201109800 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種液晶顯示裝置,更詳細而言,係關於 一種視角特性優異之液晶顯示裝置。 .·· 【先前技姻BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device having excellent viewing angle characteristics. .·· [Former marriage
' 近年來’液晶顯示裝置被廣泛用於行動電話或PDA (Personal Digital Assistant,個人數位助理)等可攜式小型 電子設備至個人電腦或電視等大型電氣設備,且其用途愈 發擴大。 液晶顯示裝置與CRT(Cathode-Ray Tube,陰極射線管)及 PDP(Plasma Display Panei,電漿顯示面板)等自發光型顯 不裝置不同,顯示元件本身不發光。因此,透射型液晶顯 示裝置中,於液晶顯示元件之背面側設有背光裝置,液晶 顯不元件逐像素控制來自該背光裝置之照明光之透射光 量’藉此進行圖像之顯示。 液晶顯示裝置有TN(Twisted Nematic,扭轉向列)方式、In recent years, liquid crystal display devices have been widely used in portable electronic devices such as mobile phones or PDAs (Personal Digital Assistants) to large-scale electrical devices such as personal computers or televisions, and their use has expanded. Unlike a self-luminous type display device such as a CRT (Cathode-Ray Tube) or a PDP (Plasma Display Panei), the liquid crystal display device does not emit light. Therefore, in the transmissive liquid crystal display device, a backlight device is provided on the back side of the liquid crystal display element, and the liquid crystal display element controls the amount of transmitted light of the illumination light from the backlight device on a pixel-by-pixel basis to thereby display an image. The liquid crystal display device has a TN (Twisted Nematic) method,
STN(Super Twisted Nematic,超扭轉向列)方式、VA (VerUCal Alignment ’垂直排列)方式、IPS(In-p丨ane * Switching,共平面切換)方式等各種方式,但該些方式由 ‘ 於因液B曰分子具有相位差值所造成之漏光、或偏光板於斜 視守之軸角度之偏差等,而分別存在視角狹窄之方向 位角)。 =此,作為擴大視角之方法,廣泛採用藉由相位差板對 液日日單兀及偏光板進行光學補償之方法(例如jpH〇4· 149562.doc 201109800 229828-A及 JPH04-258923-A)。 另一方面,作為於液晶顯示裝置中不使用相位差板而獲 得較廣視角之方法,已知有如下之方法:利用平行或大致 平行之光源光照明液晶單元,藉由具有較高霧度之光擴散 層擴散液晶單元之透射光(例如JPS58_169132_A、JpS6〇_ 202425-A及 JUS62-1 10977-A)。 作為該些技術中所用之光擴散層,具體而言揭示有凹透 鏡或表面具有凹凸之透明基材。 然而,例如於使用表面具有凹凸之透明基材形成具有較 尚霧度之光擴散層之情形.時,液晶顯示裝置之最表面變得 具有較大凹凸,反射顯示裝置之放置環境之外光而畫面泛 白,顯示品質不充分。 【發明内容】 本發明之目的在於提供一種即便於來自環境之外光之存 在下,亦可實現廣視角且色彩再現性較高之顯示的液晶顯 示裝置。 又,本發明之目的在於提供一種不使用相位差板、即不 增加零件數而實現視角擴大之液晶顯示裝置。 本發明包括以下内容。 [1 ] 一種液晶顯示裝置,其具備: 液晶單元,其係於一對透明基板之間設有液晶層而成; 背光裝置’其係設置於液晶單元之背面側; 第1光擴散層,其係配置於上述背光裝置與上述液晶單 元之間’具有光擴散功能及/或光偏向功能; 149562.doc 201109800 弟1偏光板’其係配置於上遗笛^ 土 4电 丁直义上述第1先擴散層與上述液晶單 元之間; 第2光擴散層,其係配置於上述液曰置分 地欣日日早兀之前面側;及 第2偏光板’其係配置於上诚浓曰留-rt:i ^ 上迷液日日早兀與上述第2光擴散 層之間;且 上述第2光擴散層具有以下光擴散特性:於自背面側之 法線方向入射波長543_5 nm之雷射光時,相對於在第2光 擴散層之法線方向上入射的雷射光之強度,在自法線方 向傾斜40°之方向上出射的雷射光之相對強度為〇 〇〇〇2%〜 0.001% ; 上述第2光擴散層之外部霧度未達1 0〇/〇。 再者,於本說明書中,將成為液晶顯示裝置之顯示畫面 之側(光出射側)稱為「前面側」,將與其相反之側(光入射 側)稱為「背面側」。 [2] 如Π]之液晶顯示裝置’其中上述第2光擴散層之内部 霧度為20%以上且未達7〇〇/0。 [3] 如Π ]或[2]之液晶顯示裝置,其中來自上述第】光擴 散層之出射光具有自法線方向傾斜70。之方向之亮度相對 、 於法線方向之亮度為2〇%以下的配光特性’且含有非平行 光0 [4] 如[丨]至[3]中任一項之液晶顯示裝置,其中上述第1 光擴散層包含發揮上述光擴散功能之光擴散板及發揮上述 光偏向功能之光偏向構造板,且於上述光擴散板之前面側 °又有上述光偏向構造板。 149562.doc 201109800 [5]如Π]至[4]中任—項之液晶顯示裝置其中上述液晶 單元為TN方式液晶單元、⑽方式液晶單元及财式液晶 單元中之任一種。 [6]如Π]至[5]中任—項之液晶顯示裝置,其中上述第2 偏光板包含偏光元件、配置於該偏光元件與液晶單元之間 的第1支持膜、及配置於該偏光元件與上述第2光擴散層之 間的第2支持膜。 m如[6]之液晶顯示裝置,其中上述第2光擴散層係直接 積層係於上述第2支持膜上。 [8]如[6]之液晶顯示裝置,其中上述第2光擴散層之背面 側之面係直接貼合於透明基材膜,且該透明基材膜之與第 2光擴散層相反之面係直接或經由接著層而貼合於上述第2 支持膜。 [9]如[7]之液晶顯示裝置,其中上述第2光擴散層與上述 第2支持膜之組合包含在透明基材膜之一個面上直接或經 由接著層而形成有光擴散層之光擴散膜。 又,就視角特性及色彩再現性之進一步提昇之觀點而 έ,以於上述液晶單元與第丨偏光板之間(液晶單元之背面 側)及/或上述液晶單元與第2偏光板之間(液晶單元之前面 側)進而配置相位差板為宜。另一方面,就減少零件數、 使裝置之組裝性提昇而提高生產率之觀點而言,亦可不具 備相位差板。又’亦可使上述液晶單元為ΤΝ方式液晶, 且不具備相位差板。 [1〇] —種光擴散膜’其係於透明基材膜之一個面上直接 149562.doc -6- 201109800 或經由接著層而形成有光擴散層者,且該光擴散層具有以 下光擴散特性:於自背面側之法線方向入射波長543 5 nm 之雷射光時,相對於在該光擴散層之法線方向上入射的雷 射光之強度,在自法線方向傾斜40。之方向上出射的雷射 光之相對強度為0.0002%〜0.001% ;且該光擴散層之外部霧 度未達1.0%。 [11] 一種光擴散膜,其係如[6]之液晶顯示裝置中所使用 之如[10]之光擴散膜,且上述光擴散層及上述透明基材膜 分別被用作上述液晶顯示裝置之第2光擴散層及第2支持 膜。 [12] —種光擴散膜’其係如[6]之液晶顯示裝置中所使用 之如[10]之光擴散膜,且上述透明基材膜係直接或經由接 著層而貼合於上述液晶顯示裝置之第2偏光板之第2支持膜 側。 本發明之液晶顯示裝置可獲得廣視角、高顯示品質及優 異之色彩再現性。又,即便不使用相位差板亦可獲得實用 上無障礙之視角特性。 【實施方式】 以下’根據圖式對本發明之液晶顯示裝置進行說明,但 本發明不受該等實施形態之任何限定。 圖1係表示本發明之液晶顯示裝置之一實施形態之概述 圖。圖1之液晶顯示裝置係正常顯白模式之TN式之液晶顯 不裝置,且具備:於一對透明基板lla、llb之間設有液晶 層12而成的液晶單元i ;及設置於液晶單元背面側,以 149562.doc 201109800 特定間隔平行地設置有複數支冷陰極管2 1而成的直下型背 光裝置2。於背光裝置2與液晶單元1之間,自背光裝置側 起依序配置有第1光擴散層3、第1偏光板4,且於液晶單元 1之前側面’自液晶單元1侧起依序配置有第2偏光板6、第 2光擴散層5。第1光擴散層3包含具有光擴散功能之光擴散 板3 1,及設置於光擴散板3丨之前側面的發揮光偏向功能之 稜鏡片(光偏向構造板)32a、32b。 於此種構成之液晶顯示裝置中,自背光裝置2發射出之 光藉由第1光擴散層3之光擴散板31而擴散後,藉由稜鏡片 32而被賦予相對於液晶單元i之光入射面之法線方向的特 定之指向性。該相對於法線方向之指向性係被設定為較先 前之裝置更高。繼而,被賦予了特定之指向性之光藉由第 1偏光板4而偏光,入射至液晶單元丨中。入射至液晶單元i 中之光藉由經電場所控制之液晶層丨2之配向而逐像素控制 偏光面,自液晶單元1出射。然後,自液晶單元丨出射之光 藉由第2偏光板6、第2光擴散層5而形成圖像,並且進行擴 散。 如此於本發明之液晶顯示裝置中,使第1光擴散層3中 入射至液晶單元1之光的朝法線方向之指向性較先前更 南’即’使朝液晶單元^之入射光較先前更聚光,並且使 來自液晶單元1之出射光藉由第2光擴散層5而擴散。藉 此’與先前之裝置相比較可獲得廣視角及優異之色彩再現 性。 以下對本發明之液晶顯示裝置之各構件進行說明。首 149562.doc 201109800 先,本發明中所使用之液晶單元1具備:藉由未圖示之間 隔物隔開特定距離而對向配置的一對透明基板lla、llb; 及於該一對透明基板lla、llb之間封入液晶而成的液晶層 12。於圖1中雖未示出,但於一對透明基板Ua、ub上分 別積層形成有透明電極及配向膜’於透明電極間施加基於 顯不資料之電壓,藉此液晶配向。液晶單元丨之顯示方式 於此處為TN方式,但亦可採用IPS方式、VA方式等顯示方 式。 本發明中所使用之背光裝置2不限定於圖1所示之直下型 者’可使用在導光板之側面配置有線狀光源或點狀光源之 側光型、或者光源本身為平面狀之平面光源型等先前公知 者。 第1光擴散層3包含光擴散板31及稜鏡片32a、32b。具體 而言’如圖2所例示,第1光擴散層3可列舉於先擴散板3 1 之前面側設有稜鏡片32之構成。此處,光擴散板31成為於 基材311中分散有擴散劑312之構成。 作為構成基材3 11之樹脂,可使用:聚碳酸酯,曱基丙 烯酸系樹脂、曱基丙烯酸甲酯-苯乙烯共聚物樹脂、丙烯 腈-苯乙烯共聚物樹脂、曱基丙烯酸-苯乙烯共聚物樹脂、 聚苯乙烯、聚氯乙烯、聚丙烯、聚曱基戊烯等聚烯烴,環 狀聚烯烴,聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯、 聚萘二曱酸乙二酯等聚酯系樹脂,聚醯胺系樹脂,聚芳 酯,聚醯亞胺等。 又,分散於基材311中之擴散劑312為包含折射率與成為 149562.doc 201109800Various methods such as STN (Super Twisted Nematic), VA (VerUCal Alignment), and IPS (In-p丨ane * Switching), but these methods are used by The liquid B 曰 molecule has a light leakage caused by a phase difference value, or a deviation of an axis angle of the polarizing plate in a squint, and a direction angle of a narrow viewing angle, respectively. = As a method of widening the viewing angle, a method of optically compensating a liquid day and a polarizing plate by a phase difference plate (for example, jpH〇4·149562.doc 201109800 229828-A and JPH04-258923-A) is widely used. . On the other hand, as a method of obtaining a wider viewing angle without using a phase difference plate in a liquid crystal display device, there is known a method of illuminating a liquid crystal cell with parallel or substantially parallel light source light, with a higher haze The light diffusion layer diffuses the transmitted light of the liquid crystal cell (for example, JPS58_169132_A, JpS6〇_202425-A, and JUS62-1 10977-A). As the light-diffusing layer used in these techniques, specifically, a concave substrate or a transparent substrate having irregularities on its surface is disclosed. However, for example, when a transparent substrate having irregularities on the surface is used to form a light diffusion layer having a relatively haze, the outermost surface of the liquid crystal display device becomes large and uneven, and the light of the reflective display device is placed outside the environment. The screen is white and the display quality is insufficient. DISCLOSURE OF THE INVENTION An object of the present invention is to provide a liquid crystal display device which can realize display with a wide viewing angle and high color reproducibility even in the presence of light from outside the environment. Further, an object of the present invention is to provide a liquid crystal display device which realizes a viewing angle without using a phase difference plate, that is, without increasing the number of parts. The present invention includes the following. [1] A liquid crystal display device comprising: a liquid crystal cell in which a liquid crystal layer is provided between a pair of transparent substrates; a backlight device is disposed on a back side of the liquid crystal cell; and a first light diffusion layer; Between the backlight device and the liquid crystal cell described above, 'having a light diffusion function and/or a light deflection function; 149562.doc 201109800 弟1 polarizing plate' is arranged on the upper whistle ^ soil 4 electric 直 straight meaning the first first diffusion Between the layer and the liquid crystal cell; the second light diffusing layer is disposed on the front side of the liquid 曰 分 ; ; ;; and the second polarizing plate is disposed in the upper 曰 曰 - rt :i ^ between the upper day and the second light diffusion layer; and the second light diffusion layer has the following light diffusion characteristics: when a laser light having a wavelength of 543_5 nm is incident from the normal direction of the back side The relative intensity of the laser light emitted in a direction inclined by 40° from the normal direction is 〇〇〇〇2% to 0.001% with respect to the intensity of the laser light incident in the normal direction of the second light diffusion layer; The external haze of the second light diffusion layer is less than 10 / Square. In the present specification, the side (light emission side) which is the display screen of the liquid crystal display device is referred to as "front side", and the opposite side (light incident side) is referred to as "back side". [2] The liquid crystal display device of the above] wherein the internal haze of the second light diffusion layer is 20% or more and less than 7 Å/0. [3] The liquid crystal display device of [2], wherein the outgoing light from the first light diffusing layer has an inclination 70 from a normal direction. The liquid crystal display device according to any one of [4] to [3], wherein the brightness in the direction of the light is in the normal direction, and the brightness in the normal direction is 2% or less. The first light-diffusing layer includes a light-diffusing sheet that exhibits the light-diffusing function and a light-biased structural plate that exhibits the optical deflecting function, and the light-biased structural plate is further provided on the front side of the light-diffusing sheet. The liquid crystal display device of any one of [4], wherein the liquid crystal cell is any one of a TN mode liquid crystal cell, a (10) mode liquid crystal cell, and a financial liquid crystal cell. [6] The liquid crystal display device of any one of [5], wherein the second polarizing plate includes a polarizing element, a first supporting film disposed between the polarizing element and the liquid crystal cell, and a polarizing element disposed on the polarizing element A second support film between the element and the second light diffusion layer. The liquid crystal display device of [6], wherein the second light diffusion layer is directly laminated on the second support film. [8] The liquid crystal display device according to [6], wherein the surface on the back side of the second light-diffusing layer is directly bonded to the transparent base film, and the surface of the transparent base film opposite to the second light-diffusing layer The second support film is bonded to the second support film directly or via an adhesive layer. [9] The liquid crystal display device according to [7], wherein the combination of the second light diffusion layer and the second support film includes light having a light diffusion layer formed directly on one surface of the transparent substrate film or via a bonding layer Diffusion film. Further, in view of further improvement in viewing angle characteristics and color reproducibility, between the liquid crystal cell and the second polarizing plate (on the back side of the liquid crystal cell) and/or between the liquid crystal cell and the second polarizing plate ( It is preferable to arrange a phase difference plate on the front side of the liquid crystal cell. On the other hand, the phase difference plate may not be provided from the viewpoint of reducing the number of parts, improving the assembly property of the device, and improving productivity. Further, the liquid crystal cell may be a liquid crystal cell, and the phase difference plate may not be provided. [1〇] a light diffusing film which is formed on a surface of a transparent substrate film directly from 149562.doc -6 to 201109800 or a light diffusion layer formed via an adhesive layer, and the light diffusion layer has the following light diffusion Characteristics: When laser light having a wavelength of 543 5 nm is incident from the normal direction on the back side, the intensity of the laser light incident on the normal direction of the light diffusion layer is inclined by 40 from the normal direction. The relative intensity of the laser light emitted in the direction is 0.0002% to 0.001%; and the external haze of the light diffusion layer is less than 1.0%. [11] A light-diffusing film according to [10], wherein the light-diffusing layer and the transparent substrate film are used as the liquid crystal display device, respectively. The second light diffusion layer and the second support film. [12] A light-diffusing film according to [10], wherein the transparent substrate film is bonded to the liquid crystal directly or via an adhesive layer. The second support film side of the second polarizing plate of the display device. The liquid crystal display device of the present invention can obtain a wide viewing angle, high display quality, and excellent color reproducibility. Moreover, practically unobstructed viewing angle characteristics can be obtained without using a phase difference plate. [Embodiment] Hereinafter, the liquid crystal display device of the present invention will be described based on the drawings, but the present invention is not limited to the above embodiments. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing an embodiment of a liquid crystal display device of the present invention. The liquid crystal display device of FIG. 1 is a TN-type liquid crystal display device in a normal whitening mode, and includes a liquid crystal cell i in which a liquid crystal layer 12 is provided between a pair of transparent substrates 11a and 11b; and a liquid crystal cell On the back side, a direct type backlight device 2 in which a plurality of cold cathode tubes 21 are provided in parallel at a specific interval of 149562.doc 201109800 is provided. Between the backlight device 2 and the liquid crystal cell 1, the first light diffusion layer 3 and the first polarizing plate 4 are sequentially disposed from the backlight device side, and the front side of the liquid crystal cell 1 is sequentially arranged from the liquid crystal cell 1 side. There are a second polarizing plate 6 and a second light diffusing layer 5. The first light-diffusing layer 3 includes a light-diffusing sheet 3 1 having a light-diffusing function, and ruthenium sheets (light-biased structural sheets) 32a and 32b which are provided on the front side of the light-diffusing sheet 3A and exhibit a light deflecting function. In the liquid crystal display device of such a configuration, the light emitted from the backlight device 2 is diffused by the light diffusing plate 31 of the first light diffusing layer 3, and the light is given to the liquid crystal cell i by the die 32 The specific directivity of the normal direction of the incident surface. This directivity with respect to the normal direction is set to be higher than that of the prior device. Then, the light to which the specific directivity is imparted is polarized by the first polarizing plate 4, and is incident on the liquid crystal cell. The light incident on the liquid crystal cell i is controlled from the liquid crystal cell 1 by controlling the polarizing surface pixel by pixel by the alignment of the liquid crystal layer 丨2 controlled by the electric field. Then, the light emitted from the liquid crystal cell is formed into an image by the second polarizing plate 6 and the second light diffusing layer 5, and is diffused. In the liquid crystal display device of the present invention, the directivity of the light incident on the liquid crystal cell 1 in the first light diffusion layer 3 in the normal direction is made souther than the previous one, that is, the incident light toward the liquid crystal cell is earlier than the previous one. The light is collected more, and the emitted light from the liquid crystal cell 1 is diffused by the second light diffusion layer 5. By this, a wide viewing angle and excellent color reproducibility can be obtained by comparison with the previous apparatus. Hereinafter, each member of the liquid crystal display device of the present invention will be described. First, 149, 562.doc 201109800 First, the liquid crystal cell 1 used in the present invention includes: a pair of transparent substrates 11a and 11b disposed opposite to each other with a spacer separated by a spacer (not shown); and the pair of transparent substrates A liquid crystal layer 12 in which a liquid crystal is sealed between lla and 11b. Although not shown in Fig. 1, a transparent electrode and an alignment film are formed on a pair of transparent substrates Ua and ub, respectively, and a voltage based on the display data is applied between the transparent electrodes to thereby align the liquid crystal. The display mode of the liquid crystal cell is TN mode here, but it can also be displayed by IPS mode or VA mode. The backlight device 2 used in the present invention is not limited to the direct type shown in FIG. 1 'a planar light source in which a side light type of a linear light source or a point light source is disposed on the side of the light guide plate, or a light source itself is planar. Types and the like are previously known. The first light diffusion layer 3 includes a light diffusion plate 31 and dam pieces 32a and 32b. Specifically, as illustrated in Fig. 2, the first light-diffusing layer 3 has a configuration in which the dam piece 32 is provided on the front surface side of the front diffusion plate 3 1 . Here, the light diffusing plate 31 has a configuration in which the diffusing agent 312 is dispersed in the substrate 311. As the resin constituting the substrate 31, polycarbonate, fluorenyl acrylic resin, methyl methacrylate-styrene copolymer resin, acrylonitrile-styrene copolymer resin, methacrylic acid-styrene copolymer can be used. Polyolefins such as resin, polystyrene, polyvinyl chloride, polypropylene, polydecylpentene, cyclic polyolefin, polyethylene terephthalate, polybutylene terephthalate, polynaphthalene A polyester resin such as ethylene glycol diester, a polyamine resin, a polyarylate, a polyimine or the like. Moreover, the diffusing agent 312 dispersed in the substrate 311 contains a refractive index and becomes 149562.doc 201109800
作為具體例,可列 丙稀酸系樹脂、三聚 幾聚石夕氧樹脂、丙埽 及碳酸4弓 '二氧化 鈦、玻璃等之無機微 粒子等,可使用其中丨種或將2種以上混合而使用。又,有 機聚合物之球或玻璃空心珠粒亦可用作擴散劑312。擴散 劑312之平均粒徑適合的是〇5_〜3〇^之範圍。又,作 為擴散劑312之形狀,不僅為球狀,亦可為扁平狀、板 狀、針狀等。 另一方面,稜鏡片32係背面側(光入射面側)為平坦面、 前面側(光出射面側)成為平行排列形成有v字形之直線槽 321而成的稜鏡面。作為稜鏡片32之材料,例如可列舉: 聚碳酸酯樹脂或 ABS(Acrylonitrile Butadiene Styrene,丙 烯腈-丁二烯-笨乙烯共聚物)樹脂、甲基丙烯酸系樹脂、甲 基丙烯酸甲酯-苯乙烯共聚物樹脂、聚苯乙烯樹脂丙烯 腈-苯乙烯共聚物樹脂、聚乙烯_聚丙烯等聚烯烴樹脂,或 者紫外線硬化型樹脂、電子束硬化型樹脂等電離輻射硬化 型樹脂之硬化物等。稜鏡片32可利用異形擠壓法、壓製成 形法、射出成形法、輥轉印法、雷射剝蝕法、機械切割 法、機械研磨法、感光聚合物加工法等公知之方法而製 造。該些方法可分別單獨使用,或亦可組合2種以上之方 法。又’亦可於稜鏡片32中分散光擴散劑。稜鏡片32之厚 度通常為〇·1〜15 mm,較好的是0.5〜10 mm。 149562.doc •10- 201109800 光擴散板3 1與稜鏡片32可一體地成形,亦可分別製作後 接合。又,於分別製作並接合之情形時,亦可使光擴散板 31與稜鏡片32之間經由空氣層而接觸。 作為第1光擴散層3之不同實施樣態,如圖3所示,亦可 使擴散劑3 12分散於具有光偏向功能之稜鏡片32中,對稜 鏡片32賦予光擴散功能’藉此省略光擴散板3 i。 通過第1光擴散層3後之光之配光特性較好的是,自法線 方向傾斜70。之方向之亮度相對於法線方向之亮度為2〇%以 下,且來自第1光擴散層之出射光含有非平行光。更好之 配光特性為不存在自法線方向傾斜超過60。之角度的方向 之光的配光特性。 此處,所謂非平行光,係指具有如下出射特性之光:如 圖4所示,使自發光面71中的直徑i cm之圓72内出射之 光於在發光面71之法線方向上相離1 m、且與發光面?! 平行之觀察面73中形成投影像74,並對其進行觀察時,該 投影像74之面内亮度分佈之最小半值寬乃為3〇 以上。 再者,此處所謂最小半值寬,係指面内亮度分佈在所有方 向上的半值寬之最小值。 為了貫現此種配光特性,例如,只要調整在稜鏡片U之 V字形直線槽321之間形成的具有三角形剖面之稜鏡部分 322之形狀即可。作為稜鏡部分322之剖面的三角形之頂角 Θ(圖2、3所示)較好的是6〇〜12〇。之範圍。又該三角形為 各邊相[不相等均可,當欲於液晶單元1之正面方向(法 線方向)上聚光時,較好的是前面側(光出射側)之兩邊相等 149562.doc 201109800 的等腰三角形。 上述稜鏡片32係該具有三角形剖面之複數個稜鏡部分 322以相對於三角形之頂角β之底邊相互鄰接的方式而配 置,較好的是具有以複數個稜鏡部分322之稜線(或複數個 V字形直線槽321)相互大致平行之方式而排列的構造。此 時,只要聚光能力不明顯減退,則稜鏡部分322之剖面形 狀之三角形亦可為其各頂點為曲線形狀等。 各頂點間之距離d(圖2、3所示)通常為10 μηι〜5〇〇 μηΐ2 範圍’更好的是30 μπι〜200 μπι之範圍。 作為本發明中所使用之第丨偏光板4,通常使用在偏光元 件之兩面貼合有支持膜者。偏光元件之例包括:使二色性 染料或碘吸附配向於聚乙烯醇系之樹脂、聚乙酸乙烯酯樹 脂、乙烯/乙酸乙烯酯(EVA)樹脂、聚醢胺樹脂、聚酯樹脂 等之偏光元件基板而成者;及於分子經配向之聚乙烯醇膜 中,含有聚乙烯醇之二色性脫水產物(聚乙烯)之經配向之 分子鏈的聚乙烯醇/聚乙烯共聚物。尤其’使二色性染料 或碘吸附配向於聚乙烯醇系樹脂之偏光元件基板而成者適 合用作偏光元件。偏光元件之厚度並無限定,通常以偏光 板之薄型化專為目的,較好的是i pm以下,更好的是 1〇〜50 μΐΏ之範圍,進而好的是25〜35 μιη之範圍。As a specific example, an inorganic fine particle such as an acrylic acid resin, a trimeric polyoxo resin, a fluorene, a carbonic acid, a titanium dioxide, or a glass, or the like may be used, and a mixture of two or more kinds thereof may be used. . Further, an organic polymer sphere or a glass hollow bead may also be used as the diffusing agent 312. The average particle diameter of the diffusing agent 312 is suitably in the range of 〇5_~3〇^. Further, the shape of the diffusing agent 312 is not only a spherical shape but also a flat shape, a plate shape, a needle shape or the like. On the other hand, the cymbal sheet 32 has a flat surface on the back side (light incident surface side) and a front surface side (light exit surface side) in which a v-shaped linear groove 321 is formed in parallel. Examples of the material of the bake sheet 32 include polycarbonate resin or ABS (Acrylonitrile Butadiene Styrene) resin, methacrylic resin, and methyl methacrylate-styrene. A polyolefin resin such as a copolymer resin, a polystyrene resin acrylonitrile-styrene copolymer resin or a polyethylene-polypropylene, or a cured product of an ionizing radiation-curable resin such as an ultraviolet curable resin or an electron beam curable resin. The crotch sheet 32 can be produced by a known method such as a profile extrusion method, a press molding method, an injection molding method, a roll transfer method, a laser ablation method, a mechanical cutting method, a mechanical polishing method, or a photopolymer processing method. These methods may be used alone or in combination of two or more. Further, a light diffusing agent may be dispersed in the cymbal sheet 32. The thickness of the cymbal sheet 32 is usually 〇1 to 15 mm, preferably 0.5 to 10 mm. 149562.doc •10- 201109800 The light diffusing plate 3 1 and the cymbal 32 can be integrally formed, or they can be separately joined. Further, in the case of separately producing and joining, the light diffusing plate 31 and the cymbal sheet 32 may be brought into contact via an air layer. As a different embodiment of the first light-diffusing layer 3, as shown in FIG. 3, the diffusing agent 312 may be dispersed in the ruthenium sheet 32 having the light-biasing function to impart a light-diffusing function to the cymbal sheet 32. Light diffusing plate 3 i. The light distribution characteristics of the light passing through the first light-diffusing layer 3 are preferably inclined by 70 from the normal direction. The luminance in the direction of the luminance is 2% or less with respect to the normal direction, and the emitted light from the first light diffusion layer contains non-parallel light. A better light distribution characteristic is that there is no more than 60 tilt from the normal direction. The light distribution characteristics of the light in the direction of the angle. Here, the term "non-parallel light" refers to light having an emission characteristic in which light emitted from a circle 72 having a diameter i cm in the self-luminous surface 71 is emitted in the normal direction of the light-emitting surface 71 as shown in FIG. Is it 1 m away from the light-emitting surface? ! When the projection image 74 is formed in the parallel observation surface 73 and is observed, the minimum half value width of the in-plane luminance distribution of the projection image 74 is 3 Å or more. Furthermore, the term "minimum half-value width" as used herein refers to the minimum value of the half-value width of the in-plane luminance distribution in all directions. In order to realize such a light distribution characteristic, for example, it is only necessary to adjust the shape of the meandering portion 322 having a triangular cross section formed between the V-shaped linear grooves 321 of the cymbal U. The apex angle 三角形 (shown in Figs. 2 and 3) of the triangle which is the cross section of the 稜鏡 portion 322 is preferably 6 〇 12 12 。. The scope. Further, the triangle is each side phase [unequal, when it is desired to condense in the front direction (normal direction) of the liquid crystal cell 1, it is preferable that the front side (light exit side) is equal to each other 149562.doc 201109800 Isosceles triangle. The crotch panel 32 is configured such that the plurality of crotch portions 322 having a triangular cross section are disposed adjacent to each other with respect to a bottom edge of the apex angle β of the triangle, and preferably has a ridge line of a plurality of crotch portions 322 (or A structure in which a plurality of V-shaped linear grooves 321) are arranged substantially parallel to each other. At this time, as long as the condensing ability does not significantly decrease, the triangular shape of the cross-sectional shape of the 稜鏡 portion 322 may be a curved shape or the like for each apex thereof. The distance d between the vertices (shown in Figs. 2 and 3) is usually 10 μm to 5 〇〇 μη ΐ 2 range, and more preferably 30 μm to 200 μm. As the second polarizing plate 4 used in the present invention, a support film is bonded to both surfaces of a polarizing element. Examples of the polarizing element include: a dichroic dye or iodine is adsorbed to a polyvinyl alcohol-based resin, a polyvinyl acetate resin, an ethylene/vinyl acetate (EVA) resin, a polyamide resin, a polyester resin, or the like. The element substrate is formed; and a polyvinyl alcohol/polyethylene copolymer containing an aligned molecular chain of a disaccharide dehydration product (polyethylene) of polyvinyl alcohol in a molecularly oriented polyvinyl alcohol film. In particular, a polarizing element is preferably used as a polarizing element in which a dichroic dye or iodine is adsorbed to a polarizing element substrate of a polyvinyl alcohol resin. The thickness of the polarizing element is not limited, and is usually for the purpose of thinning the polarizing plate, and is preferably i pm or less, more preferably 1 〇 to 50 μ ,, and further preferably 25 to 35 μηη.
作為支持.保護偏光元件之支持膜,較好的是包含雙折 射! 生低且透明性及機械強度、熱穩定性及水分遮蔽性等 優異之聚合物之膜。此種膜之例包括:將TAC(三乙酸纖維 素)等乙馱纖維素系樹脂或丙烯酸系樹脂、四氟乙烯/六I 149562.doc •12· 201109800 丙烯系共聚物之類的氟系樹脂、聚碳酸酯樹脂、聚對苯二 甲酸乙二酯等聚酯系樹脂、聚醯亞胺系樹脂、聚砜系樹 脂、聚喊颯系樹脂、聚苯乙烯系樹脂、聚乙烯醇系樹脂、 聚氯乙烯系樹脂、聚烯烴樹脂或聚醯胺系樹脂等樹脂加工 成形為膜狀者。該等之中,就偏光特性及耐久性等方面而 言,可較好地使用表面經鹼等進行了皂化處理之三乙酸纖 維素膜或降捐烯系熱塑性樹脂膜。降袼烯系熱塑性樹脂膜 由於良好地阻隔熱或濕熱故偏光板4之耐久性大幅提昇, 並且由於吸濕率少故尺寸穩定性大幅提昇,從而可特別適 合地使用。製成膜狀之成形加工可使用澆鑄法、砑光法、 擠壓法之先前公知之方法◊支持膜之厚度並無限定,就偏 光板4之薄型化等觀點而言,通常較好的是5〇〇 以下, 更好的是5〜300 μηι之範圍,進而好的是5〜15〇μηΐ2範圍。 第2偏光板6係與配置於液晶單元丨之背面側之第丨偏光板 4成對者,且此處亦可適合地使用就第丨偏光板*而例示 者。其中’第2偏光板6通常係以其偏向面與第丨偏光板4之 偏向面正交之方式配置,或以成平行之方式配置。於將液 晶顯不裝置設定為正常顯白之情形時,只要以第1偏光板 與第2偏光板之偏向面正交之方式設置即可,於設定為正 常顯黑之情形時’只要以第i偏光板與第2偏光板之偏向面 平行之方式設置即可。 (第2光擴散層之形成) 圖5中表示配置於,之》夜晶顯示裝置之第2光擴散層认 第2偏光板6的概述圖。圖5(勾、化)例示了第2光擴散層5之 149562.doc •13· 201109800 各種形態。 於圖5(a)中,第2偏光板6包含:偏光元件60、配置於該 偏光元件60之液晶單元側的第1支持膜61、及配置於該偏 光元件之第2光擴散層5側的第2支持膜62。偏光元件60與 上述第2偏光板所使用之偏光元件相同《第1支持膜61及第 2支持膜62與上述第2偏光板所使用之支持膜相同。 第2光擴散層5係將分散有微小之透光性微粒子52之樹脂 組合物塗佈於第2偏光板6之第2支持膜62上,使表面平坦 並進行硬化,藉此使分散有透光性微粒子52之透光性樹脂 層51作為第2光擴散層5而形成於第2偏光板6上。此時,樹 脂組合物中之透光性微粒子52之分散較好的是等向分散。 圖5(b)之第2光擴散層5係將分散有微小之透光性微粒子 52之樹脂組合物塗佈於第2偏光板6之第2支持膜62上,並 使其硬化’藉此使分散有透光性微粒子52的表面上具有凹 凸之透光性樹脂層51形成於第2偏光板6上。進而,於其上 塗佈不含透光性微粒子之與透光性樹脂層5 1相同之樹脂組 合物後’使表面平坦並進行硬化,藉此形成具有平坦表面 之硬塗層53。第2偏光板6與圖5(a)相同。 此種構成之第2光擴散層5具有如下之光擴散特性:於自 为面側之法線方向入射波長543.5 nm之雷射光時,相對於 在第2光擴散層之法線方向上入射之雷射光的強度,在自 法線方向傾斜40。之方向上出射的雷射光之相對強度為 0.0002%〜0.001%。進而’較好的是雷射光之相對強度達到 0.0008%以下的相對於法線方向之角度(出射角)為4〇0以 149562.doc 201109800 上。藉此’自液晶單元1透射至前面側之光發生前向散 射’而將正面方向之透射光之圖像之清晰度維持得較高, 自傾斜方向觀察時之圖像之著色得到抑制,視角變廣。 為如此般控制第2光擴散層5之光擴散特性,例如於使用 分散有透光性微粒子5 2之透光性樹脂層5 1作為第2光擴散 層5之情形時’只要調整透光性微粒子52之形狀.粒徑.添加 1、及透光性微粒子5 2與透光性樹脂層5 1之折射率差等即 可。 作為用於形成透光性樹脂層5 1之樹脂,只要為可利用某 些方法使其硬化之透明樹脂,則可任意使用,就製造及操 作之簡便性而言’較好的是使用紫外線硬化性樹脂組合 物。而且,可較好地利用使該紫外線硬化性樹脂組合物硬 化而獲得透光性樹脂層5 1之方法。作為紫外線硬化性樹脂 組合物,可使用公知者,考慮到第2光擴散層係配置於液 晶顯示裝置之最外側,該光擴散層較好的是具有充分之機 械強度,因此,紫外線硬化性樹脂組合物較好的是兼具作 為硬塗用樹脂組合物之特徵。作為此種紫外線硬化性樹脂 組合物’可較好地使用丙烯酸系、環氧系等之硬塗用樹脂 組合物,例如可特別好地使用三羥甲基丙烷三丙烯酸酯、 季戊四醇四丙稀酸酯等多官能丙烯酸酯之單獨1種或2種以 上與「Irgacure 907」、「Irgacure 184」(以上為汽巴精化 (Ciba Specialty Chemicals)公司製造)、「Lucirin τρο」 (BASF公司製造)等光聚合起始劑之混合物等。 透光性微粒子52係包含折射率與透光性樹脂層5丨不同之 149562.doc 201109800 材質的微粒子,且盆例々括.系!— t 、例包括.丙烯酸糸樹脂、三聚氰胺樹 脂、聚乙烯、聚苯乙烯、有機聚矽氧樹脂、丙烯酸·笨乙 烯共聚物等之有機微粒子,及碳酸的、二氧切、氧化 紹、碳酸鋇、硫酸鋇、氧化鈦、玻璃等之無機微粒子,可 使用該等中之1種’或混合使用2種以上。又,亦可使用有 機共聚物之球或玻璃空心珠粒。透光性微粒子52之平均粒 徑適合的是1 μιη〜25 μιη之範圍。透光性微粒子52之形狀為 球狀' 扁平狀、板狀、針狀等均可’特別理想的是球狀。 (使用光擴散膜之第2光擴散層之形成) 作為用以於第2偏光板6上形成第2光擴散層5之其他有利 態樣,可列舉使用光擴散膜之方法。圖6係用以說明使用 光擴散膜54於第2偏光板6上形成第2光擴散層5之方法的概 述圖°光擴散膜54包含光擴散層54Α及透明基材膜54Β。 光擴散層54Α與上述第2光擴散層相同。又,透明基材膜 54Β只要為具有透明性之膜,則並無特別限定,作為用於 形成透明基材膜54Β之樹脂,例如可列舉:TAC(三乙酸纖 維素)等乙酸纖維素系樹脂及丙烯酸系樹脂、聚碳酸酯樹 脂、聚對苯二甲酸乙二酯等聚酯系樹脂等。 (1)使用光擴散膜之方法1 如圖6(a)所示,光擴散膜54之透明基材膜54Β側係直接 或經由接著層而積層於(與第1支持膜61相反之側的)偏光元 件60上。如此,光擴散膜54之光擴散層54Α及透明基材膜 54Β係分別被用作液晶顯示裝置之第2光擴散層5及第2支持 膜62,而獲得依序得到有第1支持膜61、偏光元件60及第2 149562.doc -16 - 201109800 支持膜62之第2偏光板6’以及直接積層於該第2支持膜62 上之第2光擴散層5。 (2)使用光擴散膜之方法2 如圖6(b)所示,光擴散膜54之透明基材膜54B側係直接 或經由接著層而積層於第2偏光板6之第2支持膜上。再 者’此處所謂之接著層包含黏著劑或接著劑。如此,而獲 得依序積層有第1支持膜61、偏光元件60及第2支持膜62之 第2偏光板6,以及於該第2支持膜62上直接或經由接著層 而積層透明基材膜5 4B、且於該透明基材膜54B上直接積 層之第2光擴散層5。 (雷射光之相對強度之測定方法) 以下,對雷射光自第2偏光板之背面側之法線方向入射 時的自第2光擴散層出射之雷射光之相對強度的測定方法 進行說明。再者,所謂「第2偏光板之背面側之法線方 向」,係指相對於第2偏光板ό之平坦表面的光入射側之法 線方向。 圖7係示意性地表示測定自第2偏光板之背面側之法線方 向入射、朝第2光擴散層側出射之雷射光之相對強度時, 雷射光之入射方向與出射方向之立體圖。於圖7中,相對 於自第2光擴散層之表面91之背面側(圖中下方側)在法線方 向上入射之雷射光93,測定在距第2光擴散層側之法線方 向92為角度φ之方向上出射的雷射光“之強度。雷射光% 之測定強度除以所入射之雷射光93之強度之值成為相對強 度再者雷射光94、法線方向92、及入射之雷射光%係 149562.doc •17· 201109800 以全部在同一平面(圖7中之平面95)上之方式而測定。 其次,對如此而測定之相對強度相對於角度(出射角小) 而作圖,藉此求出相對強度達到0.0008%以下之角度(出射 角Φ)。圖8為對自第2光擴散層側出射之雷射光之相對強度 相對於出射角φ而作圖之圖表之一例。如該圖表所示相 對強度於出射角為〇。時、即圖7之法線方向92上為峰值, 且有出射角φ相對於法線方向92變得越大則相對強度越下 降之傾向。於圖8所示之例中,可知相對強度達到〇 〇〇〇8% 以下係出射角φ為41。以上之情形。 (液晶顯示裝置之其他實施形態) 圖9表示本發明之液晶顯示裝置之其他實施形態。圖9之 液晶顯示裝置與圖1之液晶顯示裝置不同之處在於,於第i 偏光板4與液晶單元丨之間配置有相位差板8。該相位差板8 於液晶單元1之表面之法線方向上的相位差幾乎為零,對 液晶早7L 1之表面之法線方向.(正面方向)不帶來任何光學作 用而在相對於正面方向傾斜之方向上表現出相位差,且 欲補償自傾斜方向觀察液晶顯示S f時液晶單元i中所產 生之相位差。藉此,可獲得更廣之視角,#而可獲得更優 八之顯示αα彦及色彩再現性。相位差板8可配置於第1偏光 板4與液晶單元1之間及第2偏光板6與液晶單元丨之間的一 處或兩處。 位差板8之例包括:將聚碳酸酯樹脂或環烯系共聚物 樹,製成膜,並將該膜進—步雙軸延伸而成者;及對液晶 性單體藉由光聚合反應固定分子排列而成者。相位差板8 149562.doc 201109800 對液晶之排列加以光學補償,故較好的是使用折射率特性 與液晶排列相反者。具體而言,TN模式之液晶顯示單元 可適合地使用例如「wv膜」(富士膠片股份有限公司製 造),STN模式之液晶顯示單元可適合地使用例如「 膜」(新日本石油股份有限公司製造),ips模式之液晶單元 可適合地使用例如雙軸性相位差膜’ VA模式之液晶單元 可適合地使用例如將A-板與C_板組合之相位差板或雙軸性 相位差膜,π單元模式之液晶單元可適合地使用例如 「OCB用WV膜」(富士膠片股份有限公司製造)等。 實施例 以下列舉實施例對本發明進行更詳細說明,但本發明並 不限定於該等實施例。 [第1光擴散層之製造] (1)光擴散板之製作 利用亨舍爾混合機將苯乙烯-甲基丙烯酸曱酯共聚物樹 脂(折射率1.57)74.5質量份、交聯聚曱基丙烯酸曱酯樹脂 粒子(折射率i.49 ’重量平均粒徑30 μιη)25質量份、苯并三 嗤系紫外線吸收劑(住友化學股份有限公司製造之「Sumi-soap 200」)〇·5質量份、受阻酚系抗氧化劑(熱穩定劑)(汽 巴精化股份有限公司製造之「IRGANOX 1〇1〇」)〇_2質量 份混合之後’利用第2擠壓機進行熔.融混練,並供給於進 料導管(feed block)。 另一方面,利用亨舍爾混合機將苯乙烯樹脂(折射率 1·59)99.5質量份、笨并三唑系紫外線吸收劑(住友化學股 149562.doc -19· 201109800 份有限公司製造之「Sumi_soap 200」)〇 〇7質量份、光穩 定劑(汽巴精化股份有限公司製造之Γ Tinuvin 77〇」)〇 13 質里份混合之後,與交聯矽氧烷系樹脂粒子(Toray-D〇w Corning Silicone股份有限公司製造之「丁代⑴dy33_ 719」,折射率丨.“,重量平均粒徑2 μίη)一起利用第丨擠出 機進行炼融混練’並供給於進料導管。藉由調節交聯矽氧 烷系樹脂粒子之添加量而調節擴散板之全光線透射率D, 製作全光線透射率Tt為65%之光擴散板。 再者,上述光擴散板係以自上述.第丨擠出機供給於進料 導管之樹脂成為中間層(基層)、自上述第2擠出機供給於進 料導官之樹脂成為表層(雙面)的方式進行複合擠壓成形, 而成為厚度為2贿(中間層i ·9〇随、表層〇。5酿心)之包 含3層之積層板。又,全光線透射㈣係依據jis κ加使 用霧度’透射率計(村上色彩技術研究所股份有限公司製 造’ HR-1〇〇)而測定。 狡鏡片(光偏向構造板)之製作 藉由將苯乙稀樹脂(折射率U9)壓製成形而製作厚度^ _之平板。it而’使用形狀與如圖2所示之頂角為:、‘ 點間之距離d為5〇㈣之具有等腰三角形之剖面的棱鏡部 322及V字形直線槽321平行排列形成之稜鏡片32相對# 金屬製模具’將上述苯乙稀樹脂板再次壓製成形,藉此 :棱鏡片°再者’調整頂角0 ’以使於將該稜鏡片作為; 二貫施例之液aB顯不裝置之第!光擴散層之構件而組/ ’相對於法線方向傾斜7G。之方向的亮度成為法線方p 149562.doc -20· 201109800 之免度之0%、l〇%、2〇%。 (3)具有第1光擴散層之液晶顯示裝置之製作 於後述實施例中使用之液晶顯示裝置之背光裝置2上, 如圖1之配、置般積層上述光擴散板31與稜鏡片32a、32b。 此時,以其中一片稜鏡片之v字形直線槽之方向相對於背 光裝置2之冷陰極管2丨大致平行之方式配置,且以另一片 稜鏡片之v字形直線槽之方向與前一稜鏡片之v字形直線 槽之方向正交的方式’積層稜鏡片32a、32b。 [第2光擴散層之製造] <製造例1> (1) 轉印用金屬輥之製作 對直徑200 mm之鐵輥(118之STKM13 A)之表面進行工業 用鍍鉻加工,然後對表面進行鏡面研磨而製作鏡面模具。 (2) 第2光擴散層之製備 將季戊四醇三丙烯酸醋(60質量份)及多官能聚胺酿化丙 烯酸酯(六亞甲基二異氰酸酯與季戊四醇三丙烯酸酯之反 應產物’ 40質量份)混合至丙:醇單曱謎溶液中,以固體 成分濃度達到60質量%之方式調整’獲得紫外線硬化性樹 脂組合物。再者,自該組合物中去除丙二醇單甲醚並進行 紫外線硬化後之硬化物之折射率為1 5 3。 其次,相對於上述紫外,線硬化性樹脂組合物之固形物成 分100質量份,添加作為透光性微粒子之重量平均粒徑為 12.0叫之聚苯乙稀系粒子(積水化成品工業股份有限公司 製造’ SBx_12)3G質量份、作為光聚合起始劑之「Lucirin 149562.doc •21 · 201109800 TPO」(BASF公司製造,化學名:2,4,6-三曱基苯曱醯基二 苯基氧化膦)5質量份,以固體成分率達到6〇質量%之方式 利用丙二醇單甲醚稀釋而製備塗佈液。 將該塗佈液塗佈於厚度為80 μπι之平坦之三乙酸纖維素 (TAC)膜(第2偏光板中偏光元件之第2支持膜62)上,於設 疋為8 0 C之乾燥機中乾燥1分鐘。利用橡膠輥,以紫外線 硬化性樹脂組合物層位於模具側的方式,將塗佈液乾燥而 形成有紫外線硬化性樹脂組合物層之TAC膜按壓並密接於 上述(1)所製作之模具之鏡面。於該狀態下自TAC膜側以h 線換算光量達到300 mj/cm2之方式照射強度2〇 mW/cm2之 來自南壓水銀燈之光,使紫外線硬化性樹脂組合物層硬 化’獲得包含分散有透光性微粒子5 2之透光性樹脂層5 1、 且圖5(a)所示之構造的具有平坦表面之第2光擴散層5(附 TAC膜)。此時’分散有透光性微粒子52之透光性樹脂層5 1 之厚度為25.1 μπ\。 <製造例2> 除了使用重量平均粒徑為6 〇 μπι之聚苯乙烯系粒子(積水 化成。σ工業股份有限公司製造,SBX-6)40質量份作為透光 性微粒子以外,與製造例1同樣地獲得第2光擴散層。此 時刀政有透光性微粒子52之透光性樹脂層5 1之厚度為 1 5.5 μιη » 〈製造例3> ” 用重量平均粒從為6.0 μχη之聚苯乙烯系粒子(積水 化成品工業股份有限公司製造’ SBX-6)l〇質量份作為透光 149562.doc -22. 201109800 性微粒子以外,與製造例1同樣地獲得第2光擴散層。此 時’分散有透光性微粒子52之透光性樹脂層5 1之厚度為 1 3.4 μιη。 〈製造例4> 除了使用重量平均粒徑為6.0 μηι之聚苯乙烯系粒子(積水 化成品工業股份有限公司製造,Sbx_6)70質量份作為透光 性微粒子以外,與製造例1同樣地獲得第2光擴散層。此 時’分散有透光性微粒子52之透光性樹脂層5 1之厚度為 1 3.7 μπι。 <製造例5> 除了不按壓於模具之鏡面,且自紫外線硬化樹脂側以h 線換算光量達到300 mJ/cm2之方式照射強度20 mw/cm2之 來自局壓水銀燈的光’使紫外線硬化性樹脂組合物層硬化 以外’與製造例1同樣地獲得第2光擴散層。此時,分散有 透光性微粒子52之透光性樹脂層51之厚度為27 2 μηι。 <製造例6> 除了使用重量平均粒徑為6 〇 μπ1之聚苯乙烯系粒子(積水 化成品工業股份有限公司製造,SBX-6)40質量份作為透光 性微粒子以外,與製造例5同樣地獲得第2光擴散層。此 時,分散有透光性微粒子52之透光性樹脂層5丨之厚度為 1 6.1 μηι。 [第2光擴散層之光擴散特性之測定] <霧度值之測定> 對製造例1〜6中獲得之第2光擴散層測定霧度值。將測定 149562.doc •23· 201109800 結果示於表1中。再者,根據表示對膜照射光而透射之光 線之所有量的全光線透射率(Tt)、與藉由膜而擴散並透射 之擴散光線透射率(Td)之比,利用下述式(1): 霧度(%)=(Td/Tt)x 1 00 (1) 求出霧度值。此處’全光線透射率(Tt)為保持與入射光同 軸而透射之平行光線透射率(Tp)與擴散光線透射率(Td)之 和。全光線透射率(Tt)及擴散光線透射率(Td)係依據JIS K 7361利用霧度透射率計(村上色彩技術研究所股份有限公 司製造,HM-150)而測定。 為防止樣品之翹曲’使用光學透明之黏著劑將積層於第 2光擴散層之TAC膜側貼合於玻璃基板,以第2光擴散層成 為表面之方式,於該狀態下自玻璃基板側照射光而測定總 霧度。再者’玻璃基板及TAC膜不影響各霧度值之測定, 此處之測定值與第2光擴散層之霧度值等效。 内部霧度之測定係利用甘油於膜表面上貼附霧度大致為 0之二乙酸纖維素膜而消除膜外側之影響,藉此與總霧度 之測定同樣地進行。 外部霧度係根據上述總霧度及内部霧度之測定值藉由下 式而求出。 外部霧度(°/。)=總霧度(°/。)-内部霧度(〇/0) <各出射角之雷射光強度之測定> 又’將製造例1〜6中所得之第2光擴散層貼合於玻璃基 板’自该玻璃基板側在第2光擴散層之法線方向上照射波 長543.5 nm之來自He-Ne雷射之平行光,測定自構成第2光 149562.doc -24- 201109800 擴散層之層之中分散有透光性微粒子之透光性樹脂層相對 於玻璃基板表面之法線方向成〇。〜9〇。之特定角度(出射角) 而出射的雷射光之強度。再者’敎中使用橫河電機(股) 製造之「3292 03光功率感測器」或「3292光功率計」。 將以特定之出射角出射之雷射光的強度相對於照射於第2 光擴散層之雷射光之強度的比率(相對強度)達到〇 以下之出射角(。)及自法線方向傾斜4〇。之方向上出射之相 對強度(%)示於表1。 進行該測定時,照射He_Ne雷射之光源係配置於距離上 述玻璃基板430 mm之位置。光接收器即上述功率感測器係 配置於距離雷射光之出射點28〇 mm之位置,以達到上述特 定角度之方式移動該功率感測器,分別測定所出射之雷射 光之強度。 又’照射於第2光擴散層之雷射光之強度、即自上述光 源所照射之雷射光之強度,係藉由不設置貼合有第2光擴 散層之玻璃基板’而測定自上述光源直接入射至上述功率 感測器之光的強度而求出。再者,該強度之測定係於距離 上述光源710 mm(=430 min+280 mm)之位置配置上述功率 感測器而進行。 149562.doc -25- 201109800 [表i] 透光性微粒子 總霧度 (%) 内部霧度 (%) 外部霧度 (%) 於自法線方向 傾斜40°之方 向上出射的相 對強度 (%) 相對強度 達到 0.0008% 以下之出射角 (°) 重量平均 粒徑 (㈣ 調配量 (質量部Γ 製造例1 12 30 61.1 60.5 0.6 0.00061 41 製造例2 6 40 64,8 64.4 0.4 0.00068 41 製造例3 6 10 35.2 34.9 0.3 0.00017 30 製造例4 6 70 90.6 90.1 0.5 0.00137 53 製造例5 12 30 62.2 34.9 28.3 0.00056 38 製造例6 6 40 64.3 38.8 27.5 0.00061 38 *1 :相對於紫外線硬化性樹脂組合物之固體成分100質量份的使用量(質量份) (實施例1) . 作為液晶顯示裝置,使用在VA模式之夏普股份有限公 司製造之32型液晶電視(LC-32D10-B)之背光裝置之前面側 設置有自法線方向傾斜70°之方向之亮度為法線方向之亮 度的10%之上述第1光擴散層的液晶顯示裝置。其次,剝 下位於上述液晶顯示裝置之液晶單元之兩面的偏光板及相 位差板,於表背面以成正交偏光之方式貼合住友化學股份 有限公司製造之碘系普通偏光板(TRW842AP7),且以偏光 板之吸收軸平行於液晶單元之短邊與長邊之方式貼合。最 後,貼合於在前面側貼合有製造例1中所得到之附TAC膜 (第2偏光板之偏光元件之支持膜)之第2光擴散層作為第2光 擴散層的上述碘系普通偏光板(第2偏光板之偏光元件)之表 面,而製作自前面側起具有第2光擴散層、第2偏光板、液 晶單元、第1偏光板、第1光擴散層(稜鏡片、光擴散板)及 背光裝置之(圖1之構成)液晶顯示裝置。 (實施例2及3) 149562.doc •26· 201109800 除了使用自法線方向傾斜70。之方向之亮度為法線方向 之亮度之0°/。的第1光擴散層(實施例2)、及為20%的第1擴 散層(實施例3)作為第1光擴散層以外,與實施例丨同樣地製 作液晶顯示裝置。 (實施例4) 除了使用製造例2中所得之第2光擴散層作為第2光擴散 層以外’與實施例1同樣地製作液晶顯示裝置。 (比較例1) 除了使用製造例3中所得之第2光擴散層作為第2光擴散 層以外’與實施例1同樣地製作液晶顯示裝置。 (比較例2) 除了使用製造例4中所得之第2光擴散層作為第2光擴散 層以外,與實施例1同樣地製作液晶顯示裝置。 (比較例3及4) 除了使用製造例5及6所得之第2光擴散層作為第2光擴散 層以外,與實施例1同樣地製作液晶顯示裝置。 (評價) 對於實施例1~4、比較例丨〜4中所製作之液晶顯示裝置, 於暗享内進行目測評價。又,亦進行2〇〇勒克司之明室内 之目測評價。將結果示於表2。 149562.doc -27- 201109800 [表2]As a support film for supporting and protecting a polarizing element, it is preferable to include a birefringence! A film of a polymer which is excellent in transparency, transparency, mechanical strength, thermal stability, and moisture shielding properties. Examples of such a film include an acetonitrile resin such as TAC (cellulose triacetate) or an acrylic resin, a fluorine resin such as tetrafluoroethylene/hexa 149562.doc •12·201109800 propylene copolymer. Polyester resin such as polycarbonate resin or polyethylene terephthalate, polyamidene resin, polysulfone resin, polyfluorene resin, polystyrene resin, polyvinyl alcohol resin, A resin such as a polyvinyl chloride resin, a polyolefin resin or a polyamide resin is processed into a film. Among these, a triacetin cellulose film or a eutectic thermoplastic resin film which has been subjected to saponification treatment with an alkali or the like can be preferably used in terms of polarization characteristics and durability. The decene-based thermoplastic resin film is excellent in the durability of the polarizing plate 4, and the dimensional stability is greatly improved due to the low moisture absorption rate, so that it can be used particularly suitably. The film forming process can be carried out by a conventionally known method of a casting method, a calendering method, or an extrusion method. The thickness of the support film is not limited, and it is generally preferred from the viewpoint of thinning of the polarizing plate 4 and the like. 5〇〇 or less, more preferably a range of 5 to 300 μηι, and further preferably a range of 5 to 15 〇μηΐ2. The second polarizing plate 6 is paired with the second polarizing plate 4 disposed on the back side of the liquid crystal cell, and the second polarizing plate * can be suitably used here. The second polarizing plate 6 is usually disposed such that its deflecting surface is orthogonal to the deflecting surface of the second polarizing plate 4, or is arranged in parallel. When the liquid crystal display device is set to be normally white, the first polarizing plate and the second polarizing plate may be disposed so as to be orthogonal to each other, and when the normal black color is set, the The polarizing plate of i may be disposed in parallel with the deflecting surface of the second polarizing plate. (Formation of the second light-diffusing layer) Fig. 5 is a schematic view showing the second light-diffusion layer of the second light-diffusion layer 6 disposed on the night crystal display device. Fig. 5 (hook, chemistry) exemplifies various forms of the second light diffusion layer 5, 149562.doc • 13· 201109800. In FIG. 5(a), the second polarizing plate 6 includes a polarizing element 60, a first supporting film 61 disposed on the liquid crystal cell side of the polarizing element 60, and a second light diffusing layer 5 disposed on the polarizing element. The second support film 62. The polarizing element 60 is the same as the polarizing element used in the second polarizing plate. The first supporting film 61 and the second supporting film 62 are the same as the supporting film used for the second polarizing plate. In the second light-diffusing layer 5, the resin composition in which the fine light-transmitting fine particles 52 are dispersed is applied onto the second support film 62 of the second polarizing plate 6, and the surface is flat and hardened, thereby dispersing the resin composition. The translucent resin layer 51 of the photonic particles 52 is formed on the second polarizing plate 6 as the second light diffusion layer 5 . At this time, the dispersion of the light-transmitting fine particles 52 in the resin composition is preferably dispersed in an isotropic manner. In the second light-diffusing layer 5 of FIG. 5(b), the resin composition in which the fine light-transmitting fine particles 52 are dispersed is applied onto the second support film 62 of the second polarizing plate 6, and is cured. The light-transmitting resin layer 51 having irregularities on the surface on which the light-transmitting fine particles 52 are dispersed is formed on the second polarizing plate 6. Further, after the resin composition similar to the light-transmitting resin layer 51 which does not contain the light-transmitting fine particles is applied thereon, the surface is flattened and hardened, whereby the hard coat layer 53 having a flat surface is formed. The second polarizing plate 6 is the same as that of Fig. 5(a). The second light-diffusing layer 5 having such a configuration has light diffusing characteristics in which a laser beam having a wavelength of 543.5 nm is incident from the normal direction of the surface side, and is incident on the normal direction of the second light-diffusing layer. The intensity of the laser light is tilted 40 from the normal direction. The relative intensity of the laser light emitted in the direction is 0.0002% to 0.001%. Further, it is preferable that the relative intensity of the laser light is 0.0008% or less with respect to the normal direction (emission angle) of 4 〇 0 to 149562.doc 201109800. Thereby, the sharpness of the image of the transmitted light in the front direction is maintained high by the forward scattering of the light transmitted from the liquid crystal cell 1 to the front side, and the color of the image is suppressed when viewed from the oblique direction, and the viewing angle is suppressed. Widened. In the case where the light-diffusing property of the second light-diffusing layer 5 is controlled as described above, for example, when the light-transmitting resin layer 5 1 in which the light-transmitting fine particles 5 2 are dispersed is used as the second light-diffusion layer 5, it is only necessary to adjust the light transmittance. The shape of the fine particles 52, the particle diameter, the addition 1, and the difference in refractive index between the light-transmitting fine particles 5 2 and the light-transmitting resin layer 5 1 may be used. As the resin for forming the light-transmitting resin layer 51, any transparent resin which can be cured by some methods can be used arbitrarily, and in terms of simplicity of manufacture and handling, it is preferable to use ultraviolet curing. Resin composition. Further, a method of obtaining the light-transmitting resin layer 51 by hardening the ultraviolet curable resin composition can be preferably used. As the ultraviolet curable resin composition, a known one can be used, and it is considered that the second light diffusion layer is disposed on the outermost side of the liquid crystal display device, and the light diffusion layer preferably has sufficient mechanical strength, and therefore, the ultraviolet curable resin The composition is preferably characterized as a resin composition for hard coating. As such an ultraviolet curable resin composition, a resin composition for hard coating such as an acrylic or epoxy resin can be preferably used. For example, trimethylolpropane triacrylate or pentaerythritol tetraacrylic acid can be used particularly preferably. One or two or more kinds of polyfunctional acrylates such as esters and "Irgacure 907", "Irgacure 184" (above, Ciba Specialty Chemicals), "Lucirin τρο" (manufactured by BASF Corporation), etc. A mixture of photopolymerization initiators, and the like. The light-transmitting fine particles 52 are fine particles of a material having a refractive index different from that of the light-transmitting resin layer 5丨, and are included in the pots. — t Examples include organic fine particles such as acrylic resin, melamine resin, polyethylene, polystyrene, organic polyoxynoxy resin, acrylic acid, stupid ethylene copolymer, and the like, and carbonic acid, dioxo, oxidized, and cesium carbonate. For the inorganic fine particles such as barium sulfate, titanium oxide, or glass, one of these may be used or two or more of them may be used in combination. Further, an organic copolymer ball or a glass hollow bead may also be used. The average particle diameter of the light-transmitting fine particles 52 is suitably in the range of 1 μm to 25 μm. The shape of the light-transmitting fine particles 52 is spherical, flat, plate-like, or needle-shaped, and is particularly preferably spherical. (Formation of Second Light-Diffusing Layer Using Light-Diffusing Film) As another advantageous aspect for forming the second light-diffusing layer 5 on the second polarizing plate 6, a method of using a light-diffusing film is exemplified. Fig. 6 is a view for explaining a method of forming the second light diffusion layer 5 on the second polarizing plate 6 using the light diffusion film 54. The light diffusion film 54 includes a light diffusion layer 54 and a transparent substrate film 54. The light diffusion layer 54 is the same as the second light diffusion layer described above. In addition, the transparent base film 54 is not particularly limited as long as it is a film having transparency, and examples of the resin for forming the transparent base film 54 include a cellulose acetate resin such as TAC (cellulose triacetate). And a polyester resin such as an acrylic resin, a polycarbonate resin or polyethylene terephthalate. (1) Method 1 of Using Light-Diffusing Film As shown in FIG. 6(a), the side of the transparent base film 54 of the light-diffusing film 54 is laminated directly or via the adhesive layer (on the side opposite to the first support film 61) ) on the polarizing element 60. In this manner, the light diffusion layer 54 and the transparent substrate film 54 of the light diffusion film 54 are used as the second light diffusion layer 5 and the second support film 62 of the liquid crystal display device, respectively, and the first support film 61 is obtained in this order. The polarizing element 60 and the second polarizing plate 6' of the support film 62 and the second light diffusing layer 5 directly laminated on the second supporting film 62 are provided. (2) Method 2 of Using Light-Diffusing Film As shown in FIG. 6(b), the transparent base film 54B side of the light-diffusion film 54 is laminated on the second support film of the second polarizing plate 6 directly or via an adhesive layer. . Further, the adhesive layer referred to herein contains an adhesive or an adhesive. In this manner, the second polarizing plate 6 in which the first supporting film 61, the polarizing element 60, and the second supporting film 62 are sequentially laminated, and the transparent base film are laminated directly on the second supporting film 62 or via the adhesive layer. The fourth light diffusion layer 5 which is directly laminated on the transparent base film 54B. (Method of Measuring the Relative Intensity of Laser Light) The method of measuring the relative intensity of the laser beam emitted from the second light-diffusing layer when the laser beam is incident from the normal direction on the back side of the second polarizing plate will be described below. In addition, the "normal direction of the back side of the second polarizing plate" means the normal direction of the light incident side with respect to the flat surface of the second polarizing plate 。. Fig. 7 is a perspective view schematically showing an incident direction and an outgoing direction of the laser light when the relative intensity of the laser beam incident on the back side of the second polarizing plate and the laser light emitted toward the second light diffusing layer side is measured. In FIG. 7, the laser beam 93 incident on the back side (the lower side in the drawing) of the surface 91 of the second light diffusion layer in the normal direction is measured in the normal direction 92 from the side of the second light diffusion layer. The intensity of the laser light emitted in the direction of the angle φ. The measured intensity of the laser light % divided by the intensity of the incident laser light 93 becomes the relative intensity, and the laser light 94, the normal direction 92, and the incident thunder The illuminating % system 149562.doc • 17· 201109800 is measured in such a manner that all of them are on the same plane (plane 95 in Fig. 7). Secondly, the relative intensity measured in this way is plotted against the angle (the emission angle is small). Thereby, the angle (emission angle Φ) at which the relative intensity is 0.0008% or less is obtained. Fig. 8 is an example of a graph plotting the relative intensity of the laser light emitted from the second light diffusion layer side with respect to the emission angle φ. The relative intensity shown in the graph is a peak when the exit angle is 〇. That is, the normal direction 92 in Fig. 7 is a peak, and the relative angle of the exit angle φ with respect to the normal direction 92 is decreased. In the example shown in Figure 8, it can be seen that the relative strength is reached. 〇〇〇8% or less The emission angle φ is 41. or more. (Other Embodiments of Liquid Crystal Display Device) Fig. 9 shows another embodiment of the liquid crystal display device of the present invention. The liquid crystal display device of Fig. 9 and Fig. 1 The liquid crystal display device is different in that a phase difference plate 8 is disposed between the i-th polarizing plate 4 and the liquid crystal cell 。. The phase difference of the phase difference plate 8 in the normal direction of the surface of the liquid crystal cell 1 is almost zero. The normal direction of the surface of the liquid crystal 7L 1 (front direction) does not bring any optical effect and exhibits a phase difference in a direction inclined with respect to the front direction, and is intended to compensate for the liquid crystal display S f when viewed from the oblique direction. The phase difference generated in the unit i. Thereby, a wider viewing angle can be obtained, and the display αα and color reproducibility can be obtained. The phase difference plate 8 can be disposed on the first polarizing plate 4 and the liquid crystal cell. 1 or between the second polarizing plate 6 and the liquid crystal cell 。. Examples of the dislocation plate 8 include: forming a polycarbonate resin or a cycloolefin copolymer tree into a film, and Membrane advance-step biaxial extension; and The liquid crystal monomer is fixed by molecular arrangement by photopolymerization. The phase difference plate 8 149562.doc 201109800 optically compensates for the alignment of the liquid crystal, so it is preferable to use the refractive index characteristic opposite to the liquid crystal alignment. The liquid crystal display unit of the TN mode can be suitably used, for example, "wv film" (manufactured by Fujifilm Co., Ltd.), and the liquid crystal display unit of the STN mode can be suitably used, for example, "film" (manufactured by Nippon Oil Co., Ltd.), ips The liquid crystal cell of the mode can suitably use, for example, a biaxial retardation film. The liquid crystal cell of the VA mode can suitably use, for example, a phase difference plate or a biaxial retardation film in which an A-plate and a C_ plate are combined, a π-cell mode. For the liquid crystal cell, for example, "WV film for OCB" (manufactured by Fujifilm Co., Ltd.) or the like can be suitably used. EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the invention is not limited to the examples. [Production of First Light-Diffusing Layer] (1) Preparation of Light-Diffusing Plate A styrene-methacrylic acid oxime ester copolymer resin (refractive index: 1.57) of 74.5 parts by mass and crosslinked polyacrylic acid was produced by a Henschel mixer. 25 parts by mass of oxime ester resin particles (refractive index i.49 'weight average particle diameter 30 μιη), benzotriazine ultraviolet absorber ("Sumi-soap 200" manufactured by Sumitomo Chemical Co., Ltd.) 〇·5 parts by mass , a hindered phenol-based antioxidant (heat stabilizer) ("IRGANOX 1〇1〇" manufactured by Ciba Specialty Chemicals Co., Ltd.) 〇 2 parts by mass after mixing, 'using a second extruder for melting, melting and mixing, and Feed to a feed block. On the other hand, 99.5 parts by mass of a styrene resin (refractive index: 1.59) and a stupid triazole-based ultraviolet absorber (manufactured by Sumitomo Chemical Co., Ltd. 149562.doc -19·201109800 Co., Ltd.) using a Henschel mixer Sumi_soap 200") 7 parts by mass, light stabilizer (Γ uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv To To丁w Corning Silicone Co., Ltd. "Dingdai (1) dy33_ 719", refractive index 丨 "", weight average particle size 2 μίη) together with a second extruder for smelting and mixing 'and supplied to the feed conduit. The total light transmittance D of the diffusing plate was adjusted by adjusting the addition amount of the crosslinked siloxane-based resin particles, and a light diffusing plate having a total light transmittance Tt of 65% was produced. Further, the light diffusing plate was obtained from the above. The resin supplied to the feed conduit of the crucible extruder is an intermediate layer (base layer), and the resin supplied from the second extruder to the feed guide is formed into a surface layer (double-sided), and is subjected to composite extrusion molding to have a thickness. 2 bribes (middle i · 9 〇 、, surface layer 〇. 5 brewing heart) contains 3 layers of laminated board. Also, full light transmission (four) is based on jis κ plus haze 'transmittance meter (Murako Color Technology Research Institute Co., Ltd.' Measured by HR-1〇〇) 狡 Lens (light deflection structure plate) was fabricated by pressing styrene resin (refractive index U9) to form a flat plate of thickness ^ _. The apex angle shown is: 'The distance d between the points is 5 〇 (4) The prism portion 322 having the cross section of the isosceles triangle and the V-shaped linear groove 321 are arranged in parallel with each other. The styrene resin sheet is again press-formed, whereby the prism sheet is further adjusted to the top angle 0' so that the sheet is used as the second embodiment; The group / ' is inclined by 7G with respect to the normal direction. The brightness of the direction is 0%, l〇%, 2〇% of the normal degree p 149562.doc -20· 201109800. (3) With the first light A liquid crystal display device of a diffusion layer is manufactured by a backlight device of a liquid crystal display device used in an embodiment to be described later 2, the light diffusing plate 31 and the baffles 32a, 32b are laminated as shown in Fig. 1. At this time, the direction of the v-shaped linear groove of one of the cymbals is opposite to the cold cathode tube 2 of the backlight device 2 Arranged in a substantially parallel manner, and the slabs 32a and 32b are laminated in such a manner that the direction of the v-shaped linear groove of the other cymbal is orthogonal to the direction of the v-shaped linear groove of the preceding cymbal. [Second light diffusion layer Manufacture] <Production Example 1> (1) Production of metal roll for transfer The surface of an iron roll (STKM13 A of 118) having a diameter of 200 mm was subjected to industrial chrome plating, and then the surface was mirror-polished to prepare a mirror mold. (2) Preparation of the second light-diffusing layer Mixing pentaerythritol triacrylate acrylate (60 parts by mass) and polyfunctional polyamine brewing acrylate (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate '40 parts by mass) In the case of the C-acrylic solution, the ultraviolet curable resin composition was adjusted so that the solid content concentration was 60% by mass. Further, the cured product obtained by removing propylene glycol monomethyl ether from the composition and curing by ultraviolet light has a refractive index of 153. Next, a polystyrene-based particle having a weight average particle diameter of 12.0 as a light-transmitting fine particle is added to 100 parts by mass of the solid content component of the ultraviolet curable resin composition (Shuishui Chemicals Co., Ltd.) Manufactured as a photopolymerization initiator "Lucirin 149562.doc •21 · 201109800 TPO" (manufactured by BASF Corporation, chemical name: 2,4,6-trimercaptophenyl fluorenyl diphenyl) 5 parts by mass of phosphine oxide) was diluted with propylene glycol monomethyl ether so as to have a solid content ratio of 6 〇 mass% to prepare a coating liquid. The coating liquid was applied onto a flat cellulose triacetate (TAC) film having a thickness of 80 μm (the second support film 62 of the polarizing element in the second polarizing plate), and the dryer was set to 80 C. Dry for 1 minute. By using a rubber roller, the coating liquid is dried to form a TAC film having an ultraviolet curable resin composition layer, and is adhered to the mirror surface of the mold produced in the above (1), so that the ultraviolet curable resin composition layer is positioned on the mold side. . In this state, the light from the south pressure mercury lamp is irradiated with a light intensity of 2 〇mW/cm 2 from the TAC film side at a light amount of 300 mj/cm 2 , and the ultraviolet curable resin composition layer is hardened. The light-transmitting resin layer 51 of the photonic fine particles 5 1 and the second light-diffusion layer 5 (attached to the TAC film) having a flat surface as shown in FIG. 5( a ). At this time, the thickness of the light-transmitting resin layer 5 1 in which the light-transmitting fine particles 52 are dispersed is 25.1 μπ\. <Production Example 2> In addition to the use of 40 parts by mass of polystyrene-based particles having a weight average particle diameter of 6 μm (manufactured by Sekisui Chemical Co., Ltd., SBX-6) as translucent fine particles, and a production example 1 The second light diffusion layer was obtained in the same manner. At this time, the thickness of the light-transmitting resin layer 5 1 of the light-transmitting fine particles 52 is 1 5.5 μm » <Production Example 3> Polystyrene-based particles having a weight average particle size of 6.0 μχη In the same manner as in Production Example 1, the second light-diffusing layer was obtained in the same manner as in Production Example 1, except that the light-transmitting fine particles 52 were dispersed in the same manner as in the production of the fine particles of squirrel 149562.doc -22. The thickness of the light-transmitting resin layer 51 is 1 3.4 μm. <Production Example 4> 70 parts by mass of polystyrene-based particles (Sbx_6, manufactured by Sekisui Chemicals Co., Ltd.) having a weight average particle diameter of 6.0 μm is used. The second light-diffusing layer was obtained in the same manner as in Production Example 1. The thickness of the light-transmitting resin layer 5 1 in which the light-transmitting fine particles 52 were dispersed was 1 3.7 μm. In the production example 5 > The light from the localized mercury lamp is irradiated with a light intensity of 20 mw/cm2 from the ultraviolet curable resin side to the mirror surface of the mold, and the light amount is 300 mJ/cm2 from the ultraviolet curable resin side. The ultraviolet curable resin composition layer is hardened. In the same manner as in Production Example 1, the second light-diffusing layer was obtained. In this case, the thickness of the light-transmitting resin layer 51 in which the light-transmitting fine particles 52 were dispersed was 27 2 μm. [Production Example 6] Except that weight average particles were used. The second light-diffusing layer was obtained in the same manner as in Production Example 5 except that 40 parts by mass of the polystyrene-based particles (manufactured by Sekisui Chemicals Co., Ltd., SBX-6) having a diameter of 6 〇μπ1 was used as the light-transmitting fine particles. The thickness of the light-transmitting resin layer 5丨 in which the light-transmitting fine particles 52 are dispersed is 6.1 μm. [Measurement of Light Diffusion Characteristics of the Second Light-Diffusing Layer] <Measurement of Haze Value> The haze value was measured in the second light-diffusing layer obtained in 6. The results of the measurement 149562.doc • 23· 201109800 are shown in Table 1. Further, the total light transmission according to all the amounts of the light transmitted by the light irradiated to the film is shown. The ratio of the ratio (Tt) to the diffuse light transmittance (Td) diffused by the film and transmitted, using the following formula (1): haze (%) = (Td/Tt) x 1 00 (1) Fog value. Here, the total light transmittance (Tt) is the transmission of parallel light that is transmitted coaxially with the incident light. The sum of the rate (Tp) and the diffused light transmittance (Td). The total light transmittance (Tt) and the diffused light transmittance (Td) are based on the haze transmittance meter according to JIS K 7361 (Murata Color Technology Research Institute Co., Ltd. In order to prevent the warpage of the sample, the TAC film side laminated on the second light diffusion layer is bonded to the glass substrate by using an optically transparent adhesive, and the second light diffusion layer is formed as a surface. In this state, light was irradiated from the glass substrate side to measure the total haze. Further, the glass substrate and the TAC film do not affect the measurement of each haze value, and the measured value here is equivalent to the haze value of the second light diffusion layer. The measurement of the internal haze was carried out in the same manner as the measurement of the total haze by attaching a cellulose acetate film having a haze of substantially 0 to the surface of the film by glycerin to eliminate the influence of the outside of the film. The external haze is obtained by the following formula based on the measured values of the total haze and the internal haze. External haze (°/.) = total haze (°/.) - internal haze (〇/0) <Measurement of laser light intensity at each exit angle> Further, the results obtained in Production Examples 1 to 6 The second light diffusion layer is bonded to the glass substrate. The parallel light from the He-Ne laser having a wavelength of 543.5 nm is irradiated from the glass substrate side in the normal direction of the second light diffusion layer, and is measured from the second light 149562. Doc -24- 201109800 The light-transmitting resin layer in which the light-transmitting fine particles are dispersed in the layer of the diffusion layer is formed in the normal direction with respect to the surface of the glass substrate. ~9〇. The intensity of the laser light emitted at a specific angle (exit angle). In addition, the "3292 03 optical power sensor" or "3292 optical power meter" manufactured by Yokogawa Electric Co., Ltd. is used. The ratio (relative intensity) of the intensity of the laser light emitted at a specific exit angle to the intensity of the laser light irradiated to the second light diffusion layer is equal to or lower than the exit angle (.) below 〇 and inclined from the normal direction by 4 。. The relative intensities (%) of the outgoing directions are shown in Table 1. When this measurement was performed, the light source that irradiated the He_Ne laser was placed at a position 430 mm from the glass substrate. The optical receiver, i.e., the power sensor, is disposed at a position 28 〇 mm from the exit point of the laser light, and moves the power sensor to achieve the above-mentioned specific angle, and measures the intensity of the emitted laser light. Further, the intensity of the laser light irradiated to the second light diffusion layer, that is, the intensity of the laser light irradiated from the light source is measured directly from the light source by not providing the glass substrate 'to which the second light diffusion layer is bonded The intensity of light incident on the power sensor is obtained. Further, the measurement of the intensity is performed by arranging the power sensor at a position 710 mm (= 430 min + 280 mm) from the light source. 149562.doc -25- 201109800 [Table i] Total haze of translucent fine particles (%) Internal haze (%) External haze (%) Relative intensity of the light emitted from the direction inclined by 40° from the normal direction (%) ) The relative intensity is 0.0008% or less. The exit angle (°) The weight average particle diameter ((4) The amount of the mass (mass section Γ Manufacturing Example 1 12 30 61.1 60.5 0.6 0.00061 41 Manufacturing Example 2 6 40 64, 8 64.4 0.4 0.00068 41 Manufacturing Example 3 6 10 35.2 34.9 0.3 0.00017 30 Production Example 4 6 70 90.6 90.1 0.5 0.00137 53 Production Example 5 12 30 62.2 34.9 28.3 0.00056 38 Production Example 6 6 40 64.3 38.8 27.5 0.00061 38 *1 : Solid relative to the ultraviolet curable resin composition The amount of use (parts by mass) of the component (100 parts by mass) (Example 1). As the liquid crystal display device, the front side of the backlight device of the 32-type liquid crystal television (LC-32D10-B) manufactured by Sharp Corporation of VA mode was used. A liquid crystal display device having the first light diffusion layer having a luminance of 10% of the luminance in the normal direction from the direction in which the normal direction is inclined by 70° is provided. Second, the polarized light on both sides of the liquid crystal cell of the liquid crystal display device is peeled off. Board and The dislocation plate is attached to the iodine-based ordinary polarizing plate (TRW842AP7) manufactured by Sumitomo Chemical Co., Ltd. in the form of orthogonal polarization on the back side of the watch, and the absorption axis of the polarizing plate is parallel to the short side and the long side of the liquid crystal cell. In the end, the second light diffusion layer to which the TAC film (the support film of the polarizing element of the second polarizing plate) obtained in Production Example 1 is bonded to the front side is bonded as the second light diffusion layer. The surface of the iodine-based ordinary polarizing plate (the polarizing element of the second polarizing plate) has a second light-diffusing layer, a second polarizing plate, a liquid crystal cell, a first polarizing plate, and a first light-diffusing layer. Liquid crystal display device (battery, light diffusing plate) and backlight device (embodiment of Fig. 1) (Examples 2 and 3) 149562.doc •26· 201109800 In addition to using the inclination from the normal direction 70, the brightness of the direction is The first light diffusion layer (Example 2) having a luminance of 0°/in the line direction and the first diffusion layer (Example 3) having 20% of the first light diffusion layer were produced in the same manner as in Example 丨. Liquid crystal display device. (Example 4) Except that the production example 2 was used A liquid crystal display device was produced in the same manner as in Example 1 except that the second light diffusion layer was used as the second light diffusion layer. (Comparative Example 1) The second light diffusion layer obtained in Production Example 3 was used as the second light diffusion layer. A liquid crystal display device was produced in the same manner as in Example 1. (Comparative Example 2) A liquid crystal display device was produced in the same manner as in Example 1 except that the second light-diffusing layer obtained in Production Example 4 was used as the second light-diffusing layer. (Comparative Examples 3 and 4) A liquid crystal display device was produced in the same manner as in Example 1 except that the second light-diffusing layer obtained in Production Examples 5 and 6 was used as the second light-diffusing layer. (Evaluation) The liquid crystal display devices produced in Examples 1 to 4 and Comparative Examples 丨 to 4 were visually evaluated in the dark. In addition, a visual evaluation of the interior of the 2 lux room was also carried out. The results are shown in Table 2. 149562.doc -27- 201109800 [Table 2]
第2光擴散層 暗室評價 明室評價 正面 傾斜 實施例1 製造例1 ◎ ◎ ◎ 實施例2 製造例1 ◎ ◎ ◎ 實施例3 製造例1 ◎ ◎ ◎ 實施例4 製造例2 ◎ ◎ ◎ 比較例1 製造例3 〇 X 〇 比較例2 製造例4 X 〇 〇 比較例3 製造例5 ◎ ◎ X 比較例4 製造例6 ◎ ◎ X ◎:完全看不到異常。 〇:幾乎看不到異異常。 X:可見異常。 如表2所示,實施例1〜4之液晶顯示裝置於暗室内之評價 中,在相對於液晶晝面之正面方向(法線方向)之視角為 0°(正面)至60°之間時,灰階之反轉、灰階之飽和、色調、 黑顯示之泛白及亮度變化完全看不到異常,均為良好。 又,明室内之評價亦與暗室内之評價同樣,表現出良好之 顯示品質。 相對於此,比較例1之液晶顯示裝置於傾斜觀察時之亮 度較低,視角不充分。又,比較例2之液晶顯示裝置自正 面觀察時之亮度較低,顯示品質不充分。又,比較例3及4 之液晶顯示裝置雖然於暗室内之顯示品質充分,但·於明室 内畫面泛白,顯示品質不充分。 (實施例5) 除了使用TN模式之TECO公司製造之26型液晶電視 (TL2686TW)作為液晶顯示裝置以外,與實施例1同樣地製 149562.doc -28 · 201109800 作液晶顯示裝置,並於暗室及明室内進行目測評價。暗室 及明室之任一者中,於視角為〇。(正面)至60。之間,灰階之 反轉、灰階之飽和、色調、黑顯示之泛白及亮度變化均完 全看不到異常’表現出良好之顯示品質。 (實施例6 ) 除了使用IPS模式之松下股份有限公司製造之32型液晶 電視(VIERA TH-32LZ85)作為液晶顯示裝置以外,與實施 例1同樣地製作液晶顯示裝置,並於暗室及明室内進行目 測評價。於暗室及明室之任一者中,於視角為〇。(正面)至 60。之間,灰階之反轉、灰階之飽和、色調、黑顯示之泛 白及亮度變化均完全看不到異常,表現出良好之顯示品 質。 【圖式簡單說明】 圖1係表示本發明之液晶顯示裝置之一例的概述圖; 圖2係表示第1光擴散層之一例的概述圖; 圖3係表示第1光擴散層之其他例的概述圖; 圖4係說明非平行光之定義的圖; 圖5(a)、(b)係表示第2光擴散層及第2偏光板之構成例的 概述圖; 圖6(a)、(b)係用以說明使用光擴散膜形成第2光擴散層 之方法的概述圖; 圖7係不意性地表示第2光擴散層中之雷射光之入射方向 與出射方向的圖; 圖8係對自第2光擴散層出射之雷射光之相對強度相對於 149562.doc •29- 201109800 出射角而作圖的圖表之一例;及 圖9係表示本發明之液晶顯示裝置之其他例的概述圖。 【主要元件符號說明】 1 液晶單元 2 背光裝置 3 第1光擴散層 4 第1偏光板 5 第2光擴散層 6 第2偏光板 8 相位差板 11a ' lib 透明基板 12 液晶層 21 冷陰極管 31 光擴散板 32 > 32a ' 32b 棱鏡片(光偏向構造板) 51 透光性樹脂層 52 透光性微粒子 53 硬塗層 54 光擴散膜 54A 光擴散層 54B 透明基材膜 60 偏光元件 61 第1支持膜 62 第2支持膜 149562.doc -30- 201109800 71 發光面 72 圓 73 觀察面 74 投影像 75 最小半值寬 91 第2光擴散層之表面 92 法線方向 93 > 94 雷射光 95 平面 311 基材 312 擴散劑 321 直線槽 322 稜鏡部分 149562.doc ·31 ·Second light diffusion layer dark room evaluation bright room evaluation front side tilting Example 1 Production Example 1 ◎ ◎ ◎ Example 2 Production Example 1 ◎ ◎ ◎ Example 3 Production Example 1 ◎ ◎ ◎ Example 4 Production Example 2 ◎ ◎ ◎ Comparative Example 1 Production Example 3 〇X 〇Comparative Example 2 Production Example 4 X 〇〇Comparative Example 3 Production Example 5 ◎ ◎ X Comparative Example 4 Production Example 6 ◎ ◎ X ◎: No abnormality was observed at all. 〇: I can hardly see any abnormality. X: Visible exception. As shown in Table 2, in the evaluation of the liquid crystal display devices of Examples 1 to 4 in the dark room, when the viewing angle with respect to the front direction (normal direction) of the liquid crystal face is 0° (front side) to 60° The gray level inversion, the gray level saturation, the hue, the black display whitening and the brightness change are completely invisible, and all are good. In addition, the evaluation in the bright room also showed good display quality as in the dark room. On the other hand, in the liquid crystal display device of Comparative Example 1, the brightness at the time of oblique observation was low, and the viewing angle was insufficient. Further, in the liquid crystal display device of Comparative Example 2, the brightness was low when viewed from the front side, and the display quality was insufficient. Further, in the liquid crystal display devices of Comparative Examples 3 and 4, the display quality in the dark room was sufficient, but the display was white in the bright room, and the display quality was insufficient. (Example 5) In the same manner as in Example 1, except that the liquid crystal display device was used as the liquid crystal display device, the 149562.doc -28 · 201109800 was used as the liquid crystal display device in the dark room and Visual inspection was performed in the bright room. In either the darkroom or the brightroom, the angle of view is 〇. (Front) to 60. Between the grayscale inversion, the grayscale saturation, the hue, the whiteness of the black display, and the change in brightness are all invisible, and the display quality is good. (Example 6) A liquid crystal display device was produced in the same manner as in Example 1 except that a 32-type liquid crystal television (VIERA TH-32LZ85) manufactured by Matsushita Co., Ltd., which is an IPS mode, was used as the liquid crystal display device, and was carried out in a dark room and a bright room. Visual evaluation. In either the darkroom or the brightroom, the viewing angle is 〇. (Front) to 60. Between the gray scale inversion, gray scale saturation, hue, black display whitening and brightness change, no abnormalities are observed at all, showing good display quality. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing an example of a liquid crystal display device of the present invention; Fig. 2 is an overview of an example of a first light diffusion layer; Fig. 3 is a view showing another example of a first light diffusion layer. Fig. 4 is a view for explaining definition of non-parallel light; Fig. 5 (a) and (b) are schematic views showing a configuration example of a second light diffusion layer and a second polarizing plate; Fig. 6(a), b) is an overview for explaining a method of forming a second light-diffusing layer using a light-diffusing film; and FIG. 7 is a view showing, in an unintentional view, an incident direction and an outgoing direction of laser light in the second light-diffusing layer; An example of a graph plotting the relative intensity of the laser light emitted from the second light-diffusing layer with respect to the exit angle of 149562.doc •29-201109800; and FIG. 9 is an overview of another example of the liquid crystal display device of the present invention. . [Description of main component symbols] 1 Liquid crystal cell 2 Backlight device 3 First light diffusing layer 4 First polarizing plate 5 Second light diffusing layer 6 Second polarizing plate 8 Phase difference plate 11a 'lib Transparent substrate 12 Liquid crystal layer 21 Cold cathode tube 31 Light diffusing plate 32 > 32a ' 32b Prism sheet (light deflecting structure plate) 51 Translucent resin layer 52 Light transmitting fine particles 53 Hard coat layer 54 Light diffusing film 54A Light diffusing layer 54B Transparent base film 60 Polarizing element 61 1st support film 62 2nd support film 149562.doc -30- 201109800 71 Light-emitting surface 72 Round 73 Observation surface 74 Projection image 75 Minimum half-value width 91 Surface of second light-diffusing layer 92 Normal direction 93 > 94 Laser light 95 plane 311 substrate 312 diffusing agent 321 linear groove 322 稜鏡 part 149562.doc ·31 ·