CN100482572C - Structure for laying nanobeam on (111) crystal surafe silicon sheet and its making method - Google Patents

Structure for laying nanobeam on (111) crystal surafe silicon sheet and its making method Download PDF

Info

Publication number
CN100482572C
CN100482572C CN 200510025831 CN200510025831A CN100482572C CN 100482572 C CN100482572 C CN 100482572C CN 200510025831 CN200510025831 CN 200510025831 CN 200510025831 A CN200510025831 A CN 200510025831A CN 100482572 C CN100482572 C CN 100482572C
Authority
CN
China
Prior art keywords
beam
etching
nano
silicon
surface
Prior art date
Application number
CN 200510025831
Other languages
Chinese (zh)
Other versions
CN1743261A (en
Inventor
铁 李
李昕欣
恒 杨
焦继伟
王跃林
Original Assignee
中国科学院上海微系统与信息技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海微系统与信息技术研究所 filed Critical 中国科学院上海微系统与信息技术研究所
Priority to CN 200510025831 priority Critical patent/CN100482572C/en
Publication of CN1743261A publication Critical patent/CN1743261A/en
Application granted granted Critical
Publication of CN100482572C publication Critical patent/CN100482572C/en

Links

Abstract

本发明涉及一种在(111)晶面的硅片上纳米梁的结构及制作方法。 The present invention relates to a method of manufacturing beam and nanostructures on a silicon wafer (111) crystal plane. 其特征在于所述纳米梁由金属线条提供力学支撑,金属线条与衬底间电学绝缘;纳米梁的周围与下方为各向异性湿法腐蚀形成的腐蚀区;同时纳米梁为浅槽区包围,纳米梁下表面与浅槽区的上表面均为(111)晶面;且纳米梁为可动结构,上下自由振动。 Wherein said nano-mechanical beam support provided by the metal filament, the metal filament between the electrically insulating substrate; corrosion and surrounded by the lower beam nanometers anisotropic wet etching is formed; nano beams simultaneously so as to surround the shallow trench region, upper surface of the lower surface of the nano-beam region are shallow groove (111); and a movable beam structure nanometers, vertical free vibration. 纳米梁的厚度等于浅槽区底部硅的表面与纳米梁区顶部硅表面的高度差;纳米梁、浅槽区和腐蚀区处于整平区内。 The thickness of the beam is equal to the bottom silicon nano shallow trench region and the height of the top surface of the silicon surface area nano-difference beams; nanobeam, shallow trench region and etching zone is flattened area. 本发明是基于分步氧化法(或干法刻蚀)和湿法腐蚀方法制作的,包括区域整平、梁区台阶制作、电学连接与力学支撑结构制作和纳米梁释放四个步骤,纳米梁厚度由分步氧化法或干法刻蚀法决定,具有加工精度高、一致性高、重复性好的特点。 The present invention is a stepwise oxidation (or dry etching) or wet etching method based on production, including leveling zone, the step-forming beam area, making electrical connection with the support structure and nano-mechanical beam release step four, nanobeam the thickness is determined by the stepwise oxidation or dry etching process, with high precision, high uniformity, good repeatability.

Description

在(111)晶面的硅片上纳米梁的结构及制作方法 On Si (111) crystal plane of the beam structure and nano-fabrication method

技术领域 FIELD

本发明涉及一种在普通(lll)晶面的硅片上单晶硅纳米梁的结构及制作方法,更确切地说涉及一种基于分步氧化法和湿法腐蚀方法,在普通(111) 晶面的硅片上制作单晶硅纳米梁。 The present invention relates to a general silicon wafer (LLL) plane of the crystal structure and method of manufacturing silicon single crystal nano-beam, and more particularly, to a stepwise oxidation process and a wet etching method based on the normal (111) production Monocrystalline silicon crystal plane of the beam. 属于微米/纳米制作领域。 Belonging to the micro / nano-fabrication art. 背景技术 Background technique

纳米机电系统技术(Nano-Electro-Mechanical-System, NEMS)是制作关键部件特征尺度小于lOOnm的机电集成系统技术,是微机电系统技术(Miro-Electro-Mechanical-System, MEMS)的进一步发展,是纳米技术的重要组成部分。 Nano-Electro Mechanical Systems (Nano-Electro-Mechanical-System, NEMS) is to produce the key member characterized in dimension of less than lOOnm electromechanical integrated systems technology, micro electromechanical system technology (Miro-Electro-Mechanical-System, MEMS) further development is an important part of nanotechnology. 纳米梁结构是纳米机电器件的基本结构之一,是纳机电谐振器、 谐振式传感器等多种纳机电器件的核心部件,因此纳米梁结构加工技术是纳米机电系统技术的关键技术之一。 Nano-beam structure is one of the basic structure of nanoelectromechanical devices, nanoelectromechanical resonator is, various core member nanoelectromechanical resonant sensor device, nano-beam structure thus processed is one of key technologies nanoelectromechanical system technology.

作为纳机电系统的关键部件,纳米梁的力学和电学性质对整个系统的性能有决定性影响,其制作难度主要包括以下几个方面: As a key component of nanoelectromechanical systems, mechanical and electrical properties are decisive nanobeam performance of the whole system, the difficulty of its production mainly include the following:

1) 为了制作高质量的器件,要求纳米梁的表面质量高、表面缺陷少[AN Cleland, Foundations of Nanomechanics. ISBN 3-540-43661-8, Springer-Verlag Berlin Heidelberg 2003.]; 1) In order to produce high-quality devices, require a high quality surface nano-beam, and less surface defects [AN Cleland, Foundations of Nanomechanics ISBN 3-540-43661-8, Springer-Verlag Berlin Heidelberg 2003..];

2) 由于纳米梁的特征尺度小于lOOrnn,对结构中的内应力非常敏感,所以一般采用单晶材料制作,往往需要使用SOI (Silicon on Insulator)硅片等昂贵的衬底材料,例如李昕欣等人制作纳米厚度悬臂梁即采用了昂贵的SOI硅片[Xinxin Li, Takahito Ono, Yueling Wang, Masayoshi Esashi. Study on Ultra-thin NEMS Cantilevers-High Yield Fabrication and Size Effect on Young's Modulus of Silicon. Micro Electro Mechanical Systems, 2002. The Fifteenth IEEE International Conference on, 20-24 Jan. 2002, pp.427 - 430.];3) 由于特征尺度小于100nm,对加工的控制精度要求高,通常采用的光刻-腐蚀加工工艺往往不能达到所需要的控制精度,AN Cleland等人[AN Cleland, M. Pophristic and I. Ferguson. Single Crystal Aluminum Nitride Nanomechanical Resonators. Applied Physical Letters, Vol.79, No. 13, 2001, pp.2070-2072.]与A. Erbe等人[A. Erbe, C. Weiss, W. Zwerger, and RH Blick, Nanomechanical Resonator Sh 2) Since the beam is smaller than the nano-scale features lOOrnn, very sensitive to internal stresses in the structure, it is generally a single crystal material, often requires the use of expensive substrate materials SOI (Silicon on Insulator) wafer and the like, e.g. Xin Li Xin et al. i.e. making use of nano-thickness cantilever expensive SOI wafers [Xinxin Li, Takahito Ono, Yueling Wang, Masayoshi Esashi. Study on Ultra-thin NEMS Cantilevers-High Yield Fabrication and Size Effect on Young's Modulus of Silicon. Micro Electro Mechanical Systems , 2002. the Fifteenth IEEE International Conference on, 20-24 Jan. 2002, pp.427 - 430];. 3) Since the characteristic dimension of less than 100 nm or, a high control precision machining, photolithography is typically employed - etching process often can not achieve the required control accuracy, AN Cleland et al [AN Cleland, M. Pophristic and I. Ferguson. Single Crystal Aluminum Nitride Nanomechanical Resonators. Applied Physical Letters, Vol.79, No. 13, 2001, pp.2070- 2072.] and A. Erbe et al. [A. Erbe, C. Weiss, W. Zwerger, and RH Blick, Nanomechanical Resonator Sh uttling Single Electrons at Radio Frequencies. Physical Review Letters, Vol87, No.9, 2001, 096106.]均采用了电子束曝光来制作纳米宽度的线条,而电子束曝光技术产能低、价格昂贵、不适于批量化生产; uttling Single Electrons at Radio Frequencies. Physical Review Letters, Vol87, No.9, 2001, 096106.] lines are used to produce nano-electron beam exposure width, the electron beam exposure technique of low productivity, are expensive, are not suitable for mass produce;

4) 现有的控制精度较高的干法刻蚀技术一般会在纳米梁表面形成一层厚度为几十纳米的晶格损伤层,严重影响纳米梁的力学和电学特性。 4) higher control precision conventional dry etching is generally formed on the surface nano-beam lattice damage layer having a thickness of several tens of nanometers, seriously affecting the mechanical and electrical characteristics of the nano-beam.

另外, 一般要求纳米梁的加工技术与微机电技术(Micro Electro Mechanical System)相兼容,便于批量生产,价格低廉。 Further, the general requirements nanobeam processing technology and MEMS technology (Micro Electro Mechanical System) compatible, easy mass production, low price. 发明内容 SUMMARY

本发明目的在于提供一种在普通(lll)晶面的硅片上单晶纳米梁的结构及制作方法。 The present invention aims to provide a common (LLL) structure and manufacturing method of the silicon single crystal nano crystal plane beam in. 它是在普通(111)晶面的硅片上制作与衬底实现电学隔离的厚度小于lOOnm的单晶纳米梁。 It is made with the substrate to achieve electrical isolation on a silicon wafer normal (111) plane of a single crystal nano-thickness of less than lOOnm beam.

所述的纳米梁由金属线条提供力学支撑,它是通过两端面上的引线孔与金属线条连接的,金属线条与硅衬底间有氧化层存在,金属线条与衬底间为化学绝缘,从而实现纳米梁与衬底间的电学隔离。 The nano-beam mechanical support provided by the metal filament, which is through the pin holes and the metal lines connected to both end surfaces, the presence of an oxide layer between the silicon substrate and the metal filament, the metal filament between the substrate and chemical insulation, thereby nano achieve electrical isolation between the beams and the substrate.

所述的纳米梁为可动结构,可自由地上下振动纳米梁地上表面和两个侧壁表面有热生长的氧化层,梁的下表面是通过湿法腐蚀形成,表面光洁度可达光学表面的要求。 The nano the movable beam structure, can be freely vibrated up and down the nano beam and two side surfaces of the ground surface of the thermally grown oxide layer, the lower surface of the beam is formed by wet etching, surface finish up optical surface Claim.

所述的纳米梁的厚度等于浅槽区底部硅的表面与纳米梁区顶部硅表面的高度差,且纳米梁、浅槽区和腐蚀区处于整平区内。 The thickness of the beam is equal to the nano silicon bottom surface of the shallow trench region and the height of the top surface of the silicon nano-beam zone differences, and nano-beam, shallow trench region and etching zone is flattened area. 本发明所述的纳米梁结构的制作是采用分步氧化法或干法刻蚀法在(111)晶面的硅片上制作出侧壁和上表面均有氧化层保护的厚度在纳米尺度的台阶,然后利用硅(lll)晶面在K0H等碱性各向异性腐蚀液中腐蚀速率远低于其他晶面的特性,用碱性各向异性腐蚀液腐蚀去除纳米台阶周围以及下方的硅,从而制作得到厚度在纳米尺度的梁结构。 Making the nano-beam structure of the present invention is the use of the stepwise oxidation or dry etching and the thickness of the sidewall to produce a protective oxide layer on the surface are on a silicon wafer (111) crystal plane in the nanoscale step, then silicon (LLL) crystal plane and other alkaline anisotropic etching solution in K0H corrosion rate much lower than the characteristic of the other crystal planes, as well as the removal of the surrounding nano stepped downward by the alkaline anisotropic silicon etch solution, to produce a thickness of the beam structure at the nanoscale. 该纳米梁结构由金属导线支撑,同时实现了电信号引出以及与硅衬底的电绝缘。 The beam structure is supported by a metal nano wire, while achieving electrical insulation and electrical leads and the silicon substrate. 具体工艺过程包括: Specific process comprising:

(1) 区域整平; (1) The leveling;

(2) 梁区台阶制作; (2) the step-forming region of the beam;

(3) 电学连接与力学支撑结构的制作; (3) making electrical connection and mechanical support structure;

以及(4)纳米梁的释放。 And a release (4) nanobeam. (具体工艺描述详见实施例) 本发明的优点是: (See Example described specific process) the advantages of the present invention are:

1) 纳米梁的厚度由分步氧化法或干法刻蚀法决定,可以精确地控制。 1) the beam is determined by the thickness of the nano stepwise oxidation or dry etching, it can be controlled accurately.

2) 利用(lll)晶面在K0H等碱基各向异性腐蚀液中的腐蚀自停止特性, 加工的控制精度高、 一致性高、重复性好。 2) using the (LLL) plane crystal anisotropic etching in the etching solution K0H like bases from the stop characteristic, high control precision machining, high uniformity, good repeatability. 有利于批量生产的实现。 Conducive to mass production.

3) 纳米梁表面质量高。 3) high surface quality nano beam. 纳米梁的上表面和两个侧壁表面有热生长的氧化 Upper surface of the nano beam and two side wall surfaces of the thermally grown oxide

层,表面缺陷少,此前工艺中产生的晶格损伤在氧化过程中可以很好地 Layer, less surface defects, lattice damage produced in the process after the oxidation process can be well

恢复。 restore. 梁的下表面通过湿法腐蚀形成,不会产生表面晶格损伤,根据K0H 中硅(lll)晶面的腐蚀特性,表面光洁度可以达到光学表面的要求,并且(lll)面是硅的各晶面中悬挂键最少的一个面。 The lower surface of the beam is formed by wet etching, the surface will not have lattice damage, corrosion properties according K0H silicon (LLL) plane of the crystal, we can achieve the required surface finish of the optical surface, and the (LLL) plane is a crystalline silicon of each hold for at least one surface side of the suspension.

4) 在普通单抛或双抛硅片上就可以实现电学隔离的纳米梁而不需要使用昂贵的SOI材料,极大地降低了成本。 4) on a common silicon single throw or double throw can be achieved electrically isolated nano-beams without using an expensive SOI materials, greatly reducing the cost.

5) 纳米梁与衬底的间隙可以制作得很大,可以实现低微波辐射损耗结构。 5) a gap nanobeam of the substrate can be made very large, can achieve low-loss microwave structure. 附图说明 BRIEF DESCRIPTION

图1.为本发明制作的纳米梁结构示意图,图1. 1为俯视图,图1. 2和1. 3 Figure 1 a schematic view of the beam structure fabricated nano the present invention, FIG. 1. FIG. 1 is a plan view, FIG. 1.2 and 1.3

分别为沿A-A'和BB,的剖面图。 Respectively along A-A 'and BB, cross-sectional view.

图2.为普通(lll)晶面的硅片表面与(lll)晶面关系示意图。 FIG 2. is a general surface of the wafer (LLL) crystal plane and (LLL) crystal face relationship map. 图3.为整平区初始外形图。 FIG. 3. FIG outline initial leveling zone.

图4.为区域整平后结构示意图,图4. l为俯视图,图4.2为剖面图。 FIG 4 is a schematic structural diagram of leveling rear region, L is a plan view of FIG. 4, FIG. 4.2 is a cross-sectional view of FIG. 图5.为制作浅槽后结构示意图,图5. l为俯视图,图5.2为剖面图。 FIG 5. is a schematic structural diagram of a shallow groove after fabrication, Figure 5. L is a plan view, FIG. 5.2 is a cross-sectional view of FIG. 图6.为分步氧化法第一次氧化/光刻/刻蚀后结构剖面图。 FIG 6. is a stepwise oxidation sectional view of the first oxidation / photolithography / etching structure. 图7.为分步氧化法第二次氧化后结构剖面图。 FIG 7. is a cross-sectional structure oxidation step after the second oxidation FIG.

图8.为制作金属线条后结构示意图,图8. l为俯视图,图8.2为沿AA' 的剖面图。 FIG 8 is a structural diagram of the line after fabrication of metal, L is a plan view of FIG. 8. FIG 8.2 along AA 'sectional view of FIG.

图9.为制作腐蚀窗口后结构示意图,图9. l为俯视图,图9.2为剖面图。 FIG 9. is a schematic window structure after fabrication etching, L is a plan view of FIG. 9, FIG. 9.2 is a cross-sectional view of FIG. 图IO.为腐蚀形成腐蚀槽后结构剖面图。 The IO FIG. Corrosion is a cross-sectional view after etching groove formed structure.

图11.为KOH腐蚀释放结构后的示意图,图11. 1为俯视图,图11. 2和11.3 FIG 11 is a schematic view of the KOH etching releasing structure 11. FIG. 1 is a plan view, FIG. 11.2 and 11.3

分别为沿A-A'和B-B'的剖面图。 Are sectional view taken along A-A 'and B-B' of.

具体实施方式 Detailed ways

下面结合附图进一步说明本发明提供的纳米梁的结构及制作方法。 Further described the structure and manufacturing method of the present invention provides the following in conjunction with the accompanying drawings nanobeam. 利用本发明制作的纳米梁结构如图1.1所示。 Making use of the present invention, nano-beam configuration shown in Figure 1.1. 纳米梁lb的厚度小于100nm,由金属线条4提供力学支撑。 The beam is smaller than the thickness of the nano lb 100nm, mechanical support provided by the metal filament 4. 如图1.2所示,纳米梁lb与金属线条4的连接处称为引线孔9。 As shown in FIG 1.2, the metal nano-lb beam line 4 connected to the pin holes 9 is referred to. 由于金属线条4与硅衬底6间有氧化层8存在, 金属线条4与衬底6间为电学绝缘,也即纳米梁lb与衬底6间电学绝缘。 Since the metal lines 4 and 6 of the silicon substrate with an oxide layer 8 is present, and the metal filament 4 is electrically insulated from the substrate 6, i.e., nano-beam lb electrically insulating substrate 6. 纳米梁lb的周围与下方为各向异性湿法腐蚀形成的腐蚀区3c,因此纳米梁lb为可动结构,可自由地上下振动。 Corrosion and surrounded by the lower beam lb nanometers is formed by anisotropic wet etching. 3C, and therefore the movable lb nano beam structure, can be freely vibrated up and down. 纳米梁lb也被浅槽区2包围,纳米梁下表面与浅槽区2的上表面均为硅(lll)晶面,由于硅(lll)晶面在碱性各向异性腐蚀液中的特性,可近似认为两者在同一水平面上。 2 lb nanobeam is also surrounded by a shallow trench region, the shallow grooves on the surface of the surface region 2 are silicon (LLL) plane crystal nano-beam, since the silicon (LLL) crystal face in characteristics of the alkaline anisotropic etching solution , can be approximated that both on the same level. 纳米梁lb、腐蚀区3与浅槽区2均处于整平区5内,整平区5的上表面也是(lll)晶面。 Nano beam LB, etching the shallow trench region 3 and region 2 are within the leveling zone 5, an upper surface of the flattened region 5 is (LLL) plane. 而(111) 硅片的表面10 —般不是严格的(lll)晶面,而是与(lll)晶面偏开几度(图2)。 And (111) silicon surface 10 - as is not critical (LLL) crystal plane, but with the (LLL) crystal plane offset from a few degrees (FIG. 2). 整平区5为六边形结构,其中必有两条平行的边是沿〈110〉晶向的,称为基准边7 (图3)。 Leveling zone 5 of a hexagonal structure, which must have two parallel sides along the <110> crystal orientation, referred to as reference edge 7 (FIG. 3).

本发明采用的制作的对象是单面抛光或双面抛光的(lll)晶面的硅片, It made the present invention uses an object-sided polished silicon wafers or double sided polished (LLL) plane of the crystal,

具体的工艺流程包括:(1)区域整平、(2)梁区台阶制作、(3)电学连接与力学支撑结构制作和(4)纳米梁释放等四个主要工艺步骤。 Specific process comprises: (1) leveling zone, (2) the step-forming beam region, (3) electrical and mechanical connection and support structure production (4) and releasing nanobeam four major process steps. 具体工艺步骤是: (1)区域整平 Specific process steps are: (1) The leveling

如图2所示,集成电路工艺中使用的(lll)晶面的硅片的上表面10并不是严格的(111)晶面12,而是与(111)晶面12偏开几度。 2, the upper surface of the wafer (LLL) plane of the IC 10 used in the process is not critical (111) crystal plane 12, but with the (111) crystal plane 12 offset from a few degrees. 因此首先需要在(lll) 晶面的硅片上制作得到上表面为严格的(lll)晶面的区域,该步工艺称为区域整平。 Therefore first need to create on a silicon wafer to obtain the (LLL) plane of the crystal surface as a rigid region (LLL) crystal plane, the area is called leveling process step. 区域整平是利用(lll)晶面在KOH等碱基各向异性腐蚀液中的腐蚀特 Leveling zone using (LLL) crystal plane etching Laid base such as KOH in anisotropic etchants

性实现的,其基本工艺步骤为: Implementation, the basic process steps of:

1) 在(lll)晶面的硅片表面制作耐KOH腐蚀掩模,利用光刻/腐蚀技术在耐腐蚀掩模上制作出整平区初始图形。 1) In the silicon wafer surface (LLL) plane of the crystal produced KOH etching resistant mask, a photolithography / etch techniques leveling the initial pattern region on the mask corrosion. 制成的结构的俯视图如图3所示。 Plan view of the structure shown in Figure 3 is made. 图3 中阴影部分11的上表面有耐KOH腐蚀掩模覆盖,而5a为整平区域的初始外形,该区域的上表面没有掩模层。 The shaded upper surface 311 are covered with a mask resistant to KOH etching, and the initial outline 5a flattened region, the region is not the upper surface of the mask layer. 整平区的初始外形5a可以是任意的, 在图3中用六角型表示任意外形。 5a initial shape flattened area may be arbitrary, it represents any outline in Figure 3 by hexagonal. 耐KOH腐蚀掩模可采用热生长氧化层或LPCVD (低压化学气相沉积)的氮化硅薄膜等,具体制作工艺与光刻/刻蚀工艺是集成电路工艺常用的工艺[Simon M. Sze. Semiconductor devices: physics and technologies, 2nd Edition. ISBN: 0471333727, Wiley, 2001.],掩模层厚度应能够耐受后续的KOH腐蚀。 KOH etching resistant mask can be thermally grown oxide layer or a LPCVD (Low Pressure Chemical Vapor Deposition) of silicon nitride film or the like, the specific production process and a photolithography / etching process is commonly used in integrated circuit process technology [Simon M. Sze. Semiconductor devices: physics and technologies, 2nd Edition ISBN:. 0471333727, Wiley, 2001.], the thickness of the mask layer should be able to withstand the subsequent KOH etching.

2) 利用各向异性腐蚀液腐蚀整平区。 2) an anisotropic etch solution leveling zone. 由于KOH等各向异性腐蚀液对硅(lll) 晶面的腐蚀速率远小于其他主要晶面,因而腐蚀将使(lll)晶面暴露。 KOH, etc. Since the anisotropic etching rate of the silicon etching liquid (LLL) crystal plane is much smaller than other major crystal planes, and thus corrosion will (LLL) crystal plane is exposed. 腐蚀后整平区的俯视图如图4.1所示,剖面图如图4.2所示。 Etching the entire rear plan view of the flat region shown in Figure 4.1, cross-sectional view shown in Figure 4.2. 整平区的上表面为(lll)晶面。 Leveling the upper surface area is (LLL) plane. 整平区的外形就是初始外形5a的六边形外包络,六边形各相邻边的夹角为120°,至少有两条边沿<110>晶向,这两条边是基准边7,为后续工艺提供了参照方向。 Shape is flattened region 5a initial shape hexagonal outer envelope, adjacent sides of each hexagon angle of 120 °, the edge of at least two <110> crystal orientation, which is the reference side two edges 7 , a reference direction subsequent process. KOH溶液的重量浓度应在30%以上以便获得较高的表面质量,腐蚀温度在18-100°C间。 Weight concentration of KOH solution should be in order to obtain a high surface quality more than 30%, corrosion of a temperature between 18-100 ° C. 具有与KOH相似的腐蚀特性的碱性各向异性腐蚀液包括:TMAH (四甲基氢氧化铵),NaOH, EPW (乙二胺、邻苯二酚与水的混合物)等,均可用T区域整平。 KOH has similar etching characteristics of anisotropic etching solutions comprising alkali: TMAH (tetramethylammonium hydroxide), NaOH, EPW (ethylene diamine, pyrocatechol and water mixture) and the like, are available T region Leveling. 3)用湿法腐蚀去除耐各向异性腐蚀液腐蚀的掩模层。 3) anisotropically etching solution etching resistant mask layer is removed by wet etching. (2)梁区台阶制作 (2) the step-forming region of the beam

本工艺制作出如图5所示的结构。 This process to produce the structure shown in Figure 5. 在整平区5内制作完全包围纳米梁区ia的浅槽2,浅槽底部硅表面与梁区la顶部硅表面的高度差就是纳米梁的厚度。 Making shallow trench completely surrounds ia nanobeam region 2, the height of the bottom surface of the shallow groove with the top silicon surface of the silicon region la of the beam is a difference in the thickness of the nano beam leveling zone 5. 纳米梁区la的两边与整平区5的基准边7垂直,如图5所示。 Nano reference beam region la sides flattened region 5 and the vertical edge 7, as shown in Fig. 本工艺的具体制作方法包括千法刻蚀或分步氧化法。 In particular the present process comprises a method of making one thousand etching or oxidation step. 分步氧化法的具体工艺步骤为: DETAILED stepwise oxidation process step of:

1) 通过热氧化制作覆盖整个硅片的氧化层,氧化层厚度为&。 1) prepared by thermal oxidation of the silicon wafer to cover the entire oxide layer, the oxide layer thickness of &. 1; 1;

2) 光刻并腐蚀上述氧化层,去除浅槽区2a的氧化层,如图6所示; 2) photolithography and etching said oxide layer, removing the oxide shallow trench region layer 2a, as shown in FIG 6;

3) 再次氧化,Itl次氧化后剖面如图7所示。 3) re-oxidation, cross-sectional views shown in FIG. 7 Itl after oxidation. 由于浅槽区2a的表面没有氧化层,而梁区la表面有氧化层,两区域再次氧化的速率不同。 Because of the shallow groove area surface 2a no oxide layer and the beam area la surface oxide layer, two different regions reoxidation rate. 使浅槽区2a表面的氧化层为/7,。 2a so that the surface area of ​​the shallow trench oxide layer is a / 7 ,. 2,而梁lx: la的氧化层总厚度为/^。 2, the beam lx: the total thickness of the oxide layer la / ^. ,+ ^。 + ^. 2,即再次氧化形成 2, i.e. reoxidation formed

的氧化层存在厚度差Ir/^"再次氧化消耗掉的硅厚度也就不同,梁区与浅槽硅表面的厚度差为&, 一.46x(H)。 L、 l和U司的函数关系 The presence of the oxide layer thickness difference Ir / ^ "reoxidation of silicon consumed is different thickness, the thickness of the beam region and the difference between the shallow grooves silicon surface is &, a .46x (H). As a function of L, l and U Division

在集成电路[:艺书籍!p有详细介绍,可以通过公式进行洋细计算,也可通过软件模拟,因此可以精确设计出所需要的力m、力w和力m。 An integrated circuit [:! P Art Books are detailed, can be calculated by the formula fine foreign, may also be simulated by software, it is possible to precisely design the force required to m, the force and the force w m. 由于热氧化的速 Since the speed of the thermal oxidation

率很慢,通过控制氧化时间可以精确制备得到所需要的力w、力w和力'。 Rate is very slow, the force required can be accurately w prepared by oxidation time is controlled, and the force power w '. 2。 2. because

此,结合KOH屮(lll)面腐蚀特性纳米梁区的厚度力s可以精确控制,且加工重复性和一致性均很好。 Here, the thickness of the surface characteristics of the binding force KOH etching s Che (LLL) nanobeam region can be precisely controlled, and the process repeatability and consistency are very good. 4)分步氧化形成的氧化层太厚,如果保留会对纳米梁的力学性能造成影响, 所以必须在分步氧化后去除。 4) stepwise oxidized to form an oxide layer is too thick, the mechanical properties would be retained if the nano-beam impact, it must be removed after the oxidation step. 去除氧化层后即得到图5所示的结构。 After removing the oxide layer 5 in the structure shown in FIG.

1) 在硅片表面涂光刻胶,用'l/分步氧化法同样的光刻版进行光刻; 1) coating a photoresist on the wafer surface, using photolithography 'l / same photomask stepwise oxidation;

2) 用干法刻蚀形成浅槽2,使梁区la上表面与浅槽2下表面的高度差为/w。 2) is formed by dry etching a shallow groove 2, the beam height difference la regions on the lower surface of the second surface of the shallow groove / w.

(3) 电学连接与力学支撑结构制作 (3) electrical connection and mechanical support structure made

本步工艺目的在于制作金属线条连接梁区和框架区,金属线条可以作为梁的力学支撑结构,同时实现梁与外界的电学连接。 This step process to prepare a metal object and a line connecting beam region framework regions, metal lines can be used as the mechanical support structure of the beam, while achieving electrical connection with the outside beams. 制成的结构如图8所示。 Structure made as shown in FIG.

具体工艺流程为: Specific process:

1) 热生长氧化层覆盖硅片表[射。 1) a thermally grown silicon oxide layer overlying table [shot.

2) 光刻/刻蚀氧化层,去除引线孔9处的氧化层。 2) photolithography / etching the oxide layer, the oxide layer is removed at the pin holes 9.

3) 采用溅射(或蒸发)和/或电镀工艺制作金属薄膜,光刻/刻蚀形成金属线条4。 3) by sputtering (or evaporation), and / or the plating process a metal thin film, photolithography / etching the metal filament 4 is formed. 金属线条4的材料应为耐KOH等碱性各向异性腐蚀液腐蚀的Cr/Au或Ti/W/Au等,厚度应远人于纳米梁的厚度&,具体厚度由设计决定。 Metal filament material 4 should be resistant to alkaline anisotropic etching solution such as KOH etching Cr / Au or Ti / W / Au and the like, the thickness should be much al & nanobeam thickness, the thickness determined by the specific design. 金属线条4完全覆盖引线孔9,如阁8所示。 4 completely covers the metal filament lead wire holes 9, as shown in Court 8.

(4) 纳米梁释放 (4) release nanobeam

纳米梁的释放步骤腐蚀去除纳米梁周围与下方一定深度的硅,使纳米梁仅仅依靠金属线条支撑,实现可动的、与衬底实现电绝缘的纳米结构。 Release step nanobeam removed by etching around the beam and a depth below the nano silicon, nano metal filament support beam alone, to achieve movable with the substrate to achieve nanostructured electrically insulating. 纳米梁释放的步骤包括:制作腐蚀窗口、千法刻蚀形成腐蚀槽、KOH腐蚀释放 Nanobeam release step comprises: making the window etching, etching grooves formed in one thousand etching, KOH etching release

结构,下面分别介绍: Structure, the following were introduced:

1)制作腐蚀窗U :采用光刻/腐蚀技术在氧化层上腐蚀出如图9所示的图形, 图中腐蚀窗口3a的氧化层被腐蚀去除,其他区域的氧化层保留。 1) Preparation of etching window U: photolithography / etching technology in etching the oxide layer on the pattern shown in FIG. 9, FIG window etching the oxide layer 3a is removed by etching, the oxide layer region other reservations. 腐蚀窗口的要求为:(a) ji:长度4应大T纳米梁的长度4,以保证纳米梁被完全释放;(b) 其长度4方向垂ft :f整平区的基准边7; (c)两腐蚀窗口间隙w必须满足条件2) 刻蚀腐蚀槽:山f KOH溶液对硅(lll)晶面的腐蚀速率很低,而腐蚀窗口位于整平区,其i:表面为严格的(lll)晶面,冈此几乎不会被KOH溶液腐蚀。 Requires etching window is: (a) ji: Length 4 should be the length of the large T nanobeam 4, to ensure that the nano-beam is fully released; (b) the longitudinal 4 direction perpendicular to ft: reference f leveling zone edge 7; ( c) corrosion two conditions must be met window gap w 2) etching the etching bath: mountain f KOH solution etching rate of silicon is very low (LLL) plane of the crystal, while the window is located leveling etching region, which i: as a rigid surface ( LLL) crystal plane, this is hardly Gang KOH solution etching. 为了实现梁区的释放,必须釆用其他腐蚀技术如干法刻蚀,硅各向同性湿法腐蚀等腐蚀去除两腐蚀窗ll处-定深度的硅,形成腐蚀槽3b,腐蚀槽3b的深度就是纳米梁下表面';;衬底的间隙深度。 In order to achieve the release of the beam region, must preclude the use of other etching techniques such as dry etching, isotropic wet etching of silicon and other corrosion removed by etching two windows at ll - silicon predetermined depth, etching groove 3b is formed, the depth of the etching groove 3b gap depth is surface nano-beams' ;; substrate. 形成腐蚀槽后的剖面如图10所示。 After the etching cross-sectional grooves are formed as shown in FIG.

3) 腐蚀释放纳米梁:将样品放入KOH、 TMAH或EPW中任一种各向异性腐蚀溶液中,由于KOH、 TMAH或EPW溶液对硅(lll)晶面的腐蚀速率接 3) Corrosion release nanobeam: The sample was placed in KOH, TMAH, or any one of anisotropic EPW etching solution, since KOH, TMAH or the corrosion rate of the silicon EPW solution (LLL) crystal face contact

近于o,腐蚀仅会在、Hrj—'整平区表面的方向进行,向上和向下的腐蚀可以忽略。 Close to O, etching will be carried out only in, Hrj- direction 'region of the surface of the leveling up and down negligible corrosion. 由r纳米梁的1:衣面和侧壁都有氧化M保护,释放过程中纳米梁的厚度减小可以忽略不计。 A 1 r nanobeam: garment surface and sidewalls M has oxidation protection, the release process can reduce the thickness of the nano beam is negligible. 、腐蚀形成如图11所示的结构后,所有暴露的晶面均为(iii)面,腐蚀速率接近]'•(),腐蚀A动终ih,继续腐蚀也不会明显改变结构外形。 After etching the structure shown in FIG. 11, all the crystal planes are exposed (iii) the surface, the corrosion rate approaches] '• (), the IH corrosion A movable end, continued etching will not significantly change the structural profiles.

4) 最后用HF腐蚀去除纳米梁表面的氧化层即得到图1所示的纳米梁结构。 4) Finally, removal of the surface oxide layer with a HF etching nanobeam obtain nano beam structure shown in Fig. 从腐蚀液屮取出样品,冲洗R争并千燥即完成纳米梁结构的制作。 Che sample was removed from the etching solution, rinsed and dry in contention R to complete the production of the nano-beam structure. 由于纳米梁lb的下硅被K0H溶液完令腐蚀掉了,纳米梁仅通过支撑结构4与衬底6 连接,实现了纳米梁的释放以及纳米梁与衬底间的电学隔离。 Since the silicon nano beam lb is completely etched away so that the solution K0H, nano-beam only connected to the substrate support structure 4 through 6, to achieve the release of electrical isolation between the beam and nano nano beam and the substrate. 由于纳米梁的下表面为(lll)品面,在K0H溶液中的腐蚀可以忽略不计,可以认为纳米梁的厚度等于图5. 2屮纳米梁lx:厚度 Since the lower surface of the nano beam is (LLL) plane products, corrosion K0H solution is negligible, the beam may be considered equal to the thickness of the nano FIG Che nanobeam 5.2 lx: thickness

Claims (9)

1、一种在(111)晶面的硅片上纳米梁,其特征在于纳米梁由金属线条提供力学支撑,金属线条通过氧化层与衬底硅片间电学绝缘;纳米梁的周围与下方为碱性各向异性湿法腐蚀液湿法腐蚀形成的腐蚀区;同时纳米梁为浅槽区包围,纳米梁下表面与浅槽区的上表面均为(111)晶面;且纳米梁为可动结构,上下自由振动。 1. A silicon nano beam (111) crystal plane, characterized in that the mechanical support provided by the beam nano metal filament, the metal filament through the oxide layer between the electrically insulating silicon substrate; and the lower periphery of nanobeam alkaline anisotropic wet etching region formed by wet etching etching liquid; nano while shallow groove region surrounding the beam, the beam upper surface of the lower surface of the nano region are shallow groove (111); and to be nanobeam moving structure, vertical free vibration.
2、 按权利要求l所述的在(111)晶面的硅片上纳米梁,其特征在于所述的纳米梁是通过两端面上的引线孔与金属线条连接的,引线孔存在于纳米梁两端面上的氧化层中。 2, according to claim nanobeam on Si (111) crystal plane of the l, wherein said nano-beam is connected by pin holes and the metal surfaces of the line ends, pin holes present in the nanobeam both end surfaces of the oxide layer.
3、 按权利要求1或2所述的在(111)晶面的硅片上纳米梁,其特征在于所述的纳米梁的厚度等于浅槽区底部硅的表面与纳米梁区顶部硅表面的高度差;所述的纳米梁厚度小于100nm。 3, on a silicon wafer according to claim (111) plane or the nano-beam 1, wherein the thickness of the beam equal nanometers and the top surface of the silicon surface of the silicon region at the bottom of the shallow groove region nanobeam height difference; beam is less than the thickness of the nano 100nm.
4、 按权利要求1或2所述的在(111)晶面的硅片上纳米梁,其特征在于所述的纳米梁、浅槽区和腐蚀区处于整平区内。 4, on a silicon wafer according to claim (111) plane or the nano-beam 1, wherein said beam nanometers, and a shallow trench region etching zone is flattened area.
5、 按权利要求4所述的在(111)晶面的硅片上纳米梁,其特征在于所述的整平区为六边形结构,其中两条平行的边沿< 110>晶向。 5, on a silicon wafer according to claim (111) crystal plane nanobeam 4, characterized in that the flattened region is of hexagonal configuration in which two parallel edge of <110> crystal orientation.
6、 制作如权利要求l所述的在(111)晶面的硅片上纳米梁的方法,其特征在于它是基于分步氧化和湿法腐蚀技术,具体工艺过程包括:(A) 区域整平(a) 在(111)晶面的硅片表面制作各向异性碱液腐蚀掩模,利用光刻/腐蚀技术在掩模上制作出整平区初始图形;(b) 用湿法腐蚀去除碱性各向异性腐蚀掩模层;(B) 梁区台阶制作(a) 先通过热氧化制作覆盖整个硅片的氧化层,氧化层的厚度为hb。 6, the production method as claimed in silicon (111) crystal plane nanobeam in claim l, characterized in that it is based on the stepwise oxidation and wet etching techniques, specifically the process comprises: (A) the whole area level (a) making the surface of silicon wafer (111) crystal plane anisotropic alkali etching mask, by photolithography / etching techniques to produce the initial pattern on the mask leveling zone; (b) is removed by wet etching alkaline anisotropic etching mask layer; (B) area beam production step (a) to cover the entire silicon oxide layer is produced by thermal oxidation, the thickness of the oxide layer hb. 1;(b) 光刻并腐蚀由上述步骤(a)生成的氧化层,去除浅槽区的氧化层;(C)再次氧化,浅槽区表面的氧化层的厚度为ht。 1; (b) photolithography and etching the oxide layer generated by the step (A), removing the oxide layer of the shallow trench region; (C) re-oxidation, the thickness of the oxide layer of the surface region of the shallow grooves are ht. 2,梁区的氧化层的总厚度为hb。 2, the total thickness of the oxide layer, the beam area is hb. 叶bb。 Ye bb. 2;(d)去除梁区的氧化层;(C) 电学连接与力学支撑结构制作(a) 热生长氧化层覆盖硅片表面;(b) 光刻/刻蚀氧化层,去除引线孔的氧化层;(C)采用溅射和/或电镀工艺制作金属薄膜,光刻/腐蚀形成金属线条,金属线条材料为Cr/Au或Ti/W/Au中一种;厚度应大于纳米梁厚度;金属线条完全覆盖引线孔,弓I线孔存在于纳米梁两端面上的氧化层中;(D) 利用碱性各向异性腐蚀液释放纳米梁。 2; (d) removing the oxide layer beam region; (C) electrically connected with the mechanical support structure made (a) a thermally grown silicon oxide layer covers the surface; (b) photolithography / etching the oxide layer, removing the oxide of pin holes layer; (C) by sputtering and / or plating a metal thin film fabrication, photolithography / etching to form a metal line, a metal line material is Cr / Au or Ti / W / Au of one; thickness greater than the thickness of the nano-beams; metal completely cover the lead line holes, I bow line holes present in both end faces of nano-oxide layer beam; (D) with an alkaline anisotropic etching liquid release nanometers beam. (a)先制作腐蚀窗口,其长度大于纳米梁的长度;窗口长度方向垂直于整平区的基准边;两腐蚀窗口间隙vi,(. < V^/3;式中1£为腐蚀窗的长度;(b) 干法刻蚀或硅各向同性湿法腐蚀去除两腐蚀窗口处一定深度的硅,形成腐蚀槽,其深度等于纳米梁下表面与衬底的间隙深度;(c) 释放纳米梁和用HF腐蚀去除纳米梁表面的氧化层。 (A) First production corrosion window having a length greater than the length nanobeam; window length direction perpendicular to the reference leveling zone side; Two etching window gap vi, (<V ^ / 3; wherein. 1 £ as corrosive window length; (b) dry etching or isotropic wet silicon etching removing the silicon etching depth of the two windows, the etching groove is formed, a depth equal to the depth from the surface of the substrate gap at the nanometer beam; (c) releasing nano beam etching with HF and the removal of the surface oxide layer nanobeam.
7、 按权利要求6所述的在(111)晶面的硅片上纳米梁的制作方法,其特征在于所述的碱性各向异性腐蚀掩模是用热生长氧化层或低压化学气相沉积方法生长的氮化硅薄膜,其厚度应是能承受后续的碱性各向异性腐蚀液的腐蚀。 On Si (111) crystal plane nanofabrication methods beam, wherein said alkaline anisotropic etching mask 7, according to claim 6 is grown oxide layer or a low pressure chemical vapor deposition hot growth of a silicon nitride film, the thickness thereof should be able to withstand the subsequent etching alkaline anisotropic etching solution.
8、 按权利要求6所述的在(111)晶面的硅片上纳米梁的制作方法,其特征在于所述的碱性各向异性腐蚀液为氢氧化钾、氢氧化钠、四甲基氢氧化铵或乙二胺、邻苯二酚与水的混合物中一种,其中氢氧化钾溶液的重量浓度在30 %以上,腐蚀温度18〜10(TC间。 8, according to claim 6, nano-beam fabrication method on a silicon wafer (111) crystal plane, wherein said anisotropic etchant is alkaline potassium hydroxide, sodium hydroxide, tetramethyl ammonium hydroxide or a mixture of ethylenediamine, pyrocatechol and water of one, wherein the weight concentration of potassium hydroxide solution 30% or more, corrosion temperature 18~10 (TC between.
9、 按权利要求6所述的在(111)晶面的硅片上纳米梁的制作方法,其特征在于所述工艺步骤(B)梁区台阶制作或采用干法刻蚀法,其步骤是:(1) 在硅片表面涂光刻胶,进行光刻;(2) 用干法刻蚀形成浅槽,使梁区上表面与浅槽区下表面的高度差等于纳米梁的厚度。 9, according to claim 6 in (111) Method nanobeam crystal plane on a silicon wafer, wherein the process step (B) a step made by a dry etching method or the beam area, which is a step : (1) coating a photoresist on the wafer surface, photolithography; (2) a shallow groove formed by dry etching, so that the height difference between the lower surface of the shallow groove surface area to the beam area is equal to the thickness of the beam nanometers.
CN 200510025831 2005-05-13 2005-05-13 Structure for laying nanobeam on (111) crystal surafe silicon sheet and its making method CN100482572C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200510025831 CN100482572C (en) 2005-05-13 2005-05-13 Structure for laying nanobeam on (111) crystal surafe silicon sheet and its making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200510025831 CN100482572C (en) 2005-05-13 2005-05-13 Structure for laying nanobeam on (111) crystal surafe silicon sheet and its making method

Publications (2)

Publication Number Publication Date
CN1743261A CN1743261A (en) 2006-03-08
CN100482572C true CN100482572C (en) 2009-04-29

Family

ID=36138814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200510025831 CN100482572C (en) 2005-05-13 2005-05-13 Structure for laying nanobeam on (111) crystal surafe silicon sheet and its making method

Country Status (1)

Country Link
CN (1) CN100482572C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100478271C (en) 2006-04-25 2009-04-15 北京大学 Prepn process of beam structure in nanometer width
CN100478272C (en) 2006-04-25 2009-04-15 北京大学 Prepn process of beam structure in nanometer thickness
CN101062761B (en) 2006-12-27 2010-09-29 中国科学院上海微系统与信息技术研究所 Method for producing nano-beam with right-angled triangle cross-section by wet method corrosion technique
CN101311105B (en) 2008-02-26 2012-01-04 中国科学院上海微系统与信息技术研究所 Nano beam structure produced using no-electrode electrochemical corrosion self-stop and method thereof
CN102437017B (en) * 2011-09-30 2014-03-12 中国科学院上海微系统与信息技术研究所 Method for preparing nano structure on surface of (111) silicon wafer
CN102398889A (en) * 2011-09-30 2012-04-04 中国科学院上海微系统与信息技术研究所 Method for preparing nanostructure on surface of (100) silicon-on-insulator (SOI) chip from top to bottom
CN103035477B (en) * 2011-09-30 2015-09-30 中国科学院上海微系统与信息技术研究所 A method for preparing single-crystal silicon nanostructure
CN107601425A (en) * 2017-08-10 2018-01-19 大连理工大学 Printing production method for nanometer beam structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080360A1 (en) 2001-03-30 2002-10-10 California Institute Of Technology Pattern-aligned carbon nanotube growth and tunable resonator apparatus
WO2003022733A2 (en) 2001-07-25 2003-03-20 Nantero, Inc Nanotube films and articles
CN1525527A (en) 2003-09-17 2004-09-01 华东师范大学 Preparation method for silicon-based micro machine microwave/radiofrequency switch chip

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080360A1 (en) 2001-03-30 2002-10-10 California Institute Of Technology Pattern-aligned carbon nanotube growth and tunable resonator apparatus
WO2003022733A2 (en) 2001-07-25 2003-03-20 Nantero, Inc Nanotube films and articles
CN1525527A (en) 2003-09-17 2004-09-01 华东师范大学 Preparation method for silicon-based micro machine microwave/radiofrequency switch chip

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fabrication of high frequency nanometer scalemechanical resonators from bulk Si crystals. A.N.Cleland,et al.Appl.Phys.Lett.,Vol.69 No.18. 1996
Quantum electromechanical systems. Miles Blencowe.Physics reports,Vol.395 . 2004

Also Published As

Publication number Publication date
CN1743261A (en) 2006-03-08

Similar Documents

Publication Publication Date Title
US5846849A (en) Microstructure and single mask, single-crystal process for fabrication thereof
US5484073A (en) Method for fabricating suspension members for micromachined sensors
US5336369A (en) Method of making a cantilever stylus for an atomic force microscope
US7056757B2 (en) Methods of forming oxide masks with submicron openings and microstructures formed thereby
US6038928A (en) Miniature gauge pressure sensor using silicon fusion bonding and back etching
US5282924A (en) Micromechanical sensor fabrication process
US20030094674A1 (en) Semiconductor wafer
US20070004173A1 (en) Semiconductor wafers including one or more reinforcement structures and methods of forming the same
JP3535474B2 (en) FBAR fabrication method (Film Bulk Acoustic Resonator) device
US6465158B1 (en) Semiconductor wafer dividing method
US20120171798A1 (en) Damascene process for use in fabricating semiconductor structures having micro/nano gaps
US6816035B2 (en) Forming film bulk acoustic resonator filters
EP0631690B1 (en) Method of fabricating a microelectronic device using an alternate substrate
US20070020807A1 (en) Protective structures and methods of fabricating protective structures over wafers
US20060243655A1 (en) Ultrathin nanoscale membranes, methods of making, and uses thereof
CN1826285B (en) Stacked structure and production method thereof
US5051379A (en) Method of producing micromechanical sensors for the AFM/STM profilometry and micromechanical AFM/STM sensor head
EP0413041A1 (en) Method of producing micromechanical sensors for the AFM/STM profilometry and micromechanical AFM/STM sensor head
US20060273416A1 (en) Capacitive resonators
US6016693A (en) Microfabrication of cantilevers using sacrificial templates
US6509139B1 (en) Method of fabricating an integrated optical component
EP0711029A2 (en) Microstructure and method of forming the same
US5883012A (en) Method of etching a trench into a semiconductor substrate
GB2454603A (en) MEMS device
CN100449789C (en) Method of manufacturing a micro-electrical-mechanical system

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right