201Π0139 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種記憶體裝置 驅動器電路。 ,尤指一種記憶體裝置之字元線201Π0139 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a memory device driver circuit. Especially a character line of a memory device
【先前技術】 憶體裝置中含有複數記憶體晶胞。多㈣料進行儲 讀取 =,記舰裝置就必須接收每—資料的字元線選擇訊號, 以/艮字7L線選擇机遽將眾多的資料儲存於對應的記憶體晶胞 _(或從對應的記憶體晶胞中將眾多的資料讀取出來)。因此,字元 線驅動器電路係用來產生字元線選擇訊號。 美國專利公告第6漏72號揭露一種字元線驅動器電路,當外 部字兀線被選辦m軸^電路齡在被選到的字元線上 產生-具有特定雜解碼訊號。勒話說,當外部字元線沒有被 選到時,上述被選到的字元線就會被下拉到接地的位準。 π參閱第-圖,係為美國專利公告第6388472號揭露之字元線驅 動器電路中的一個區段10。當字元線驅動器電路之區段1〇在讀取 或程式化過程被選到時(外部字元線訊號GWL為低位準),字元線 訊號WL0的電壓約等於解碼訊號vxpRE〇的電壓。當字元線驅動 器電路之區段10在讀取或程式化過程未被選到時(外部字元線訊 號GWL為高位準)’字元線訊號WL0的電壓約等於電源供應端 VEEX的電壓。一般來說,電源供應端veEX為接地端,故當區 段10未被選到時,字元線訊號WL0的電壓就會被下拉到接^位 準。 反外部字元線訊號GWLb係為一用來控制列驅動器12〜15的 重置訊號。在記憶體裝置中,會配置多組字元線解碼器的區段在 201110139 内,且反外部字元線訊號GWLb會與每一字元線解碼器的區段耦 接。由於有非常多的區段在内,故反外部字元線訊號GWLb的負 載會增加。為驅動内部所有區無的NMOS電晶體,反外部字元線 §fl號GWLb的驅動能力就要夠強。然,加強反外部字元線訊號 GWLb的驅動能力就會增加耗電量^雖然對所有區段提供反外部 字元線訊號GWLb的佈線在0.25或0.16微米的半導體製程中並不 會增加太多的晶粒面積’但會在90奈米的半導體製程中就會顯得 佈線效能很差。 美國專利公開第20060077717號揭露一種產生一電壓之字元 線驅動電路’第一圖為其字元線驅動電路之一區段1〇〇的電路圖, 該區段100包含一字元線解碼器109與複數列驅動器 DRV0〜DRVi。當字元線驅動電路之區段1〇〇在讀取或程式化過程 被選到時(外部字元線訊號Gt_l與區段選擇訊號ss均為高位 準)’電源供應端Vpx與Vpgate為高位準且電源供應端Vexen為 低位準。此時,節點ND10為低位準,字元線訊號係受控 於解碼訊號PWL<k>與nPWL<k>,其中nPWL<k>為解碼訊號 PWL<k>的反相訊號’ k為一從1到i的整數。當字元線驅動電路 之區段100在讀取或程式化過程未被選到時(外部字元線訊號 GWL_1與區段選擇訊號SS均為低位準),電源供應端乂口\與vexen 為高位準且電源供應端Vpgate為低位準。此時,節點]^1〇為高 位準,字元線訊號WL<k>會被下拉至接地端Vex。 外部字元線訊號GWL_1係為一用來控制列驅動器 DRV0〜DRVi的重置訊號’ ji電源Vpx係用於控制列驅動器 DRY0〜DRVi的NMOS電晶體,以下拉字元線訊號wL<k>。 如上所述,在記憶體裝置中’會配置多組字元線解碼器的區段 在内’且電源Vpx會與每一區段的NMOS電晶體耦接《由於有非 201110139 常多的區段在内,故電源Vpx的負載會增加。為驅動内部所有區 段的NMOS電晶體’電源vpx的驅動能力就要夠強,因此會降低 電源的效能。甚者,在90奈米的半導體製程中的佈線就會發生與 前述一樣的問題,佈線的效能會很差。 美國專利公告第6930923號之一種產生一電壓之字元線驅動 電路’第三圖為其字元線驅動電路之一區段72a的電路圖,該區 段72a包含一字元線解碼器82a與複數列驅動器83a〜83c。當區段 72a在讀取或程式化過程未被選到時,反及⑼八耶)閘84之輸出為 •高位準’且電晶體86b、86d與86e會導通。此時,節點A的電壓 為高位準’節點B為低位準,重置訊號(Vrst)i為高位準,其中i 為1〜7的整數。因此,字元線訊號的電壓會被下拉至接地端 的位準(電源Vin'為具有零電壓之低位準)。 如上所述’在記憶體裝置中,會配置多組字元線解碼器的區段 在内’且重置訊號(Vrst)i會與每一區段的nm〇s電晶體耦接。由 於有非常多的區段在内,故重置訊號(Vrst)i的負載會增加。為驅 動内部所有區段的NM〇S電晶體,重置訊號(Vrst)i的驅動能力就 • 要夠強’因此會降低電源的效能。甚者,在90奈米的半導體製程 中的佈線就會發生與前述一樣的問題,佈線的效能會很差。 【發明内容】 由是’本發明之主要目的’即在於提供一種字元線驅動器電 路,以解決上述缺失者。 為達上述目的,本發明之技術實現如下: ^ 一種字元線驅動器電路内之一區段,包含一區域重置訊號產生 1 莫組以及瓜組字元線群’該m組字元線群係與該區域重置訊號產生 莫組耦接。該區域重置訊號產生模組產生〗個重置訊號,第χ組重置 201110139 訊號係根據一第X組預解碼訊號、一區庫選擇訊號以及一區段選擇 訊號來決定。其中,j為—自絲,x為一從㈣的整數^ m组字元 線群中之任-字元線群均包含有恤列驅動器。第丫組字元線群的第 據該第级重置喊、該第x組預解碼訊號、該區 段選擇訊號以及一第y群選擇訊號來決定一第個字元線 訊號。其中’ IT1為一自然數’ y為一從1到瓜的整數。 【實施方式】 籲 參閱第四⑻圖’係為本發明字元線驅動器電路4〇之實施例 圖,如圖所示:本發明之字元線驅動器電路40包含16個區段 40-1、40-2、、、40-16,但並非限定為16個區段。字元線驅動器 電路40的區段40-k係根據複數預解碼訊號、 XPB<4.1>、一第k區段選取訊號xsE<k>、一區段選擇訊號 VNEG_S<k>、複數預解碼訊號νχ<16:1>以及一區庫選擇訊號 VNX來決定256組字元線訊號WL<256*(k_1)+1:256*k>。其中k 為1〜16的整數。 ” 齡參閱第第四(b)圖,係為本發明字元線驅動器電路4〇區段4〇4 之方塊圖’如圖所示:區段40-1、40-2、、、4〇-16均具有相同的 結構,區段40-1包含一區域重置訊號產生模組44、16組區域解碼 模組42心42-2、、、42-16以及16組字元線群43-1、43 2、、、 43-16。字元線群43-k係由16組列驅動器41-1〜41-16所構成,且 k為1〜16的整數。該16組字元線群43-1、43·2、、、43-16與區 域重置訊號產生模組44耦接,-16組區域解碼模組42-1、42_2、、、 42-16係分別與16組字元線群43-1、43-2、、、43-16雜接。 區域重置訊號產生模組44係產生16組重置訊號 WLRST<16:1>,重置訊號WLRST<xx^^驅動器41-χ耦接,且χ 201110139 為1〜16的整數。16組字元線群中之任一均包含16組區域解碼模 ,42-1、42-2、、、42-16。第y群字元線群43_y之第X組列驅動 器41-x根據第x組重置訊號.^Μτ<χ>、預解碼訊號νχ<χ>、 區段選擇訊號VNEG_S<1 >—及一第y群選擇訊號wlpun來決定 第[x+16 (y-Ι)]組子元線訊號WL<x+16*(y-l)>,其中y為1〜16之 整數。 第y組區域解碼模組42-y係根據區段選取訊號xse<1>以及複 數預解碼訊號XPA<u>、XPB<V>來決定第y群選擇訊號 ⑩WLPUN<y> ’其中u與v均對應到y。舉例來說,第1組區域解 碼模組42-1係根據區段選取訊號XSE<1>以及複數預解碼訊號 XPA<1>、:>〇>3<1>來決定第1群選擇訊號^ρυΝ<1>,第16組 區域解碼模組42-16係根據區段選取訊號xse<1>以及複數預解碼 訊號XPA<4>、XPB<4>來決定第16群選擇訊號WLPUN<16>。 第五圖為字元線驅動器電路4〇區段40-1之詳細電路圖,如圖 所示:第y組區域解碼模組42-y包含一反及(NAND)閘500以及 一位準移位器501。反及閘500係接收區段選取訊號XSE<1>&& ® 預解碼訊號XPA<u>、XPB<v>;位準移位器501係接收反及閘500 之輸出’並輸出第y群選擇訊號WLPUN<y>。區域重置訊號產生 模組44包含16組重置訊號產生單元44-1、44-2、、、44-16。第 X組重置訊號產生單元44-x係根據預解碼訊號VX<x>、區庫選擇 訊號VNX以及區段選擇訊號\^^_8<1>來產生第X組重置訊號 WLRST<x> ° 在本實施例中,第X組重置訊號產生單元44-X包含一第一 PMOS電晶體Η以及一第一 NMOS電晶體N1。第一 PMOS電晶 201110139 體P1之閘極與預解碍訊號vx<x>輕接,其源極則與區庫 號VNX祕。第-NMOS電晶體N1之閘極與預解碼訊號 耦接,其汲極與區段選擇訊號.VneG—s<1>搞接,其源極則與第一 PMOS電晶體P1之;^極以及第χ組重置訊號肌脱少搞接。 在本實施锻,第y群字元線群43_y的第χ組列驅動器仏X 包含-第二PMOS電晶體Ρ2、一第二應⑶電晶體Ν2以及 三丽OS電晶體Ν3。第二PM0S電晶體ρ2之閘極與第y群選擇 訊號WLPUN<y>輕接,其源極與預解石馬訊號νχ<1>搞接,盆沒極 則與第[X+16*(y4)]組字元線訊號WL<X+16*(y-l)>麵接Γ第二 NMOS電晶體N2之閘極與第y群選擇訊號肌歷少輕接,豆 源;^與區段馨賴(,其祕顺第二触^ 電晶體P2之没極輕接。第三麗〇8電晶體N3之問極與第X組重 置訊號WLRST<x>耦接,其滹極與區段選擇訊號vneg』<i>輕 接’其汲蝴與第二PM〇s電晶體P2之祕祕。一 一般來說,字元線驅動器電路會操作於程式化或讀取模式、抹 除模式以及抹除驗賴式巾之—。參閱第六⑻圖,係為字元線驅 動器電路40區段4〇_1於程式化或讀取操作之電路目,如圖所示: 在程式化或讀取操作中,區庫選擇訊號VNX為高位準(VCC),電 源VPX為高位零(在電路中,νρχ具有最高之電壓,在程式化時 為8.5V ’在讀取時則為5V),且區段選擇訊號vneG_S<1>為低位 準(接地)。當字元線訊號1<1>被選到時,第1群選擇訊號 1ΡϋΝ<1>為低位準,其他的群選擇訊號WLPUN<2>〜[Prior Art] A memory device contains a plurality of memory cells. More (four) materials for storage reading =, the ship device must receive the word line selection signal for each data, and the / 艮 word 7L line selection machine will store a large amount of data in the corresponding memory unit cell _ (or A large amount of data is read out in the corresponding memory cell. Therefore, the word line driver circuit is used to generate word line select signals. U.S. Patent Publication No. 6-No. 72 discloses a word line driver circuit in which an external word line is selected to be generated on the selected word line - with a specific impurity decoding signal. In other words, when the external word line is not selected, the selected word line will be pulled down to the ground level. π is a section of the word line driver circuit disclosed in U.S. Patent No. 6,388,742. When the sector 1 of the word line driver circuit is selected during the read or program process (the external word line signal GWL is low), the voltage of the word line signal WL0 is approximately equal to the voltage of the decoded signal vxpRE. When the sector 10 of the word line driver circuit is not selected during the read or program process (the external word line signal GWL is high), the voltage of the word line signal WL0 is approximately equal to the voltage of the power supply terminal VEEX. Generally, the power supply terminal veEX is grounded, so when the segment 10 is not selected, the voltage of the word line signal WL0 is pulled down to the level. The anti-external word line signal GWLb is a reset signal for controlling the column drivers 12-15. In the memory device, the segments of the plurality of sets of word line decoders are arranged within 201110139, and the inverse external word line signals GWLb are coupled to the segments of each of the word line decoders. Since there are a large number of sectors, the load of the inverse external word line signal GWLb will increase. In order to drive the NMOS transistors that are not available in all internal regions, the driving ability of the anti-external word line §fl GWLb is strong enough. However, strengthening the driving capability of the anti-external word line signal GWLb increases the power consumption. Although the wiring of the anti-external word line signal GWLb is provided for all the sections, the wiring in the 0.25 or 0.16 micron semiconductor process does not increase too much. The grain area 'but will appear to be poorly wired in the 90 nm semiconductor process. U.S. Patent Publication No. 20060077717 discloses a circuit diagram for generating a voltage word line driver circuit, the first diagram of which is a sector line 1 of its word line driver circuit, the sector 100 including a word line decoder 109. With complex column drivers DRV0~DRVi. When the section 1 of the word line driver circuit is selected during the reading or programming process (the external word line signal Gt_l and the section selection signal ss are both high), the power supply terminals Vpx and Vpgate are high. The power supply terminal Vexen is at a low level. At this time, the node ND10 is at a low level, and the word line signal is controlled by the decoding signal PWL<k> and nPWL<k>, where nPWL<k> is the inverted signal 'k' of the decoded signal PWL<k> An integer from 1 to i. When the segment 100 of the word line driver circuit is not selected during the reading or programming process (the external word line signal GWL_1 and the segment selection signal SS are both low), the power supply port 与 port and vexen are High level and the power supply terminal Vpgate is low. At this time, the node]^1〇 is at a high level, and the word line signal WL<k> is pulled down to the ground terminal Vex. The external word line signal GWL_1 is a reset signal for controlling the column drivers DRV0 to DRVi. The power supply Vpx is used to control the NMOS transistors of the column drivers DRY0 to DRVi, and the following word line signals wL<k>. As described above, in the memory device, 'the segment of the plurality of word line decoders will be configured' and the power supply Vpx will be coupled to the NMOS transistor of each segment. "There are many segments that are not 201110139. Inside, the load on the power supply Vpx will increase. In order to drive all the internal NMOS transistors, the power supply vpx has a strong driving capability, which will reduce the power efficiency. In other cases, the wiring in the 90 nm semiconductor process has the same problems as described above, and the wiring performance is poor. U.S. Patent Publication No. 6,930,923, a voltage word line driver circuit for generating a voltage, the third diagram is a circuit diagram of a sector 72a of a word line driver circuit, the sector 72a including a word line decoder 82a and a plurality Column drivers 83a to 83c. When the segment 72a is not selected during the reading or stylization process, the output of the (9) eight-gate gate 84 is "high level" and the transistors 86b, 86d and 86e are turned on. At this time, the voltage of the node A is high level, the node B is at a low level, and the reset signal (Vrst) i is a high level, where i is an integer of 1 to 7. Therefore, the voltage of the word line signal is pulled down to the level of the ground (the power supply Vin' has a low level of zero voltage). As described above, in the memory device, segments of a plurality of sets of word line decoders are disposed and the reset signal (Vrst)i is coupled to the nm〇s transistors of each segment. Since there are a large number of sectors, the load of the reset signal (Vrst) i increases. In order to drive the NM〇S transistor in all internal sections, the drive capability of the reset signal (Vrst)i is • strong enough to reduce the performance of the power supply. In other cases, the wiring in the 90 nm semiconductor process has the same problems as described above, and the wiring performance is poor. SUMMARY OF THE INVENTION The main object of the present invention is to provide a word line driver circuit to solve the above-mentioned defects. To achieve the above object, the technology of the present invention is implemented as follows: ^ A segment within a word line driver circuit, comprising an area reset signal generating a group of groups and a group of word lines of the group of characters The reset signal is coupled to the area to generate a moiet. The area reset signal generation module generates a reset signal, and the third group resets the 201110139 signal based on an X-th pre-decode signal, a bank selection signal, and a segment selection signal. Where j is - from the wire, x is an integer from the (four) ^ m group of word lines. Any of the word line groups includes a shirt column driver. The first group of character line groups is reset by the first level, the xth group pre-decode signal, the segment selection signal, and a yth group selection signal to determine a first word line signal. Where 'IT1 is a natural number' y is an integer from 1 to melon. [Embodiment] Referring to Figure 4 (8) is a diagram of an embodiment of the word line driver circuit 4 of the present invention. As shown, the word line driver circuit 40 of the present invention includes 16 segments 40-1, 40-2, ,, 40-16, but not limited to 16 segments. The section 40-k of the word line driver circuit 40 is based on a complex pre-decode signal, XPB <4.1>, a k-th sector selection signal xsE<k>, a sector selection signal VNEG_S<k>, complex pre-decoding The signal νχ<16:1> and a bank selection signal VNX determine 256 groups of word line signals WL<256*(k_1)+1:256*k>. Where k is an integer from 1 to 16. Referring to the fourth (b) figure, it is a block diagram of the word line driver circuit 4 〇 section 4 〇 4 of the present invention as shown in the figure: segments 40-1, 40-2, , 4〇 -16 all have the same structure, and the segment 40-1 includes an area reset signal generating module 44, 16 sets of area decoding modules 42 cores 42-2, 42, 42-16, and 16 sets of character line groups 43- 1, 43, 2, 43-16. The character line group 43-k is composed of 16 groups of column drivers 41-1 to 41-16, and k is an integer of 1 to 16. The 16 group of character lines 43-1, 4·2, and 43-16 are coupled to the area reset signal generating module 44, and the 16-group area decoding modules 42-1, 42_2, and 42-16 are respectively associated with 16 groups of characters. The line groups 43-1, 43-2, and 43-16 are connected. The area reset signal generating module 44 generates 16 sets of reset signals WLRST<16:1>, reset signal WLRST<xx^^driver 41 - χ is coupled, and χ 201110139 is an integer from 1 to 16. Each of the 16 group of character line groups includes 16 sets of regional decoding modes, 42-1, 42-2, , 42-16. The Xth column driver 41-x of the word line group 43_y resets the signal according to the xth group. ^Μτ<χ>, predecoded signal νχ<χ> ;, the segment selection signal VNEG_S < 1 > - and a y group selection signal wlpun to determine the [x + 16 (y-Ι)] group sub-line signal WL < x + 16 * (yl) > Where y is an integer from 1 to 16. The yth group decoding module 42-y determines the yth group selection signal according to the segment selection signal xse<1> and the complex predecode signals XPA<u>, XPB<V>10WLPUN<y> 'where u and v both correspond to y. For example, the first group area decoding module 42-1 is based on the sector selection signal XSE<1> and the complex pre-decode signal XPA<1>,:>;〇>3<1> to determine the first group selection signal ^ρυΝ<1>, the 16th group region decoding module 42-16 is based on the segment selection signal xse<1> and the complex pre-decode signal XPA<4> The XPB<4> determines the 16th group selection signal WLPUN<16>. The fifth figure is a detailed circuit diagram of the word line driver circuit 4〇 section 40-1, as shown in the figure: the yth group area decoding module 42 -y includes a NAND gate 500 and a quasi-shifter 501. The inverse gate 500 receives the sector selection signal XSE<1>&&> pre-decoded signal XPA&l The t;u>, XPB<v>; level shifter 501 receives the output of the inverse gate 500 and outputs the yth group selection signal WLPUN<y>. The area reset signal generating module 44 includes 16 sets of reset signal generating units 44-1, 44-2, , 44-16. The Xth group reset signal generating unit 44-x generates the Xth group reset signal WLRST<x> according to the pre-decode signal VX<x>, the bank select signal VNX, and the sector selection signal \^^_8<1>. In the embodiment, the Xth group reset signal generating unit 44-X includes a first PMOS transistor Η and a first NMOS transistor N1. The first PMOS transistor 201110139 The gate of the body P1 is connected to the pre-distraction signal vx<x>, and its source is the same as the library number VNX. The gate of the first NMOS transistor N1 is coupled to the pre-decode signal, and the drain is connected to the segment selection signal .VneG_s <1>, and the source is connected to the first PMOS transistor P1; The third group resets the signal and removes the muscles. In the present embodiment, the second group column driver 仏X of the yth group word line group 43_y includes a second PMOS transistor 2, a second transistor (3) transistor Ν2, and a Sanli OS transistor Ν3. The gate of the second PM0S transistor ρ2 is lightly connected to the yth group selection signal WLPUN<y>, and the source thereof is connected with the pre-calculated horse signal νχ<1>, and the basin is infinitely the same as the [X+16*( Y4)] group word line signal WL<X+16*(yl)> face Γ second NMOS transistor N2 gate and y group selection signal muscle calendar less light, bean source; ^ and section Xin Lai (, its secret second touch ^ transistor P2 is not very lightly connected. The third Radisson 8 transistor N3 is connected with the X-th reset signal WLRST<x>, its bungee and area The segment selection signal vneg』<i>lightly connects the secret of the butterfly and the second PM〇s transistor P2. In general, the word line driver circuit operates in a stylized or read mode, erased Mode and erased wipes - refer to Figure 6 (8), which is the circuit of the word line driver circuit 40 section 4〇_1 in the stylized or read operation, as shown in the figure: Or during the read operation, the bank select signal VNX is high level (VCC), and the power supply VPX is high zero (in the circuit, νρχ has the highest voltage, 8.5V during programming) and 5V when reading) Section selection The number vneG_S <1> is low (ground). When the word line signal 1 <1> is selected, the first group selection signal 1ΡϋΝ<1> is low, and the other group selection signals WLPUN<2>
Ylpun<i6>則為高位準(wxy。此外,預解碼訊號νχ<1>&須為 冋位準(VPX),且其他的預解碼訊號^<2>〜^<16>必須為低位 準(接地)。 在此實施例中’重置訊號產生單元44-1中之PMOS電晶體Ρ1 201110139 會被關閉’其他重置訊號產生單元44-2〜44-16中之PMOS電晶體 P1會被導通。重置訊號產生單元44-1中之NMOS電晶體N1會被 導通’其他重置訊5虎產生早元44-2〜44-16中之NMOS電晶體N1 會被關閉。因此,第1組重置訊號WLRST<1:^低位準(接地), 其他重置訊號WLRST<2>〜 WLRST<16:^高位準(VCC)。Ylpun<i6> is a high level (wxy. In addition, the pre-decode signal νχ<1>& must be a 冋 level (VPX), and other pre-decoded signals ^<2>~^<16> must be Low level (ground). In this embodiment, the PMOS transistor Ρ1 201110139 in the reset signal generating unit 44-1 is turned off. PMOS transistor P1 in the other reset signal generating units 44-2 to 44-16 It will be turned on. The NMOS transistor N1 in the reset signal generating unit 44-1 will be turned on. 'Other reset signals 5, the NMOS transistor N1 in the early elements 44-2 to 44-16 will be turned off. Therefore, The first group reset signal WLRST<1:^low level (ground), other reset signals WLRST<2>~ WLRST<16:^ high level (VCC).
當字元線群43-1被選到時’則其他字元線群43_2〜43-16則不 會被選到。在字元線群43-1之列驅動器41-1中,pm〇S電晶體 P2會被導通,NMOS電晶體N2與N3會被關閉,故字元線訊號 WL<1>為咼位準(VPX)。在字元線群43-1之列驅動器41-2〜41-16 中,NMOS電晶體N2會被導通,pm〇S電晶體P2與NMOS電晶 體N3會被關閉,,故字元線訊號1<2>〜^<16〉會被下拉至低 位準(接地)。在字元線群43-2〜43-16之列驅動器41-1中,僅有 NMOS電晶體N2會被導適'故字元線訊號1<1;>為高位準 (VPX)。在予元線群43-1之列驅動器41_2〜41-16中,NMOS電晶 體N2會被導通。在字元線群似—㈣之列驅動器4i_2〜4M: 中,只有NMOS電晶體N2與N3會被導通,故字元線訊號 WL<17>〜1<256>為低位準(接地)。 第六(b)圖為字元線驅動器電路4〇區段似於程式化或讀取操 作之訊號關縣,各訊號間之_可由上述狀齡演出來。 在抹除模式下,字元線驅動器電路4〇之區段4(Μ被選到時, 二他的就不會被選到。對未選到的區段〜初來說 ’ k $ 2〜16的整數)’所有的群制訊號為高位準 而區段選擇訊號為低位準。故當肌卩爾為高位準時,所 有的子元線訊號均為低位準。 夕φ第/⑻圖為字凡線驅動器電路40被選到區段4〇-1於抹除操作 圖如圖所不.在抹除操作中,區庫麵訊號VNX為低位 201110139 準,電源VPX為高位準(約為15V),且區段選擇訊號vmG^ S<1> 為負值。在抹除操作時,被選到區段404之所有字元線群 43-1〜43-16都會被選到,使斯有的群選擇訊號ιρυΝ<ι>〜 WLPUN<16>均為低位準。 在此實施例中,區段40-1僅所有電晶體N2會被 導通’故重置訊號WLRST<1>〜WLRST<16^為負值。第七⑼圖 為字το線驅動器電路4〇於抹除操作之訊號關係表,各訊號間之關 係可由上述狀態推演出來。 鲁 第八(a)圖為字元線驅動器電路40區段40-1於抹除驗證操作之 電路圖’如圖所示:抹除驗證操作與程式化或讀取操作相當類似。 其不同處在於,區段選擇訊號VNEG—SO可為負值(_〇 4ν)或接 地,低位準之字元線訊號以及重置訊號 WLRST<l>^“-〇.4V。第八⑼圖為字元線驅動器電路4〇於抹除 驗證操作之訊號關係表,各訊號間之關係可由上述狀態推演出來。 本發明之子元線驅動器電路包含有與一每一區段麵接之區域 重置訊號產生模組,因此電源效能比習知技術良好。當於9〇奈米 φ製程製造時,將區域重置訊號產生模組配置於每一區段内將會^ 咼晶粒佈線的效益,亦較習知技術良好。 雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發 明,任何熟習此技藝者,在不脫離本發明之精神和範圍内,當可 作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專 利範圍所界定者為準。 【圖式簡單說明】 第一圖為習知字元線驅動電路一區段之電路圖。 第二圖為另一習知字元線驅動電路一區段之電路圖。 201110139 第二圖為又一習知予元線驅動電路一區段之電路圖。 第四(a)圖為本發明字元線驅動器電路4〇之實施例圖。 第四(b)圖為本發明字元線驅動,器電路4〇區段4〇_丨之方土 第五圖為字元線驅動器電路40區段40-1之詳細電路圖塊圖。 第六(a)圖為字元線驅動器電路4〇區段40—1於程式备 、八化或讀取操作 之電路圖。 取操作 第六(b)圖為字元線驅動器電路40區段4(M於程式化或讀 之訊號關係表。 第七(a)圖為字元線驅動器電路40被選到區段4(M於抹除操作之 電路圖。 第七(聊為字元線驅動器電⑨卻區段糾於抹除操狀訊號關 係表。 第八(a)圖為字元線驅動器電路4〇區段4〇_丨於抹除驗證操作之電 路圖。 φ第八(b)圖為子元線驅動器電路40區段40-1於抹除驗證操作之訊 號關係表。 【主要元件符號說明】 40 :字元線驅動器電路 40- 1 〜40-16 :區段 41- 1〜41-16 :列驅動器 42- 1〜42-16 :區域解碼模組 43- 1〜43-16 :字元線群 44 :區域重置訊號產生模組 12 201110139 44-1〜44-16 :區域重置訊號產生單元 500 :反及閘 501:位準移位器 ,When the word line group 43-1 is selected, then the other word line groups 43_2 to 43-16 are not selected. In the column driver 41-1 of the word line group 43-1, the pm〇S transistor P2 is turned on, and the NMOS transistors N2 and N3 are turned off, so the word line signal WL<1> is the level ( VPX). In the column drivers 41-2 to 41-16 of the word line group 43-1, the NMOS transistor N2 is turned on, and the pm〇S transistor P2 and the NMOS transistor N3 are turned off, so the word line signal 1<;2>~^<16> will be pulled down to the low level (ground). In the row driver 41-1 of the word line groups 43-2 to 43-16, only the NMOS transistor N2 is guided to "the character line signal 1 <1;> is a high level (VPX). In the column drivers 41_2 to 41-16 of the pre-line group 43-1, the NMOS transistor N2 is turned on. In the word line group-(4) column driver 4i_2 to 4M:, only the NMOS transistors N2 and N3 are turned on, so the word line signals WL<17>~1<256> are low level (ground). The sixth (b) diagram shows that the word line driver circuit 4 is similar to the signal of the stylized or read operation, and the signal between the signals can be performed by the above-mentioned age. In the erase mode, the word line driver circuit 4 区段 section 4 (when Μ is selected, the second one will not be selected. For the unselected section ~ the initial 'k $ 2~ The integer of 16) 'All group signals are high and the segment selection signal is low. Therefore, when the muscles are at a high level, all the sub-line signals are low.夕φ/(8) is the word line driver circuit 40 is selected to the segment 4〇-1 in the erase operation diagram as shown in the figure. In the erase operation, the bank surface signal VNX is low 201110139, the power supply VPX It is high (about 15V), and the segment selection signal vmG^ S<1> is negative. During the erase operation, all of the character line groups 43-1 to 43-16 selected to the section 404 are selected so that the group selection signal ιρυΝ<ι>~ WLPUN<16> . In this embodiment, only all transistors N2 of section 40-1 will be turned "on" so that reset signal WLRST <1>~WLRST<16^ is a negative value. The seventh (9) diagram is a signal relationship table of the word το line driver circuit 4 in the erasing operation, and the relationship between the signals can be derived from the above state. Lu eighth (a) is a circuit diagram of the word line driver circuit 40 section 40-1 for the erase verify operation as shown: the erase verify operation is quite similar to the program or read operation. The difference is that the segment selection signal VNEG-SO can be a negative value (_〇4ν) or ground, a low level word line signal, and a reset signal WLRST<l>^"-〇.4V. Eighth (9) For the word line driver circuit 4 to erase the signal relationship table of the verification operation, the relationship between the signals can be derived from the above state. The sub-line driver circuit of the present invention includes an area resetting interface with each segment. The signal generation module, so the power supply performance is better than the conventional technology. When the 9-inch nanometer φ process is manufactured, the area reset signal generation module is disposed in each section, and the efficiency of the chip wiring is improved. It is also better than the prior art. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and those skilled in the art can make some modifications without departing from the spirit and scope of the invention. The scope of protection of the present invention is subject to the definition of the scope of the appended claims. [Simplified Schematic] The first figure is a circuit diagram of a section of a conventional word line drive circuit. Another familiar Circuit diagram of a section of the line driving circuit. 201110139 The second figure is a circuit diagram of another section of the conventional line driver circuit. The fourth (a) is a diagram of an embodiment of the word line driver circuit 4 of the present invention. The fourth (b) diagram is the word line driver of the present invention, and the fifth circuit diagram of the block circuit 4〇_丨 is the detailed circuit block diagram of the word line driver circuit 40 section 40-1. a) is a circuit diagram of the word line driver circuit 4 〇 section 40-1 in the program, octave or read operation. The sixth operation (b) is the word line driver circuit 40 section 4 (M Stylized or read signal relationship table. The seventh (a) figure shows that the word line driver circuit 40 is selected to the segment 4 (M is the circuit diagram of the erase operation. The seventh (talking for the word line driver) The segment is corrected to erase the operation signal relationship table. The eighth (a) figure is the circuit diagram of the word line driver circuit 4〇 sector 4〇_丨 in the erase verification operation. φ8 (b) is the sub-line The driver circuit 40 section 40-1 is used to erase the signal relationship table of the verification operation. [Main component symbol description] 40: Word line driver circuit 40-1 to 40- 16: Sections 41-1 to 41-16: Column Drivers 42-1 to 42-16: Area Decoding Modules 43-1 to 43-16: Word Line Group 44: Area Reset Signal Generation Module 12 201110139 44 -1 to 44-16: area reset signal generating unit 500: inverse gate 501: level shifter,
1313