TW201115773A - Method of manufacturing absorption layer of solar cells and its structure - Google Patents

Method of manufacturing absorption layer of solar cells and its structure Download PDF

Info

Publication number
TW201115773A
TW201115773A TW098136748A TW98136748A TW201115773A TW 201115773 A TW201115773 A TW 201115773A TW 098136748 A TW098136748 A TW 098136748A TW 98136748 A TW98136748 A TW 98136748A TW 201115773 A TW201115773 A TW 201115773A
Authority
TW
Taiwan
Prior art keywords
solar cell
slurry
coating
copper
layer
Prior art date
Application number
TW098136748A
Other languages
Chinese (zh)
Other versions
TWI406431B (en
Inventor
Chiu-Hsiang Wu
Original Assignee
Bosin Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosin Technology Co Ltd filed Critical Bosin Technology Co Ltd
Priority to TW098136748A priority Critical patent/TWI406431B/en
Publication of TW201115773A publication Critical patent/TW201115773A/en
Application granted granted Critical
Publication of TWI406431B publication Critical patent/TWI406431B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

Disclosed is a method of manufacturing absorption layer of solar cells and its structure. According the method, a substrate of the solar cells is provided, and a copper-rich first coating and a copper-poor second coating are formed on the substrate by printing in order. A selenization heat treatment is provided, and the first coating and the second coating are sintered to form a compact CIGS film with large grains. Because the first coating has the lower melting point than the second coating, the first coating is firstly forming liquid phase. The internal stress of binding sinter is reduced by the liquid-phase sintering to increase the conversion efficiency of the solar cells. Furthermore, the vacuum process is replaced by size-coating process to increase the output and to reduce the production costs.

Description

201115773 六、發明說明: 【發明所屬之技術領域】 本發明係有關於太陽能塗層’特別係有關於一種太陽 能電池吸收層之製造方法與結構。 【先前技術】 目則太陽能電池產業中,以銅銦鎵硒(CIGS)系列的薄201115773 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a solar coating, particularly to a method and structure for fabricating an absorption layer of a solar cell. [Prior Art] In the solar cell industry, the copper indium gallium selenide (CIGS) series is thin.

膜光m牛是擁#最冑效率者’與非晶石夕薄膜太陽能電 池之光裂化的效應相比,在穩定度與抗輻射特性之表 現’ cIGS薄膜光伏元件可說是備受青睞。而cigs薄膜 太陽能電池目前產業中主要作法是以鈉玻璃作為基板, 鍍上金屬鉬(Mo)為背電極,然後在M〇電極之上以共蒸 鍍法或濺鍍法製作CIGS吸收層,其中CIGS(CuIn(Ja/Se^ 屬於p型半導體,主要負責元件中吸收光能的角色。 現今製作銅錮鎵硒吸收層的方法主要是採用真空製 程,包含了蒸鍍法與濺鍍法。進一步而言,目前以真空 製程來製作硒化銅銦鎵薄膜吸收層的技術已臻成熟,所 製得之元件亦具有相當高的轉換率,然而沉積薄膜的程 序必須於真空的環境下進行,不僅設備的價格昂貴同 時製程中原料的使用並不經濟,製程放大時亦容易造成 薄膜產品的成分不均勻。為了克服前述問題近來許多 學者積極地研究開發非真空製程,包括電鍍沉積法、喷 霧熱解法以及漿料塗佈法。其中,漿料塗佈法是直接使 用栖化物奈轉末作為原料,透過#體製程製備碼化銅 鋼錄薄膜,可大幅降低薄膜太陽能電池之生產成本,並 201115773 可降低在硒化熱處理過程中薄膜成份不均勻的問題β 然而,此製程目前最大的問題在於硒化熱處理過程& 法使晶粒有效地成長,達不到薄膜緻密化的效果。如$Compared with the effect of photocracking of amorphous Aussie thin-film solar cells, the film light m cow is the most efficient one. The stability and radiation resistance characteristics of the cIGS thin film photovoltaic elements are highly recommended. The main practice in the current industry of cigs thin film solar cells is to use sodium glass as the substrate, metal molybdenum (Mo) as the back electrode, and then the CIGS absorber layer is formed by co-evaporation or sputtering on the M electrode. CIGS (CuIn (Ja/Se^ is a p-type semiconductor, mainly responsible for the role of absorbing light energy in components. Today's method for making copper-germanium gallium selenide absorber layer is mainly vacuum process, including vapor deposition method and sputtering method. In fact, the technology for fabricating the absorbing layer of copper indium gallium selenide film by vacuum process is mature, and the components produced have a relatively high conversion rate. However, the process of depositing the film must be carried out in a vacuum environment, not only The cost of the equipment is expensive and the use of raw materials in the process is not economical. It is easy to cause unevenness of the film product during the process enlargement. In order to overcome the above problems, many scholars have actively researched and developed non-vacuum processes, including electroplating deposition and spray heat. A solution method and a slurry coating method, wherein the slurry coating method directly uses the herbicide naphtha as a raw material, and prepares the code through the #system process. Steel film can greatly reduce the production cost of thin film solar cells, and 201115773 can reduce the problem of uneven film composition during selenization heat treatment. However, the biggest problem in this process is the selenization heat treatment process. Effectively grows, does not achieve the effect of film densification. Such as $

1圖所示,由於習知的漿料塗佈法係直接塗佈一層 吸收層140於玻璃基板110上,在硒化熱處理過程中會 對CIGS吸收層140產生束缚燒結之内應力,並在CI(js 吸收層140兩側產生張應力T,導致CIGS吸收層14〇 無法有效地使晶粒成長,且在CIGS吸收層140内產生 孔隙1 4 1或裂痕1 42,故無法達到薄膜緻密化的欵果(如 第2圖所示),以致於太陽能電池之轉換率低。 目前在本產業中,以聚料塗佈法開發砸化銅鋼錄、 太陽能電池的主要廠商為Nanosolar,其使用技術是利用 捲對捲(roll-to-roll)的大量生產製程,將銅銦鎵硒直接塗 佈於鋁箔基板上,製成可撓式太陽能電池,其製程專利 的技術如以下分析: 廠商名稱:Nanosolar 美國專利申請案號 技術分析 20060062902 以I,III,VI之元素態粉末合成雙層殼層結構之粉體,< 是分別以Cu作為核,分別將In, Ga批附其表面,均勻分散 後進行硒化熱處理。 20060207644 以各元素之奈米顆粒均勻混合,添加分散劑與黏結劑等 製成水系漿料,並調控In與Ga之間比例來調整能隙值, 在適當的溫度氣氛下反應成膜。 20070166453 先於基材塗佈一層Cu-In-Ga合金,再將VI元素覆蓋於合 金上,經過375°C熱處理形成〇.5〜4.0/nn之膜厚。 201115773 20071063639 首先合成缺栖之二元成分(Cu_Se,化-免或以—知)微米 平板’並利用添加VI元素方式填補其中空隙,再以富硒 顆粒披附於上層,以擴散作用達到成分均勻與緻密性薄 膜。 20070163644 20070092648 以I-VI,III-VI, I-III-VI族之化合物作為前趨粉,後續 添加VI進行混合或包覆,熱處理370°c〜500°c獲得緻密性 薄膜。另外,利用富硒之二元化合(CuSe,InSe,GaSe)進 行摻混後製膜,並於熔融溫度以上進行熱處理’獲得組 成均勻之I-III-VI之薄膜。 【發明内容】 為了解決上述問題,本發明之主要目的係在於提供一 種太陽能電池吸收層之製造方法與結構,藉由液相燒結 來降低束縛燒結之内應力,進而生成緻密且晶粒大之整 層銅銦鎵硒(CIGS)薄膜,以提升太陽能電池之轉換率。 本發明之次一目的係在於提供一種太陽能電池吸收 層之製造方法與結構,改採非真空之漿料塗佈製程,除 了能減少原料使用量,並免除使用真空鍍膜機台之成 • 本,更可提升整體產量,進而大幅降低生產成本。 明的目的及解決其技術問題是採用以下技術方案來 實現的。本發明揭示一種太陽能電池吸收層之製造方 法,主要包含有以下步驟:一種太陽能電池吸收層之製 造方法,包含:提供一太陽能電池基板。形成一第一漿 料於該太陽能電池基板上,該第一漿料係包含富銅粉 末、有機溶劑以及分散劑,富銅粉末之化學式係為 Cuyl(InxGal-x)(SeS)2 或 Cu2-zSe,其中 yl> 1、〇.4$χ SO.8及進行第一次乾燥,以移除該第一漿料[ 201115773 第燥而使該第一漿料形成為-第-塗層。使該 該第-麼“之後形成一第二漿料於該第一塗層上, 聚料係包含缺銅粉末、有機溶劑以及分散劑缺 之化學式係為CUy2(InxGal_x)(SeS)2,其中 及 〇.4Sx^〇8。 — 、 進仃第一^人乾燥,以移除該第二漿料 有機溶劑,而使兮篦_ «Μ第一漿枓形成為一第二塗層。 一 硒化熱處理,以焯钍 進行一 現、、,0該第一塗層與該第二塗層,As shown in Fig. 1, since the conventional slurry coating method directly coats an absorbing layer 140 on the glass substrate 110, the internal stress of the restrained sintering of the CIGS absorbing layer 140 is generated during the selenization heat treatment, and is in CI. (The tensile stress T is generated on both sides of the js absorption layer 140, so that the CIGS absorption layer 14〇 cannot effectively grow the crystal grains, and the pores 14 1 or the cracks 1 42 are generated in the CIGS absorption layer 140, so that the film densification cannot be achieved. The result (as shown in Fig. 2), so that the conversion rate of solar cells is low. At present, in this industry, the main manufacturer of copper-plated steel and solar cells developed by the polymer coating method is Nanosolar, and its technology is used. It is a roll-to-roll mass production process that directly applies copper indium gallium selenide to an aluminum foil substrate to form a flexible solar cell. The process patent technology is as follows: Manufacturer Name: Nanosolar US Patent Application No. 20060062902 Synthesize a powder of a double-shell structure with elemental powders of I, III, VI, < is to use Cu as a core, respectively, and inject it to the surface of In, Ga, and uniformly disperse backward Selenization heat treatment 20060207644 The water particles are uniformly mixed with the nanoparticles of each element, and a dispersant and a binder are added to prepare an aqueous slurry, and the ratio between In and Ga is adjusted to adjust the energy gap value, and the reaction is carried out under an appropriate temperature atmosphere. 20070166453 Coating a layer of Cu-In-Ga alloy on the substrate, and then covering the alloy with VI element, and forming a film thickness of 〇5~4.0/nn after heat treatment at 375 °C. 201115773 20071063639 First synthesis of the lack of habitat Binary composition (Cu_Se, chemical-free or - know) micro-plate 'and fills the voids by adding VI element, and then selenium-rich particles are attached to the upper layer to diffuse to achieve uniform and dense film. 20070163644 20070092648 Compounds of Groups I-VI, III-VI, I-III-VI are used as precursor powders, followed by addition of VI for mixing or coating, and heat treatment at 370 ° C to 500 ° C to obtain a dense film. The binary compound (CuSe, InSe, GaSe) is formed by blending, and is heat-treated at a temperature above the melting temperature to obtain a film of uniform composition I-III-VI. [Invention] In order to solve the above problems, the present invention The main purpose of the invention is to provide a method and structure for fabricating an absorption layer of a solar cell, which reduces the internal stress of the bound sintering by liquid phase sintering, thereby forming a dense and large-grained copper indium gallium selenide (CIGS) film. Increasing the conversion rate of the solar cell. The second object of the present invention is to provide a method and structure for manufacturing a solar cell absorbing layer, which is a non-vacuum slurry coating process, which can reduce the amount of raw materials used and eliminate the use of vacuum coating. The machine's success • This can increase overall production and significantly reduce production costs. The purpose of Ming and its technical problems are solved by the following technical solutions. The invention discloses a method for manufacturing an absorption layer of a solar cell, which mainly comprises the following steps: a method for manufacturing an absorption layer of a solar cell, comprising: providing a solar cell substrate. Forming a first slurry on the solar cell substrate, the first slurry comprising a copper-rich powder, an organic solvent, and a dispersing agent, and the chemical formula of the copper-rich powder is Cuyl(InxGal-x)(SeS)2 or Cu2- zSe, wherein yl > 1, 〇.4$χ SO.8, and the first drying is performed to remove the first slurry [201115773] so that the first slurry is formed into a -th coat. The first slurry is formed on the first coating layer, and the chemical system containing the copper-deficient powder, the organic solvent and the dispersing agent is CUy2(InxGal_x)(SeS)2, wherein And 〇.4Sx^〇8 — —, the first person is dried to remove the second slurry organic solvent, and the 兮篦_ «Μ first pulp is formed into a second coating. Heat treatment, the first coating and the second coating are performed with 焯钍,

成敏密且晶 曰粒大之一銅銦鎵硒薄膜,由於富銅粉末相 於缺銅粉支 具有較低之熔點,使該第一塗層先行生成液 相:藉由液相燒結來降低束缚燒結之内應力。本發明另 揭示運用刖述方法所形成之太陽能電池吸收層之結構。 本發明的目的及解決其技術問題還可採用以下技術 措施進一步實現。 在前述之太陽能電池吸收層之製造方法中,該些有機 ’合劑係可選自於甲苯、氣仿(ehl_fQrm)、二甲基甲酿胺 (N’N-Dimethylf0rmamide)、二甲基亞砜(Dimethyi sulfoxide)與吡咬(pyridine)之其中之一。 在前述之太陽能電池吸收層之製造方法中,該些分散 劑係可選自於油胺(〇leylamine)、烷基硒醇(alkylsen〇丨)、 燒基硫(alkylthiol)、芳香族硒醇(aromatic selenol)與芳香 族硫(aromatic thiol)之其中之一。 在前述之太陽能電池吸收層之製造方法中,該第一聚 料與該第二漿料分別皆可另包含有黏結劑,用以調整聚 料之黏度與成膜性。 201115773 在前述之太陽能電池吸收層之製造方法中,該些黏結 劑係可選自於乙基纖維素(dihydroterpineol)與聚乙歸醇 缩丁链(polyvinyl butyral)之其中之一。 在前述之太陽能電池吸收層之製造方法中,在乾燥第 二漿料之後與在硒化熱處理之前,可另包含之步驟為: 熱處理該第一塗層與該第二塗層,以去除該些黏結劑。 在前述之太陽能電池吸收層之製造方法中,該第一漿 I 料與該第二漿料係可以印刷方式形成。 在前述之太陽能電池吸收層之製造方法中,富銅粉末 與缺銅粉末係為奈米等級之粉末,其粒徑分佈為至 1 〇〇 奈米(nm)。 在前述之太陽能電池吸收層之製造方法中,該第一塗 層與該第二塗層係可具有相同之厚度。 在前述之太陽能電池吸收層之製造方法中,該太陽能 電池基板係可為一玻璃基板,並於表面形成有一金屬 _ 層,該金屬層之材質係為鉬。 由以上技術方案可以看出,本發明之太陽能電池吸收 層之製造方法與結構,有以下優點與功效: 可藉由形成第一塗層、形成第二塗層與執行硒化熱 處理作為其中一技術手段,由於富銅粉末相對於缺 銅粉末具有較低之溶點’使得第-塗層先行生成液 相’藉由液相燒結來降低束缚燒結之内應力進而 生成緻密且晶粒大之-銅銦鎵硒薄膜,以提升太陽 能電池之轉換率。 201115773 二、可藉由形成第一塗層與第二塗層作為其中一技術手 段,由於是採用非真空之漿料塗佈製程,除了能減 少原料使用量’並免除使用真空鍍膜機台之成本, 更可提升整體產量,進而大幅降低生產成本。 【實施方式】 以下將配合所附圖示詳細說明本發明之實施例,然應 注意的是’該些圖示均為簡化之示意圖,僅以示意方法 來說明本發明之基本架構或實施方法,故僅顯示與本案 有關之元件與組合關係,圖中所顯示之元件並非以實際 實施之數目、形狀、尺寸做等比例繪製,某些尺寸比例 與其他相關尺寸比例或已誇張或是簡化處理,以提供更 清楚的描述。實際實施之數目、形狀及尺寸比例為一種 選置性之設計,詳細之元件佈局可能更為複雜。 依據本發明之一具體實施例,一種太陽能電池吸收層 之製造方法舉例說明於第3圖之流程方塊圖與第4入至 4F圖之元件戴面示意圖。該太陽能電池吸收層之製造方 法根據第3圖m含以下步驟:「提供太陽能電池基 板」之步驟1、「形成第一製料於太陽能電池基板上」之 步驟2、「乾燥以移除第一漿料之有機溶劑以形成第一塗 1 J之步冑3、「形成第二裝料於第一塗層上」之步驟 「乾燥以移除第二漿料之有機溶劑以形成第二塗層」之 ^ 熱處理第一塗層與第二塗層以去除黏結劑」之 :驟6以及「進行硒化熱處理以燒結第一塗層與第二塗 成鋼銦鎵砸薄膜」之步驟7,詳細步驟請參閱策 201115773 4A至4F圖’說明如下所示β 首先’如第4Α圖所示’提供一太陽能電池基板21〇。 具體而言’該太陽能電池基板21〇係可為一玻璃基板, 並於表面形成有一金屬層211,該金屬層211之材質係 為鉬(Mo)。在一較佳實施例中,該金屬層2丨〖係可以溅 鍍形成,其厚度約為1微米(μπι)。 如第4Β圖所示,形成一第一槳料22〇於該太陽能電 池基板210上,該第一漿料22〇係包含富銅粉末 有機溶劑以及分散劑,富銅粉末221之化學式係為A copper indium gallium selenide film which is dense and has a large crystal grain size. Since the copper-rich powder phase has a lower melting point in the copper-deficient powder, the first coating first forms a liquid phase: the liquid phase is sintered to reduce the bondage. Internal stress during sintering. The present invention further discloses the structure of the solar cell absorber layer formed by the method of the above description. The object of the present invention and solving the technical problems thereof can be further realized by the following technical measures. In the above method for producing a solar cell absorber layer, the organic 'mixtures' may be selected from the group consisting of toluene, gas (ehl_fQrm), dimethylamine (N'N-Dimethylf0rmamide), dimethyl sulfoxide ( Dimethyi sulfoxide) and one of the pyridines. In the aforementioned method for producing a solar cell absorbing layer, the dispersing agents may be selected from the group consisting of oleylamine, alkyl selenyl, alkylthiol, and aromatic selenol ( Aromatic selenol) and aromatic thiol. In the above method for manufacturing a solar cell absorbing layer, the first polymer and the second slurry may each further comprise a binder for adjusting the viscosity and film forming property of the polymer. 201115773 In the aforementioned method for producing a solar cell absorbing layer, the binder may be selected from one of dihydroterpineol and polyvinyl butyral. In the foregoing method for manufacturing a solar cell absorbing layer, after drying the second slurry and before the selenization heat treatment, the method may further include: heat treating the first coating layer and the second coating layer to remove the Adhesive. In the above method for producing a solar cell absorbing layer, the first slurry and the second slurry may be formed in a printing manner. In the above-described method for producing a solar cell absorbing layer, the copper-rich powder and the copper-deficient powder are nano-sized powders having a particle size distribution of up to 1 奈 nanometer (nm). In the above method of manufacturing a solar cell absorbing layer, the first coating layer and the second coating layer may have the same thickness. In the above method for manufacturing a solar cell absorbing layer, the solar cell substrate may be a glass substrate, and a metal layer is formed on the surface, and the material of the metal layer is molybdenum. It can be seen from the above technical solutions that the manufacturing method and structure of the solar cell absorbing layer of the present invention have the following advantages and effects: by forming the first coating layer, forming the second coating layer and performing the selenization heat treatment as one of the technologies Means, because the copper-rich powder has a lower melting point relative to the copper-deficient powder, so that the first coating layer first forms a liquid phase, the liquid phase sintering is used to reduce the internal stress of the bound sintering to form a dense and large grain-copper. Indium gallium selenide film to increase the conversion rate of solar cells. 201115773 Second, by forming the first coating and the second coating as one of the technical means, because it is a non-vacuum slurry coating process, in addition to reducing the amount of raw materials used and eliminating the cost of using a vacuum coating machine , which can increase the overall output and thus significantly reduce production costs. The embodiments of the present invention will be described in detail below with reference to the accompanying drawings, in which Therefore, only the components and combinations related to the case are shown. The components shown in the figure are not drawn in proportion to the actual number, shape and size of the actual implementation. Some ratios of dimensions and other related dimensions are either exaggerated or simplified. To provide a clearer description. The actual number, shape and size ratio of the implementation is an optional design, and the detailed component layout may be more complicated. According to an embodiment of the present invention, a method of manufacturing a solar cell absorbing layer is exemplified in the block diagram of Fig. 3 and the component wearing diagrams of Figs. 4 to 4F. The method for manufacturing the solar cell absorbing layer according to FIG. 3 includes the following steps: "Steps for providing a solar cell substrate", "Step 2 of forming a first material on a solar cell substrate", "Drying to remove the first" The organic solvent of the slurry is formed into a first coating step 3, "forming a second charge on the first coating layer" to "dry to remove the organic solvent of the second slurry to form a second coating layer ^ heat treatment of the first coating and the second coating to remove the binder": step 6 and "the selenization heat treatment to sinter the first coating and the second coating of the steel indium gallium nitride film" step 7, detailed For the procedure, please refer to the policy 201115773 4A to 4F. The description is as follows. First, 'provide a solar cell substrate 21〇 as shown in Fig. 4'. Specifically, the solar cell substrate 21 can be a glass substrate, and a metal layer 211 is formed on the surface, and the material of the metal layer 211 is molybdenum (Mo). In a preferred embodiment, the metal layer is formed by sputtering and has a thickness of about 1 micron (μm). As shown in Fig. 4, a first slurry 22 is formed on the solar cell substrate 210. The first slurry 22 contains a copper-rich powder organic solvent and a dispersant, and the chemical formula of the copper-rich powder 221 is

Cuyl(inxGai.x)(SeS)2 或 Cu2.zSe ’ 其中 yi> 1、〇.4$χ$ Ο.8及更具體地,該第一漿料220係可藉由網 版印刷機印刷至該太陽能電池基板2 1 0之該金屬層2 i j 上。 接著,如第4C圖所示,進行第一次乾燥,以移除該 第製料220之有機溶劑,而使該第一漿料220形成為 第塗層22〇A。在本實施例中,由於該第一漿料22〇 之有機溶劑係可被部分或完全移除,使得該第一漿料 220更為膠稠而部分固化,在經乾燥之後可得到厚度約 為2至3微米(以m)之該第一塗層22〇A。 再如第4D圖所示,使該第一漿料220乾燥之後,形 成一第二漿料230於該第一塗層22〇A上,該第二锻斜 230 # ^ a ^ “ ^ 3缺鋼粉末23丨、有機溶劑以及分散劑,缺鋼 3 1 之化學式係為CuysGnxGahKSeSh,其中y2<1 0 Λ •客0.8。在本實施例中,該第二漿料23〇與該第 201115773 一漿料220係皆可以印刷方式形成。具體而言,本發明 所謂之缺銅粉末231並非是完全不含有銅,僅是其銅含 量較低。更進一步地’該些有機溶劑係可選自於甲苯、 氯 仿 (chloroform) 、 二甲基 甲酿胺 (Ν,Ν-Dimethylformamide)、二甲基亞颯(Dimethyl sulfoxide)與吡啶(pyridine)之其中之一,主要作用在於混 合富銅粉末221與缺銅粉末231而分別形成為該第一漿 籲料220與該第二漿料230。並且,該些分散劑係可選自 於油胺(oleylamine)、烷基硒醇(aikylsenoi)、烷基硫 (alkylthi〇l)、芳香族硒醇(aromatic selenol)與芳香族硫 (ar0matic thi〇1)之其中之一,主要作用在於均勻分散富 銅粉末221與缺銅粉末231於所混合之有機溶劑中。此 外’該第一漿料220與該第二漿料230分別皆另包含有 點結劑,用以調整漿料之黏度與成膜性。在本實施例中, 該些黏結劑係可選自於乙基纖維素(dihydr〇terpine〇l)與 鲁聚乙稀醇缩丁路(poly vinyl butyral)之其中之一。 接著,如第4E圖所示,進行第二次乾燥,以移除該 第二漿料230之有機溶劑,而使該第二漿料23〇形成為 第二塗層230 A。在本實施例中,由於該第二漿料23〇 之有機溶劑同樣地經由乾燥而被部分或完全移除,使該 第二漿料230更為膠稠而部分固化,在經乾燥之後可得 到厚度約為2至3微米(em)之該第二塗層23 0A於該第 塗層220A上。也就是說,該第一塗層220A與該第二 塗層230A係可具有相同之厚度。此外,在乾燥該第二 10 201115773 漿料230之後,另可熱處理該第一塗層22〇A與該第二 塗層230A,以去除該些黏結劑。具體而言,上述熱處理 之溫度係可控制約在2 5 0 °C。 低之熔點’使該第一塗層22〇a 相燒結來降低束缚燒結之内應力 最後’如第4F圖所示,進行一硒化熱處理,以燒結 該第一塗層220A與該第二塗層23〇a,進而生成緻密且 晶粒大之一銅銦鎵硒薄膜240(該第一塗層22〇A與該第 一塗層230A已被燒結成該銅銦鎵砸薄膜24〇,故未標示 φ 於圖中)’由於富銅粉末221相對於缺銅粉末231具有較 先行生成液相,藉由液 。更具體地,此步驟係 在一硒化爐中所進行,以55〇t:持溫3〇分鐘。請參閱第 5圖所不之顯微結構圖,在本實施例中,富銅粉末22 i ,其粒徑分佈為 與缺銅粉末23 1係可為奈米等級之粉末 10 至 100 奈米(nm)。Cuyl(inxGai.x)(SeS)2 or Cu2.zSe ' where yi> 1, 〇.4$χ$ Ο.8 and more specifically, the first paste 220 can be printed by a screen printing machine to The solar cell substrate 2 10 is on the metal layer 2 ij . Next, as shown in Fig. 4C, the first drying is performed to remove the organic solvent of the second material 220, and the first slurry 220 is formed into the first coating layer 22A. In this embodiment, since the organic solvent of the first slurry 22 can be partially or completely removed, the first slurry 220 is more gelatinized and partially cured, and after drying, the thickness is about The first coating 22A is 2 to 3 microns (in m). Further, as shown in FIG. 4D, after the first slurry 220 is dried, a second slurry 230 is formed on the first coating layer 22A, and the second forging angle 230 # ^ a ^ "^ 3 is missing. The steel powder is 23 丨, the organic solvent and the dispersing agent, and the chemical formula of the steel-deficient steel 3 1 is CuysGnxGahKSeSh, wherein y2 < 10 Λ 客 0.8. In the present embodiment, the second slurry 23 〇 and the 201115773 a slurry The material 220 can be formed by printing. Specifically, the so-called copper-deficient powder 231 of the present invention is not completely free of copper, but only has a low copper content. Further, the organic solvent may be selected from toluene. , chloroform, dimethyl-dimethylformamide, dimethyl sulfoxide and pyridine, mainly used to mix copper-rich powder 221 with copper deficiency The powder 231 is formed into the first slurry 220 and the second slurry 230, respectively, and the dispersing agent may be selected from the group consisting of oleylamine, aylylsenoi, and alkylsulfide. Alkylthi〇l), aromatic selenol and aromatic sulfur (ar0ma One of tic thi〇1) mainly functions to uniformly disperse the copper-rich powder 221 and the copper-deficient powder 231 in the mixed organic solvent. Further, the first slurry 220 and the second slurry 230 are respectively Containing a bit of a knot to adjust the viscosity and film formability of the slurry. In this embodiment, the binder may be selected from the group consisting of ethyl cellulose (dihydr〇terpine〇l) and ruthenium alcohol One of the poly vinyl butyrals. Next, as shown in FIG. 4E, a second drying is performed to remove the organic solvent of the second slurry 230, and the second slurry 23 is formed. Is the second coating 230 A. In this embodiment, since the organic solvent of the second slurry 23 is partially or completely removed by drying, the second slurry 230 is more gelatinized and partially Curing, after drying, the second coating 230A having a thickness of about 2 to 3 micrometers (em) is obtained on the first coating 220A. That is, the first coating 220A and the second coating The 230A series may have the same thickness. Further, after drying the second 10 201115773 slurry 230, another heat treatment may be performed. The first coating 22A and the second coating 230A are used to remove the binder. Specifically, the temperature of the heat treatment can be controlled at about 250 ° C. The low melting point makes the first The coating 22〇a phase is sintered to reduce the internal stress of the bound sintering. Finally, as shown in FIG. 4F, a selenization heat treatment is performed to sinter the first coating 220A and the second coating 23〇a to form a dense And one of the large copper indium gallium selenide thin films 240 (the first coating 22A and the first coating 230A have been sintered into the copper indium gallium germanium film 24, so φ is not shown in the figure) Since the copper-rich powder 221 has a relatively advanced liquid phase with respect to the copper-deficient powder 231, a liquid is used. More specifically, this step was carried out in a selenide furnace at 55 Torr: holding temperature for 3 Torr. Referring to the microstructure diagram shown in FIG. 5, in the present embodiment, the copper-rich powder 22 i has a particle size distribution of 10 to 100 nanometers of the powder of the copper-deficient powder 23 1 which can be a nanometer grade ( Nm).

於是採用非真空之漿料塗佈製程, &、且晶粒大之該銅銦鎵 障換率提升。此外,由 ’除了能減少原料使甩 201115773 量,並免除使用真空鍍膜機台之成本,更可提升整體產 量,進而大幅降低生產成本。 請參閱第6圖所示,其繪示本發明與習知所製成之太 陽此電池吸收層之體積收縮率與5 5 〇。匚持溫不同時間之 關係。圖中顯示出本發明具有多層構之太 陽能電池吸收層,隨著持溫時間增加,體積收縮率不會 有明顯地變化’能有效地降低束缚燒結之内應力。然而, _ 習知的太陽能電池吸收層隨著持溫時間增加,體積收縮 率也越高,如第6圖中所示,習知的太陽能電池吸收層 在〇分鐘時體積收縮率約為〇,而持溫50分鐘之後,體 積收縮率增加為0.10左右。也就是說,習知的太陽能電 池吸收層會因持溫時間而明顯地改變其體積收縮率(特 別疋在持溫〇至5 0分鐘之間),故無法使其達到緻密化 的效果(如第2圖所示)。請再參閱第7圖所示,此圖為 利用本發明之形成方法,在經過55(TC的硒化熱處理燒 隹結30分鐘後,所製成之銅銦鎵硒薄膜之顯微剖面圖。最 後’請參閱第8圖所示,其繪示本發明之太陽能電池吸 收層之X光繞射圖譜’顯示出該太陽能電池吸收層在燒 結之後可得單一之黃銅礦相(chalcopyrite)。 本發明還另揭示該太陽能電池吸收層之結構舉例說 明於第4F圖之截面示意圖。該結構係由兩塗層(如第4e 圖中所示之該第一塗層220A與該第二塗層230A)燒結形 成為敏密且晶粒大之一銅銦鎵硒薄膜240。較佳地,如 第7圖所示’該銅銦鎵硒薄膜240係可呈單一之黃鋼礦 12 201115773 相(chalcopyrite),也就是說,該銅銦鎵磁薄膜240係為 緻密且具有大晶粒之太陽能電池吸收層,可使得太陽能 電池之轉換率提升。在本實施例中,該太陽能電池基板 21〇係可為一玻璃基板,並於表面形成有一金屬層211, 該金屬層211之材質係為鉬(Mo)。在一較佳實施例中, 該金屬層211係可以溅鍍形成,其厚度約為1微米(μηι)。 以上所述’僅是本發明的較佳實施例而已,並非對本 φ 發明作任何形式上的限制,雖然本發明已以較佳實施例 才晏4j\k 上’然而並非用以限定本發明,任何熟悉本項技 ’在不脫離本發明之技術範圍内,所作的任何簡單 Y多、味 等效性變化與修飾,均仍屬於本發明的技術範圍 内〇 【圖式簡單說明】 第 1 、 第2圖: $ 3圖: 第4A至 圖:為習知的一種銅銦鎵硒漿料所形成之吸收層之 截面示意圖。Therefore, the non-vacuum slurry coating process is used, and the copper indium gallium barrier conversion rate is increased. In addition, by reducing the amount of raw materials to reduce the amount of 201115773, and eliminating the cost of using a vacuum coating machine, the overall output can be increased, thereby significantly reducing production costs. Referring to Figure 6, there is shown the volume shrinkage of the absorbent layer of the present invention and the conventionally produced solar cell of the battery of 5 5 。.匚 Hold the relationship between different temperatures. The figure shows that the solar cell absorbing layer of the present invention having a multilayer structure has no significant change in volume shrinkage as the temperature holding time increases, which can effectively reduce the internal stress of the bound sintering. However, the conventional solar cell absorber layer has a higher volume shrinkage rate as the holding time increases, and as shown in FIG. 6, the conventional solar cell absorber layer has a volume shrinkage ratio of about 〇 at minute. After holding the temperature for 50 minutes, the volume shrinkage rate increased to about 0.10. That is to say, the conventional solar cell absorption layer will change its volume shrinkage significantly due to the holding time (especially between holding temperature and 50 minutes), so it cannot achieve the effect of densification (such as Figure 2). Please refer to FIG. 7 again. This figure is a microscopic cross-section of a copper indium gallium selenide film produced by a method of the present invention after passing through a 55 (TC selenization heat treatment for 30 minutes). Finally, please refer to Fig. 8, which shows that the X-ray diffraction pattern of the absorption layer of the solar cell of the present invention shows that the solar cell absorption layer can obtain a single chalcopyrite after sintering. The invention further discloses a structure of the absorption layer of the solar cell, which is illustrated in section 4F. The structure is composed of two coatings (such as the first coating 220A and the second coating 230A shown in FIG. 4e). Sintering is formed into a dense and grain-rich one copper indium gallium selenide film 240. Preferably, as shown in Fig. 7, the copper indium gallium selenide film 240 can be a single yellow steel ore 12 201115773 phase (chalcopyrite That is, the copper indium gallium magnetic film 240 is a dense solar cell absorbing layer having a large crystal grain, which can increase the conversion rate of the solar cell. In this embodiment, the solar cell substrate 21 can be a glass substrate and formed on the surface There is a metal layer 211, and the material of the metal layer 211 is molybdenum (Mo). In a preferred embodiment, the metal layer 211 can be formed by sputtering and has a thickness of about 1 micrometer (μηι). It is merely a preferred embodiment of the present invention, and is not intended to limit the present invention in any way, although the present invention has been described in the preferred embodiment of the present invention, however, it is not intended to limit the invention. It is still within the technical scope of the present invention to perform any simple Y-multiple, taste equivalence change and modification without departing from the technical scope of the present invention. [Simple description of the drawings] Figs. 1 and 2: $3Fig. 4A to Fig.: is a schematic cross-sectional view of an absorption layer formed by a conventional copper indium gallium selenide slurry.

為習知的一種銅銦鎵硒漿料之顯微結構圖。 依據本發明之一具體實施例的太陽能電池吸收 層之製造方法之流程方塊圖。 池吸收層之匍冰古、土上 製把方法之元件截面示意圖 依據本發明之一具辨每 、體實施例的太陽能電池吸 層之製造方法之富铜 J粉末與缺銅粉末之顯微 構圖® 依據本發明之一且縣由 八體實施例的太陽能電池吸 圖依據本發明之一具體實施例的太陽能電 第5圖 第6圖 201115773 層之製造方法繪示其與習知以55(TC在不同持 溫時間所產生的體積收縮率變化之比較示意 圖。 第7圖:依據本發明之一具體實施例的太陽能電池吸收 層之製造方法所形成之銅銦鎵硒薄膜之顯微剖 面圖。A microstructural diagram of a conventional copper indium gallium selenide slurry. A block diagram of a method of fabricating a solar cell absorber layer in accordance with an embodiment of the present invention. The cross-sectional view of the element of the method for manufacturing the solar cell of the solar cell of the present invention is a micro-pattern of the copper-free J powder and the copper-deficient powder. According to one embodiment of the present invention, a solar cell diagram of an eight-body embodiment according to an embodiment of the present invention is shown in a method of manufacturing a layer of solar energy, and the manufacturing method of the layer of 201115773 according to an embodiment of the present invention is 55 (TC in A comparison of the changes in volume shrinkage rate produced by different temperature holding times. Fig. 7 is a microscopic cross-sectional view of a copper indium gallium selenide film formed by a method for producing a solar cell absorber layer according to an embodiment of the present invention.

第8圖:依據本發明之一具體實施例的太陽能電池吸收 層之製造方法經550°c燒結30分鐘後所形成之 太陽能電池吸收層可得單一之黃銅礦相之X光 繞射圖譜。 【主要元件符號說明】 步驟1提供太陽能電池基板 步驟2形成第一漿料於太陽能電池基板上 步驟3乾燥以移除第一漿料之有機溶劑以形成第一塗 層 步驟4 形成第二漿料於第一塗層上 步驟5乾燥以移除第二漿料之有機溶劑以形成第二塗 層 步驟6熱處理第一塗層與第二塗層以去除黏結劑 步驟7 進行硒化熱處理以燒結第一塗層與第二塗層而 生成銅銦嫁砸薄膜 T 張應力 110坡螭基板 14 〇 CIG S吸收層141孔隙 14 201115773 210太陽能電池基板 211 220 第一漿料 220A第一塗層 221 230 第二漿料 230A第二塗層 231 240銅銦鎵硒薄膜 金屬層 富銅粉末 缺銅粉末Fig. 8 is a view showing a method for producing a solar cell absorber layer according to an embodiment of the present invention. The solar cell absorber layer formed by sintering at 550 ° C for 30 minutes can obtain a single chalcopyrite X-ray diffraction pattern. [Main component symbol description] Step 1 provides a solar cell substrate. Step 2: Form a first slurry on the solar cell substrate. Step 3 is dried to remove the organic solvent of the first slurry to form a first coating step 4 to form a second slurry. Drying in step 5 on the first coating to remove the organic solvent of the second slurry to form a second coating step 6 heat treating the first coating layer and the second coating layer to remove the binder step 7 performing a selenization heat treatment to sintering A coating and a second coating form a copper indium graft film T tensile stress 110 slope substrate 14 〇 CIG S absorption layer 141 aperture 14 201115773 210 solar cell substrate 211 220 first slurry 220A first coating 221 230 Two slurry 230A second coating 231 240 copper indium gallium selenide thin film metal layer copper-rich powder copper deficiency powder

1515

Claims (1)

201115773 七、申請專利範圍: 1、一種太陽能電池吸收層之製造方法,包含: 提供一太陽能電池基板; 形成一第一漿料於該女 该太陽能電池基板上,該第一莫 料係包含富銅粉末、右换、々 有機 >谷劑以及分散劑,富虚 粉末之化學式^ t 飞係為 cUyl(InxGai x)(SeS)2 邊 CUe,其中 yl>1、〇.eu〇8 及 進行第一次乾燥,以移 除该第一漿料之有機溶劑, 而使該第一漿料形成為一第一塗層; 使該第一漿料乾燥之後,彡 说沿成一第二漿料於該第一 塗層上’該第二漿料係包含缺銅粉末有機溶齊 以…劑,缺銅粉末之化…為 Cuy2(InxGai.x)(ses)2,其中 π〆,n 八头肀 y2< 1 及 0.4$ 0.8; 進行第二次乾燥,以移除令 抒除該第一漿料之有機溶劑, 而使該第二漿料形成為一第二塗層;以及 進行一场化熱處理,以燒妊 現,,。該第一塗層與該第二塗 層’進而生成緻密且晶 ,b 日日粒大之—铜銦鎵硒薄膜, 由於s鋼粉末相對於缺 使該第-塗層先行生二 較低之溶點’ 低走缚德妹 液相’藉由液相燒結來降 低束缚燒結之内應力。 根據申請專利範圍第1項 、止方法項之太“電池吸收層之製 k方法,其中該些有機溶劑 ,,,„ 削你、自於甲苯、氯仿 甲 基甲醯 '二甲基亞碾(Dime (N,N-Dimethylf〇rmamide) 16 2 201115773 8111!'〇乂丨46)與°比咬(pyridine)之其中.之一。 3、 根據申請專利範圍第1或2項之太陽能電池吸收層 之製造方法,其中該些分散劑係選自於油胺 (oleylamine)、烷基硒醇(aikylsen〇i)、烷基硫 (alkylthiol)、芳香族硒醇(ar〇matic seien〇l)與芳香族 硫(aromatic thiol)之其中之一。 4、 根據申請專利範圍第1項之太陽能電池吸收層之製 φ 造方法,其中該第一漿料與該第二漿料分別皆另包 含有黏結劑,用以調整漿料之黏度與成膜性。 5、 根據申請專利範圍第4項之太陽能電池吸收層之製 造方法,其中該些黏結劑係選自於乙基纖維素 (dihydr〇terpineol)與聚乙烯醇缩丁醛(p〇iyvinyi butyral)之其中之一。 6、 根據申請專利範圍第5項之太陽能電池吸收層之製 政方法在乾燥第二漿料之後與在硒化熱處理之 籲 月·】3包含之步驟為:熱處理該第一塗層與該第二 塗層,以去除該些黏結劑。 7、 根據申請專利範圍第1項之太陽能電池吸收層之製 造方法’其中該第-漿料與該第二漿料係以印刷方 式形成。 8、 根據申請專利範圍第1項之太陽能電池吸收層之製 遶方法’其中富鋼粉末與缺銅粉末係為奈米等級之 粉末,其粒徑分估i 仏刀师為至100奈米。 9、 根據申請專利範衝笛 靶固第1項之太陽能電池吸收層之製r 17 201115773 造方法,其十該第一塗層與該第二塗層係具有相同 之厚度。 10、 根據申請專利範圍第1項之太陽能電池吸收層之 製造方法,其中該太陽能電池基板係為·玻璃基 板’並於表面形成有一金屬層,該金屬層之材質係 為鉬。 11、 一種太陽能電池吸收層之結構’其係由申請專利範 圍第1項之製造方法所形成,該結構係由兩塗層 燒結形成為敏密且晶粒大之一銅銦鎵砸薄膜。 12、 根據申請專利範圍第i丨項之太陽能電池吸收層之 結構’其中該太陽能電池基板係為一玻璃基板,並 於表面形成有一金屬層,該金屬層之材質係為翻。 U、根據申請專利範園第11項之太陽能電池吸收層之 結構,其中該銅銦鎵硒薄膜係呈單一之黃銅礦相。 18201115773 VII. Patent application scope: 1. A method for manufacturing an absorption layer of a solar cell, comprising: providing a solar cell substrate; forming a first slurry on the female solar cell substrate, the first material system comprising copper rich Powder, right-handed, 々 organic > gluten and dispersant, chemical formula of rich powder ^ t flying system is cUyl (InxGai x) (SeS) 2 side CUe, where yl > 1, 〇. eu〇8 and proceed Drying once to remove the organic solvent of the first slurry, so that the first slurry is formed into a first coating; after drying the first slurry, the second slurry is formed in the second slurry. On the first coating, the second slurry comprises a copper-deficient powder, an organic solvent, and a copper-deficient powder, which is Cuy2(InxGai.x)(ses)2, wherein π〆, n 八头肀 y2< 1 and 0.4$0.8; performing a second drying to remove the organic solvent of the first slurry, thereby forming the second slurry into a second coating; and performing a thermal treatment, To burn it, now. The first coating layer and the second coating layer are further formed into a dense and crystalline, copper-indium gallium selenide film, which is the first to be used in the first coating. The melting point 'low stagnation's liquid phase' reduces the internal stress of the bound sintering by liquid phase sintering. According to the first paragraph of the patent application, the method of the method is too "the method of making the battery absorption layer, wherein the organic solvent,, „ 你, from toluene, chloroform methylformamidine dimethyl sulphide ( Dime (N, N-Dimethylf〇rmamide) 16 2 201115773 8111! '〇乂丨46) One of the pyridines. 3. The method for producing a solar cell absorber layer according to claim 1 or 2, wherein the dispersant is selected from the group consisting of oleylamine, alkylsen〇i, and alkylthiol. ), one of aromatic selenol (ar〇matic seien〇l) and aromatic sulfur (aromatic thiol). 4. The method for manufacturing a solar cell absorbing layer according to claim 1, wherein the first slurry and the second slurry respectively comprise a binder for adjusting the viscosity and film formation of the slurry. Sex. 5. The method for producing a solar cell absorbing layer according to claim 4, wherein the binder is selected from the group consisting of ethyl cellulose (dihydr〇terpineol) and polyvinyl butyral (p〇iyvinyi butyral). one of them. 6. The method of manufacturing a solar cell absorbing layer according to claim 5 of the patent application scope, after the drying of the second slurry and the step of heat treatment in the selenization heat treatment, wherein the step of: heat treating the first coating layer and the first A second coating to remove the binder. 7. The method of producing a solar cell absorbing layer according to claim 1, wherein the first slurry and the second slurry are formed in a printing manner. 8. The method for preparing a solar cell absorbing layer according to the scope of claim 1 wherein the steel-rich powder and the copper-deficient powder are nano-sized powders, and the particle size is estimated to be 100 nanometers. 9. According to the method of manufacturing a solar cell absorbing layer of the patent application No. 1, the first coating layer and the second coating layer have the same thickness. 10. The method of producing a solar cell absorbing layer according to claim 1, wherein the solar cell substrate is a glass substrate and a metal layer is formed on the surface, and the material of the metal layer is molybdenum. A structure of an absorption layer of a solar cell, which is formed by the manufacturing method of the first aspect of the patent application, which is formed by sintering two coatings to form a film of copper indium gallium nitride which is dense and has a large crystal grain. 12. The structure of a solar cell absorbing layer according to the scope of the patent application of the invention, wherein the solar cell substrate is a glass substrate, and a metal layer is formed on the surface, and the material of the metal layer is turned over. U. According to the structure of the solar cell absorption layer of claim 11 of the patent application, wherein the copper indium gallium selenide film is a single chalcopyrite phase. 18
TW098136748A 2009-10-29 2009-10-29 Method of manufacturing absorption layer of solar cells and its structure TWI406431B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098136748A TWI406431B (en) 2009-10-29 2009-10-29 Method of manufacturing absorption layer of solar cells and its structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098136748A TWI406431B (en) 2009-10-29 2009-10-29 Method of manufacturing absorption layer of solar cells and its structure

Publications (2)

Publication Number Publication Date
TW201115773A true TW201115773A (en) 2011-05-01
TWI406431B TWI406431B (en) 2013-08-21

Family

ID=44934588

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098136748A TWI406431B (en) 2009-10-29 2009-10-29 Method of manufacturing absorption layer of solar cells and its structure

Country Status (1)

Country Link
TW (1) TWI406431B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100850000B1 (en) * 2005-09-06 2008-08-01 주식회사 엘지화학 Process for Preparation of Absorption Layer of Solar Cell
TW200832727A (en) * 2007-01-17 2008-08-01 Solar Applied Mat Tech Corp Target and thin film fabricated by the target
US8563348B2 (en) * 2007-04-18 2013-10-22 Nanoco Technologies Ltd. Fabrication of electrically active films based on multiple layers
US8613973B2 (en) * 2007-12-06 2013-12-24 International Business Machines Corporation Photovoltaic device with solution-processed chalcogenide absorber layer

Also Published As

Publication number Publication date
TWI406431B (en) 2013-08-21

Similar Documents

Publication Publication Date Title
Zhao et al. Precise stress control of inorganic perovskite films for carbon-based solar cells with an ultrahigh voltage of 1.622 V
JP5185171B2 (en) Method for forming light absorption layer of thin film solar cell
CN101443892B (en) High-throughput formation of semiconductor layer by use of chalcogen and inter-metallic material
US20120295022A1 (en) High-Throughput Printing of Chalcogen Layer
US20100170564A1 (en) High-throughput printing of semiconductor precursor layer by use of chalcogen-rich chalcogenides
US20070169810A1 (en) High-throughput printing of semiconductor precursor layer by use of chalcogen-containing vapor
US20070169809A1 (en) High-throughput printing of semiconductor precursor layer by use of low-melting chalcogenides
US20070169811A1 (en) High-throughput printing of semiconductor precursor layer by use of thermal and chemical gradients
US20120104324A1 (en) Chalcogenide solar cells
US20090214763A1 (en) Preparation of thin film for solar cell using paste
KR101389832B1 (en) Cigs or czts based film solar cells and method for preparing thereof
Yang et al. A general water-based precursor solution approach to deposit earth abundant Cu2ZnSn (S, Se) 4 thin film solar cells
JP2009528681A (en) High-throughput semiconductor layer formation using chalcogen and intermetallic materials
KR20120015367A (en) Preparation method for cis-based compound thin film with high density and preparation method for thin film solarcell manufactured by using the cis-based compound thin film
KR101197228B1 (en) Method for Manufacturing Light Absorbing Layer of Compound Semiconductor Solar Cell
Luo et al. The preparation of CuInSe2 films by combustion method and non-vacuum spin-coating process
Ahn et al. Cu (In, Ga) Se2 thin film solar cells from nanoparticle precursors
KR101865239B1 (en) Cigs nanoparticle ink formulation having a high crack-free limit
CN101443130B (en) High-throughput formation of semiconductor layer by use of chalcogen and inter-metallic material
KR20100034817A (en) Solar cell and method of fabricating the same
Uhl et al. Cu (In, Ga) Se2 absorbers from stacked nanoparticle precursor layers
Singh et al. Non-toxic precursor solution route for fabrication of CZTS solar cell based on all layers solution processed
Wang et al. Preparation of high efficiency Cu2ZnSn (S, Se) 4 solar cells from novel non-toxic hybrid ink
TW201115773A (en) Method of manufacturing absorption layer of solar cells and its structure
Chen et al. In situ growth of CuInS 2 nanocrystals on nanoporous TiO 2 film for constructing inorganic/organic heterojunction solar cells

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees