners are used to demonstrate and explain the spirit and principle of the present invention, and to provide a further explanation of the patent application scope of the present invention.

以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。以下之實施例係進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。The detailed features and advantages of the present invention will be described in detail in the following embodiments. The content is sufficient to enable anyone familiar with the relevant art to understand the technical content of the present invention and implement it accordingly, and in accordance with the content disclosed in this specification, the scope of patent application and the drawings. Anyone who is familiar with relevant skills can easily understand the purpose and advantages of the present invention. The following examples further illustrate the viewpoints of the present invention in detail, but do not limit the scope of the present invention by any viewpoint.

請參照圖1,圖1係依據本發明之一實施例所繪示的具有雷射動態補償功能的掃描式雷射系統的功能方塊圖。如圖1所示,具有雷射動態補償功能的掃描式雷射系統1(以下簡稱「掃描式雷射系統1」)適用在焦平面P1,掃描式雷射系統1包括雷射源裝置10、振鏡掃描裝置12、驅動電壓處理裝置14及電流比例控制器16。Please refer to FIG. 1. FIG. 1 is a functional block diagram of a scanning laser system with laser dynamic compensation function according to an embodiment of the present invention. As shown in Fig. 1, a scanning laser system 1 with laser dynamic compensation function (hereinafter referred to as "scanning laser system 1") is suitable for the focal plane P1. The scanning laser system 1 includes a laser source device 10, The galvanometer scanning device 12, the driving voltage processing device 14, and the current proportional controller 16.

雷射源裝置10可連續地產生可控式的雷射光束,並且輸出雷射光束到振鏡掃描裝置12。振鏡掃描裝置12內部具有一或多個振鏡及透鏡(未繪示於圖1),振鏡根據驅動電壓而進行旋轉/擺動,振鏡掃描裝置12透過振鏡與透鏡搭配使用可將雷射光束進行偏轉並聚焦在焦平面形成一雷射光點進行雷射掃描加工。The laser source device 10 can continuously generate a controllable laser beam, and output the laser beam to the galvanometer scanning device 12. The galvanometer scanning device 12 has one or more galvanometers and lenses (not shown in FIG. 1). The galvanometer mirrors rotate/swing according to the driving voltage. The galvanometer scanning device 12 can be used in combination with the galvanometer and the lens. The beam is deflected and focused on the focal plane to form a laser spot for laser scanning processing.

驅動電壓處理裝置14依據驅動電壓對應產生輸出電壓訊號的時變量。所述的輸出電壓訊號的時變量反映雷射光點的移動速度資訊,因此使得驅動電壓處理裝置14可依據所述的雷射光點的移動速度資訊來產生觸發參數,以決定是否輸出觸發訊號。電流比例控制器16輸出泵浦驅動電流至雷射源裝置10,電流比例控制器16在接收到觸發訊號時依據所述的振鏡的速度資訊來調整泵浦驅動電流,據以調控雷射光束的功率。The driving voltage processing device 14 correspondingly generates the time variable of the output voltage signal according to the driving voltage. The time variable of the output voltage signal reflects the moving speed information of the laser spot, so the driving voltage processing device 14 can generate trigger parameters based on the moving speed information of the laser spot to determine whether to output the trigger signal. The current proportional controller 16 outputs the pump drive current to the laser source device 10. The current proportional controller 16 adjusts the pump drive current according to the speed information of the galvanometer when receiving the trigger signal, thereby regulating the laser beam Power.

為了更清楚說明上述掃描式雷射系統1的運作方式,請進一步參照圖2,圖2係依據本發明之圖1實施例所繪示的掃描式雷射系統1的細部架構圖。如圖2所示,雷射源裝置10具有雷射種子源101、第一級放大器102、第二級放大器103、第一泵浦源104、第二泵浦源105及光準直鏡106。雷射種子源101可例如係由雷射二極體(laser diode)實現用以產生種子雷射光SD,並且藉由第一級放大器102與第二級放大器103各別透過第一泵浦源104與第二泵浦源105的泵浦光能量以對種子雷射光SD進行功率放大,進而輸出雷射光束LB。In order to explain the operation of the scanning laser system 1 more clearly, please refer to FIG. 2. FIG. 2 is a detailed structure diagram of the scanning laser system 1 according to the embodiment of FIG. 1 of the present invention. As shown in FIG. 2, the laser source device 10 has a laser seed source 101, a first-stage amplifier 102, a second-stage amplifier 103, a first pump source 104, a second pump source 105 and a light collimator 106. The laser seed source 101 can be realized by a laser diode (laser diode) for generating seed laser light SD, and the first stage amplifier 102 and the second stage amplifier 103 respectively pass through the first pump source 104 And the pump light energy of the second pump source 105 to amplify the power of the seed laser light SD, and then output the laser beam LB.

光準直鏡106則用以收斂光纖輸出發散光,使其成為準直光束,以利光束至振鏡掃描裝置12之傳遞。於實務上,雷射種子源101、第一級放大器102、第二級放大器103、第一泵浦源104、第二泵浦源105及光準直鏡106等各元件之間透過雷射光纖連接,並且雷射種子源101、第一級放大器102、第二級放大器103等各元件之間可各別設置光隔離器(optical isolators)用以限制雷射傳遞的方向以避免多餘的雷射光被反饋回雷射種子源101。本實施例係以兩級主震盪功率放大器(Master Oscillator Power Amplifier, MOPA)之光纖雷射架構為例,其中第二級放大器103係為雷射光束LB輸出前的最後一級放大器。本實施例雖然繪示兩級放大器,但本發明不以此為限。在實務上,雷射源裝置10可包括兩級以上的多級放大器。The light collimator 106 is used to converge the divergent light output from the optical fiber and turn it into a collimated light beam to facilitate the transmission of the light beam to the galvanometer scanning device 12. In practice, the laser fiber is transmitted between the laser seed source 101, the first-stage amplifier 102, the second-stage amplifier 103, the first pump source 104, the second pump source 105, and the optical collimator 106. Connected, and the laser seed source 101, the first-stage amplifier 102, the second-stage amplifier 103 and other components can be individually set up with optical isolators to limit the direction of laser transmission to avoid excess laser light It is fed back to the laser seed source 101. This embodiment takes the fiber laser architecture of a two-stage master oscillator power amplifier (MOPA) as an example, where the second stage amplifier 103 is the last stage amplifier before the laser beam LB is output. Although this embodiment shows a two-stage amplifier, the invention is not limited to this. In practice, the laser source device 10 may include a multi-stage amplifier with more than two stages.

振鏡掃描裝置12包括由電機121與反射件122所組成的振鏡、固定的反射件123及透鏡124。在實作上,電機121接收驅動電壓V a來運作而旋轉以帶動反射件122以一定的角度進行擺動。當雷射光束LB通過光準直鏡106傳遞到振鏡掃描裝置12時,雷射光束LB透過固定的反射件123反射到反射件122,雷射光束LB經由反射件122反射而進入到透鏡124。透鏡124將雷射光束LB聚焦以在焦平面P1上形成一雷射光點SPT。於實作上,透鏡124可例如是平場雷射聚焦透鏡(F-theta lens),但本發明不以此為限。藉由反射件122進行擺動並搭配透鏡124的聚焦功能,可讓雷射光點SPT在焦平面P1上來回移動進行雷射掃描加工。換言之,透鏡124(平場雷射聚焦透鏡)用以聚焦收斂雷射光束LB成雷射光點SPT,而所述振鏡則用以控制雷射光點SPT之運動模式。 The galvanometer scanning device 12 includes a galvanometer composed of a motor 121 and a reflector 122, a fixed reflector 123 and a lens 124. In practice, the motor 121 receives a driving voltage V a to the operating member is rotated to drive the reflector 122 at an angle to swing. When the laser beam LB is transmitted to the galvanometer scanning device 12 through the light collimator 106, the laser beam LB is reflected by the fixed reflector 123 to the reflector 122, and the laser beam LB is reflected by the reflector 122 and enters the lens 124 . The lens 124 focuses the laser beam LB to form a laser spot SPT on the focal plane P1. In practice, the lens 124 may be, for example, a flat-field laser focusing lens (F-theta lens), but the invention is not limited thereto. With the swing of the reflector 122 and the focusing function of the lens 124, the laser spot SPT can be moved back and forth on the focal plane P1 for laser scanning processing. In other words, the lens 124 (a flat-field laser focusing lens) is used to focus and converge the laser beam LB into a laser spot SPT, and the galvanometer is used to control the movement mode of the laser spot SPT.

本實施例的驅動電壓處理裝置14包括電壓感測器141與速度運算裝置142。電壓感測器141連接振鏡掃描裝置12內的電機121以偵測驅動電壓V a,並對應產生輸出電壓訊號V 1,其中輸出電壓訊號V 1係正比於驅動電壓V a。速度運算裝置142連接電壓感測器141並且依據輸出電壓訊號V 1產生輸出電壓訊號V 1的時變量。 The driving voltage processing device 14 of this embodiment includes a voltage sensor 141 and a speed calculation device 142. Voltage sensor 141 connected to the motor 121 of the scanning device 12 to detect the driving voltage V a, and generates a corresponding output voltage signal V 1, the output voltage signal V 1 which is proportional to the driving voltage line V a. Speed calculating means 142 is connected and a voltage sensor 141 generates an output voltage signal V 1 when the variable voltage according to the output signal V.

由於輸出電壓訊號V 1的時變量反映出雷射光點SPT的移動速度,因此速度運算裝置142可以據此取得雷射光點SPT的移動速度資訊S t。速度運算裝置142進一步地根據所取得之雷射光點SPT的移動速度資訊S t而產生加速度資訊作為觸發參數。進一步地,速度運算裝置142依據加速度資訊來決定是否輸出觸發訊號TR。 When the output voltage signal V 1 is a variable reflecting the moving speed of the laser light spot SPT therefore speed calculating means 142 can obtain the laser spots accordingly SPT moving speed information S t. Speed calculating means 142 further laser spots SPT according to the obtained information of the moving speed S t to generate acceleration information as a trigger parameter. Further, the speed calculation device 142 determines whether to output the trigger signal TR according to the acceleration information.

於一種實施態樣中,如圖2所示,速度運算裝置142包括速度運算器1421及加速度運算器1422。速度運算器1421連接電流比例控制器16與電壓感測器141。速度運算器1421用以對輸出電壓訊號V 1執行第一微分運算而計算出輸出電壓訊號V 1的時變量,以取得雷射光點SPT的移動速度資訊S t。加速度運算器1422連接速度運算器1421與電流比例控制器16,加速度運算器1422對雷射光點SPT的移動速度資訊S t執行第二微分運算而計算出加速度資訊。以下將搭配參數波形圖來進一步說明掃描式雷射系統1的運作及補償方式。 In an implementation aspect, as shown in FIG. 2, the speed calculation device 142 includes a speed calculation unit 1421 and an acceleration calculation unit 1422. The speed calculator 1421 is connected to the current proportional controller 16 and the voltage sensor 141. Speed computing unit 1421 is configured to output a first voltage signal V 1 performs a differential operation on the output voltage signal is calculated when the variable V 1, to obtain the laser beam spot SPT moving speed information S t. Acceleration computing unit 1422 connected to the speed ratio computing unit 1421 and the current controller 16, the acceleration computing unit 1422 pairs of laser spots SPT moving speed information S t calculated by performing a second differential operation acceleration information. Hereinafter, the operation and compensation method of the scanning laser system 1 will be further explained with the parameter waveform diagram.

請一併參照圖2與圖3,圖3係依據本發明之一實施例所繪示的關於掃描式雷射系統1的各項參數在時間上的波形圖。如圖3所示,各參數的波形圖以上至下依序包括雷射光點的位置x、輸出電壓訊號V 1、輸出電壓訊號V 1的電壓時變量V 1’、速度時變量a及最後一級放大器的泵浦驅動電流I。 Please refer to FIG. 2 and FIG. 3 together. FIG. 3 is a waveform diagram of various parameters of the scanning laser system 1 in time according to an embodiment of the present invention. As shown in Figure 3, the waveform diagram of each parameter includes the position x of the laser spot, the output voltage signal V 1 , the voltage-time variable V 1 'of the output voltage signal V 1 , the speed-time variable a, and the last stage in order from top to bottom. The pump drive current I of the amplifier.

詳細來說,雷射光點的位置x與輸出電壓訊號V 1的波形係為一致,在速度運算器1421接收到輸出電壓訊號V 1後會先對輸出電壓訊號V1進行第一次的微分運算便可得到輸出電壓訊號V 1的時變量V 1’其中輸出電壓訊號V 1的電壓時變量V 1’與雷射光點SPT的移動速度成正比關係。 In detail, the position x of the output voltage signal waveform of the laser light spot V system 1 is consistent in speed computing unit 1421 receives the first differential output voltage signal V after operation 1 will first output voltage signal V1 will be is obtained when the variable output voltage signal V 1 V 1 'output voltage signal wherein the voltage variable V 1 V 1' is proportional to the moving speed of the laser beam spot SPT.

如上述,由於輸出電壓訊號V 1的時變量V 1’與雷射光點SPT的移動速度係成正比關係,因此速度運算器1421可取得雷射光點SPT的移動速度資訊S t,並且將雷射光點SPT的移動速度資訊S t傳送到加速度運算器1422以進行第二次的微分運算。如圖3所示,透過第二次的微分運算,加速度運算器1422產生速度時變量a,即加速度資訊,所述的加速度資訊指示關聯於雷射光點SPT移動的加速度值。 As mentioned above, since the time variable V 1 ′ of the output voltage signal V 1 is proportional to the moving speed of the laser spot SPT, the speed calculator 1421 can obtain the moving speed information S t of the laser spot SPT, and combine the laser spot SPT point moving speed information S t acceleration computing unit 1422 is transmitted to differential operation for the second time. As shown in FIG. 3, through the second differential operation, the acceleration calculator 1422 generates the speed-time variable a, that is, acceleration information, which indicates the acceleration value associated with the movement of the laser spot SPT.

於本實施例中,在一種實施狀態下,加速度資訊指示加速度值為非零,速度運算裝置142的加速度運算器1422決定輸出觸發訊號TR。具體來說,如圖3所示,在時間t=1、3、5、7秒的階段,加速度值(速度時變量a)不等於零,其代表雷射光點SPT並非以等速度移動。也就是說,加速度運算器1422此時判定雷射光點SPT的移動速度不穩定,因此發出觸發訊號TR到電流比例控制器16。In this embodiment, in an implementation state, the acceleration information indicates that the acceleration value is non-zero, and the acceleration calculator 1422 of the speed calculation device 142 determines to output the trigger signal TR. Specifically, as shown in Fig. 3, at the stage of time t=1, 3, 5, and 7 seconds, the acceleration value (variable a at the time of velocity) is not equal to zero, which means that the laser spot SPT does not move at a constant speed. In other words, the acceleration calculator 1422 determines that the moving speed of the laser spot SPT is unstable at this time, and therefore sends the trigger signal TR to the current proportional controller 16.

當電流比例控制器16接收到觸發訊號TR時,電流比例控制器16便會使用雷射光點SPT的移動速度資訊S t來調整泵浦驅動電流I o。更具體來說,電流比例控制器16透過調整泵浦驅動電流I o適時地來調降雷射光束LB的輸出功率,以避免因掃描速度不穩定所導致的過度加工的問題。如圖3所示,電流比例控制器16在大約時間t=1、3、5、7秒的階段將雷射輸出功率適當地調降,以減少雷射功率加工的效果,避免導致過度加工。 When the ratio of the current controller 16 receives the trigger signal TR, the controller 16 will use the current proportional laser spots SPT moving speed information S t to adjust the pump drive current I o. More specifically, the current proportional controller 16 adjusts the output power of the laser beam LB in a timely manner by adjusting the pump driving current I o to avoid the problem of excessive processing caused by unstable scanning speed. As shown in FIG. 3, the current proportional controller 16 appropriately reduces the laser output power at approximately time t=1, 3, 5, and 7 seconds to reduce the effect of laser power processing and avoid excessive processing.

於一種實作方式中,電流比例控制器16可進行一演算法以對泵浦驅動電流I o進行比例校正,所述演算法例如

Figure 02_image001
,其中I c係為比例調整後的泵浦驅動電流(即校正的泵浦驅動電流),S m係為量測訊號值(對應量測到的移動速度資訊S t),S s係為設定訊號值(對應設定的移動速度資訊)。換言之,電流比例控制器16係依據雷射光點SPT的移動速度資訊及設定移動速度資訊計算比例參數,並且根據比例參數調整泵浦驅動電流I o。所述比例參數為雷射光點SPT的移動速度資訊的量測訊號值與設定移動速度資訊的設定訊號值的比值(例如S m/S s)。如圖2所示,電流比例控制器16進一步將經過比例調整後的泵浦驅動電流I c(即最後一級放大器的泵浦驅動電流)傳送到第二泵浦源105,藉此調降雷射光束LB的雷射輸出功率。上述的演算法僅是用於舉例說明,本發明不以此為限。 In an implementation manner, the current proportional controller 16 may perform an algorithm to perform proportional correction on the pump drive current I o, such as
Figure 02_image001
, Where I c is the pump drive current after proportional adjustment (ie corrected pump drive current), S m is the measured signal value (corresponding to the measured movement speed information S t ), and S s is the setting Signal value (corresponding to the set movement speed information). In other words, the current proportional controller 16 calculates the proportional parameter based on the moving speed information of the laser spot SPT and the set moving speed information, and adjusts the pump drive current I o according to the proportional parameter. The ratio parameter is the ratio of the measured signal value of the movement speed information of the laser spot SPT to the set signal value of the set movement speed information (for example, S m /S s ). As shown in FIG. 2, the current proportional controller 16 further transmits the proportionally adjusted pump drive current I c (that is, the pump drive current of the last stage amplifier) to the second pump source 105, thereby reducing the laser Laser output power of beam LB. The above algorithm is only for illustration, and the present invention is not limited to this.

圖2係繪示當有觸發訊號TR時,電流比例控制器16輸出調整後的泵浦驅動電流I c。然而,在另一種實施狀態下,加速度資訊指示加速度值為零,速度運算裝置142的加速度運算器1422決定不輸出觸發訊號TR。具體來說,如圖3所示,當加速度值(速度時變量a)為零時,代表雷射光點SPT以等速度移動,加速度運算器1422此時判定雷射光點SPT的移動速度係為穩定,因此不發出觸發訊號TR到電流比例控制器16。在沒有收到觸發訊號TR的狀態下,電流比例控制器16並不會對泵浦驅動電流I o進行任何比例的調整,而是將原始的泵浦驅動電流I o(即最後一級放大器的泵浦驅動電流)傳送到第二泵浦源105。此時,雷射光束LB的輸出功率穩定地維持原有的大小,不會有任何的調變。在圖3的實施例中,驅動電壓處理裝置14係以類比訊號的方式進行電壓與速度/加速度的運算,然而本發明不以此為限。在其他實施例中,驅動電壓處理裝置14可以係以數位訊號的方式進行電壓與速度/加速度的運算,例如以微處理器或微控制器等裝置來實現驅動電壓處理裝置14。 FIG. 2 shows that when there is a trigger signal TR, the current proportional controller 16 outputs the adjusted pump drive current I c . However, in another implementation state, the acceleration information indicates that the acceleration value is zero, and the acceleration calculator 1422 of the speed calculation device 142 decides not to output the trigger signal TR. Specifically, as shown in Figure 3, when the acceleration value (variable a at speed) is zero, it means that the laser spot SPT is moving at a constant speed, and the acceleration calculator 1422 determines that the moving speed of the laser spot SPT is stable at this time. Therefore, the trigger signal TR is not sent to the current proportional controller 16. When the trigger signal TR is not received, the current proportional controller 16 does not adjust the pump drive current I o in any proportion, but adjusts the original pump drive current I o (that is, the pump of the last stage amplifier). The driving current) is transmitted to the second pump source 105. At this time, the output power of the laser beam LB maintains its original size stably without any modulation. In the embodiment of FIG. 3, the driving voltage processing device 14 performs voltage and velocity/acceleration calculations in the manner of analog signals, but the present invention is not limited to this. In other embodiments, the driving voltage processing device 14 may perform voltage and speed/acceleration calculations in the form of digital signals. For example, the driving voltage processing device 14 may be implemented by a device such as a microprocessor or a microcontroller.

請進一步參照圖4,圖4係依據本發明之一實施例所繪示的速度與雷射功率輸出電流的關係圖。圖4係繪示當雷射光點的掃描由初始速度為零到穩定的等速度過程中雷射功率控制的變化狀態,其中曲線SV1代表應用本案技術的速度-雷射功率控制曲線,而曲線SV2代表未應用本案技術的速度-雷射功率控制曲線。由圖4可得知,由靜止狀態開始,當雷射光點SPT的掃瞄速度由零開始逐漸增加直到速度趨近於穩定的過程中,曲線SV1的雷射功率調降的程度大於曲線SV2的雷射功率調降的程度,因此可以有效地避免雷射功率過高而導致過度加工的情況。例如在進行轉角處的加工時,當雷射掃描進入轉角處時會減速,這個時後雷射功率必須有一定程度的調降,並且在雷射掃描從轉角處出來後會開始逐漸加速直到速度穩定。這樣一來,透過雷射功率的顯著調降,方可有效地解決在進行轉角處加工時可能因雷射功率過大而引發的過度加工的問題。Please further refer to FIG. 4, which is a diagram illustrating the relationship between speed and laser power output current according to an embodiment of the present invention. Figure 4 shows the state of laser power control when the laser spot is scanned from zero to a stable constant velocity. The curve SV1 represents the speed-laser power control curve using the technology in this case, and the curve SV2 Represents the speed-laser power control curve without applying the technology in this case. It can be seen from Fig. 4 that starting from the stationary state, when the scanning speed of the laser spot SPT gradually increases from zero until the speed becomes stable, the laser power of the curve SV1 is reduced to a greater degree than that of the curve SV2. The degree to which the laser power is reduced, so it can effectively avoid the situation that the laser power is too high and lead to over-processing. For example, when processing a corner, when the laser scan enters the corner, it will decelerate. After this time, the laser power must be reduced to a certain degree, and after the laser scan comes out of the corner, it will gradually accelerate until the speed is reached. stable. In this way, the significant reduction in laser power can effectively solve the problem of over-processing that may be caused by excessive laser power during corner processing.

請參照圖5,圖5係依據本發明之圖1實施例所繪示的具有雷射動態補償功能的掃描式雷射系統的另一細部架構圖。圖5實施例與圖2實施例大致相同,惟差異在於圖5實施例所示掃描式雷射系統2內的振鏡掃描裝置22包括兩個振鏡。更詳細來說,如圖5所示,雷射源裝置20具有雷射種子源201、第一級放大器202、第二級放大器203、第一泵浦源204、第二泵浦源205及光準直鏡206。雷射種子源201產生種子雷射光SD並且藉由第一級放大器202與第二級放大器203各別透過第一泵浦源204與第二泵浦源205的泵浦光能量以對種子雷射光SD進行功率放大,進而輸出雷射光束LB。光準直鏡206則用以收斂光纖輸出發散光,使其成為準直光束,以利光束至振鏡掃描裝置22之傳遞。本實施例係以兩級主震盪功率放大器(Master Oscillator Power Amplifier, MOPA)之光纖雷射架構為例,其中第二級放大器203係為雷射光束LB輸出前的最後一級放大器。本實施例雖然繪示兩級放大器,但本發明不以此為限。在實務上,雷射源裝置20可包括兩級以上的多級放大器。Please refer to FIG. 5. FIG. 5 is another detailed architecture diagram of the scanning laser system with laser dynamic compensation function according to the embodiment of FIG. 1 of the present invention. The embodiment of FIG. 5 is substantially the same as the embodiment of FIG. 2, but the difference is that the galvanometer scanning device 22 in the scanning laser system 2 shown in the embodiment of FIG. 5 includes two galvanometers. In more detail, as shown in FIG. 5, the laser source device 20 has a laser seed source 201, a first-stage amplifier 202, a second-stage amplifier 203, a first pump source 204, a second pump source 205, and a light source. Collimating lens 206. The laser seed source 201 generates seed laser light SD, and the first stage amplifier 202 and the second stage amplifier 203 respectively transmit the pump light energy of the first pump source 204 and the second pump source 205 to treat the seed laser light. The SD performs power amplification, and then outputs the laser beam LB. The light collimator 206 is used to converge the divergent light output from the optical fiber and turn it into a collimated light beam to facilitate the transmission of the light beam to the galvanometer scanning device 22. This embodiment takes the fiber laser architecture of a two-stage master oscillator power amplifier (MOPA) as an example, where the second stage amplifier 203 is the last stage amplifier before the laser beam LB is output. Although this embodiment shows a two-stage amplifier, the invention is not limited to this. In practice, the laser source device 20 may include a multi-stage amplifier with more than two stages.

振鏡掃描裝置22包括兩個振鏡及透鏡225,其中一個振鏡由電機221與反射件222所組成,而另一個振鏡由電機223與反射件224組成。在實作上,振鏡的電機221接收驅動電壓V a來運作而旋轉以帶動反射件222以一定的角度進行擺動以控制雷射光點SPT在一特定軸向(例如X軸)上的移動,而振鏡的電機223則接收驅動電壓V b來運作而旋轉以帶動反射件224以一定的角度進行擺動以控制雷射光點SPT在另一特定軸向(例如Y軸)上的移動。 The galvanometer scanning device 22 includes two galvanometers and lenses 225. One galvanometer is composed of a motor 221 and a reflector 222, and the other galvanometer is composed of a motor 223 and a reflector 224. In practice, the galvanometer motor 221 receives a driving voltage V a to the operating member is rotated to drive the reflector 222 at an angle to control the swinging movement of the laser spots in a particular axial SPT (e.g., X-axis), The motor 223 of the galvanometer receives the driving voltage V b to operate and rotate to drive the reflector 224 to swing at a certain angle to control the movement of the laser spot SPT on another specific axis (such as the Y axis).

當雷射光束LB通過光準直鏡206傳遞到振鏡掃描裝置22時,雷射光束LB透過反射件222反射到反射件224,雷射光束LB經由反射件224反射而進入到透鏡225。透鏡225將雷射光束LB聚焦以在焦平面P2上形成雷射光點SPT。藉由反射件223與224控制雷射光點SPT的不同軸向之移動,可讓雷射光點在焦平面P2上進行彎角的雷射加工。換言之,透鏡225(例如平場雷射聚焦透鏡)用以聚焦收斂雷射光束LB成雷射光點SPT,而所述兩振鏡則用以控制雷射光點SPT之運動模式。When the laser beam LB is transmitted to the galvanometer scanning device 22 through the light collimator 206, the laser beam LB is reflected by the reflector 222 to the reflector 224, and the laser beam LB is reflected by the reflector 224 and enters the lens 225. The lens 225 focuses the laser beam LB to form a laser spot SPT on the focal plane P2. By using the reflectors 223 and 224 to control the movement of the laser spot SPT in different axial directions, the laser spot can be laser processed on the focal plane P2. In other words, the lens 225 (for example, a flat-field laser focusing lens) is used to focus and converge the laser beam LB into a laser spot SPT, and the two galvanometers are used to control the movement mode of the laser spot SPT.

本實施例的驅動電壓處理裝置24包括電壓感測器241與速度運算裝置242。電壓感測器241分別連接振鏡掃描裝置22內振鏡的電機221與223以偵測驅動電壓V a與V b,並分別產生輸出電壓訊號V 1與V 2,其中輸出電壓訊號V 1、V 2係分別正比於驅動電壓V a、V b。速度運算裝置242連接電壓感測器241並且分別依據輸出電壓訊號V 1與V 2而產生輸出電壓訊號V 1與V 2的時變量。 The driving voltage processing device 24 of this embodiment includes a voltage sensor 241 and a speed calculation device 242. Voltage sensor 241 are connected to the device 22 of the scanning galvanometer 221 and the motor 223 to detect driving voltage V a and V b, and generating an output voltage signal V 1 and V 2, respectively, wherein the output voltage signal V 1, V 2 are proportional to the driving voltage line V a, V b. The speed computing device 242 is connected to the voltage sensor 241 and generates time variables of the output voltage signals V 1 and V 2 according to the output voltage signals V 1 and V 2, respectively.

輸出電壓訊號V 1與V 2的時變量分別反映出雷射光點SPT在不同軸向(例如X軸與Y軸)的移動速度,因此速度運算裝置242可以據此取得雷射光點SPT的合向量的移動速度資訊,此合向量的移動速度資訊可供電流比例控制器26在收到觸發訊號TR時使用,據以調整泵浦驅動電流I o。另外,速度運算裝置242進一步地運算所取得之雷射光點SPT在不同軸向上的移動速度資訊而產生加速度資訊作為觸發參數。速度運算裝置242依據觸發參數來決定是否輸出觸發訊號TR。 The time variables of the output voltage signals V 1 and V 2 respectively reflect the moving speed of the laser spot SPT in different axes (such as X-axis and Y-axis), so the speed calculation device 242 can obtain the resultant vector of the laser spot SPT accordingly The moving speed information of the combined vector can be used by the current proportional controller 26 when the trigger signal TR is received to adjust the pump drive current I o accordingly . In addition, the speed calculation device 242 further calculates the obtained moving speed information of the laser spot SPT in different axial directions to generate acceleration information as the trigger parameter. The speed calculation device 242 determines whether to output the trigger signal TR according to the trigger parameter.

於一種實施態樣中,如圖5所示,速度運算裝置242包括速度運算器2421及加速度運算器2422。速度運算器2421連接電流比例控制器26與電壓感測器241。速度運算器2421分別對輸出電壓訊號V 1與V 2執行第一微分運算而計算出輸出電壓訊號V 1與V 2的時變量,以取得雷射光點SPT在不同軸向的移動速度資訊,並且以合向量運算取得雷射光點SPT合向量的移動速度資訊。加速度運算器2422連接速度運算器2421與電流比例控制器26,加速度運算器2422對雷射光點在不同軸向的移動速度資訊分別執行第二微分運算而計算出個別的加速度資訊。 In one embodiment, as shown in FIG. 5, the speed calculation device 242 includes a speed calculation unit 2421 and an acceleration calculation unit 2422. The speed calculator 2421 is connected to the current proportional controller 26 and the voltage sensor 241. The speed calculator 2421 performs a first differential operation on the output voltage signals V 1 and V 2 to calculate the time variables of the output voltage signals V 1 and V 2 to obtain the moving speed information of the laser spot SPT in different axes, and Obtain the moving speed information of the SPT composite vector of the laser spot by the total vector calculation. The acceleration calculator 2422 is connected to the speed calculator 2421 and the current proportional controller 26. The acceleration calculator 2422 performs a second differential operation on the moving speed information of the laser spot in different axial directions to calculate individual acceleration information.

請進一步參照圖6,圖6係依據本發明之一實施例所繪示的速度運算裝置的電路架構圖。如圖6所示,速度運算器2421可包括微分電路2421_1、平方電路2421_2、加法電路2421_3及平方根電路2421_4。其中,微分電路2421_1包括數個運算放大器CP1、CP2、電阻R f、R c及電容C i,用以將輸出電壓訊號V 1與V 2進行微分以輸出雷射光點在不同軸向的移動速度資訊S 1與S 2。平方電路2421_2包括數個運算放大器CP3、CP4及電阻R 2,其中運算放大器CP3、CP4各別具有端點X 1、X 2、Y 1、Y 2、+V s、-V s、V os、OUT、Z,其連接關係如圖6所示,平方電路2421_2主要係用以分別對移動速度資訊S 1與S 2進行平方運算得到

Figure 02_image003
Figure 02_image005
。 Please further refer to FIG. 6. FIG. 6 is a circuit structure diagram of a speed computing device according to an embodiment of the present invention. As shown in FIG. 6, the speed calculator 2421 may include a differentiation circuit 2421_1, a square circuit 2421_2, an addition circuit 2421_3, and a square root circuit 2421_4. Among them, the differentiation circuit 2421_1 includes several operational amplifiers CP1, CP2, resistors R f , R c, and capacitor C i to differentiate the output voltage signals V 1 and V 2 to output the moving speed of the laser spot in different axes Information S 1 and S 2 . The squaring circuit 2421_2 includes several operational amplifiers CP3, CP4, and resistor R 2 , wherein the operational amplifiers CP3 and CP4 each have endpoints X 1 , X 2 , Y 1 , Y 2 , +V s , -V s , V os , The connection relationship between OUT and Z is shown in Figure 6. The squaring circuit 2421_2 is mainly used to square the movement speed information S 1 and S 2 respectively.
Figure 02_image003
versus
Figure 02_image005
.

加法電路2421_3包括運算放大器CP5、數個電阻R、R 1、R f及電壓源V 1、V 2連接運算放大器CP3、CP4的端點OUT,具體連接關係如圖6所示,加法電路2421_3用以進行加法運算得到

Figure 02_image007
+
Figure 02_image008
。平方根電路2421_4包括運算放大器CP6及數個電阻R3~R7。同樣地,運算放大器CP6具有端點X 1、X 2、Y 1、Y 2、+V s、-V s、V os、OUT、Z,其中端點Z連接運算放大器CP5的輸出端,其餘元件連接關係如圖6所示,平方根電路2421_4用以進行平方根運算而輸出合向量的移動速度資訊S t=
Figure 02_image009
作為電流比例控制器26後續對泵浦驅動電流I o進行比例調整的依據。 The addition circuit 2421_3 includes an operational amplifier CP5, a number of resistors R, R 1 , R f, and voltage sources V 1 , V 2 connected to the terminals OUT of the operational amplifiers CP3 and CP4. The specific connection relationship is shown in Figure 6, and the addition circuit 2421_3 uses To perform the addition operation to get
Figure 02_image007
+
Figure 02_image008
. The square root circuit 2421_4 includes an operational amplifier CP6 and several resistors R3~R7. Similarly, the operational amplifier CP6 has endpoints X 1 , X 2 , Y 1 , Y 2 , +V s , -V s , Vos , OUT, Z, where the endpoint Z is connected to the output terminal of the operational amplifier CP5, and the remaining components The connection relationship is shown in Figure 6. The square root circuit 2421_4 is used to perform the square root operation and output the moving speed information of the resultant vector S t =
Figure 02_image009
As a basis for the current proportional controller 26 to subsequently adjust the proportional adjustment of the pump drive current I o.

另一方面,加速度運算器2422包括另一微分電路2422_1,其包括數個運算放大器CP7、CP8、電阻R f及電容C i,用於將速度運算器2421的微分電路所輸出的移動速度資訊S 1與S 2分別再進行第二次微分以取得個別的加速度資訊。最後,加速度運算器2422對所述的加速度資訊所各別指示的加速度值a 1與a 2進行邏輯運算,以決定是否發出觸發訊號TR。當圖6所示的電路架構圖僅是速度運算裝置的一種實現方式,本發明不以此電路架構為限,所屬領域具有通常知識者可對電路架構圖進行修飾達到相同的運算功能。 On the other hand, the acceleration calculator 2422 includes another differentiation circuit 2422_1, which includes several operational amplifiers CP7, CP8, a resistor R f and a capacitor C i , which are used to transfer the movement speed information S output by the differentiation circuit of the speed calculator 2421 1 and S 2 are differentiated for the second time respectively to obtain individual acceleration information. Finally, the acceleration calculator 2422 performs a logical operation on the acceleration values a 1 and a 2 respectively indicated by the acceleration information to determine whether to issue the trigger signal TR. While the circuit architecture diagram shown in FIG. 6 is only an implementation of the speed computing device, the present invention is not limited to this circuit architecture. Those skilled in the art can modify the circuit architecture diagram to achieve the same computing function.

請一併參照圖5與圖7,圖7係依據本發明之一實施例所繪示的關於掃描式雷射動態補償系統的各項參數在時間上的波形圖。如圖7所示,各參數的波形圖以上至下依序包括雷射光點的位置L、輸出電壓訊號V、輸出電壓訊號V的電壓時變量V’、速度時變量a及最後一級放大器的泵浦驅動電流I。Please refer to FIG. 5 and FIG. 7 together. FIG. 7 is a waveform diagram of various parameters of the scanning laser dynamic compensation system in time according to an embodiment of the present invention. As shown in Figure 7, the waveform diagram of each parameter includes the position of the laser spot L, the output voltage signal V, the voltage-time variable V'of the output voltage signal V, the speed-time variable a, and the pump of the last stage amplifier in order from top to bottom. Pu drive current I.

相較於圖3實施例,為了方便說明,圖7實施例的雷射光點的位置L係以雷射光點在X軸與Y軸方向的位置之合向量來表示(同向且夾角45度)。以合向量表示的雷射光點SPT的位置L與輸出電壓訊號V(即

Figure 02_image011
)的波形係為一致,在速度運算器2421接收到輸出電壓訊號V後先對輸出電壓訊號V進行第一次的微分運算便可得到輸出電壓訊號V的時變量V’,其中輸出電壓訊號V的電壓時變量V’與雷射光點SPT的移動速度成正比關係。 Compared with the embodiment in FIG. 3, for the convenience of description, the position L of the laser spot in the embodiment in FIG. 7 is represented by the combined vector of the position of the laser spot in the X-axis and Y-axis directions (the same direction and an included angle of 45 degrees) . The position L of the laser spot SPT expressed by the resultant vector and the output voltage signal V (ie
Figure 02_image011
) Is consistent. After the speed calculator 2421 receives the output voltage signal V, the first differential operation is performed on the output voltage signal V to obtain the time variable V'of the output voltage signal V, where the output voltage signal V The voltage-time variable V'is proportional to the moving speed of the laser spot SPT.

如上述,由於輸出電壓訊號V的時變量V’與雷射光點SPT的移動速度係成正比關係,因此速度運算器2421可取得雷射光點SPT的移動速度資訊,並且將雷射光點SPT的移動速度資訊傳送到加速度運算器2422以進行第二次的微分運算。透過第二次的微分運算,加速度運算器2422產生加速度資訊,即速度時變量a,所述的加速度資訊指示關聯於雷射光點SPT的加速度值。在一種實施狀態下,加速度資訊指示加速度值為非零,速度運算裝置142的加速度運算器2422決定輸出觸發訊號TR。具體來說,如圖7所示,在大約時間t=1、3、5、7秒的階段,加速度值(速度時變量a)不等於零,其代表雷射光點SPT並非以等速度移動。As mentioned above, since the time variable V'of the output voltage signal V is proportional to the moving speed of the laser spot SPT, the speed calculator 2421 can obtain the moving speed information of the laser spot SPT, and move the laser spot SPT The speed information is sent to the acceleration calculator 2422 for the second differential operation. Through the second differential operation, the acceleration calculator 2422 generates acceleration information, that is, the velocity time variable a, and the acceleration information indicates the acceleration value associated with the laser spot SPT. In an implementation state, the acceleration information indicates that the acceleration value is non-zero, and the acceleration calculator 2422 of the speed calculation device 142 determines to output the trigger signal TR. Specifically, as shown in Fig. 7, at about time t=1, 3, 5, and 7 seconds, the acceleration value (velocity variable a) is not equal to zero, which means that the laser spot SPT does not move at a constant speed.

也就是說,加速度運算器2422此時判定雷射光點的移動速度係處於不穩定狀態,因此發出觸發訊號TR到電流比例控制器26。當電流比例控制器26接收到觸發訊號TR時,電流比例控制器26便會使用雷射光點SPT的移動速度資訊來調整泵浦驅動電流I o。換言之,電流比例控制器26透過調整泵浦驅動電流I o以適時地調降雷射光束LB的輸出功率,以避免因掃描速度不穩定所導致的過度加工的問題。 In other words, the acceleration calculator 2422 determines that the moving speed of the laser spot is in an unstable state at this time, and therefore sends the trigger signal TR to the current proportional controller 26. When the current proportional controller 26 receives the trigger signal TR, the current proportional controller 26 uses the moving speed information of the laser spot SPT to adjust the pump drive current I o . In other words, the current proportional controller 26 adjusts the pump drive current I o to reduce the output power of the laser beam LB in a timely manner to avoid the problem of excessive processing caused by unstable scanning speed.

在一種實作方式中,電流比例控制器26可進行一演算法以對泵浦驅動電流I o進行比例校正,所述演算法例如

Figure 02_image013
,其中I c係為比例調整後的泵浦驅動電流(即校正的泵浦驅動電流),S m係為量測訊號值(對應量測到的移動速度資訊S t),S s係為設定訊號值(對應設定的移動速度資訊)。換言之,電流比例控制器26係依據雷射光點SPT的移動速度資訊及設定移動速度資訊計算比例參數,並且根據比例參數調整泵浦驅動電流I o。所述比例參數為雷射光點SPT的移動速度資訊的量測訊號值與設定移動速度資訊的設定訊號值的比值(例如S m/S s)。如圖5所示,電流比例控制器26進一步將經過比例調整後的泵浦驅動電流I c(即最後一級放大器的泵浦驅動電流)傳送到第二泵浦源205,藉此調降雷射光束的輸出功率。上述演算法僅為實施方式之一,本發明並不以此為限。 In an implementation manner, the current proportional controller 26 may perform an algorithm to perform proportional correction on the pump drive current I o, such as
Figure 02_image013
, Where I c is the pump drive current after proportional adjustment (ie corrected pump drive current), S m is the measured signal value (corresponding to the measured movement speed information S t ), and S s is the setting Signal value (corresponding to the set movement speed information). In other words, the current proportional controller 26 calculates the proportional parameter according to the moving speed information of the laser spot SPT and the set moving speed information, and adjusts the pump drive current I o according to the proportional parameter. The ratio parameter is the ratio of the measured signal value of the movement speed information of the laser spot SPT to the set signal value of the set movement speed information (for example, S m /S s ). As shown in FIG. 5, the current proportional controller 26 further transmits the proportionally adjusted pump drive current I c (that is, the pump drive current of the last stage amplifier) to the second pump source 205, thereby reducing the laser The output power of the beam. The above algorithm is only one of the implementation manners, and the present invention is not limited to this.

圖5係繪示當有觸發訊號TR時,電流比例控制器26輸出調整後的泵浦驅動電流I c。然而,在另一種實施狀態下,加速度資訊指示加速度值為零,速度運算裝置242的加速度運算器2422決定不輸出觸發訊號TR。具體來說,如圖7所示,當加速度值(速度時變量a)為零時,代表雷射光點SPT以等速度移動,加速度運算器2422此時判定雷射光點SPT的移動速度係為穩定,因此不發出觸發訊號TR到電流比例控制器26。在沒有收到觸發訊號TR的狀態下,電流比例控制器26並不會對泵浦驅動電流I o進行任何比例的調整,而是將原始的泵浦驅動電流I o(即最後一級放大器的泵浦驅動電流)傳送到第二泵浦源205。此時,雷射光束LB的輸出功率穩定地維持原有的大小,不會有任何的調變。 FIG. 5 shows that when there is a trigger signal TR, the current proportional controller 26 outputs the adjusted pump drive current I c . However, in another implementation state, the acceleration information indicates that the acceleration value is zero, and the acceleration calculator 2422 of the speed calculation device 242 decides not to output the trigger signal TR. Specifically, as shown in Figure 7, when the acceleration value (variable a at speed) is zero, it means that the laser spot SPT is moving at a constant speed, and the acceleration calculator 2422 determines that the moving speed of the laser spot SPT is stable at this time. Therefore, the trigger signal TR is not sent to the current proportional controller 26. When the trigger signal TR is not received, the current proportional controller 26 does not adjust the pump drive current I o in any proportion. Instead, it adjusts the original pump drive current I o (that is, the pump of the last stage amplifier). The driving current) is transmitted to the second pump source 205. At this time, the output power of the laser beam LB maintains its original size stably without any modulation.

請一併參照圖8A與圖8B,圖8A係繪示以既有的掃描式雷射系統進行雷射掃描加工的結果示意圖,圖8B係繪示以本發明實施例所提出的具有雷射動態補償功能的掃描式雷射系統進行雷射掃描加工的結果示意圖。以圖8A來說,由於既有的掃描式雷射系統並未能夠即時動態地調整雷射輸出功率,因此在雷射光點速度不穩定的轉角處PC1發生過度加工的情形,導致加工品質不良。Please refer to FIGS. 8A and 8B together. FIG. 8A is a schematic diagram showing the results of laser scanning processing with an existing scanning laser system, and FIG. 8B is a diagram showing the laser dynamics according to an embodiment of the present invention. A schematic diagram of the results of laser scanning processing performed by a scanning laser system with compensation function. Taking FIG. 8A as an example, because the existing scanning laser system cannot dynamically adjust the laser output power in real time, the PC1 is over-processed at the corner where the laser spot speed is unstable, resulting in poor processing quality.

反觀,以圖8B來說,透過上述本發明的掃描式雷射系統的動態補償方式,可以在雷射光點速度不穩定的轉角處PC2適時地調降雷射輸出功率,以彌補雷射光點的不穩定速度所帶來的過度加工的問題,使得整體雷射掃描加工的效果均勻,提升加工的品質。In contrast, taking Fig. 8B as an example, through the above-mentioned dynamic compensation method of the scanning laser system of the present invention, the PC2 can timely adjust the laser output power at the corner where the speed of the laser spot is unstable, so as to compensate for the laser spot. The over-processing problem caused by the unstable speed makes the overall laser scanning processing effect uniform and improves the processing quality.

請參照圖9,圖9係依據本發明之一實施例所繪示的掃描式雷射動態補償方法的方法流程圖,此方法適用於圖1及圖2或圖5的具有雷射動態補償功能的掃描式雷射系統。為了方便說明,以下將以圖9的方法搭配圖1及圖2的系統進行敘述。如圖9所示,在步驟S1中,以雷射源裝置10連續地產生可控式的雷射光束LB。在步驟S2中,以振鏡掃描裝置12的振鏡接收驅動電壓V a,以控制雷射光束LB聚焦在焦平面P1的雷射光點SPT進行掃描加工。 Please refer to FIG. 9. FIG. 9 is a method flowchart of a scanning laser dynamic compensation method according to an embodiment of the present invention. This method is suitable for the laser dynamic compensation function of FIG. 1 and FIG. 2 or FIG. 5 The scanning laser system. For the convenience of description, the method in FIG. 9 will be described below in conjunction with the systems in FIG. 1 and FIG. 2. As shown in FIG. 9, in step S1, the laser source device 10 is used to continuously generate a controllable laser beam LB. In step S2, the galvanometer scanning galvanometer 12 to receive the driving voltage V a, to control the laser beam LB is focused in the scanning laser beam spot SPT processing P1 of the focal plane.

在步驟S3中,以驅動電壓處理裝置14依據所述的驅動電壓V a取得雷射光點SPT的移動速度資訊。在步驟S4中,以驅動電壓處理裝置14依據雷射光點SPT的移動速度資訊產生觸發參數。在步驟S5中,以驅動電壓處理裝置14依據觸發參數決定是否輸出觸發訊號TR。 In step S3, the voltage to drive the processing means 14 acquires the moving speed of the laser light spot SPT information according to the driving voltage V a. In step S4, the driving voltage processing device 14 generates trigger parameters according to the moving speed information of the laser spot SPT. In step S5, the driving voltage processing device 14 determines whether to output the trigger signal TR according to the trigger parameter.

當驅動電壓處理裝置14決定輸出觸發訊號TR時,在步驟S6中,以電流比例控制器16接收觸發訊號TR並且調整泵浦驅動電流I o而將調整後的泵浦驅動電流(即校正的泵浦驅動電流I c)傳送到雷射源裝置10。反之,當驅動電壓處理裝置14決定不輸出觸發訊號TR時,在步驟S7中,電流比例控制器16不調整泵浦驅動電流I o並且將未調整之原始泵浦驅動電流I o傳送到雷射源裝置10。於一實施例中,以電流比例控制器16依據雷射光點SPT的移動速度資訊及設定移動速度資訊計算比例參數,並根據所述比例參數調整泵浦驅動電流I o。比例參數為雷射光點SPT的移動速度資訊的量測訊號值與設定移動速度資訊的設定訊號值的比值。 When the drive voltage processing device 14 decides to output the trigger signal TR, in step S6, the current proportional controller 16 receives the trigger signal TR and adjusts the pump drive current I o to change the adjusted pump drive current (ie, the corrected pump drive current). The driving current I c ) is transmitted to the laser source device 10. Conversely, when the drive voltage processing device 14 decides not to output the trigger signal TR, in step S7, the current proportional controller 16 does not adjust the pump drive current I o and transmits the unadjusted original pump drive current I o to the laser Source device 10. In one embodiment, the current proportional controller 16 calculates the proportional parameter according to the moving speed information of the laser spot SPT and the set moving speed information, and adjusts the pump drive current I o according to the proportional parameter. The ratio parameter is the ratio of the measured signal value of the movement speed information of the laser spot SPT to the set signal value of the set movement speed information.

請參照圖10,圖10係依據本發明之圖9實施例所繪示的掃描式雷射動態補償方法的細部方法流程圖。圖10實施例的步驟大致與圖9實施例相仿,惟差異在於圖10的步驟S3包括子步驟S31與S32。在子步驟S31中,以驅動電壓處理裝置14的電壓感測器141偵測輸入振鏡掃描裝置12的所述驅動電壓V a,並產生所述的輸出電壓訊號V 1,其中所述的輸出電壓訊號V 1正比於所述的驅動電壓V aPlease refer to FIG. 10. FIG. 10 is a detailed method flowchart of the scanning laser dynamic compensation method depicted in the embodiment of FIG. 9 of the present invention. The steps of the embodiment of FIG. 10 are roughly similar to those of the embodiment of FIG. 9, except that step S3 of FIG. 10 includes sub-steps S31 and S32. In sub-step S31, the driving voltage to voltage sensor 14 of the processing apparatus 141 detects the input of the scanning means 12 of the drive voltage V a, and generating said output voltage signal V 1, wherein said output voltage signal V 1 proportional to the drive voltage V a.

在子步驟S32中,以驅動電壓處理裝置14的速度運算裝置142依據所述的輸出電壓訊號V 1以產生所述的輸出電壓訊號V 1的時變量,據以取得雷射光點SPT的移動速度資訊。 In sub-step S32, the processing means driving voltage output speed calculating means 14 based on the voltage signal V 1 142 to produce the output voltage signal V 1 is a variable time, in order to obtain laser spots according to the moving speed of SPT News.

在圖10所示的方法中,於一種實施態樣下,以驅動電壓處理裝置14的速度運算裝置142依據所述的輸出電壓訊號V 1以產生所述的輸出電壓訊號V 1的時變量,據以取得雷射光點SPT的移動速度資訊包括:以速度運算裝置142的速度運算器1421對所述的輸出電壓訊號V 1執行第一微分運算而計算出所述的輸出電壓訊號V 1的時變量,以取得雷射光點SPT的移動速度資訊。 In the method shown in FIG. 10, to one aspect of the embodiment, the driving voltage to the processing means 14 output speed calculating means 142 based on the voltage signal V 1 to generate the output voltage signal V 1 when the variable, Obtaining the moving speed information of the laser spot SPT includes: using the speed calculator 1421 of the speed calculating device 142 to perform a first differential operation on the output voltage signal V 1 to calculate the time of the output voltage signal V 1 Variable to obtain the moving speed information of the laser spot SPT.

在圖10所示的方法中,於一種實施態樣下,以驅動電壓處理裝置14依據所述的振鏡的速度資訊產生觸發參數包括:以驅動電壓處理裝置14的速度運算裝置142根據雷射光點SPT的移動速度資訊產生加速度資訊作為觸發參數。In the method shown in FIG. 10, in an implementation aspect, generating the trigger parameter by the driving voltage processing device 14 according to the speed information of the galvanometer includes: using the speed calculation device 142 of the driving voltage processing device 14 according to the laser light The movement speed information of the point SPT generates acceleration information as the trigger parameter.

於上述的實施態樣中,以驅動電壓處理裝置14的速度運算裝置142根據雷射光點SPT的移動速度資訊產生加速度資訊作為觸發參數包括:以速度運算裝置142的加速度運算器1422對雷射光點的SPT移動速度資訊執行第二微分運算,以計算出加速度資訊作為觸發參數。In the above-mentioned embodiment, the speed calculation device 142 of the drive voltage processing device 14 generates acceleration information based on the movement speed information of the laser spot SPT as the trigger parameter, including: the acceleration calculator 1422 of the speed calculation device 142 responds to the laser spot The second differential operation is performed on the SPT moving speed information to calculate the acceleration information as the trigger parameter.

於前述的實施態樣中,以驅動電壓處理裝置14依據觸發參數決定是否輸出觸發訊號TR包括:以驅動電壓處理裝置14的速度運算裝置142判斷作為觸發參數的加速度資訊指示的加速度值是否為零。在一種情況下,當速度運算裝置142判斷加速度值不為零時,速度運算裝置142決定輸出觸發訊號TR。在另一種情況下,當速度運算裝置142判斷加速度值為零時,速度運算裝置142決定不輸出觸發訊號TR。In the foregoing embodiment, determining whether to output the trigger signal TR by the driving voltage processing device 14 according to the trigger parameter includes: determining whether the acceleration value indicated by the acceleration information as the trigger parameter is zero by the speed calculation device 142 of the driving voltage processing device 14 . In one case, when the speed calculation device 142 determines that the acceleration value is not zero, the speed calculation device 142 determines to output the trigger signal TR. In another case, when the speed calculation device 142 determines that the acceleration value is zero, the speed calculation device 142 decides not to output the trigger signal TR.

綜上所述,在本發明提出的具有雷射動態補償功能的掃描式雷射系統以及掃描式雷射動態補償方法中,主要係透過監控振鏡掃描裝置的驅動電壓,透過驅動電壓處理裝置對驅動電壓進行演算及分析來判斷雷射聚焦點在焦平面上的移動速度變化狀態,並且在速度不穩定階段,藉由電流比例控制器調整泵浦驅動電流的大小,據以在雷射源裝置的最後一級放大器直接調控所輸出的雷射光束的功率,因此,可以在不關閉雷射光源或改變雷射脈衝頻率的情況下,即時動態地調整雷射輸出功率,避免過度加工的問題並且達到均勻的雷射加工效果。In summary, in the scanning laser system with laser dynamic compensation function and the scanning laser dynamic compensation method proposed in the present invention, the driving voltage of the galvanometer scanning device is monitored, and the driving voltage processing device is used to monitor the driving voltage of the galvanometer scanning device. The driving voltage is calculated and analyzed to determine the changing state of the moving speed of the laser focusing point on the focal plane, and in the phase of unstable speed, the current proportional controller is used to adjust the pump driving current, according to the laser source device The last stage of the amplifier directly regulates the power of the output laser beam. Therefore, the laser output power can be dynamically adjusted in real time without turning off the laser light source or changing the laser pulse frequency, avoiding the problem of over-processing and achieving Uniform laser processing effect.

雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。Although the present invention is disclosed in the foregoing embodiments, it is not intended to limit the present invention. All changes and modifications made without departing from the spirit and scope of the present invention fall within the scope of the patent protection of the present invention. For the scope of protection defined by the present invention, please refer to the attached scope of patent application.

1:具有雷射動態補償功能的掃描式雷射系統 10、20:雷射源裝置 101、201:雷射種子源 102、202:第一級放大器 103、203:第二級放大器 104、204:第一泵浦源 105、205:第二泵浦源 106、206:光準直鏡 12、22:振鏡掃描裝置 121、 221、223:電機 122、123、222、224:反射件 124、225:透鏡 14、24:驅動電壓處理裝置 141、241:電壓感測器 142、242:速度運算裝置 1421、1422:速度運算器 1422、2422:加速度運算器 16、26:電流比例控制器 TR:觸發訊號 I o:泵浦驅動電流 SPT:雷射光點 LB:雷射光束 V a、V b:驅動電壓 V 1、V 2:輸出電壓訊號 SD:種子雷射光 P1、P2:焦平面 CP1~CP8:運算放大器 R、R c、R f、R1~R7:電阻 C i:電容 S t、S 1、S 2:移動速度資訊 SV1、SV2:曲線 a 1、a 2:加速度值 X1、X2、Y1、Y2、+Vs、-Vs、OUT、Z:端點1: Scanning laser system with laser dynamic compensation function 10, 20: Laser source device 101, 201: Laser seed source 102, 202: First-stage amplifier 103, 203: Second-stage amplifier 104, 204: First pump source 105, 205: Second pump source 106, 206: Optical collimator 12, 22: Galvanometer scanning device 121, 221, 223: Motor 122, 123, 222, 224: Reflector 124, 225 : Lens 14, 24: Drive voltage processing device 141, 241: Voltage sensor 142, 242: Speed calculation device 1421, 1422: Speed calculator 1422, 2422: Acceleration calculator 16, 26: Current proportional controller TR: Trigger signal I o: pump drive current SPT: laser spots LB: laser beam V a, V b: the drive voltage V 1, V 2: output voltage signal SD: seed laser light P1, P2: focal plane CP1 ~ CP8: Operational amplifier R, R c , R f , R1~R7: resistance C i : capacitance S t , S 1 , S 2 : moving speed information SV1, SV2: curve a 1 , a 2 : acceleration value X1, X2, Y1 Y2, +Vs, -Vs, OUT, Z: endpoint

圖1係依據本發明之一實施例所繪示的具有雷射動態補償功能的掃描式雷射系統的功能方塊圖。 圖2係依據本發明之圖1實施例所繪示的具有雷射動態補償功能的掃描式雷射系統的細部架構圖。 圖3係依據本發明之一實施例所繪示的具有雷射動態補償功能的掃描式雷射系統的各項參數在時間上的波形圖。 圖4係依據本發明之一實施例所繪示的雷射功率與速度關係圖。 圖5係依據本發明之圖1實施例所繪示的具有雷射動態補償功能的掃描式雷射系統的另一細部架構圖。 圖6係依據本發明之一實施例所繪示的速度運算裝置的電路架構圖。 圖7係依據本發明之另一實施例所繪示的具有雷射動態補償功能的掃描式雷射系統的各項參數在時間上的波形圖。 圖8A係繪示以既有的掃描式雷射系統進行雷射掃描加工的結果示意圖。 圖8B係繪示以本發明實施例所提出的具有雷射動態補償功能的掃描式雷射系統進行雷射掃描加工的結果示意圖。 圖9係依據本發明之一實施例所繪示的掃描式雷射動態補償方法的方法流程圖。 圖10係依據本發明之圖9實施例所繪示的掃描式雷射動態補償方法的細部方法流程圖。 FIG. 1 is a functional block diagram of a scanning laser system with laser dynamic compensation function according to an embodiment of the present invention. 2 is a detailed architecture diagram of a scanning laser system with laser dynamic compensation function according to the embodiment of FIG. 1 of the present invention. FIG. 3 is a time waveform diagram of various parameters of a scanning laser system with laser dynamic compensation function according to an embodiment of the present invention. Fig. 4 is a diagram showing the relationship between laser power and speed according to an embodiment of the present invention. FIG. 5 is another detailed architecture diagram of the scanning laser system with laser dynamic compensation function according to the embodiment of FIG. 1 of the present invention. FIG. 6 is a circuit structure diagram of a speed calculation device according to an embodiment of the present invention. FIG. 7 is a time waveform diagram of various parameters of a scanning laser system with laser dynamic compensation function according to another embodiment of the present invention. FIG. 8A is a schematic diagram showing the result of laser scanning processing with an existing scanning laser system. FIG. 8B is a schematic diagram showing the result of laser scanning processing with the scanning laser system with laser dynamic compensation function proposed by the embodiment of the present invention. FIG. 9 is a method flowchart of a scanning laser dynamic compensation method according to an embodiment of the present invention. FIG. 10 is a detailed method flowchart of the scanning laser dynamic compensation method depicted in the embodiment of FIG. 9 according to the present invention.

1:具有雷射動態補償功能的掃描式雷射系統 1: Scanning laser system with laser dynamic compensation function

10:雷射源裝置 10: Laser source device

12:振鏡掃描裝置 12: Galvanometer scanning device

14:驅動電壓處理裝置 14: Drive voltage processing device

16:電流比例控制器 16: current proportional controller

Claims (15)

一種具有雷射動態補償功能的掃描式雷射系統,包括:一雷射源裝置,連續地產生可控式的一雷射光束;一振鏡掃描裝置,包括一或多個振鏡,該一或多個振鏡根據一或多個驅動電壓而運作,該振鏡掃描裝置控制該雷射光束聚焦形成一雷射光點在一焦平面以進行掃描加工;一驅動電壓處理裝置,連接該振鏡掃描裝置,該驅動電壓處理裝置依據該一或多個驅動電壓取得該雷射光點的移動速度資訊,該驅動電壓處理裝置更依據該雷射光點的移動速度資訊產生一觸發參數以決定是否輸出一觸發訊號;以及一電流比例控制器,連接該雷射源裝置及該驅動電壓處理裝置,以輸出一泵浦驅動電流至該雷射源裝置,該電流比例控制器在接收到該觸發訊號時依據該雷射光點的移動速度資訊調整該泵浦驅動電流,以調變該雷射光束的功率。 A scanning laser system with laser dynamic compensation function includes: a laser source device that continuously generates a controllable laser beam; a galvanometer scanning device, including one or more galvanometers, the one Or a plurality of galvanometers operate according to one or more driving voltages, the galvanometer scanning device controls the laser beam to focus to form a laser spot on a focal plane for scanning processing; a driving voltage processing device is connected to the galvanometer Scanning device, the drive voltage processing device obtains the moving speed information of the laser spot according to the one or more drive voltages, the drive voltage processing device further generates a trigger parameter according to the moving speed information of the laser spot to determine whether to output a Trigger signal; and a current proportional controller connected to the laser source device and the drive voltage processing device to output a pumped drive current to the laser source device, the current proportional controller according to when receiving the trigger signal The moving speed information of the laser spot adjusts the pump driving current to adjust the power of the laser beam. 如請求項1所述的掃描式雷射系統,其中該驅動電壓處理裝置包括:一電壓感測器,連接該振鏡掃描裝置,該電壓感測器用以偵測輸入該振鏡掃描裝置的該一或多個驅動電壓,並產生一或多個輸出電壓訊號,該一或多個輸出電壓訊號正比於該一或多個驅動電壓;以及一速度運算裝置,連接該電壓感測器,該速度運算裝置依據該一或多個輸出電壓訊號產生該一或多個輸出電壓訊號的時變量,據以取得該雷射光點的移動速度資訊。 The scanning laser system according to claim 1, wherein the driving voltage processing device includes: a voltage sensor connected to the galvanometer scanning device, and the voltage sensor is used to detect the input to the galvanometer scanning device One or more driving voltages and generating one or more output voltage signals, the one or more output voltage signals being proportional to the one or more driving voltages; and a speed computing device connected to the voltage sensor, the speed The arithmetic device generates the time variable of the one or more output voltage signals according to the one or more output voltage signals, and obtains the moving speed information of the laser spot accordingly. 如請求項2所述的掃描式雷射系統,其中該速度運算裝置包括:一速度運算器,連接該電流比例控制器與該電壓感測器,該速度運算器用以對該一或多個輸出電壓訊號執行一第一微分運算而計算出該一或多個輸出電壓訊號的時變量,以取得該雷射光點的移動速度資訊。 The scanning laser system according to claim 2, wherein the speed calculation device comprises: a speed calculator connected to the current proportional controller and the voltage sensor, and the speed calculator is used to output the one or more The voltage signal performs a first differential operation to calculate the time variable of the one or more output voltage signals to obtain the moving speed information of the laser spot. 如請求項2所述的掃描式雷射系統,其中該速度運算裝置更根據該雷射光點的移動速度資訊產生一加速度資訊作為該觸發參數,以決定是否輸出該觸發訊號。 The scanning laser system according to claim 2, wherein the speed calculation device further generates acceleration information as the trigger parameter according to the moving speed information of the laser spot to determine whether to output the trigger signal. 如請求項4所述的掃描式雷射系統,其中該速度運算裝置包括:一加速度運算器,連接該電流比例控制器,該加速度運算器用以對該雷射光點的移動速度資訊執行一第二微分運算而計算出該加速度資訊。 The scanning laser system according to claim 4, wherein the speed calculation device includes: an acceleration calculator connected to the current proportional controller, and the acceleration calculator is used to perform a second operation on the movement speed information of the laser spot The acceleration information is calculated by differential operation. 如請求項4所述的掃描式雷射系統,其中該加速度資訊指示一加速度值為非零,該速度運算裝置決定輸出該觸發訊號,且該電流比例控制器使用該雷射光點的移動速度資訊調整該泵浦驅動電流。 The scanning laser system according to claim 4, wherein the acceleration information indicates that an acceleration value is non-zero, the speed calculation device determines to output the trigger signal, and the current proportional controller uses the moving speed information of the laser spot Adjust the pump drive current. 如請求項1所述的掃描式雷射系統,其中該電流比例控制器依據該雷射光點的移動速度資訊及一設定移動速度資訊計算一比例參數,並且根據該比例參數調整該泵浦驅動電流,其中該比例參數為該雷射光點的移動速度資訊的一量測訊號值與該設定移動速度資訊的一設定訊號值的比值。 The scanning laser system according to claim 1, wherein the current proportional controller calculates a proportional parameter according to the moving speed information of the laser spot and a set moving speed information, and adjusts the pump drive current according to the proportional parameter , Wherein the ratio parameter is the ratio of a measured signal value of the moving speed information of the laser spot to a set signal value of the set moving speed information. 如請求項4所述的掃描式雷射系統,其中該加速度資訊指示一加速度值為零,該速度運算裝置決定不輸出該觸發訊號,且該電流比例控制器不調整該泵浦驅動電流。 The scanning laser system according to claim 4, wherein the acceleration information indicates that an acceleration value is zero, the speed calculation device decides not to output the trigger signal, and the current proportional controller does not adjust the pump driving current. 一種掃描式雷射動態補償方法,包括:以一雷射源裝置連續地產生可控式的一雷射光束;以一振鏡掃描裝置的一或多個振鏡接收一或多個驅動電壓,以控制該雷射光束聚焦在一焦平面的一雷射光點進行掃描加工;以一驅動電壓處理裝置依據該一或多個驅動電壓取得該雷射光點的移動速度資訊;以該驅動電壓處理裝置依據該雷射光點的移動速度資訊產生一觸發參數;以該驅動電壓處理裝置依據該觸發參數決定是否輸出一觸發訊號;以及以一電流比例控制器輸出一泵浦驅動電流到該雷射源裝置,並且在該電流比例控制器接收到該觸發訊號時使用該雷射光點的移動速度資訊調整該泵浦驅動電流,以調變該雷射光束的功率。 A scanning laser dynamic compensation method includes: using a laser source device to continuously generate a controllable laser beam; using one or more galvanometers of a galvanometer scanning device to receive one or more driving voltages, The laser beam is controlled to focus on a laser spot on a focal plane for scanning processing; a driving voltage processing device obtains the moving speed information of the laser spot according to the one or more driving voltages; the driving voltage processing device Generate a trigger parameter based on the moving speed information of the laser spot; use the drive voltage processing device to determine whether to output a trigger signal based on the trigger parameter; and use a current proportional controller to output a pump drive current to the laser source device And when the current proportional controller receives the trigger signal, the moving speed information of the laser spot is used to adjust the pump driving current to adjust the power of the laser beam. 如請求項9所述的掃描式雷射動態補償方法,其中以該驅動電壓處理裝置依據該一或多個驅動電壓取得該雷射光點的移動速度資訊包括:以該驅動電壓處理裝置的一電壓感測器偵測輸入該振鏡掃描裝置的該一或多個驅動電壓,並產生一或多個輸出電壓訊號,其中該一或多個輸出電壓訊號正比於該一或多個驅動電壓;以及 以該驅動電壓處理裝置的一速度運算裝置依據該一或多個輸出電壓訊號以產生該一或多個輸出電壓訊號的時變量,據以取得該雷射光點的移動速度資訊。 The scanning laser dynamic compensation method according to claim 9, wherein obtaining the moving speed information of the laser spot by the driving voltage processing device according to the one or more driving voltages includes: processing a voltage of the driving voltage The sensor detects the one or more driving voltages input to the galvanometer scanning device, and generates one or more output voltage signals, wherein the one or more output voltage signals are proportional to the one or more driving voltages; and A speed calculation device of the driving voltage processing device generates the time variable of the one or more output voltage signals according to the one or more output voltage signals, so as to obtain the moving speed information of the laser spot. 如請求項10所述的掃描式雷射動態補償方法,其中以該驅動電壓處理裝置的該速度運算裝置依據該一或多個輸出電壓訊號以產生該一或多個輸出電壓訊號的時變量,據以取得該雷射光點的移動速度資訊包括:以該速度運算裝置的一速度運算器對該一或多個輸出電壓訊號執行一第一微分運算而計算出該一或多個輸出電壓訊號的時變量,以取得該雷射光點的移動速度資訊。 The scanning laser dynamic compensation method according to claim 10, wherein the speed calculation device of the drive voltage processing device generates the time variable of the one or more output voltage signals according to the one or more output voltage signals, Obtaining the moving speed information of the laser spot includes: using a speed calculator of the speed calculating device to perform a first differential operation on the one or more output voltage signals to calculate the one or more output voltage signals Time variable to obtain the moving speed information of the laser spot. 如請求項9所述的掃描式雷射動態補償方法,其中以該驅動電壓處理裝置依據該雷射光點的速度資訊產生該觸發參數包括:以該驅動電壓處理裝置的一速度運算裝置根據該雷射光點的移動速度資訊產生一加速度資訊作為該觸發參數。 The scanning laser dynamic compensation method according to claim 9, wherein generating the trigger parameter by the driving voltage processing device according to the speed information of the laser spot includes: using a speed calculation device of the driving voltage processing device according to the laser The moving speed information of the light emitting point generates acceleration information as the trigger parameter. 如請求項12所述的掃描式雷射動態補償方法,其中以該驅動電壓處理裝置的該速度運算裝置根據該雷射光點的移動速度資訊產生該加速度資訊作為該觸發參數包括:以該速度運算裝置的一加速度運算器對該雷射光點的移動速度資訊執行一第二微分運算,以計算出該加速度資訊作為該觸發參數。 The scanning laser dynamic compensation method according to claim 12, wherein the speed calculation device of the driving voltage processing device generates the acceleration information as the trigger parameter according to the moving speed information of the laser spot includes: calculating at the speed An acceleration calculator of the device performs a second differential operation on the movement speed information of the laser spot to calculate the acceleration information as the trigger parameter. 如請求項12所述的掃描式雷射動態補償方法,其中以該驅動電壓處理裝置依據該觸發參數決定是否輸出該觸發訊號包括: 以該驅動電壓處理裝置的該速度運算裝置判斷作為該觸發參數的該加速度資訊指示的一加速度值是否為零;當該速度運算裝置判斷該加速度值不為零時,該速度運算裝置決定輸出該觸發訊號;以及當該速度運算裝置判斷該加速度值為零時,該速度運算裝置決定不輸出該觸發訊號。 The scanning laser dynamic compensation method according to claim 12, wherein the driving voltage processing device determines whether to output the trigger signal according to the trigger parameter includes: The speed calculation device of the drive voltage processing device determines whether an acceleration value indicated by the acceleration information as the trigger parameter is zero; when the speed calculation device determines that the acceleration value is not zero, the speed calculation device determines to output the Trigger signal; and when the speed calculation device determines that the acceleration value is zero, the speed calculation device decides not to output the trigger signal. 如請求項9所述的掃描式雷射動態補償方法,其中在該電流比例控制器接收到該觸發訊號時使用該雷射光點的移動速度資訊調整該泵浦驅動電流包括:以該電流比例控制器依據該雷射光點的移動速度資訊及一設定移動速度資訊計算一比例參數,並根據該比例參數調整該泵浦驅動電流,其中該比例參數為該雷射光點的移動速度資訊的一量測訊號值與該設定移動速度資訊的一設定訊號值的比值。 The scanning laser dynamic compensation method according to claim 9, wherein when the current proportional controller receives the trigger signal, using the moving speed information of the laser spot to adjust the pump drive current includes: controlling the current proportionally The device calculates a proportional parameter according to the moving speed information of the laser spot and a set moving speed information, and adjusts the pump drive current according to the proportional parameter, wherein the proportional parameter is a measurement of the moving speed information of the laser spot The ratio of the signal value to a set signal value of the set moving speed information.
TW108142142A 2019-11-20 2019-11-20 Scanning laser system with capability of laser dynamic compensation and method of scanning laser dynamic compensation TWI724640B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW108142142A TWI724640B (en) 2019-11-20 2019-11-20 Scanning laser system with capability of laser dynamic compensation and method of scanning laser dynamic compensation
CN201911292290.0A CN112825405A (en) 2019-11-20 2019-12-16 Scanning laser system capable of laser dynamic compensation and laser dynamic compensation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108142142A TWI724640B (en) 2019-11-20 2019-11-20 Scanning laser system with capability of laser dynamic compensation and method of scanning laser dynamic compensation

Publications (2)

Publication Number Publication Date
TWI724640B true TWI724640B (en) 2021-04-11
TW202120239A TW202120239A (en) 2021-06-01

Family

ID=75906465

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108142142A TWI724640B (en) 2019-11-20 2019-11-20 Scanning laser system with capability of laser dynamic compensation and method of scanning laser dynamic compensation

Country Status (2)

Country Link
CN (1) CN112825405A (en)
TW (1) TWI724640B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117620419B (en) * 2024-01-23 2024-03-29 深圳市智鼎自动化技术有限公司 Intelligent laser scanning galvanometer system
CN117733343B (en) * 2024-02-21 2024-05-03 北京金橙子科技股份有限公司 Shaking welding method and control device based on motion speed feedback

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201116355A (en) * 2009-11-13 2011-05-16 M Solv Ltd Method and apparatus for compensating for off-axis focal spot distortion
TW201322573A (en) * 2011-11-18 2013-06-01 Ind Tech Res Inst Apparatus for controlling laser
US20190221998A1 (en) * 2016-02-15 2019-07-18 Furukawa Electric Co., Ltd. Wavelength tunable laser module and method of controlling wavelength thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191382B1 (en) * 1998-04-02 2001-02-20 Avery Dennison Corporation Dynamic laser cutting apparatus
CN106607645A (en) * 2015-10-21 2017-05-03 上海微电子装备有限公司 Laser packaging system and method for temperature control in laser packaging process
JP2018030162A (en) * 2016-08-26 2018-03-01 ファナック株式会社 Laser control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201116355A (en) * 2009-11-13 2011-05-16 M Solv Ltd Method and apparatus for compensating for off-axis focal spot distortion
TW201322573A (en) * 2011-11-18 2013-06-01 Ind Tech Res Inst Apparatus for controlling laser
US20190221998A1 (en) * 2016-02-15 2019-07-18 Furukawa Electric Co., Ltd. Wavelength tunable laser module and method of controlling wavelength thereof

Also Published As

Publication number Publication date
TW202120239A (en) 2021-06-01
CN112825405A (en) 2021-05-21

Similar Documents

Publication Publication Date Title
TWI724640B (en) Scanning laser system with capability of laser dynamic compensation and method of scanning laser dynamic compensation
US9405211B2 (en) Light source drive circuit, optical scanning apparatus, and image forming apparatus
JP2013161069A (en) Image display unit
JP2019503866A (en) Temporal control at fine scale for laser processing
CN108072972B (en) Laser galvanometer device correction system and method
CN108873314B (en) Stabilization of the opening angle of a micromirror by current drive control
CN108594869A (en) A kind of micro mirror control method and its system based on resonance point real-time estimation
US8684538B2 (en) Image projection through grid scanning of a modulated light beam using mirrors
WO2020087690A1 (en) Signal adjustment method and laser scanning projection device
US9268129B2 (en) Driving calibration apparatus of electrostatic MEMS scanning mirror and driving calibration method thereof
WO2011125494A1 (en) Optical scanning device and image display device
US10491866B2 (en) Actuator controlling device, drive system, video device, image projection device, and actuator controlling method
JP6957113B2 (en) Laser control device
JP2011180450A (en) Optical scanner and image display device including the same
CN114396928B (en) Laser gyro frequency stabilization method and system
JP2012078392A (en) Scanning type image display device
JP5426939B2 (en) Display device
CN112548319B (en) Control method, device and system of handheld laser welding equipment
CN110764251B (en) Method and device for driving scanning micro-mirror to rotate
CN112688155A (en) Control method and control system for laser light intensity
KR100379780B1 (en) System and methode for automatically tuning of laser scanner
KR20190079596A (en) Method for controlling ir source
JP2000035803A (en) Method for controlling controlled variable
TW200540586A (en) Leveling apparatus
JP2014106378A (en) Image display device