TW201110223A - Method of manufacturing cavity body with vibrating membrane on silicon wafer - Google Patents

Method of manufacturing cavity body with vibrating membrane on silicon wafer Download PDF

Info

Publication number
TW201110223A
TW201110223A TW098130775A TW98130775A TW201110223A TW 201110223 A TW201110223 A TW 201110223A TW 098130775 A TW098130775 A TW 098130775A TW 98130775 A TW98130775 A TW 98130775A TW 201110223 A TW201110223 A TW 201110223A
Authority
TW
Taiwan
Prior art keywords
layer
wafer
cavity
fabricating
diaphragm
Prior art date
Application number
TW098130775A
Other languages
Chinese (zh)
Other versions
TWI380359B (en
Inventor
xue-zhuan Liao
Xi-Zhe Huang
Original Assignee
Phoenix Silicon Int Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phoenix Silicon Int Corp filed Critical Phoenix Silicon Int Corp
Priority to TW098130775A priority Critical patent/TW201110223A/en
Publication of TW201110223A publication Critical patent/TW201110223A/en
Application granted granted Critical
Publication of TWI380359B publication Critical patent/TWI380359B/zh

Links

Landscapes

  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

The invention provides a method of manufacturing cavity body with vibrating membrane on silicon wafer. A silicon wafer with a surface with a patterned mask layer is provided and then the silicon wafer exposed from the patterned mask layer is under porosity by using electro-chemistry etching process for forming a first porous layer and a second porous layer wherein the first porous layer is above the second porous layer, and porosity of the first porous layer is smaller than that of the second porous layer; after the patterned mask layer is removed, performing heat treatment for the silicon wafer, and growing a single crystal silicon epitaxy layer for forming a vibrating membrane covering a hollow cavity body.

Description

201110223 六、發明說明: 【發明所屬之技術領域】 本發明係有關-種半導體元件製作方法,制是指—種細晶圓上製 ' 作具振動膜之腔體的方法。 【先前技術】 近年來將製作半導_體電路所需之精密加工技魏祕製作出$進 行物理作動之超小型機械的微加工技術受到極大的嗎目。而應用此類技 術’以開發出應用於半導體壓力感測器或者微麥克風之具有振動膜之腔體 •的半導體7G件,更是如火如荼進行中。半導體壓力感測器係廣泛應用於汽 車豕庭電氣化製品及工業量測機器等。微麥克風係廣泛應用於手機、數 位相機、免持聽筒、筆記型電腦等。 目刖利用半導雜密加技術製作具振祕之腔體的方式在以壓力 感測器作為範例下主要有兩種方式,第—種是面型微加工(弧⑽ 金麵恤㈣’第二紋體型微加工(bulk mie—gh面型微加 工是以多晶雜S雜為犧牲層之二氧化砂來製作壓力感·所需的薄膜及 _腔體’優點是晶片尺寸小及製作過程可以和cm〇s製程相容但多晶石夕薄 膜的機顧度及·係數姉於單_是較差的,體碰加卫是使用蟲 晶晶圓或者SOI晶圓從背面姓刻至所需薄膜的厚度及尺寸,此種單晶石夕薄 膜機械強度及壓阻係數佳,錄刻製程時間長,晶片尺寸大,且為了增加 薄膜的支樓強度常會和玻璃或石夕接合,此乃其缺點。 有鑑於此,本發明遂針對上述習知技術之缺失,提出一種在石夕晶圓上 製作具振動膜之腔體的方法,以有效克服上述之該等問題。 201110223 【發明内容】 本發明之主要目的在提供一種在石夕晶圓上製作具振動膜之腔體的方 法’其融合面型微加I與體型微加丄之優點。 本發明之另-目的在提供—種在石夕晶圓上製作具振動膜之腔體的方 法,其基底僅需使用價格較為便宜的單晶料圓,無需使賴格昂貴的蟲 晶晶圓或者SOI晶圓。 本發明之又-目的在提供一種在石夕晶圓上製作具振動膜之腔體的方 法’其上的蟲晶層可以以積體電路製程技術製作感測器訊號處理所需的專 用集成電路(ASIC),因此可轉微機電元件和IC整合在單__晶片上。 本發月之S目的在提供—種在⑦晶圓上製作具振動膜之腔體的方 法’其蟲晶振動薄縣結構具有足夠支樓,因此無麵外與玻璃或石夕 接合。 為達上述之目的,本發明提出—種在碎晶圓上製作具振動膜之腔體的 方法其先提供-石夕晶圓;於石夕晶圓表面上形成—圖案化遮罩層;利用電 化子餘刻製轉自圖案化遮罩層顯露出之⑦晶酸行孔隙化,則、電流密 度搭配高濃度電解液形成-第-⑽層,以大概密度搭配低濃度電解液 形成-第二孔隙層,其中第一扎隙層係位於第二扎隙層上方,且第一孔隙 層之孔隙率小於第二孔隙層之孔隙率;移除圖案化遮罩層;對硬晶圓進行 熱處理,以使第二孔隙層空齡,第一孔隙層緻密化;以及於石夕晶圓上成 長一單晶石夕蟲晶層,以形成一覆蓋於一 +空腔體上之振動膜。 底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術内 谷、特點及其所達成之功效。 201110223 【實施方式】 本發明係針對具有振動膜腔體的半導體耕,如半導體壓力感測器或 者微麥克風’提出-織新的腔體製作方法,以改善習知利用體型微加工 -或者面型加工製作此結構時的製程缺點,並融合此兩方式的優點,達到降 '低製作成本。再者,此製程方式能與積體電路製軸容,進而縮小元件尺 寸。 m參閱第1 (a)〜1⑷圖’其係各為本發明之切晶圓上製作具振 鲁動膜之腔體的方法步驟示意圖。首先,如第i⑷圖所示,提供一表面形 成有-_化遮罩層1G之單_晶圓u,此贿化遮罩層ig之材質為氮 化物。接續’利用電化學侧製程對自圖案化遮罩層1〇顯露出之單晶石夕晶 圓12進行孔隙化,以形成一第一孔隙層14與一第二孔隙層16,其中第一 孔隙層14係位於第二孔隙層16上方,且第一孔隙層14之孔隙率小於第二 孔隙層16之孔隙率,以形成如第!(b)圖所示之結構。 隨後’移除_化遮罩層1G,形成如第丨⑷_示之結構;接續對 鲁單晶石夕晶圓進行熱處理,以使第二孔隙層16空洞化,形成空洞化的第二孔 隙層16’ ’第一孔隙層丨4緻密化,形成緻密化的第一孔隙層14,,並於單晶 梦μ圓12上形成一早晶碎為晶層20,以作為一覆蓋於·一中空腔體18上之 • 振動膜,如第Kd)圖,且此中空腔體18之深度大約為5〜20微米(um)。 - 於單晶矽磊晶層20上可以以積體電路製程技術製作感測器訊號處理所 需的專用集成電路(ASIC),因此可以將微機電元件和jc整合在單—晶片 而電化學蝕刻製程的詳細過程是先以電流密度為5〜2〇mA;crn2之小電 201110223 流密度搭配濃度為35〜25%氫氟酸(HF)之高濃度電解液對顯露出之單晶 矽晶圓12進行電化學蝕刻,以形成一第一孔隙層14,隨後再使用電流密度 為50〜100 mA/cm2之大電流密度搭配濃度為20〜10%氫氟酸(HF)之低 濃度電解液,以形成一第二孔隙層16。 而上述對單晶矽晶圓12進行熱處理,以使第二孔隙層16空洞化,第 一孔隙層14緻密匕,以形成中空腔體18之詳細步驟包含有以9〇〇〜11〇〇4>c 於氫氣環境下對單晶矽晶圓12進行第一次熱處理,使第二孔隙層16空洞 化;隨後,以900〜1200t於氫氣環境下對單晶矽晶圓12進行第二次熱處 理’以使第一孔隙層14緻密化。 再者,利用本發明之方法所製得之具振動膜之腔體是由正面直接定義 振動膜的尺寸及厚度,且振誠下的巾空腔體深度也僅有5〜2()微米左右, 腔體周圍其它結構主要都是塊狀㈣晶圓,因此整體機械結構能使振動薄 膜具有足夠支職度’無須額外與賴或祕合的優點。 反觀细如翻微加工(bulkmie_aehining)方式崎作的具振動膜 體其疋由蟲阳日日圓或者S〇i晶圓從背面钱刻至正面所需振動薄膜的 厚度及尺寸後停止,因為是等向式⑽,所以隨晶片厚度,背面開口比正 面振動膜大,在振_厚龍#紐紅底下有—個相對大祕刻腔體情 況下,無法給予振_足_支撐錢,而需辦與玻璃或興合。 紅上所述’本發明所揭示之在石夕晶圓上製作具振動膜之腔體的方法是 新且融D面型微加卫與體型微加卫優闕製作方法,其基底僅需使 較為便且的單aa⑦晶圓’無需制價格昂貴的蟲晶晶圓或者s〇i晶 ’可促使整個元件尺寸小 圓。且本發明之製程步驟可姆於積體電路製程 201110223 型化。此外’本發明的機械結構錄_财奴夠支料度,因此具有 考須額外與玻璃或矽接合的優點。 唯乂上所述者料本發明之較佳實關*已並非聽限定本發明 實施之。故即凡依本發财請範_述之特徵及精神所為之均等變化 或修飾,均應包括於本發明之申請專利範圍内。 【圖式簡單說明】 第1 (a)〜1⑷®係為本發明之在.圓上製作具振動膜之腔體的方法 步驟示意圖。 【主要元件符號說明】 10 圖案化遮罩層 12 單晶梦晶圓 14 第一孔隙層 14, 第一孔隙層 16 第二孔隙層 16, 第二孔隙層 18 中空腔體 20 單晶矽磊晶層201110223 VI. Description of the Invention: [Technical Field] The present invention relates to a method for fabricating a semiconductor device, and a method for fabricating a cavity for a diaphragm. [Prior Art] In recent years, the micromachining technology for the ultra-small machine that makes the physical operation of the precision machining technology required for the fabrication of the semi-conductor-body circuit has been greatly improved. The use of such technology to develop a semiconductor 7G device for a cavity with a diaphragm of a semiconductor pressure sensor or a micro-microphone is in full swing. Semiconductor pressure sensors are widely used in automotive electric products and industrial measuring machines. Micro-microphones are widely used in mobile phones, digital cameras, hands-free handsets, and notebook computers. There are two main ways to make a vibrating cavity by using semi-conductive and micro-additive technology. The first type is the surface micro-machining (arc (10) gold-faced shirt (four)' Two-grain type micromachining (bulk mie-gh surface micromachining is to use a polycrystalline silicon as a sacrificial layer of silica sand to create a pressure sense. The required film and cavity] is small in wafer size and manufacturing process. It can be compatible with the cm〇s process, but the machine degree and coefficient of the polycrystalline film are inferior. The body is protected by using a silicon wafer or SOI wafer from the back to the desired The thickness and size of the film, the single crystal stone film has good mechanical strength and piezoresistive coefficient, the recording process time is long, the wafer size is large, and in order to increase the strength of the film building, it is often combined with glass or stone eve. Disadvantages. In view of the above, the present invention provides a method for fabricating a cavity having a diaphragm on a Shi Xi wafer to effectively overcome the above problems in view of the above-mentioned shortcomings of the prior art. 201110223 [Invention] The main purpose of the invention is to provide a kind of stone The method of fabricating a cavity with a vibrating membrane on the wafer on the eve of the invention has the advantages of a fusion surface type micro-addition I and a body type micro-twisting. Another object of the present invention is to provide a vibrating film on a stone wafer. The method of the cavity, the substrate only needs to use a cheaper single crystal circle, and does not need to make the expensive crystal wafer or SOI wafer. The present invention is also aimed at providing a method on the Shi Xi wafer. The method of the cavity with the diaphragm 'the worm layer can be used to make the ASIC required for the sensor signal processing in the integrated circuit process technology, so the MEMS element and the IC can be integrated in the single _ _ On the wafer. The purpose of this month is to provide a method for making a cavity with a diaphragm on 7 wafers. The structure of the insect crystal vibration thin county has enough branches, so there is no out-of-plane with glass or stone eve. In order to achieve the above object, the present invention provides a method for fabricating a cavity having a vibrating film on a shredded wafer, which first provides a Shi Xi wafer; on the surface of the Shi Xi wafer, a patterned mask layer is formed. Using an electrochemical remnant system to transfer from the patterned mask layer to reveal The 7 crystal acid is pore-formed, and the current density is combined with the high-concentration electrolyte to form a layer - (10), which is formed with a low density electrolyte at a prevailing density - a second pore layer, wherein the first zonal layer is located in the second layer Above the gap layer, and the porosity of the first pore layer is smaller than the porosity of the second pore layer; removing the patterned mask layer; heat treating the hard wafer to make the second pore layer empty, and the first pore layer is dense And growing a single crystal stone layer on the Shi Xi wafer to form a vibrating film covering a + cavity. The bottom part is explained in detail by the specific embodiment, when the invention is more easily understood The purpose, the technical valley, the characteristics and the effect achieved. 201110223 [Embodiment] The present invention is directed to semiconductor cultivating with a diaphragm cavity, such as a semiconductor pressure sensor or a micro-microphone The manufacturing method is to improve the conventional process defects in the fabrication of the structure by using the micro-machining- or surface-forming process, and to combine the advantages of the two methods to achieve a low production cost. Furthermore, this process can be used to form a shaft with the integrated circuit, thereby reducing the component size. Refer to Fig. 1(a) to 1(4) for the steps of the method for fabricating a cavity having a vibrating membrane on a wafer of the present invention. First, as shown in the i-th (4) figure, a single-wafer u having a surface-formed mask layer 1G is formed, and the brittle mask layer ig is made of a nitride. Continuously utilizing an electrochemical side process to form a single crystal 12 wafer exposed from the patterned mask layer 1 to form a first void layer 14 and a second void layer 16, wherein the first pore The layer 14 is located above the second pore layer 16, and the porosity of the first pore layer 14 is smaller than the porosity of the second pore layer 16 to form a first! (b) The structure shown in the figure. Subsequently, the mask layer 1G is removed to form a structure as shown in the fourth layer (4), and the heat treatment is performed on the single crystal wafer to make the second pore layer 16 hollow, forming a hollow second pore. The layer 16'' first pore layer 丨4 is densified to form a densified first pore layer 14, and an early crystallized layer 20 is formed on the single crystal dream circle 12 to serve as a covering layer The diaphragm on the cavity 18, as shown in Fig. Kd), and the hollow body 18 has a depth of about 5 to 20 micrometers (um). - An integrated circuit (ASIC) required for sensor signal processing can be fabricated on the single crystal germanium epitaxial layer 20 by integrated circuit processing technology, so that the microelectromechanical device and jc can be integrated in a single wafer and electrochemically etched. The detailed process of the process is to firstly use the current density of 5~2〇mA; the small density of crn2 201110223, and the concentration of 35~25% hydrofluoric acid (HF) high concentration electrolyte to expose the single crystal germanium wafer. 12 performing electrochemical etching to form a first pore layer 14, and then using a current density having a current density of 50 to 100 mA/cm 2 and a low concentration electrolyte having a concentration of 20 to 10% hydrofluoric acid (HF). To form a second void layer 16. The heat treatment of the single crystal germanium wafer 12 is performed to hollow out the second pore layer 16, and the first pore layer 14 is densely crucible to form the hollow cavity 18, and the detailed steps include 9〇〇~11〇〇4&gt C is subjected to a first heat treatment of the single crystal germanium wafer 12 in a hydrogen atmosphere to hollow the second pore layer 16; then, the second heat treatment of the single crystal germanium wafer 12 is performed at 900 to 1200 tons in a hydrogen atmosphere. 'To densify the first pore layer 14. Furthermore, the cavity with the vibrating membrane obtained by the method of the invention directly defines the size and thickness of the vibrating membrane from the front side, and the depth of the hollow cavity under the vibration is only about 5~2 () micrometers. The other structures around the cavity are mainly block (four) wafers, so the overall mechanical structure enables the vibrating film to have sufficient support 'without the need for additional or secret. On the other hand, it is as fine as the bulkmie_aehining method, and the diaphragm is stopped by the insect sun or the S〇i wafer from the back of the wafer to the thickness and size of the vibrating film required on the front side. Direction (10), so with the thickness of the wafer, the back opening is larger than the front diaphragm, and under the condition of a relatively large secret cavity under the vibration_厚龙#纽红, the vibration cannot be given to the _ foot_supporting money, but need to do Cooperate with glass or. The method of making a cavity with a vibrating membrane on a Shi Xi wafer disclosed in the present invention is a new method for fabricating a D-face micro-assisted and a body-shaped micro-enhanced enamel, the substrate only needs to be The more convenient single aa7 wafer 'does not require expensive insect crystal wafers or s〇i crystals' can make the entire component size small. Moreover, the process steps of the present invention can be modeled in the integrated circuit process 201110223. Further, the mechanical structure of the present invention has a sufficient degree of support, and therefore has the advantage of additionally being bonded to glass or enamel. It is to be understood that the preferred embodiment of the invention is not intended to limit the invention. Therefore, any change or modification of the characteristics and spirit of the present invention should be included in the scope of the patent application of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS The first (a) to the first (1) is a schematic diagram of a method for producing a cavity having a diaphragm on a circle. [Main component symbol description] 10 patterned mask layer 12 single crystal dream wafer 14 first void layer 14, first void layer 16 second void layer 16, second void layer 18 hollow cavity 20 single crystal germanium epitaxial Floor

Claims (1)

201110223 七、申請專利範圍: 1. -種在碎晶®上製作具㈣狀腔體的方法,其包含有下列步驟·· 提供一石夕晶圓; 於該矽晶圓表面上形成一圖案化遮罩層; 利用電化學蝕刻製程對自該圖案化遮罩層顯露出之該矽晶圓進行孔隙 化,以一小電流密度搭配一高濃度電解液形成一第一孔隙層,以一大 電流密度搭配一低濃度電解液形成一第二孔隙層,其中該第一孔隙層 係位於該第二孔隙層上方且該第一孔隙層之孔隙率小於該第二孔隙層 之孔隙率;移除該圖案化遮罩層; 對該矽晶圓進行熱處理,以使該第二孔隙層空洞化,該第一孔隙層緻密 化·,以及 於該矽晶圓上形成一單晶矽磊晶層,以形成一覆蓋於一中空腔體上之振 動膜。 2. 如申請專利範圍第i項所述之在矽晶圓上製作具振動膜之腔體的方法, 其中该大電流密度為5〜20mA/cm2,該高濃度電解液是濃度25〜35%之 氫氟酸(HF),該該小電流密度為50〜100mA/Cm2 ,該低濃度電解液是 濃度為20〜10%之氫氟酸(HF)。 3. 如申請專利範圍第1項所述之在矽晶圓上製作具振動膜之腔體的方法, 其中該圖案化遮罩之材質為氮化物。 4. 如申請專利範圍第1項所述之在矽晶圓上製作具振動膜之腔體的方法, 其係可用以製作麥克風之共振腔體。 5. 如申請專利範圍第1項所述之在矽晶圓上製作具振動膜之腔體的方法, 201110223 其係可用以製作壓力感測器之中空腔體。 6.如申請專利範圍第1項所述之在矽晶圓上製作具振動膜之腔體的方法, 其中對該矽晶圓進行熱處理’以使該第二孔隙層空洞化’該第一孔隙層 緻密化之步驟包含有: 使該第二 以900〜謂。C於缝環境下對該碎晶圓進行第一次熱處理, 孔隙層空洞化;以及201110223 VII. Patent Application Range: 1. A method for fabricating a (four) cavity on a crushed crystal®, comprising the following steps: providing a stone wafer; forming a patterned mask on the surface of the wafer a layer of the germanium wafer exposed from the patterned mask layer by an electrochemical etching process, and a high current density is combined with a high concentration electrolyte to form a first void layer with a large current density Forming a second pore layer with a low concentration electrolyte, wherein the first pore layer is located above the second pore layer and the porosity of the first pore layer is smaller than the porosity of the second pore layer; removing the pattern Forming a mask layer; heat treating the germanium wafer to hollow out the second void layer, densifying the first void layer, and forming a single crystal germanium epitaxial layer on the germanium wafer to form A vibrating membrane covering a hollow cavity. 2. The method for fabricating a cavity having a diaphragm on a tantalum wafer as described in claim i, wherein the large current density is 5 to 20 mA/cm 2 , and the high concentration electrolyte is at a concentration of 25 to 35%. Hydrofluoric acid (HF), the small current density is 50 to 100 mA/cm2, and the low concentration electrolyte is hydrofluoric acid (HF) having a concentration of 20 to 10%. 3. The method of fabricating a cavity having a diaphragm on a silicon wafer as described in claim 1, wherein the patterned mask is made of a nitride. 4. A method of fabricating a cavity having a diaphragm on a silicon wafer as described in claim 1 of the patent application, which can be used to fabricate a resonant cavity of a microphone. 5. A method of fabricating a cavity having a diaphragm on a silicon wafer as described in claim 1 of the patent application, 201110223, which can be used to fabricate a cavity in a pressure sensor. 6. The method of fabricating a cavity having a diaphragm on a tantalum wafer as described in claim 1, wherein the tantalum wafer is heat treated 'to hollow out the second void layer' The steps of layer densification include: making the second 900~. C performing the first heat treatment on the scraped wafer in a seam environment, and voiding the void layer; 以9〇0〜l2〇〇C於氫氣環境下對該石夕晶圓 一孔隙層緻密化。 進行第二次熱處理,以使該第The pore layer of the Shihua wafer was densified in a hydrogen atmosphere at a temperature of 9 〇 0 to 1 〇〇 C. Perform a second heat treatment to make the first
TW098130775A 2009-09-11 2009-09-11 Method of manufacturing cavity body with vibrating membrane on silicon wafer TW201110223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098130775A TW201110223A (en) 2009-09-11 2009-09-11 Method of manufacturing cavity body with vibrating membrane on silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098130775A TW201110223A (en) 2009-09-11 2009-09-11 Method of manufacturing cavity body with vibrating membrane on silicon wafer

Publications (2)

Publication Number Publication Date
TW201110223A true TW201110223A (en) 2011-03-16
TWI380359B TWI380359B (en) 2012-12-21

Family

ID=44836227

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098130775A TW201110223A (en) 2009-09-11 2009-09-11 Method of manufacturing cavity body with vibrating membrane on silicon wafer

Country Status (1)

Country Link
TW (1) TW201110223A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110386585A (en) * 2018-04-20 2019-10-29 上海新微技术研发中心有限公司 Preparation method of porous silicon substrate and porous silicon substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110386585A (en) * 2018-04-20 2019-10-29 上海新微技术研发中心有限公司 Preparation method of porous silicon substrate and porous silicon substrate

Also Published As

Publication number Publication date
TWI380359B (en) 2012-12-21

Similar Documents

Publication Publication Date Title
JP5100949B2 (en) Semiconductor component manufacturing method and semiconductor component manufactured by the method
US6743654B2 (en) Method of fabricating pressure sensor monolithically integrated
US6673694B2 (en) Method for microfabricating structures using silicon-on-insulator material
JP2000332223A (en) Multilayer structure wafer having thick sacrificial layer using porous silicon or porous silicon oxide, and manufacture of the wafer
Keller et al. Milli-scale polysilicon structures
CN101944860A (en) Piezoelectric cantilever vibration energy harvester and preparation method thereof
CN103626116A (en) Methods for fabricating mems structures by etching sacrificial features embedded in glass
CN100482572C (en) Structure for laying nanobeam on (111) crystal surafe silicon sheet and its making method
CN103439032B (en) Processing method of silicon micro resonator
CN109545953A (en) A kind of preparation method of chip of high-temp pressure sensor
CN1325367C (en) Method for producing MEMS sensor suspension beam structure
Su et al. A review: crystalline silicon membranes over sealed cavities for pressure sensors by using silicon migration technology
CN102779747B (en) Machining method of nano column/needle forest structure
JP4133580B2 (en) Processing method of piezoelectric material
TW201110223A (en) Method of manufacturing cavity body with vibrating membrane on silicon wafer
Westerik et al. Sidewall patterning—a new wafer-scale method for accurate patterning of vertical silicon structures
JP4532787B2 (en) Condenser microphone and pressure sensor
CN107808926A (en) A kind of micro-energy collector based on piezoelectric thick MEMS technology and preparation method thereof
CN105241476B (en) Inertial sensor and preparation method thereof
US10825719B2 (en) Methods of fabricating silicon-on-insulator (SOI) semiconductor devices using blanket fusion bonding
TWI432377B (en) Verfahren zur herstellung von mikromechanischen strukturen mit reliefartigem seitenwandverlauf oder einstellbarem neigungswinkel
TWI279843B (en) Method of fabricating microphone device and thermal oxide layer and low-stress structural layer thereof
Alvi et al. A process to fabricate micro‐membrane of Si3N4 and SiO2 using front‐side lateral etching technology
CN204958380U (en) Inertial sensor
TWI252211B (en) Manufacturing method of silicon miniature microphone

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees