TW201112884A - Plasma processing apparatus - Google Patents

Plasma processing apparatus Download PDF

Info

Publication number
TW201112884A
TW201112884A TW098141802A TW98141802A TW201112884A TW 201112884 A TW201112884 A TW 201112884A TW 098141802 A TW098141802 A TW 098141802A TW 98141802 A TW98141802 A TW 98141802A TW 201112884 A TW201112884 A TW 201112884A
Authority
TW
Taiwan
Prior art keywords
metal electrode
dielectric
processing container
metal
plasma
Prior art date
Application number
TW098141802A
Other languages
Chinese (zh)
Inventor
Masaki Hirayama
Original Assignee
Univ Tohoku
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Tohoku, Tokyo Electron Ltd filed Critical Univ Tohoku
Publication of TW201112884A publication Critical patent/TW201112884A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32238Windows
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges

Abstract

A microwave plasma processing apparatus (10) has: a processing container (100); a microwave source (900) which outputs microwaves; a dielectric plate (305) which is arranged adjacent to the ceiling surface in the processing container and discharges the microwaves outputted from the microwave source (900) into the processing container; and a rhombic metal electrode (310), which is arranged adjacent to the dielectric plate (305) on a surface on the plasma side of the dielectric plate (305) and exposes a part of the dielectric plate (305) in the processing container from the periphery. The metal electrode (310) and the dielectric plate (305) have, as a cell region (Cel), a minimum rectangular region which is a virtual region partitioning the ceiling surface of the processing container (100), is defined by two straight lines parallel to the two diagonal lines (D1, D2) of the metal electrode (310), respectively, and includes the metal electrode (310) and the dielectric plate (305). The ratio of the length of the long side of the cell region (Cel) to the length of the short side is 1.2 or less.

Description

201112884 發明說明: 【發明所屬之技術領域】 本發明係關於一種利用電磁波來激發氣體以對被 處理體進行電聚處理之電漿處理裝置。 【先前技術】 利用電磁波所產生之電漿中,微波電漿係藉由透過 "電體板來將微波導人至減壓狀態的處理室内而產生 (例如參照專利文獻:日本特開2006-310794號公報)。 :微波電漿處理裝置中,當電漿的電子密度〜較截止 =off)枪度nc要高時,微波便無法進入電漿内而會 」丨电、體板與電漿之間傳播。在傳播的過程中 ’微波的 分會作為衰退波而被錢吸收以用於電毅的維 上述般地在介電體板與電漿之間所傳播之微波則 %為例如介電體表面波β __波供給至電祕理裝置時,不只是在介 有在1桌之間所傳播之介電體表面波,而亦會產生 波(二:之金屬面與電漿之間所傳播之表面 電漿的電子卢庳&面波(導體表面波))。金屬表面波在 播。幾止:較截止密度〜的2倍要低時則無法傳 金J1矣隹度nc係與電磁波頻率的平方成比例,因此 者irr在頻率低、電子密度不高時會無法傳播。再 n面波具有當頻率愈低則愈不易衰退之特徵。 又'說在使用於電漿產生之2450MHz的頻率 4 201112884 中截止密度nc的值為7.5xl01QcnT3,故當電子密度非為 1.5xlOncm_3以上時則金屬表面波便無法傳播。例如, 在表面附近的電子密度為lxlOncm_3左右之低密度電 漿中,金屬表面波會完全無法傳播。即使是電子密度更 高的情況,由於會大幅衰退,故金屬表面波的傳播幾乎 不致成為問題。另一方面,在例如915MHz的頻率中, 即使是表面附近的電子密度為lxl〇ncnf3左右之低密 度電漿,金屬表面波亦會在處理室内面長時間地傳播。 因此,利用低頻電磁波來進行電漿處理時,不只是 介電體表面波,亦須有用以控制金屬表面波的傳播之裝 置設計。例如,當位於金屬電極表面與金屬電極附近的 相似形金屬罩表面所形成之金屬表面波的駐波分佈有 所差異,且各自的分佈具有大的偏離時,會在處理容器 頂面處產生電場能量分佈的偏離。又,當金屬電極與金 屬罩之間存在有段差或溝槽時,會在其附近形成氣體不 易流動而容易滯留之狀態,而產生不穩定的電漿。再 者,利用螺絲來將介電體板或金屬電極固定在處理容器 的頂面時,·亦有可能發生在微波傳送路徑產生無法管理 之間隙,而使得來自電漿側的微波反射增加且微波能量 的供給效率變差之情況。該等情況會對電漿的均勻性及 穩定性造成影響,故尋求藉由將金屬電極及其周邊的形 狀、尺寸、設置位置及其周邊的設計最佳化,來穩定地 產生均勻電漿。 5 201112884 【發明内容】 為了控制表破的傳播,本翻係提供一種 將金屬電極及其周邊結構最佳狀處理裝置。 將本發明其中—觀點係提供一種電 水^ :,’、具有:處理容器’係於内部將氣體激發 以^處理體進行絲處理;電磁波源,係設置於該處 理^外部,並輸出電磁波;介電體板,_接設置於 該處理容器内_面,並將從該電磁波源所輸出之電磁 ft出至該處理各11内;以及菱形金屬電極,係於該介 電體板之賴勤處鄰接設置於該介賴板,並使該介 電體板的—部份從周緣露出至該處理容器内部。該金屬 電極人該;丨電體板係由將該處理容器的了頁面力。以區劃 之假想區域且分別平行於該金屬電極的2根對角線之 各=根直線所劃定;以包含有該金屬電極與該介電體板 之最!、矩形區域作為單元區域,該金屬電極及該介電體 板具有特定的形狀以使單元區域之長邊長度對短邊長 度的比為1.2以下。 藉此,電磁波源所輸出之電磁波係從鄰接設置於處 理各器内的頂面之菱形金屬電極周緣經由介電體板而 =出至處理容器内。金屬電極與介電體板係由將該處理 各器的頂面加以區劃之假想區域且分別平行於該金屬 電極的2根對角線之各2根直線所劃定;以包含有該金 屬電極與該介電體板之最小矩形區域作為單元區域(參 照圖2),該金屬電極及該介電體板具有特定的形狀以使 6 201112884 單元區域之長邊長度對短邊長度的比為12以下。 為了產生均勻的電漿,則希望於金屬電極表面與金 屬罩表面所形成之金屬表面波的駐波分佈為相同,且各 自的分佈未有大的麟。當單元區域為正方形時,會在 I屬電極表面與金屬罩表面形成相同圖樣的駐波。此係 因為從金屬電極與金屬罩周圍的對應位置分別供給有 相同相位、相同強度之金屬表面波的緣故。 另-方面,當單涵域為長方形時’會在金屬電極 表面與金屬罩表面形成相異圖樣的駐波。此係因為從金 屬電極與金屬罩周圍的對應位置所供給之金屬表面波 的相位、強度不-_緣故。如此地,當金屬電極表面 =金屬罩表面所形成之金屬表面波的駐波對稱性不佳 曰守,會難以控制均勻性,而難以激發均勻的電聚。為了 產生具實用性之均勻電毅,金屬電極表面與金屬罩^面 的對應位置處之金屬表面波的電場強度比平均值希望 為1.5以下’更佳則希望為Li以下6 圖4係顯示單元區域長寬比與對應位置處之金屬 表面波的電場強度比之關係。此係模擬電磁場所計算之 結果。根據計算的結果,為使電場強度比為15以下, 則單元區域的長寬比為1_2以下即可。藉此,可使於金 屬電極表面與金屬罩表面所形成之金屬表面波的駐波 分佈為相同或近似,並可維持各自的分佈而不會產生偏 離之狀態。其結果便可產生均勻的電漿。 為使電場強度比為1.1以下’更佳錢單元區域的 201112884 長寬比為1.1以下。藉此,可更加使金屬電極與金屬罩 之金屬表面波的駐波分佈為相同或近似,且減小各自分 佈的偏離,而可以產生更均句的電漿。 為解決上述課題,本發明另〆觀點係提供一種電漿 處理裴置,其具有:處理容器,係於内部將氣體激發以 對被處理體進行電漿處理;電磁波源,係設置於該處理 容器外部,並輸出電磁波;介電體板,係鄰接設置於該 處理容器内的頂面,並將從該電磁波源所輸出之電磁波 放出至該處理容器内;金屬電極,係於該介電體板之電 漿侧面處鄰接設置於該介電體板,並使該介電體板的一 部份從周緣露出至該處理容器内部;以及金屬罩,係設 置於該處理容器的頂面未設置有該介電體板的部分,而 與該金屬電極為相同或相似的形狀。該金屬電極與該金 屬罩之間的溝槽係設置有充填用介電體。 藉此,電磁波源所輸出之電磁波係從鄰接設置於處 理容器内的頂面之金屬電極周緣經由介電體板放出至 處理容器内》處理容器的頂面未設置有介電體板的部分 係設置有與金屬電極相同或相似形的金屬罩,金屬電極 與金屬罩之間係設置有充填用介電體》 氣體在金屬電極與金屬罩之間的溝槽(間隙)會不易 流動而容易滯留。例如電漿清潔步驟中,清潔氣體較難 進入間隙内部而難以去除附著在間隙内面的膜。又,在 溝槽部分,由於3個方向係被牆壁圍繞故電漿電子密卢 容易下降,而難以使電漿密度維持穩定。由於係從露= 8 201112884 至金屬電極與金屬罩之間的介電體板來供給金屬表面 波,故在該部分無法使電漿密度維持穩定時,電漿整體 便會因不穩定而變得不均勻。相對於此,本發明係藉由 以介電體充填金屬電極與金屬罩之間的溝槽而可解決 該等問題。 為解決上述課題,本發明另一觀點係提供一種電漿 處理裝置,其具有:處理容器,係於内部將氣體激發以 對被處理體進行電漿處理;電磁波源,係設置於該處理 容器外部,並輸出電磁波;介電體板,係鄰接設置於該 處理容器内的頂面,並將從該電磁波源所輸出之電磁波 放出至該處理容器内;金屬電極,係於該介電體板之電 漿侧面處鄰接設置於該介電體板,並使該介電體板的一 部份從周緣露出至該處理容器内部;以及凸部,係設置 於該處理容器的頂面未設置有該介電體板的部分,而與 該金屬電極為相同或相似的形狀。該金屬電極與該凸部 之間的溝槽係設置有充填用介電體。 藉此亦可藉由以介電體來充填金屬電極與凸部之 間來消除氣體不易流動而容易滯留之空間,以穩定地產 生均勻電漿。 該金屬電極周圍亦可設置有侧罩,該充填用介電體 亦可設置於該金屬電極與該側罩之間的溝槽。 該充填用介電體亦可被設置為埋入於該金屬電極 與該凸部之間的溝槽、平坦化該溝槽,或自該溝槽突出 之任一者狀態。 9 201112884 遠充填用介電體亦可以圍繞該金屬電極外周之方 μ置’而具有自該溝槽突出的部分。 該充填用介電體亦可於該金屬電極各邊之至少中 央附近處自該溝槽突出。 該充填用介電體的突出部之該金屬電極各邊中央 ^近處的突出亦可較該金屬電極頂點附近處的突出要 大0 該充填用介電體的突出部分亦可相對於該金屬電 極中心而形成為點對稱。 該充填用介電體亦可由與該介電體板相同的材質 所形成。 ' 户為解決上述課題,本發明另一觀點係提供一種電漿 置’其具有:處理容器,係於内部將氣體激發以 處理體進行電漿處理;電磁波源,係設置於該處理 部’並輸出電磁波;介電體板,係鄰接設置於該 理|益内的頂面’並將從該電磁波源所輸出之電磁波 放f至該處理容器内;以及金屬電極,係於該介電體板 之電漿側面處鄰接設置於該介電體板,並使該介電體板 =一部份從周緣露出至該處理容器内部。該金屬電極係 藉,複數個第1螺絲及與該複數個第i螺絲相異之複數 個第2螺絲而固定於該處理容器内的頂面;該複數個第 1螺絲係於相對於該金屬電極中心而互相為點對稱之位 置處來固定該金屬電極;該複數個第2螺絲係設置於相 對於该金屬電極巾心而互相為點對稱之位置處,立在與 201112884 該複數個第1螺絲的位置相異之位置處來固定該金屬 電極。 ,此,電磁波源所輪出之電磁波係從鄰接設置於處 理容,内的頂面之金屬電極周緣經由介電體板放出至 處理谷态内。金屬電極係藉由複數個第丨螺絲及與 =絲相異之複數個第2螺絲關定於處理容器内的頂 在固定時,金屬電極係在將介電體挾置其中之爸 下,於自金屬電極中心距離相等且等間隔之位置产 複數個第1螺絲而固定於處理容器,並於自該金 中心距離相等且與4根第1螺絲的位置相異之位置戊# 由複數個第2螺絲而固定於處理容器。 藉 如此地,金屬電極係藉由相對於金屬電極中心 % 置為點對稱之2種螺絲,在未有電方面及機械方面2 = 之狀態下被固定。藉此,由於在微波的傳送流道(介泰 體)不會產生間隙,且微波的波長與傳播速度不會 變化’故相對於設計值之實際電阻的變化不會有^異 且可降低來自電漿侧的微波反射,並提高微波能量的、供 給效率。特別是可藉由螺絲的直徑或位置來降低金屬^ 極之電場強度分佈的偏離,以穩定地產生均句電聚。 又’可透過複數個螺絲來使電漿侧的熱散熱至蓋體1 側。 — 該複數個第1螺絲的直徑亦可較該複數個第2螺絲 11 201112884 4根’且位於該金屬電極 该複數個第1螺絲亦可為 的對角線上。 ,複數個第2螺絲亦可為4根,且位於較該4根第 1螺、、糸要更靠近該金屬f極中心側處。 田"亥金屬電極為正方形時,該4板第2螺絲亦可分 於自該等間隔地設置之4根第1螺絲中相鄰2根 第1累絲等間隔的位置處。 該介電體板亦可於該金屬電極外周處略帶狀地露 出至該處理容器内的頂面。 $介電體板及該金屬電極亦可在該介電體板為被 挾置在該金屬電極與該處理容器的頂 =複數地設置,並以相鄰各金屬電極的頂點彼;;: 間敢罪近之方式而規則地設置於該頂面。 =以上所說明地本發明可將金屬電極及其周邊的 結構农佳化來控制表面波的傳播。 【實施方式】 以下參照添附圖式,詳細說明本發明之較佳實施形 態。又,以下的朗及添關式中,具有相同結構及功 能的構成要件則賦予相同符號而省略重複說明。 (電漿處理裝置的結構) 首先’針對本發明一實施形態之微波電漿處理裝置 (MSEP · Metal Surface Wave Excitation Plasma)的結構, 12 201112884 參照圖1加以說明。圖 圖。圖1係顯示圖2之 漿處理裝置10的頂面, 1係概略顯示本裝置之縱剖面 2-〇_〇’-2剖面。圖2為微波 仏顯示圖1之1-1剖面。 (Μ波電漿處理裝置的概略) 璃所示,微波錄處理裝置1G具有以— 璃基板(以下稱為「基板G」。)進行 對破 100。處理容器100俜由衮哭 处里容器 —令态川υ你由合态本體200與蓋體3〇〇 :::器本體·為其上部具有開口之有底立方= /、開口係藉由蓋體300而被加以封閉。蓋體_孫 ^上部蓋體300a與下部蓋體鳩所構^容器本體^ ”下部盍體300b的接觸面設置有〇型環2〇5,藉 :器本體綱與下部蓋體3〇〇b加以密閉而劃‘處理 室°上部蓋體3000^7部蓋體3_的接觸面亦設 〇210及〇型環215,藉以將上部蓋體3〇〇a與下 部蓋體300b加以密閉。容器本體2〇〇及蓋體3〇〇係由 例如鋁合金等金屬所構成,並為電接地之狀態。 處理容器100内部設置有用以載置基板〇之载置台 105。載置台105係由例如氮化鋁所形成。載置台ι〇5 被支撐於支樓體110 ’並於其周圍設置有用以將處理室 的氣體流動控制在較佳狀態之隔板115。又,處理容器 100底部設置有氣體排出管12〇,以利用設置於處理容 器100外部之真空幫浦(未加以圖示)來將處理容器100 内的氣體排出。 13 201112884 參照圖1及圖2,處理容器100的頂面規則地設置 有金屬電極310及金屬罩32〇。8個金屬電極31〇係以 相鄰各金屬電極310❺頂點彼此之間|靠近之方式而 規則地設置於處理容器内的頂面^ 3個金屬罩3 2 〇分別 設置於未設置有金屬電極31〇的部分,並以金屬罩32〇 的頂點最靠近相鄰金屬電極31〇的頂點之方式而規則 地設置於處理容器内的頂面。8個金屬電極31〇外周則 設置有覆蓋金屬電極310及金屬罩32〇之侧罩35〇。 金屬電極310係於介電體板3〇5之電漿側面(下面) 處而鄰接設置於介電體板3G5,而從周緣使得介電體板 305的一部分露出至處理容器1〇〇内部之菱形平板。此 處,所謂菱形係指4邊長度相等的4邊形,亦包含正方 形。 w電體板305較金屬電極31〇大上一圈,而為於金 屬電極310的頂點附近處具有缺角之$角形平板。介電 體板305係在被挾置於處理容器内的頂面與金屬電極 310之狀態下而鄰接設置於頂面,並於金屬電極31〇外 周處略帶狀地露出至處環容器内的頂面。介電體板3〇5 係從該帶狀部分將微波源900所輪出之微波放出至處 理容器内。 介電體板305及金屬電極310係相對於基板〇或處 理容器100而於大約傾斜45°的位置處等間隔地設置有 8片。間隔係設定為一個介電體板305的對角線長度為 相鄰介電體板305之中心間距離的〇·9倍以上。藉以使 201112884 介電體板305稍微被削除的角部彼此之間為鄰接設置。 金屬罩320係設置於處理容器1〇〇的頂面中未設置 有介電體板305的部分,而與金屬電極810為相同或相 似形狀。金屬電極310與金屬罩.320,金屬電極31〇係 要厚上介電體板305厚度部分的大小。金屬電極31〇與 金屬罩320之間的溝槽係藉由充填用介電體3丨5而被加 以充填。根據該形狀,頂面的高度會大致相等,且露出 有介電體板305部分的凹槽會被填補,而使得金屬電極 310及其周邊為大致重複相等的圖樣。 介電體板305係由氧化鋁所形成,金屬電極310、 金屬罩320及側罩350係由鋁合金所形成。又,本實施 形態中,8片介電體板305及金屬電極310係設置為縱 方向2行、橫方向4列’但不限於此,而可增加或減少 介電體板305及金屬電極310的片數。 參照圖2,介電體板3〇5及金屬電極31〇係藉由第 1螺絲380及第2螺絲390而固定於蓋體3〇〇。金屬罩 320及側罩350亦同樣地藉由第1螺絲380及第2螺絲 390而固定於蓋體300。上部蓋體300a與下部蓋體300b 之間設置有主氣體流道330。主氣體流道330係將氣體 分流至設置於複數個第1螺絲380内之第1氣體流道 325a。第1氣體流道325a的入口嵌入有使流道縮窄之 細管335。細管335係由陶瓷或金屬所構成。金屬電極 310與介電體板305之間設置有第2氣體流道310al。 金屬罩320與蓋體300之間及侧罩350與蓋體300之間 15 201112884 亦設置有第2氣體流道320al、320a2。第1螺絲380 及第2螺絲390的前端面係與金屬電極310、金屬罩320 及側罩350的下面對齊,以使電漿分佈不會紊亂。於金 屬電極310開口之第1氣體放出孔345a與於金屬單320 及侧罩350開口之第2氣體放出孔345bl、345b2係以 相等間隔而朝向下方開口。又,第1螺絲380及第2螺 絲390亦可與金屬電極310、金屬罩320及側罩350為 一體成型。 氣體供給源905所輸出之氣體係從主氣體流道3 3 0 通過第1氣體流道325a(分支氣體流道),並經由金屬電 極310内的第2氣體流道310al與金屬罩320及側罩350 内的第2氣體流道320al、320a2,而從第1氣體放出孔 345a及第2氣體放出孔345bl、345b2被供給至處理室 内°第1同軸管610外周附近的下部蓋體3〇〇b與介電 體板305的接觸面設置有0型環22〇,以使第丨同轴管 610内的大氣不會進入處理容器ι〇〇的内部。 如此地,藉由在頂部的金屬面形成氣體簇射板, 以抑制過去所發生的因電漿中的離子而將介電體板表 面姓刻及反應生成物堆積在處理容器内壁,並可降低 污染或微塵粒子。又,與介電體不同的是金屬容易加 工’故可大幅地降低成本。 將蓋體300挖掘所形成之第j同軸管的外部導體 610b係插入有内部導體61〇ae同樣地,將蓋體3〇〇 挖掘所形成之第2〜第4同軸管的外部導體62〇b〜64〇b 201112884 係插入有第2〜第4同軸管的内部導體62〇a〜640a,其 上部覆蓋有蓋體罩660。各同軸管的内部導體係由熱 傳導性佳之銅所形成。 微波係從微波源900被供給,並從第4同軸管(内 外導體640a、640b)經由第3同軸管(内外導體63〇a、630b) 而被傳送至第1同軸管(内外導體61〇a、610b)及第2同 軸管(内外導體620a、620b)。介電體板305表面除了微 波從第1同軸管610入射至介電體板305的部分與微波 從介電體板305被放出的部分,係藉由金屬膜305a而 被加以覆蓋。藉此’即使介電體板3〇5與鄰接於其之組 件間產生有空隙,微波的傳播仍不會紊亂,而可穩定地 將微波引導至處理容器内。 介電體板305所放出之微波會成為表面波而將電 功率均分,並在金屬電極310、金屬罩32〇及側罩35〇 表面傳播。在處理容器内面的金屬面與電漿間傳播之表 面波’以下稱為金屬表面波(Metal Surface Wave)。藉 此’金屬表面波會在頂面整體傳播,而在本實施形態之 微波電漿處理裝置10的頂面下方穩定地產生均勻電 漿。 以將8片介電體版305整體圍繞之方式而於側罩 350形成有8角形溝槽340,以抑制在頂面傳播之金屬 表面波從溝槽340傳播至外側。亦可平行地多重形成複 數個溝槽340。亦可設置凸部來替代溝槽340。溝槽340 或凸部係傳播障礙部的一例。 17 201112884 以一片金屬電極310為_心,而將鄰接之金屬罩 320的中心點作為頂點之區域,以下稱為單元區域 Cel(參照圖2)。以單元區域Cel為一個單位,而於頂面 規則地設置有8個具有相同圖樣結構之單元。 冷媒供給源910係連接於蓋體内部的冷媒配管 910a,藉由使冷媒供給源⑽所供給之冷媒在蓋體内部 的冷媒配管910a内循環後再回到冷媒供給源91〇,以使 處理容器100保持在所欲溫度。第4同轴管的内部導體 64〇a内部係於其長邊方向貫穿有冷媒配管910b。藉由 使冷媒通過該流道,以抑制内部導體64〇&的加熱。3 "電體板305與盍體3〇〇之間或介電體板愈金 屬電極31〇之間期望不存在有間隙者。因為當具有&受 控制的間隙時,則在介電體板3G5傳播之微波的波長會 變得不穩定,且會對均勻性或從_管所見之負^ 電阻造成影響。又,當間隙過大(G 2mm以上)時,亦有 會在間隙發生放電之可能性。因此,在拾緊螺帽奶 後,係使介電體板305與下部蓋體3〇〇b之間及介電體 板305與金屬電極31〇之間為密著狀態。 在栓緊螺帽435之際,以過度的扭矩(torque)拾緊 時’會有介電體板3G受到壓力而破裂之可能性。又 即使在螺帽435拴緊時未破裂,但在產生電漿而使得各 P的恤度上升後,亦會有受到壓力*破裂之可能性。因 此’在螺帽435與下部蓋體3_之間插入具有最佳彈 力之波形墊片働,以經常地藉由適當的力(較壓迫〇 型環220以使介電體板3〇5與下部蓋體3〇〇b密著之力 要稍大的力)而透過第1螺絲380來將金屬電極31〇上 舉。在拴緊螺帽435時不要完全拴緊至波形墊片43〇b 成為平坦狀,以使變形量為一定。 螺帽435與波形墊片430b之間係設置有墊片 430a,但有或沒有皆可。另外,波形墊片43〇b與下部 蓋體300b之間係設置有墊片43〇c<>通常,第i螺絲38〇 與蓋體300之間會有間隙,而使得主氣體流道33〇内的 氣體通過該間隙而流動至第1氣體流道31〇a。當該未受 控制的氣體流量多時,會有來自第丨氣體放出孔345& 的氣體放出不均勻之問題。因此係縮小墊片43〇(^與第i 螺絲380之間的間隙,並增加墊片43〇c的厚度,以抑 制通過第1螺絲38〇外側所流動之氣體的流量。 接下來’以上所說明的微波電漿處理裝置1〇中, 為了控制金屬表面波的傳播’針對將金屬電極31〇及其 周邊的結構最佳化這一點再更加詳細說明。其中第一點 =使單元區域Cel的長寬比最佳化。第二點係將充填用 介電體315填入金屬電極310與金屬罩320等之間的溝 槽第一”』係將用以固定金屬電極310之螺絲的種類、 形狀或固定位置等最佳化。 (單元區域長寬比) 、,先,針對將單元區域Cel的長寬比最佳化這一點 力X »兒月如圖2所示,單元區域Cel係由將處理容器 201112884 100的頂面區域加以區劃之假想區域且分別平行於金屬 電極310的2根對角線Dl、D2之各2根直線所劃定; 將包含有金屬電極310與介電體板305的最小矩形區域 稱為單元區域。 為了產生均勻的電漿,則期望於金屬電極表面與金 屬罩表面所形成之金屬表面波的駐波分佈為相同,且各 別的分佈沒有大的偏離。因此,金屬電極310及介電體 板305具有特定的形狀以使單元區域Cel之長邊長度對 短邊長度的比為1.2以下。 當單元區域為正方形時,會在金屬電極表面與金屬 罩表面形成相同圖樣的駐波。此係因為從金屬電極與金 屬罩周圍的對應位置分別供給有相同相位、相同強度的 金屬表面波的緣故。圖3A、圖3B係顯示模擬形成於金 屬電極310表面及金屬罩320表面之金屬表面波的駐波 圖樣之結果。白色部分為電場較強的部分,黑色部分為 電場較弱的部分。而僅顯示金屬電極310右上1/4的部 分、金屬罩320左下1/4的部分及其之間的介電體板305 部分》 在金屬電極表面,於圖3A之Al、Bl、C1位置處 係存在有駐波波腹。另一方面,可見到與該等相對應之 金屬罩表面的A2、B2、C2位置處係具有與金屬電極表 面上相同強度的駐波波腹。 另一方面,如圖3B所示,當單元區域為長方形時, 會在金屬電極表面與金屬罩表面形成相異圖樣的駐 201112884 4糸因為從金屬電極3ι〇與金屬罩細周圍的對應 斤仏、°之金屬表面波的相位、強度不一致的緣故。 於,屬電極表面之駐波波腹的位置Μ、Β卜ci處 fi/、、該^目對應之金屬罩表面之駐波波腹的位置A2、 C2处’ A2處之電場係較A1要弱’ B2處之電場係 較B1要強,C2處之電界係較〇要弱。 如此地’ §金屬電極表面與金屬罩表面所形成之金 表面波的駐波對稱性不佳時,會難以控制均勻性,而 難以激@均勻的電聚。為了產生具實用性之均勻電聚, 金屬電極表面與金屬罩表面㈣應位置處之金屬表面 波的電場強度比之平均值較佳為1,5以下,更佳期望為 1.1以下。 圖4係顯示在對應於單元區域之長寬比的位置處 ^金屬表©波電場強度比的關係。此賴擬電磁場所計 算之結果。縱軸係分別於A1(A2)、叫62)及C1(C2)的 位置處,將A、B、C處之金屬電極31〇與金屬罩32〇 中之電場強度極大值的最大值除以最小值所得之比平 均後的結果。當單元區域為正方科(長寬比為丄時), 單元區域的一邊長度為214mm。當長寬比為丨以外時, 係改變長見比以使單元區域的面積保持為一定。 當單元區域為正方形時(長寬比為〗時),於對應位 置處之金屬表面波的電場強度在任何一點均相等,因此 電場強度比亦為1。可知單元區域長寬比愈大,電場強 度比亦隨之增加。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus that uses electromagnetic waves to excite a gas to perform electropolymerization treatment on a processed object. [Prior Art] Among the plasmas generated by the electromagnetic waves, the microwave plasma is generated by passing the microwave through the electro-mechanical plate to the processing room in a decompressed state (for example, refer to Patent Document: JP-A-2006- Bulletin No. 310794). In the microwave plasma processing device, when the electron density of the plasma is higher than the cutoff = off), the microwave cannot enter the plasma and will propagate between the body, the body plate and the plasma. In the process of propagation, the microwave portion is absorbed as money for the fading wave and used for the electricity. The microwave that propagates between the dielectric plate and the plasma is, for example, a dielectric surface wave β. When the __ wave is supplied to the electric secret device, it is not only the surface wave of the dielectric body that is transmitted between the tables, but also the wave (the surface between the metal surface and the plasma) Electrochemical Lu Lu & surface wave (conductor surface wave)). Metal surface waves are broadcasting. A few times: when the cutoff density is twice as low as 2, the gold J1 twist nc is proportional to the square of the electromagnetic wave frequency. Therefore, the irr cannot propagate when the frequency is low and the electron density is not high. The n-surface wave has the characteristic that the lower the frequency, the less likely it is to decay. In addition, the value of the cutoff density nc is 7.5xl01QcnT3 in the frequency of 2450MHz used for plasma generation. In 201112884, the metal surface wave cannot propagate when the electron density is not more than 1.5xlOncm_3. For example, in a low-density plasma with an electron density near the surface of about lxlOncm_3, the surface wave of the metal will not propagate at all. Even in the case of higher electron density, the propagation of metal surface waves is hardly a problem due to a large decline. On the other hand, at a frequency of, e.g., 915 MHz, even if the electron density near the surface is a low-density plasma of about lxl〇ncnf3, the metal surface wave propagates for a long time in the processing chamber. Therefore, when using low-frequency electromagnetic waves for plasma processing, it is not only a dielectric surface wave, but also a device design for controlling the propagation of metal surface waves. For example, when the standing wave distribution of the metal surface wave formed on the surface of the metal electrode and the surface of the similar metal cover near the metal electrode is different, and the respective distribution has a large deviation, an electric field is generated at the top surface of the processing container. Deviation in energy distribution. Further, when there is a step or a groove between the metal electrode and the metal cover, a gas in which the gas does not easily flow and is easily retained is formed in the vicinity thereof, and unstable plasma is generated. Furthermore, when a screw is used to fix the dielectric plate or the metal electrode to the top surface of the processing container, it is also possible that an unmanageable gap occurs in the microwave transmission path, so that microwave reflection from the plasma side is increased and the microwave is increased. The situation in which the energy supply efficiency deteriorates. These conditions have an effect on the uniformity and stability of the plasma. Therefore, it is sought to stably produce uniform plasma by optimizing the shape, size, arrangement position and surrounding design of the metal electrode and its periphery. 5 201112884 SUMMARY OF THE INVENTION In order to control the propagation of the broken surface, the present invention provides an apparatus for optimally treating a metal electrode and its peripheral structure. The present invention provides an electric water ^:, ', has: a processing container 'system internally to excite gas to treat the body for wire processing; an electromagnetic wave source is disposed outside the process and outputs electromagnetic waves; a dielectric plate, _ is disposed in the inside of the processing container, and outputs electromagnetic output from the electromagnetic wave source to the processing 11; and a diamond-shaped metal electrode is attached to the dielectric plate The portion is adjacently disposed on the slab and the portion of the dielectric plate is exposed from the periphery to the inside of the processing container. The metal electrode is the one; the 丨 electric plate is made up of the page force of the processing container. Delineating each of the two imaginary regions of the region and parallel to the two diagonal lines of the metal electrode; the rectangular region including the metal electrode and the dielectric plate is used as a unit region, The metal electrode and the dielectric plate have a specific shape such that the ratio of the length of the long side to the length of the short side of the unit region is 1.2 or less. Thereby, the electromagnetic wave output from the electromagnetic wave source is discharged into the processing container from the periphery of the rhombic metal electrode adjacent to the top surface of the processing unit via the dielectric plate. The metal electrode and the dielectric plate are defined by two imaginary regions that divide the top surface of the processing device and are respectively parallel to the two diagonal lines of the metal electrode; the metal electrode is included The smallest rectangular region of the dielectric plate is used as a cell region (refer to FIG. 2), and the metal electrode and the dielectric plate have a specific shape such that the ratio of the long side length to the short side length of the 6 201112884 unit region is 12 the following. In order to produce a uniform plasma, it is desirable that the distribution of the standing wave of the metal surface wave formed on the surface of the metal electrode and the surface of the metal cover is the same, and that the respective distributions do not have a large lining. When the cell area is square, a standing wave of the same pattern is formed on the surface of the I-based electrode and the surface of the metal cover. This is because metal surface waves of the same phase and the same intensity are supplied from the corresponding positions around the metal electrode and the metal cover. On the other hand, when the single culvert is rectangular, a standing wave of a different pattern is formed on the surface of the metal electrode and the surface of the metal cover. This is because the phase and intensity of the surface wave of the metal supplied from the corresponding position around the metal electrode and the metal cover are not. Thus, when the surface acoustic wave of the surface of the metal electrode = the surface of the metal cover is poor in standing wave symmetry, it is difficult to control the uniformity, and it is difficult to excite uniform electropolymerization. In order to produce a practical uniformity, the electric field intensity of the metal surface wave at the corresponding position of the surface of the metal electrode and the surface of the metal cover is desirably 1.5 or less, and it is desirable to be below Li. FIG. 4 shows the cell area. The relationship between the aspect ratio and the electric field strength ratio of the metal surface wave at the corresponding position. This is the result of a simulated electromagnetic field calculation. According to the calculation result, in order to make the electric field intensity ratio 15 or less, the aspect ratio of the unit region may be 1_2 or less. Thereby, the standing wave distribution of the surface waves of the metal formed on the surface of the metal electrode and the surface of the metal cover can be made the same or similar, and the respective distributions can be maintained without being deviated. As a result, a uniform plasma can be produced. In order to make the electric field intensity ratio be 1.1 or less, the 201112884 aspect ratio of the better money unit area is 1.1 or less. Thereby, the standing wave distribution of the metal surface wave of the metal electrode and the metal cover can be made the same or similar, and the deviation of the respective distributions can be reduced, and a more uniform plasma can be produced. In order to solve the above problems, another aspect of the present invention provides a plasma processing apparatus having: a processing container that internally excites a gas to perform plasma treatment on the object to be processed; and an electromagnetic wave source that is disposed in the processing container Externally, and outputting electromagnetic waves; the dielectric body plate is adjacent to a top surface disposed in the processing container, and discharges electromagnetic waves output from the electromagnetic wave source into the processing container; the metal electrode is attached to the dielectric body plate The side of the plasma is adjacently disposed on the dielectric plate, and a portion of the dielectric plate is exposed from the periphery to the inside of the processing container; and the metal cover is disposed on the top surface of the processing container. The portion of the dielectric plate is the same or similar shape as the metal electrode. The trench between the metal electrode and the metal cover is provided with a filling dielectric. Thereby, the electromagnetic wave outputted from the electromagnetic wave source is discharged from the periphery of the metal electrode adjacent to the top surface of the processing container to the processing container via the dielectric plate. The portion of the top surface of the processing container where the dielectric plate is not provided A metal cover having the same or similar shape as the metal electrode is provided, and a dielectric body for filling is disposed between the metal electrode and the metal cover. The groove (gap) between the metal electrode and the metal cover may not easily flow and is easily retained. . For example, in the plasma cleaning step, it is difficult for the cleaning gas to enter the inside of the gap and it is difficult to remove the film attached to the inner surface of the gap. Further, in the groove portion, since the three directions are surrounded by the wall, the plasma electronic mil is easily lowered, and it is difficult to maintain the plasma density stable. Since the metal surface wave is supplied from the dielectric plate between the metal electrode and the metal cover from the dew = 8 201112884, when the plasma density cannot be maintained stable in this portion, the whole plasma becomes unstable due to instability. Not uniform. In contrast, the present invention solves such problems by filling a trench between the metal electrode and the metal cover with a dielectric. In order to solve the above problems, another aspect of the present invention provides a plasma processing apparatus comprising: a processing container that internally excites a gas to perform plasma treatment on the object to be processed; and an electromagnetic wave source that is disposed outside the processing container And outputting an electromagnetic wave; the dielectric plate is adjacent to a top surface disposed in the processing container, and discharges electromagnetic waves output from the electromagnetic wave source into the processing container; the metal electrode is attached to the dielectric plate a side surface of the plasma is adjacently disposed on the dielectric plate, and a portion of the dielectric plate is exposed from the periphery to the inside of the processing container; and a convex portion is disposed on a top surface of the processing container. A portion of the dielectric plate that is the same or similar shape as the metal electrode. The trench between the metal electrode and the convex portion is provided with a filling dielectric. Thereby, the space between the metal electrode and the convex portion can be filled with the dielectric body to eliminate the space in which the gas is less likely to flow and is easily retained, thereby stabilizing the uniform plasma. A side cover may be disposed around the metal electrode, and the filling dielectric may be disposed in a groove between the metal electrode and the side cover. The filling dielectric body may be provided in a state in which the trench is buried between the metal electrode and the convex portion, planarized, or protruded from the trench. 9 201112884 The far-filling dielectric body may also have a portion protruding from the groove around the outer circumference of the metal electrode. The filling dielectric may also protrude from the trench at a position near at least a center of each side of the metal electrode. The protrusion of the metal electrode on the protruding portion of the filling dielectric body may be larger than the protrusion in the vicinity of the apex of the metal electrode. The protruding portion of the filling dielectric body may also be opposite to the metal. The center of the electrode is formed to be point symmetrical. The filling dielectric may be formed of the same material as the dielectric plate. In order to solve the above problems, another aspect of the present invention provides a plasma device having: a processing container for exciting a gas inside to process a plasma for plasma treatment; and an electromagnetic wave source disposed in the processing portion Outputting an electromagnetic wave; a dielectric body plate is adjacent to a top surface disposed in the source and extracting electromagnetic waves output from the electromagnetic wave source into the processing container; and a metal electrode is attached to the dielectric body plate The side of the plasma is adjacently disposed on the dielectric plate, and the dielectric plate = a portion is exposed from the periphery to the inside of the processing container. The metal electrode is fixed to a top surface of the processing container by a plurality of first screws and a plurality of second screws different from the plurality of i-th screws; the plurality of first screws are attached to the metal Fixing the metal electrode at a position where the centers of the electrodes are point-symmetric with each other; the plurality of second screws are disposed at positions which are point-symmetric with respect to the metal electrode core, and are in the first plurality with 201112884 The metal electrode is fixed at a position where the positions of the screws are different. Here, the electromagnetic wave which is emitted from the electromagnetic wave source is discharged from the periphery of the metal electrode on the top surface of the inner surface to the processing valley state via the dielectric body. The metal electrode is fixed to the top of the processing container by a plurality of second screws and a plurality of second screws different from the wire, and the metal electrode is placed under the dad in which the dielectric body is placed. A plurality of first screws are fixed at a distance from the center of the metal electrode at equal intervals, and are fixed to the processing container, and are at a position different from the center of the gold and different from the position of the four first screws. 2 screws are fixed to the processing container. In this way, the metal electrode is fixed by the two types of screws which are point-symmetric with respect to the center of the metal electrode, in the absence of electricity and mechanically. Thereby, since the gap is not generated in the transmission channel of the microwave, and the wavelength and the propagation speed of the microwave do not change, the change in the actual resistance with respect to the design value does not vary and can be reduced. The microwave reflection on the plasma side increases the supply efficiency of the microwave energy. In particular, the deviation of the electric field intensity distribution of the metal electrode can be reduced by the diameter or position of the screw to stably generate uniform electropolymerization. Further, a plurality of screws can be used to dissipate heat on the plasma side to the side of the cover 1. — The diameter of the plurality of first screws may be four or more than the plurality of second screws 11 201112884 and may be located on the diagonal of the plurality of first screws of the metal electrode. The plurality of second screws may also be four, and located closer to the center side of the metal f pole than the four first screws. When the field metal electrode is square, the fourth plate second screw may be divided into two equally spaced positions of the first one of the four first screws provided at the intervals. The dielectric plate may also be slightly exposed to the top surface of the processing container at the outer periphery of the metal electrode. The dielectric plate and the metal electrode may also be disposed on the dielectric plate at the top of the metal electrode and the processing container, and at the apex of the adjacent metal electrodes; Dare to sin close to the rules and set it on the top. = As explained above, the present invention can control the surface wave propagation by optimizing the structure of the metal electrode and its periphery. [Embodiment] Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following, the same components and functions are assigned the same reference numerals, and the description thereof will not be repeated. (Configuration of the plasma processing apparatus) First, the structure of the MSEP (Metal Surface Wave Excitation Plasma) according to an embodiment of the present invention will be described with reference to Fig. 1 . Figure. Fig. 1 is a view showing the top surface of the slurry processing apparatus 10 of Fig. 2, and Fig. 1 is a schematic view showing a longitudinal section of the apparatus, a 2-〇_〇'-2 cross section. Fig. 2 is a 1-1 cross section of Fig. 1 showing the microwave 仏. (Summary of the chopper plasma processing apparatus) As shown in the glass, the microwave recording processing apparatus 1G has a glass substrate (hereinafter referred to as "substrate G"). Processing container 100 俜 衮 处 里 — — 令 令 令 令 令 令 令 令 令 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合The body 300 is closed. The cover body _ sun ^ upper cover 300a and the lower cover 鸠 ^ 容器 容器 容器 容器 容器 容器 容器 ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” 接触 300 300 接触 接触 接触 接触 接触 接触 接触 接触 接触 接触 接触 接触 接触 接触The contact surface of the upper portion of the upper cover body 3000^7 cover body 3_ is also sealed and sealed, and the upper cover body 3〇〇a and the lower cover body 300b are sealed. The main body 2A and the lid body 3 are made of a metal such as an aluminum alloy and are electrically grounded. The processing chamber 100 is provided with a mounting table 105 for mounting the substrate 。. The mounting table 105 is made of, for example, nitrogen. The aluminum plate is formed. The mounting table 〇5 is supported by the branch body 110' and is provided with a partition 115 for controlling the flow of the gas in the processing chamber in a preferred state. Further, the bottom of the processing container 100 is provided with a gas. The discharge pipe 12 is exhausted to discharge the gas in the processing container 100 by a vacuum pump (not shown) provided outside the processing container 100. 13 201112884 Referring to FIGS. 1 and 2, the top surface of the processing container 100 is regularly A metal electrode 310 and a metal cover 32 are provided. 8 metal electrodes 31 The top surface of the adjacent metal electrodes 310 ❺ ❺ 彼此 | 规则 规则 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 The apex of the metal cover 32 is regularly disposed on the top surface of the processing container so as to be closest to the apex of the adjacent metal electrode 31. The outer periphery of the eight metal electrodes 31 is provided with a cover metal electrode 310 and a metal cover 32. The side cover 35. The metal electrode 310 is attached to the dielectric plate 3G5 at the side (lower side) of the plasma of the dielectric plate 3〇5, and exposes a part of the dielectric plate 305 to the processing container from the periphery. 1〇〇The inner diamond plate. Here, the diamond shape refers to a 4-sided shape with the same length of 4 sides, and also includes a square. The electric plate 305 is larger than the metal electrode 31〇, and is the metal electrode 310. An angular plate having a notch near the apex. The dielectric plate 305 is disposed adjacent to the top surface of the metal electrode 31 in a state in which the top surface of the processing container is placed in the processing container and the metal electrode 310. Slightly exposed everywhere The top surface of the device. The dielectric plate 3〇5 discharges the microwaves that are rotated by the microwave source 900 from the strip portion into the processing container. The dielectric plate 305 and the metal electrode 310 are 相对 or processed relative to the substrate. The container 100 is provided at eight equal intervals at a position inclined by about 45. The interval is set such that the diagonal length of one dielectric plate 305 is the distance between the centers of adjacent dielectric plates 305. The corners of the dielectric plate 305 that are slightly removed by the 201112884 are disposed adjacent to each other. The metal cover 320 is disposed on a portion of the top surface of the processing container 1 that is not provided with the dielectric plate 305, It is the same or similar shape as the metal electrode 810. The metal electrode 310 and the metal cover .320, the metal electrode 31 are thicker than the thickness portion of the dielectric plate 305. The trench between the metal electrode 31A and the metal cover 320 is filled by the dielectric body 3丨5 for filling. According to this shape, the heights of the top faces are substantially equal, and the grooves exposing portions of the dielectric plate 305 are filled, so that the metal electrodes 310 and their periphery are substantially repeating equal patterns. The dielectric plate 305 is formed of alumina, and the metal electrode 310, the metal cover 320, and the side cover 350 are formed of an aluminum alloy. Further, in the present embodiment, the eight dielectric plates 305 and the metal electrodes 310 are provided in two rows in the vertical direction and four columns in the lateral direction, but are not limited thereto, and the dielectric plate 305 and the metal electrode 310 may be increased or decreased. The number of pieces. Referring to Fig. 2, the dielectric plate 3〇5 and the metal electrode 31 are fixed to the lid body 3 by the first screw 380 and the second screw 390. Similarly, the metal cover 320 and the side cover 350 are fixed to the lid body 300 by the first screw 380 and the second screw 390. A main gas flow path 330 is provided between the upper cover 300a and the lower cover 300b. The main gas flow path 330 distributes the gas to the first gas flow path 325a provided in the plurality of first screws 380. The inlet of the first gas flow path 325a is fitted with a thin tube 335 which narrows the flow path. The thin tube 335 is made of ceramic or metal. A second gas flow path 310al is provided between the metal electrode 310 and the dielectric plate 305. The second gas flow paths 320a1 and 320a2 are also provided between the metal cover 320 and the lid 300 and between the side cover 350 and the lid 300. The front end faces of the first screw 380 and the second screw 390 are aligned with the lower surfaces of the metal electrode 310, the metal cover 320, and the side cover 350 so that the plasma distribution is not disturbed. The first gas discharge holes 345a opened in the metal electrode 310 are opened downward at equal intervals with the second gas discharge holes 345b1, 345b2 opening in the metal sheet 320 and the side cover 350. Further, the first screw 380 and the second screw 390 may be integrally formed with the metal electrode 310, the metal cover 320, and the side cover 350. The gas system output from the gas supply source 905 passes through the first gas flow path 325a (branch gas flow path) from the main gas flow path 3 3 0, and passes through the second gas flow path 310al and the metal cover 320 and the side in the metal electrode 310. The second gas flow passages 320a1 and 320a2 in the cover 350 are supplied from the first gas discharge holes 345a and the second gas discharge holes 345b1 and 345b2 to the lower cover body 3 in the vicinity of the outer circumference of the first coaxial tube 610 in the processing chamber. The contact surface of b with the dielectric plate 305 is provided with a 0-ring 22A so that the atmosphere in the second coaxial tube 610 does not enter the inside of the processing container. In this way, by forming a gas shower plate on the metal surface at the top, the surface of the dielectric plate and the reaction product are deposited on the inner wall of the processing container by suppressing the ions in the plasma which have occurred in the past, and can be reduced. Contaminated or dust particles. Further, unlike the dielectric, the metal is easily processed, so that the cost can be greatly reduced. The outer conductor 610b of the j-th coaxial tube formed by the excavation of the lid body 300 is inserted into the inner conductor 61〇ae, and the outer conductor 62〇b of the second to fourth coaxial tubes formed by excavating the lid body 3〇〇 ~64〇b 201112884 The inner conductors 62〇a to 640a of the second to fourth coaxial tubes are inserted, and the upper portion thereof is covered with a cover cover 660. The internal conduction system of each coaxial tube is formed of copper having good thermal conductivity. The microwave system is supplied from the microwave source 900, and is transferred from the fourth coaxial tube (inner and outer conductors 640a and 640b) to the first coaxial tube (inner and outer conductor 61〇a via the third coaxial tube (inner and outer conductors 63Aa, 630b)). 610b) and the second coaxial tube (inner and outer conductors 620a, 620b). The portion of the surface of the dielectric plate 305 which is incident on the surface of the dielectric plate 305 from the first coaxial tube 610 and the portion from which the microwave is discharged from the dielectric plate 305 is covered by the metal film 305a. Thereby, even if a gap is formed between the dielectric plate 3〇5 and the component adjacent thereto, the propagation of the microwave is not disturbed, and the microwave can be stably guided into the processing container. The microwaves emitted from the dielectric plate 305 become surface waves and equalize the electric power, and propagate on the surfaces of the metal electrode 310, the metal cover 32, and the side cover 35. The surface wave which propagates between the metal surface on the inner surface of the processing vessel and the plasma is hereinafter referred to as a Metal Surface Wave. Therefore, the metal surface wave propagates on the entire top surface, and a uniform plasma is stably generated under the top surface of the microwave plasma processing apparatus 10 of the present embodiment. An octagonal groove 340 is formed in the side cover 350 so as to integrally surround the eight dielectric sheets 305 to suppress the propagation of the metal surface wave propagating from the top surface from the groove 340 to the outside. A plurality of trenches 340 may also be formed in multiple layers in parallel. A convex portion may be provided instead of the groove 340. An example of the groove 340 or the convex portion propagation obstacle portion. 17 201112884 A region in which the center point of the adjacent metal cover 310 is the apex, and the region where the center point of the adjacent metal cover 320 is the apex is referred to as a cell region Cel (see FIG. 2). The unit area Cel is one unit, and eight units having the same pattern structure are regularly arranged on the top surface. The refrigerant supply source 910 is connected to the refrigerant pipe 910a inside the lid body, and the refrigerant supplied from the refrigerant supply source (10) is circulated in the refrigerant pipe 910a inside the lid body, and then returned to the refrigerant supply source 91A to process the process container. 100 is kept at the desired temperature. The inside of the inner conductor 64〇a of the fourth coaxial tube has a refrigerant pipe 910b inserted in the longitudinal direction thereof. The heating of the inner conductor 64 〇 & is suppressed by passing the refrigerant through the flow path. 3 " It is desirable that there is no gap between the electric body plate 305 and the body 3〇〇 or between the dielectric plate metal electrode 31〇. Since the wavelength of the microwave propagating on the dielectric plate 3G5 becomes unstable when there is a & controlled gap, it affects the uniformity or the negative resistance seen from the tube. Further, when the gap is too large (G 2 mm or more), there is a possibility that discharge will occur in the gap. Therefore, after the nut is picked up, the dielectric plate 305 and the lower cover 3b and the dielectric plate 305 and the metal electrode 31 are in a sealed state. When the nut 435 is tightened, when the torque is picked up by excessive torque, there is a possibility that the dielectric body plate 3G is broken by the pressure. Even if the nut 435 is not broken when it is tightened, there is a possibility that the pressure* will be broken after the plasma is generated so that the degree of each P is increased. Therefore, a wave pad having the best elastic force is inserted between the nut 435 and the lower cover 3_, often by a suitable force (compressing the 〇 ring 220 to make the dielectric plate 3〇5 The lower cover 3b is pressed with a slight force, and the metal electrode 31 is lifted by the first screw 380. When tightening the nut 435, do not completely tighten until the wave washer 43〇b becomes flat so that the amount of deformation is constant. A spacer 430a is provided between the nut 435 and the wave pad 430b, with or without. In addition, a spacer 43〇c<> is disposed between the wave pad 43〇b and the lower cover 300b. Generally, there is a gap between the i-th screw 38〇 and the cover 300, so that the main gas flow path 33 is provided. The gas in the crucible flows through the gap to the first gas flow path 31〇a. When the uncontrolled gas flow rate is large, there is a problem that the gas from the second gas discharge holes 345 & Therefore, the gap between the spacer 43〇 and the i-th screw 380 is reduced, and the thickness of the spacer 43〇c is increased to suppress the flow rate of the gas flowing through the outer side of the first screw 38. In the microwave plasma processing apparatus described above, in order to control the propagation of the metal surface wave, the details of the structure of the metal electrode 31 and its periphery will be described in more detail. The first point = the cell area Cel The aspect ratio is optimized. The second point is that the filling dielectric 315 fills the trench between the metal electrode 310 and the metal cover 320, etc., and the type of the screw for fixing the metal electrode 310, Optimization of shape or fixed position, etc. (cell area aspect ratio), first, for optimizing the aspect ratio of the unit area Cel, the force X is shown in Fig. 2, and the unit area Cel is The top surface area of the processing container 201112884 100 is divided into two imaginary areas which are respectively parallel to the two diagonal lines D1 and D2 of the metal electrode 310; the metal electrode 310 and the dielectric board are included The smallest rectangular area of 305 is called the unit area. In order to generate a uniform plasma, it is desirable that the standing wave distribution of the metal surface wave formed on the surface of the metal electrode and the surface of the metal cover is the same, and the respective distributions are not largely deviated. Therefore, the metal electrode 310 and the dielectric plate 305 has a specific shape such that the ratio of the length of the long side to the length of the short side of the unit area Cel is 1.2 or less. When the unit area is square, a standing wave of the same pattern is formed on the surface of the metal electrode and the surface of the metal cover. Metal surface waves having the same phase and the same intensity are respectively supplied from the corresponding positions around the metal electrode and the metal cover. Fig. 3A and Fig. 3B show the simulation of the metal surface wave formed on the surface of the metal electrode 310 and the surface of the metal cover 320. As a result of the wave pattern, the white portion is the portion where the electric field is strong, and the black portion is the portion where the electric field is weak. Only the portion of the upper right 1/4 of the metal electrode 310, the portion of the lower left 1/4 of the metal cover 320, and the portion thereof are shown. Part of the dielectric plate 305" on the surface of the metal electrode, there are standing wave antinodes at the positions of Al, B1, and C1 of Fig. 3A. On the other hand, the phase is visible. At the A2, B2, and C2 positions on the surface of the metal cover, there are standing wave antinodes of the same strength as those on the surface of the metal electrode. On the other hand, as shown in Fig. 3B, when the unit area is rectangular, it will be on the surface of the metal electrode. The 201112884 4糸 which is different from the surface of the metal cover is inconsistent with the phase and intensity of the metal surface wave from the metal electrode 3ι〇 and the metal cover, and the standing wave of the electrode surface. The position of the antinode is Μ, Β ce is fi/, and the position of the standing wave antinode of the metal cover corresponding to the surface is A2 and C2. The electric field at A2 is weaker than A1. The electric field at B2 is compared. B1 is stronger, and the electrical system at C2 is weaker. When the symmetry of the standing wave of the gold surface wave formed by the surface of the metal electrode and the surface of the metal cover is not good, it is difficult to control the uniformity, and it is difficult to induce uniform electric polymerization. In order to produce a practical uniform electropolymerization, the average value of the electric field intensity ratio of the surface acoustic wave at the metal electrode surface and the metal cover surface (4) is preferably 1,5 or less, more preferably 1.1 or less. Fig. 4 is a graph showing the relationship between the electric field intensity ratio of the metal sheet © at the position corresponding to the aspect ratio of the unit region. This depends on the results of the calculation of the electromagnetic field. The vertical axis is at the positions of A1 (A2), 62) and C1 (C2), respectively, and the maximum value of the electric field strength maximum value in the metal electrode 31A at the A, B, and C and the metal cover 32〇 is divided by The average of the results obtained from the minimum. When the unit area is a square (when the aspect ratio is 丄), the length of one side of the unit area is 214 mm. When the aspect ratio is other than 丨, the aspect ratio is changed so that the area of the unit area is kept constant. When the cell area is square (when the aspect ratio is 〖), the electric field intensity of the metal surface wave at the corresponding position is equal at any point, and therefore the electric field intensity ratio is also 1. It can be seen that the larger the aspect ratio of the unit region, the more the electric field strength ratio increases.

21 201112884 由圖4結果可知,為使電場強度比為1.5以下,較 佳係使單元區域的長寬比為1.2以下。藉此,可使於金 屬電極表面與金屬罩表面所形成之金屬表面波的駐波 分佈為相同或近似,且各自的分佈不會產生大的偏離。 其結果為可產生均句的電漿。 再者,為使電場強度比為1.1以下,更佳係使單元 區域的長寬比為1.1以下。藉此,可更加使金屬電極與 金屬罩表面所形成之金屬表面波的駐波分佈為相同或 近似,且各自的分佈不會產生大的偏離。其結果為可產 生均勻的電漿。 (充填用介電體的充填) 接下來,針對於金屬電極310與金屬罩320之間填 入充填用介電體315這一點加以說明。 氣體在圖5之、•’所示之金屬電極310與金屬罩320 之間的溝槽部分Gap處會不易流動而容易滯留。例如電 漿清潔步驟中,會有清潔氣體較難進入間隙内部而難以 去除附著在間隙内面的膜之問題。 又,在溝狀間隙部分,由於3個方向係被牆壁圍 繞,故電漿的電子密度容易下降,而難以使電漿密度維 持穩定。由於係從金屬電極310與金屬罩320或側罩 350之間的介電體板305來供給金屬表面波,故在該部 分無法使電漿密度維持穩定時,會有電漿整體變得不穩 定且不均勻之問題。 22 201112884 再者,透過介電體板305之微波會在金屬電極表面 與金屬罩表面分開而傳播,但在如圖5之"b”所示之溝 槽部分Gap處,施加在鞘層(sheath)區域s之電場E的 強度容易產生偏離,而有在金屬電極31〇表面傳播之金 屬表面波MSI與在金屬罩32〇或側罩35〇表面傳播之 金屬表面波MS2的能量分配產生差異之問題。 相對於此,如圖i所示,本實施形態之微波電漿處 理裝置10中,溝槽部分Gap係填入有充填用介電體 315,藉以消除溝槽以使金屬電極31〇與金屬罩32〇或 側罩350之間為平坦狀態。藉此,不會產生有清潔氣體 難以進入的空間,且清潔效率提高並容易進行維修。 又,不會產生有電漿密度不穩定的空間,且可防止異常 放電,並穩定地產生均勻電漿。再者,如圖6A所示, 由於微波係透過充填用介電體315被供給至處理容器 内,故從充填用介電體315施加在金屬電極侧的鞘層區 域S及金屬罩(或側罩)側的鞘層區域之電場E的強度不 易產生偏離,且在金屬電極31〇表面傳播之金屬表面波 MSI與在金屬罩320(或側罩35〇)表面傳播之金屬表面 波MS2的能量會均等。其結果為可產生均勻的電漿。 充填用介電體315在圖6A _,係以將金屬電極31〇 與侧罩350(或金屬罩320)之間的溝槽平坦化之方式設 置。然而,充填用介電體315亦可如圖6B所示般地自 s亥溝槽犬出。又,亦可如圖6C所示般地埋入於該溝槽。 以上任一者均能發揮防止氣體停留在金屬電極的周 23 201112884 圍,並穩定地維持均勻錢之功能。又,圖扣中,處 理容器(蓋體300)的頂面未設置有介電體板3〇5的部分 係设置有與金屬電極310為相同或相似形之凸部 300c’其凸部3G〇c與金屬電極31()之間則設置有充埴 用介電體315。又’介電體板3()5與充填用介電體315 可為一體成型。 圖7係顯示1個金屬電極310及其周邊。金眉電極 310的端部係被倒角而設置為傾斜狀。充填用介電體 315係以將金屬電極31〇的外周圍繞之方式,而設置於 從金屬電極310周緣露出之介電體板3〇5的下面(電漿 側的面)之框狀組件。充填用介電體315的外周係與介 電體板305同樣地為8角形。充填用介電體315之金屬 電極310各邊中央附近形成有突出部分M5a。充填用介 電體315在金屬電極31〇的頂點附近亦具有些微 (突出部分315b)。金屬電極310中央附近的突出部分 315a係從金屬電極310頂點附近的突出部分315b突出 至電漿側。又,充填用介電體315的突出係相對於金屬 電極310中心而形成為點對稱。藉此,可消除金屬電極 周圍電場強度分佈的偏離,並產生均句的電聚。 (金屬電極的固定螺絲) 、瑕,針對將金屬電極310固定用之螺絲的種類、形 =或固定位置等最佳化這-點加以說明。圖8係顯示包 3於1個單趨域Cel之金屬電極31G。圖9為圖8之 24 201112884 3-3剖面。 圖9所示之介電體板305及金屬電極310係設置於 將真空與大氣遮斷之部分。因此,在0型環220内側, 介電體板3 05及金屬電極310會從大氣側朝向真空侧被 施以大的壓力。再者,因Ο型環220的彈力,介電體板 305及金屬電極310亦會從下側被施以大的壓力。因 此,介電體板305與蓋體300之間容易產生間隙。 單元區域的尺寸愈大,每一裝置所需之單元區域的 數量減少,則可降低成本。然而,單元區域的尺寸愈大, 則介電體板305附近愈容易產生間隙,且來自電漿的熱 會增加’而有金屬電極310過熱之問題。 由於微波無法透過導體,因此微波在第丨同軸管 610傳播後會透過介電體板3〇5,再透過充填用介電體 315此而導人至處理室内。在設計時,考慮了不具間隙之 狀悲下的微波傳送效率’而預先訂定了微波傳送線路的 設計值。然而,實際上仍會產生微小間隙。此時, 私中微波的波長與傳播速度會因間隙而產生變化^ 設計值之實際的電阻變化會產生差異,而使得來 差。又,讀能4的供給效率變 差又木自电激侧的微波反射增加 波的高峰比)會増大 熱,而有導致騎放電管6㈣部會被加 因此’本實施形態之金屬電極310係使金屬電極 25 201112884 310及介電體板305確實地密著而固定於蓋體300。亦 即,如圖8及圖9所示,金屬電極310係藉由4根第1 螺絲380及與第1螺絲380相異之4根第2螺絲390而 確實地固定於蓋體300内部的頂面。4根第1螺絲380 及4根第2螺絲390係在相對於金屬電極310中心為軸 對稱之位置處將金屬電極310加以固定。4根第1螺絲 380係位於金屬電極310的對角線Dl、D2上。 4根第2螺絲390係於自金屬電極310中心距離相 等且與4根第1螺絲380的位置相異之位置處,而固定 金屬電極310。4根第2螺絲390係較4根第1螺絲380 要更位於金屬電極310中心侧。4根第1螺絲380的直 徑係較4根第2螺絲390的直徑要小。4根第1螺絲380 及4根第2螺絲390係相對於金屬電極的中心而具有對 稱性。 如此地’藉由設置第1螺絲380加上第2螺絲390, 並將第1螺絲380及第2螺絲390的位置及直徑最佳 化,而可適當地調整金屬表面波的分佈,以產生更均勻 的電漿。再者,可適當地調整電阻以將來自電漿侧的微 波反射抑制地更少。 當金屬電極310為正方形時’ 4根第2螺絲390係 分別設置於自等間隔地設置之4根第1螺絲380中相鄰 第1螺絲380之等間隔位置處。具體來說,如圖8所示, 4根第2螺絲390係設置於將金屬電極31〇中心與單元 區域Cel的頂點連結之直線B1、B2上。4根第1螺絲 26 201112884 380及4根第2螺絲390係相對於金屬電極中心而為點 對稱。 4根第2螺絲39G可如同圖1之4根第1螺絲380 般地,於與金屬電極31〇的電漿面相同之面内而從金屬 電極3H)露出’亦可如圖9所示般地在未露出金屬電 極310的«面之狀態下將介電體板3〇5及金屬電極 310保持於頂面。又,第!螺絲38〇及第2螺絲39〇的 根數可非為4根。 藉此’藉由不在微波的傳播路徑設置間隙或溝槽 等,可減少來自電漿側的微波反射,並提高微波能量的 供給效率。其結果為,可穩定地產生電子密度高且均勻 的電漿。又,可透過第1螺絲38〇及第2螺絲39〇來使 電漿側的熱散熱至蓋體300側。又,本實施形態中係將 第1及第2螺絲的直徑及設置位置最佳化,故可使金屬 電極310的電場均勻化。 以上係參照添附圖式來說明本發明較佳實施形 態,但毋須贅言本發明不限於該範例。本發明所屬技術 領域具通常知識者應當可在申請專利範圍所揭示之範 脅内做各種變化或修正,該等當然亦屬於本發明之技術 範圍内。 例如’金屬電極31〇亦可為菱形以外的多角形。 又’以上所說明的各實施形態令係例舉輸出 915MHz的微波之微波源9〇〇,但亦可為輸出896MHz、 922MHZ、2.45GHz等微波之微波源。又,微波源係產 27 201112884 生用以激發電漿的電磁波之電磁波源的其中一例,但若 為輸出100MHz以上的電磁波之電磁波源則亦包含磁 控管或高頻電源。 微波電漿處理裝置可實行成膜處理、擴散處理、蝕 刻處理、灰化處理、電漿植入處理等利用電漿來對被處 理體進行細微加工之各種製程。 例如,本發明之電漿處理裝置亦可處理大面積的玻 璃基板、圓形石夕晶圓或方型的S〇I(SiHc〇n 〇n Insulat〇r) 基板。 【圖式簡單說明】 圖1係第1實施形態之微波電漿處理裝置的縱剖面 圖(圖2之2-0-0,-2剖面圖)。 圖2係圖1之Μ剖面圖。 圖3A係顯示形成於金屬電極及金屬罩表面之金屬 表面波的駐波波形之模擬結果。 圖3B係顯示形成於金屬電極及金屬罩表面之金屬 表面波的駐波波形之模擬結果。 圖4係顯示在對應於單元區域之長寬比位置處之 金屬表面波電場強度比的關係之圖式。 圖5係用以說明金屬電極及金屬罩之間未具有充 填用介電體時的電場強度分佈之圖式。 圖6A係用以說明金屬電極及金屬罩之間具有充填 用介電體時的電場強度分佈之圖式。 28 201112884 圖6B係用以說明金屬電極及金屬罩之間具有充填 用介電體時的電場強度分佈之圖式。 圖6C係用以說明金屬電極及金屬罩之間具有充填 用介電體時的電場強度分佈之圖式。 圖7係顯示設置於頂面之金屬電極及其周邊之圖 式。 圖8係圖7之仰視圖。 圖9係圖8之3-3剖面圖。 【主要元件符號說明】21 201112884 As is clear from the results of Fig. 4, in order to make the electric field intensity ratio 1.5 or less, it is preferable that the aspect ratio of the unit region is 1.2 or less. Thereby, the standing wave distribution of the surface waves of the metal formed on the surface of the metal electrode and the surface of the metal cover can be made the same or similar, and the respective distributions do not cause a large deviation. The result is a plasma that produces a uniform sentence. Further, in order to make the electric field intensity ratio 1.1 or less, it is more preferable that the aspect ratio of the unit region is 1.1 or less. Thereby, the standing wave distribution of the metal surface waves formed by the metal electrode and the surface of the metal cover can be made the same or similar, and the respective distributions do not cause a large deviation. As a result, a uniform plasma can be produced. (Filling of Filling Dielectric) Next, a description will be given of a case where the filling dielectric 315 is filled between the metal electrode 310 and the metal cover 320. The gas is less likely to flow at the groove portion Gap between the metal electrode 310 and the metal cover 320 shown in Fig. 5 and is easily retained. For example, in the plasma cleaning step, there is a problem that it is difficult for the cleaning gas to enter the inside of the gap and it is difficult to remove the film attached to the inner surface of the gap. Further, in the groove-like gap portion, since the three directions are surrounded by the wall, the electron density of the plasma is liable to lower, and it is difficult to stabilize the plasma density. Since the metal surface wave is supplied from the dielectric plate 305 between the metal electrode 310 and the metal cover 320 or the side cover 350, when the plasma density cannot be stabilized in this portion, the entire plasma becomes unstable. And the problem of unevenness. 22 201112884 Furthermore, the microwave passing through the dielectric plate 305 is propagated apart from the surface of the metal cover on the surface of the metal electrode, but is applied to the sheath layer at the groove portion Gap as shown in "b" of Fig. 5 ( The strength of the electric field E of the sheath region s is easily deviated, and the metal surface wave MSI propagating on the surface of the metal electrode 31 is different from the energy distribution of the metal surface wave MS2 propagating on the surface of the metal cover 32 or the side cover 35 On the other hand, as shown in Fig. 1, in the microwave plasma processing apparatus 10 of the present embodiment, the trench portion Gap is filled with the filling dielectric member 315, thereby eliminating the trench to make the metal electrode 31〇. It is flat between the metal cover 32〇 or the side cover 350. Thereby, there is no space where the cleaning gas is difficult to enter, and the cleaning efficiency is improved and the maintenance is easy. Further, the plasma density is not generated. The space is prevented from being abnormally discharged, and uniform plasma is stably generated. Further, as shown in FIG. 6A, since the microwave system is supplied into the processing container through the filling dielectric member 315, the filling dielectric body 315 is used. exert on The strength of the electric field E of the sheath region S on the electrode side and the sheath region on the metal cover (or side cover) side is less likely to deviate, and the metal surface wave MSI propagating on the surface of the metal electrode 31 is in the metal cover 320 (or The energy of the metal surface wave MS2 of the side cover 35〇) is equal. The result is that a uniform plasma can be generated. The filling dielectric 315 is in FIG. 6A_, the metal electrode 31〇 and the side cover 350 ( Or the trench between the metal cover 320) is flattened. However, the filling dielectric 315 can also be pulled out from the shovel as shown in FIG. 6B. Alternatively, as shown in FIG. 6C. Generally, it is embedded in the groove. Any of the above can function to prevent the gas from staying around the circumference of the metal electrode 23 201112884, and to stably maintain the uniform money. Further, in the figure, the processing container (cover 300) The portion of the top surface on which the dielectric plate 3〇5 is not provided is provided with a convex portion 300c' which is the same as or similar to the metal electrode 310, and a charging portion between the convex portion 3G〇c and the metal electrode 31() is provided. The dielectric body 315 is used. The dielectric plate 3 () 5 and the filling dielectric 315 can be integrally formed. 7 shows one metal electrode 310 and its periphery. The end of the gold eye electrode 310 is chamfered and provided in an inclined shape. The filling dielectric 315 is provided so as to surround the outer circumference of the metal electrode 31〇. A frame-like member on the lower surface (surface on the plasma side) of the dielectric plate 3〇5 exposed from the periphery of the metal electrode 310. The outer periphery of the dielectric body 315 for filling is an octagonal shape similarly to the dielectric plate 305. A protruding portion M5a is formed in the vicinity of the center of each side of the metal electrode 310 of the filling dielectric member 315. The filling dielectric member 315 also has a slight (projecting portion 315b) near the apex of the metal electrode 31. The protruding portion 315a near the center of the metal electrode 310 protrudes from the protruding portion 315b near the apex of the metal electrode 310 to the plasma side. Further, the protruding portion of the filling dielectric member 315 is formed to be point-symmetric with respect to the center of the metal electrode 310. Thereby, the deviation of the electric field intensity distribution around the metal electrode can be eliminated, and electropolymerization of the uniform sentence can be produced. (Fixed screws for metal electrodes) and 瑕 are described in terms of optimizing the type, shape, or fixed position of the screw for fixing the metal electrode 310. Fig. 8 shows a metal electrode 31G which is packaged in one single-domain domain Cel. Figure 9 is a section of Figure 24, 2011 12884-3-3. The dielectric plate 305 and the metal electrode 310 shown in Fig. 9 are provided in a portion where the vacuum and the atmosphere are blocked. Therefore, inside the 0-ring 220, the dielectric plate 305 and the metal electrode 310 are subjected to a large pressure from the atmosphere side toward the vacuum side. Further, due to the elastic force of the Ο-shaped ring 220, the dielectric plate 305 and the metal electrode 310 are also subjected to a large pressure from the lower side. Therefore, a gap is easily generated between the dielectric plate 305 and the lid 300. The larger the size of the unit area, the smaller the number of unit areas required for each device, the lower the cost. However, the larger the size of the cell region, the more likely the gap is near the dielectric plate 305, and the heat from the plasma increases, and the metal electrode 310 is overheated. Since the microwave cannot pass through the conductor, the microwave propagates through the dielectric plate 3〇5 after passing through the second coaxial tube 610, and then passes through the filling dielectric 315 to guide the inside of the processing chamber. At the time of design, the design value of the microwave transmission line is predetermined in consideration of the microwave transmission efficiency without the gap. However, in practice, small gaps still occur. At this time, the wavelength and propagation speed of the private microwave will change due to the gap. The actual resistance change of the design value will make a difference, which will cause a difference. In addition, the supply efficiency of the reading energy 4 is deteriorated, and the microwave reflection from the electric excitation side increases the peak ratio of the wave), which causes the heat to be generated, and the portion (four) of the riding tube 6 is added. Therefore, the metal electrode 310 of the present embodiment is attached. The metal electrode 25 201112884 310 and the dielectric plate 305 are firmly adhered to the lid 300. That is, as shown in FIGS. 8 and 9, the metal electrode 310 is reliably fixed to the top of the inside of the lid 300 by the four first screws 380 and the four second screws 390 different from the first screw 380. surface. The four first screws 380 and the four second screws 390 are fixed to the metal electrode 310 at a position symmetrical with respect to the center of the metal electrode 310. The four first screws 380 are located on the diagonal lines D1 and D2 of the metal electrode 310. The four second screws 390 are fixed at a position different from the center of the metal electrode 310 and different from the position of the four first screws 380, and the metal electrode 310 is fixed. The four second screws 390 are four first screws. 380 is to be located further on the center side of the metal electrode 310. The diameter of the four first screws 380 is smaller than the diameter of the four second screws 390. The four first screws 380 and the four second screws 390 are symmetrical with respect to the center of the metal electrode. By adding the second screw 390 to the first screw 380 and optimizing the position and diameter of the first screw 380 and the second screw 390, the distribution of the metal surface waves can be appropriately adjusted to generate more Uniform plasma. Furthermore, the resistance can be appropriately adjusted to suppress less reflection of the microwaves from the plasma side. When the metal electrode 310 is square, the four second screws 390 are respectively disposed at equal intervals between the adjacent first screws 380 among the four first screws 380 which are provided at equal intervals. Specifically, as shown in Fig. 8, four second screws 390 are provided on straight lines B1 and B2 connecting the centers of the metal electrodes 31 and the apexes of the unit regions Cel. Four first screws 26 201112884 380 and four second screws 390 are point-symmetric with respect to the center of the metal electrode. The four second screws 39G can be exposed from the metal electrode 3H) in the same plane as the plasma surface of the metal electrode 31〇 like the four first screws 380 of FIG. 1 can also be as shown in FIG. The dielectric plate 3〇5 and the metal electrode 310 are held on the top surface in a state where the surface of the metal electrode 310 is not exposed. Again, the first! The number of the screw 38〇 and the second screw 39〇 may not be four. Thereby, by providing a gap or a groove in the propagation path of the microwave, the microwave reflection from the plasma side can be reduced, and the supply efficiency of the microwave energy can be improved. As a result, a plasma having a high electron density and uniformity can be stably produced. Further, the heat on the plasma side can be dissipated to the side of the lid body 300 through the first screw 38 〇 and the second screw 39 。. Further, in the present embodiment, the diameters and installation positions of the first and second screws are optimized, so that the electric field of the metal electrode 310 can be made uniform. The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the invention is not limited to the examples. It is to be understood by those skilled in the art that various changes or modifications can be made within the scope of the invention as disclosed in the appended claims. For example, the metal electrode 31A may have a polygonal shape other than a rhombic shape. Further, each of the above-described embodiments is a microwave source 9 输出 that outputs a microwave of 915 MHz, but may be a microwave source that outputs microwaves such as 896 MHz, 922 MHz, and 2.45 GHz. Further, the microwave source system is an example of an electromagnetic wave source for exciting electromagnetic waves of plasma. However, a magnetic wave source or a high-frequency power source is also included as an electromagnetic wave source for outputting electromagnetic waves of 100 MHz or more. The microwave plasma processing apparatus can perform various processes such as film forming treatment, diffusion treatment, etching treatment, ashing treatment, plasma implantation treatment, and the like, using plasma to finely process the treated body. For example, the plasma processing apparatus of the present invention can also process a large-area glass substrate, a circular slab wafer, or a square S〇I (SiHc〇n 〇n Insulat〇r) substrate. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a longitudinal sectional view of a microwave plasma processing apparatus according to a first embodiment (2-0-0, -2 sectional view of Fig. 2). Figure 2 is a cross-sectional view of Figure 1. Fig. 3A is a simulation result showing a standing wave waveform of a metal surface wave formed on the surface of a metal electrode and a metal cover. Fig. 3B is a simulation result showing the standing wave waveform of the metal surface wave formed on the surface of the metal electrode and the metal cover. Fig. 4 is a view showing the relationship of the electric field intensity ratio of the metal surface wave at the aspect ratio corresponding to the cell area. Fig. 5 is a view for explaining an electric field intensity distribution when a dielectric body is not filled between a metal electrode and a metal cover. Fig. 6A is a view for explaining an electric field intensity distribution when a dielectric body is filled between a metal electrode and a metal cover. 28 201112884 Fig. 6B is a view for explaining an electric field intensity distribution when a dielectric body is filled between a metal electrode and a metal cover. Fig. 6C is a view for explaining an electric field intensity distribution when a dielectric body is filled between a metal electrode and a metal cover. Fig. 7 is a view showing a metal electrode provided on the top surface and its periphery. Figure 8 is a bottom view of Figure 7. Figure 9 is a cross-sectional view taken along line 3-3 of Figure 8. [Main component symbol description]

Cel 單元區域 B1、 B2直線 D1 ' D2對角線 E 電場 G 基板 Gap 溝槽部分 MSI 、MS2金屬表面波 S 鞘層區域 10 微波電漿處理裝置 100 處理容器 105 載置台 110 支撐體 115 隔板 120 氣體排出管 201112884 200 容器本體 205、210、215、220 Ο 型環 300 蓋體 300a上部蓋體 300b下部蓋體 300c 凸部 305 介電體板 305a金屬膜 310 金屬電極 315 充填用介電體 315a、315b突出部分 320 金屬罩 310al、320al、320a2 第 2 氣體流道 325a第1氣體流道 330 主氣體流道 335 細管 340 溝槽 345a第1氣體放出孔 345M、345b2 第2氣體放出孔 350 側罩 380 第1螺絲 390 第2螺絲 430a、430b、430c 墊片 435 螺帽 201112884 610 第1同轴管 610a 、620a、630a、640a 内部導體 610b 、620b、630b、640b 外部導體 660 蓋體罩 900 微波源 905 氣體供給源 910 冷媒配管 910a 、910b冷媒配管 31Cel cell region B1, B2 straight line D1 'D2 diagonal E electric field G substrate Gap groove portion MSI, MS2 metal surface wave S sheath region 10 microwave plasma processing apparatus 100 processing container 105 mounting table 110 supporting body 115 partition 120 Gas discharge pipe 201112884 200 container body 205, 210, 215, 220 Ο ring 300 cover 300a upper cover 300b lower cover 300c convex portion 305 dielectric plate 305a metal film 310 metal electrode 315 filling dielectric body 315a, 315b protruding portion 320 metal cover 310al, 320al, 320a2 second gas flow path 325a first gas flow path 330 main gas flow path 335 thin tube 340 groove 345a first gas discharge hole 345M, 345b2 second gas discharge hole 350 side cover 380 First screw 390 second screw 430a, 430b, 430c washer 435 nut 201112884 610 first coaxial tube 610a, 620a, 630a, 640a inner conductor 610b, 620b, 630b, 640b outer conductor 660 cover cover 900 microwave source 905 Gas supply source 910 refrigerant piping 910a, 910b refrigerant piping 31

Claims (1)

201112884 七、申請專利範圏: L 一種電漿處理裝置,其具有: 處理容器,係於内部將氣體激發以對被處理體 進行電漿處理,· 電磁:礤波源’係設置於該處理容器外部,並輸出 介電體板,係鄰接設置於該處理容器内的頂 面’並將從該電磁波源所輸出之電磁波放出至該處 理各器内;以及 ^形金屬電極,係於該介電體板之電漿側面處 f捿叹置於該介電體板,並使該介電體板的一部份 從周緣露出至該處理容器内部; 該金屬電極與該介電體板係由將該處理容器 =頂面加以區劃之假想區域且分別平行於該金屬 :極的2根對角線之各2根直線所劃定;以包含有 該金屬電極與該介電體板之最小矩形區域作為單 疋區,’該金屬電極及該介電體板具有特定的形狀 =使單元區域之長邊長度對短邊長度的比為1.2以 下" 2. ^利範圍第1項之絲處理裝置,其中該金 玉及錢電體板具有特定的形狀以使該單元 -之長邊長度對短邊長度的比為 1.1以下。 —種電漿處理裝置,其具有: 處理容器’係於内部將氣體激發以對被處理體 32 3. 201112884 進行電漿處理; 電磁波源,係設置於該處理容器外部,並輸出 電磁波; 介電體板,係鄰接設置於該處理容器内的頂 面,並將從該電磁波源所輸出之電磁波放出至該處 理容器内; 金屬電極,係於該介電體板之電漿侧面處鄰接 設置於該介電體板,並使該介電體板的一部份從周 緣露出至該處理容器内部;以及 金屬罩,係設置於該處理容器的頂面未設置有 該介電體板的部分,而與該金屬電極為相同或相似 的形狀; 該金屬電極與該金屬罩之間的溝槽係設置有 充填用介電體。 4. 一種電漿處理裝置,其具有: 處理容器,係於内部將氣體激發以對被處理體 進行電漿處理; 電磁波源,係設置於該處理容器外部,並輸出 電磁波; 介電體板,係鄰接設置於該處理容器内的頂 面,並將從該電磁波源所輸出之電磁波放出至該處 理容器内; 金屬電極,係於該介電體板之電漿侧面處鄰接 設置於該介電體板,並使該介電體板的一部份從周 33 201112884 5. 6. 7. 8. 9. 緣露出至該處理容器内部;以及 凸部’係設置於該處理容器的頂面未設置有該 介電體板的部分,而與該金屬電極為相同或相似的 形狀; 該金屬電極與該凸部之間的溝槽係設置有充 填用介電體。 如申請專利第3項之電聚處理裝置,其中該金 屬電極周圍設置有側罩; 該充填用介電體係設置於該金屬電極與該侧 罩之間的溝槽。 如申請專利第3項之電漿處理裝置,其中該充 真用’I電脰係被设置為埋入於該溝槽、平坦化該溝 槽,或自該溝槽突出之任一者狀態。 如申請專利範圍第6項之電漿處理裝置,其中該充 填用介電體係以圍繞該金屬電極外周之方式設 置,而具有自該溝槽突出的部分。 如申請專利範圍第7項之電漿處理裝置,其中該充 填用介電體係於該金屬電極各邊之至少中央附近 處自該溝槽突出。 如申請專利範圍第7項之電漿處理裝置,其中該充 填用介電體的突出部之該金屬電極各邊中央附近 處的突出係較該金屬電極頂點附近處的突出要大。 如申請專利範圍第7項之電漿處理裝置,其中該充 填用介電體的突出部分係相對於該金屬電極中心 34 10. 201112884 而形成為點對稱。 11. 如申請專利範圍第3項之電漿處理裝置,其中該充 填用介電體係由與該介電體板相同的材質所形成。 12. —種電漿處理裝置,其具有: 處理容器,係於内部將氣體激發以對被處理體 進行電漿處理; 電磁波源,係設置於該處理容器外部,並輸出 電磁波; 介電體板,係鄰接設置於該處理容器内的頂 面,並將從該電磁波源所輸出之電磁波放出至該處 理容器内;以及 金屬電極,係於該介電體板之電漿侧面處鄰接 設置於該介電體板,並使該介電體板的一部份從周 緣露出至該處理容器内部; 該金屬電極係藉由複數個第1螺絲及與該複數 個第1螺絲相異之複數個第2螺絲而固定於該處理 容器内的頂面; 該複數個第1螺絲係於相對於該金屬電極中心 而互相為點對稱之位置處來固定該金屬電極; 該複數個第2螺絲係設置於相對於該金屬電極 中心而互相為點對稱之位置處,且在與該複數個第 1螺絲的位置相異之位置處來固定該金屬電極。 13. 如申請專利範圍第12項之電漿處理裝置,其中該 複數個第1螺絲的直徑係較該複數個第2螺絲的直 35 201112884 徑要小。 14. 如申請專利範圍第12項之電漿處理裝置,其中該 複數個第1螺絲為4根,且係位於該金屬電極的對 角線上。 15. 如申請專利範圍第14項之電漿處理裝置,其中該 複數個第2螺絲為4根,且係位於較該4根第1螺 絲要更靠近該金屬電極中心側處。 16. 如申請專利範圍第12項之電漿處理裝置,其中當 該金屬電極為正方形時,該4根第2螺絲係分別設 置於自該等間隔地設置之4根第1螺絲中相鄰2根 第1螺絲等間隔的位置處。 17. 如申請專利範圍第1項之電漿處理裝置,其中該介 電體板係於該金屬電極外周處略帶狀地露出至該 處理容器内的頂面。 18. 如申請專利範圍第1項之電漿處理裝置,其中該介 電體板及該金屬電極係在該介電體板為被扶置在 該金屬電極與該處理容器的頂面之間的狀態下而 分別複數地設置,並以相鄰各金屬電極的頂點彼此 之間最靠近之方式而規則地設置於該頂面。 36201112884 VII. Patent application: L A plasma processing device having: a processing container that internally excites gas to perform plasma treatment on the object to be processed, and an electromagnetic: chopping source is disposed outside the processing container And outputting a dielectric plate adjacent to a top surface disposed in the processing container and discharging electromagnetic waves output from the electromagnetic wave source into the processing unit; and a metal electrode connected to the dielectric body a side of the plasma of the plate is placed at the dielectric plate, and a portion of the dielectric plate is exposed from the periphery to the inside of the processing container; the metal electrode and the dielectric plate are Processing container=the imaginary area of the top surface is divided and is respectively parallel to the two straight lines of the two diagonals of the metal: the pole; the smallest rectangular area including the metal electrode and the dielectric plate is used as In the single-turn region, the metal electrode and the dielectric plate have a specific shape = the ratio of the length of the long side of the unit region to the length of the short side is 1.2 or less. 2. The profit processing device of the first item is Among them, the jade and The money electric plate has a specific shape such that the ratio of the length of the long side to the length of the short side of the unit is 1.1 or less. a plasma processing apparatus, comprising: a processing container 'staying internally to excite gas to perform plasma treatment on the object to be processed 32 3. 201112884; an electromagnetic wave source disposed outside the processing container and outputting electromagnetic waves; The body plate is adjacent to a top surface disposed in the processing container, and discharges electromagnetic waves outputted from the electromagnetic wave source into the processing container; the metal electrode is disposed adjacent to the plasma side of the dielectric body plate The dielectric plate has a portion of the dielectric plate exposed from the periphery to the inside of the processing container; and a metal cover disposed on a portion of the top surface of the processing container where the dielectric plate is not disposed. And the same or similar shape as the metal electrode; the trench between the metal electrode and the metal cover is provided with a filling dielectric. A plasma processing apparatus comprising: a processing container that internally excites a gas to perform plasma treatment on the object to be processed; an electromagnetic wave source that is disposed outside the processing container and outputs electromagnetic waves; a dielectric plate, Adjacent to a top surface disposed in the processing container, and discharging electromagnetic waves outputted from the electromagnetic wave source into the processing container; a metal electrode is adjacent to the dielectric layer at a side of the plasma of the dielectric body plate a body plate, and a portion of the dielectric plate is exposed from the periphery 33 201112884 5. 6. 7. 8. 9. to the inside of the processing container; and the convex portion is disposed on the top surface of the processing container The portion of the dielectric plate is provided in the same or similar shape as the metal electrode; and the trench between the metal electrode and the protrusion is provided with a filling dielectric. The electropolymerization processing apparatus of claim 3, wherein a side cover is disposed around the metal electrode; and the filling dielectric system is disposed in the trench between the metal electrode and the side cover. A plasma processing apparatus according to claim 3, wherein the "I" electric power system is provided to be buried in the groove, planarize the groove, or protrude from the groove. A plasma processing apparatus according to claim 6 wherein the filling dielectric system is disposed around the outer periphery of the metal electrode to have a portion protruding from the groove. The plasma processing apparatus of claim 7, wherein the filling dielectric system protrudes from the trench at least near a center of each side of the metal electrode. The plasma processing apparatus of claim 7, wherein the protruding portion of the filling dielectric body has a projection near the center of each side of the metal electrode that is larger than a projection near the apex of the metal electrode. The plasma processing apparatus of claim 7, wherein the protruding portion of the filling dielectric is formed to be point-symmetric with respect to the metal electrode center 34 10. 201112884. 11. The plasma processing apparatus of claim 3, wherein the filling dielectric system is formed of the same material as the dielectric board. 12. A plasma processing apparatus, comprising: a processing vessel that internally excites a gas to perform plasma treatment on the object to be processed; and an electromagnetic wave source that is disposed outside the processing vessel and outputs electromagnetic waves; the dielectric body plate a top surface disposed in the processing container, and discharging electromagnetic waves output from the electromagnetic wave source into the processing container; and a metal electrode disposed adjacent to the plasma side of the dielectric body plate a dielectric plate, and a portion of the dielectric plate is exposed from the periphery to the inside of the processing container; the metal electrode is composed of a plurality of first screws and a plurality of the plurality of first screws a second screw fixed to the top surface of the processing container; the plurality of first screws are fixed to the metal electrode at a position symmetrical with respect to the center of the metal electrode; the plurality of second screws are disposed at The metal electrodes are fixed at positions that are point-symmetric with respect to the center of the metal electrode and at positions different from the positions of the plurality of first screws. 13. The plasma processing apparatus of claim 12, wherein the diameter of the plurality of first screws is smaller than the diameter of the plurality of second screws. 14. The plasma processing apparatus of claim 12, wherein the plurality of first screws are four and are located on a diagonal of the metal electrode. 15. The plasma processing apparatus of claim 14, wherein the plurality of second screws are four and are located closer to a center side of the metal electrode than the four first screws. 16. The plasma processing apparatus of claim 12, wherein when the metal electrode is square, the four second screws are respectively disposed adjacent to the four first screws disposed at the intervals The root of the first screw is equally spaced. 17. The plasma processing apparatus of claim 1, wherein the dielectric plate is slightly exposed to the top surface of the processing container at an outer circumference of the metal electrode. 18. The plasma processing apparatus of claim 1, wherein the dielectric plate and the metal electrode are disposed between the metal electrode and a top surface of the processing container. In the state, they are respectively provided in plural numbers, and are regularly arranged on the top surface such that the apexes of the adjacent metal electrodes are closest to each other. 36
TW098141802A 2008-12-09 2009-12-08 Plasma processing apparatus TW201112884A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008313653A JP5478058B2 (en) 2008-12-09 2008-12-09 Plasma processing equipment

Publications (1)

Publication Number Publication Date
TW201112884A true TW201112884A (en) 2011-04-01

Family

ID=42242662

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098141802A TW201112884A (en) 2008-12-09 2009-12-08 Plasma processing apparatus

Country Status (6)

Country Link
US (1) US20110259523A1 (en)
JP (1) JP5478058B2 (en)
KR (1) KR101280567B1 (en)
CN (1) CN102246604A (en)
TW (1) TW201112884A (en)
WO (1) WO2010067670A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5520455B2 (en) * 2008-06-11 2014-06-11 東京エレクトロン株式会社 Plasma processing equipment
DE102013002629A1 (en) * 2013-02-15 2014-08-21 HKR Seuffer Automotive GmbH & Co. KG Cover element and housing device for use of the cover element
US10793953B2 (en) * 2016-01-18 2020-10-06 Toshiba Mitsubishi-Electric Industrial Systems Corporation Activated gas generation apparatus and film-formation treatment apparatus
CN109154083B (en) * 2016-03-03 2021-02-05 核心技术株式会社 Substrate tray for thin film forming apparatus
US10062585B2 (en) * 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
WO2020008497A1 (en) * 2018-07-02 2020-01-09 三菱電機株式会社 Microwave heating device
WO2023081882A1 (en) * 2021-11-05 2023-05-11 Helion Energy, Inc. Ceramic fibers for shielding in vacuum chamber systems and methods for using same

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3164200B2 (en) * 1995-06-15 2001-05-08 住友金属工業株式会社 Microwave plasma processing equipment
US5653811A (en) * 1995-07-19 1997-08-05 Chan; Chung System for the plasma treatment of large area substrates
TW312815B (en) * 1995-12-15 1997-08-11 Hitachi Ltd
KR970071945A (en) * 1996-02-20 1997-11-07 가나이 쯔도무 Plasma treatment method and apparatus
JP3224011B2 (en) * 1996-05-23 2001-10-29 シャープ株式会社 Plasma-excited chemical vapor deposition apparatus and plasma etching apparatus
US6007673A (en) * 1996-10-02 1999-12-28 Matsushita Electronics Corporation Apparatus and method of producing an electronic device
JPH10158847A (en) * 1996-12-06 1998-06-16 Toshiba Corp Plasma treating system by microwave excitation
JPH10294199A (en) * 1997-04-21 1998-11-04 Hitachi Ltd Microwave plasma processing device
JP2970605B2 (en) * 1997-07-03 1999-11-02 日本電気株式会社 Plasma equipment
US6388632B1 (en) * 1999-03-30 2002-05-14 Rohm Co., Ltd. Slot antenna used for plasma surface processing apparatus
US6622650B2 (en) * 1999-11-30 2003-09-23 Tokyo Electron Limited Plasma processing apparatus
JP3792089B2 (en) * 2000-01-14 2006-06-28 シャープ株式会社 Plasma process equipment
JP4402860B2 (en) * 2001-03-28 2010-01-20 忠弘 大見 Plasma processing equipment
JP2004200307A (en) * 2002-12-17 2004-07-15 Tokyo Electron Ltd Plasma treatment device
JP2005071758A (en) * 2003-08-22 2005-03-17 Sekisui Chem Co Ltd Plasma processor
JP2005093344A (en) * 2003-09-19 2005-04-07 Sekisui Chem Co Ltd Plasma treatment apparatus
KR101096950B1 (en) * 2004-03-19 2011-12-20 샤프 가부시키가이샤 Plasma Treatment Apparatus and Plasma Treatment Method
JP2006032821A (en) * 2004-07-21 2006-02-02 Sekisui Chem Co Ltd Plasma processor
JP4149427B2 (en) * 2004-10-07 2008-09-10 東京エレクトロン株式会社 Microwave plasma processing equipment
JP5013393B2 (en) * 2005-03-30 2012-08-29 東京エレクトロン株式会社 Plasma processing apparatus and method
US8207010B2 (en) * 2007-06-05 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing photoelectric conversion device
WO2008153054A1 (en) * 2007-06-11 2008-12-18 Tokyo Electron Limited Plasma processing apparatus and method for using plasma processing apparatus
DE112008001130T5 (en) * 2007-06-11 2010-04-29 Tokyo Electron Ltd. A plasma processing apparatus, a power supply apparatus, and a method of operating the plasma processing apparatus
US20100183827A1 (en) * 2007-06-11 2010-07-22 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
US20080303744A1 (en) * 2007-06-11 2008-12-11 Tokyo Electron Limited Plasma processing system, antenna, and use of plasma processing system
JP2008305736A (en) * 2007-06-11 2008-12-18 Tokyo Electron Ltd Plasma processing apparatus, method for using plasma processing apparatus, and method for cleaning plasma processing apparatus
JP5421551B2 (en) * 2008-06-11 2014-02-19 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
JP5520455B2 (en) * 2008-06-11 2014-06-11 東京エレクトロン株式会社 Plasma processing equipment
JP5213530B2 (en) * 2008-06-11 2013-06-19 東京エレクトロン株式会社 Plasma processing equipment
JP5222744B2 (en) * 2009-01-21 2013-06-26 国立大学法人東北大学 Plasma processing equipment
CN102326458A (en) * 2009-02-06 2012-01-18 国立大学法人东北大学 Plasma processing device

Also Published As

Publication number Publication date
KR101280567B1 (en) 2013-07-02
KR20110082193A (en) 2011-07-18
JP2010140681A (en) 2010-06-24
CN102246604A (en) 2011-11-16
JP5478058B2 (en) 2014-04-23
WO2010067670A1 (en) 2010-06-17
US20110259523A1 (en) 2011-10-27

Similar Documents

Publication Publication Date Title
KR101117150B1 (en) Plasma processing apparatus and plasma processing method
US8327796B2 (en) Plasma processing apparatus and plasma processing method
TW201112884A (en) Plasma processing apparatus
JP5520455B2 (en) Plasma processing equipment
TW502561B (en) Plasma treatment apparatus
EP1758149A1 (en) Microwave plasma generating apparatus
US7478609B2 (en) Plasma process apparatus and its processor
JP7001456B2 (en) Plasma processing equipment
KR101358780B1 (en) Plasma reactor having inductively coupled plasma source with heater
JP3402053B2 (en) Plasma processing apparatus and plasma processing method
KR101229780B1 (en) Plasma processing apparatus and plasma processing method
JPH11288798A (en) Plasma production device
JP5202652B2 (en) Plasma processing equipment
JP2004235434A (en) Plasma processing system
KR101281191B1 (en) Inductively coupled plasma reactor capable
JPH0936107A (en) Method and device for forming plasma film forming
JP3866590B2 (en) Plasma generator