TW201110406A - Method and apparatus for repairing light emitting diode using quantum dot coating - Google Patents

Method and apparatus for repairing light emitting diode using quantum dot coating Download PDF

Info

Publication number
TW201110406A
TW201110406A TW99115970A TW99115970A TW201110406A TW 201110406 A TW201110406 A TW 201110406A TW 99115970 A TW99115970 A TW 99115970A TW 99115970 A TW99115970 A TW 99115970A TW 201110406 A TW201110406 A TW 201110406A
Authority
TW
Taiwan
Prior art keywords
light
quantum dot
emitting diode
characteristic value
repairing
Prior art date
Application number
TW99115970A
Other languages
Chinese (zh)
Inventor
Won-Nam Kim
Original Assignee
Top Eng Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Top Eng Co Ltd filed Critical Top Eng Co Ltd
Publication of TW201110406A publication Critical patent/TW201110406A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

Disclosed herein is a method and apparatus for repairing LED. The method of repairing LED includes measuring the emission characteristic value of an LED, determining the LED, the measured emission characteristic of which deviates from a target range, to be a defective LED, and forming a quantum dot layer on the uppermost layer of the defective LED. The apparatus for repairing LED includes photodetection means for measuring the emission characteristic value of an LED, determination means for determining the LED, the measured emission characteristic value of which deviates from a target range, to be a defective LED, and quantum dot coating means for forming a quantum dot layer on the uppermost layer of the defective LED.

Description

201110406 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種使用量子點塗佈技術來修復發光 二極體之方法及裝置’特別關於一種修復發光二極體之方 法及裝置,其係藉由測量缺陷發光二極體之發光特徵值以 形成量子點層於該缺陷發光二極體,因而改善其發光色度 及亮度,進而將其調整為符合要求的產品,因而提升發光 二極體之良率。 【先前技術】 發光二極體係由化合物半導體所組成,其可例如包含 二五族化合物半導體中的氮化物,如氮化鎵(GaN)。基 本上,發光二極體包含一 p型半導體層及一 η型半導體 層,Ρ型半導體層及η型半導體層可例如對氮化物半導體 摻雜入ρ型或η型雜質而形成。另外,藉由在ρ型氮化物 半導體層與η型氮化物半導體層之間設置一主動層 (active layer ),可提升電子與電動的複合率 (recombination rate ),並可改善發光二極體之發光特性。 如圖1所示,一種習知發光二極體L·係包含一 ρ型 氮化物半導體層及—n型氮化物半導體層,且兩者分別與 外^電極EL連接。藉由對兩外部電極EL供電,可使 發光二極體L發出可見光。 為改善發光一極體的發光特性或改變其發 ^可在發光二極體L之一適當位置設置一量子 4 201110406 點層(quantum dot layer),於此,發光二極體包含—p 型氮化物半導體層、-主動層及—n贱化物半導體層。 此外,如圖2所示,一種習知發光二極體除了心— P型氮化物半導體層、-主動層及—n型氮化物半導體 層,更包含-螢光層FL ’螢光層FL可提升發光特性。 當然’圖2所示之發光二極體亦可塗佈—量子點層,以改 變發出色光或改善發光特性。舉例而言,如圖3所示,— 種習知具有螢光層之發光二極體在塗佈量子點層之前,可 發出藍色光’而在塗佈可發出黃光波長之量子 後,其可發出白光。 除了上述具有基本架構的發光二極體之外,其他發光 二極體亦可在適當位置設置量子點層。藉由在發光二極體 之頂層上塗佈榮光層或量子點層,可達到高 光的發光二極體。 & 如圖4所示,在生產過程中,需要在檢測機台上對發 光二極體供電,並藉由光檢測器PD對發光二極體L之發 光強度進行檢測,以判斷發光二極體之好壞。然而,在檢 測過程中’總有-些發光二極體被列為缺陷之發光二極 體。由於發光二極體之生產良率關係到發光二極體之價 位。因此,如何藉由改善缺陷發光二極體之發光特性及色 度,使其變為符合要求之合格發光二極體,進而減少缺陷 發光二極體的數量以降低成本,實為#前重要課題之一。 【發明内容】 201110406 有鑑於上述課題,本發明之一目的在提供一種修復發 光二極體之方法及裝置,其係藉由測量發光二極體之發光 特徵值而塗佈量子點層於缺陷發光二極體,以改善其發光 色度或亮度,使其成為合格發光二極體,進而提升發光二 極體之生產良率。 為達上述目的,本發明提供一種修復發光二極體之方 法,其係包含下列步驟:測量一發光二極體之發光特徵 值;若發光特徵值偏離一目標範圍,則決定該發光二極體 為一缺陷發光二極體;以及形成一量子點層於該缺陷發光 二極體之頂層。 其中,發光特徵值係包含關於色度或亮度的數位資 訊。 其中,形成量子點層之步驟係包含設置一溶劑於該缺 陷發光二極體之頂層以及乾燥該溶劑。其中,溶劑係藉由 混合一量子點及一擴散介質而形成,該量子點係由一預設 之半導體奈来結晶組成。 其中,形成該量子點層之步驟包含當缺陷發光二極體 發光,且其光線穿過一量子點遮罩之其中之一量子點單元 時,測量該光線之一發光特徵值;藉由比對光線之發光特 徵值與目標範圍而決定一修復量子點;以及藉由使用對應 該修復量子點之一量子點混合溶劑而在該缺陷發光二極 體之該頂層上形成該量子點層。 其中,決定該修復量子點之步驟包含若該光線之該發 光特徵值落在該目標範圍内,則決定該量子點單元之一量 201110406 子點為該修復量子點;以及若該光線之該發光特徵值偏離 該目標範圍,則藉由控制來測量發光二極體所發出之光線 通過該量子點遮罩之另一量子點單元之一發光特徵值。 其中,當該光線分別經過複數量子點遮罩之一量子點 單元時,測量該光線之該發光特徵值。 其中,決定該修復量子點之步驟包含:若穿過該等量 子點單元之該光線之該發光特徵值落在該目標範圍内,則 決定該等量子點遮罩之該等量子點單元所使用之量子點 為該修復量子點;以及若穿過該等量子點單元之該光線之 該發光特徵值偏離目標範圍,則藉由控制來改變該等量子 點遮罩之至少其中之一之量子點單元並測量發光二極體 所發出之光線通過已改變之該等量子點單元之一發光特 徵值。 其中,形成量子點層之步驟中所形成之量子點層,係 藉由使用對應該等量子點單元之組合之量子點混合溶劑 而形成。 夕其中,形成量子點層之步驟中所形成之量子點層為一 夕層、構’其係藉由使用分別對應該等量子點單元之複數 量子點混合溶劑而形成。 為達上述目的,本發明提供一種修復發光二極體之裝 包含一光檢測單元、一決定單元以及一量子點塗佈 =—光檢測單it係、測量—發光二極體之—發光特徵值。 〜極體之發光特徵值偏離-目標範圍,決定單元決 疋“光一極體為一缺陷發光二極體。量子點塗佈單元 201110406 係形成一量子點層於缺陷發光二極體之一頂層。 修復發光二極體之裝置更包含至少一量θ子點遮罩以 及一修復控制模組。量子點遮罩係具有複數量子點單元。 ^中’該發光二極體所發出之光線係經過該量子點遮罩之 -量子點單元’歸復㈣模_比對該紐之—發光特 徵值,該目標範圍而決定—錢量子點,並㈣該量子點 塗佈單7L。其中’量子點塗佈單元係使用㈣該修復量子 點之一1子點混合溶劑而形成該量子點層於該缺陷發光 二極體之該頂層。 其中,修復控制模級更包含一量子點決定軍元以及一 移動控制單元。其巾,若該光線钱發光雜㈣在該目 標範圍内,則量子點蚊單元料㈣量子點單摘使用 之量子點為修復量子點,並a錢光線之該發光特徵值偏 離該目標範圍,則量子點決定單元產生—控制訊號以再次 量測該發紐徵值。㈣㈣單元係依餘他號作動以 使量子點遮罩之另-量子點單元移動至—光通過位置,缺 陷發光一極體所發出之光線係通過該光通過位置。 其中,修復控制模組更包含一第二光檢測單元,其係 測里通過該置子點單元之該光線之一發光特徵值。 其中,當修復發光二極體之裝置具有複數量子點遮罩 時,該等量子點遮罩分別具有複數量子點單元,該發光二 極體所發出之光線係經過該等量子點遮罩之複數量子點 單π,修復控制模組係比對該光線之發光特徵值與目標範 圍而決定該修復量子點。 201110406 其中,若通過該等量子點單元之該光線之發光特徵值 落在目標範圍内,則量子點決定單元係決定該等量子點單 凡所使用之複數量子點為修復量子點,並且若該光線之發 光特徵值偏離目標範圍,則量子點決定單元產生一控制訊 號以再次量測該發光特徵值。移動控制單元係依據控制訊 號而控制該等量子點遮罩之作動’以使該等量子點遮罩之 至少另一量子點單元移動至一光通過位置,缺陷發光二極 體所發出之光線係通過該光通過位置。 其中,量子點塗佈單元係使用一量子點混合溶劑而形 成量子點層於缺陷發光二極體之頂層,量子點混合溶劑係 對應於作為修復量子點之該等量子點單元之組合。 其中’量子點塗佈單元係使用複數量子點混合溶劑而 形成多層結構之量子點層於缺陷發光二極體之頂層。量子 點混合溶劑係分別對應作為修復量子點之該等量子點單 元。 【實施方式】 以下將參照相關圖式,說明依據本發明較佳實施例之 一種以量子點塗佈修復發光二極體的裝置及方法,其中相 同的元件將以相同的參照符號加以說明。 圖5為本發明較佳實施例之一種修復發光二極體之 裝置10的示意圖。 凊參照圖5所示’本發明較佳實施例之修復發光二極 體之裳置10包含一量子點遮罩12、一光檢測器13、一量 9 201110406 子點塗佈機14以及—修復控制模組i5。修復發光二極體 之裝置10可更包含一傳輸系統U。 本發明所揭露之修復發光二極體之褒置10,其可應 用於一發光二極體品質檢測平台,並可供應電源,可利^ 光檢測器13來測量—發光二極體所發出光線之—發光特 徵值,並依據發柄徵值(可例如為關於色度或亮度的數 位資訊)是否偏離-目標範圍而決定該發光二極體是否為 -缺陷發光二極體’並在該缺陷發光二極體結構的頂層形 成一量子點層,以改善其發光特性,例如改善其色度或亮 度’藉此’可修復發光二極體,並使其改變為合格產品。 如圖5所示,發光特徵值偏離目標範圍之發光二極體 係藉由一傳輸系統11傳送至一量子點遮罩12之下方。 量子點遮罩12係包含複數量子點單元(例如A〜 F),量子點單元形成於一透光材料,例如是樹脂基材料 (resin-based material )。如圖6所示,該等量子點單元a 〜F係形成於量子點遮罩12,且當光線穿過該等量子點 單元時,係顯現不同的發光波長。量子點單元之量子點可 以包含化合物半導體奈米結晶’如硫化鎘(CdS) 、栖化 錦(CdSe)、碲化編(CdTe)、硫化鋅(ZnS)、砸化辞(ZnSe)、 碲化鋅(ZnTe)、硫化果(HgS)、硒化汞(HgSe)或碲化 汞(HgTe)、或其他類似材料。量子點單元a〜F可藉由 在量子點遮罩12上塗佈一量子點混合溶劑至不同位置並 使其乾燥而形成’量子點混合溶劑可藉由混合上述結晶及 —擴散媒介(例如甲笨、己烷或其他類似材料)而形成。 201110406 如圖7所示,本實施例亦可具有複數量子點遮罩,於 此係以量子點遮罩71及72為例。舉例而言,量子點遮罩 71具有複數量子點單元A、B、C,當光線通過量子點單 元A、B、C時,可顯現不同的發光波長,同樣地,量子 點遮罩72具有複數量子點單元Q、R、S,當光線通過量 子點單元Q、R、S時,可顯現不同的發光波長。並且當 光線通過量子點單元A、B、C與量子點單元Q、R、S之 組合時,可顯現不同的發光波長特性。此外,本發明亦可 具有三個以上之量子點遮罩。 光檢測器13可測量缺陷發光二極體所發出之光線通 過量子點遮罩12之一量子點單元之發光特徵值、或是測 量光線通過量子點遮罩71、72之複數量子點單元之發光 特徵值。於此,光檢測器13可藉由分析入射光之頻譜(或 波長)而產生關於入射光之色度資訊(例如一數位資訊)、 或是藉由分析入射光之強度而產生關於入射光之亮度資 訊(如一數位資訊)。 依據上述之測量結果,修復控制模組15係比較光檢 測器13所測量之發光特徵值與一預設的目標範圍,並藉 此決定一個或多個修復量子點,然後控制量子點塗佈機 14。 量子點塗佈機14可將一量子點混合溶劑設置於缺陷 發光二極體之頂層而形成一量子點層QL,該量子點混合 溶劑係對應修復控制模組15所決定的修復量子點。 量子點塗佈機14可具有複數容器(例如A'〜F’),容 11 201110406 器A〜F係容置具有不同發光波長特性的量子點混合溶 劑。量子點塗佈機14係依據修復控制模組丨5所決定之修 復量子點而選擇一量子點混合溶劑,並將該量子點混合溶 劑设置於缺陷發光二極體之頂層。容器内所容置之量子點 混合溶劑係由量子點混合擴散媒介而形成,其中,量子點 可包含化合物半導體奈米結晶’例如CdS、CdSe、CdTe、201110406 VI. Description of the Invention: [Technical Field] The present invention relates to a method and apparatus for repairing a light-emitting diode using quantum dot coating technology, in particular, a method and apparatus for repairing a light-emitting diode, By measuring the luminescence characteristic value of the defective light-emitting diode to form a quantum dot layer on the defective light-emitting diode, thereby improving the chromaticity and brightness of the luminescent light, and then adjusting it to a desired product, thereby improving the light-emitting diode Yield. [Prior Art] The light-emitting diode system is composed of a compound semiconductor, which may, for example, comprise a nitride in a Group II compound semiconductor such as gallium nitride (GaN). Basically, the light-emitting diode includes a p-type semiconductor layer and an n-type semiconductor layer, and the germanium-type semiconductor layer and the n-type semiconductor layer can be formed, for example, by doping a nitride semiconductor with a p-type or n-type impurity. In addition, by providing an active layer between the p-type nitride semiconductor layer and the n-type nitride semiconductor layer, the recombination rate of electrons and electric power can be improved, and the light-emitting diode can be improved. Luminous properties. As shown in Fig. 1, a conventional light-emitting diode L· includes a p-type nitride semiconductor layer and an n-type nitride semiconductor layer, and the two are respectively connected to the outer electrode EL. By supplying power to the two external electrodes EL, the light-emitting diode L can emit visible light. In order to improve the light-emitting characteristics of the light-emitting diode or to change its function, a quantum dot 201110406 quantum dot layer may be disposed at an appropriate position of the light-emitting diode L. Here, the light-emitting diode includes -p-type nitrogen. a semiconductor layer, an active layer, and a —n germanide semiconductor layer. In addition, as shown in FIG. 2, a conventional light-emitting diode includes a -P type nitride semiconductor layer, an active layer, and an -n type nitride semiconductor layer, and further includes a -fluorescent layer FL' fluorescent layer FL. Improve luminescence characteristics. Of course, the light-emitting diode shown in Fig. 2 can also be coated with a quantum dot layer to change the color light or improve the light-emitting characteristics. For example, as shown in FIG. 3, it is known that a light-emitting diode having a fluorescent layer emits blue light before coating a quantum dot layer, and after coating a quantum that emits a yellow wavelength, Can emit white light. In addition to the above-described light-emitting diodes having a basic structure, other light-emitting diodes may be provided with quantum dot layers at appropriate positions. A high-luminance light-emitting diode can be obtained by coating a glory layer or a quantum dot layer on the top layer of the light-emitting diode. & As shown in Fig. 4, in the production process, the light-emitting diode needs to be powered on the detecting machine, and the luminous intensity of the light-emitting diode L is detected by the photodetector PD to determine the light-emitting diode Good or bad. However, during the detection process, there are always some light-emitting diodes listed as defective light-emitting diodes. Since the production yield of the light-emitting diode is related to the price of the light-emitting diode. Therefore, how to improve the luminous characteristics and chromaticity of the defective light-emitting diode to become a qualified light-emitting diode that meets the requirements, thereby reducing the number of defective light-emitting diodes and reducing the cost, which is an important topic before ## one. SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a method and apparatus for repairing a light-emitting diode by coating a quantum dot layer on a defect light by measuring a light-emitting characteristic value of the light-emitting diode. The diode is used to improve its chromaticity or brightness to make it a qualified light-emitting diode, thereby improving the production yield of the light-emitting diode. In order to achieve the above object, the present invention provides a method for repairing a light-emitting diode, comprising the steps of: measuring a light-emitting characteristic value of a light-emitting diode; and determining a light-emitting diode if the light-emitting characteristic value deviates from a target range; a defect LED; and forming a quantum dot layer on top of the defect LED. Among them, the illuminating feature value contains digital information about chromaticity or brightness. Wherein, the step of forming the quantum dot layer comprises disposing a solvent on the top layer of the defective light-emitting diode and drying the solvent. The solvent is formed by mixing a quantum dot and a diffusion medium, and the quantum dot is composed of a predetermined semiconductor nanocrystal. The step of forming the quantum dot layer includes measuring a light-emitting characteristic value of the light when the defective light-emitting diode emits light and the light passes through one of the quantum dot units of the quantum dot mask; The luminescence characteristic value and the target range determine a repair quantum dot; and the quantum dot layer is formed on the top layer of the defective luminescent diode by using a quantum dot mixing solvent corresponding to one of the quantum dots. The step of determining the repaired quantum dot includes determining, if the illuminating characteristic value of the ray falls within the target range, determining the amount of the quantum dot unit 201110406 sub-point as the repairing quantum dot; and if the illuminating of the ray When the eigenvalue deviates from the target range, the illuminating characteristic value of one of the other quantum dot units of the light emitted by the illuminating diode is measured by the control. Wherein, when the light passes through a quantum dot unit of a plurality of sub-point masks, the light-emitting characteristic value of the light is measured. The step of determining the repaired quantum dot includes: determining, if the luminescence characteristic value of the ray passing through the quantum dot unit falls within the target range, determining the quantum dot unit used by the quantum dot mask The quantum dot is the repair quantum dot; and if the luminescence characteristic value of the ray passing through the quantum dot unit deviates from the target range, the quantum dot of at least one of the quantum dot masks is changed by control The unit measures the light-emitting characteristic value of one of the quantum dot units that have been changed by the light emitted by the light-emitting diode. Here, the quantum dot layer formed in the step of forming the quantum dot layer is formed by mixing a solvent using a quantum dot corresponding to a combination of quantum dot units. In the meantime, the quantum dot layer formed in the step of forming the quantum dot layer is formed as an overnight layer, and the structure is formed by using a plurality of quantum dot mixed solvents respectively corresponding to the quantum dot units. In order to achieve the above object, the present invention provides a light-emitting diode assembly comprising a light detecting unit, a determining unit, and a quantum dot coating=photodetection unit, measurement-light emitting diode-luminescence characteristic value. . The illuminating characteristic value of the polar body deviates from the target range, and the determining unit determines that "the photo-polar body is a defective light-emitting diode. The quantum dot coating unit 201110406 forms a quantum dot layer on top of one of the defective light-emitting diodes. The device for repairing the light-emitting diode further comprises at least one θ sub-point mask and a repair control module. The quantum dot mask has a plurality of sub-point units. ^ The light emitted by the light-emitting diode passes through the The quantum dot mask - the quantum dot unit 'returns to the fourth (four) mode _ is compared to the illuminating eigenvalue, the target range determines - the quantum dot, and (d) the quantum dot is coated with a single 7L. The cloth unit uses (4) one of the repaired quantum dots to mix the solvent to form the quantum dot layer on the top layer of the defective light-emitting diode. The repair control mode further includes a quantum dot determining the military element and a movement Control unit. The towel, if the light money glows (4) within the target range, the quantum dot mosquito unit material (4) quantum dot single-extraction quantum dot is used to repair the quantum dot, and the luminescence characteristic value of a money light is biased In the target range, the quantum dot determining unit generates a control signal to measure the value of the button again. (4) (4) The unit is operated by the remainder to move the quantum dot unit of the quantum dot mask to the light passing position. The light emitted by the defective light emitting body passes through the light passing position. The repair control module further includes a second light detecting unit that measures the light emitting characteristic value of the light passing through the set point unit. Wherein, when the device for repairing the light-emitting diode has a plurality of sub-point masks, the quantum dot masks respectively have a plurality of sub-point units, and the light emitted by the light-emitting diodes passes through the plurality of quantum dot masks. The quantum dot single π, the repair control module determines the repair quantum dot by comparing the illuminating characteristic value and the target range of the light. 201110406 wherein, if the illuminating characteristic value of the light passing through the quantum dot unit falls within the target range The quantum dot determining unit determines a plurality of sub-points used by the quantum dots to repair the quantum dots, and if the illuminating characteristic value of the ray deviates from the target The quantum dot determining unit generates a control signal to measure the illuminating characteristic value again. The mobile control unit controls the operation of the quantum dot mask according to the control signal to make the quantum dot mask at least another The quantum dot unit moves to a light passing position, and the light emitted by the defective light emitting diode passes through the light passing position. The quantum dot coating unit uses a quantum dot mixed solvent to form a quantum dot layer on the defect light emitting diode. The top layer of the body, the quantum dot mixed solvent system corresponds to the combination of the quantum dot units as the repair quantum dots. The 'quantum dot coating unit uses a complex number of sub-dots mixed solvent to form a multi-layered quantum dot layer on the defect light-emitting layer II. The top layer of the polar body. The quantum dot mixed solvent system corresponds to the quantum dot unit as the repair quantum dot, respectively. [Embodiment] Hereinafter, a quantum dot coating repair according to a preferred embodiment of the present invention will be described with reference to the related drawings. The device and method of the light-emitting diode, wherein the same elements will be denoted by the same reference numerals. Figure 5 is a schematic illustration of an apparatus 10 for repairing a light emitting diode in accordance with a preferred embodiment of the present invention. Referring to FIG. 5, a skirt 10 for repairing a light-emitting diode according to a preferred embodiment of the present invention includes a quantum dot mask 12, a photodetector 13, a quantity 9 201110406 sub-coater 14 and - repair Control module i5. The device 10 for repairing the light emitting diode may further comprise a transport system U. The device 10 for repairing a light-emitting diode disclosed in the present invention can be applied to a light-emitting diode quality detecting platform, and can supply a power source, and can be used to measure the light emitted by the light-emitting diode. a luminescence characteristic value, and depending on whether the stalk sign value (which may be, for example, digital information about chromaticity or brightness) deviates from the -target range, determines whether the illuminating diode is a -defective illuminating diode' and The top layer of the light-emitting diode structure forms a quantum dot layer to improve its luminescent properties, such as improving its chromaticity or brightness 'by this' to repair the light-emitting diode and change it to a qualified product. As shown in FIG. 5, the light-emitting diodes whose light-emitting characteristic values deviate from the target range are transmitted to a lower portion of a quantum dot mask 12 by a transmission system 11. The quantum dot mask 12 includes a plurality of sub-dots (e.g., A to F) formed on a light transmissive material, such as a resin-based material. As shown in Fig. 6, the quantum dot units a to F are formed in the quantum dot mask 12, and when light passes through the quantum dot units, different emission wavelengths are exhibited. Quantum dots of quantum dot units may contain compound semiconductor nanocrystals such as cadmium sulfide (CdS), cadmium (CdSe), strontium (CdTe), zinc sulfide (ZnS), bismuth (ZnSe), bismuth Zinc (ZnTe), sulfurized fruit (HgS), mercury selenide (HgSe) or mercury telluride (HgTe), or other similar materials. The quantum dot units a to F can be formed by coating a quantum dot mixed solvent on the quantum dot mask 12 to different positions and drying it to form a quantum dot mixed solvent by mixing the above crystal and diffusion medium (for example, A Formed by stupid, hexane or other similar materials). 201110406 As shown in FIG. 7, this embodiment may also have a plurality of sub-point masks, and the quantum dot masks 71 and 72 are taken as an example. For example, the quantum dot mask 71 has a plurality of sub-point units A, B, and C. When the light passes through the quantum dot units A, B, and C, different emission wavelengths can be exhibited. Similarly, the quantum dot mask 72 has a plurality of The quantum dot units Q, R, and S can exhibit different emission wavelengths when the light passes through the quantum dot units Q, R, and S. And when light passes through the combination of the quantum dot units A, B, C and the quantum dot units Q, R, S, different luminescent wavelength characteristics can be exhibited. Furthermore, the invention may also have more than three quantum dot masks. The photodetector 13 can measure the illuminating characteristic value of the light emitted by the defective illuminating diode through one of the quantum dot units of the quantum dot mask 12 or the illuminating of the plurality of sub-point units of the light passing through the quantum dot mask 71, 72. Eigenvalues. Here, the photodetector 13 can generate chromaticity information about the incident light (for example, a digital information) by analyzing the spectrum (or wavelength) of the incident light, or generate an incident light by analyzing the intensity of the incident light. Brightness information (such as a digital information). According to the above measurement result, the repair control module 15 compares the illuminance characteristic value measured by the photodetector 13 with a preset target range, and thereby determines one or more repair quantum dots, and then controls the quantum dot coater. 14. The quantum dot coater 14 can place a quantum dot mixed solvent on the top layer of the defective light emitting diode to form a quantum dot layer QL corresponding to the repair quantum dot determined by the repair control module 15. The quantum dot coater 14 may have a plurality of containers (e.g., A' to F'), and the capacitors A to F accommodate a quantum dot mixed solvent having different light emission wavelength characteristics. The quantum dot coater 14 selects a quantum dot mixed solvent according to the repair quantum dots determined by the repair control module 丨5, and sets the quantum dot mixed solvent on the top layer of the defective light emitting diode. The quantum dot mixed solvent contained in the container is formed by a quantum dot mixed diffusion medium, wherein the quantum dots may comprise compound semiconductor nanocrystals such as CdS, CdSe, CdTe,

ZnS、ZnSe、ZnTe、HgS、HgSe 或 HgTe 結晶,擴散媒介 例如為曱本、己烧或其他類似材料。量子點混合溶劑亦可 由其他方式來形成。當對應修復量子點之量子點混合溶劑 被设置於缺陷發光二極體之頂層時,發光二極體之發光波 長特性就可得到改善。在量子點混合溶劑設置於發光二極 體之頂層之後,可藉由一乾燥裝置將溶劑乾燥化。若有需 要,可在發光二極體上更設置一透光樹脂基的絕緣材料。 圖8為本發明較佳實施例之一種修復控制模組15的 方塊不思圖’修破控制模組15包含一量子點決定單元21 以及一移動控制單元22。 量子點決定單元21係比較光檢測器13所測量到通過 量子點遮罩12或量子點遮罩71及72之光線的發光特徵 值與一預設的目標範圍,並依據發光特徵值是否偏離目標 範圍而決定一對應的修復量子點、或是產生一控制訊號以 再次測量缺陷發光二極體所發出之光線的發光特徵值。 移動控制單元22係可依據量子點決定單元21輸出之 控制訊喊而控制直子點遮罩12或量子點遮罩71及72進 行旋轉,藉此量子點遮罩12之另一量子點單元可移動至 12 201110406 一光通過位置’或是量子點遮罩71及72之另一組合的量 子點單元可移動至光通過位置’缺陷發光二極體所發出之 光線可通過該光通過位置。據此,光檢測器13可再次測 量發光二極體對應該量子點單元或該量子點單元組合之 發光特徵值。 圖9為本發明較佳貫施例之一種修復發光二極體之 裝置10的操作流程圖,以下說明其操作過程。 首先,在步驟S110中,於一發光二極體品質檢測平 台,對一發光二極體供應電源,並藉由光檢測器13或其 他光檢測手段來測量發光二極體之發光特徵值,並藉由一 預設之決定手段將缺陷發光二極體判別並收集起來,其 中,缺陷發光二極體之發光特徵值(例如關於色度或亮度 的數位資訊)係偏離一目標範圍a。舉例而言,如圖1〇 所示之CIE色度座標圖,目標範圍a係對應至ciE色度 座標圖之一特定範圍,在該特定範圍内,一特定色度(例 如白色)具有一特定的亮度狀態。若光檢測手段所測量到 的發光特徵值(例如關於色度或亮度的數位資訊)偏離目 標範圍a ’則該發光二極體無法被當作商品販售出去並因 而被丢棄。 依據本發明,當一缺陷發光二極體的發光特徵值係偏 離目標乾圍a’但落在修復範圍b時,缺陷發光二極體可 藉由修復發光二極體之襞置1〇形成一量子點層於其上而 改善其發光色度或亮度,使其被修復改變為合格的產品。 其過程如下所述。 13 201110406 於步驟S120中,上述之缺陷發光二極體係藉由一傳 輸系統11傳送至量子點遮罩12的下方。如圖6所示,量 子點遮罩12具有複數量子點單&,當光線通過該等量子 點單元時,可顯現不同的發光波長特性。並且量子點遮罩 12之一量子點單元係移動至缺陷發光二極體的正上方, 以便測置發光二極體所發出之光線通過該量子點單元之 發光特徵值。 於步驟S130中,當量子點遮罩12之一量子點單元 係移動至缺陷發光二極體的正上方時,供電給發光二極體 而使其發光。在此步驟中,缺陷發光二極體可被固定在一 預設的治具,該治具具有預設的電極,可經由該等電極供 電給發光二極體以使其發光。 據此’於步驟S140中,光檢測器π可測量缺陷發 光二極體所發出之光線通過量子點遮罩12之量子點單元 之發光特徵值。於此,光檢測器13可藉由分析入射光之 頻譜(或波長)而產生關於入射光之色度資訊(例如一數 位資訊)、或是藉由分析入射光之強度而產生關於入射光 之壳度資訊(如一數位資訊)。 於步驟S150中,修復控制模組15係比較光檢測器 13所測量到之發光特徵值與一預設目標範圍。舉例而 言’若發光特徵值未偏離目標範圍,修復控制模組15之 量子點決定單元21可決定光線所通過之量子點單元之量 子點作為修復量子點(步驟S170)。 若在比較發光特徵值與目標範圍之後,發光特徵值偏 14 201110406 離目標範圍,則量子點決定單元21係產生〆控制訊號以 便再次測量缺陷發光二極體之發光特徵值。於此,目標範 圍可例如圖10所示之CIE色度座標圖中之〆範圍,該範 圍可以數位值的方式定義。於步騍S160中,移動控制單 元22可依據控制訊號控制量子點遮罩12轉動,使得量子 點遮罩12之另一量子點單元移動至一光通過位置,缺陷 發光二極體所發出之光線可通過該光通過位置。 當量子點遮罩12轉動使另一量子點單元移動至光通 過位置之後,上述之部分步驟可重覆執行,其中重覆的步 驟可包含藉由光檢測器13測量發光特徵值、修復控制模 組15比較發光特徵值與目標範圍、以及移動量子點遮罩 12或決定修復量子點。 另外,若是為量子點遮罩71、72的態樣,如圖7所 示,則於步驟S140中,光檢測器13係測量缺陷發光二 極體所發出之光線通過量子點遮罩71、72之量子點單元 之發光特徵值。於步驟S170中’若測量到之發光特徵值 未偏離目標範圍,則量子點決定單元21可決定缺陷發光 二極體發出之光線所通過之量子點單元之組合之量子點 作為修復量子點。 量子點遮罩12或量子點遮罩71、72可被控制而轉 動,以致另一量子點單元或另一量子點單元之組合移動至 光通過位置。據此,光檢測器13可再次測量對應另一量 子點單元或另一量子點單元之組合之發光特徵值。 在比較發光特徵值與目標範圍之後’若發光特徵值偏 15 201110406 離目標範圍,量子點決定單元21係產生一控制訊號以便 再次測量缺陷發光二極體之發光特徵值。於此,目標範圍 可例如圖10所示之CIE色度座標圖中之一範圍,該範圍 可以數位值的方式定義。於步驟S160中,移動控制單元 22可控制量子點遮罩71、72移動,使得量子點遮罩71、 72之至少一量子點單元移動至光通過位置。於此,可以 只移動量子點遮罩71、或只移動量子點遮罩72、或移動 量子點遮罩71及72。 據此,當量子點遮罩71、72之至少一量子點單元被 移動至光通過位置時,可重覆上述之步驟,例如藉由光檢 測器13測量發光特徵值、修復控制模組15比較發光特徵 值與目標範圍、以及移動量子點遮罩71、72或是決定修 復量子點。 於步驟S180中,在量子點決定單元21決定修復量 子點之後,關於修復量子點之資訊可傳送至量子點塗佈機 14 ° 於步驟S190中,量子點塗佈機14可依據關於修復 量子點之資訊而將對應的量子點混合溶劑塗佈至缺陷發 光二極體之頂層。量子點塗佈機14可具有複數容器(例 如A’〜F’),容器A’〜F'係分別容置具有不同發光波長特 性的量子點混合溶劑。量子點塗佈機14係依據量子點決 定單元21所決定之修復量子點而選擇一量子點混合溶 劑,並將該量子點混合溶劑設置於缺陷發光二極體之頂 層。舉例而言,當量子點決定單元21決定一量子點單元 16 201110406 A作為修復量子點,量子點塗佈機14可使容置於容器^ 内之量子點混合溶劑流出,並設置於缺陷發光二極體之頂 層。 另外,在複數量子點遮罩71、72的態樣中,舉例而 言,量子點決定單元21決定量子點遮罩71之一量子點單 το A與量子點遮罩72之一量子點單元Q之組合作為修復 量子點。在此情況下,量子點塗佈機14可使容置於對應 容器之量子點混合溶劑流出,並將其設置於缺陷發光二極 體之頂層而執行塗佈。其可例如,量子點塗佈機14使對 應於量子點單元A、Q之量子點混合容器q,之溶劑流 出而塗佈至發光二極體之頂層並形成多層結構。亦即,量 子點混合容器A'之溶劑係先被塗佈,然後量子點混合容 器Q'之溶劑再被塗佈。雖然在圖5中並無容器Q,,但其 可依需求而設置。 在形成量子點混合溶劑之後,可藉由一乾燥裝置將溶 劑乾燥。若需要,亦可更設置一透光樹脂基的絕緣材料。 藉由量子點的塗佈’上述修復發光二極體之裝置及方 法可藉由將罝子點層塗佈至發光二極體以改善其發光色 度或亮度,而使其得到修復並改變為合格之產品,進而 升發光二極體之良率。 以上所述僅為舉娜,而非驗触者^任何 本發明之精神與料’畤其進行之等效修改或變更 應包含於後附之申請專利範圍中。 g 17 201110406 【圖式簡單說明】 圖1為一種習知之發光二極體結構的示意圖; 圖2為另一種習知之發光二極體結構的示意圖; 圖3為另一種習知之發光二極體結構的示意圖; 圖4為一種習知之測量發光二極體之發光強度的示 意圖; 圖5為本發明較佳實施例之一種修復發光二極體之 裝置之示意圖; 圖6為本發明較佳實施例之一種量子點遮罩的示意 圖; 圖7為本發明較佳實施例之一種使用量子點遮罩測 量發光特徵值的示意圖; 圖8為本發明較佳實施例之一種修復控制模組的方 塊示意圖; 圖9為本發明較佳實施例之一種修復發光二極體之 裝置的操作流程圖;以及 圖10為一種CIE色度座標圖。 【主要元件符號說明】 10 :修復發光二極體之裝置 11 :傳輸系統 12、71、72 :量子點遮罩 13 :光檢測器 14 :量子點塗佈機 18 201110406 15 :修復控制模組. 21 :量子點決定單元 22 :移動控制單元 a :目標範圍 b:修復範圍 A〜F、Q、R、S :量子點單元 . A’〜F :容器 EL :外部電極 FL :螢光層 L :發光二極體 PD :光檢測器 QL :量子點層 S110〜S190 :以量子點塗佈修復發光二極體之方法之步驟 19Crystallization of ZnS, ZnSe, ZnTe, HgS, HgSe or HgTe, such as sputum, burned or the like. The quantum dot mixed solvent can also be formed by other means. When the quantum dot mixed solvent corresponding to the repaired quantum dots is disposed on the top layer of the defective light-emitting diode, the light-emitting wavelength characteristics of the light-emitting diode can be improved. After the quantum dot mixed solvent is disposed on the top layer of the light emitting diode, the solvent can be dried by a drying device. If necessary, a light-transmissive resin-based insulating material may be further disposed on the light-emitting diode. FIG. 8 is a block diagram of the repair control module 15 of the preferred embodiment of the present invention. The repair control module 15 includes a quantum dot determining unit 21 and a mobile control unit 22. The quantum dot determining unit 21 compares the illuminating characteristic value of the light passing through the quantum dot mask 12 or the quantum dot masks 71 and 72 measured by the photodetector 13 with a predetermined target range, and according to whether the illuminating characteristic value deviates from the target The range determines a corresponding repair quantum dot, or generates a control signal to measure the luminescence characteristic value of the light emitted by the defective light-emitting diode again. The movement control unit 22 can control the straight sub-point mask 12 or the quantum dot masks 71 and 72 to rotate according to the control call output from the quantum dot determining unit 21, whereby the other quantum dot unit of the quantum dot mask 12 can be moved. As of 12 201110406, a light passing through the position 'or quantum dot unit of another combination of quantum dot masks 71 and 72 can be moved to a position where the light passing through the position of the defective light emitting diode can pass through the light passing position. Accordingly, the photodetector 13 can again measure the illuminating characteristic values of the illuminating diode corresponding to the quantum dot unit or the combination of the quantum dot units. Figure 9 is a flow chart showing the operation of a device 10 for repairing a light-emitting diode according to a preferred embodiment of the present invention. The operation thereof will be described below. First, in step S110, a light emitting diode is supplied with a power source on a light emitting diode quality detecting platform, and the light emitting characteristic value of the light emitting diode is measured by the photodetector 13 or other light detecting means, and The defective light-emitting diodes are discriminated and collected by a predetermined determining means, wherein the light-emitting characteristic values of the defective light-emitting diodes (for example, digital information about chromaticity or brightness) deviate from a target range a. For example, as shown in FIG. 1A, the target range a corresponds to a specific range of one of the ciE chromaticity coordinate maps, and within a specific range, a specific chromaticity (for example, white) has a specific The brightness state. If the illuminance characteristic value (e.g., digital information about chromaticity or luminance) measured by the photodetecting means deviates from the target range a', the illuminating diode cannot be sold as a commodity and thus discarded. According to the present invention, when the luminescence characteristic value of a defective light-emitting diode deviates from the target dry circumference a' but falls within the repair range b, the defective light-emitting diode can be formed by repairing the light-emitting diode. The quantum dot layer is placed thereon to improve its chromaticity or brightness, so that it is repaired and changed to a qualified product. The process is as follows. 13 201110406 In step S120, the defective light emitting diode system described above is transferred to the lower side of the quantum dot mask 12 by a transmission system 11. As shown in Fig. 6, the quantum dot mask 12 has a plurality of sub-singles & and when light passes through the quantum dot cells, different illuminating wavelength characteristics can be exhibited. And one of the quantum dot masks of the quantum dot mask 12 is moved directly above the defect light-emitting diode to measure the light-emitting characteristic value of the light emitted by the light-emitting diode through the quantum dot unit. In step S130, when one of the quantum dot units of the equivalent sub-point mask 12 is moved directly above the defective light-emitting diode, power is supplied to the light-emitting diode to emit light. In this step, the defective light-emitting diode can be fixed to a predetermined jig having a predetermined electrode through which the light-emitting diode can be supplied to emit light. According to this, in step S140, the photodetector π can measure the illuminating characteristic value of the quantum dot unit of the light emitted from the defective light-emitting diode through the quantum dot mask 12. Here, the photodetector 13 can generate chromaticity information about the incident light (for example, a digital information) by analyzing the spectrum (or wavelength) of the incident light, or generate an incident light by analyzing the intensity of the incident light. Shell information (such as a piece of information). In step S150, the repair control module 15 compares the light-emitting feature value measured by the light detector 13 with a predetermined target range. For example, if the illuminating feature value does not deviate from the target range, the quantum dot determining unit 21 of the repair control module 15 can determine the quantum dot of the quantum dot unit through which the ray passes as the repair quantum dot (step S170). If the illuminance characteristic value is shifted from the target range after comparing the illuminating characteristic value with the target range, the quantum dot determining unit 21 generates a 〆 control signal to measure the illuminating characteristic value of the defective illuminating diode again. Here, the target range may be, for example, the range of the CIE chromaticity coordinate map shown in Fig. 10, which may be defined in the form of a digital value. In step S160, the mobile control unit 22 can control the rotation of the quantum dot mask 12 according to the control signal, so that another quantum dot unit of the quantum dot mask 12 is moved to a light passing position, and the light emitted by the defective light emitting diode The light can pass through the location. After the quantum dot mask 12 is rotated to move another quantum dot unit to the light passing position, the above-mentioned partial steps may be repeatedly performed, wherein the repeating step may include measuring the light emitting characteristic value by the photodetector 13 and repairing the control mode Group 15 compares the luminescence eigenvalues with the target range, and moves the quantum dot mask 12 or determines the repair quantum dots. Further, in the case of the quantum dot masks 71 and 72, as shown in FIG. 7, in step S140, the photodetector 13 measures the light emitted from the defective light-emitting diode through the quantum dot masks 71, 72. The luminescence characteristic value of the quantum dot unit. In step S170, if the measured illuminance characteristic value does not deviate from the target range, the quantum dot determining unit 21 can determine the quantum dot of the combination of the quantum dot units through which the light emitted by the defective luminescent diode passes, as the repair quantum dot. The quantum dot mask 12 or quantum dot masks 71, 72 can be controlled to rotate such that the combination of another quantum dot unit or another quantum dot unit moves to the light passing position. Accordingly, the photodetector 13 can again measure the luminescence characteristic value corresponding to the combination of another quantum dot unit or another quantum dot unit. After comparing the illuminating feature value with the target range, if the illuminating feature value is 15 201110406 from the target range, the quantum dot determining unit 21 generates a control signal to measure the illuminating feature value of the defective illuminating diode again. Here, the target range may be, for example, one of the CIE chromaticity coordinate maps shown in Fig. 10, and the range may be defined in the form of a digital value. In step S160, the movement control unit 22 controls the movement of the quantum dot masks 71, 72 such that at least one quantum dot unit of the quantum dot masks 71, 72 moves to the light passing position. Here, it is possible to move only the quantum dot mask 71, or to move only the quantum dot mask 72, or to move the quantum dot masks 71 and 72. Accordingly, when at least one quantum dot unit of the equivalent sub-point masks 71, 72 is moved to the light passing position, the above steps may be repeated, for example, the light detecting characteristic value is measured by the photodetector 13, and the repair control module 15 is compared. The luminescence eigenvalues and target ranges, as well as the moving quantum dot masks 71, 72, or the decision to repair the quantum dots. In step S180, after the quantum dot determining unit 21 determines to repair the quantum dot, information about repairing the quantum dot may be transmitted to the quantum dot coater 14 ° in step S190, and the quantum dot coater 14 may be based on repairing the quantum dot. The corresponding quantum dot mixed solvent is applied to the top layer of the defective light-emitting diode. The quantum dot coater 14 may have a plurality of containers (e.g., A' to F'), and the containers A' to F' respectively accommodate quantum dot mixed solvents having different emission wavelength characteristics. The quantum dot coater 14 selects a quantum dot doping solvent in accordance with the repair quantum dots determined by the quantum dot determining unit 21, and sets the quantum dot mixed solvent on the top layer of the defective light emitting diode. For example, the equivalent sub-point determining unit 21 determines a quantum dot unit 16 201110406 A as a repair quantum dot, and the quantum dot coater 14 can discharge the quantum dot mixed solvent contained in the container ^ and set it on the defect light emitting The top layer of the polar body. Further, in the aspect of the complex number of sub-point masks 71, 72, for example, the quantum dot decision unit 21 determines one of the quantum dot single το A of the quantum dot mask 71 and one quantum dot unit Q of the quantum dot mask 72. The combination is used as a repair quantum dot. In this case, the quantum dot coater 14 can perform the coating by allowing the quantum dot mixed solvent accommodated in the corresponding container to flow out and setting it on the top layer of the defective light emitting diode. For example, the quantum dot coater 14 causes the solvent of the quantum dot mixing container q corresponding to the quantum dot units A and Q to flow out and coat the top layer of the light emitting diode to form a multilayer structure. That is, the solvent of the quantum dot mixing vessel A' is first coated, and then the solvent of the quantum dot mixing vessel Q' is coated. Although there is no container Q in Fig. 5, it can be set as needed. After the quantum dot mixed solvent is formed, the solvent can be dried by a drying device. If necessary, a light-transmissive resin-based insulating material may be further provided. The apparatus and method for repairing a light-emitting diode by coating a quantum dot can be repaired and changed by applying a layer of a scorpion to a light-emitting diode to improve its chromaticity or brightness. Qualified products, and then the yield of the light-emitting diode. The above description is only for the purpose of the invention, and the equivalents of the invention are intended to be included in the scope of the appended claims. g 17 201110406 [Simplified Schematic] FIG. 1 is a schematic diagram of a conventional light-emitting diode structure; FIG. 2 is a schematic view showing another conventional light-emitting diode structure; FIG. 3 is another conventional light-emitting diode structure. FIG. 4 is a schematic diagram of a conventional apparatus for measuring the luminous intensity of a light-emitting diode; FIG. 5 is a schematic view of a device for repairing a light-emitting diode according to a preferred embodiment of the present invention; FIG. FIG. 7 is a schematic diagram of measuring a luminescence characteristic value using a quantum dot mask according to a preferred embodiment of the present invention; FIG. 8 is a block diagram of a repair control module according to a preferred embodiment of the present invention; FIG. 9 is a flow chart showing the operation of a device for repairing a light-emitting diode according to a preferred embodiment of the present invention; and FIG. 10 is a CIE chromaticity coordinate map. [Main component symbol description] 10: Device for repairing LEDs 11: Transmission system 12, 71, 72: Quantum dot mask 13: Photodetector 14: Quantum dot coater 18 201110406 15 : Repair control module. 21: quantum dot determination unit 22: movement control unit a: target range b: repair range A to F, Q, R, S: quantum dot unit. A'~F: container EL: external electrode FL: fluorescent layer L: Light-emitting diode PD: Photodetector QL: Quantum dot layer S110 to S190: Step 19 of a method of repairing a light-emitting diode by quantum dot coating

Claims (1)

201110406 七、申請.專利範圍: 1、 一種修復發光二極體之方法,包含下列步驟: 測量一發光二極體之一發光特徵值; 若該發光特徵值偏離一目標範圍,判斷該發光二極體 為一缺陷發光二極體;以及 於該缺陷發光二極體之一頂層上形成一量子點層。 2、 如申請專利範圍第1項所述之修復發光二極體之方法, 其中該發光特徵值包含一數位資訊,該數位資訊係關 於色度或亮度。 3、 如申請專利範圍第1項所述之修復發光二極體之方法, 其中形成該量子點層之步驟係包含設置一溶劑於該缺 陷發光二極體之該頂層以及乾燥該溶劑,其中該溶劑 係藉由混合一量子點及一擴散介質而形成,該量子點 係由一預設之半導體奈米結晶組成。 4、 如申請專利範圍第1項所述之修復發光二極體之方法, 其中形成該量子點層之步驟包含: 當該缺陷發光二極體發光,且其光線穿過一量子點遮 罩之複數量子點單元的其中之一時,測量該光線之 一發光特徵值; 藉由比對該光線之該發光特徵值與該目標範圍而決定 一修復量子點;以及 藉由使用對應該修復量子點之一量子點混合溶劑而在 該缺陷發光二極體之該頂層上形成該量子點層。 5、 如申請專利範圍第4項所述之修復發光二極體之方法, 20 201110406 其中決定該修復量子點之步驟包含: 若該光線之該發光特徵值落在該目標範圍内,則決定 該量子點單元之一量子點為該修復量子點;以及 若該光線之該發光特徵值偏離該目標範圍,則藉由控 制來測量光線經過該量子點遮罩之另一量子點單元 之一發光特徵值。 6、 如申請專利範圍第4項所述之修復發光二極體之方法, 其中當該光線更經過另一量子點遮罩之一量子點單元 時,測量該光線之該發光特徵值。 7、 如申請專利範圍第6項所述之修復發光二極體之方法, 其中決定該修復量子點之步驟包含: 若穿過該等量子點單元之該光線之該發光特徵值落在 該目標範圍内,則決定該等量子點遮罩之該等量子 點單元所使用之複數量子點為該修復量子點;以及 若穿過該等量子點單元之該光線之該發光特徵值偏離 該目標範圍,則藉由控制來改變該等量子點遮罩之 至少其中之一之量子點單元,並測量通過已改變之 該等量子點單元之該光線之一發光特徵值。 8、 如申請專利範圍第7項所述之修復發光二極體之方法, 其中形成該量子點層之步驟係藉由使用對應被判斷為 該修復量子點之該等量子點單元之組合之該量子點混 合溶劑,而在該缺陷發光二極體之該頂層上形成該量子 點層。 9、 如申請專利範圍第7項所述之修復發光二極體之方法, 21 201110406 其中形成該量子點層之步驟係藉由使用分別對應被判 斷為該修復量子點之該等量子點單元之複數量子點混 合溶劑,而在該缺陷發光二極體之該頂層上形成該量子 點層,其中該量子點層係為一多層結構。 ίο、一種修復發光二極體之裝置,包含: 一光檢測單元,係測量一發光二極體之一發光特徵 值; 一決定單元,若該發光二極體之該發光特徵值偏離一 目標範圍,該決定單元係決定該發光二極體為一缺 陷發光二極體;以及 一量子點塗佈單元,係形成一量子點層於該缺陷發光 二極體之一頂層。 11、 如申請專利範圍第10項所述之修復發光二極體之裝 置,更包含: 至少一量子點遮罩,係具有複數量子點單元;以及 一修復控制模組,其中該發光二極體所發出之光線係 經過該量子點遮罩之一量子點單元,該修復控制模 組係比較該光線之一發光特徵值與該目標範圍而 決定一修復量子點,並控制該量子點塗佈單元, 其中該量子點塗佈單元係使用對應該修復量子點之 一量子點混合溶劑而形成該量子點層於該缺陷發 光二極體之該頂層。 12、 如申請專利範圍第11項所述之修復發光二極體之裝 置,其中該修復控制模組包含: 22 201110406 里子點決定單元,若該光線之該發光特徵值落在該 目標範圍内,則決定該量子點單元所使用之量子點 為該修復量子點,並且若該光線之該發光特徵值偏 離該目標範圍,則產生一控制訊號以再次測量該發 光特徵值;以及 一移動控制單元,係依據該控制訊號作動以使該量子 點遮罩之另一量子點單元移動至一光通過位置,該 缺陷發光二極體所發出之光線係通過該光通過位 置。 申請專利範圍第12項所述之修復發光二極體之裝 置’其中該修復控制模組更包含: 一第二光檢測單元,係測量通過該量子點單元之該光 線之一發光特徵值。 14如申晴專利範圍第12項所述之修復發光二極體之裝 置,其中當該修復發光二極體之裝置具有複數量子點 遮罩時,該等量子點遮罩分別具有複數量子點單元, 該發光二極體所發出之光線係經過該等量子點遮罩 之複數量子點單元,該修復控制模組係比較該光線之 該發光特徵值與該目標範圍而決定該修復量子點。 如申請專利範圍第14項所述之修復發光二極體之裝 置’其中右通過該專ΐ子點早元之該光線之該發光特 徵值落在該目標範圍内,則該量子點決定單元係決定 該等量子點單元所使用之複數量子點為該修復量子 點,並且若該光線之該發光特徵值偏離該目標範圍, 23 201110406 則產生一控制訊號以再次測量該發光特徵值;以及 該移動控制單元係依據該控制訊號而控制該等量子 點遮罩之作動,以使該等量子點遮罩之至少另一量 子點單元移動至一光通過位置,該缺陷發光二極體 所發出之光線係通過該光通過位置。 16、 如申請專利範圍第15項所述之修復發光二極體之裝 置,其中該量子點塗佈單元係使用對應作為該修復量 子點之該等量子點單元之組合之一量子點混合溶劑 而形成該量子點層於該缺陷發光二極體之該頂層。 17、 如申請專利範圍第15項所述之修復發光二極體之裝 置,其中該量子點塗佈單元係使用分別對應作為該修 復量子點之該等量子點單元之複數量子點混合溶劑 而形成該量子點層於該缺陷發光二極體之該頂層,該 量子點層為一多層結構。 24201110406 VII. Application. Patent scope: 1. A method for repairing a light-emitting diode, comprising the steps of: measuring a light-emitting characteristic value of a light-emitting diode; and if the light-emitting characteristic value deviates from a target range, determining the light-emitting diode The body is a defect light-emitting diode; and a quantum dot layer is formed on top of one of the defect light-emitting diodes. 2. The method of repairing a light-emitting diode according to claim 1, wherein the light-emitting characteristic value comprises a digit information, the color information being related to chromaticity or brightness. 3. The method of repairing a light-emitting diode according to claim 1, wherein the step of forming the quantum dot layer comprises disposing a solvent on the top layer of the defective light-emitting diode and drying the solvent, wherein the solvent The solvent is formed by mixing a quantum dot and a diffusion medium composed of a predetermined semiconductor nanocrystal. 4. The method of repairing a light-emitting diode according to claim 1, wherein the step of forming the quantum dot layer comprises: when the defective light-emitting diode emits light, and the light passes through a quantum dot mask Measuring one of the illuminating characteristic values of the ray by one of the plurality of sub-point units; determining a repair quantum dot by comparing the illuminating characteristic value of the ray with the target range; and using one of the repaired quantum dots by using The quantum dot is mixed with a solvent to form the quantum dot layer on the top layer of the defective light-emitting diode. 5. The method for repairing a light-emitting diode according to claim 4, wherein the step of determining the repaired quantum dot comprises: if the light-emitting characteristic value of the light falls within the target range, determining the One of the quantum dot units is a quantum dot; and if the illuminating characteristic value of the ray deviates from the target range, a light-emitting characteristic of another quantum dot unit of the light passing through the quantum dot mask is controlled by control value. 6. The method of repairing a light-emitting diode according to claim 4, wherein the light-emitting characteristic value of the light is measured when the light passes through one of the quantum dot units of another quantum dot. 7. The method of repairing a light-emitting diode according to claim 6, wherein the step of determining the repaired quantum dot comprises: if the light-emitting characteristic value of the light passing through the quantum dot unit falls on the target Within the range, determining a plurality of sub-points used by the quantum dot units of the quantum dot masks as the repair quantum dots; and if the luminescence characteristic value of the ray passing through the quantum dot units deviates from the target range And controlling, by the control, a quantum dot unit of at least one of the quantum dot masks, and measuring a light-emitting characteristic value of the light passing through the changed quantum dot units. 8. The method of repairing a light-emitting diode according to claim 7, wherein the step of forming the quantum dot layer is performed by using a combination of the quantum dot units corresponding to the repaired quantum dot. The quantum dots are mixed with a solvent, and the quantum dot layer is formed on the top layer of the defective light-emitting diode. 9. The method of repairing a light-emitting diode according to claim 7 of the patent application, 21 201110406 wherein the step of forming the quantum dot layer is performed by using the quantum dot units respectively determined to be the repaired quantum dots The plurality of sub-dots are mixed with a solvent, and the quantum dot layer is formed on the top layer of the defective light-emitting diode, wherein the quantum dot layer is a multilayer structure. Ίο, a device for repairing a light-emitting diode, comprising: a light detecting unit for measuring a light-emitting characteristic value of a light-emitting diode; a determining unit, wherein the light-emitting characteristic value of the light-emitting diode deviates from a target range The determining unit determines that the light emitting diode is a defective light emitting diode; and a quantum dot coating unit forms a quantum dot layer on top of one of the defective light emitting diodes. 11. The apparatus for repairing a light-emitting diode according to claim 10, further comprising: at least one quantum dot mask having a plurality of sub-point units; and a repair control module, wherein the light-emitting diode The emitted light passes through one of the quantum dot units of the quantum dot mask, and the repair control module compares one of the light illuminating characteristic values with the target range to determine a repair quantum dot, and controls the quantum dot coating unit Wherein the quantum dot coating unit forms the quantum dot layer on the top layer of the defective light emitting diode using a quantum dot mixing solvent corresponding to one of the quantum dots. 12. The apparatus for repairing a light-emitting diode according to claim 11, wherein the repair control module comprises: 22 201110406 a neutron point determining unit, if the illuminating characteristic value of the ray falls within the target range, Determining that the quantum dot used by the quantum dot unit is the repair quantum dot, and if the luminescence characteristic value of the ray deviates from the target range, generating a control signal to measure the luminescence characteristic value again; and a mobile control unit, Actuating according to the control signal, the other quantum dot unit of the quantum dot mask is moved to a light passing position, and the light emitted by the defective light emitting diode passes through the light passing position. The apparatus for repairing a light-emitting diode according to claim 12, wherein the repair control module further comprises: a second light detecting unit that measures a light-emitting characteristic value of the light passing through the quantum dot unit. [14] The apparatus for repairing a light-emitting diode according to claim 12, wherein when the device for repairing the light-emitting diode has a plurality of sub-point masks, the quantum dot masks respectively have a plurality of sub-point units The light emitted by the light-emitting diode passes through a plurality of sub-point units of the quantum dot mask, and the repair control module determines the repair quantum dot by comparing the light-emitting characteristic value of the light with the target range. The apparatus for repairing a light-emitting diode according to claim 14, wherein the light-emitting characteristic value of the light passing right through the specialized sub-point is within the target range, and the quantum dot determining unit is Determining a plurality of sub-points used by the quantum dot units as the repair quantum dots, and if the illuminating characteristic value of the ray deviates from the target range, 23 201110406 generates a control signal to measure the illuminating characteristic value again; and the moving Control unit controls the operation of the quantum dot masks according to the control signal, so that at least another quantum dot unit of the quantum dot mask moves to a light passing position, and the light emitted by the defective light emitting diode Pass the light through the location. The apparatus for repairing a light-emitting diode according to claim 15, wherein the quantum dot coating unit uses a quantum dot mixed solvent corresponding to one of the quantum dot units of the repaired quantum dot. The quantum dot layer is formed on the top layer of the defective light emitting diode. 17. The apparatus for repairing a light-emitting diode according to claim 15, wherein the quantum dot coating unit is formed by using a plurality of mixed solvent points corresponding to the quantum dot units of the repaired quantum dots. The quantum dot layer is on the top layer of the defect light-emitting diode, and the quantum dot layer is a multi-layer structure. twenty four
TW99115970A 2009-09-14 2010-05-19 Method and apparatus for repairing light emitting diode using quantum dot coating TW201110406A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090086310A KR101650390B1 (en) 2009-09-14 2009-09-14 Light Emitting Diode Repair Method and Apparatus using Quantum Dot Coating

Publications (1)

Publication Number Publication Date
TW201110406A true TW201110406A (en) 2011-03-16

Family

ID=43732632

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99115970A TW201110406A (en) 2009-09-14 2010-05-19 Method and apparatus for repairing light emitting diode using quantum dot coating

Country Status (5)

Country Link
JP (1) JP2013504870A (en)
KR (1) KR101650390B1 (en)
CN (1) CN102630350A (en)
TW (1) TW201110406A (en)
WO (1) WO2011030993A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8922643B2 (en) 2011-03-28 2014-12-30 Samsung Electronics Co., Ltd. Apparatus for inspecting light emitting diode and inspecting method using said apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110137220A (en) * 2019-04-18 2019-08-16 佛山市柔浩电子有限公司 Micro- light emitting diode quantum dot display screen method for repairing and mending
CN110707200B (en) * 2019-09-04 2021-01-15 深圳市华星光电半导体显示技术有限公司 Quantum dot light emitting device patterning method and quantum dot light emitting device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4360788B2 (en) * 2002-08-29 2009-11-11 シチズン電子株式会社 Backlight for liquid crystal display panel and method of manufacturing light emitting diode used therefor
JP2004214476A (en) * 2003-01-07 2004-07-29 Rohm Co Ltd Method for inspecting chip type semiconductor light-emitting device
JP2006162427A (en) * 2004-12-07 2006-06-22 Toshiba Corp Method and device for inspecting led chip
KR100682874B1 (en) * 2005-05-02 2007-02-15 삼성전기주식회사 White light emitting device
US20070117450A1 (en) * 2005-11-18 2007-05-24 Truxes William W Novel jack form LED lamp package and caddy
KR101101132B1 (en) * 2007-11-23 2012-01-12 삼성엘이디 주식회사 LED inspection apparatus and inspection method using the same
CN101498416B (en) * 2008-02-02 2012-01-11 绎立锐光科技开发(深圳)有限公司 Emergent light color adjustable light source and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8922643B2 (en) 2011-03-28 2014-12-30 Samsung Electronics Co., Ltd. Apparatus for inspecting light emitting diode and inspecting method using said apparatus
TWI494559B (en) * 2011-03-28 2015-08-01 Samsung Electronics Co Ltd Apparatus for inspecting light emitting diode and inspecting method using said apparatus

Also Published As

Publication number Publication date
WO2011030993A1 (en) 2011-03-17
KR101650390B1 (en) 2016-08-25
CN102630350A (en) 2012-08-08
KR20110028737A (en) 2011-03-22
JP2013504870A (en) 2013-02-07

Similar Documents

Publication Publication Date Title
US10361248B2 (en) Light source module, display panel and display apparatus having blue sub-pixel that emits blue light and green light and methods for manufacturing the same
TWI324833B (en) Phosphor converted light source
US9871173B2 (en) Light emitting devices having closely-spaced broad-spectrum and narrow-spectrum luminescent materials and related methods
JP6134706B2 (en) Gallium-substituted yttrium aluminum garnet phosphor and light-emitting device including the same
CN105556197B (en) Light emitting device with adapted output spectrum
KR100347126B1 (en) White color LED and Neutral tint LED
US20140167601A1 (en) Enhanced Luminous Flux Semiconductor Light Emitting Devices Including Red Phosphors that Exhibit Good Color Rendering Properties and Related Red Phosphors
US20080230795A1 (en) Light emitting diode
JP2010529597A (en) Lighting device with controllable spectrum
JP2012248545A (en) Led light module with calibration function
US10854792B2 (en) Light-emitting device and illumination apparatus
US10880962B2 (en) Lighting systems having multiple light sources
US10274164B2 (en) Lighting device comprising a plurality of different light sources with similar off-state appearance
TW201110406A (en) Method and apparatus for repairing light emitting diode using quantum dot coating
US12000585B2 (en) Lighting device
CN207134360U (en) Light emitting diode light emitting layer structure capable of generating different light emitting colors on single wafer
KR20170033933A (en) Method of manufacturing light source module
TW201123527A (en) Method and apparatus for repairing light emitting diode using quantum dot coating
Singh Basics of light emitting diodes, characterizations and applications
US8427062B2 (en) Illumination device and method for adapting an emission characteristic of an illumination device
KR20110031237A (en) Stable light source
WO2020175710A1 (en) Light emitting device and illumination device
CN112635340B (en) LED wafer detection device and method
WO2020175576A1 (en) Illuminating system, illuminating device, and illumination control method