TW201113662A - Active solar tracking method and its system utilizing 3D sensing methodology - Google Patents

Active solar tracking method and its system utilizing 3D sensing methodology Download PDF

Info

Publication number
TW201113662A
TW201113662A TW98134374A TW98134374A TW201113662A TW 201113662 A TW201113662 A TW 201113662A TW 98134374 A TW98134374 A TW 98134374A TW 98134374 A TW98134374 A TW 98134374A TW 201113662 A TW201113662 A TW 201113662A
Authority
TW
Taiwan
Prior art keywords
sensing
cube
sensing module
azimuth
signal
Prior art date
Application number
TW98134374A
Other languages
Chinese (zh)
Other versions
TWI390381B (en
Inventor
Yi-Li Huang
Zong-Qi Cai
Bo-Ren Zheng
Jian-Cheng Lai
Original Assignee
Yi-Li Huang
Zong-Qi Cai
Bo-Ren Zheng
Jian-Cheng Lai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yi-Li Huang, Zong-Qi Cai, Bo-Ren Zheng, Jian-Cheng Lai filed Critical Yi-Li Huang
Priority to TW98134374A priority Critical patent/TW201113662A/en
Publication of TW201113662A publication Critical patent/TW201113662A/en
Application granted granted Critical
Publication of TWI390381B publication Critical patent/TWI390381B/zh

Links

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

This invention is an active solar tracking method and its system utilizing 3D sensing methodology. The method tracks, detects, and calculates by utilizes the azimuth and elevation angles obtained through sensing amount of incident solar ray hitting the surface of a sensor; hence, drives the rotation of a solar panel to allow for achieving the best energy conversion rate. The method and system comprises of sensing the light intensity received from each and individual sensing unit on a 3D sensing module, and generating multiple sensing signals respectively. A sensing signal is generated based on the light intensity received by the top sensing unit of the 3D sensing module is utilized and/or generate the same type of sensing signal by utilizing the light intensity received by the other sensing units at the lateral sides of the same 3D sensing module. By calculating these sensing signals, the azimuth and elevation angles of the incident solar ray hitting the sensor can be obtained at real time. As a result, the system rotates the solar panel until it is facing the incident solar ray at a perpendicular angle; hence, maximize the rate of energy conversion.

Description

201113662 、發明說明: 【發明所屬之技術領域】 本發明係關於一種追日方法與系統,更特別的是用於 主動進行追日的方法與系統。 【先前技術】 隨著綠色能源的興起,太陽能變成一種可直接獲得且 本身具有環保的能源,然而接收太陽能的太陽能板,會因 太陽能板本身的材質與設置的環境等因素,直接地影響太 陽能轉換電能的效率。如何提高太陽能板的電能轉換率, 變成一種需要克服的問題,而提高的方法,傳統上,除了 太陽能板本身的材料特性外,另一個有效方法就是及時地 轉動太陽能板,使得太陽光可以隨時地垂直入射至太陽能 板,以獲得最高的電能轉換率。然而,地球環繞太陽的運 動軌跡係隨著時間與季節而改變;此外,太陽光更可能在 穿越地球大氣層時,碰到大氣層裡的微塵、懸浮粒子和水 分子,而產生折射及/或散射的現象,使得太陽能板無法有 效的吸收太陽能,因而造成太陽能板之電能轉換效率降低。 為了改善上述的問題,一般使用追日系統用來追蹤太 陽光實際上的照射方位,使得太陽能板能夠在任何設置的 環境下皆能有效地獲得最大的轉換效率。其中,追日系統 又可分為主動式追日系統與被動式追日系統。一般而言, 主動式追曰系統會比被動式追曰系統擁有更高的太陽能板 的電能轉換率,然而目前已發展的主動式追日系統仍然存 201113662 在可以改進的空間 升電能轉換效率, ,故發展新的追日方法與裝 是报重要的課題。 置,用以提201113662, invention description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method and system for tracking the sun, and more particularly to a method and system for actively tracking the sun. [Prior Art] With the rise of green energy, solar energy becomes a kind of energy that can be directly obtained and has its own environmental protection. However, solar panels that receive solar energy will directly affect solar energy conversion due to factors such as the material of the solar panel itself and the environment in which it is installed. The efficiency of electrical energy. How to improve the power conversion rate of solar panels becomes a problem that needs to be overcome, and the method of improvement is traditionally, in addition to the material properties of the solar panels themselves, another effective method is to rotate the solar panels in time so that the sunlight can be readily Normally incident on the solar panel to achieve the highest power conversion rate. However, the trajectory of the Earth's orbit around the Sun changes with time and season; in addition, sunlight is more likely to encounter refraction and/or scattering of dust, suspended particles and water molecules in the atmosphere as it traverses the Earth's atmosphere. The phenomenon that the solar panel cannot effectively absorb the solar energy, thereby causing the power conversion efficiency of the solar panel to decrease. In order to improve the above problems, a tracking system is generally used to track the actual illumination orientation of the sunlight, so that the solar panel can effectively obtain the maximum conversion efficiency in any setting environment. Among them, the chase system can be divided into active chasing system and passive chasing system. In general, the active tracking system will have a higher solar panel power conversion rate than the passive tracking system. However, the active active chasing system that has been developed still has 201113662 in the space that can be improved in power conversion efficiency. Therefore, the development of new methods and equipment for chasing the Japanese is an important issue for the newspaper. Set to mention

【發明内容】 追曰月之一目的係在於提出一種立方體感應之主動式 雄、、/湘複數相單摘組成之立方職應模組 立^太陽的仙,亚且根據其所計算之照射太陽光於該 1顧組的方位角與㈣,進而使得太陽能板能垂 σ以射之太陽光,以獲取最大的f能轉換效率。 本發R另—目㈣在於提出—種立讀缝之主動 工追日系統,其利用複數感測單元所組成之立 ,進行太陽能板的控制,而使得太陽能板能隨時垂錢向 恥射之太陽光,以獲取最大的電能轉換效率。 為達上述目的及其他目的,本發明提出一種具有立方 體感應之主動式追日的方法,係用於追蹤照射之太陽光, 因太陽提供光強度於立謂錢模組上,使得照射之太陽 光的方位角與仰角,能容易地被立方體感應模組所偵測, 其方法步驟包含(i)感測立方體錢模組上複㈣測單元其 所分別對應接收的太陽之光強度,且用以分別地產生複數 感測訊號;⑻固定立方體感應模組’使得立方體感應模組 之側面(B)之感測單元係朝向以方位角定義為〇度之正南 方,並根據位於立方體感應模組之頂面(A)的感測單元所接 收之該光強度’用以產生感測訊號;同時,根據位於立方 體感應模組之複數側面(B、C、D、E)之該等感測單元所接 201113662 收之光強度,產生該等感測訊號,其中立方體感應模組側 面(B)與立方體感應模組側面(D)係分別地相鄰立方體感應 模組側面(C)與立方體感應模組側面(E)且立方體感應模組 侧面(B)與立方體感應模組側面(D)彼此不相鄰;(iii)計算該 等感測訊號,用以獲得照射於感測單元表面的太陽光之方 位角與仰角,使得太陽能板根據方位角與仰角,垂直地朝 向對應入射光之太陽光的方向。 為達上述目的及其他目的,本發明提出一種具有立方 體感應之主動式追日系統,係用以追蹤一照射於感測單元 表面的太陽光的方位,其包含太陽能板、感應模組、處理 單元與轉動單元。太陽能板係接收太陽之光強度,用以產 生對應光強度之電能。感應模組係具有複數感測單元,且 該等感測單元係彼此相互形成該立方體,用以根據太陽光 入射於該等感測單元,而分別地產生對應光強度的感測訊 號。處理單元係與感應模組連接,且分別地根據自該等感 測單元所接收與其對應之感測訊號,產生對應的控制訊 號。轉動單元係與太陽能板連接,且根據控制訊號轉動太 陽能板,使得太陽能板能即時地垂直面向照射之太陽光。 【實施方式】 為充分瞭解本發明之目的、特徵及功效,茲藉由下述 具體之實施例,並配合所附之圖式,對本發明做一詳細說 明,說明如後: 參考第一圖,係本發明於一實施例之立方體感應之主 201113662 動式追曰方法。於本實施例中,立方體感應之主動式追曰 方法係用於追蹤、偵測並計算照射在感測單元表面的太陽 光之方位角與仰角,其方法步驟係為:開始於步驟S10, 係根據位於立方體感應模組之頂面(A)的感測單元所接收 之光強度,用以產生感測訊號;接著步驟S12,係根據位 於立方體感應模組之複數側面(B、C、D與E)之些感測單 元所接收之光強度,產生該等感測訊號;接著步驟S14, 係偵測立方體感應模組之頂面的感測單元之感測訊號,用 以產生第一判斷訊號,且偵測立方體感應模組之複數側面 之該等感測單元之該等感測訊號,用以產生複數第二判斷 訊號,值得注意的是,第一判斷訊號與第二判斷訊號係可 同時地於步驟S10與步驟S12產生,且第一判斷訊號與第 二判斷訊號係可為電流值或者電壓值等之物理量;另外, 立方體感應模組側面(B)與立方體感應模組側面(D)係分別 地相鄰立方體感應模組侧面(C)與立方體感應模組側面 (E),且立方體感應模組側面(B)與立方體感應模組側面(D) 彼此不相鄰,如第二圖所示。 再者,亦可再結合一被動式的追日系統,用以形成具 有主動式與被動式的追日系統,其開始於步驟S16,當第 一判斷訊號為0或接近0且所有第二判斷訊號為0或接近0 時,則啟動被動式追日系統用以計算出太陽之方位角與仰 角,並依計算之方位角與仰角轉動太陽能板,接著進入步 驟S20,否則進入步驟S18 ;步驟S18係依第一判斷訊號之 電流值(與第二判斷訊號之複數電流值(來計算照 201113662 之方位_角’並依求得之方 預定時:之後:Γ=2,。檢 曰落時:,若是則系統進入待機狀態划^ S10’重新讀取感测訊號。 4 〜四圖,係說明第—圖中立謂感應模組用以 、= 肖之不意圖。上述方位角係可根據任兩個相互鄰 =:體感應模組之該等側面(B、C、…)所產生的 4感魏財獲得,其+感龍麟[Summary of the Invention] One of the purposes of the memorial month is to propose a cube-sensing active male, / / Xiang multi-phase single-choice composed of the cubic job module to set up the sun, and according to its calculated sun The azimuth of the group and the (4), so that the solar panel can spur ray to shoot the sun to obtain the maximum f energy conversion efficiency. The second item (four) of the present invention is to propose an active work chasing day system for the vertical reading seam, which uses the plurality of sensing units to establish the solar panel control, so that the solar panel can pay the money at any time. Sunlight for maximum power conversion efficiency. In order to achieve the above and other objects, the present invention provides an active day-tracking method with cube sensing for tracking the illuminating sunlight, because the sun provides light intensity on the vertical money module, so that the illuminating sunlight The azimuth and elevation angles can be easily detected by the cube sensing module, and the method steps include: (i) sensing the intensity of the received sunlight of the complex (four) measuring unit on the cube money module, and using Separately generating a plurality of sensing signals; (8) fixing the cube sensing module 'so that the sensing unit of the side (B) of the cube sensing module is oriented toward the south of the twist defined by the azimuth angle, and according to the cube sensing module The light intensity received by the sensing unit of the top surface (A) is used to generate a sensing signal; and at the same time, according to the sensing units located on the plurality of sides (B, C, D, E) of the cube sensing module Receiving the light intensity of 201113662, the sensing signals are generated, wherein the side of the cube sensing module (B) and the side of the cube sensing module (D) are adjacent to the side of the cube sensing module (C) and The side of the square sensing module (E) and the side of the cube sensing module (B) and the side of the cube sensing module (D) are not adjacent to each other; (iii) calculating the sensing signals for obtaining illumination to the sensing unit The azimuth and elevation of the surface sunlight cause the solar panel to face vertically in the direction of the sunlight corresponding to the incident light according to the azimuth and elevation angles. To achieve the above and other objects, the present invention provides an active sun-tracking system with cube sensing for tracking the orientation of a sunlight that illuminates the surface of the sensing unit, which includes a solar panel, a sensing module, and a processing unit. With the rotating unit. The solar panel receives the intensity of the sun's light to produce electrical energy corresponding to the intensity of the light. The sensing module has a plurality of sensing units, and the sensing units form the cubes with each other to generate sensing signals corresponding to the light intensity according to the sunlight incident on the sensing units. The processing unit is coupled to the sensing module and generates corresponding control signals based on the sensing signals corresponding thereto received from the sensing units. The rotating unit is connected to the solar panel and rotates the solar panel according to the control signal so that the solar panel can face the irradiated sunlight vertically. DETAILED DESCRIPTION OF THE INVENTION In order to fully understand the objects, features and effects of the present invention, the present invention will be described in detail by the following specific embodiments and the accompanying drawings. The invention relates to a cube sensing method of the main 201113662 dynamic tracking method according to an embodiment of the present invention. In this embodiment, the cube-sensing active tracking method is used to track, detect, and calculate the azimuth and elevation of the sunlight that is incident on the surface of the sensing unit. The method steps are as follows: starting at step S10, According to the light intensity received by the sensing unit located on the top surface (A) of the cube sensing module, the sensing signal is generated; then, in step S12, according to the plurality of sides (B, C, D and the pixel sensing module) E) the light intensity received by the sensing units to generate the sensing signals; then, in step S14, detecting the sensing signals of the sensing units on the top surface of the cube sensing module to generate the first determining signal And detecting the sensing signals of the sensing units on the plurality of sides of the cube sensing module to generate the plurality of second determining signals. It is noted that the first determining signal and the second determining signal are simultaneously The step S10 and the step S12 are generated, and the first determining signal and the second determining signal are physical quantities such as a current value or a voltage value; in addition, the cube sensing module side (B) and the cube sensing mode The side of the group (D) is adjacent to the side of the cube sensor module (C) and the side of the cube sensor module (E), and the side of the cube sensor module (B) and the side of the cube sensor module (D) are not adjacent to each other. As shown in the second figure. Furthermore, a passive tracking system can be combined to form an active and passive tracking system, starting at step S16, when the first determination signal is 0 or close to 0 and all second determination signals are 0 or close to 0, the passive chase system is activated to calculate the azimuth and elevation of the sun, and the solar panel is rotated according to the calculated azimuth and elevation angle, and then proceeds to step S20, otherwise proceeds to step S18; step S18 is The current value of a judgment signal (the complex current value with the second judgment signal (to calculate the orientation _ angle of 201113662) and the desired side is predetermined: after: Γ = 2, when the inspection is down: if yes then The system enters the standby state and draws the S10' to re-read the sensing signal. 4~4, which is the first picture of the neutral sensor module, = Xiao is not intended. The above azimuth can be based on any two adjacent =: The four senses generated by these sides (B, C, ...) of the body sensing module are obtained, and the + sense Long Lin

瞬間電屋等之物理量。於此,立方趙感應模組係以正t 體感應換組10為例進行說明。於第二圖中,正立方體感應 模組10具有複數感測單元(B、c、D與E),其分別取感測 W B面與C:面、感測單元c面與D面、感測單元D面 與£面、感測單元E面與B面來計算方位角,當具有光強 度I之^陽光以仰角α照射到正立方體感應模組ig之側面 的感測單元B G、D、E時,其垂直於此四個侧面的有效 刀里為(cosa ’其中感測單元B、c、D、E係可為太陽能 板。接著參考第三圖’固定正立方體感應模組1〇,使得正 立方體感應模組10之側面(B)之感測單元係朝向以方位角 定義為〇。度之正南方,當方位角位於到B面與C面(於此 定義在〇。〜9〇。)之範圍時,其感測單元B面的光強度之有 效分量係為/cosacosA,而感測單元c面的光強度有效分 量係為/cowsinA。此外,感測單元b面與感測單元^面 係分別地產生對應的複數感測訊號Ζβ與/c。由於感測單元B 201113662 面C面、D面與E面四面具有相同的材質結構,故可以 二理假6又感測單元B面、C面、D面與E面能將接收太陽 光之光強度I轉換為感測訊號的比例因子皆相同,則可以 推導出以下公式: l〇^B = / cos « sin θz /1 cos a c〇s θζ = Hb)The physical quantity of an instant electric house. Here, the cubic sensor module is described by taking the positive t body sensing group 10 as an example. In the second figure, the positive cube sensing module 10 has a plurality of sensing units (B, c, D, and E), which respectively take the sensing WB surface and the C: surface, the sensing unit c surface and the D surface, and sense The unit D surface and the surface, the sensing unit E surface and the B surface are used to calculate the azimuth angle, and when the sunlight having the light intensity I is irradiated to the side of the positive cube sensing module ig by the elevation angle α, the sensing units BG, D, E In the effective knives perpendicular to the four sides, (cosa 'where the sensing units B, c, D, E can be solar panels. Then refer to the third figure 'fixing the positive cube sensing module 1 〇, so that The sensing unit of the side (B) of the positive cube sensing module 10 is oriented with the azimuth angle defined as 〇. The positive south of the degree, when the azimuth is located to the B side and the C side (here defined in 〇.~9〇. The range of the light intensity of the sensing unit B surface is /cosacosA, and the effective component of the light intensity of the sensing unit c surface is /cowsinA. In addition, the sensing unit b surface and the sensing unit ^ The surface system respectively generates corresponding complex sensing signals Ζβ and /c. Since the sensing unit B 201113662 faces the C surface, the D surface and the E surface With the same material structure, it is possible to derive the same factor 6 and the sensing unit B surface, C surface, D surface and E surface can convert the light intensity I of receiving sunlight into the sensing signal. The following formula is given: l〇^B = / cos « sin θz /1 cos ac〇s θζ = Hb)

依此類推,可如同第四圖所示,進一步導出其他方位 角角度範圍,其係分別為: θζ =^~\ic/iB) θζ Stan—1 (iD"c) + 9〇。 θζ =^(^/^) + 270° 其中,kL、匕與~係為立方體感應模組各側面B、匸、 Β 1、_E所產生之該等感測訊號,以及&係表示照射在各感 測單元表面的太陽光之方位角。 、二考第五〜七圖,係說明第一圖中正立方體感應模組用 以獲得仰角之示意圖。上述仰角係根據正立方體感應模組 之頂々面(A)之感測訊號與任兩個鄰近的正立方體感應模組 之該等側面(B、C、D與扮之該等感測訊號中獲得。於第 五圖中’正立謂感應模組1G具有複數制單雄、B、 C、D與E),其係分別取感測單元A面_B面-C面、感測單 疋A面-C面-D面、感測單元A面〇面·£自、a面_^面七 面來計算仰角。參考第六圖,係太陽光照射在感測單元B 面與C面(於此定義在〇。〜90。)之方位角的範圍内,並於 201113662 感測單元A面獲得/sine之太陽光的垂直有效分量、於感 測單元B面獲得/cosacos<9z之太陽光的垂直有效分量、於 感測單元C面獲得/cosasin<9z之太陽光的垂直有效分量。 故對於感測單元B面與感測單元C面之兩面有效的分量組 合而言,其為/cosa(cos<9z +sin(9z)。此外,感測單元A面、 感測單元B面與感測單元C面係分別地產生對應的複數感 測訊號乙、匕與k,用以推導出以下的公式: iA /(iB + ic) = Is'ma/[/cosa(sinθζ + cosθζ)] or = tan-1 [(iA /(iB + ic)x (sin Qz + cos Θζ)] 亦或者可利用感測單元A面、感測單元B面與感測單 元C面所接收太陽光之有效面積來計算,同樣可獲得與上 述相同之公式。 依此類推,可以用同樣方式來推出在不同的方位角範 圍下的仰角公式,如同第七圖所示,其係分別為: a = tan"1 [(iA Ι{ιΒ + /c ) x (sin θζ + cos ΘΣ)] a - tan'1 [(/^ !{ic +/0)x(sin(^ -9〇e) + cos(^z -90°))] a = tan~l[(iA /(iD +/£)x(sin(^z -180〇) + cos(^-180°))] a = tan'1 [(/, l{iB + /£) x (sin(^2 - 270°) + cos(^2 - 270°))] 其中g、~與~係為正立方體感應模組所產生之 該等感測訊號、&係表示照射在各感測單元表面的太陽光 之方位角、以及《係表照射在各感測單元表面的太陽光之仰 角。 再者,由於立方體感應模組有良好的光遮蔽效應,故 可利用光行進的直線性特性,而達成精準的感應,亦即當 201113662And so on, as shown in the fourth figure, the other azimuth angle ranges are further derived, which are: θζ =^~\ic/iB) θζ Stan-1 (iD"c) + 9〇. Ζζ =^(^/^) + 270° where kL, 匕 and ~ are the sensing signals generated by the sides B, 匸, Β 1, _E of the cube sensing module, and & The azimuth of the sunlight on the surface of each sensing unit. The fifth to seventh pictures of the second test are used to illustrate the schematic diagram of the positive cube sensing module used in the first figure to obtain the elevation angle. The elevation angle is based on the sensing signal of the top surface (A) of the positive cube sensing module and the sides of any two adjacent positive cube sensing modules (B, C, D and the sensing signals) In the fifth figure, the Orthodox sensing module 1G has a complex system of single males, B, C, D and E, which respectively take the sensing unit A surface _B surface - C surface, sensing unit The A-C-D-D surface, the sensing unit A surface, the surface, and the a-surface _^ surface are used to calculate the elevation angle. Referring to the sixth figure, the sunlight is irradiated in the azimuth of the B surface and the C surface of the sensing unit (herein defined in 〇.~90.), and the sunlight of /sine is obtained on the surface of the sensing unit A at 201113662. The vertical effective component, the vertical effective component of the sunlight of /cosacos<9z is obtained on the surface of the sensing unit B, and the vertical effective component of the sunlight of /cosasin<9z is obtained on the surface of the sensing unit C. Therefore, for a combination of components effective on both sides of the sensing unit B surface and the sensing unit C surface, it is /cosa (cos < 9z + sin (9z). In addition, the sensing unit A surface, the sensing unit B surface and The sensing unit C surface respectively generates corresponding complex sensing signals B, 匕 and k to derive the following formula: iA /(iB + ic) = Is'ma/[/cosa(sinθζ + cosθζ)] Or = tan-1 [(iA /(iB + ic)x (sin Qz + cos Θζ)]) It is also possible to use the sensing unit A surface, the sensing unit B surface and the sensing unit C surface to receive the sunlight effectively. For the area calculation, the same formula as above can be obtained. By analogy, the elevation formulas under different azimuth ranges can be derived in the same way, as shown in the seventh figure, which are: a = tan" 1 [(iA Ι{ιΒ + /c ) x (sin θζ + cos ΘΣ)] a - tan'1 [(/^ !{ic +/0)x(sin(^ -9〇e) + cos(^ z -90°))] a = tan~l[(iA /(iD +/£)x(sin(^z -180〇) + cos(^-180°))] a = tan'1 [(/ , l{iB + /£) x (sin(^2 - 270°) + cos(^2 - 270°))] where g, ~, and ~ are the sensing signals generated by the positive cube sensing module &amp The system indicates the azimuth of the sunlight that illuminates the surface of each sensing unit, and the elevation angle of the sunlight that illuminates the surface of each sensing unit. Furthermore, since the cube sensing module has a good light shielding effect, The linear characteristics of light travel can be utilized to achieve precise sensing, that is, when 201113662

方位角位在0 S θζ < 90。之間B士甘丄B 單元D面邮面的有⑽Μ’,、场之㈣度作用於感測 ^ / ,.. "積為0’而其所對應的感測訊號 係為〇。同樣地,當方位角位在9〇。$<18〇。之間時, ⑽相感測訊係為Q; #方位角位在 z <之間時’其相對應的感測訊號/β與zc係為0;The azimuth angle is at 0 S θ ζ < 90. There is (10) Μ' between the D face of the B Shigan B unit, and the (four) degree of the field acts on the sense ^ / , .. " product is 0' and the corresponding sensing signal is 〇. Similarly, when the azimuth is at 9 〇. $<18〇. When (10) the phase sensing system is Q; the azimuth position is between z < the corresponding sensing signals /β and zc are 0;

:=γ 270,36。。_之間時,其相對應咖 通常之事者,應當可:了解’熟产7,具有 、、目m 士卜 J解至JT猎由&、1匕與,五的感 唬,確疋太陽之入射方位角士位於哪一區域範圍,而 ” & ’進而計算仰角α,但若所有n 讀五之有效感測職係為〇或接近於 動r習,技術的被動式追日⑽來輔助運作。然而= ,思的疋’右有任何一組判斷訊號之電流值,例士、^、 (c b)、⑶、&)或〜、y跨越某一預定或使用者自訂 的一有效感测訊號的臨界值時,本發明之具有立方體感應 模組之主動式追日系統則可即刻啟動。其中,H匕與 匕之感測訊號之有效臨界值,可視實際佈建時太陽能板的 面積大小與轉換效率而定。 參考第人圖,係本發明於—實施例之正立方體感應之 主動式追日㈣方塊圖。財實施财,該系統2g係用以 追縱動]料算出照射錢醇元表_域光之方位角 與仰角’ I包含感應模組22、處理單元24、被動追日系統 單元T轉動單元28與太陽能板3〇、。太陽能板3〇係接 收太陽光之光強度丨,用以產生對應光強度T之電能 201113662 E_Energy。感應模組22係具有複數感測單元222,且該等 感測單元222係彼此相互形成立方體224,用以根據太陽光 入射於該等感測單元222之光強度I,分別地產生對應光強 度I的感測訊號SS,例如感測單元222係可為太陽能板。 舉例而言,其中立方體224係可為邊長相等之正立方體。 處理單元24係與感應模組22連接,且分別地根據自該等 感測單元222所接收與其對應之感測訊號SS,產生對應的 控制訊號CS。其中,根據控制訊號CS,係用以提供轉動 單元28轉動太陽能板30所需之方位角訊號與仰角訊號。 轉動單元28係與太陽能板30連接,且根據控制訊號CS, 轉動太陽能板30,使得太陽能板30垂直面向入射之太陽 光。此外,應當可以了解到,轉動單元28藉由方位角訊號 與仰角訊號轉動太陽能板30,將使得太陽光之光強度I於 太陽能板30上產生最大的電能E_Energy。值得注意的是, 本發明之主動式追日系統更可包含一被動式追日單元26, 其根據太陽的運動執跡,係可選擇性的提供太陽能板30轉 動所需資料,並透過轉動單元28轉動太陽能板30。 綜上所述,本發明係提出立方體感應之主動式追曰的 方法與系統,其具有下列的優點:(1)本發明係可藉由利用 太陽能板所構成之立方體感應模組接收太陽光能,除了可 用以接收與感應入射之太陽光而計算出其方位角與仰角 外,其亦可產生/儲存電能,而不致於會浪費能源。(2)立方 體感應模組係與太陽能板分開設置,可便於當有多個太陽 能板設置時,並不一定需要以一對一的方式,於太陽能板 201113662 同時對應設置立方體感應模組,亦即本發明可達成一立方 體感應模組控制多個的太陽能板。(3)由於立方體感應模組 具有簡單的結構,再配合上述的方法,其可簡單地與明確 地獲得照射於感測單元表面的太陽光的方位角與仰角,進 而調整太陽能板方位,使得太陽能板可達成快速且有效率 的獲得最大的電能轉換效率。 本發明在上文中已以較佳實施例揭露,然熟習本項技 術者應理解的是,該實施例僅用於描繪本發明,而不應解 讀為限制本發明之·。應注意的是,舉凡與該實施例等 效之變化與置換,均應設為涵蓋於本發明之範疇内。因此, 本發明之保護範圍當以下文之申請專利範圍所界定者為 準〇 ,. 【圖式簡單說明】 第一圖係本發明於一實施例之立方體感應之主動式追 日方法。 第一〜四圖係說明第一圖中立方體感應模組用以獲 方位角之示意圖。 第五〜七圖係說明第一圖中立方體感應模組用以獲得 仰角之示意圖。 第八圖為圖係本發明於一實施例之立方體感應之主動 式追日系統方塊圖。 【主要元件符號說明】 12 201113662:=γ 270,36. . Between the _, the corresponding thing should be: the understanding of 'cooked production 7, has, and the purpose of M jieji J solution to JT hunting by &, 1 匕 and, five senses, indeed The area of the sun's incident azimuth is located in the area, and " & 'and then calculate the elevation angle α, but if all n read five effective sense grades are 〇 or close to the dynamic r, the technology of passive chasing the sun (10) Auxiliary operation. However, the 疋's 疋' right has any set of judgment signal current values, such as regular, ^, (cb), (3), & or ~, y across a predetermined or user-defined one When the threshold value of the effective sensing signal is valid, the active solar tracking system with the cube sensing module of the present invention can be started immediately. Among them, the effective threshold value of the sensing signals of H匕 and 匕 can be seen as the solar panel during actual deployment. The size of the area depends on the conversion efficiency. Referring to the figure of the person, it is the active-type chasing day (four) block diagram of the positive cube sensing of the present invention. The financial implementation of the system is used to calculate the material. Irradiation of the alcohol table _ domain azimuth and elevation angle 'I includes the sensing module 22, The unit 24, the passive tracking system unit T rotating unit 28 and the solar panel 3, the solar panel 3 receives the light intensity 太阳 of the sunlight to generate the electric energy 201113662 E_Energy corresponding to the light intensity T. The sensing module 22 A plurality of sensing units 222 are formed, and the sensing units 222 form a cube 224 with each other to generate sensing signals corresponding to the light intensity I according to the light intensity I incident on the sensing units 222 by sunlight. For example, the sensing unit 222 can be a solar panel. For example, the cube 224 can be a positive cube with equal sides. The processing unit 24 is connected to the sensing module 22 and is separately sensed according to the sensing. The sensing signal SS corresponding to the unit 222 receives the corresponding control signal CS, wherein the control signal CS is used to provide the azimuth signal and the elevation signal required for the rotating unit 28 to rotate the solar panel 30. The rotating unit 28 Connected to the solar panel 30, and according to the control signal CS, rotate the solar panel 30 such that the solar panel 30 faces the incident sunlight vertically. In addition, it should be known The rotating unit 28 rotates the solar panel 30 by the azimuth signal and the elevation signal, so that the light intensity I of the sunlight generates the maximum electric energy E_Energy on the solar panel 30. It is worth noting that the active chasing system of the present invention is more A passive chasing unit 26 may be included, which selectively provides information required for the rotation of the solar panel 30 according to the movement of the sun, and rotates the solar panel 30 through the rotating unit 28. In summary, the present invention proposes The cube-sensing active tracking method and system have the following advantages: (1) The present invention can receive solar energy by using a cube sensing module formed by a solar panel, except that it can be used for receiving and sensing incident. In addition to the azimuth and elevation angles of sunlight, it can also generate/store electrical energy without wasting energy. (2) The cube sensor module is separately arranged from the solar panel, so that when there are multiple solar panels, it is not necessary to provide a one-to-one method, and the cube sensor module is correspondingly arranged on the solar panel 201113662, that is, The invention can realize that a cube sensing module controls a plurality of solar panels. (3) Since the cube sensing module has a simple structure, in combination with the above method, the azimuth and elevation angle of the sunlight irradiated on the surface of the sensing unit can be simply and clearly obtained, thereby adjusting the orientation of the solar panel, so that the solar energy The board achieves maximum and efficient power conversion efficiency quickly and efficiently. The present invention has been disclosed in the above preferred embodiments, and it should be understood by those skilled in the art that the present invention is not intended to limit the invention. It should be noted that variations and permutations that are equivalent to the embodiments are intended to be within the scope of the present invention. Therefore, the scope of protection of the present invention is defined as defined in the following claims. [First Description of the Drawings] The first drawing is an active day tracking method of cube sensing according to an embodiment of the present invention. The first to fourth figures illustrate the schematic diagram of the cube sensing module used in the first figure to obtain the azimuth angle. The fifth to seventh figures illustrate the schematic diagram of the cube sensing module used in the first figure to obtain the elevation angle. Figure 8 is a block diagram of an active sun tracking system for cube sensing in accordance with one embodiment of the present invention. [Main component symbol description] 12 201113662

10 立方體感應模組 I 光強度 A、B、C、D、E 感測單元 感測訊號 θζ 方位角 a 仰角 20 主動式追曰系統 22 感應模組 24 處理單元 26 被動式追日單元 28 轉動單元 30 太陽能板 222 感測單元 224 立方體 S10、S12、S14、S16 ' S18、S20 步驟 SS 感測訊號 CS 控制訊號 1310 cube sensing module I light intensity A, B, C, D, E sensing unit sensing signal θ 方位 azimuth a elevation angle 20 active tracking system 22 sensing module 24 processing unit 26 passive chasing unit 28 rotating unit 30 Solar panel 222 sensing unit 224 cube S10, S12, S14, S16 'S18, S20 step SS sensing signal CS control signal 13

Claims (1)

201113662 七、申請專利範圍: 1. 一種具有立方體感應之主動式追日的方法,係用於追蹤偵測 並計算出照射於一立方體感應模組之複數感測單元表面的 太陽光之方位角與仰角,其係藉由太陽所提供的一入射光照 射於該立方體感應模組之各感測單元上所形成不同之光強 度,用以計算出該立方體感應模组與太陽光之方位角與仰 角,其方法步驟包含: 感測該立方體感應模組上複數感測單元其所分別對應 ® 接收的該太陽之該光強度,且用以分別地產生複數感測訊 號; 固定該立方體感應模組,使得該立方體感應模組之側面 (B)之感測單元係朝向以方位角定義為0度之正南方,並根 據位於該立方體感應模組之一頂面(A)之該感測單元所接收 之該光強度,用以產生該感測訊號; 根據位於該立方體感應模組之複數側面(B、C、D與E) 0 之該等感測單元所接收之該光強度,產生該等感測訊號,其 中該立方體感應模組側面(B)與該立方體感應模組側面(D)係 分別地相鄰該立方體感應模組側面(C)與該立方體感應模組 側面(E)且該立方體感應模組側面(B)與該立方體感應模組側 面(D)彼此不相鄰;以及 計算該等感測訊號,用以獲得該入射光之方位角與仰 角,使得一太陽能板根據該方位角與仰角,垂直地朝向對應 該入射光之太陽光的方向。 2. 如申請專利範圍第1項所述之方法,其中根據任兩個相互鄰 14 201113662 近的該立方體感應模組之該等側面(B、c、D與E)所產生的 該專感測訊號’獲得該方位角係分別為: = tan"'(/c/iB) 5 θζ - tan-1 (iD //c ) + 90 » θζ = tan_,(z£ "〇) +180°,以及 4 = tan-1 (/B ) + 270。; 其中〜、k 與係為該立方體感應模組各側面所產生 之該等感測訊號與&係表示照射該太陽光之方位角。 3·如申請專利範圍第2項所述之方法,其中根據該立方體感應 模組之該頂面(A)之該感測訊號與任兩個鄰近的該立方體感 應模組之該等側面(B、C、D與E)之該等感測訊號,獲得該 仰角係分別地為: a = tan '[(/^/(zB + /c)x(sin^, + cos^)] » a = tan 1 [(乙 /(fc + /β) x (Sin(& - 9〇。)+ c〇s(g — 9〇·))], α = tan 1 [GWo + ί·£ ) x (sin(A -180。)+ cos(屺-180。))],以及 ^ or = tan'1^ /(zfl +/£)x(sin(^T -270°) + c〇s(^ -270°))]; 其中G、〜、,_c、G與G係為該立方體感應模組所產生之 該等感測訊號、θζ係表示照射該太陽光之方位角與^係表示 照射該太陽光之仰角。 4‘如申請專利範圍第3項所述之方法,其步驟更包含: 偵測該立方體感應模組之該頂面(A)的該感測單元之該 感測訊號’用以產生一第一判斷訊號; 偵測該立方體感應模組之複數側面(B、C、D、E)之該 等感測單元之該等感測訊號,用以產生複數第二判斷訊號,· r <7* ** 15 201113662 以及 當該第一判斷訊號為〇或接近ο,且所有該第二判斷訊 號亦為0或接近0時,啟動一被動式追日系統用以計算太陽 之方位角與仰角,反之,則以該具有立方體感應之主動式追 曰的方法計算出照射太陽光之方位角與仰角。 5. 如申請專利範圍第4項所述之方法,其中該太陽能板依條件 選擇主動式追日系統或被動式追日系統所計算之方位角與 仰角轉動一次,接著於一預定時間之後,檢查是否已達日落 • 時刻,若是則系統進入待機狀態,若不是則重新讀取感測訊 號。 6. —種具有立方體感應之主動式追日系統,係用以追蹤偵測並 計算出太陽光之方位角與仰角,其包含: 一太陽能板,係接收該照射太陽光之一光強度,用以產 生對應該光強度之一電能; 一感應模組,係具有複數感測單元,且該等感測單元係 I 彼此相互形成該立方體,用以根據該照射太陽光於該等感測 單元之該光強度,分別地產生對應該光強度的一感測訊號; 一處理單元,係與該感應模組連接,且分別地根據自該 等感測單元所提供之該感測訊號,產生對應的一控制訊號; 以及 一轉動單元,係與該太陽能板連接,且根據該控制訊 號,轉動該太陽能板,使得該太陽能板能及時垂直朝向該照 射之太陽光。 7. 如申請專利範圍第6項所述之主動式追日系統,其中該立方 16 201113662 體係為邊長相等之正立方體。 曰系統,其中該等感 8·如申請專利範圍第7項所述之主動式追 測單元係為太陽能板。 =專利範圍第8項所述之主動式追日系統,其中根據該 =制訊號,係用以提供該轉動單轉動該太陽能板所需之 方位角訊號與一仰角訊號。201113662 VII. Patent application scope: 1. A method of actively chasing the sun with cube sensing, which is used to track and detect the azimuth of sunlight that illuminates the surface of a plurality of sensing units of a cube sensing module. An elevation angle, which is formed by the incident light of the solar illumination module on the sensing unit of the cube sensing module to calculate the azimuth and elevation of the cube sensing module and the sunlight. The method steps include: sensing the light intensity of the sun received by the plurality of sensing units on the cube sensing module, respectively, and respectively generating a plurality of sensing signals; fixing the cube sensing module, The sensing unit of the side (B) of the cube sensing module is oriented toward the south of the 0 degree of the azimuth angle, and is received by the sensing unit located at the top surface (A) of the cube sensing module. The light intensity is used to generate the sensing signal; the sensing unit receives the plurality of sides (B, C, D, and E) 0 of the cube sensing module The light intensity generates the sensing signals, wherein the side of the cube sensing module (B) and the side of the cube sensing module (D) are adjacent to the side of the cube sensing module (C) and the cube sensing module Side (E) and the side of the cube sensing module (B) and the side of the cube sensing module (D) are not adjacent to each other; and calculating the sensing signals for obtaining the azimuth and elevation of the incident light, such that A solar panel is oriented perpendicular to the direction of the sunlight corresponding to the incident light according to the azimuth and elevation. 2. The method of claim 1, wherein the sensory sense is generated from the sides (B, c, D, and E) of the cube sensing module adjacent to any two adjacent 14 201113662 The signal 'obtaining the azimuth angle is: = tan"'(/c/iB) 5 θζ - tan-1 (iD //c ) + 90 » θζ = tan_,(z£ "〇) +180°, And 4 = tan-1 (/B) + 270. Wherein ~, k and the sense signals and & are generated by the sides of the cube sensing module to indicate the azimuth of the sunlight. 3. The method of claim 2, wherein the sensing signal of the top surface (A) of the cube sensing module and the two adjacent sides of the cube sensing module (B) The sensing signals of C, D and E) are obtained as follows: a = tan '[(/^/(zB + /c)x(sin^, + cos^)] » a = Tan 1 [( B / (fc + /β) x (Sin(& - 9〇.) + c〇s(g - 9〇·))], α = tan 1 [GWo + ί·£ ) x ( Sin(A -180.)+ cos(屺-180.))], and ^ or = tan'1^ /(zfl +/£)x(sin(^T -270°) + c〇s(^ - 270°))]; wherein G, 〜, _c, G, and G are the sensing signals generated by the cube sensing module, θ ζ indicates the azimuth angle of the sunlight, and the system indicates that the sun is illuminated The method of the method of claim 3, wherein the method further comprises: detecting the sensing signal of the sensing unit of the top surface (A) of the cube sensing module Generating a first determination signal; detecting the sensing units of the plurality of sides (B, C, D, E) of the cube sensing module a test signal for generating a plurality of second determination signals, r <7* ** 15 201113662 and when the first determination signal is 〇 or close to ο, and all of the second determination signals are also 0 or close to 0, A passive chasing system is started to calculate the azimuth and elevation of the sun, and vice versa, the azimuth and elevation of the illuminating sunlight are calculated by the method of active tracking with cube induction. The method according to the item, wherein the solar panel is rotated once according to a condition selected by the active chasing time system or the passive chasing system, and then after a predetermined time, it is checked whether the sunset has been reached, and if so, The system enters the standby state, and if not, re-reads the sensing signal. 6. An active solar tracking system with cube sensing is used to track and detect the azimuth and elevation of sunlight, including: The solar panel receives the light intensity of the irradiated sunlight for generating one of the light intensity corresponding to the light intensity; and the sensing module has a plurality of sensing sheets And the sensing unit I forms a cube with each other to generate a sensing signal corresponding to the light intensity according to the light intensity of the irradiating sunlight in the sensing unit; a processing unit, Connected to the sensing module, and respectively generate a corresponding control signal according to the sensing signal provided by the sensing units; and a rotating unit connected to the solar panel, and according to the control signal The solar panel is rotated such that the solar panel can face the illuminated sunlight in a timely manner. 7. The active solar tracking system as described in claim 6 wherein the cubic 16 201113662 system is a positive cube with equal sides. The 曰 system, wherein the sensation 8 is the solar panel as described in claim 7 of the patent application. The active solar tracking system of claim 8 wherein the = signal is used to provide an azimuth signal and an elevation signal required to rotate the solar panel. •如u申请專娜圍第9項所述之主動式追日系統,其中該轉 動:元根據該方位角訊號與該仰角訊號轉動該太陽能板, 使得該太陽之該光強度於該太陽能板上產生最大的該電 台仁„ U·如申请專利範圍第6項所述之主動式追曰系統’更包含一 破動式追日單元,係選擇性的透過該被動式追曰 單元,計 异出該太陽之方位角與仰角,並經由該處理單元,提供給 該轉動單元轉動該太陽能板。• The active solar tracking system as described in item 9 of the special application, wherein the rotation: the element rotates the solar panel according to the azimuth signal and the elevation signal, so that the light intensity of the sun is on the solar panel. The most generated radio station, the active tracking system described in claim 6 of the patent application, further includes a broken chasing unit, which selectively transmits the passive tracking unit. The azimuth and elevation of the sun are provided to the rotating unit to rotate the solar panel via the processing unit. 1717
TW98134374A 2009-10-09 2009-10-09 Active solar tracking method and its system utilizing 3D sensing methodology TW201113662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98134374A TW201113662A (en) 2009-10-09 2009-10-09 Active solar tracking method and its system utilizing 3D sensing methodology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98134374A TW201113662A (en) 2009-10-09 2009-10-09 Active solar tracking method and its system utilizing 3D sensing methodology

Publications (2)

Publication Number Publication Date
TW201113662A true TW201113662A (en) 2011-04-16
TWI390381B TWI390381B (en) 2013-03-21

Family

ID=44909713

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98134374A TW201113662A (en) 2009-10-09 2009-10-09 Active solar tracking method and its system utilizing 3D sensing methodology

Country Status (1)

Country Link
TW (1) TW201113662A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103365302A (en) * 2013-06-18 2013-10-23 陕西理工学院 Sun light ray tracking algorithm fusing three-phase limitation sun light ray sensor and light spot image sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103365302A (en) * 2013-06-18 2013-10-23 陕西理工学院 Sun light ray tracking algorithm fusing three-phase limitation sun light ray sensor and light spot image sensor
CN103365302B (en) * 2013-06-18 2016-03-09 陕西理工学院 The sunray track algorithm of three-phase limitation sunray sensor and light spot image sensor fusion

Also Published As

Publication number Publication date
TWI390381B (en) 2013-03-21

Similar Documents

Publication Publication Date Title
US8785830B2 (en) Photovoltaic assembly for use in diffuse weather conditions and related methods
CN105149772B (en) Laser control system and stabilized lasers light path energy and the method pointed to
Kumar et al. Automatic dual Axis sun tracking system using LDR sensor
Tseng et al. CO2 uptake in the East China Sea relying on Changjiang runoff is prone to change
Holte et al. The role of air‐sea fluxes in Subantarctic Mode Water formation
US20120048340A1 (en) Solar panel tracking system and associated tracking sensor
TWI338767B (en) Solar tracking apparatus and solar electric power generation system thereof
CN105259930B (en) Round-the-clock solar azimuth tracking and device
KR100970961B1 (en) Sun tracking and driving sensor
CN102541081A (en) Solar tracking photoelectric sensor and photovoltaic power generation system
EP3255786A1 (en) Solar light detection device and solar light tracker having same
CN105043537B (en) The flat-top triangular pyramid sensor of family photovoltaic component tracks
TWI403680B (en) Solar sense system and solar sense tracks method thereof
TW201113662A (en) Active solar tracking method and its system utilizing 3D sensing methodology
KR100788237B1 (en) Position Tracking Device And Method Of Solar
Rivas et al. Thermal response to the surface heat flux in a macrotidal coastal region (Nuevo Gulf, Argentina)
Artanto et al. Design of a GPS-based solar tracker system for a vertical solar still
Cheng et al. Two‐Axis Solar Heat Collection Tracker System for Solar Thermal Applications
CN103064427B (en) Device is followed the tracks of in high-precision sun orientation based on PSD
Mork et al. Water mass exchanges between the Norwegian and Iceland seas over the Jan Mayen Ridge using in-situ current measurements
CN201251432Y (en) Wide-area high-sensibility sun-tracking sensor
KR102145196B1 (en) Tracking type solar panel
CN104122898A (en) Solar tracking device and solar cell module
Khan et al. Enhanced energy extraction in an open loop single-axis solar tracking PV system with optimized tracker rotation about tilted axis
CN101551245B (en) Lighting structure of light source azimuth detector

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees