WO2010110103A1 - Process for producing light-diffusing element, light-diffusing element, and processes for producing polarizing plate with light-diffusing element and liquid-crystal display device - Google Patents

Process for producing light-diffusing element, light-diffusing element, and processes for producing polarizing plate with light-diffusing element and liquid-crystal display device Download PDF

Info

Publication number
WO2010110103A1
WO2010110103A1 PCT/JP2010/054310 JP2010054310W WO2010110103A1 WO 2010110103 A1 WO2010110103 A1 WO 2010110103A1 JP 2010054310 W JP2010054310 W JP 2010054310W WO 2010110103 A1 WO2010110103 A1 WO 2010110103A1
Authority
WO
WIPO (PCT)
Prior art keywords
light diffusing
fine particles
light
diffusing element
diffusing fine
Prior art date
Application number
PCT/JP2010/054310
Other languages
French (fr)
Japanese (ja)
Inventor
岳仁 淵田
博之 武本
俊介 首藤
稔 宮武
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020117022139A priority Critical patent/KR101260168B1/en
Priority to CN2010800125331A priority patent/CN102356335B/en
Publication of WO2010110103A1 publication Critical patent/WO2010110103A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00798Producing diffusers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a method for manufacturing a light diffusing element, a light diffusing element, a polarizing plate with a light diffusing element, and a method for manufacturing a liquid crystal display device.
  • Light diffusing elements are widely used in lighting covers, projection television screens, surface light emitting devices (for example, liquid crystal display devices), and the like.
  • light diffusing elements have been increasingly used for improving display quality of liquid crystal display devices and the like, and improving viewing angle characteristics.
  • As the light diffusing element an element in which fine particles are dispersed in a matrix such as a resin sheet has been proposed (for example, see Patent Document 1).
  • a light diffusing element most of the incident light is scattered forward (exit surface side), but a part is scattered backward (incident surface side). The greater the difference in refractive index between the fine particles and the matrix, the greater the diffusivity (for example, haze value).
  • the core-shell fine particles having different refractive indexes of the core and the shell, or continuous from the center of the fine particles toward the outside
  • GRIN gradient index fine particles
  • these fine particles are not practical because the production process is more complicated than ordinary fine particles, resulting in insufficient productivity.
  • the present invention has been made to solve the above-described conventional problems.
  • the object of the present invention is to reduce a light diffusing element having a high haze value, strong diffusibility, and suppressed backscattering.
  • the object is to provide a method of manufacturing a light diffusing element that can be manufactured at low cost and high productivity.
  • the method for producing a light diffusing element of the present invention comprises a step of bringing a matrix-forming material containing a precursor of a resin component and an ultrafine particle component into contact with a light diffusing fine particle, and at least a part of the precursor being the light diffusing fine particle.
  • a matrix containing a resin component and an ultrafine particle component by simultaneously polymerizing a step of permeating the inside of the light diffusing fine particles and a precursor that has penetrated into the light diffusing fine particles and a precursor that has not penetrated into the light diffusing fine particles. And forming a concentration modulation region in the vicinity of the surface of the light diffusing fine particles simultaneously with the formation.
  • the production method impregnates the precursor from the surface of the light diffusing fine particles to a range of 10% to 95% of the average particle diameter of the light diffusing fine particles in the infiltration step.
  • the production method comprises bringing the precursor of the resin component into contact with the light diffusing fine particles for a time longer than a time until the particle size of the light diffusing fine particles is substantially maximized.
  • the resin component is an ionizing radiation curable resin, and the production method polymerizes the precursor of the resin component by irradiating the ionizing radiation.
  • a light diffusing element is provided.
  • This light diffusing element is obtained by the above-described method, and has a matrix containing a resin component and an ultrafine particle component, and light diffusing fine particles dispersed in the matrix, inside the vicinity of the surface of the light diffusing fine particles. It has a concentration modulation region formed by permeation of the resin component.
  • the manufacturing method of a polarizing plate with a light-diffusion element is provided. This method uses the manufacturing method of the light diffusing element.
  • a method for manufacturing a liquid crystal display device is provided. This method uses the manufacturing method of the light diffusing element.
  • the precursor of the matrix resin component can be infiltrated.
  • a matrix can be formed, and at the same time, a concentration modulation region can be formed in the vicinity of the surface of the light diffusing fine particles (that is, a matrix and a concentration modulation region can be formed in one batch). Can do).
  • the light diffusing element can be manufactured at low cost and high productivity.
  • the light diffusing element obtained by the manufacturing method of the present invention has a concentration modulation region formed in the vicinity of the surface of the light diffusing fine particles, the refractive index is gradually increased in the vicinity of the interface between the light diffusing element and the matrix. Or it can be changed substantially continuously. Therefore, reflection at the interface between the matrix and the light diffusing fine particles can be satisfactorily suppressed, and backscattering can be suppressed. Furthermore, according to the present invention, the refractive index of the matrix can be easily adjusted by using the ultrafine particle component having a specific refractive index and a specific compatibility with the resin component.
  • the concentration of the ultra fine particle component in the matrix can be increased, so that the refractive index difference between the matrix and the light diffusing fine particles can be reduced. Can be easily enlarged.
  • the light diffusing element obtained by the production method of the present invention has a high haze value, strong diffusibility, and suppressed backscattering.
  • FIG. 1 It is a schematic diagram for demonstrating the dispersion state of the resin component of a matrix and the light diffusible microparticles
  • (A) is a conceptual diagram for demonstrating the refractive index change from the center part of light diffusable microparticles
  • (b) is a matrix from the center part of microparticles
  • the method for producing a light diffusing element of the present invention comprises a step (referred to as step A) of contacting a matrix-forming material containing a precursor of a resin component and an ultrafine particle component with light diffusing fine particles, A step of allowing at least a part of the precursor to penetrate into the light diffusing fine particles (referred to as Step B), and polymerizing the precursor to form a matrix containing a resin component and an ultrafine particle component, and at the same time, the light Forming a concentration modulation region in the vicinity of the surface of the diffusible fine particles (referred to as step C).
  • a coating liquid is prepared in which a matrix-forming material containing a precursor of a resin component and an ultrafine particle component and light diffusing fine particles are dissolved or dispersed in a volatile solvent.
  • the coating liquid is a dispersion in which ultrafine particle components and light diffusing fine particles are dispersed in a precursor and a volatile solvent. Any appropriate means (for example, ultrasonic treatment) can be adopted as means for dispersing the ultrafine particle component and the light diffusing fine particles.
  • the light diffusing fine particles come into contact with the precursor of the resin component.
  • the resin component is composed of any appropriate material as long as the concentration modulation region is satisfactorily formed.
  • the refractive index of the resin component satisfies the relationship of the following formula (1): 0 ⁇
  • n A represents the refractive index of the resin component of the matrix
  • n P represents the refractive index of the light diffusing fine particles.
  • is preferably 0.01 to 0.10, more preferably 0.01 to 0.06, and particularly preferably 0.02 to 0.06. If
  • the resin component is composed of a compound similar to the light diffusing fine particles. More preferably, the resin component is composed of a highly compatible compound among the same compounds as the light diffusing fine particles.
  • the precursor (monomer) of the resin component can permeate into the light diffusing fine particles due to the fact that the resin component is the same material as the light diffusing fine particles.
  • a concentration-modulated region by the resin component can be favorably formed in the vicinity of the surface of the light diffusing fine particles.
  • “same system” means that chemical structures and properties are equivalent or similar
  • “different system” means something other than the same system.
  • Whether or not they are related may differ depending on how the reference is selected. For example, when organic or inorganic is used as a reference, the organic compounds are the same type of compounds, and the organic compound and the inorganic compound are different types of compounds.
  • the polymer repeat unit for example, an acrylic polymer and an epoxy polymer are different compounds despite being organic compounds, and when a periodic table is used as a reference, alkali metals and transition metals are used. Is an element of a different system despite being inorganic elements.
  • the resin component is preferably composed of an organic compound, more preferably an ionizing radiation curable resin.
  • the ionizing radiation curable resin is excellent in the hardness of the coating film.
  • the ionizing rays include ultraviolet rays, visible light, infrared rays, and electron beams.
  • it is ultraviolet rays, and therefore the resin component is particularly preferably composed of an ultraviolet curable resin.
  • the ultraviolet curable resin include radical polymerization monomers or oligomers such as acrylate resins (epoxy acrylate, polyester acrylate, acrylic acrylate, ether acrylate).
  • the molecular weight of the monomer component (precursor) constituting the acrylate resin is preferably 200 to 700.
  • the monomer component (precursor) constituting the acrylate resin examples include pentaerythritol triacrylate (PETA: molecular weight 298), neopentyl glycol diacrylate (NPGDA: molecular weight 212), dipentaerythritol hexaacrylate (DPHA: molecular weight 632). ), Dipentaerythritol pentaacrylate (DPPA: molecular weight 578), and trimethylolpropane triacrylate (TMPTA: molecular weight 296).
  • PETA pentaerythritol triacrylate
  • NPGDA molecular weight 212
  • DPHA dipentaerythritol hexaacrylate
  • DPPA dipentaerythritol pentaacrylate
  • TMPTA trimethylolpropane triacrylate
  • Such a monomer component is preferable because it has a molecular weight and a three-dimensional structure suitable for penetrating into the crosslinked structure (three-dimensional network structure) of the light diffusing fine particles.
  • An initiator may be added as necessary. Examples of the initiator include a UV radical generator (Irgacure 907, 127, 192, etc., manufactured by Ciba Specialty Chemicals) and benzoyl peroxide.
  • the resin component may contain another resin component in addition to the ionizing radiation curable resin.
  • Another resin component may be an ionizing radiation curable resin, a thermosetting resin, or a thermoplastic resin.
  • resin components include aliphatic (for example, polyolefin) resins and urethane resins.
  • the type and blending amount thereof are adjusted so that the concentration modulation region is well formed and the refractive index satisfies the relationship of the above formula (1).
  • the refractive index of the resin component is preferably 1.40 to 1.60.
  • the blending amount of the resin component in the coating solution is preferably 20 to 80 parts by weight, more preferably 45 to 65 parts by weight with respect to 100 parts by weight of the formed matrix.
  • the above ultrafine particle component can typically function as a component that adjusts the refractive index of the matrix.
  • the refractive index of the matrix can be easily adjusted, and the refractive index difference between the light diffusing fine particles and the matrix can be increased.
  • the concentration of the ultra fine particle component in the matrix can be increased, so that the refractive index difference between the matrix and the light diffusing fine particles can be reduced. Can be easily enlarged. As a result, it is possible to obtain a light diffusing element having a high haze value (strong diffusibility) while being a thin film.
  • the ultrafine particle component has a refractive index n B satisfying the following formula (2): 0 ⁇
  • n A and n P are as described above.
  • is preferably 0.10 to 1.50, more preferably 0.20 to 0.80. If
  • the ultrafine particle component is composed of a compound of a system different from the resin component and the light diffusing fine particles, and more preferably composed of an inorganic compound.
  • inorganic compounds include metal oxides and metal fluorides.
  • the metal oxide include zirconium oxide (zirconia) (refractive index: 2.19), aluminum oxide (refractive index: 1.56 to 2.62), and titanium oxide (refractive index: 2.49 to 2.19). 74) and silicon oxide (refractive index: 1.25 to 1.46).
  • the metal fluoride include magnesium fluoride (refractive index: 1.37) and calcium fluoride (refractive index: 1.40 to 1.43).
  • These metal oxides and metal fluorides have a refractive index that is difficult to be expressed by organic compounds such as ionizing radiation curable resins and thermoplastic resins in addition to low light absorption.
  • the difference in refractive index from the matrix can be increased.
  • these metal oxides and metal fluorides are separated from the vicinity of the interface between the light diffusing fine particles and the matrix (periphery of the light diffusing fine particles) due to the appropriate dispersibility with the resin component. Concentration modulation regions can be formed. By forming such another concentration modulation region outside the light diffusing fine particles, backscattering can be further suppressed as compared with the case where the concentration modulation region is formed only inside the light diffusing fine particles. .
  • a particularly preferred inorganic compound is zirconium oxide. This is because the difference in refractive index from the light diffusing fine particles is large and the dispersibility with the resin component is appropriate, so that another concentration modulation region having the desired characteristics (or structure) can be satisfactorily formed. is there.
  • the concentration modulation region may be formed in the vicinity of the surface of the light diffusing fine particles, and the other concentration modulation region may not be formed.
  • the refractive index of the ultrafine particle component is preferably 1.40 or less or 1.60 or more, more preferably 1.40 or less or 1.70 to 2.80, and particularly preferably 1.40 or less or 2 .00 to 2.80. If the refractive index exceeds 1.40 or less than 1.60, the difference in refractive index between the light diffusing fine particles and the matrix becomes insufficient, and the resulting light diffusing element is used as a liquid crystal display device of a collimated backlight front diffusion system. When used, the light from the collimated backlight may not be sufficiently diffused and the viewing angle may be narrowed.
  • the ultrafine particle component may be made porous to lower the refractive index.
  • the average particle size of the ultrafine particle component is preferably 1 nm to 100 nm, more preferably 10 nm to 80 nm, and still more preferably 20 nm to 70 nm.
  • the average particle size of the ultrafine particle component is preferably 1 nm to 100 nm, more preferably 10 nm to 80 nm, and still more preferably 20 nm to 70 nm.
  • the ultrafine particle component preferably has good dispersibility with the resin component.
  • “good dispersibility” means that a coating liquid obtained by mixing the resin component, the ultrafine particle component, and a volatile solvent (if necessary, a small amount of UV initiator) is applied, It means that the coating film obtained by drying and removing the solvent is transparent.
  • the ultrafine particle component is surface-modified.
  • the ultrafine particle component can be favorably dispersed in the resin component, and the other concentration modulation region can be favorably formed.
  • Any appropriate means can be adopted as the surface modifying means as long as the effects of the present invention can be obtained.
  • the surface modification is performed by applying a surface modifier to the surface of the ultrafine particle component to form a surface modifier layer.
  • preferable surface modifiers include coupling agents such as silane coupling agents and titanate coupling agents, and surfactants such as fatty acid surfactants.
  • the wettability between the resin component and the ultrafine particle component is improved, the interface between the resin component and the ultrafine particle component is stabilized, and the ultrafine particle component is improved in the resin component. It is possible to disperse and form the other density modulation region favorably.
  • the blending amount of the ultrafine particle component in the coating solution is preferably 10 to 70 parts by weight, more preferably 35 to 55 parts by weight with respect to 100 parts by weight of the formed matrix.
  • the light diffusing fine particles are composed of any appropriate material as long as the concentration modulation region is satisfactorily formed.
  • the light diffusing fine particles have a refractive index satisfying the relationship of the formula (1).
  • the light diffusing fine particles are composed of a compound similar to the resin component of the matrix.
  • the ionizing radiation curable resin constituting the resin component of the matrix is an acrylate resin
  • the light diffusing fine particles are also preferably composed of an acrylate resin.
  • the acrylate constituting the light diffusing fine particles The base resin is preferably polymethyl methacrylate (PMMA), polymethyl acrylate (PMA), and a copolymer thereof, and a cross-linked product thereof.
  • PMMA polymethyl methacrylate
  • PMA polymethyl acrylate
  • the copolymer component with PMMA and PMA include polyurethane, polystyrene (PSt), and melamine resin.
  • the light diffusing fine particles are composed of PMMA. This is because the relationship between the refractive index and thermodynamic characteristics with the resin component of the matrix is appropriate.
  • the light diffusing fine particles have a cross-linked structure (three-dimensional network structure).
  • the light diffusing fine particles having a crosslinked structure can swell. Therefore, unlike such dense or solid inorganic particles, such light diffusing fine particles can satisfactorily permeate a resin component precursor having appropriate compatibility.
  • the crosslink density of the light diffusing fine particles is preferably small (coarse) so that a desired penetration range (described later) is obtained.
  • the degree of swelling of the light diffusing fine particles with respect to the resin component precursor (which may contain a solvent) when applying the coating liquid is preferably 110% to 200%.
  • the “swelling degree” refers to the ratio of the average particle size of the swollen particles to the average particle size of the particles before swelling.
  • the light diffusing fine particles have an average particle size of preferably 1 ⁇ m to 5 ⁇ m, more preferably 1.5 ⁇ m to 4.0 ⁇ m, still more preferably 2.0 ⁇ m to 3.0 ⁇ m, and particularly preferably 2 ⁇ m. .1 ⁇ m to 2.4 ⁇ m.
  • the average particle diameter of the light diffusing fine particles is preferably 1 ⁇ 2 or less (for example, 1 ⁇ 2 to 1/20) of the thickness of the light diffusing element. If the average particle diameter has such a ratio with respect to the thickness of the light diffusing element, a plurality of light diffusing fine particles can be arranged in the thickness direction of the light diffusing element, so that incident light passes through the light diffusing element. In the meantime, the light can be diffused multiple times, and as a result, sufficient light diffusibility can be obtained.
  • the standard deviation of the weight average particle size distribution of the light diffusing fine particles is preferably 1.0 ⁇ m or less, more preferably 0.5 ⁇ m or less. If a large number of light diffusing fine particles having a small particle size with respect to the weight average particle size are mixed, the diffusibility may be excessively increased and the backscattering may not be suppressed well. If a large number of light diffusing fine particles having a large particle diameter with respect to the weight average particle diameter are mixed, a plurality of light diffusing elements cannot be arranged in the thickness direction of the light diffusing element, and multiple diffusion may not be obtained. , The light diffusibility may be insufficient.
  • any appropriate shape can be adopted depending on the purpose. Specific examples include a true sphere shape, a flake shape, a plate shape, an elliptic sphere shape, and an indefinite shape. In many cases, spherical fine particles can be used as the light diffusing fine particles.
  • the refractive index of the light diffusing fine particles is preferably 1.30 to 1.70, more preferably 1.40 to 1.60.
  • the blending amount of the light diffusing fine particles in the coating liquid is preferably 10 parts by weight to 100 parts by weight, more preferably 15 parts by weight to 40 parts by weight with respect to 100 parts by weight of the matrix to be formed.
  • a light diffusing element having a very excellent light diffusibility can be obtained by incorporating light diffusing fine particles having an average particle diameter in the above preferred range with such a blending amount.
  • any appropriate solvent can be adopted as the volatile solvent as long as the above components can be dissolved or uniformly dispersed.
  • the volatile solvent include ethyl acetate, butyl acetate, isopropyl acetate, 2-butanone (methyl ethyl ketone), methyl isobutyl ketone, cyclopentanone, toluene, isopropyl alcohol, n-butanol, cyclopentane, and water.
  • the coating liquid may further contain any appropriate additive depending on the purpose.
  • a dispersant can be suitably used in order to disperse the ultrafine particle component satisfactorily.
  • the additive include an antioxidant, a modifier, a surfactant, a discoloration inhibitor, an ultraviolet absorber, a leveling agent, and an antifoaming agent.
  • the solid concentration of the coating solution can be adjusted to be preferably about 10% to 70% by weight. If it is such solid content concentration, the coating liquid which has a viscosity with easy coating can be obtained.
  • a typical example of means for allowing at least a part of the precursor to penetrate into the light diffusing fine particles in the step B is to leave the coating solution standing.
  • the resin component and the light diffusing fine particles are preferably composed of the same material, and more preferably composed of a highly compatible material, so that the coating liquid is allowed to stand to perform a special treatment or operation. Even if not, the precursor (monomer) of the resin component penetrates into the light diffusing fine particles. That is, by bringing the precursor of the resin component and the light diffusing fine particles into contact with each other for a predetermined time, the precursor of the resin component penetrates into the light diffusing fine particles.
  • the standing time is preferably longer than the time until the particle size of the light diffusing fine particles is substantially maximized.
  • the time until the particle size of the light diffusing fine particles is substantially maximized means that the light diffusing fine particles swell to the maximum extent and do not swell any more (that is, reach an equilibrium state). (Hereinafter also referred to as the maximum swelling time).
  • the maximum swelling time By bringing the resin component precursor into contact with the light diffusing fine particles for a time longer than the maximum swelling time, the penetration of the resin component precursor into the light diffusing fine particles becomes saturated. It becomes unincorporated into the structure. As a result, the concentration modulation region can be formed satisfactorily and stably in the vicinity of the surface of the light diffusing fine particles by the polymerization step described later.
  • the maximum swelling time can vary depending on the compatibility between the resin component and the light diffusing fine particles.
  • the standing time can vary depending on the constituent material of the resin component and the light diffusing fine particles.
  • the standing time is preferably 1 hour to 48 hours, more preferably 2 hours to 40 hours, still more preferably 3 hours to 35 hours, and particularly preferably 4 hours to 30 hours.
  • the standing time is less than 1 hour, the precursor may not sufficiently penetrate into the light diffusing fine particles, and as a result, the concentration modulation region may not be satisfactorily formed.
  • the standing time exceeds 48 hours, the light diffusing fine particles aggregate due to the physical interaction between the light diffusing fine particles, and the viscosity of the coating liquid may increase, resulting in insufficient coating properties.
  • the standing may be performed at room temperature, or may be performed under a predetermined temperature condition set according to the purpose and the material used.
  • the precursor only needs to permeate from the surface of the light diffusing fine particles into a part of the light diffusing fine particles.
  • the precursor preferably permeates to a range of 10% to 95% of the average particle diameter.
  • the permeation range is less than 10%, the concentration modulation region is not formed well, and backscattering may not be sufficiently reduced. Even when the permeation range exceeds 95%, the concentration modulation region is not formed well as in the case where the permeation range is small, and the backscattering may not be sufficiently reduced.
  • the permeation range can be controlled by adjusting the resin component and the material of the light diffusing fine particles, the crosslinking density of the light diffusing fine particles, the standing time, the standing temperature, and the like.
  • the diffusion half-value angle varies greatly depending on the drying temperature (the drying process will be described later). To do).
  • the diffusion half-value angle is substantially constant regardless of the drying temperature. This is considered to be because the precursor penetrates into the light diffusing fine particles to a saturated state by standing, so that the formation of the concentration modulation region is not affected by the drying temperature. Therefore, as described above, the standing time is preferably longer than the maximum swelling time.
  • the standing time By setting the standing time in this way, it is possible to obtain a substantially constant and good diffusion half-value angle regardless of the drying time, so that a highly diffusive light diffusing element can be stably produced without variation. . Furthermore, since it can manufacture by 60 degreeC low temperature drying, it is preferable also from the surface of safety
  • the precursor is infiltrated into the light diffusing fine particles by setting the drying temperature to 100 ° C.
  • the drying temperature is set to 100 ° C.
  • the coating liquid is applied to the substrate.
  • Any appropriate film can be adopted as the substrate as long as the effects of the present invention can be obtained. Specific examples include a triacetyl cellulose (TAC) film, a polyethylene terephthalate (PET) film, a polypropylene (PP) film, a nylon film, an acrylic film, and a lactone-modified acrylic film.
  • the base material may be subjected to surface modification such as easy adhesion treatment, and may contain additives such as a lubricant, an antistatic agent, and an ultraviolet absorber.
  • the base material may function as a protective layer in the polarizing plate with a light diffusing element described later.
  • a method for applying the coating liquid to the base material a method using any appropriate coater can be employed.
  • the coater include a bar coater, a reverse coater, a kiss coater, a gravure coater, a die coater, and a comma coater.
  • the precursor is polymerized.
  • the polymerization method any appropriate method can be adopted depending on the type of the resin component (and hence its precursor).
  • the resin component is an ionizing radiation curable resin
  • the precursor is polymerized by irradiating the ionizing radiation.
  • ultraviolet rays are used as the ionizing ray
  • the integrated light quantity is preferably 200 mJ to 400 mJ.
  • the transmittance of the ionizing rays to the light diffusing fine particles is preferably 70% or more, more preferably 80% or more.
  • the resin component is a thermosetting resin
  • the precursor is polymerized by heating. The heating temperature and the heating time can be appropriately set according to the type of the resin component.
  • the polymerization is performed by irradiating with ionizing radiation.
  • the coating film can be cured while maintaining a favorable refractive index distribution structure (concentration modulation region), so that a light diffusing element having good diffusion characteristics can be produced.
  • concentration modulation region is formed in the vicinity of the surface of the light diffusing fine particles. More specifically, the concentration modulation region is formed by polymerization of a precursor that has penetrated into the light diffusing fine particles; the matrix is formed by polymerization of a precursor that has not penetrated into the light diffusing fine particles.
  • the precursor that has penetrated into the light diffusing fine particles and the precursor that has not penetrated into the light diffusing fine particles are simultaneously polymerized, so that the inside of the light diffusing fine particles near the surface.
  • a matrix can be formed simultaneously with the formation of the density modulation region.
  • another concentration modulation region may be further formed in the vicinity of the interface between the light diffusing fine particles and the matrix (peripheral portion of the light diffusing fine particles).
  • Another concentration modulation region can be formed mainly due to the compatibility of the resin component, the ultrafine particle component, and the light diffusing fine particles.
  • the method for manufacturing a light diffusing element of the present invention can include any appropriate process, process and / or operation at any appropriate time in addition to the above-mentioned processes A to C.
  • the type of such a process and the time when such a process is performed can be appropriately set according to the purpose.
  • the method for producing a light diffusing element of the present invention further includes a step of drying a coating liquid applied on the substrate, if necessary. Such drying may be performed, for example, before the polymerization step or after the polymerization step.
  • any appropriate method can be adopted as a method for drying the coating liquid. Specific examples include natural drying, heat drying, and vacuum drying. Heat drying is preferable.
  • the heating temperature is, for example, 60 ° C. to 150 ° C., and the heating time is, for example, 30 seconds to 5 minutes.
  • the light diffusing element is formed on the substrate.
  • the obtained light diffusing element may be peeled off from the substrate and used as a single member, or may be used as a light diffusing element with a substrate, transferred from the substrate to a polarizing plate, etc. It may be used as a polarizing plate with a light diffusing element) or may be used as a composite member (for example, a polarizing plate with a light diffusing element) by being attached to a polarizing plate or the like together with the substrate.
  • the base material is attached to a polarizing plate or the like and used as a composite member (for example, a polarizing plate with a light diffusing element)
  • the base material can function as a protective layer for the polarizing plate.
  • the light diffusing element of the present invention can be obtained by the method described in the above items A-1 to A-3.
  • the light diffusing element of the present invention has a matrix containing a resin component and an ultrafine particle component, and light diffusing fine particles dispersed in the matrix.
  • the light diffusing element of the present invention exhibits a light diffusing function due to a difference in refractive index between the matrix and the light diffusing fine particles.
  • FIG. 1 is a schematic diagram for explaining a dispersion state of a resin component of a matrix and light diffusing fine particles in a light diffusing element obtained by a manufacturing method according to a preferred embodiment of the present invention.
  • the light diffusing element 100 of the present invention includes a matrix 10 including a resin component 11 and an ultrafine particle component 12 and light diffusing fine particles 20 dispersed in the matrix 10.
  • the resin component of the matrix and the light diffusing fine particles have a refractive index satisfying the following formula (1): 0 ⁇
  • the ultrafine particle component has a refractive index satisfying the following formula (2): 0 ⁇
  • the concentration modulation region 30 is formed in the vicinity of the surface of the light diffusing fine particles 20.
  • the concentration modulation region 30 is formed by polymerizing the precursor (monomer) of the resin component 11 after penetrating into the light diffusing fine particles 20 as described in the above sections A-1 to A-3.
  • the weight concentration of the resin component 11 is substantially constant in the concentration modulation region 30.
  • the weight concentration of the resin component 11 decreases with increasing distance from the surface of the light diffusing fine particles 20 (that is, toward the center of the light diffusing fine particles 20).
  • the concentration modulation region 30 is formed inside the light diffusing fine particles 20, the effect is exhibited.
  • the concentration modulation region is formed from the surface of the light diffusing fine particles 20 to a range of 10% to 95% of the average particle diameter of the light diffusing fine particles.
  • the thickness of the concentration modulation region 30 (distance from the surface of the light diffusing fine particle to the innermost portion of the concentration modulation region) may be constant or may vary depending on the position of the surface of the light diffusing fine particle.
  • the thickness of the concentration modulation region 30 is preferably 100 nm to 4 ⁇ m, more preferably 100 nm to 2 ⁇ m.
  • the refractive index is discontinuous from the refractive index of the fine particles to the refractive index of the matrix. It changes (refer FIG.2 (b)).
  • FIG. 2A by forming a concentration modulation region 30 and changing the refractive index stepwise or substantially continuously in the vicinity of the interface between the matrix 10 and the light diffusing fine particles 20, the matrix 10 is changed. Even if the refractive index difference between the light diffusing element 20 and the light diffusing element 20 is increased, reflection at the interface between the matrix and the light diffusing fine particles can be suppressed, and back scattering can be suppressed.
  • the refractive index gap at the interface when an attempt is made to impart strong diffusivity (high haze value) by increasing the refractive index difference, the refractive index gap at the interface. Can not be resolved. As a result, backscattering due to interface reflection becomes large; (2) when another concentration modulation region mainly resulting from the ultrafine particle component is formed, the formation can be promoted; (3) resin component When 11 permeates into the light diffusing fine particles 20, the concentration of the resin component 11 in the matrix 10 becomes lower than in the case where it does not permeate.
  • the contribution of the refractive index of the ultrafine particle component 12 to the refractive index of the entire matrix increases, so that the refractive index of the entire matrix increases when the refractive index of the ultrafine particle component is large (in contrast, the ultrafine particle component When the refractive index is small, the refractive index of the entire matrix is small), and the refractive index difference between the matrix and the light diffusing fine particles is further increased. Therefore, even higher diffusivity (haze value) can be realized as compared with the case where the resin component does not penetrate.
  • the concentration modulation region is formed by appropriately selecting the resin component of the matrix and the constituent material of the light diffusing fine particles, as well as the chemical and thermodynamic characteristics, as described in the above items A-1 to A-3. Can be formed.
  • the concentration modulation region can be satisfactorily formed by configuring the resin component and the light diffusing fine particles with materials having high compatibility among the similar materials.
  • the thickness and concentration gradient of the concentration modulation region can be controlled by adjusting the chemical and thermodynamic characteristics of the resin component of the matrix and the light diffusing fine particles.
  • the ultrafine particle component By appropriately selecting the ultrafine particle component in accordance with the type of the resin component and the light diffusing fine particles, it is separately provided in the vicinity of the interface between the matrix 10 and the light diffusing fine particles 20 (the periphery of the light diffusing fine particles).
  • the concentration modulation region may be further formed (not shown).
  • the resin component and the light diffusing fine particles with the same material (for example, organic compounds), and configuring the ultra fine particle component with a system material (for example, an inorganic compound) different from the matrix and the light diffusing fine particles, Another density modulation region can be formed satisfactorily.
  • the resin component should surround the light diffusing fine particles only with the resin component, rather than being uniformly dissolved or dispersed with the ultra fine particle component.
  • the energy of the whole system is stabilized.
  • the weight concentration of the resin component is higher than the average weight concentration of the resin component in the entire matrix in the closest region of the light diffusing fine particles, and decreases as the distance from the light diffusing fine particles increases. Therefore, another density modulation region can be formed.
  • the weight concentration of the resin component 11 decreases and the weight concentration of the ultrafine particle component increases.
  • the ultrafine particle component is dispersed at a relatively low concentration in the closest region of the light diffusing fine particle 20 in another concentration modulation region, and the concentration of the ultra fine particle component increases as the distance from the light diffusing fine particle 20 increases. Increase.
  • the weight concentration of the resin component is higher than the average weight concentration of the resin component in the entire matrix, and the weight concentration of the ultrafine particle component is in the entire matrix. Lower than the average weight concentration of the ultrafine particle component.
  • the weight concentration of the resin component is equal to or lower than the average weight concentration of the resin component in the entire matrix.
  • the weight concentration of is equal to the average weight concentration of the ultrafine particle component in the entire matrix or higher depending on the case.
  • the backscattering can be further suppressed as compared with the case where the weight concentration of the ultrafine particle component having a refractive index significantly different from that of the light diffusing fine particles 20 is relative to the outside of the other concentration modulation region. Therefore, the difference in refractive index between the matrix 10 and the light diffusing fine particles 20 can be increased, and as a result, high haze (strong diffusibility) can be realized even with a thin film. Kill.
  • a strong diffusibility as a light diffusing element used in collimated backlight front diffusing system (haze 90% or higher) is required.
  • the thickness of the other concentration modulation region may be constant (that is, the other concentration modulation region is concentric around the light diffusing fine particle).
  • the thickness may be different depending on the position of the surface of the light diffusing fine particles (for example, it may be like an outer shape of confetti).
  • the thickness of another concentration modulation region varies depending on the position of the surface of the light diffusing fine particles.
  • the thickness of another concentration modulation region is preferably 10 nm to 500 nm, more preferably 20 nm to 400 nm, and still more preferably 30 nm to 300 nm. Further, the thickness of the other concentration modulation region is preferably 10% to 50%, more preferably 20% to 40% with respect to the average particle diameter of the light diffusing fine particles.
  • the light diffusing element preferably has a higher haze, specifically, preferably 90 to 99%, more preferably 92 to 99%, still more preferably 95 to 99%, and particularly preferably. Is 97 to 99%.
  • the haze is 90% or more, it can be suitably used as a front light diffusing element in a collimated backlight front diffusing system.
  • the collimated backlight front diffusion system is a liquid crystal display device that uses collimated backlight light (backlight light with a narrow luminance half-value width condensed in a certain direction) and the front light on the viewing side of the upper polarizing plate.
  • a system provided with a diffusing element is provided with a diffusing element.
  • the diffusion characteristic of the light diffusing element is preferably 10 ° to 150 ° (5 ° to 75 ° on one side), more preferably 10 ° to 100 ° (5 ° to 50 ° on one side), in terms of a light diffusion half-value angle. And more preferably 30 ° to 80 ° (15 ° to 40 ° on one side).
  • the thickness of the light diffusing element can be appropriately set according to the purpose and desired diffusion characteristics. Specifically, the thickness of the light diffusing element is preferably 4 ⁇ m to 50 ⁇ m, more preferably 4 ⁇ m to 20 ⁇ m. According to the present invention, a light diffusing element having such a very high haze as described above can be obtained despite such a very thin thickness.
  • the light diffusing element is suitably used for a viewing side member of a liquid crystal display device, a backlight member of a liquid crystal display device, and a diffusing member for a lighting fixture (for example, an organic EL or LED), and is a front of a collimated backlight front diffusion system It is particularly preferably used as a diffusing element.
  • the light diffusing element may be provided alone as a film-like or plate-like member, or may be provided as a composite member by being attached to any appropriate base material or polarizing plate. An antireflection layer may be laminated on the light diffusing element.
  • FIG. 4 is a schematic cross-sectional view of a polarizing plate with a light diffusing element according to a preferred embodiment of the present invention.
  • the polarizing plate with a light diffusing element 200 includes a light diffusing element 100 and a polarizer 110.
  • the light diffusing element 100 is the light diffusing element of the present invention described in the above items A-1 to A-3 and B.
  • the light diffusing element 100 is disposed so as to be the most visible side when the polarizing plate with the light diffusing element is disposed on the viewing side of the liquid crystal display device.
  • a low reflection layer or an antireflection treatment layer is disposed on the viewing side of the light diffusing element 100 (not shown).
  • the polarizing plate with a light diffusing element 200 has protective layers 120 and 130 on both sides of the polarizer. The light diffusing element, the polarizer and the protective layer are attached via any appropriate adhesive layer or pressure-sensitive adhesive layer.
  • At least one of the protective layers 120 and 130 may be omitted depending on the purpose, the configuration of the polarizing plate, and the configuration of the liquid crystal display device.
  • the protective layer 120 can be omitted.
  • the polarizing plate with a light diffusing element of the present invention can be particularly suitably used as a viewing side polarizing plate in a liquid crystal display device employing a collimated backlight front diffusion system.
  • Polarizer Any appropriate polarizer may be adopted as the polarizer 110 depending on the purpose.
  • dichroic substances such as iodine and dichroic dyes are adsorbed on hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and ethylene / vinyl acetate copolymer partially saponified films.
  • polyene-based oriented films such as a uniaxially stretched product, a polyvinyl alcohol dehydrated product and a polyvinyl chloride dehydrochlorinated product.
  • a polarizer obtained by adsorbing a dichroic substance such as iodine on a polyvinyl alcohol film and uniaxially stretching is particularly preferable because of its high polarization dichroic ratio.
  • the thickness of these polarizers is not particularly limited, but is generally about 1 to 80 ⁇ m.
  • a polarizer uniaxially stretched by adsorbing iodine to a polyvinyl alcohol film can be produced, for example, by dyeing polyvinyl alcohol in an aqueous iodine solution and stretching it 3 to 7 times the original length. . If necessary, it may contain boric acid, zinc sulfate, zinc chloride or the like, or may be immersed in an aqueous solution such as potassium iodide. Further, if necessary, the polyvinyl alcohol film may be immersed in water and washed before dyeing.
  • Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be dyed with iodine after stretching.
  • the film can be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.
  • the protective layers 120 and 130 are formed of any appropriate film that can be used as a protective layer of a polarizing plate.
  • the material as the main component of the film include cellulose resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based materials.
  • transparent resins such as polystyrene, polynorbornene, polyolefin, (meth) acryl, and acetate.
  • thermosetting resins such as (meth) acrylic, urethane-based, (meth) acrylurethane-based, epoxy-based, and silicone-based or ultraviolet curable resins are also included.
  • a glassy polymer such as a siloxane polymer is also included.
  • a polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used.
  • a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in the side chain for example, a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer can be mentioned.
  • the polymer film can be, for example, an extruded product of the resin composition.
  • the protective layer (inner protective layer) 130 is preferably optically isotropic.
  • the thickness direction retardation Rth (550) of the inner protective layer is preferably ⁇ 20 nm to +20 nm, more preferably ⁇ 10 nm to +10 nm, particularly preferably ⁇ 6 nm to +6 nm, and most preferably ⁇ 3 nm to +3 nm. It is.
  • the in-plane retardation Re (550) of the inner protective layer is preferably 0 nm or more and 10 nm or less, more preferably 0 nm or more and 6 nm or less, and particularly preferably 0 nm or more and 3 nm or less. Details of the film that can form such an optically isotropic protective layer are described in Japanese Patent Application Laid-Open No. 2008-180961, which description is incorporated herein by reference.
  • FIG. 5 is a schematic cross-sectional view of a liquid crystal display device obtained by the manufacturing method of a preferred embodiment of the present invention.
  • the liquid crystal display device 500 includes a liquid crystal cell 510, polarizing plates 520 and 530 disposed on both sides of the liquid crystal cell, a backlight unit 540 provided outside the polarizing plate 530, and the outside (viewing side) of the polarizing plate 520.
  • the light diffusing element 100 is provided.
  • the liquid crystal cell 510 includes a pair of substrates (typically, glass substrates) 511 and 512 and a liquid crystal layer 513 that includes liquid crystal serving as a display medium and is disposed between the substrates 511 and 512.
  • the light diffusing element 100 is the light diffusing element of the present invention described in the above items A-1 to A-3 and B.
  • the polarizing plate with a light diffusing element of the present invention described in the above section C may be disposed.
  • the light diffusing element transmits and diffuses light that has passed through the liquid crystal cell (typically, collimated light as described below).
  • the backlight unit 540 is a parallel light source device that emits collimated light toward the liquid crystal cell 510.
  • the backlight unit may have any suitable configuration that can emit collimated light.
  • the backlight unit includes a light source and a condensing element that collimates light emitted from the light source (none of which is shown).
  • any appropriate condensing element capable of collimating light emitted from the light source can be employed as the condensing element. If the light source itself can emit collimated light, the condensing element can be omitted.
  • the backlight unit includes, for example, the following: (1) A light shielding layer on a portion other than the focal point of the lens on the flat surface side of the lenticular lens or the bullet-type lens.
  • the light guide plate and a structure having a convex surface formed on the light guide plate side and a variable angle prism disposed on the liquid crystal cell side of the light guide plate in this configuration, an anisotropic diffusion element is further used as necessary.
  • Japanese Patent No. 3442247 (3) A louver layer in which a light-absorbing resin and a transparent resin are alternately formed in a stripe shape is provided between a backlight and a backlight-side polarizing plate. (4) Configuration using a bullet-type LED as a light source (for example, JP-A-6-130255); (5) Fresnel lens and, if necessary, A configuration using a diffusion plate (for example, JP-A-1-126627).
  • a bullet-type LED for example, JP-A-6-130255
  • Fresnel lens and, if necessary, A configuration using a diffusion plate for example, JP-A-1-126627.
  • the liquid crystal layer 513 includes liquid crystal molecules vertically aligned during black display.
  • a driving mode of a liquid crystal cell having such a liquid crystal layer for example, an MVA (multi-domain vertical alignment) mode, a PVA (pattern VA) mode, a TN (twisted nematic) mode, an ECB (electric field control birefringence) mode, An OCB (bend nematic) mode may be mentioned.
  • Thickness of the light diffusing element The total thickness of the base material and the light diffusing element is measured with a microgauge thickness meter (manufactured by Mitutoyo Corporation), and the thickness of the light diffusing element is subtracted from the total thickness. was calculated.
  • TEM transmission electron microscope
  • the diffusion angle at which the luminance is half the maximum value of the light diffusion luminance excluding the straight transmitted light is measured on both sides of the diffusion, and the sum of the angles on both sides (angle A + angle A ′ in FIG. 6) is the light diffusion half value. It was a corner.
  • the laminated body of the light diffusing element and the base material obtained in the examples and comparative examples was placed on a black acrylic plate (trade name “SUMIPEX” (registered trademark) manufactured by Sumitomo Chemical Co., Ltd.) through a transparent adhesive. ) And a thickness of 2 mm) to obtain a measurement sample.
  • the integrated reflectance of this measurement sample was measured with a spectrophotometer (trade name “U4100”, manufactured by Hitachi Keiki Co., Ltd.).
  • a coating liquid obtained by removing fine particles from the light diffusing element coating liquid a laminate of a substrate and a transparent coating layer was prepared as a control sample, and the integrated reflectance ( That is, the surface reflectance was measured.
  • the backscattering rate of the light diffusing element was calculated by subtracting the integrated reflectance (surface reflectance) of the control sample from the integrated reflectance of the measurement sample.
  • (6) Infiltration range of precursor Ten light diffusing fine particles were randomly selected from a TEM photograph taken by the procedure described in (2) above.
  • Example 1 Production of light diffusing element> Resin for hard coat containing 62% of zirconia nanoparticles (average particle diameter 60 nm, refractive index 2.19) as an ultrafine particle component (trade name “OPSTAR KZ6661” (MEK / MIBK included)) 18.2 6.8 parts of 50% MEK solution of pentaerythritol triacrylate (trade name “Biscoat # 300” manufactured by Osaka Organic Chemical Industry Co., Ltd., refractive index 1.52) as a precursor of the resin component was started in the part.
  • OPSTAR KZ6661 MEK / MIBK included
  • Example 2 Production of light diffusing element> A coating solution was prepared in the same manner as in Example 1. The coating liquid was allowed to stand for 4 hours, and then coated in the same manner as in Example 1. A light diffusing element was obtained in the same manner as in Example 1 except that the drying temperature after coating was 60 ° C. and the thickness was 10 ⁇ m. The obtained light diffusing element was subjected to the evaluations (1) to (6) above. The results are shown in Table 1.
  • Example 3 Production of light diffusing element> A light diffusing element was obtained in the same manner as in Example 1 except that the drying temperature after coating the coating solution was 60 ° C. The obtained light diffusing element was subjected to the evaluations (1) to (6) above. The results are shown in Table 1. Further, a TEM photograph of a cross section of the light diffusing element is shown in FIG. From the TEM photograph, it was confirmed that a concentration modulation region was formed inside the light diffusing fine particles.
  • Example 4 Production of light diffusing element> A light diffusing element was obtained in the same manner as in Example 1 except that PMMA fine particles (MX180TA, manufactured by Soken Chemical Co., Ltd.) were used as the light diffusing fine particles, and the thickness was 20 ⁇ m. The obtained light diffusing element was subjected to the evaluations (1) to (6) above. The results are shown in Table 1. Further, a TEM photograph of a cross section of the light diffusing element is shown in FIG. From the TEM photograph, it was confirmed that a concentration modulation region was formed inside the light diffusing fine particles.
  • PMMA fine particles MX180TA, manufactured by Soken Chemical Co., Ltd.
  • Example 5 Production of light diffusing element> A coating solution was prepared in the same manner as in Example 1. The coating liquid was allowed to stand for 2 hours, and then a light diffusing element was obtained in the same manner as in Example 2. The obtained light diffusing element was subjected to the evaluations (1) to (6) above. The results are shown in Table 1.
  • Example 6 Production of light diffusing element> A coating solution was prepared in the same manner as in Example 1. The coating liquid was allowed to stand for 7 hours, and then a light diffusing element was obtained in the same manner as in Example 2. The obtained light diffusing element was subjected to the evaluations (1) to (6) above. The results are shown in Table 1.
  • Example 7 Production of light diffusing element> A coating solution was prepared in the same manner as in Example 1. The coating liquid was allowed to stand for 24 hours, and then a light diffusing element was obtained in the same manner as in Example 2. The obtained light diffusing element was subjected to the evaluations (1) to (6) above. The results are shown in Table 1.
  • Example 8 Production of liquid crystal display device>
  • the liquid crystal cell was taken out from a commercially available liquid crystal television (manufactured by Sony, BRAVIA 20 type, trade name “KDL20J3000”) having a multi-domain VA mode liquid crystal cell.
  • a commercially available polarizing plate (trade name “NPF-SEG1423DU” manufactured by Nitto Denko Corporation) was bonded to both sides of the liquid crystal cell so that the absorption axes of the respective polarizers were orthogonal to each other.
  • the absorption axis direction of the polarizer of the backlight side polarizing plate is the vertical direction (90 ° with respect to the long side direction of the liquid crystal panel), and the absorption axis direction of the polarizer of the viewing side polarizing plate is the horizontal direction. Bonding was performed so as to be (0 ° with respect to the long side direction of the liquid crystal panel). Further, the light diffusing element of Example 1 was transferred from the base material and bonded to the outside of the viewing side polarizing plate to produce a liquid crystal panel.
  • a lenticular lens pattern was melt-heat transferred onto one side of a PMMA sheet using a transfer roll.
  • An aluminum pattern is deposited on the surface (smooth surface) opposite to the surface on which the lens pattern is formed so that light is transmitted only through the focal point of the lens, and the area ratio of the opening is 7% (the area ratio of the reflection section is 93). %) Of the reflective layer.
  • a cold cathode fluorescent lamp manufactured by Sony Corporation, BRAVIA20J CCFL
  • a condensing element was attached to the light source to produce a parallel light source device (backlight unit) that emits collimated light.
  • the above backlight unit was incorporated into the above liquid crystal panel to produce a liquid crystal display device of a collimated backlight front diffusion system.
  • white display and black display were performed in a dark place, and the display state was visually observed.
  • the black display in the bright place was black and the brightness of the white display in the dark place was high.
  • the light diffusing fine particles and the matrix resin are substantially not performed without any special treatment or operation.
  • the light diffusing element having the concentration modulation region could be manufactured simply by polymerizing the precursor.
  • the light diffusing element and the polarizing plate with a light diffusing element obtained by the production method of the present invention are a viewing side member of a liquid crystal display device, a backlight member of a liquid crystal display device, and a diffusing member for a lighting fixture (for example, organic EL, LED). And can be particularly preferably used as a front diffusion element of a collimated backlight front diffusion system.

Abstract

A process for producing a light-diffusing element is provided by which a light-diffusing element having a high haze and high diffusing properties and reduced in backward scattering can be produced at low cost with high productivity. The process for producing a light-diffusing element comprises a step in which a matrix-forming material comprising a resin-ingredient precursor and an ultrafine-particle ingredient is brought into contact with fine light-diffusing particles, a step in which at least some of the precursor is infiltrated into an inner part of the fine light-diffusing particles, and a step in which the precursor that has infiltrated into the inner part of the fine light-diffusing particles and the precursor that has not infiltrated into the fine light-diffusing particles are simultaneously polymerized to form a matrix comprising the resin ingredient and the ultrafine-particle ingredient and simultaneously form a concentration gradation region in the vicinity of the inner side of the surface of the fine light-diffusing particles.

Description

光拡散素子の製造方法、光拡散素子、ならびに、光拡散素子付偏光板および液晶表示装置の製造方法Manufacturing method of light diffusing element, light diffusing element, polarizing plate with light diffusing element, and manufacturing method of liquid crystal display device
 本発明は、光拡散素子の製造方法、光拡散素子、ならびに、光拡散素子付偏光板および液晶表示装置の製造方法に関する。 The present invention relates to a method for manufacturing a light diffusing element, a light diffusing element, a polarizing plate with a light diffusing element, and a method for manufacturing a liquid crystal display device.
 光拡散素子は、照明カバー、プロジェクションテレビのスクリーン、面発光装置(例えば、液晶表示装置)などに広く利用されている。近年では、光拡散素子は、液晶表示装置などの表示品位の向上、視野角特性の改善等への利用が進んでいる。光拡散素子としては、微粒子を樹脂シートなどのマトリクス中に分散させたものなどが提案されている(例えば、特許文献1参照)。このような光拡散素子においては、入射した光の大部分は前方(出射面側)に散乱するが、一部は後方(入射面側)に散乱する。微粒子とマトリクスとの屈折率差が大きいほど拡散性(例えば、ヘイズ値)は大きくなるが、一方で、屈折率差が大きいと後方散乱が増大してしまう。後方散乱が大きいと、光拡散素子を液晶表示装置に用いた場合に、液晶表示装置に外光が入射したときに画面が白っぽくなるので、コントラストのある映像や画像の表示が困難である。 Light diffusing elements are widely used in lighting covers, projection television screens, surface light emitting devices (for example, liquid crystal display devices), and the like. In recent years, light diffusing elements have been increasingly used for improving display quality of liquid crystal display devices and the like, and improving viewing angle characteristics. As the light diffusing element, an element in which fine particles are dispersed in a matrix such as a resin sheet has been proposed (for example, see Patent Document 1). In such a light diffusing element, most of the incident light is scattered forward (exit surface side), but a part is scattered backward (incident surface side). The greater the difference in refractive index between the fine particles and the matrix, the greater the diffusivity (for example, haze value). On the other hand, when the difference in refractive index is large, backscattering increases. When backscattering is large, when a light diffusing element is used in a liquid crystal display device, the screen becomes whitish when external light is incident on the liquid crystal display device, so that it is difficult to display a contrast image or image.
 上記のような問題を解決する手段として、微粒子とマトリクスとの界面での反射を抑えるというコンセプトに基づき、コアとシェルとの屈折率が異なるコアシェル微粒子や、微粒子の中心部から外側に向かって連続的に屈折率が変化するいわゆるGRIN(gradient index)微粒子などの屈折率傾斜微粒子を樹脂中に分散させることが提案されている(例えば、特許文献2~4参照)。しかし、これらの微粒子は、通常の微粒子よりも製造プロセスが複雑なため生産性が不十分であり、実用的ではない。 As a means to solve the above problems, based on the concept of suppressing reflection at the interface between the fine particles and the matrix, the core-shell fine particles having different refractive indexes of the core and the shell, or continuous from the center of the fine particles toward the outside It has been proposed to disperse gradient refractive index fine particles such as so-called GRIN (gradient index) fine particles whose refractive index changes in a resin (see, for example, Patent Documents 2 to 4). However, these fine particles are not practical because the production process is more complicated than ordinary fine particles, resulting in insufficient productivity.
特許第3071538号Japanese Patent No. 3071538 特開平6-347617号公報JP-A-6-347617 特開2003-262710号公報JP 2003-262710 A 特開2002-212245号公報JP 2002-212245 A
 本発明は上記従来の課題を解決するためになされたものであり、その目的とするところは、ヘイズ値が高く、強い拡散性を有し、かつ、後方散乱が抑制された光拡散素子を低コストかつ高生産性で製造し得る光拡散素子の製造方法を提供することにある。 The present invention has been made to solve the above-described conventional problems. The object of the present invention is to reduce a light diffusing element having a high haze value, strong diffusibility, and suppressed backscattering. The object is to provide a method of manufacturing a light diffusing element that can be manufactured at low cost and high productivity.
 本発明の光拡散素子の製造方法は、樹脂成分の前駆体および超微粒子成分を含むマトリクス形成材料と光拡散性微粒子とを接触させる工程と、該前駆体の少なくとも一部を該光拡散性微粒子の内部に浸透させる工程と、該光拡散性微粒子の内部に浸透した前駆体と該光拡散性微粒子に浸透しなかった前駆体とを同時に重合して、樹脂成分および超微粒子成分を含むマトリクスを形成すると同時に、該光拡散性微粒子の表面近傍内部に濃度変調領域を形成する工程と、を含む。
 好ましい実施形態においては、上記製造方法は、上記浸透工程において、上記光拡散性微粒子の表面から該光拡散性微粒子の平均粒径の10%以上95%以下の範囲まで上記前駆体を浸透させる。
 好ましい実施形態においては、上記製造方法は、上記光拡散性微粒子の粒径が実質的に最大になるまでの時間よりも長い時間、上記樹脂成分の前駆体と該光拡散性微粒子とを接触させる。
 好ましい実施形態においては、上記樹脂成分は電離線硬化型樹脂であり、上記製造方法は、電離線を照射することにより該樹脂成分の前駆体を重合させる。
 本発明の別の局面によれば、光拡散素子が提供される。この光拡散素子は、上記の方法によって得られ、樹脂成分および超微粒子成分を含むマトリクスと、該マトリクス中に分散された光拡散性微粒子とを有し、該光拡散性微粒子の表面近傍内部に該樹脂成分が浸透して形成された濃度変調領域を有する。
 本発明のさらに別の局面によれば、光拡散素子付偏光板の製造方法が提供される。この方法は、上記光拡散素子の製造方法を用いる。
 本発明のさらに別の局面によれば、液晶表示装置の製造方法が提供される。この方法は、上記光拡散素子の製造方法を用いる。
The method for producing a light diffusing element of the present invention comprises a step of bringing a matrix-forming material containing a precursor of a resin component and an ultrafine particle component into contact with a light diffusing fine particle, and at least a part of the precursor being the light diffusing fine particle. A matrix containing a resin component and an ultrafine particle component by simultaneously polymerizing a step of permeating the inside of the light diffusing fine particles and a precursor that has penetrated into the light diffusing fine particles and a precursor that has not penetrated into the light diffusing fine particles. And forming a concentration modulation region in the vicinity of the surface of the light diffusing fine particles simultaneously with the formation.
In a preferred embodiment, the production method impregnates the precursor from the surface of the light diffusing fine particles to a range of 10% to 95% of the average particle diameter of the light diffusing fine particles in the infiltration step.
In a preferred embodiment, the production method comprises bringing the precursor of the resin component into contact with the light diffusing fine particles for a time longer than a time until the particle size of the light diffusing fine particles is substantially maximized. .
In a preferred embodiment, the resin component is an ionizing radiation curable resin, and the production method polymerizes the precursor of the resin component by irradiating the ionizing radiation.
According to another aspect of the present invention, a light diffusing element is provided. This light diffusing element is obtained by the above-described method, and has a matrix containing a resin component and an ultrafine particle component, and light diffusing fine particles dispersed in the matrix, inside the vicinity of the surface of the light diffusing fine particles. It has a concentration modulation region formed by permeation of the resin component.
According to another situation of this invention, the manufacturing method of a polarizing plate with a light-diffusion element is provided. This method uses the manufacturing method of the light diffusing element.
According to still another aspect of the present invention, a method for manufacturing a liquid crystal display device is provided. This method uses the manufacturing method of the light diffusing element.
 本発明によれば、特定のマトリクス樹脂成分(実質的には、その前駆体)と特定の光拡散性微粒子とを組み合わせて用いることにより、光拡散素子の製造時において、光拡散性微粒子内部にマトリクス樹脂成分の前駆体を浸透させることができる。この前駆体を重合することにより、マトリクスを形成すると同時に、該光拡散性微粒子の表面近傍内部に濃度変調領域を形成することができる(すなわち、いわゆるワンバッチでマトリクスと濃度変調領域とを形成することができる)。このように、本発明によれば、濃度変調領域の形成に特別な処理や操作を必要としないので、光拡散素子を低コストかつ高生産性で製造することができる。しかも、本発明の製造方法で得られる光拡散素子は、光拡散性微粒子の表面近傍内部に濃度変調領域が形成されているので、光拡散性素子とマトリクスとの界面近傍において屈折率を段階的または実質的に連続的に変化させることができる。したがって、マトリクスと光拡散性微粒子との界面の反射を良好に抑えることができ、後方散乱を抑制することができる。さらに、本発明によれば、特定の屈折率および樹脂成分に対する特定の相溶性を有する超微粒子成分を用いることにより、マトリクスの屈折率を容易に調整することができる。特に、本発明によれば、樹脂成分が光拡散性微粒子内部に浸透することにより、マトリクス中の超微粒子成分の濃度を高くすることができるので、マトリクスと光拡散性微粒子との屈折率差を容易に大きくすることができる。その結果、本発明の製造方法で得られる光拡散素子は、ヘイズ値が高く、強い拡散性を有し、かつ、後方散乱が抑制されている。 According to the present invention, by using a specific matrix resin component (substantially a precursor thereof) and specific light diffusing fine particles in combination, when the light diffusing element is manufactured, The precursor of the matrix resin component can be infiltrated. By polymerizing this precursor, a matrix can be formed, and at the same time, a concentration modulation region can be formed in the vicinity of the surface of the light diffusing fine particles (that is, a matrix and a concentration modulation region can be formed in one batch). Can do). As described above, according to the present invention, since no special treatment or operation is required for forming the density modulation region, the light diffusing element can be manufactured at low cost and high productivity. In addition, since the light diffusing element obtained by the manufacturing method of the present invention has a concentration modulation region formed in the vicinity of the surface of the light diffusing fine particles, the refractive index is gradually increased in the vicinity of the interface between the light diffusing element and the matrix. Or it can be changed substantially continuously. Therefore, reflection at the interface between the matrix and the light diffusing fine particles can be satisfactorily suppressed, and backscattering can be suppressed. Furthermore, according to the present invention, the refractive index of the matrix can be easily adjusted by using the ultrafine particle component having a specific refractive index and a specific compatibility with the resin component. In particular, according to the present invention, since the resin component permeates the light diffusing fine particles, the concentration of the ultra fine particle component in the matrix can be increased, so that the refractive index difference between the matrix and the light diffusing fine particles can be reduced. Can be easily enlarged. As a result, the light diffusing element obtained by the production method of the present invention has a high haze value, strong diffusibility, and suppressed backscattering.
本発明の好ましい実施形態による製造方法により得られる光拡散素子におけるマトリクスの樹脂成分および光拡散性微粒子の分散状態を説明するための模式図である。It is a schematic diagram for demonstrating the dispersion state of the resin component of a matrix and the light diffusible microparticles | fine-particles in the light-diffusion element obtained by the manufacturing method by preferable embodiment of this invention. (a)は、本発明の光拡散素子における光拡散性微粒子中心部からマトリクスまでの屈折率変化を説明するための概念図であり、(b)は従来の光拡散素子における微粒子中心部からマトリクスまでの屈折率変化を説明するための概念図である。(A) is a conceptual diagram for demonstrating the refractive index change from the center part of light diffusable microparticles | fine-particles in the light diffusing element of this invention to a matrix, (b) is a matrix from the center part of microparticles | fine-particles in the conventional light diffusing element. It is a conceptual diagram for demonstrating the refractive index change until. 静置時間が異なる塗工液について、乾燥温度と得られる拡散半値角との関係を示すグラフである。It is a graph which shows the relationship between a drying temperature and the diffusion half-value angle obtained about the coating liquid from which stationary time differs. 本発明の好ましい実施形態による製造方法により得られる光拡散素子付偏光板の概略断面図である。It is a schematic sectional drawing of the polarizing plate with a light-diffusion element obtained by the manufacturing method by preferable embodiment of this invention. 本発明の好ましい実施形態による製造方法により得られる液晶表示装置の概略断面図である。It is a schematic sectional drawing of the liquid crystal display device obtained by the manufacturing method by preferable embodiment of this invention. 光拡散半値角を算出する方法を説明するための模式図である。It is a schematic diagram for demonstrating the method of calculating a light-diffusion half-value angle. 実施例1、3および4の光拡散素子についての濃度変調領域を示す透過型顕微鏡写真である。6 is a transmission micrograph showing a concentration modulation region for light diffusing elements of Examples 1, 3 and 4. FIG.
 以下、本発明の好ましい実施形態について図面を参照しながら説明するが、本発明はこれらの具体的な実施形態には限定されない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to these specific embodiments.
A.光拡散素子の製造方法
 本発明の光拡散素子の製造方法は、樹脂成分の前駆体および超微粒子成分を含むマトリクス形成材料と光拡散性微粒子とを接触させる工程(工程Aとする)と、該前駆体の少なくとも一部を該光拡散性微粒子の内部に浸透させる工程(工程Bとする)と、該前駆体を重合させて、樹脂成分および超微粒子成分を含むマトリクスを形成すると同時に、該光拡散性微粒子の表面近傍内部に濃度変調領域を形成する工程(工程Cとする)と、を含む。
A. Method for Producing Light Diffusing Element The method for producing a light diffusing element of the present invention comprises a step (referred to as step A) of contacting a matrix-forming material containing a precursor of a resin component and an ultrafine particle component with light diffusing fine particles, A step of allowing at least a part of the precursor to penetrate into the light diffusing fine particles (referred to as Step B), and polymerizing the precursor to form a matrix containing a resin component and an ultrafine particle component, and at the same time, the light Forming a concentration modulation region in the vicinity of the surface of the diffusible fine particles (referred to as step C).
A-1.工程A
 工程Aにおいては、代表的には、樹脂成分の前駆体および超微粒子成分を含むマトリクス形成材料と光拡散性微粒子とを揮発性溶剤中に溶解または分散させた塗工液が調製される。代表的には、当該塗工液は前駆体および揮発性溶剤中に超微粒子成分および光拡散性微粒子が分散した分散体である。超微粒子成分および光拡散性微粒子を分散させる手段としては、任意の適切な手段(例えば、超音波処理)が採用され得る。当該塗工液において、光拡散性微粒子が樹脂成分の前駆体と接触する。
A-1. Process A
In step A, typically, a coating liquid is prepared in which a matrix-forming material containing a precursor of a resin component and an ultrafine particle component and light diffusing fine particles are dissolved or dispersed in a volatile solvent. Typically, the coating liquid is a dispersion in which ultrafine particle components and light diffusing fine particles are dispersed in a precursor and a volatile solvent. Any appropriate means (for example, ultrasonic treatment) can be adopted as means for dispersing the ultrafine particle component and the light diffusing fine particles. In the coating liquid, the light diffusing fine particles come into contact with the precursor of the resin component.
A-1-1.樹脂成分
 上記樹脂成分は、上記濃度変調領域が良好に形成される限りにおいて、任意の適切な材料で構成される。好ましくは、樹脂成分は、その屈折率が下記式(1)の関係を満足する:
 0<|n-n|・・・(1)
式(1)中、nはマトリクスの樹脂成分の屈折率を表し、nは光拡散性微粒子の屈折率を表す。|n-n|は、好ましくは0.01~0.10であり、さらに好ましくは0.01~0.06であり、特に好ましくは0.02~0.06である。|n-n|が0.01未満であると、上記濃度変調領域が形成されない場合がある。|n-n|が0.10を超えると、後方散乱が増大するおそれがある。
A-1-1. Resin Component The resin component is composed of any appropriate material as long as the concentration modulation region is satisfactorily formed. Preferably, the refractive index of the resin component satisfies the relationship of the following formula (1):
0 <| n P −n A | (1)
In formula (1), n A represents the refractive index of the resin component of the matrix, and n P represents the refractive index of the light diffusing fine particles. | N P −n A | is preferably 0.01 to 0.10, more preferably 0.01 to 0.06, and particularly preferably 0.02 to 0.06. If | n P −n A | is less than 0.01, the concentration modulation region may not be formed. When | n P −n A | exceeds 0.10, backscattering may increase.
 好ましくは、樹脂成分は、光拡散性微粒子と同系の化合物で構成される。さらに好ましくは、樹脂成分は、光拡散性微粒子と同系の化合物の中でも相溶性の高い化合物で構成される。これにより、樹脂成分は、光拡散性微粒子と同系材料であることに起因して、その前駆体(モノマー)が光拡散性微粒子内部に浸透し得る。当該前駆体(モノマー)が後述の重合工程により重合した結果、樹脂成分による濃度変調領域を光拡散性微粒子の表面近傍内部に良好に形成することができる。なお、本明細書において「同系」とは、化学構造や特性が同等または類似であることをいい、「異なる系」とは、同系以外のものをいう。同系か否かは、基準の選択の仕方によって異なり得る。例えば、有機か無機かを基準にした場合、有機化合物同士は同系の化合物であり、有機化合物と無機化合物とは異なる系の化合物である。ポリマーの繰り返し単位を基準にした場合、例えばアクリル系ポリマーとエポキシ系ポリマーとは有機化合物同士であるにもかかわらず異なる系の化合物であり、周期律表を基準にした場合、アルカリ金属と遷移金属とは無機元素同士であるにもかかわらず異なる系の元素である。 Preferably, the resin component is composed of a compound similar to the light diffusing fine particles. More preferably, the resin component is composed of a highly compatible compound among the same compounds as the light diffusing fine particles. Thereby, the precursor (monomer) of the resin component can permeate into the light diffusing fine particles due to the fact that the resin component is the same material as the light diffusing fine particles. As a result of the polymerization of the precursor (monomer) described later, a concentration-modulated region by the resin component can be favorably formed in the vicinity of the surface of the light diffusing fine particles. In the present specification, “same system” means that chemical structures and properties are equivalent or similar, and “different system” means something other than the same system. Whether or not they are related may differ depending on how the reference is selected. For example, when organic or inorganic is used as a reference, the organic compounds are the same type of compounds, and the organic compound and the inorganic compound are different types of compounds. When the polymer repeat unit is used as a reference, for example, an acrylic polymer and an epoxy polymer are different compounds despite being organic compounds, and when a periodic table is used as a reference, alkali metals and transition metals are used. Is an element of a different system despite being inorganic elements.
 上記樹脂成分は、好ましくは有機化合物で構成され、より好ましくは電離線硬化型樹脂で構成される。電離線硬化型樹脂は、塗膜の硬度に優れている。電離線としては、例えば、紫外線、可視光、赤外線、電子線が挙げられる。好ましくは紫外線であり、したがって、樹脂成分は、特に好ましくは紫外線硬化型樹脂で構成される。紫外線硬化型樹脂としては、例えば、アクリレート樹脂(エポキシアクリレート、ポリエステルアクリレート、アクリルアクリレート、エーテルアクリレート)などのラジカル重合型モノマーもしくはオリゴマーなどが挙げられる。アクリレート樹脂を構成するモノマー成分(前駆体)の分子量は、好ましくは200~700である。アクリレート樹脂を構成するモノマー成分(前駆体)の具体例としては、ペンタエリスリトールトリアクリレート(PETA:分子量298)、ネオペンチルグリコールジアクリレート(NPGDA:分子量212)、ジペンタエリスリトールヘキサアクリレート(DPHA:分子量632)、ジペンタエリスリトールペンタアクリレート(DPPA:分子量578)、トリメチロールプロパントリアクリレート(TMPTA:分子量296)が挙げられる。このようなモノマー成分(前駆体)は、光拡散性微粒子の架橋構造(三次元網目構造)に浸透するに適切な分子量および立体構造を有するので好ましい。必要に応じて、開始剤を添加してもよい。開始剤としては、例えば、UVラジカル発生剤(チバ・スペシャリティ・ケミカル社製イルガキュア907、同127、同192など)、過酸化ベンゾイルが挙げられる。上記樹脂成分は、上記電離線硬化型樹脂以外に別の樹脂成分を含んでいてもよい。別の樹脂成分は、電離線硬化型樹脂であってもよく、熱硬化性樹脂であってもよく、熱可塑性樹脂であってもよい。別の樹脂成分の代表例としては、脂肪族系(例えば、ポリオレフィン)樹脂、ウレタン系樹脂が挙げられる。別の樹脂成分を用いる場合、その種類や配合量は、上記濃度変調領域が良好に形成され、かつ、屈折率が上記式(1)の関係を満足するよう調整される。 The resin component is preferably composed of an organic compound, more preferably an ionizing radiation curable resin. The ionizing radiation curable resin is excellent in the hardness of the coating film. Examples of the ionizing rays include ultraviolet rays, visible light, infrared rays, and electron beams. Preferably, it is ultraviolet rays, and therefore the resin component is particularly preferably composed of an ultraviolet curable resin. Examples of the ultraviolet curable resin include radical polymerization monomers or oligomers such as acrylate resins (epoxy acrylate, polyester acrylate, acrylic acrylate, ether acrylate). The molecular weight of the monomer component (precursor) constituting the acrylate resin is preferably 200 to 700. Specific examples of the monomer component (precursor) constituting the acrylate resin include pentaerythritol triacrylate (PETA: molecular weight 298), neopentyl glycol diacrylate (NPGDA: molecular weight 212), dipentaerythritol hexaacrylate (DPHA: molecular weight 632). ), Dipentaerythritol pentaacrylate (DPPA: molecular weight 578), and trimethylolpropane triacrylate (TMPTA: molecular weight 296). Such a monomer component (precursor) is preferable because it has a molecular weight and a three-dimensional structure suitable for penetrating into the crosslinked structure (three-dimensional network structure) of the light diffusing fine particles. An initiator may be added as necessary. Examples of the initiator include a UV radical generator (Irgacure 907, 127, 192, etc., manufactured by Ciba Specialty Chemicals) and benzoyl peroxide. The resin component may contain another resin component in addition to the ionizing radiation curable resin. Another resin component may be an ionizing radiation curable resin, a thermosetting resin, or a thermoplastic resin. Representative examples of other resin components include aliphatic (for example, polyolefin) resins and urethane resins. In the case of using another resin component, the type and blending amount thereof are adjusted so that the concentration modulation region is well formed and the refractive index satisfies the relationship of the above formula (1).
 上記樹脂成分の屈折率は、好ましくは1.40~1.60である。 The refractive index of the resin component is preferably 1.40 to 1.60.
 上記塗工液における上記樹脂成分の配合量は、形成されるマトリクス100重量部に対して、好ましくは20重量部~80重量部であり、より好ましくは45重量部~65重量部である。 The blending amount of the resin component in the coating solution is preferably 20 to 80 parts by weight, more preferably 45 to 65 parts by weight with respect to 100 parts by weight of the formed matrix.
A-1-2.超微粒子成分
 上記超微粒子成分は、代表的には、マトリクスの屈折率を調整する成分として機能し得る。超微粒子成分を用いることにより、マトリクスの屈折率を容易に調整することができ、光拡散性微粒子とマトリクスとの屈折率差を大きくすることができる。特に、本発明によれば、樹脂成分が光拡散性微粒子内部に浸透することにより、マトリクス中の超微粒子成分の濃度を高くすることができるので、マトリクスと光拡散性微粒子との屈折率差を容易に大きくすることができる。その結果、薄膜でありながら高ヘイズ値(強い拡散性)を有する光拡散素子を得ることができる。好ましくは、超微粒子成分は、その屈折率nが下記式(2)を満たす:
 0<|n-n|<|n-n|・・・(2)
式(2)において、nおよびnは上記のとおりである。|n-n|は、好ましくは0.10~1.50であり、さらに好ましくは0.20~0.80である。|n-n|が0.10未満であると、ヘイズが90%以下となる場合が多く、その結果、液晶表示装置に組み込んだ場合に光源からの光を十分に拡散できず、視野角が狭くなるおそれがある。|n-n|が1.50を超えると、後方散乱が増大するおそれがある。
A-1-2. Ultrafine particle component The above ultrafine particle component can typically function as a component that adjusts the refractive index of the matrix. By using the ultrafine particle component, the refractive index of the matrix can be easily adjusted, and the refractive index difference between the light diffusing fine particles and the matrix can be increased. In particular, according to the present invention, since the resin component permeates the light diffusing fine particles, the concentration of the ultra fine particle component in the matrix can be increased, so that the refractive index difference between the matrix and the light diffusing fine particles can be reduced. Can be easily enlarged. As a result, it is possible to obtain a light diffusing element having a high haze value (strong diffusibility) while being a thin film. Preferably, the ultrafine particle component has a refractive index n B satisfying the following formula (2):
0 <| n P −n A | <| n P −n B | (2)
In Formula (2), n A and n P are as described above. | N P −n B | is preferably 0.10 to 1.50, more preferably 0.20 to 0.80. If | n P −n B | is less than 0.10, the haze is often 90% or less. As a result, when incorporated in a liquid crystal display device, the light from the light source cannot be sufficiently diffused, The corner may be narrowed. When | n P −n B | exceeds 1.50, backscattering may increase.
 好ましくは、超微粒子成分は、上記樹脂成分および光拡散性微粒子とは異なる系の化合物で構成され、より好ましくは無機化合物で構成される。好ましい無機化合物としては、例えば、金属酸化物、金属フッ化物が挙げられる。金属酸化物の具体例としては、酸化ジルコニウム(ジルコニア)(屈折率:2.19)、酸化アルミニウム(屈折率:1.56~2.62)、酸化チタン(屈折率:2.49~2.74)、酸化ケイ素(屈折率:1.25~1.46)が挙げられる。金属フッ化物の具体例としては、フッ化マグネシウム(屈折率:1.37)、フッ化カルシウム(屈折率:1.40~1.43)が挙げられる。これらの金属酸化物および金属フッ化物は、光の吸収が少ない上に、電離線硬化型樹脂や熱可塑性樹脂などの有機化合物では発現が難しい屈折率を有しているので、光拡散性微粒子とマトリクスとの屈折率差を大きくすることができる。しかも、これらの金属酸化物および金属フッ化物は、樹脂成分との分散性が適切であることに起因して、光拡散性微粒子とマトリクスとの界面近傍(光拡散性微粒子の周辺部)に別の濃度変調領域を形成することができる。このような別の濃度変調領域が光拡散微粒子の外部にも形成されることにより、光拡散性微粒子内部にのみ濃度変調領域が形成される場合に比べて、後方散乱をさらに抑制することができる。特に好ましい無機化合物は、酸化ジルコニウムである。光拡散性微粒子との屈折率差が大きく、かつ、樹脂成分との分散性が適切であるので、所望の特性(または構造)を有する別の濃度変調領域を良好に形成することができるからである。なお、本発明においては、光拡散性微粒子の表面近傍内部に濃度変調領域が形成されればよく、上記別の濃度変調領域は形成されなくてもよい。 Preferably, the ultrafine particle component is composed of a compound of a system different from the resin component and the light diffusing fine particles, and more preferably composed of an inorganic compound. Examples of preferable inorganic compounds include metal oxides and metal fluorides. Specific examples of the metal oxide include zirconium oxide (zirconia) (refractive index: 2.19), aluminum oxide (refractive index: 1.56 to 2.62), and titanium oxide (refractive index: 2.49 to 2.19). 74) and silicon oxide (refractive index: 1.25 to 1.46). Specific examples of the metal fluoride include magnesium fluoride (refractive index: 1.37) and calcium fluoride (refractive index: 1.40 to 1.43). These metal oxides and metal fluorides have a refractive index that is difficult to be expressed by organic compounds such as ionizing radiation curable resins and thermoplastic resins in addition to low light absorption. The difference in refractive index from the matrix can be increased. In addition, these metal oxides and metal fluorides are separated from the vicinity of the interface between the light diffusing fine particles and the matrix (periphery of the light diffusing fine particles) due to the appropriate dispersibility with the resin component. Concentration modulation regions can be formed. By forming such another concentration modulation region outside the light diffusing fine particles, backscattering can be further suppressed as compared with the case where the concentration modulation region is formed only inside the light diffusing fine particles. . A particularly preferred inorganic compound is zirconium oxide. This is because the difference in refractive index from the light diffusing fine particles is large and the dispersibility with the resin component is appropriate, so that another concentration modulation region having the desired characteristics (or structure) can be satisfactorily formed. is there. In the present invention, the concentration modulation region may be formed in the vicinity of the surface of the light diffusing fine particles, and the other concentration modulation region may not be formed.
 上記超微粒子成分の屈折率は、好ましくは1.40以下または1.60以上であり、さらに好ましくは1.40以下または1.70~2.80であり、特に好ましくは1.40以下または2.00~2.80である。屈折率が1.40を超えまたは1.60未満であると、光拡散性微粒子とマトリクスとの屈折率差が不十分となり、得られる光拡散素子をコリメートバックライトフロント拡散システムの液晶表示装置に用いた場合に、コリメートバックライトからの光を十分に拡散できず視野角が狭くなるおそれがある。 The refractive index of the ultrafine particle component is preferably 1.40 or less or 1.60 or more, more preferably 1.40 or less or 1.70 to 2.80, and particularly preferably 1.40 or less or 2 .00 to 2.80. If the refractive index exceeds 1.40 or less than 1.60, the difference in refractive index between the light diffusing fine particles and the matrix becomes insufficient, and the resulting light diffusing element is used as a liquid crystal display device of a collimated backlight front diffusion system. When used, the light from the collimated backlight may not be sufficiently diffused and the viewing angle may be narrowed.
 上記超微粒子成分は、多孔質化することにより、屈折率を下げてもよい。 The ultrafine particle component may be made porous to lower the refractive index.
 上記超微粒子成分の平均粒径は、好ましくは1nm~100nmであり、より好ましくは10nm~80nmであり、さらに好ましくは20nm~70nmである。このように、光の波長より小さい平均粒径の超微粒子成分を用いることにより、超微粒子成分と樹脂成分との間に幾何光学的な反射、屈折、散乱が生じず、光学的に均一なマトリクスを得ることができる。その結果、光学的に均一な光拡散素子を得ることができる。 The average particle size of the ultrafine particle component is preferably 1 nm to 100 nm, more preferably 10 nm to 80 nm, and still more preferably 20 nm to 70 nm. In this way, by using an ultrafine particle component having an average particle diameter smaller than the wavelength of light, no geometrical optical reflection, refraction, or scattering occurs between the ultrafine particle component and the resin component, and an optically uniform matrix. Can be obtained. As a result, an optically uniform light diffusing element can be obtained.
 上記超微粒子成分は、上記樹脂成分との分散性が良好であることが好ましい。本明細書において「分散性が良好」とは、上記樹脂成分と超微粒子成分と(必要に応じて少量のUV開始剤と)揮発溶剤とを混合して得られた塗工液を塗布し、溶剤を乾燥除去して得られた塗膜が透明であることをいう。 The ultrafine particle component preferably has good dispersibility with the resin component. In the present specification, “good dispersibility” means that a coating liquid obtained by mixing the resin component, the ultrafine particle component, and a volatile solvent (if necessary, a small amount of UV initiator) is applied, It means that the coating film obtained by drying and removing the solvent is transparent.
 好ましくは、上記超微粒子成分は、表面改質がなされている。表面改質を行うことにより、超微粒子成分を樹脂成分中に良好に分散させることができ、かつ、上記別の濃度変調領域を良好に形成することができる。表面改質手段としては、本発明の効果が得られる限りにおいて任意の適切な手段が採用され得る。代表的には、表面改質は、超微粒子成分の表面に表面改質剤を塗布して表面改質剤層を形成することにより行われる。好ましい表面改質剤の具体例としては、シラン系カップリング剤、チタネート系カップリング剤等のカップリング剤、脂肪酸系界面活性剤等の界面活性剤が挙げられる。このような表面改質剤を用いることにより、樹脂成分と超微粒子成分との濡れ性を向上させ、樹脂成分と超微粒子成分との界面を安定化させ、超微粒子成分を樹脂成分中に良好に分散させ、かつ、上記別の濃度変調領域を良好に形成することができる。 Preferably, the ultrafine particle component is surface-modified. By performing the surface modification, the ultrafine particle component can be favorably dispersed in the resin component, and the other concentration modulation region can be favorably formed. Any appropriate means can be adopted as the surface modifying means as long as the effects of the present invention can be obtained. Typically, the surface modification is performed by applying a surface modifier to the surface of the ultrafine particle component to form a surface modifier layer. Specific examples of preferable surface modifiers include coupling agents such as silane coupling agents and titanate coupling agents, and surfactants such as fatty acid surfactants. By using such a surface modifier, the wettability between the resin component and the ultrafine particle component is improved, the interface between the resin component and the ultrafine particle component is stabilized, and the ultrafine particle component is improved in the resin component. It is possible to disperse and form the other density modulation region favorably.
 上記塗工液における上記超微粒子成分の配合量は、形成されるマトリクス100重量部に対して、好ましくは10重量部~70重量部であり、より好ましくは35重量部~55重量部である。 The blending amount of the ultrafine particle component in the coating solution is preferably 10 to 70 parts by weight, more preferably 35 to 55 parts by weight with respect to 100 parts by weight of the formed matrix.
A-1-3.光拡散性微粒子
 上記光拡散性微粒子は、上記濃度変調領域が良好に形成される限りにおいて、任意の適切な材料で構成される。好ましくは、上記光拡散性微粒子は、その屈折率が上記式(1)の関係を満足する。好ましくは、上記のように、光拡散性微粒子は、上記マトリクスの樹脂成分と同系の化合物で構成される。例えば、マトリクスの樹脂成分を構成する電離線硬化型樹脂がアクリレート系樹脂である場合には、光拡散性微粒子もまたアクリレート系樹脂で構成されることが好ましい。より具体的には、マトリクスの樹脂成分を構成するアクリレート系樹脂のモノマー成分が例えば上記のようなPETA、NPGDA、DPHA、DPPAおよび/またはTMPTAである場合には、光拡散性微粒子を構成するアクリレート系樹脂は、好ましくは、ポリメチルメタクリレート(PMMA)、ポリメチルアクリレート(PMA)、およびこれらの共重合体、ならびにそれらの架橋物である。PMMAおよびPMAとの共重合成分としては、ポリウレタン、ポリスチレン(PSt)、メラミン樹脂が挙げられる。特に好ましくは、光拡散性微粒子は、PMMAで構成される。マトリクスの樹脂成分との屈折率や熱力学的特性の関係が適切であるからである。さらに、好ましくは、光拡散性微粒子は、架橋構造(三次元網目構造)を有する。架橋構造を有する光拡散性微粒子は膨潤可能である。したがって、このような光拡散性微粒子は、緻密または中実な無機粒子と異なり、適切な相溶性を有する樹脂成分の前駆体をその内部に良好に浸透させることができる。光拡散性微粒子の架橋密度は、好ましくは、所望の浸透範囲(後述)が得られる程度に小さい(粗である)。例えば、上記塗工液を塗布する際の光拡散性微粒子の樹脂成分前駆体(溶媒を含んでいてもよい)に対する膨潤度は、好ましくは110%~200%である。ここで、「膨潤度」とは、膨潤前の粒子の平均粒径に対する膨潤状態の粒子の平均粒径の比率をいう。
A-1-3. Light Diffusing Fine Particles The light diffusing fine particles are composed of any appropriate material as long as the concentration modulation region is satisfactorily formed. Preferably, the light diffusing fine particles have a refractive index satisfying the relationship of the formula (1). Preferably, as described above, the light diffusing fine particles are composed of a compound similar to the resin component of the matrix. For example, when the ionizing radiation curable resin constituting the resin component of the matrix is an acrylate resin, the light diffusing fine particles are also preferably composed of an acrylate resin. More specifically, when the monomer component of the acrylate resin constituting the resin component of the matrix is, for example, PETA, NPGDA, DPHA, DPPA and / or TMPTA as described above, the acrylate constituting the light diffusing fine particles The base resin is preferably polymethyl methacrylate (PMMA), polymethyl acrylate (PMA), and a copolymer thereof, and a cross-linked product thereof. Examples of the copolymer component with PMMA and PMA include polyurethane, polystyrene (PSt), and melamine resin. Particularly preferably, the light diffusing fine particles are composed of PMMA. This is because the relationship between the refractive index and thermodynamic characteristics with the resin component of the matrix is appropriate. Further preferably, the light diffusing fine particles have a cross-linked structure (three-dimensional network structure). The light diffusing fine particles having a crosslinked structure can swell. Therefore, unlike such dense or solid inorganic particles, such light diffusing fine particles can satisfactorily permeate a resin component precursor having appropriate compatibility. The crosslink density of the light diffusing fine particles is preferably small (coarse) so that a desired penetration range (described later) is obtained. For example, the degree of swelling of the light diffusing fine particles with respect to the resin component precursor (which may contain a solvent) when applying the coating liquid is preferably 110% to 200%. Here, the “swelling degree” refers to the ratio of the average particle size of the swollen particles to the average particle size of the particles before swelling.
 上記光拡散性微粒子は、平均粒径が、好ましくは1μm~5μmであり、より好ましくは1.5μm~4.0μmであり、さらに好ましくは2.0μm~3.0μmであり、特に好ましくは2.1μm~2.4μmである。光拡散性微粒子の平均粒径は、好ましくは、光拡散素子の厚みの1/2以下(例えば、1/2~1/20)である。光拡散素子の厚みに対してこのような比率を有する平均粒径であれば、光拡散性微粒子を光拡散素子の厚み方向に複数配列することができるので、入射光が光拡散素子を通過する間に当該光を多重に拡散させることができ、その結果、十分な光拡散性が得られ得る。 The light diffusing fine particles have an average particle size of preferably 1 μm to 5 μm, more preferably 1.5 μm to 4.0 μm, still more preferably 2.0 μm to 3.0 μm, and particularly preferably 2 μm. .1 μm to 2.4 μm. The average particle diameter of the light diffusing fine particles is preferably ½ or less (for example, ½ to 1/20) of the thickness of the light diffusing element. If the average particle diameter has such a ratio with respect to the thickness of the light diffusing element, a plurality of light diffusing fine particles can be arranged in the thickness direction of the light diffusing element, so that incident light passes through the light diffusing element. In the meantime, the light can be diffused multiple times, and as a result, sufficient light diffusibility can be obtained.
 光拡散性微粒子の重量平均粒径分布の標準偏差は、好ましくは1.0μm以下であり、より好ましくは0.5μm以下である。重量平均粒径に対して粒径の小さい光拡散性微粒子が多数混在していると、拡散性が増大しすぎて後方散乱を良好に抑制できない場合がある。重量平均粒径に対して粒径の大きい光拡散性微粒子が多数混在していると、光拡散素子の厚み方向に複数配列することができず、多重拡散が得られない場合があり、その結果、光拡散性が不十分となる場合がある。 The standard deviation of the weight average particle size distribution of the light diffusing fine particles is preferably 1.0 μm or less, more preferably 0.5 μm or less. If a large number of light diffusing fine particles having a small particle size with respect to the weight average particle size are mixed, the diffusibility may be excessively increased and the backscattering may not be suppressed well. If a large number of light diffusing fine particles having a large particle diameter with respect to the weight average particle diameter are mixed, a plurality of light diffusing elements cannot be arranged in the thickness direction of the light diffusing element, and multiple diffusion may not be obtained. , The light diffusibility may be insufficient.
 上記光拡散性微粒子の形状としては、目的に応じて任意の適切な形状が採用され得る。具体例としては、真球状、燐片状、板状、楕円球状、不定形が挙げられる。多くの場合、上記光拡散性微粒子として真球状微粒子が用いられ得る。 As the shape of the light diffusing fine particles, any appropriate shape can be adopted depending on the purpose. Specific examples include a true sphere shape, a flake shape, a plate shape, an elliptic sphere shape, and an indefinite shape. In many cases, spherical fine particles can be used as the light diffusing fine particles.
 上記光拡散性微粒子の屈折率は、好ましくは1.30~1.70であり、さらに好ましくは1.40~1.60である。 The refractive index of the light diffusing fine particles is preferably 1.30 to 1.70, more preferably 1.40 to 1.60.
 上記塗工液における上記光拡散性微粒子の配合量は、形成されるマトリクス100重量部に対して、好ましくは10重量部~100重量部であり、より好ましくは15重量部~40重量部である。例えばこのような配合量で上記好適範囲の平均粒径を有する光拡散性微粒子を含有させることにより、非常に優れた光拡散性を有する光拡散素子が得られ得る。 The blending amount of the light diffusing fine particles in the coating liquid is preferably 10 parts by weight to 100 parts by weight, more preferably 15 parts by weight to 40 parts by weight with respect to 100 parts by weight of the matrix to be formed. . For example, a light diffusing element having a very excellent light diffusibility can be obtained by incorporating light diffusing fine particles having an average particle diameter in the above preferred range with such a blending amount.
A-1-4.塗工液の全体構成
 上記揮発性溶剤としては、上記各成分を溶解または均一に分散し得るかぎりにおいて、任意の適切な溶剤が採用され得る。揮発性溶剤の具体例としては、酢酸エチル、酢酸ブチル、酢酸イソプロピル、2-ブタノン(メチルエチルケトン)、メチルイソブチルケトン、シクロペンタノン、トルエン、イソプロピルアルコール、n-ブタノール、シクロペンタン、水が挙げられる。
A-1-4. Overall Configuration of Coating Liquid Any appropriate solvent can be adopted as the volatile solvent as long as the above components can be dissolved or uniformly dispersed. Specific examples of the volatile solvent include ethyl acetate, butyl acetate, isopropyl acetate, 2-butanone (methyl ethyl ketone), methyl isobutyl ketone, cyclopentanone, toluene, isopropyl alcohol, n-butanol, cyclopentane, and water.
 上記塗工液は、目的に応じて任意の適切な添加剤をさらに含有し得る。例えば、上記超微粒子成分を用いる場合には、超微粒子成分を良好に分散させるために、分散剤が好適に用いられ得る。添加剤の他の具体例としては、老化防止剤、変性剤、界面活性剤、変色防止剤、紫外線吸収剤、レベリング剤、消泡剤が挙げられる。 The coating liquid may further contain any appropriate additive depending on the purpose. For example, when the ultrafine particle component is used, a dispersant can be suitably used in order to disperse the ultrafine particle component satisfactorily. Other specific examples of the additive include an antioxidant, a modifier, a surfactant, a discoloration inhibitor, an ultraviolet absorber, a leveling agent, and an antifoaming agent.
 上記塗工液の固形分濃度は、好ましくは10重量%~70重量%程度となるように調整され得る。このような固形分濃度であれば、塗工容易な粘度を有する塗工液が得られ得る。 The solid concentration of the coating solution can be adjusted to be preferably about 10% to 70% by weight. If it is such solid content concentration, the coating liquid which has a viscosity with easy coating can be obtained.
A-2.工程B
 工程Bにおいて上記前駆体の少なくとも一部を上記光拡散性微粒子の内部に浸透させる手段としては、代表的には、上記塗工液を静置することが挙げられる。樹脂成分と光拡散性微粒子とは、好ましくは同系の材料で構成され、さらに好ましくは相溶性の高い材料で構成されるので、塗工液を静置することにより、特別な処理や操作を行わなくても樹脂成分の前駆体(モノマー)が光拡散性微粒子の内部に浸透する。すなわち、樹脂成分の前駆体と光拡散性微粒子とを所定時間接触させることにより、樹脂成分の前駆体が光拡散性微粒子の内部に浸透する。静置時間は、好ましくは、光拡散性微粒子の粒径が実質的に最大になるまでの時間よりも長い時間である。ここで、「光拡散性微粒子の粒径が実質的に最大になるまでの時間」とは、光拡散性微粒子が最大限に膨潤し、それ以上膨潤しなくなる(すなわち、平衡状態になる)までの時間をいう(以下、最大膨潤時間とも称する)。最大膨潤時間より長い時間にわたって樹脂成分の前駆体と光拡散性微粒子とを接触させることにより、光拡散性微粒子に対する樹脂成分前駆体の浸透が飽和状態となり、それ以上、光拡散性微粒子内部の架橋構造にとりこまれなくなる。その結果、後述の重合工程により、光拡散性微粒子の表面近傍内部に濃度変調領域が良好かつ安定的に形成され得る。最大膨潤時間は、樹脂成分と光拡散性微粒子との相溶性によって変化し得る。したがって、静置時間は、樹脂成分および光拡散性微粒子の構成材料によって変化し得る。例えば、静置時間は、好ましくは1時間~48時間であり、より好ましくは2時間~40時間であり、さらに好ましくは3時間~35時間であり、得に好ましくは4時間~30時間である。静置時間が1時間未満では、前駆体が光拡散性微粒子内部に十分に浸透しない場合があり、その結果、濃度変調領域が良好に形成されない場合がある。静置時間が48時間を超えると、光拡散性微粒子間の物理的相互作用により、光拡散性微粒子が凝集してしまい、塗工液の粘度が高くなり、塗工性が不十分となるおそれがある。静置は、室温で行ってもよく、目的や使用材料に応じて設定された所定の温度条件下で行ってもよい。
A-2. Process B
A typical example of means for allowing at least a part of the precursor to penetrate into the light diffusing fine particles in the step B is to leave the coating solution standing. The resin component and the light diffusing fine particles are preferably composed of the same material, and more preferably composed of a highly compatible material, so that the coating liquid is allowed to stand to perform a special treatment or operation. Even if not, the precursor (monomer) of the resin component penetrates into the light diffusing fine particles. That is, by bringing the precursor of the resin component and the light diffusing fine particles into contact with each other for a predetermined time, the precursor of the resin component penetrates into the light diffusing fine particles. The standing time is preferably longer than the time until the particle size of the light diffusing fine particles is substantially maximized. Here, “the time until the particle size of the light diffusing fine particles is substantially maximized” means that the light diffusing fine particles swell to the maximum extent and do not swell any more (that is, reach an equilibrium state). (Hereinafter also referred to as the maximum swelling time). By bringing the resin component precursor into contact with the light diffusing fine particles for a time longer than the maximum swelling time, the penetration of the resin component precursor into the light diffusing fine particles becomes saturated. It becomes unincorporated into the structure. As a result, the concentration modulation region can be formed satisfactorily and stably in the vicinity of the surface of the light diffusing fine particles by the polymerization step described later. The maximum swelling time can vary depending on the compatibility between the resin component and the light diffusing fine particles. Therefore, the standing time can vary depending on the constituent material of the resin component and the light diffusing fine particles. For example, the standing time is preferably 1 hour to 48 hours, more preferably 2 hours to 40 hours, still more preferably 3 hours to 35 hours, and particularly preferably 4 hours to 30 hours. . When the standing time is less than 1 hour, the precursor may not sufficiently penetrate into the light diffusing fine particles, and as a result, the concentration modulation region may not be satisfactorily formed. If the standing time exceeds 48 hours, the light diffusing fine particles aggregate due to the physical interaction between the light diffusing fine particles, and the viscosity of the coating liquid may increase, resulting in insufficient coating properties. There is. The standing may be performed at room temperature, or may be performed under a predetermined temperature condition set according to the purpose and the material used.
 工程Bにおいて、上記前駆体は、上記光拡散性微粒子の表面から該光拡散性微粒子の一部に浸透していればよく、例えば平均粒径の好ましくは10%~95%の範囲まで浸透する。浸透範囲が10%未満である場合には、濃度変調領域が良好に形成されず、後方散乱を十分に低減できない場合がある。浸透範囲が95%を超えても、浸透範囲が小さい場合と同様に、濃度変調領域が良好に形成されず、後方散乱を十分に低減できない場合がある。浸透範囲は、樹脂成分および光拡散性微粒子の材料、光拡散性微粒子の架橋密度、静置時間、静置温度等を調整することにより制御することができる。 In step B, the precursor only needs to permeate from the surface of the light diffusing fine particles into a part of the light diffusing fine particles. For example, the precursor preferably permeates to a range of 10% to 95% of the average particle diameter. . When the permeation range is less than 10%, the concentration modulation region is not formed well, and backscattering may not be sufficiently reduced. Even when the permeation range exceeds 95%, the concentration modulation region is not formed well as in the case where the permeation range is small, and the backscattering may not be sufficiently reduced. The permeation range can be controlled by adjusting the resin component and the material of the light diffusing fine particles, the crosslinking density of the light diffusing fine particles, the standing time, the standing temperature, and the like.
 本発明においては、上記前駆体の光拡散性微粒子への浸透を制御することが重要である。例えば、図3に示すように、上記塗工液を調製した直後に基材に塗布して光拡散素子を形成する場合には、乾燥温度によって拡散半値角が大きく変化する(乾燥工程については後述する)。一方、上記塗工液を例えば24時間静置した後で基材に塗布して光拡散素子を形成する場合には、拡散半値角は乾燥温度にかかわらずほぼ一定である。これは、静置により前駆体が光拡散性微粒子へ飽和状態まで浸透するので、濃度変調領域の形成が乾燥温度の影響を受けないためであると考えられる。したがって、上記のように、静置時間は、最大膨潤時間よりも長い時間であることが好ましい。静置時間をこのように設定することにより、乾燥時間にかかわらずほぼ一定で良好な拡散半値角を得ることができるので、拡散性が高い光拡散素子をばらつきなく安定して製造することができる。さらに、例えば60℃の低温乾燥で製造できるので、安全性やコストの面からも好ましい。一方、前駆体および光拡散性微粒子の種類に応じて浸透が飽和状態に達するまでの時間を決定することができるのであれば、乾燥温度を適切に選択することにより、静置時間を短くしても、拡散性が高い光拡散素子をばらつきなく安定して製造することができる。例えば、記塗工液を調製した直後に基材に塗布して光拡散素子を形成する場合であっても、乾燥温度を100℃に設定することにより前駆体を光拡散性微粒子内部に浸透させて濃度変調領域を形成し、拡散性が高い光拡散素子をばらつきなく安定して製造することができる。 In the present invention, it is important to control the penetration of the precursor into the light diffusing fine particles. For example, as shown in FIG. 3, when a light diffusing element is formed by applying to a substrate immediately after preparing the coating solution, the diffusion half-value angle varies greatly depending on the drying temperature (the drying process will be described later). To do). On the other hand, when the light-diffusing element is formed by applying the coating liquid to the substrate after standing for 24 hours, for example, the diffusion half-value angle is substantially constant regardless of the drying temperature. This is considered to be because the precursor penetrates into the light diffusing fine particles to a saturated state by standing, so that the formation of the concentration modulation region is not affected by the drying temperature. Therefore, as described above, the standing time is preferably longer than the maximum swelling time. By setting the standing time in this way, it is possible to obtain a substantially constant and good diffusion half-value angle regardless of the drying time, so that a highly diffusive light diffusing element can be stably produced without variation. . Furthermore, since it can manufacture by 60 degreeC low temperature drying, it is preferable also from the surface of safety | security or cost. On the other hand, if the time until the permeation reaches a saturated state can be determined according to the type of the precursor and the light diffusing fine particles, the standing time can be shortened by appropriately selecting the drying temperature. However, a light diffusing element having high diffusibility can be stably manufactured without variation. For example, even when a light diffusing element is formed by applying it to a substrate immediately after preparing a coating solution, the precursor is infiltrated into the light diffusing fine particles by setting the drying temperature to 100 ° C. Thus, it is possible to stably produce a light diffusing element having a high diffusibility by forming a density modulation region.
A-3.工程C
 代表的には、工程C(前駆体を重合させる工程)の前に、上記塗工液が基材に塗布される。基材としては、本発明の効果が得られる限りにおいて任意の適切なフィルムが採用され得る。具体例としては、トリアセチルセルロース(TAC)フィルム、ポリエチレンテレフタレート(PET)フィルム、ポリプロピレン(PP)フィルム、ナイロンフィルム、アクリルフィルム、ラクトン変性アクリルフィルムなどが挙げられる。上記基材は、必要に応じて、易接着処理などの表面改質がなされていてもよく、滑剤、帯電防止剤、紫外線吸収剤などの添加剤が含まれていてもよい。当該基材は、後述の光拡散素子付偏光板において、保護層として機能し得る場合がある。
A-3. Process C
Typically, before the step C (step of polymerizing the precursor), the coating liquid is applied to the substrate. Any appropriate film can be adopted as the substrate as long as the effects of the present invention can be obtained. Specific examples include a triacetyl cellulose (TAC) film, a polyethylene terephthalate (PET) film, a polypropylene (PP) film, a nylon film, an acrylic film, and a lactone-modified acrylic film. If necessary, the base material may be subjected to surface modification such as easy adhesion treatment, and may contain additives such as a lubricant, an antistatic agent, and an ultraviolet absorber. The base material may function as a protective layer in the polarizing plate with a light diffusing element described later.
 上記塗工液の基材への塗布方法としては、任意の適切なコーターを用いた方法が採用され得る。コーターの具体例としては、バーコーター、リバースコーター、キスコーター、グラビアコーター、ダイコーター、コンマコーターが挙げられる。 As a method for applying the coating liquid to the base material, a method using any appropriate coater can be employed. Specific examples of the coater include a bar coater, a reverse coater, a kiss coater, a gravure coater, a die coater, and a comma coater.
 次いで、上記前駆体を重合する。重合方法は、樹脂成分(したがって、その前駆体)の種類に応じて任意の適切な方法が採用され得る。例えば、樹脂成分が電離線硬化型樹脂である場合には、電離線を照射することにより前駆体を重合する。電離線として紫外線を用いる場合には、その積算光量は、好ましくは200mJ~400mJである。電離線の光拡散性微粒子に対する透過率は、好ましくは70%以上であり、より好ましくは80%以上である。また例えば、樹脂成分が熱硬化型樹脂である場合には、加熱することにより前駆体を重合する。加熱温度および加熱時間は、樹脂成分の種類に応じて適切に設定され得る。好ましくは、重合は電離線を照射することにより行われる。電離線照射であれば、屈折率分布構造(濃度変調領域)を良好に保持したまま塗膜を硬化させることができるので、良好な拡散特性の光拡散素子を作製することができる。前駆体を重合することにより、マトリクスが形成されると同時に、光拡散性微粒子の表面近傍内部に濃度変調領域が形成される。より詳細には、濃度変調領域は、光拡散性微粒子内部に浸透した前駆体が重合することにより形成され;マトリクスは、光拡散性微粒子に浸透しなかった前駆体が重合することにより形成される。すなわち、本発明の製造方法によれば、光拡散性微粒子内部に浸透した前駆体と光拡散性微粒子に浸透しなかった前駆体とを同時に重合することにより、光拡散性微粒子の表面近傍内部に濃度変調領域を形成すると同時に、マトリクスを形成することができる。1つの実施形態においては、光拡散性微粒子とマトリクスとの界面近傍(光拡散性微粒子の周辺部)に別の濃度変調領域がさらに形成され得る。別の濃度変調領域は、主に、樹脂成分、超微粒子成分および光拡散性微粒子の相溶性に起因して形成され得る。 Next, the precursor is polymerized. As the polymerization method, any appropriate method can be adopted depending on the type of the resin component (and hence its precursor). For example, when the resin component is an ionizing radiation curable resin, the precursor is polymerized by irradiating the ionizing radiation. When ultraviolet rays are used as the ionizing ray, the integrated light quantity is preferably 200 mJ to 400 mJ. The transmittance of the ionizing rays to the light diffusing fine particles is preferably 70% or more, more preferably 80% or more. For example, when the resin component is a thermosetting resin, the precursor is polymerized by heating. The heating temperature and the heating time can be appropriately set according to the type of the resin component. Preferably, the polymerization is performed by irradiating with ionizing radiation. With ionizing ray irradiation, the coating film can be cured while maintaining a favorable refractive index distribution structure (concentration modulation region), so that a light diffusing element having good diffusion characteristics can be produced. By polymerizing the precursor, a matrix is formed, and at the same time, a concentration modulation region is formed in the vicinity of the surface of the light diffusing fine particles. More specifically, the concentration modulation region is formed by polymerization of a precursor that has penetrated into the light diffusing fine particles; the matrix is formed by polymerization of a precursor that has not penetrated into the light diffusing fine particles. . That is, according to the production method of the present invention, the precursor that has penetrated into the light diffusing fine particles and the precursor that has not penetrated into the light diffusing fine particles are simultaneously polymerized, so that the inside of the light diffusing fine particles near the surface. A matrix can be formed simultaneously with the formation of the density modulation region. In one embodiment, another concentration modulation region may be further formed in the vicinity of the interface between the light diffusing fine particles and the matrix (peripheral portion of the light diffusing fine particles). Another concentration modulation region can be formed mainly due to the compatibility of the resin component, the ultrafine particle component, and the light diffusing fine particles.
 本発明の光拡散素子の製造方法が、上記工程A~工程Cに加えて、任意の適切な時点で任意の適切な工程、処理および/または操作を含み得ることは言うまでもない。そのような工程等の種類およびそのような工程等が行われる時点は、目的に応じて適切に設定され得る。例えば、本発明の光拡散素子の製造方法は、必要に応じて、基材上に塗布された塗工液を乾燥する工程をさらに含む。このような乾燥は、例えば、重合工程の前に行ってもよく重合工程の後に行ってもよい。 It goes without saying that the method for manufacturing a light diffusing element of the present invention can include any appropriate process, process and / or operation at any appropriate time in addition to the above-mentioned processes A to C. The type of such a process and the time when such a process is performed can be appropriately set according to the purpose. For example, the method for producing a light diffusing element of the present invention further includes a step of drying a coating liquid applied on the substrate, if necessary. Such drying may be performed, for example, before the polymerization step or after the polymerization step.
 上記塗工液の乾燥方法としては、任意の適切な方法が採用され得る。具体例としては、自然乾燥、加熱乾燥、減圧乾燥が挙げられる。好ましくは、加熱乾燥である。加熱温度は、例えば60℃~150℃であり、加熱時間は、例えば30秒~5分である。 Any appropriate method can be adopted as a method for drying the coating liquid. Specific examples include natural drying, heat drying, and vacuum drying. Heat drying is preferable. The heating temperature is, for example, 60 ° C. to 150 ° C., and the heating time is, for example, 30 seconds to 5 minutes.
 以上のようにして、光拡散素子が基材上に形成される。得られた光拡散素子は、基材から剥離して単一部材として用いてもよく、基材付光拡散素子として用いてもよく、基材から偏光板等に転写して複合部材(例えば、光拡散素子付偏光板)として用いてもよく、基材ごと偏光板等に貼り付けて複合部材(例えば、光拡散素子付偏光板)として用いてもよい。基材ごと偏光板等に貼り付けて複合部材(例えば、光拡散素子付偏光板)として用いる場合には、当該基材は偏光板の保護層として機能し得る。 Thus, the light diffusing element is formed on the substrate. The obtained light diffusing element may be peeled off from the substrate and used as a single member, or may be used as a light diffusing element with a substrate, transferred from the substrate to a polarizing plate, etc. It may be used as a polarizing plate with a light diffusing element) or may be used as a composite member (for example, a polarizing plate with a light diffusing element) by being attached to a polarizing plate or the like together with the substrate. When the base material is attached to a polarizing plate or the like and used as a composite member (for example, a polarizing plate with a light diffusing element), the base material can function as a protective layer for the polarizing plate.
B.光拡散素子
 本発明の光拡散素子は、上記A-1項~A-3項に記載の方法によって得られ得る。本発明の光拡散素子は、樹脂成分および超微粒子成分を含むマトリクスと、該マトリクス中に分散された光拡散性微粒子とを有する。本発明の光拡散素子は、マトリクスと光拡散性微粒子の屈折率差により、光拡散機能を発現する。図1は、本発明の好ましい実施形態による製造方法により得られる光拡散素子におけるマトリクスの樹脂成分および光拡散性微粒子の分散状態を説明するための模式図である。本発明の光拡散素子100は、樹脂成分11および超微粒子成分12を含むマトリクス10と、マトリクス10中に分散された光拡散性微粒子20とを有する。好ましくは、マトリクスの樹脂成分および光拡散性微粒子は、それらの屈折率が下記式(1)を満たす:
 0<|n-n|・・・(1)
上記超微粒子成分は、その屈折率が下記式(2)を満たす:
 0<|n-n|<|n-n|・・・(2)
上記式(1)の関係を有するマトリクスの樹脂成分および光拡散性微粒子を用い、ならびに、上記式(2)の関係を有する超微粒子成分を用いることにより、高いヘイズを維持しつつ、後方散乱が抑制された光拡散素子を得ることができる。
B. Light Diffusing Element The light diffusing element of the present invention can be obtained by the method described in the above items A-1 to A-3. The light diffusing element of the present invention has a matrix containing a resin component and an ultrafine particle component, and light diffusing fine particles dispersed in the matrix. The light diffusing element of the present invention exhibits a light diffusing function due to a difference in refractive index between the matrix and the light diffusing fine particles. FIG. 1 is a schematic diagram for explaining a dispersion state of a resin component of a matrix and light diffusing fine particles in a light diffusing element obtained by a manufacturing method according to a preferred embodiment of the present invention. The light diffusing element 100 of the present invention includes a matrix 10 including a resin component 11 and an ultrafine particle component 12 and light diffusing fine particles 20 dispersed in the matrix 10. Preferably, the resin component of the matrix and the light diffusing fine particles have a refractive index satisfying the following formula (1):
0 <| n P −n A | (1)
The ultrafine particle component has a refractive index satisfying the following formula (2):
0 <| n P −n A | <| n P −n B | (2)
By using the resin component of the matrix having the relationship of the above formula (1) and the light diffusing fine particles, and by using the ultrafine particle component having the relationship of the above formula (2), it is possible to prevent backscattering while maintaining high haze. A suppressed light diffusing element can be obtained.
 本発明の光拡散素子においては、光拡散性微粒子20の表面近傍内部に濃度変調領域30が形成されている。濃度変調領域30は、上記A-1項~A-3項で説明したように、樹脂成分11の前駆体(モノマー)が光拡散性微粒子20内部に浸透した後重合することにより形成される。1つの実施形態においては、濃度変調領域30において、樹脂成分11の重量濃度は実質的に一定である。別の実施形態においては、濃度変調領域30において、樹脂成分11の重量濃度は光拡散性微粒子20の表面から遠ざかるにつれて(すなわち、光拡散性微粒子20の中心に向かうにつれて)低くなる。好ましくは、濃度変調領域30は、光拡散性微粒子20の内部に形成されていれば、その効果が発揮される。例えば、濃度変調領域は、光拡散性微粒子20の表面から当該光拡散性微粒子の平均粒径の10%~95%の範囲まで形成されている。濃度変調領域30の厚み(光拡散性微粒子表面から濃度変調領域最内部までの距離)は、一定であってもよく、光拡散性微粒子表面の位置によって異なっていてもよい。濃度変調領域30の厚みは、好ましくは100nm~4μm、より好ましくは100nm~2μmである。樹脂成分11が浸透して濃度変調領域30を形成することにより、以下の効果が得られ得る:(1)光拡散微粒子とマトリクスとの界面近傍において、屈折率を段階的または実質的に連続的に変化させることができる(図2(a)参照)。一方、従来の光拡散素子においては、このような濃度変調領域は形成されず、微粒子とマトリクスとの界面が明確であるので、屈折率は微粒子の屈折率からマトリクスの屈折率へと不連続に変化する(図2(b)参照)。図2(a)に示すように、濃度変調領域30を形成してマトリクス10と光拡散性微粒子20との界面近傍において屈折率を段階的または実質的に連続的に変化させることにより、マトリクス10と光拡散性素子20との屈折率差を大きくしても、マトリクスと光拡散性微粒子との界面の反射を抑えることができ、後方散乱を抑制することができる。一方、図2(b)に示すように、従来の光拡散素子によれば、屈折率差を大きくすることにより強い拡散性(高ヘイズ値)を付与しようとすると、界面での屈折率のギャップを解消することができない。その結果、界面反射による後方散乱が大きくなってしまう;(2)超微粒子成分に主に起因する別の濃度変調領域が形成される場合には、その形成が促進され得る;(3)樹脂成分11が光拡散性微粒子20内部に浸透することにより、浸透しない場合に比べてマトリクス10における樹脂成分11の濃度が低くなる。その結果、マトリクス全体の屈折率に対する超微粒子成分12の屈折率の寄与が大きくなるので、超微粒子成分の屈折率が大きい場合にはマトリクス全体の屈折率が大きくなり(逆に、超微粒子成分の屈折率が小さい場合にはマトリクス全体の屈折率が小さくなり)、マトリクスと光拡散性微粒子との屈折率差がさらに大きくなる。したがって、樹脂成分が浸透しない場合に比べて、さらに高い拡散性(ヘイズ値)を実現することができる。 In the light diffusing element of the present invention, the concentration modulation region 30 is formed in the vicinity of the surface of the light diffusing fine particles 20. The concentration modulation region 30 is formed by polymerizing the precursor (monomer) of the resin component 11 after penetrating into the light diffusing fine particles 20 as described in the above sections A-1 to A-3. In one embodiment, the weight concentration of the resin component 11 is substantially constant in the concentration modulation region 30. In another embodiment, in the concentration modulation region 30, the weight concentration of the resin component 11 decreases with increasing distance from the surface of the light diffusing fine particles 20 (that is, toward the center of the light diffusing fine particles 20). Preferably, if the concentration modulation region 30 is formed inside the light diffusing fine particles 20, the effect is exhibited. For example, the concentration modulation region is formed from the surface of the light diffusing fine particles 20 to a range of 10% to 95% of the average particle diameter of the light diffusing fine particles. The thickness of the concentration modulation region 30 (distance from the surface of the light diffusing fine particle to the innermost portion of the concentration modulation region) may be constant or may vary depending on the position of the surface of the light diffusing fine particle. The thickness of the concentration modulation region 30 is preferably 100 nm to 4 μm, more preferably 100 nm to 2 μm. When the resin component 11 permeates to form the concentration modulation region 30, the following effects can be obtained: (1) The refractive index is stepwise or substantially continuous in the vicinity of the interface between the light diffusing fine particles and the matrix. (See FIG. 2A). On the other hand, in the conventional light diffusing element, such a concentration modulation region is not formed, and the interface between the fine particles and the matrix is clear. Therefore, the refractive index is discontinuous from the refractive index of the fine particles to the refractive index of the matrix. It changes (refer FIG.2 (b)). As shown in FIG. 2A, by forming a concentration modulation region 30 and changing the refractive index stepwise or substantially continuously in the vicinity of the interface between the matrix 10 and the light diffusing fine particles 20, the matrix 10 is changed. Even if the refractive index difference between the light diffusing element 20 and the light diffusing element 20 is increased, reflection at the interface between the matrix and the light diffusing fine particles can be suppressed, and back scattering can be suppressed. On the other hand, as shown in FIG. 2 (b), according to the conventional light diffusing element, when an attempt is made to impart strong diffusivity (high haze value) by increasing the refractive index difference, the refractive index gap at the interface. Can not be resolved. As a result, backscattering due to interface reflection becomes large; (2) when another concentration modulation region mainly resulting from the ultrafine particle component is formed, the formation can be promoted; (3) resin component When 11 permeates into the light diffusing fine particles 20, the concentration of the resin component 11 in the matrix 10 becomes lower than in the case where it does not permeate. As a result, the contribution of the refractive index of the ultrafine particle component 12 to the refractive index of the entire matrix increases, so that the refractive index of the entire matrix increases when the refractive index of the ultrafine particle component is large (in contrast, the ultrafine particle component When the refractive index is small, the refractive index of the entire matrix is small), and the refractive index difference between the matrix and the light diffusing fine particles is further increased. Therefore, even higher diffusivity (haze value) can be realized as compared with the case where the resin component does not penetrate.
 上記濃度変調領域は、上記A-1項~A-3項で説明したように、マトリクスの樹脂成分および光拡散性微粒子の構成材料、ならびに化学的および熱力学的特性を適切に選択することにより形成することができる。例えば、樹脂成分および光拡散性微粒子を同系材料の中でも相溶性の高い材料同士で構成することにより、濃度変調領域を良好に形成することができる。濃度変調領域の厚みおよび濃度勾配は、マトリクスの樹脂成分および光拡散性微粒子の化学的および熱力学的特性を調整することにより制御することができる。 The concentration modulation region is formed by appropriately selecting the resin component of the matrix and the constituent material of the light diffusing fine particles, as well as the chemical and thermodynamic characteristics, as described in the above items A-1 to A-3. Can be formed. For example, the concentration modulation region can be satisfactorily formed by configuring the resin component and the light diffusing fine particles with materials having high compatibility among the similar materials. The thickness and concentration gradient of the concentration modulation region can be controlled by adjusting the chemical and thermodynamic characteristics of the resin component of the matrix and the light diffusing fine particles.
 上記樹脂成分および上記光拡散性微粒子の種類に応じて上記超微粒子成分を適切に選択することにより、マトリクス10と光拡散性微粒子20との界面近傍(光拡散性微粒子の周辺部)に、別の濃度変調領域がさらに形成され得る(図示せず)。例えば、樹脂成分および光拡散性微粒子を同系の材料(例えば有機化合物同士)で構成し、超微粒子成分をマトリクスおよび光拡散性微粒子とは異なる系の材料(例えば無機化合物)で構成することにより、別の濃度変調領域を良好に形成することができる。より詳細には、上記樹脂成分は、局所的に光拡散性微粒子の近傍では、超微粒子成分と均一溶解もしくは分散している状態よりも、むしろ、樹脂成分のみで光拡散性微粒子を取り囲む方が、系全体のエネルギーが安定する。その結果、樹脂成分の重量濃度は、光拡散性微粒子の最近接領域において、マトリクス全体における樹脂成分の平均重量濃度よりも高く、光拡散性微粒子から遠ざかるにつれて低くなる。したがって、別の濃度変調領域が形成され得る。 By appropriately selecting the ultrafine particle component in accordance with the type of the resin component and the light diffusing fine particles, it is separately provided in the vicinity of the interface between the matrix 10 and the light diffusing fine particles 20 (the periphery of the light diffusing fine particles). The concentration modulation region may be further formed (not shown). For example, by configuring the resin component and the light diffusing fine particles with the same material (for example, organic compounds), and configuring the ultra fine particle component with a system material (for example, an inorganic compound) different from the matrix and the light diffusing fine particles, Another density modulation region can be formed satisfactorily. More specifically, in the vicinity of the light diffusing fine particles, the resin component should surround the light diffusing fine particles only with the resin component, rather than being uniformly dissolved or dispersed with the ultra fine particle component. The energy of the whole system is stabilized. As a result, the weight concentration of the resin component is higher than the average weight concentration of the resin component in the entire matrix in the closest region of the light diffusing fine particles, and decreases as the distance from the light diffusing fine particles increases. Therefore, another density modulation region can be formed.
 上記別の濃度変調領域においては、光拡散性微粒子20から遠ざかるにつれて、樹脂成分11の重量濃度が低くなり、かつ、超微粒子成分の重量濃度が高くなる。言い換えれば、別の濃度変調領域における光拡散性微粒子20の最近接領域には、超微粒子成分が相対的に低濃度で分散しており、光拡散性微粒子20から遠ざかるにつれて超微粒子成分の濃度が増大する。例えば、別の濃度変調領域における光拡散性微粒子20の最近接領域では、樹脂成分の重量濃度は、マトリクス全体における樹脂成分の平均重量濃度よりも高く、超微粒子成分の重量濃度は、マトリクス全体における超微粒子成分の平均重量濃度よりも低い。一方、別の濃度変調領域における光拡散性微粒子20から最遠位領域では、樹脂成分の重量濃度は、マトリクス全体における樹脂成分の平均重量濃度と同等か場合によっては低くなっており、超微粒子成分の重量濃度は、マトリクス全体における超微粒子成分の平均重量濃度と同等か場合によっては高くなっている。このような別の濃度変調領域が光拡散微粒子の外部にも形成されることにより、上記屈折率が段階的または実質的に連続的に変化する領域を大きくすることができる(すなわち、光拡散性微粒子内側の濃度変調領域から光拡散性微粒子外側の別の濃度変調領域まで屈折率を段階的または実質的に連続的に変化させることができる。その結果、光拡散性微粒子内部にのみ濃度変調領域が形成される場合に比べて、後方散乱をさらに抑制することができる。さらに、別の濃度変調領域の外側では、光拡散性微粒子20とは屈折率が大きく異なる超微粒子成分の重量濃度が相対的に高くなるので、マトリクス10と光拡散性微粒子20との屈折率差を大きくすることができる。その結果、薄膜であっても高いヘイズ(強い拡散性)を実現することができる。このような特徴は、コリメートバックライトフロント拡散システムに使用される光拡散素子のように強い拡散性(ヘイズが90%以上)が要求される用途において特に好適である。 In the other concentration modulation region, as the distance from the light diffusing fine particles 20 increases, the weight concentration of the resin component 11 decreases and the weight concentration of the ultrafine particle component increases. In other words, the ultrafine particle component is dispersed at a relatively low concentration in the closest region of the light diffusing fine particle 20 in another concentration modulation region, and the concentration of the ultra fine particle component increases as the distance from the light diffusing fine particle 20 increases. Increase. For example, in the closest region of the light diffusing fine particles 20 in another concentration modulation region, the weight concentration of the resin component is higher than the average weight concentration of the resin component in the entire matrix, and the weight concentration of the ultrafine particle component is in the entire matrix. Lower than the average weight concentration of the ultrafine particle component. On the other hand, in the farthest region from the light diffusing fine particles 20 in another concentration modulation region, the weight concentration of the resin component is equal to or lower than the average weight concentration of the resin component in the entire matrix. The weight concentration of is equal to the average weight concentration of the ultrafine particle component in the entire matrix or higher depending on the case. By forming such another concentration modulation region outside the light diffusing fine particles, the region where the refractive index changes stepwise or substantially continuously can be enlarged (that is, light diffusibility). The refractive index can be changed stepwise or substantially continuously from the concentration modulation region inside the fine particle to another concentration modulation region outside the light diffusing fine particle, so that the concentration modulation region is only inside the light diffusing fine particle. In addition, the backscattering can be further suppressed as compared with the case where the weight concentration of the ultrafine particle component having a refractive index significantly different from that of the light diffusing fine particles 20 is relative to the outside of the other concentration modulation region. Therefore, the difference in refractive index between the matrix 10 and the light diffusing fine particles 20 can be increased, and as a result, high haze (strong diffusibility) can be realized even with a thin film. Kill. Such a feature is particularly suitable in applications where a strong diffusibility as a light diffusing element used in collimated backlight front diffusing system (haze 90% or higher) is required.
 上記別の濃度変調領域の厚み(光拡散性微粒子表面から別の濃度変調領域末端までの距離)は、一定であってもよく(すなわち、別の濃度変調領域が光拡散性微粒子の周囲に同心球状に拡がってもよく)、光拡散性微粒子表面の位置によって厚みが異なっていてもよい(例えば、金平糖の外郭形状のようになっていてもよい)。好ましくは、別の濃度変調領域の厚みは、光拡散性微粒子表面の位置によって異なっている。このような構成であれば、マトリクス10と光拡散性微粒子20との界面近傍において、屈折率をより連続的に変化させることができる。別の濃度変調領域が十分な厚みで形成されていれば、光拡散性微粒子の周辺部で屈折率をよりスムーズに連続的に変化させることができ、後方散乱を非常に効果的に抑制することができる。一方、厚みが大きすぎると、本来光拡散性微粒子が存在すべき領域まで別の濃度変調領域が占有することとなり、十分な光拡散性(例えば、ヘイズ値)が得られない場合がある。したがって、別の濃度変調領域の厚みは、好ましくは10nm~500nm、より好ましくは20nm~400nm、さらに好ましくは30nm~300nmである。また、別の濃度変調領域の厚みは、光拡散性微粒子の平均粒径に対して、好ましくは10%~50%、より好ましくは20%~40%である。 The thickness of the other concentration modulation region (distance from the surface of the light diffusing fine particle to the other concentration modulation region end) may be constant (that is, the other concentration modulation region is concentric around the light diffusing fine particle). The thickness may be different depending on the position of the surface of the light diffusing fine particles (for example, it may be like an outer shape of confetti). Preferably, the thickness of another concentration modulation region varies depending on the position of the surface of the light diffusing fine particles. With such a configuration, the refractive index can be changed more continuously in the vicinity of the interface between the matrix 10 and the light diffusing fine particles 20. If another concentration modulation region is formed with a sufficient thickness, the refractive index can be changed smoothly and continuously at the periphery of the light diffusing fine particles, and the backscattering can be suppressed very effectively. Can do. On the other hand, if the thickness is too large, another concentration modulation region occupies the region where the light diffusing fine particles should originally exist, and sufficient light diffusibility (for example, haze value) may not be obtained. Therefore, the thickness of another concentration modulation region is preferably 10 nm to 500 nm, more preferably 20 nm to 400 nm, and still more preferably 30 nm to 300 nm. Further, the thickness of the other concentration modulation region is preferably 10% to 50%, more preferably 20% to 40% with respect to the average particle diameter of the light diffusing fine particles.
 上記光拡散素子は、ヘイズが高ければ高いほど好ましく、具体的には、好ましくは90~99%であり、より好ましくは92~99%であり、さらに好ましくは95~99%であり、特に好ましくは97~99%である。ヘイズが90%以上であることにより、コリメートバックライトフロント拡散システムにおけるフロント光拡散素子として好適に用いることができる。なお、コリメートバックライトフロント拡散システムとは、液晶表示装置において、コリメートバックライト光(一定方向に集光された、輝度半値幅の狭いバックライト光)を用い、上側偏光板の視認側にフロント光拡散素子を設けたシステムをいう。 The light diffusing element preferably has a higher haze, specifically, preferably 90 to 99%, more preferably 92 to 99%, still more preferably 95 to 99%, and particularly preferably. Is 97 to 99%. When the haze is 90% or more, it can be suitably used as a front light diffusing element in a collimated backlight front diffusing system. The collimated backlight front diffusion system is a liquid crystal display device that uses collimated backlight light (backlight light with a narrow luminance half-value width condensed in a certain direction) and the front light on the viewing side of the upper polarizing plate. A system provided with a diffusing element.
 上記光拡散素子の拡散特性は、光拡散半値角で示すならば、好ましくは10°~150°(片側5°~75°)であり、より好ましくは10°~100°(片側5°~50°)であり、さらに好ましくは30°~80°(片側15°~40°)である。 The diffusion characteristic of the light diffusing element is preferably 10 ° to 150 ° (5 ° to 75 ° on one side), more preferably 10 ° to 100 ° (5 ° to 50 ° on one side), in terms of a light diffusion half-value angle. And more preferably 30 ° to 80 ° (15 ° to 40 ° on one side).
 上記光拡散素子の厚みは、目的や所望の拡散特性に応じて適切に設定され得る。具体的には、上記光拡散素子の厚みは、好ましくは4μm~50μm、より好ましくは4μm~20μmである。本発明によれば、このように非常に薄い厚みにもかかわらず、上記のような非常に高いヘイズを有する光拡散素子が得られ得る。 The thickness of the light diffusing element can be appropriately set according to the purpose and desired diffusion characteristics. Specifically, the thickness of the light diffusing element is preferably 4 μm to 50 μm, more preferably 4 μm to 20 μm. According to the present invention, a light diffusing element having such a very high haze as described above can be obtained despite such a very thin thickness.
 上記光拡散素子は、液晶表示装置の視認側部材、液晶表示装置のバックライト用部材、照明器具(例えば、有機EL、LED)用拡散部材に好適に用いられ、コリメートバックライトフロント拡散システムのフロント拡散素子として特に好適に用いられる。上記光拡散素子は、単独でフィルム状または板状部材として提供してもよく、任意の適切な基材や偏光板に貼り付けて複合部材として提供してもよい。また、光拡散素子の上に反射防止層が積層されてもよい。 The light diffusing element is suitably used for a viewing side member of a liquid crystal display device, a backlight member of a liquid crystal display device, and a diffusing member for a lighting fixture (for example, an organic EL or LED), and is a front of a collimated backlight front diffusion system It is particularly preferably used as a diffusing element. The light diffusing element may be provided alone as a film-like or plate-like member, or may be provided as a composite member by being attached to any appropriate base material or polarizing plate. An antireflection layer may be laminated on the light diffusing element.
C.光拡散素子付偏光板
C-1.光拡散素子付偏光板の全体構成
 本発明の光拡散素子付偏光板の製造方法は、上記A-1項~A-3項に記載した本発明の光拡散素子の製造方法を用いて行われる。本発明の製造方法により得られる光拡散素子付偏光板は、代表的には、液晶表示装置の視認側に配置される。図4は、本発明の好ましい実施形態による光拡散素子付偏光板の概略断面図である。この光拡散素子付偏光板200は、光拡散素子100と偏光子110とを有する。光拡散素子100は、上記A-1項~A-3項およびB項に記載した本発明の光拡散素子である。光拡散素子100は、光拡散素子付偏光板が液晶表示装置の視認側に配置された場合に最も視認側となるように配置されている。1つの実施形態においては、光拡散素子100の視認側に低反射層または反射防止処理層(アンチリフレクション処理層)が配置されている(図示せず)。図示例においては、光拡散素子付偏光板200は、偏光子の両側に保護層120および130を有する。光拡散素子、偏光子および保護層は、任意の適切な接着剤層または粘着剤層を介して貼り付けられている。保護層120および130の少なくとも1つは、目的、偏光板の構成および液晶表示装置の構成に応じて省略されてもよい。例えば、光拡散素子を形成する際に用いられる基材が保護層として機能し得る場合には、保護層120が省略され得る。本発明の光拡散素子付偏光板は、コリメートバックライトフロント拡散システムを採用した液晶表示装置における視認側偏光板として特に好適に用いられ得る。
C. Polarizing plate with light diffusing element C-1. Overall Configuration of Polarizing Plate with Light Diffusing Element The manufacturing method of the polarizing plate with a light diffusing element of the present invention is performed using the manufacturing method of the light diffusing element of the present invention described in the above sections A-1 to A-3. . The polarizing plate with a light diffusing element obtained by the production method of the present invention is typically disposed on the viewing side of the liquid crystal display device. FIG. 4 is a schematic cross-sectional view of a polarizing plate with a light diffusing element according to a preferred embodiment of the present invention. The polarizing plate with a light diffusing element 200 includes a light diffusing element 100 and a polarizer 110. The light diffusing element 100 is the light diffusing element of the present invention described in the above items A-1 to A-3 and B. The light diffusing element 100 is disposed so as to be the most visible side when the polarizing plate with the light diffusing element is disposed on the viewing side of the liquid crystal display device. In one embodiment, a low reflection layer or an antireflection treatment layer (antireflection treatment layer) is disposed on the viewing side of the light diffusing element 100 (not shown). In the illustrated example, the polarizing plate with a light diffusing element 200 has protective layers 120 and 130 on both sides of the polarizer. The light diffusing element, the polarizer and the protective layer are attached via any appropriate adhesive layer or pressure-sensitive adhesive layer. At least one of the protective layers 120 and 130 may be omitted depending on the purpose, the configuration of the polarizing plate, and the configuration of the liquid crystal display device. For example, when the base material used when forming the light diffusing element can function as a protective layer, the protective layer 120 can be omitted. The polarizing plate with a light diffusing element of the present invention can be particularly suitably used as a viewing side polarizing plate in a liquid crystal display device employing a collimated backlight front diffusion system.
C-2.偏光子
 上記偏光子110としては、目的に応じて任意の適切な偏光子が採用され得る。例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。これらのなかでも、ポリビニルアルコール系フィルムにヨウ素などの二色性物質を吸着させて一軸延伸した偏光子が、偏光二色比が高く特に好ましい。これら偏光子の厚さは特に制限されないが、一般的に、1~80μm程度である。
C-2. Polarizer Any appropriate polarizer may be adopted as the polarizer 110 depending on the purpose. For example, dichroic substances such as iodine and dichroic dyes are adsorbed on hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and ethylene / vinyl acetate copolymer partially saponified films. And polyene-based oriented films such as a uniaxially stretched product, a polyvinyl alcohol dehydrated product and a polyvinyl chloride dehydrochlorinated product. Among these, a polarizer obtained by adsorbing a dichroic substance such as iodine on a polyvinyl alcohol film and uniaxially stretching is particularly preferable because of its high polarization dichroic ratio. The thickness of these polarizers is not particularly limited, but is generally about 1 to 80 μm.
 ポリビニルアルコール系フィルムにヨウ素を吸着させて一軸延伸した偏光子は、例えば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3~7倍に延伸することで作製することができる。必要に応じてホウ酸や硫酸亜鉛、塩化亜鉛等を含んでいてもよいし、ヨウ化カリウムなどの水溶液に浸漬することもできる。さらに必要に応じて染色の前にポリビニルアルコール系フィルムを水に浸漬して水洗してもよい。 A polarizer uniaxially stretched by adsorbing iodine to a polyvinyl alcohol film can be produced, for example, by dyeing polyvinyl alcohol in an aqueous iodine solution and stretching it 3 to 7 times the original length. . If necessary, it may contain boric acid, zinc sulfate, zinc chloride or the like, or may be immersed in an aqueous solution such as potassium iodide. Further, if necessary, the polyvinyl alcohol film may be immersed in water and washed before dyeing.
 ポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、ポリビニルアルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果もある。延伸はヨウ素で染色した後に行ってもよいし、染色しながら延伸してもよいし、また延伸してからヨウ素で染色してもよい。ホウ酸やヨウ化カリウムなどの水溶液中や水浴中でも延伸することができる。 By washing the polyvinyl alcohol film with water, not only can the surface of the polyvinyl alcohol film be cleaned and the anti-blocking agent can be washed, but also the effect of preventing unevenness such as uneven dyeing can be obtained by swelling the polyvinyl alcohol film. is there. Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be dyed with iodine after stretching. The film can be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.
C-3.保護層
 上記保護層120および130は、偏光板の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。
C-3. Protective layer The protective layers 120 and 130 are formed of any appropriate film that can be used as a protective layer of a polarizing plate. Specific examples of the material as the main component of the film include cellulose resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based materials. And transparent resins such as polystyrene, polynorbornene, polyolefin, (meth) acryl, and acetate. Further, thermosetting resins such as (meth) acrylic, urethane-based, (meth) acrylurethane-based, epoxy-based, and silicone-based or ultraviolet curable resins are also included. In addition to this, for example, a glassy polymer such as a siloxane polymer is also included. Further, a polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used. As a material for this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in the side chain For example, a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer can be mentioned. The polymer film can be, for example, an extruded product of the resin composition.
 上記保護層(内側保護層)130は、光学的に等方性を有することが好ましい。具体的には、内側保護層の厚み方向の位相差Rth(550)は、好ましくは-20nm~+20nm、さらに好ましくは-10nm~+10nm、特に好ましくは-6nm~+6nm、最も好ましくは-3nm~+3nmである。内側保護層の面内位相差Re(550)は、好ましくは0nm以上10nm以下、さらに好ましくは0nm以上6nm以下、特に好ましくは0nm以上3nm以下である。このような光学的に等方性を有する保護層を形成し得るフィルムの詳細は、特開2008-180961号公報に記載されており、その記載は本明細書に参考として援用される。 The protective layer (inner protective layer) 130 is preferably optically isotropic. Specifically, the thickness direction retardation Rth (550) of the inner protective layer is preferably −20 nm to +20 nm, more preferably −10 nm to +10 nm, particularly preferably −6 nm to +6 nm, and most preferably −3 nm to +3 nm. It is. The in-plane retardation Re (550) of the inner protective layer is preferably 0 nm or more and 10 nm or less, more preferably 0 nm or more and 6 nm or less, and particularly preferably 0 nm or more and 3 nm or less. Details of the film that can form such an optically isotropic protective layer are described in Japanese Patent Application Laid-Open No. 2008-180961, which description is incorporated herein by reference.
D.液晶表示装置
 本発明の液晶表示装置の製造方法は、上記A-1項~A-3項に記載した本発明の光拡散素子の製造方法を用いて行われる。図5は、本発明の好ましい実施形態の製造方法により得られる液晶表示装置の概略断面図である。液晶表示装置500は、液晶セル510と、液晶セルの両側に配置された偏光板520および530と、偏光板530の外側に設けられたバックライトユニット540と、偏光板520の外側(視認側)に設けられた光拡散素子100とを備える。目的に応じて任意の適切な光学補償板(位相差板)が、液晶セル510と偏光板520および/または530との間に配置され得る。液晶セル510は、一対の基板(代表的には、ガラス基板)511および512と、基板511および512間に配された、表示媒体としての液晶を含む液晶層513とを有する。
D. Liquid Crystal Display Device The method for producing a liquid crystal display device of the present invention is performed using the method for producing a light diffusing element of the present invention described in the above items A-1 to A-3. FIG. 5 is a schematic cross-sectional view of a liquid crystal display device obtained by the manufacturing method of a preferred embodiment of the present invention. The liquid crystal display device 500 includes a liquid crystal cell 510, polarizing plates 520 and 530 disposed on both sides of the liquid crystal cell, a backlight unit 540 provided outside the polarizing plate 530, and the outside (viewing side) of the polarizing plate 520. The light diffusing element 100 is provided. Any appropriate optical compensation plate (retardation plate) may be disposed between the liquid crystal cell 510 and the polarizing plates 520 and / or 530 depending on the purpose. The liquid crystal cell 510 includes a pair of substrates (typically, glass substrates) 511 and 512 and a liquid crystal layer 513 that includes liquid crystal serving as a display medium and is disposed between the substrates 511 and 512.
 光拡散素子100は、上記A-1項~A-3項およびB項に記載した本発明の光拡散素子である。あるいは、光拡散素子100および視認側偏光板520の代わりに、上記C項に記載した本発明の光拡散素子付偏光板を配置してもよい。光拡散素子は、液晶セルを通過した光(代表的には、後述のようなコリメート光)を透過および拡散させる。 The light diffusing element 100 is the light diffusing element of the present invention described in the above items A-1 to A-3 and B. Alternatively, instead of the light diffusing element 100 and the viewing side polarizing plate 520, the polarizing plate with a light diffusing element of the present invention described in the above section C may be disposed. The light diffusing element transmits and diffuses light that has passed through the liquid crystal cell (typically, collimated light as described below).
 上記バックライトユニット540は、液晶セル510に向かってコリメート光を出射する平行光光源装置である。バックライトユニットは、コリメート光を出射し得る任意の適切な構成を有し得る。例えば、バックライトユニットは、光源と、光源から出射された光をコリメートする集光素子とを有する(いずれも図示せず)。この場合、集光素子としては、光源から出射された光をコリメートし得る任意の適切な集光素子が採用され得る。光源自体がコリメート光を出射し得る場合には、集光素子は省略され得る。バックライトユニット(平行光光源装置)の具体的構成としては、例えば、以下のようなものが挙げられる:(1)レンチキュラーレンズまたは砲弾型レンズの平坦面側のレンズの焦点以外の部分に遮光層または反射層を設けた集光素子を、光源(例えば、冷陰極蛍光ランプ)の液晶セル側に配置した構成(例えば、特開2008-262012号公報);(2)サイドライト型LED光源と、その導光板と、導光板側に凸面が形成され、該導光板の液晶セル側に配置された変角プリズムとを有する構成(本構成においては、必要に応じて異方性拡散素子がさらに用いられ得る;例えば、特許第3442247号);(3)光吸収性樹脂と透明性樹脂が交互にストライプ状に形成されたルーバー層をバックライトとバックライト側偏光板との間に配置した構成(例えば、特開2007-279424号公報);(4)光源として砲弾型LEDを用いた構成(例えば、特開平6-130255号公報);(5)フレネルレンズと必要に応じて拡散板とを用いた構成(例えば、特開平1-126627号公報)。これらの詳細な構成を記載した上記公報は、本明細書に参考として援用される。 The backlight unit 540 is a parallel light source device that emits collimated light toward the liquid crystal cell 510. The backlight unit may have any suitable configuration that can emit collimated light. For example, the backlight unit includes a light source and a condensing element that collimates light emitted from the light source (none of which is shown). In this case, any appropriate condensing element capable of collimating light emitted from the light source can be employed as the condensing element. If the light source itself can emit collimated light, the condensing element can be omitted. Specific configurations of the backlight unit (parallel light source device) include, for example, the following: (1) A light shielding layer on a portion other than the focal point of the lens on the flat surface side of the lenticular lens or the bullet-type lens. Alternatively, a configuration in which a condensing element provided with a reflective layer is disposed on the liquid crystal cell side of a light source (for example, a cold cathode fluorescent lamp) (for example, JP-A-2008-262012); (2) a sidelight type LED light source; The light guide plate and a structure having a convex surface formed on the light guide plate side and a variable angle prism disposed on the liquid crystal cell side of the light guide plate (in this configuration, an anisotropic diffusion element is further used as necessary. For example, Japanese Patent No. 3442247); (3) A louver layer in which a light-absorbing resin and a transparent resin are alternately formed in a stripe shape is provided between a backlight and a backlight-side polarizing plate. (4) Configuration using a bullet-type LED as a light source (for example, JP-A-6-130255); (5) Fresnel lens and, if necessary, A configuration using a diffusion plate (for example, JP-A-1-126627). The above publication describing these detailed configurations is incorporated herein by reference.
 好ましくは、液晶層513は、黒表示時に垂直配向した液晶分子を含む。このような液晶層を有する液晶セルの駆動モードとしては、例えば、MVA(マルチドメイン垂直配向)モード、PVA(パターンVA)モード、TN(ツイスティッドネマティック)モード、ECB(電界制御複屈折)モード、OCB(ベンドネマティック)モードが挙げられる。 Preferably, the liquid crystal layer 513 includes liquid crystal molecules vertically aligned during black display. As a driving mode of a liquid crystal cell having such a liquid crystal layer, for example, an MVA (multi-domain vertical alignment) mode, a PVA (pattern VA) mode, a TN (twisted nematic) mode, an ECB (electric field control birefringence) mode, An OCB (bend nematic) mode may be mentioned.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。実施例における評価方法は下記の通りである。また、特に明記しない限り、実施例における「部」および「%」は重量基準である。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. Evaluation methods in the examples are as follows. Unless otherwise specified, “parts” and “%” in the examples are based on weight.
(1)光拡散素子の厚み
 マイクロゲージ式厚み計(ミツトヨ社製)にて基材と光拡散素子との合計厚みを測定し、当該合計厚みから基材の厚みを差し引き、光拡散素子の厚みを算出した。
(2)濃度変調領域の有無
 実施例および比較例で得られた光拡散素子と基材との積層体を液体窒素で冷却しながら、ミクロトームにて0.1μmの厚さにスライスし、測定試料とした。透過型電子顕微鏡(TEM)を用いて、当該測定試料の光拡散素子部分の微粒子の状態を観察した。微粒子内部において前駆体浸透によるコントラストが確認できる場合を「濃度変調領域あり」とし、微粒子内部にコントラストが確認できず均一色である場合を「濃度変調領域なし」とした。
(3)ヘイズ
 JIS 7136で定める方法により、ヘイズメーター(村上色彩科学研究所社製、商品名「HN-150」)を用いて測定した。
(4)光拡散半値角
 光拡散素子の正面からレーザー光を照射し、拡散した光の拡散角度に対する拡散輝度を、ゴニオフォトメーターで1°おきに測定し、図6に示すように、レーザーの直進透過光を除く光拡散輝度の最大値から半分の輝度となる拡散角度を、拡散の両側で測定し、当該両側の角度を足したもの(図6の角度A+角度A´)を光拡散半値角とした。
(5)後方散乱率
 実施例および比較例で得られた光拡散素子と基材との積層体を、透明粘着剤を介して黒アクリル板(住友化学社製、商品名「SUMIPEX」(登録商標)、厚み2mm)の上に貼り合わせ、測定試料とした。この測定試料の積分反射率を分光光度計(日立計測器社製、商品名「U4100」)にて測定した。一方、上記光拡散素子用塗工液から微粒子を除去した塗工液を用いて、基材と透明塗工層との積層体を作製して対照試料とし、上記と同様にして積分反射率(すなわち、表面反射率)を測定した。上記測定試料の積分反射率から上記対照試料の積分反射率(表面反射率)を差し引くことにより、光拡散素子の後方散乱率を算出した。
(6)前駆体の浸透範囲
 上記(2)に記載の手順で撮影されたTEM写真から無作為に10個の光拡散性微粒子を選択した。選択された光拡散性微粒子のそれぞれについて、光拡散性微粒子の粒径と光拡散性微粒子の前駆体が浸透していない部分(非浸透部)の粒径とを測定し、下記の式で浸透範囲を算出した。10個の光拡散性微粒子についての平均を浸透範囲とした。
  (浸透範囲)={1-(非浸透部の粒径/光拡散性微粒子の粒径)}×100(%)
(1) Thickness of the light diffusing element The total thickness of the base material and the light diffusing element is measured with a microgauge thickness meter (manufactured by Mitutoyo Corporation), and the thickness of the light diffusing element is subtracted from the total thickness. Was calculated.
(2) Presence / absence of concentration modulation region While the laminate of the light diffusing element and the substrate obtained in Examples and Comparative Examples was cooled with liquid nitrogen, sliced to a thickness of 0.1 μm with a microtome, and a measurement sample It was. Using a transmission electron microscope (TEM), the state of fine particles in the light diffusing element portion of the measurement sample was observed. The case where the contrast due to the penetration of the precursor inside the fine particles could be confirmed was “concentration modulation region present”, and the case where the contrast could not be confirmed inside the fine particles and the color was uniform was designated “no concentration modulation region”.
(3) Haze The haze was measured using a haze meter (trade name “HN-150”, manufactured by Murakami Color Science Laboratory Co., Ltd.) according to the method defined in JIS 7136.
(4) Light diffusion half-value angle Laser light is irradiated from the front of the light diffusing element, and the diffusion luminance with respect to the diffusion angle of the diffused light is measured every 1 ° with a goniophotometer. As shown in FIG. The diffusion angle at which the luminance is half the maximum value of the light diffusion luminance excluding the straight transmitted light is measured on both sides of the diffusion, and the sum of the angles on both sides (angle A + angle A ′ in FIG. 6) is the light diffusion half value. It was a corner.
(5) Backscattering rate The laminated body of the light diffusing element and the base material obtained in the examples and comparative examples was placed on a black acrylic plate (trade name “SUMIPEX” (registered trademark) manufactured by Sumitomo Chemical Co., Ltd.) through a transparent adhesive. ) And a thickness of 2 mm) to obtain a measurement sample. The integrated reflectance of this measurement sample was measured with a spectrophotometer (trade name “U4100”, manufactured by Hitachi Keiki Co., Ltd.). On the other hand, using a coating liquid obtained by removing fine particles from the light diffusing element coating liquid, a laminate of a substrate and a transparent coating layer was prepared as a control sample, and the integrated reflectance ( That is, the surface reflectance was measured. The backscattering rate of the light diffusing element was calculated by subtracting the integrated reflectance (surface reflectance) of the control sample from the integrated reflectance of the measurement sample.
(6) Infiltration range of precursor Ten light diffusing fine particles were randomly selected from a TEM photograph taken by the procedure described in (2) above. For each selected light diffusing fine particle, measure the particle size of the light diffusing fine particle and the particle size of the part where the precursor of the light diffusing fine particle has not penetrated (non-penetrating part), and permeate with the following formula: Range was calculated. The average of 10 light diffusing fine particles was defined as the penetration range.
(Penetration range) = {1− (particle size of non-penetrating portion / particle size of light diffusing fine particles)} × 100 (%)
<実施例1:光拡散素子の作製>
 超微粒子成分としてのジルコニアナノ粒子(平均粒径60nm、屈折率2.19)を62%含有するハードコート用樹脂(JSR社製、商品名「オプスターKZ6661」(MEK/MIBK含有))18.2部に、樹脂成分の前駆体としてのペンタエリスリトールトリアクリレート(大阪有機化学工業社製、商品名「ビスコート#300」、屈折率1.52)の50%MEK溶液を6.8部、光重合開始剤(チバ・スペシャリティ・ケミカル社製、商品名「イルガキュア907」)を0.068部、レベリング剤(DIC社製、商品名「GRANDIC PC 4100」)を0.625部、および、光拡散性微粒子としてのポリメタクリル酸メチル(PMMA)微粒子(根上工業社製、商品名「アートパールJ4P」、平均粒径2.1μm、屈折率1.49)を2.5部添加した。この混合物を5分間超音波処理し、上記の各成分が均一に分散した塗工液を調製した。当該塗工液を、バーコーターを用いてTACフィルム(富士フィルム社製、商品名「フジタック」)上に塗工し、100℃にて1分間乾燥後、積算光量300mJの紫外線を照射し、厚み15μmの光拡散素子を得た。得られた光拡散素子を上記(1)~(6)の評価に供した。結果を、後述の実施例2~4の結果と併せて表1に示す。さらに、光拡散素子断面のTEM写真を図7に示す。当該TEM写真により、光拡散性微粒子の内部に濃度変調領域が形成されていることを確認した。
<Example 1: Production of light diffusing element>
Resin for hard coat containing 62% of zirconia nanoparticles (average particle diameter 60 nm, refractive index 2.19) as an ultrafine particle component (trade name “OPSTAR KZ6661” (MEK / MIBK included)) 18.2 6.8 parts of 50% MEK solution of pentaerythritol triacrylate (trade name “Biscoat # 300” manufactured by Osaka Organic Chemical Industry Co., Ltd., refractive index 1.52) as a precursor of the resin component was started in the part. Agent (Ciba Specialty Chemicals, trade name “Irgacure 907”) 0.068 parts, Leveling agent (DIC, trade name “GRANDIC PC 4100”) 0.625 parts, and light diffusing fine particles Polymethyl methacrylate (PMMA) fine particles (manufactured by Negami Kogyo Co., Ltd., trade name “Art Pearl J4P”, average particle size 2.1 μm, 2.5 parts of refractive index 1.49) were added. This mixture was sonicated for 5 minutes to prepare a coating solution in which the above components were uniformly dispersed. The coating solution is applied onto a TAC film (trade name “Fujitac”, manufactured by Fuji Film Co., Ltd.) using a bar coater, dried at 100 ° C. for 1 minute, and then irradiated with ultraviolet light with an integrated light amount of 300 mJ to obtain a thickness. A 15 μm light diffusing element was obtained. The obtained light diffusing element was subjected to the evaluations (1) to (6) above. The results are shown in Table 1 together with the results of Examples 2 to 4 described later. Further, a TEM photograph of a cross section of the light diffusing element is shown in FIG. From the TEM photograph, it was confirmed that a concentration modulation region was formed inside the light diffusing fine particles.
<実施例2:光拡散素子の作製>
 実施例1と同様にして塗工液を調製した。当該塗工液を4時間静置した後、実施例1と同様にして塗工した。塗工後の乾燥温度を60℃としたこと、および、厚みを10μmとしたこと以外は実施例1と同様にして光拡散素子を得た。得られた光拡散素子を上記(1)~(6)の評価に供した。結果を表1に示す。
<Example 2: Production of light diffusing element>
A coating solution was prepared in the same manner as in Example 1. The coating liquid was allowed to stand for 4 hours, and then coated in the same manner as in Example 1. A light diffusing element was obtained in the same manner as in Example 1 except that the drying temperature after coating was 60 ° C. and the thickness was 10 μm. The obtained light diffusing element was subjected to the evaluations (1) to (6) above. The results are shown in Table 1.
<実施例3:光拡散素子の作製>
 塗工液を塗工した後の乾燥温度を60℃としたこと以外は実施例1と同様にして光拡散素子を得た。得られた光拡散素子を上記(1)~(6)の評価に供した。結果を表1に示す。さらに、光拡散素子断面のTEM写真を図7に示す。当該TEM写真により、光拡散性微粒子の内部に濃度変調領域が形成されていることを確認した。
<Example 3: Production of light diffusing element>
A light diffusing element was obtained in the same manner as in Example 1 except that the drying temperature after coating the coating solution was 60 ° C. The obtained light diffusing element was subjected to the evaluations (1) to (6) above. The results are shown in Table 1. Further, a TEM photograph of a cross section of the light diffusing element is shown in FIG. From the TEM photograph, it was confirmed that a concentration modulation region was formed inside the light diffusing fine particles.
<実施例4:光拡散素子の作製>
 光拡散性微粒子としてPMMA微粒子(総研化学社製、MX180TA)を用いたこと、および、厚みを20μmとしたこと以外は実施例1と同様にして光拡散素子を得た。得られた光拡散素子を上記(1)~(6)の評価に供した。結果を表1に示す。さらに、光拡散素子断面のTEM写真を図7に示す。当該TEM写真により、光拡散性微粒子の内部に濃度変調領域が形成されていることを確認した。
<Example 4: Production of light diffusing element>
A light diffusing element was obtained in the same manner as in Example 1 except that PMMA fine particles (MX180TA, manufactured by Soken Chemical Co., Ltd.) were used as the light diffusing fine particles, and the thickness was 20 μm. The obtained light diffusing element was subjected to the evaluations (1) to (6) above. The results are shown in Table 1. Further, a TEM photograph of a cross section of the light diffusing element is shown in FIG. From the TEM photograph, it was confirmed that a concentration modulation region was formed inside the light diffusing fine particles.
<実施例5:光拡散素子の作製>
 実施例1と同様にして塗工液を調製した。当該塗工液を2時間静置した後、実施例2と同様にして光拡散素子を得た。得られた光拡散素子を上記(1)~(6)の評価に供した。結果を表1に示す。
<Example 5: Production of light diffusing element>
A coating solution was prepared in the same manner as in Example 1. The coating liquid was allowed to stand for 2 hours, and then a light diffusing element was obtained in the same manner as in Example 2. The obtained light diffusing element was subjected to the evaluations (1) to (6) above. The results are shown in Table 1.
<実施例6:光拡散素子の作製>
 実施例1と同様にして塗工液を調製した。当該塗工液を7時間静置した後、実施例2と同様にして光拡散素子を得た。得られた光拡散素子を上記(1)~(6)の評価に供した。結果を表1に示す。
<Example 6: Production of light diffusing element>
A coating solution was prepared in the same manner as in Example 1. The coating liquid was allowed to stand for 7 hours, and then a light diffusing element was obtained in the same manner as in Example 2. The obtained light diffusing element was subjected to the evaluations (1) to (6) above. The results are shown in Table 1.
<実施例7:光拡散素子の作製>
 実施例1と同様にして塗工液を調製した。当該塗工液を24時間静置した後、実施例2と同様にして光拡散素子を得た。得られた光拡散素子を上記(1)~(6)の評価に供した。結果を表1に示す。
<Example 7: Production of light diffusing element>
A coating solution was prepared in the same manner as in Example 1. The coating liquid was allowed to stand for 24 hours, and then a light diffusing element was obtained in the same manner as in Example 2. The obtained light diffusing element was subjected to the evaluations (1) to (6) above. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<実施例8:液晶表示装置の作製>
 マルチドメイン型VAモードの液晶セルを備える市販の液晶テレビ(SONY社製、ブラビア20型、商品名「KDL20J3000」)から液晶セルを取り出した。当該液晶セルの両側に、市販の偏光板(日東電工社製、商品名「NPF-SEG1423DU」)を、それぞれの偏光子の吸収軸が直交するようにして貼り合わせた。より具体的には、バックライト側偏光板の偏光子の吸収軸方向が垂直方向(液晶パネルの長辺方向に対して90°)となり、視認側偏光板の偏光子の吸収軸方向が水平方向(液晶パネルの長辺方向に対して0°)となるようにして貼り合わせた。さらに、視認側偏光板の外側に、実施例1の光拡散素子を基材から転写して貼り合わせ、液晶パネルを作製した。
<Example 8: Production of liquid crystal display device>
The liquid crystal cell was taken out from a commercially available liquid crystal television (manufactured by Sony, BRAVIA 20 type, trade name “KDL20J3000”) having a multi-domain VA mode liquid crystal cell. A commercially available polarizing plate (trade name “NPF-SEG1423DU” manufactured by Nitto Denko Corporation) was bonded to both sides of the liquid crystal cell so that the absorption axes of the respective polarizers were orthogonal to each other. More specifically, the absorption axis direction of the polarizer of the backlight side polarizing plate is the vertical direction (90 ° with respect to the long side direction of the liquid crystal panel), and the absorption axis direction of the polarizer of the viewing side polarizing plate is the horizontal direction. Bonding was performed so as to be (0 ° with respect to the long side direction of the liquid crystal panel). Further, the light diffusing element of Example 1 was transferred from the base material and bonded to the outside of the viewing side polarizing plate to produce a liquid crystal panel.
 一方、PMMAシートの片面に、レンチキュラーレンズのパターンを、転写ロールを用いて溶融熱転写した。レンズパターンが形成された面とは反対側の面(平滑面)に、レンズの焦点のみ光が透過するよう、アルミニウムのパターン蒸着を行い、開口部の面積比率7%(反射部の面積比率93%)の反射層を形成した。このようにして、集光素子を作製した。バックライトの光源として冷陰極蛍光ランプ(ソニー社製、BRAVIA20JのCCFL)を用い、当該光源に集光素子を取り付けて、コリメート光を出射する平行光光源装置(バックライトユニット)を作製した。 On the other hand, a lenticular lens pattern was melt-heat transferred onto one side of a PMMA sheet using a transfer roll. An aluminum pattern is deposited on the surface (smooth surface) opposite to the surface on which the lens pattern is formed so that light is transmitted only through the focal point of the lens, and the area ratio of the opening is 7% (the area ratio of the reflection section is 93). %) Of the reflective layer. In this way, a light collecting element was produced. A cold cathode fluorescent lamp (manufactured by Sony Corporation, BRAVIA20J CCFL) was used as the light source of the backlight, and a condensing element was attached to the light source to produce a parallel light source device (backlight unit) that emits collimated light.
 上記液晶パネルに上記バックライトユニットを組み込み、コリメートバックライトフロント拡散システムの液晶表示装置を作製した。得られた液晶表示装置について暗所にて白表示および黒表示を行い、その表示状態を目視にて観察した。その結果、斜め方向から見た場合、明所での黒表示が黒くかつ暗所の白表示の輝度が高いという良好な表示特性を示した。 The above backlight unit was incorporated into the above liquid crystal panel to produce a liquid crystal display device of a collimated backlight front diffusion system. About the obtained liquid crystal display device, white display and black display were performed in a dark place, and the display state was visually observed. As a result, when viewed from an oblique direction, the black display in the bright place was black and the brightness of the white display in the dark place was high.
<評価>
 実施例の手順の記載および表1から明らかなように、本発明の光拡散素子の製造方法によれば、特別な処理や操作を行うことなく(実質的には、光拡散性微粒子とマトリクス樹脂成分の前駆体とを混合した後、当該前駆体を重合するだけで)、濃度変調領域を有する光拡散素子を製造することができた。このような光拡散素子をコリメートバックライトフロント拡散システムの液晶表示装置に用いることにより、明所での黒表示が黒くかつ暗所での白表示の輝度が高いという良好な表示特性を有する液晶表示装置が得られた。また、実施例1~3および5~7を比較すると明らかなように、前駆体の光拡散性微粒子内への浸透が飽和状態に達するまでであれば静置時間が大きいほど高い拡散性を有する光拡散素子が得られ、飽和状態に達してしまえば静置時間が大きくなっても得られる光拡散素子の拡散性はほぼ一定であることがわかる。さらに、所定の静置時間を確保して濃度変調領域を形成することにより、低温で乾燥しても高いヘイズ値を有する光拡散素子が得られることがわかる(低温乾燥は、製造時のコストおよび安全性に優れるので好ましい)。
<Evaluation>
As is apparent from the description of the procedures of the examples and Table 1, according to the method of manufacturing the light diffusing element of the present invention, the light diffusing fine particles and the matrix resin are substantially not performed without any special treatment or operation. After mixing with the precursors of the components, the light diffusing element having the concentration modulation region could be manufactured simply by polymerizing the precursor. By using such a light diffusing element for a liquid crystal display device of a collimated backlight front diffusing system, a liquid crystal display having good display characteristics that black display in a bright place is black and white display brightness in a dark place is high. A device was obtained. Further, as apparent from comparison between Examples 1 to 3 and 5 to 7, the longer the standing time, the higher the diffusibility until the penetration of the precursor into the light diffusing fine particles reaches a saturated state. When a light diffusing element is obtained and reaches a saturated state, it can be seen that the diffusibility of the obtained light diffusing element is substantially constant even if the standing time is increased. Furthermore, it is understood that a light diffusing element having a high haze value can be obtained even when dried at a low temperature by securing a predetermined standing time and forming a concentration modulation region (low temperature drying is a cost in production and It is preferable because it is excellent in safety).
 本発明の製造方法により得られる光拡散素子および光拡散素子付偏光板は、液晶表示装置の視認側部材、液晶表示装置のバックライト用部材、照明器具(例えば、有機EL、LED)用拡散部材に好適に用いられ、コリメートバックライトフロント拡散システムのフロント拡散素子として特に好適に用いられ得る。 The light diffusing element and the polarizing plate with a light diffusing element obtained by the production method of the present invention are a viewing side member of a liquid crystal display device, a backlight member of a liquid crystal display device, and a diffusing member for a lighting fixture (for example, organic EL, LED). And can be particularly preferably used as a front diffusion element of a collimated backlight front diffusion system.
 10 マトリクス
 11 樹脂成分
 20 光拡散性微粒子
 30 濃度変調領域
100 光拡散素子
110 偏光子
120 保護層
130 保護層
200 光拡散素子付偏光板
500 液晶表示装置
 
 
DESCRIPTION OF SYMBOLS 10 Matrix 11 Resin component 20 Light diffusing fine particle 30 Density modulation area 100 Light diffusing element 110 Polarizer 120 Protective layer 130 Protective layer 200 Polarizing plate 500 with light diffusing element Liquid crystal display device

Claims (7)

  1.  樹脂成分の前駆体および超微粒子成分を含むマトリクス形成材料と光拡散性微粒子とを接触させる工程と、
     該前駆体の少なくとも一部を該光拡散性微粒子の内部に浸透させる工程と、
     該光拡散性微粒子の内部に浸透した前駆体と該光拡散性微粒子に浸透しなかった前駆体とを同時に重合して、樹脂成分および超微粒子成分を含むマトリクスを形成すると同時に、該光拡散性微粒子の表面近傍内部に濃度変調領域を形成する工程と、を含む、
     光拡散素子の製造方法。
    Contacting the matrix-forming material containing the precursor of the resin component and the ultrafine particle component with the light diffusing fine particles;
    Allowing at least a portion of the precursor to penetrate into the light diffusing fine particles;
    The precursor that has penetrated into the light diffusing fine particles and the precursor that has not penetrated into the light diffusing fine particles are simultaneously polymerized to form a matrix containing a resin component and an ultrafine particle component, and at the same time, the light diffusibility Forming a concentration modulation region in the vicinity of the surface of the fine particles,
    Manufacturing method of light diffusing element.
  2.  前記浸透工程において、前記光拡散性微粒子の表面から該光拡散性微粒子の平均粒径の10%以上95%以下の範囲まで前記前駆体を浸透させる、請求項1に記載の光拡散素子の製造方法。 2. The light diffusing element according to claim 1, wherein in the infiltration step, the precursor is infiltrated from a surface of the light diffusing fine particles to a range of 10% to 95% of an average particle diameter of the light diffusing fine particles. Method.
  3.  前記光拡散性微粒子の粒径が実質的に最大になるまでの時間よりも長い時間、前記樹脂成分の前駆体と該光拡散性微粒子とを接触させる、請求項1または2に記載の光拡散素子の製造方法。 The light diffusion according to claim 1 or 2, wherein the precursor of the resin component and the light diffusing fine particles are brought into contact with each other for a time longer than a time until the particle size of the light diffusing fine particles is substantially maximized. Device manufacturing method.
  4.  前記樹脂成分が電離線硬化型樹脂であり、電離線を照射することにより該樹脂成分の前駆体を重合させる、請求項1から3のいずれかに記載の光拡散素子の製造方法。 The method for producing a light diffusing element according to any one of claims 1 to 3, wherein the resin component is an ionizing radiation curable resin, and the precursor of the resin component is polymerized by irradiating the ionizing radiation.
  5.  請求項1から4のいずれかに記載の方法によって得られる光拡散素子であって、
     樹脂成分および超微粒子成分を含むマトリクスと、該マトリクス中に分散された光拡散性微粒子とを有し、
     該光拡散性微粒子の表面近傍内部に該樹脂成分が浸透して形成された濃度変調領域を有する、光拡散素子。
    A light diffusing element obtained by the method according to claim 1,
    A matrix containing a resin component and an ultrafine particle component, and light diffusing fine particles dispersed in the matrix,
    A light diffusing element having a concentration modulation region formed by penetration of the resin component in the vicinity of the surface of the light diffusing fine particles.
  6.  請求項1から4のいずれかに記載の光拡散素子の製造方法を用いる、光拡散素子付偏光板の製造方法。 A method for producing a polarizing plate with a light diffusing element, wherein the method for producing a light diffusing element according to any one of claims 1 to 4 is used.
  7.  請求項1から4のいずれかに記載の光拡散素子の製造方法を用いる、液晶表示装置の製造方法。
     
     
    The manufacturing method of a liquid crystal display device using the manufacturing method of the light-diffusion element in any one of Claim 1 to 4.

PCT/JP2010/054310 2009-03-26 2010-03-15 Process for producing light-diffusing element, light-diffusing element, and processes for producing polarizing plate with light-diffusing element and liquid-crystal display device WO2010110103A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020117022139A KR101260168B1 (en) 2009-03-26 2010-03-15 Process for producing light-diffusing element, light-diffusing element, and processes for producing polarizing plate with light-diffusing element and liquid-crystal display device
CN2010800125331A CN102356335B (en) 2009-03-26 2010-03-15 Process for producing light-diffusing element, light-diffusing element, and processes for producing polarizing plate with light-diffusing element and liquid-crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009076948 2009-03-26
JP2009-076948 2009-03-26

Publications (1)

Publication Number Publication Date
WO2010110103A1 true WO2010110103A1 (en) 2010-09-30

Family

ID=42780795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054310 WO2010110103A1 (en) 2009-03-26 2010-03-15 Process for producing light-diffusing element, light-diffusing element, and processes for producing polarizing plate with light-diffusing element and liquid-crystal display device

Country Status (5)

Country Link
JP (1) JP4756100B2 (en)
KR (1) KR101260168B1 (en)
CN (1) CN102356335B (en)
TW (1) TWI461745B (en)
WO (1) WO2010110103A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084977A1 (en) * 2019-10-31 2021-05-06 株式会社きもと Light diffusion film

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120085755A (en) * 2009-09-04 2012-08-01 스미또모 가가꾸 가부시키가이샤 Light-diffusing film, manufacturing method therefor, light-diffusing polarizing plate, and liquid-crystal display device
KR101273099B1 (en) 2011-05-24 2013-06-13 엘지이노텍 주식회사 Optical sheet, display device having the same and method of fabricating the same
TWI588547B (en) * 2011-10-07 2017-06-21 瀚宇彩晶股份有限公司 Polarizer, display module, tough display device and manufacturing the same
CN104145215B (en) * 2012-03-02 2016-12-14 三菱制纸株式会社 Rear projection screen
JP2013195812A (en) * 2012-03-21 2013-09-30 Nitto Denko Corp Light-diffusing element and method of manufacturing light-diffusing element
JP6049278B2 (en) * 2012-03-21 2016-12-21 日東電工株式会社 Manufacturing method of light diffusing element and light diffusing element
JP2013195814A (en) * 2012-03-21 2013-09-30 Nitto Denko Corp Light diffusing element
KR101273789B1 (en) * 2012-04-19 2013-06-11 다이니폰 인사츠 가부시키가이샤 Anti-glare film, polarizer and image display device
US20160077247A1 (en) * 2013-04-10 2016-03-17 Nitto Denko Corporation Light-diffusing element and method for manufacturing light-diffusing element
US9891353B2 (en) 2013-04-10 2018-02-13 Nitto Denko Corporation Light-diffusing-element manufacturing method and light-diffusing element
US20160054485A1 (en) * 2013-04-10 2016-02-25 Nitto Denko Corporation Light-diffusing element and method for manufacturing light-diffusing element
CN103645525A (en) * 2013-12-12 2014-03-19 惠州市粤泰翔科技有限公司 Light diffuser board integrated with high transmittance, high haze and high toughness in one body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347617A (en) * 1993-06-10 1994-12-22 Nitto Denko Corp Light diffusion plate and its production and display device
JPH08320406A (en) * 1995-05-26 1996-12-03 Nitto Denko Corp Light-diffusing plate
JP2003262710A (en) * 2003-01-20 2003-09-19 Yasuhiro Koike Light diffusing body
WO2007032170A1 (en) * 2005-09-16 2007-03-22 Dai Nippon Printing Co., Ltd. Antistatic anti-glare film
JP2007148398A (en) * 2005-11-07 2007-06-14 Fujifilm Corp Optical film, anti-reflection film, polarizing plate and image display device
JP2007293303A (en) * 2006-03-28 2007-11-08 Fujifilm Corp Light-scattering film, polarizing plate and image display

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3408581B2 (en) * 1993-06-10 2003-05-19 康博 小池 Light diffuser
KR100737979B1 (en) * 2005-03-18 2007-07-13 도레이새한 주식회사 Pore-formed light-diffusing film
US20070103786A1 (en) * 2005-11-07 2007-05-10 Fujifilm Corporation Optical film, anti-reflection film, polarizing plate and image display device
TW200730886A (en) * 2005-12-21 2007-08-16 Nippon Catalytic Chem Ind Light diffusing sheet and light diffusing plate, and backlight unit and liquid crystal display device employing the same
US7813038B2 (en) * 2006-03-28 2010-10-12 Fujifilm Corporation Light-scattering film, polarizing plate and image display
CN101118291B (en) * 2006-08-04 2010-04-14 鸿富锦精密工业(深圳)有限公司 Pervasion piece
JP5217184B2 (en) * 2007-02-28 2013-06-19 Jsr株式会社 Anti-glare film particle and anti-glare film particle composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347617A (en) * 1993-06-10 1994-12-22 Nitto Denko Corp Light diffusion plate and its production and display device
JPH08320406A (en) * 1995-05-26 1996-12-03 Nitto Denko Corp Light-diffusing plate
JP2003262710A (en) * 2003-01-20 2003-09-19 Yasuhiro Koike Light diffusing body
WO2007032170A1 (en) * 2005-09-16 2007-03-22 Dai Nippon Printing Co., Ltd. Antistatic anti-glare film
JP2007148398A (en) * 2005-11-07 2007-06-14 Fujifilm Corp Optical film, anti-reflection film, polarizing plate and image display device
JP2007293303A (en) * 2006-03-28 2007-11-08 Fujifilm Corp Light-scattering film, polarizing plate and image display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084977A1 (en) * 2019-10-31 2021-05-06 株式会社きもと Light diffusion film
CN114270098A (en) * 2019-10-31 2022-04-01 株式会社木本 Light diffusion film
EP4053601A4 (en) * 2019-10-31 2023-12-20 Kimoto Co., Ltd. Light diffusion film

Also Published As

Publication number Publication date
JP4756100B2 (en) 2011-08-24
JP2010250296A (en) 2010-11-04
TW201042294A (en) 2010-12-01
CN102356335A (en) 2012-02-15
TWI461745B (en) 2014-11-21
CN102356335B (en) 2013-11-06
KR20110120340A (en) 2011-11-03
KR101260168B1 (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP4756099B2 (en) Light diffusing element, polarizing plate with light diffusing element, liquid crystal display device using these, and method of manufacturing light diffusing element
JP4756100B2 (en) Manufacturing method of light diffusing element, light diffusing element, polarizing plate with light diffusing element, and manufacturing method of liquid crystal display device
TWI468743B (en) A light diffusing element and a polarizing element with a light diffusing element
JP6275935B2 (en) Light diffusing element, polarizing plate with light diffusing element, and liquid crystal display using the same
TWI468740B (en) A light diffusion film, a liquid crystal display device, and a lighting fixture
KR20130041336A (en) Light-diffusing element polarizing plate having light-diffusing element attached thereto polarizing element and liquid crystal display device equipped with those components
JP2012068273A (en) Light diffusion element, polarizer with light diffusion element, liquid crystal display device using the same, and light diffusion element manufacturing method
JP5129379B2 (en) Light diffusing element
WO2014167665A1 (en) Light-diffusing element and method for manufacturing light-diffusing element
TWI472807B (en) A light diffusion element and a method for manufacturing the light diffusion element
TWI484227B (en) Light diffusion element
JP2013195813A (en) Light diffusing element and method for manufacturing light diffusing element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012533.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117022139

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755901

Country of ref document: EP

Kind code of ref document: A1