TW201107265A - Optical glass, premolded blank material and optical component - Google Patents
Optical glass, premolded blank material and optical component Download PDFInfo
- Publication number
- TW201107265A TW201107265A TW099121348A TW99121348A TW201107265A TW 201107265 A TW201107265 A TW 201107265A TW 099121348 A TW099121348 A TW 099121348A TW 99121348 A TW99121348 A TW 99121348A TW 201107265 A TW201107265 A TW 201107265A
- Authority
- TW
- Taiwan
- Prior art keywords
- glass
- component
- optical
- optical glass
- less
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/068—Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
Abstract
Description
201107265 六、發明說明: 【發明所屬之技術領威】 本發明係關於具有低的玻璃轉移溫度(Tg)及高折射 高分散性的光學玻璃、預成型胚材(preform)及光學元件 【先前技術】 近年來使用光學系的機器之數位化或高精細化急速地 進展,於數位相機或攝影機等之攝影機器、或投影機或投 影電視等之影像再生(投影)機器等之各種光學機器之領 域,強烈地要求減少於光學系所使用的透鏡或棱鏡等光學 元件之個數,且將光學系全體輕量化及小型化。 製作光學元件的光學玻璃中,尤其是謀求光學系全體 之輕量化及小型化為可能的具有1·75以上之折射率(nd) 且30以上50以下之阿貝數(Abbe’ s number )( vd )、精 密壓模成形可能的高折射率低分散玻璃之需要正非常地升 高。作為如此之高折射率低分散玻璃,如已知專利文獻1 〜2所代表的玻璃組成物。 [先行技術文獻] [專利文獻] 專利文獻1特開2006 —016293號公報 專利文獻2特開2006 —016295號公報 【發明内容】 201107265 發明概要 發明欲解決的課題 於光學系所使用的透鏡,有球面透鏡與非球面透鏡, 若利用非球面透鏡’可減少光學元仕+ 7 a 丨卞<個數。又,已知透 鏡以外之各誠學元件亦具備作成_職之面者。然而 ’向來使_研削及研磨"'“獲得作成_面或複雜形 狀之面時’成本會變高’且必須有複雜的作業工程。因此 ,將由凝塊㈣)或玻侧塊所獲得的預成型胚材以超精 密加工的模具直減製成形而獲得光學元件之形狀的方法 ’即進行精密壓模成形的方法為現在的主流。 又,亦已知對於預成型胚材進行精密壓模成形的方法 之外’將由玻璃材料形成的凝塊或玻璃團塊再加熱而成形 (再加熱壓製(reheatpressing)成形)所獲得的玻璃成形 體作研削及研磨的方法。 如此精密壓模成形或再加熱壓製成形所使用的預成型 胚材係經由滴下法自熔融玻璃直接製造的方法、或將玻璃 團塊作再加熱壓製,或經由研削研磨以球形狀研削加工所 知的加工品而製作。即使任一方法,為了將熔融玻璃成形 為所欲形狀而獲得光學元件,希冀減低所形成玻璃之脈理 或失透(devitrification)。然而,專利文獻1及2所揭示的 破璃,尤其是形成徑大的預成型胚材之際,有產生所謂脈 理或失透的品質不良的問題。 本發明鑒於上述問題點,以此為目的的結果,獲得可 形成折射率(nd)及阿貝數(Vd)於所欲範圍内,同時兼 4 201107265 1理少與難發生失透,且徑切 ,與使用此光學朗的預成魏材及光學元Γ 用以解決課題之手段 本案發明者,為了解決上 的結果’發現於响成分、La偏分及:專成 併用驗金屬成分,且將此等之含有率控制在上述範圍内, 於調整玻璃之折射率及阿貝數的同時,玻璃之液相溫度變 低,且玻璃之液相溫度巾_騎適度提高,遂而完成本 發明。具體而言’本發明提供如以下者。 ⑴-種光學朗,相對於氧化物換算組成之玻璃全 ^量’以f量%計,含有祕成分5.G〜35.0%、La2〇3成 刀15,0〜50.0/0、Rn2〇成分(式中,Rn為選自 組成}群之1種以上)合計為1〇 〇%以下及卿3成分i 〇 〜25.0%。 ⑴如(1)記載之光學麵,其中氧化物換算組成 之質量比Rn2〇/W〇3為3.00以下。 (3)如(1) $ (2)記载之光學玻璃,其中於氧化物 換算組成中進一步含有Li2〇成分。 ⑷如(1)或(3)記载之光學玻璃,其中相對於氧 化物換算組成之玻璃全質量,以質量%計,⑽成分之含 量為5.0%以下。 (5)如⑴至(4)中任—項記載之光學玻璃,豆中 氧化物換算組成之質量比Li2〇/Rn2〇為〇 1〇以上i 〇〇以 201107265 (6) 如(1 )至(5)中任一項記載之光學玻璃,其中 相對於氧化物換算組成之玻璃全質量,以質量%計,進一 步含有以下各成分:201107265 VI. Description of the Invention: [Technical Leadership of the Invention] The present invention relates to optical glass, preformed preforms and optical components having low glass transition temperature (Tg) and high refractive index and high dispersibility [Prior Art] In recent years, digitalization and high definition of optical systems have been rapidly progressing, such as digital cameras such as digital cameras and video cameras, and various optical devices such as projectors such as projectors and projection televisions. In addition, it is strongly required to reduce the number of optical elements such as lenses and prisms used in optical systems, and to reduce the weight and size of the optical system as a whole. In the optical glass in which the optical element is produced, in particular, it is possible to reduce the refractive index (nd) of 1·75 or more and the Abbe's number of 30 or more and 50 or less, which is possible to reduce the weight and size of the entire optical system. Vd), the need for precision compression molding to form a high refractive index low dispersion glass is very high. As such a high refractive index low-dispersion glass, glass compositions represented by Patent Documents 1 to 2 are known. [Patent Document] [Patent Document 1] JP-A-2006-016295 (Patent Document) JP-A-2006-016295 SUMMARY OF INVENTION Technical Problem The object to be solved by the invention is a lens used in an optical system. For spherical lenses and aspherical lenses, the use of aspherical lenses can reduce the number of optical elements + 7 a 丨卞. Further, it is known that each of the earnest elements other than the lens also has the ability to create a job. However, 'there is always _grinding and grinding &'; 'when getting a face made of _ face or complex shape 'cost will become higher' and there must be complicated work engineering. Therefore, it will be obtained by clot (four)) or glass side block. The method of obtaining the shape of the optical element by directly forming the shape of the ultra-precision processed mold by the ultra-precision processing, that is, the method of performing precision press molding is now the mainstream. Further, it is also known to perform precision molding on the preformed preform. In addition to the forming method, a method of grinding and grinding a glass formed body obtained by reheating a clot or a glass agglomerate formed of a glass material by reheating (reheatpressing forming) is performed. The preformed embryo material used for the heat press molding is produced by a method of directly producing from a molten glass by a dropping method, or by reheating a glass agglomerate, or by grinding and grinding a known processed product by ball grinding. In either method, in order to obtain the optical element by forming the molten glass into a desired shape, it is desirable to reduce the pulse or devitrification of the formed glass. However, in the case of the glass which is disclosed in Patent Documents 1 and 2, in particular, when a preformed preform having a large diameter is formed, there is a problem that quality is caused by so-called pulsation or devitrification. The present invention has been made in view of the above problems. For the purpose of the result, the refractive index (nd) and the Abbe number (Vd) can be formed within the desired range, and at the same time, 4 201107265 1 is less and less devitrified, and the diameter is cut, and the use of this optical ray is In order to solve the above problem, the inventor of the present invention, in order to solve the above results, found that the composition of the ring, the La partial deviation, and the use of the metal component, and the content rate of these are controlled above. In the range, while adjusting the refractive index and Abbe number of the glass, the liquidus temperature of the glass becomes lower, and the liquid phase temperature of the glass is increased, and the present invention is completed. Specifically, the present invention provides (1)----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Rn2〇 component (wherein Rn is selected from the group consisting of one or more) (1) The optical surface according to (1), wherein the mass ratio of the oxide-converted composition Rn2〇/W〇3 is 3.00 or less. (3) (1) The optical glass according to (2) or (3), wherein the optical glass is composed of the optical composition of the above-mentioned oxide composition. The mass of the component (10) is 5.0% or less by mass%. (5) The optical glass according to any one of (1) to (4), the mass ratio of the composition of the oxide in the bean is Li2〇/Rn2〇. (1) The optical glass according to any one of (1) to (5), wherein the total mass of the glass in terms of an oxide conversion composition further contains the following components in mass% :
ZnO成分為0〜40.0%及/或 Τ&2〇5 成分為 ^5.0%。 (7) 如(1)至(6)中任一項記載之光學玻璃,其中 相對於氧化物換算組成之玻璃全質量,關於含有量之 (8xLi20 + Zn0)之合計値為25.0%以下。 (8) 如(6)至(7)中任一項記載之光學玻璃,其中 相對於氧化物換算組成之質量比Ta205/W03為1.20以上。 (9) 如(1)至(8)中任一項記載之光學玻璃,其中 相對於氧化物換算組成之玻璃全質量,以質量%計,進一 步含有以下各成分:The ZnO component is 0 to 40.0% and/or the Τ&2〇5 component is ^5.0%. (7) The optical glass according to any one of (1) to (6), wherein the total yt of (8xLi20 + Zn0) with respect to the content of the oxide is 25.0% or less. (8) The optical glass according to any one of (6) to (7), wherein the mass ratio Ta205/W03 to the oxide-converted composition is 1.20 or more. (9) The optical glass according to any one of (1) to (8), wherein the total mass of the glass in terms of an oxide-converted composition further contains, in mass%, the following components:
Si02成分0〜15.0%及/或 Gd203成分0〜30.0%及/或 Zr〇2 成分 0〜10.0%。 (10) 如(1)至(9)中任一項記載之光學玻璃,其 中相對於氧化物換算組成之玻璃全質量,以質量%計, Nb205成分之含量為低於10.0%。 (11) 如(1)至(10)中任一項記載之光學玻璃,其 中相對於氧化物換算組成之玻璃全質量,以質量%計,進 一步含有以下各成分:The SiO 2 component is 0 to 15.0% and/or the Gd 203 component is 0 to 30.0% and/or the Zr 〇 2 component is 0 to 10.0%. (10) The optical glass according to any one of (1) to (9), wherein the content of the Nb205 component is less than 10.0% by mass based on the total mass of the glass of the oxide conversion composition. (11) The optical glass according to any one of (1) to (10), which further contains the following components in mass% based on the total mass of the glass in terms of an oxide conversion composition:
MgO成分0〜10.0%及/或 CaO成分0〜10.0%及/或 6 201107265MgO component 0~10.0% and/or CaO component 0~10.0% and/or 6 201107265
SrO成分0〜10.0%及/或 BaO 成分 0〜10.0%。 (12) 如(11)記載之光學玻璃,其中相對於氧化物 換算組成之玻璃全質量,RO成分(式中,R為選自Mg、 Ca、Sr、Ba組成之群之1種以上)之質量和為10.0%以下。 (13) 如(1)至(12)中任一項記載之光學玻璃,其 中相對於氧化物換算組成之玻璃全質量,以質量%計,進 一步含有以下各成分:The SrO component is 0 to 10.0% and/or the BaO component is 0 to 10.0%. (12) The optical glass according to the item (11), wherein the RO component (in the formula, R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) The mass sum is 10.0% or less. (13) The optical glass according to any one of (1) to (12), wherein the total mass of the glass in terms of an oxide conversion composition further contains the following components in mass%:
Ti02成分0〜10.0%及/或 Bi203成分0〜20.0%及/或 Te02 成分 0〜20.0%。 (14) 如(1)至(13)中任一項記載之光學玻璃,其 中相對於氧化物換算組成之玻璃全質量,以質量%計,進 一步含有以下各成分: Ρ2〇5成分〇〜10.0%及/或 Ge02成分0〜10.0%及/或 Al2〇3成分0〜10.0%及/或 Na20成分0〜10.0%及/或 K20成分0〜10.0%及/或 Υ2Ο3成分〇〜15.0%及/或 Yb203成分0〜15.0%及/或 Lu203成分0〜10.0%及/或 Sb203 成分 0〜1.0%, 上述各金屬元素之1種或2種以上之氧化物之一部分 201107265 或全部與經取代氟化物之F之含有量為〇〜6 〇%。 (15)如⑴至(14)中任—項記载之光學玻璃盆 具有L75以上L95以下之折射率(nd),且具有3〇以1 50以下之阿貝數(Vd)。 U6)如⑴至(15)中任—項記載之光學玻璃,其 具有680°C以下之玻璃轉移點(Tg)。 、 (17) 如⑴至(16)中任一項記載之光學破璃其 具有1250°C以下之液相溫度。 八 (18) —種預成型胚材,其由(1)至(17)中任一項 記載之光學玻璃而成。 09) —種光學元件,其係將(18)記載之預成型胚 材壓製成形而製作。 (20) —種光學元件,其將〇)至(19)中任一項記 載之光學玻璃作為母材。 (21) —種光學機器,其具備(19)或(2〇)任一項 s己載之光學元件。 發明之效果 依據本發明,於ΙΟ;成分、La203成分及W03成分中 較佳併用鹼金屬成分,且將此等之含有率抑制在上述範圍 内時’玻璃之折射率及阿貝數被調整的同時,玻璃之液相 溫度變低,且玻璃之液相溫度中的黏度會適度地提高。因 此’折射率(nd)及阿貝數(vd)會於所冀望之範圍内, 同時兼具脈理少與難以產生失透,且形成徑大的預成型胚 材成為可能。 8 201107265 【實施方式】 用以實施發明之形態 —其-人,說明於本發明之光學玻璃中各成分之組成範圍 限疋於則述的理由。又’於本說明書中,只要未特別限定 ,各成分之含有率以質量%表示。 相對於氧化物換算組成之玻璃全質量,以質量%計, 本發明之光學麵含有B2〇3成分5.G〜35.G%、La2〇3成分 15·〇〜5〇.〇%、Rn2〇成分(式中,Rn為選自Li Na K組 成之群之1種以上)合計為1〇 〇%以下及w〇3成分丄〇 25.0%。如此,經由將w〇3成分以上述範圍内加入,玻 璃之液相μ度巾的黏度為適度地提高。又,較佳為經由將 驗金屬成h以上述範圍内加人,耐*透性會被維持,同時 亦獲得玻璃轉移點(Tg)低的玻璃素材。於此同時,於b2〇3 成分、La2〇3成分及w〇3成分中較佳併用鹼金屬成分,且3 抑制此等之含有率於上述範_,玻叙折射率及阿貝數 被調整,玻璃之液相溫度變低。因此,可獲得具有1.乃以 =㈣率及30以上之阿貝數⑹,同時容易形 、大的成心體,經由加熱軟化玻璃而容易進行壓製成形 可幵V成脈理或失透被減低的預成型胚材的光學玻璃, /、可獲得使用此光學玻璃的預成型胚材及光學元件。 以下,詳細說明關於本發明之光學玻璃之實施形離, 發明並未二任何方式蚊於以下之實施形態,且於本 之目的之fe圍内,可加入適宜變更來實施。又,説明 複的地方有省略適宜説明的情形,但雜定發明之旨趣 201107265 〔玻璃成分〕 構成本發明之光學玻璃的各成分之組成範圍描述如下 。本說明書中的各成分含有率,未特別指定的場合,表示 相對於全部氧化物換算組成之玻璃全質量的質量%。其中 ’「氧化物換算組成」係’於假設使用作為本發明之玻璃構 成成分之原料的氧化物、複合鹽、金屬氟化物等於熔融時 ,部變成經分解的氧化物的情形,以該生成氧化物之總質 i為100質量/。’表記玻璃中所含有的各成分的組成。 <關於必須成分、任意成分> B2〇3成分係於大量含有稀土類氧化物的本發明光學破 璃^作為玻璃形成氧化物無法缺少的必須成分。尤其,B2〇 成分之含有率為5.0%以上時,可提高玻璃之财失透性,且 玻璃之分散會變小。另—方面,_3成分之含有率為35收 以下時,容易獲得較大折射率,且可抑制化學的耐久性之 心化因此,相對於氧化物換算組成之玻璃全質量,B 〇 成=之含有率較佳以5.〇%、更佳以8.G%、再更佳以= 、最佳以11.0%為下限,較佳以35 〇%、更佳以3〇戟 更佳以25.0%、最佳以2〇.〇%為上限。B2〇3成分可使 如 H3B〇3、Na2B4〇7、他出4〇7 · 1〇H2〇、b 含於玻螭内。 作為原料Ti02 component 0 to 10.0% and/or Bi203 component 0 to 20.0% and/or Te02 component 0 to 20.0%. The optical glass according to any one of (1) to (13), wherein the total mass of the glass in terms of an oxide-converted composition further contains the following components in mass%: Ρ2〇5 component 〇10.0 % and/or Ge02 component 0~10.0% and/or Al2〇3 component 0~10.0% and/or Na20 component 0~10.0% and/or K20 component 0~10.0% and/or Υ2Ο3 component 〇~15.0% and / Or Yb203 component 0 to 15.0% and/or Lu203 component 0 to 10.0% and/or Sb203 component 0 to 1.0%, one or more of the above metal elements, one of the oxides, 201107265 or all of the substituted fluoride The content of F is 〇~6 〇%. (15) The optical glass bowl according to any one of (1) to (14), which has a refractive index (nd) of L75 or more and L95 or less, and has an Abbe number (Vd) of 3 Å or less. U6) The optical glass according to any one of (1) to (15) which has a glass transition point (Tg) of 680 ° C or lower. (17) The optical glass according to any one of (1) to (16) which has a liquidus temperature of 1250 ° C or lower. (18) A preformed preform made of the optical glass according to any one of (1) to (17). 09) An optical element produced by press molding a preformed preform described in (18). (20) An optical element comprising the optical glass recorded in any one of 〇) to (19) as a base material. (21) An optical apparatus comprising the optical element of any of (19) or (2). Advantageous Effects of Invention According to the present invention, it is preferable to use an alkali metal component in combination with a component, a La203 component, and a W03 component, and when the content ratio is suppressed within the above range, the refractive index and Abbe number of the glass are adjusted. At the same time, the temperature of the liquid phase of the glass becomes low, and the viscosity in the liquidus temperature of the glass is moderately increased. Therefore, the refractive index (nd) and the Abbe number (vd) are within the range expected, and it is possible to have both a small number of veins and a devitrification, and it is possible to form a preform having a large diameter. 8 201107265 [Embodiment] The embodiment for carrying out the invention is described in the following description. The composition range of each component in the optical glass of the present invention is limited to the reason described below. Further, in the present specification, the content ratio of each component is expressed by mass% unless otherwise specified. The optical surface of the present invention contains B2〇3 component 5.G~35.G%, La2〇3 component 15·〇5〇.〇%, Rn2, based on the total mass of the oxide-converted composition. In the formula (wherein Rn is one or more selected from the group consisting of Li Na K), the total amount is 1% by mole or less and the w〇3 component is 25.0%. Thus, by adding the w〇3 component in the above range, the viscosity of the liquid phase μ-thickness of the glass is moderately improved. Further, it is preferable that the resistance is maintained while the metal is added to the above range, and the glass transition point (Tg) is also obtained. At the same time, it is preferable to use an alkali metal component in the b2〇3 component, the La2〇3 component, and the w〇3 component, and 3 suppresses the content ratio of the above in the above-mentioned range, and the refractive index and the Abbe number are adjusted. The temperature of the liquid phase of the glass becomes lower. Therefore, it is possible to obtain an abide number (6) having a ratio of 1. (a) and a ratio of 30 or more, and at the same time, it is easy to form and large, and it is easy to press-form by heat-softening the glass to form a pulse or devitrification. The optical glass of the preformed preform material is reduced, and a preformed blank material and an optical element using the optical glass can be obtained. Hereinafter, the embodiment of the optical glass of the present invention will be described in detail, and the invention is not limited to any of the following embodiments, and it can be carried out by adding suitable modifications within the scope of the present invention. In addition, the description of the overlapping places is omitted, but the purpose of the invention is different. 201107265 [Glass component] The composition range of each component constituting the optical glass of the present invention is described below. In the specification, the content of each component is not particularly specified, and represents the mass % of the total mass of the glass with respect to the entire oxide-converted composition. In the case where the oxide-converting composition is used, it is assumed that the oxide, the composite salt, and the metal fluoride which are raw materials of the glass constituent component of the present invention are equal to the melting, and the portion becomes a decomposed oxide. The total mass i of the object is 100 mass /. The composition of each component contained in the glass is indicated. <About Required Components, Arbitrary Components> The B2〇3 component is an essential component which is indispensable for the formation of an oxide of glass of the present invention in which a large amount of a rare earth oxide is contained. In particular, when the content of the B2? component is 5.0% or more, the glass devitrification property can be improved, and the dispersion of the glass becomes small. On the other hand, when the content of the _3 component is 35 or less, it is easy to obtain a large refractive index, and the chemical durability can be suppressed. Therefore, the total mass of the glass in terms of the oxide conversion composition is B. The content rate is preferably 5.%, more preferably 8. G%, still more preferably =, most preferably 11.0%, preferably 35%, more preferably 3%, and 25.0%. The best is 2〇.〇% as the upper limit. The B2〇3 component can be such as H3B〇3, Na2B4〇7, and he is 4〇7·1〇H2〇, b contained in the glass bowl. As raw material
La2〇3成分係於提高玻璃折射率的同時,會使玻璃之? 散變小而玻璃之阿貝數變大的成分。尤其, J 含有率為15.G%以上時,可提高玻璃之折射率。另—= 201107265 ’ La203成分之含有率為50.0%以下時,提高玻璃之 下可減少玻璃之失透。因此,相對於氧化物換算組成之玻 璃全質量,La2〇3成分之含有率較佳以15爲、更佳以如㈣ 、再更佳以25.0%、最佳以28.50/(^1^,° 兮下限’較佳以50.0% 、更佳以48.0%、再更佳以45 Ω%、·& Λΐ· 又1主乂 4:5.U/°最佳以43.0%為上限。The La2〇3 component is used to increase the refractive index of the glass while making the glass? A component that has a small dispersion and a large Abbe number of glass. In particular, when the J content is 15. G% or more, the refractive index of the glass can be increased. Another—= 201107265 ’ When the content of the La203 component is 50.0% or less, the glass can be reduced to reduce the devitrification of the glass. Therefore, the content of the La2〇3 component is preferably 15 or more, more preferably as (4), still more preferably 25.0%, and most preferably 28.50/(^1^, °, relative to the total mass of the glass of the oxide-converted composition. The lower limit 兮 is preferably 50.0%, more preferably 48.0%, still more preferably 45 Ω%, ·& 又·1 main 乂4:5. U/° is preferably 43.0% upper limit.
La203 成分可使用例如 La203、La ( NO] ) 3 · Χη2〇 ( χ 為 任思之整數)荨作為原料含於玻璃内。 … WO成分(式中,Rn為選自u、Na、K組成之群之 1種以上)為於改善玻璃之熔融性的同時,會減低玻璃之 失透的成分。此處,即使不含有Ri^o成分雖可能獲得具 有所欲特性的玻璃,但Ri^O成分之含有率之合計為〇 1% 以上時’因光學玻璃之玻璃轉移點會變低,對光學玻璃可 容易進行壓製成形。另一方面’RnW成分之含有率為1〇 〇% 以下時,難以降低玻璃之折射率,可提高玻璃之安定性而 減低失透等之發生。因而,相對氧化物換算組成之玻璃全 質量’ RnW成分之質量和較佳以0.1%、更佳以〇 2%、最 佳以0.3%為下限’較佳以10.0%、更佳以8.0%、最佳以 5.0%為上限。 本發明之光學玻璃,於Ri^O成分之中以提高Li2〇成 分之含有量者為較佳。由此,因提高了於Rn20成分之中 降低玻璃轉移點作用大的LbO成分之含有率,可容易獲得 谷易進行壓製成形的光學玻璃。因而,於氧化物換算組成 中的質量比(Li20/Rn20)較佳以〇.1〇、更佳以〇.2〇、最佳 以〇·25為下限’較佳以I.00、更佳以0.90、最佳以0.85 201107265 為上限。 另一方面,Rn2〇成分中之Li2〇成分為含有量過剩地 增加時玻璃容易變失透的成分。因此,特別著眼於玻璃之 而t失透性的場合,相對於氧化物換算組成之玻璃全質量之 Li20成分之含有量’較佳以5.0%、更佳以3 〇%、最佳以 2.0 %為上限。惟,以其他成分可確保耐失透性的場合,l丨2 〇 成分之含有量提高至10.0%亦無妨。又,即使不含有Li2〇 成分亦可能獲得具有所欲之特性的玻璃,但經由含有L=〇 成为,因降低玻璃轉移點的作用變大,可容 行壓製成形的光學玻璃。因此,相對於氧== 玻璃全質量,LiW成分之含有量較佳大於〇%,更佳以〇1% 、最佳以0.15%下限。 WO3成分為調整玻璃之折射率及分散’並提升玻璃之 耐失透性的成分。尤其,將W〇3成分之含有率作成1〇% 以上,因獲得降低玻璃液相溫度的效果,可提升玻璃之耐 失透性。又,因提高熔融玻璃之液相溫度的黏性,可容易 獲得徑大的預成型胚材。又,可降低玻璃之玻璃轉移點。 另一方面,將W〇3成分之含有率作成25 〇%以下,可降低 玻璃之著色,尤其可使可視—短波長領域(低於500nm) 中之透過率難以降低。因此,相對於氧化物換算組成之玻 璃全質置,W〇3成分之含有率較佳以1〇%、更佳以2 〇% 、最佳以2.5%為下限,較佳以25.0%、更佳以15.0%、再 更佳以12.0%、最佳以10 0%為上限。w〇3成分可使用例 如W〇3等作為原料含於玻璃内。 12 201107265 本發明之光學玻璃中,相對於w〇3成分之含有量, Rn2〇成分之含有量之合計於規定範圍者較佳。由此,因提 高光學玻璃之液相溫度中的黏度,可容易以所欲形狀形成 較大之預成型胚材。因此,氧化物換算級成中的質量比( Rn20/W03),較佳以3.GG、更佳以2⑽、再更佳以2 5〇、 最佳以2.00為上限。又,即使質量比(Rn2〇/W〇3)為0 ’亦可能獲得具有所欲特性的玻璃,但質量比為謹以上 時,因玻璃轉移點變低,可容易獲得容易進行壓製成形的 光學玻璃。因此,氧化物換算組成中的質量比(Rn2〇/w〇3 )較佳以G.G1、更佳以G.G2、最佳以㈣3為下限。The La203 component can be contained in the glass using, for example, La203, La(NO)) 3 · Χη2〇 (χ is an integer of 任思). The WO component (wherein Rn is one or more selected from the group consisting of u, Na, and K) is a component which reduces the devitrification of the glass while improving the meltability of the glass. Here, it is possible to obtain a glass having desired characteristics without containing the Ri^o component, but when the total content of the Ri^O component is 〇1% or more, the glass transition point of the optical glass becomes low, and the optical The glass can be easily subjected to press forming. On the other hand, when the content ratio of the RnW component is 1% or less, it is difficult to lower the refractive index of the glass, and the stability of the glass can be improved to reduce the occurrence of devitrification or the like. Therefore, the mass of the glass full mass 'RnW component relative to the oxide-converted composition is preferably 0.1%, more preferably 〇2%, and most preferably 0.3% as the lower limit', preferably 10.0%, more preferably 8.0%, The best is 5.0%. The optical glass of the present invention is preferably one of the components of the Ri^O to increase the content of the Li2 component. As a result, the content of the LbO component having a large effect of lowering the glass transition point among the Rn20 components is improved, and the optical glass which is easily subjected to press molding can be easily obtained. Therefore, the mass ratio (Li20/Rn20) in the oxide-converted composition is preferably 〇.1 〇, more preferably 〇.2 〇, and most preferably 〇·25 is the lower limit', preferably I.00, more preferably The upper limit is 0.90 and the best is 0.85 201107265. On the other hand, the Li2〇 component in the Rn2〇 component is a component in which the glass is easily devitrified when the content is excessively increased. Therefore, in particular, when the glass is devitrified, the content of the Li20 component of the total mass of the glass in terms of the oxide conversion composition is preferably 5.0%, more preferably 3%, and most preferably 2.0%. The upper limit. However, when other components are used to ensure devitrification resistance, the content of the l丨2 〇 component may be increased to 10.0%. Further, even if the glass containing the desired characteristics is not contained, the glass having the desired characteristics can be obtained. However, by including L = 〇, the effect of lowering the glass transition point becomes large, and the optical glass which can be press-formed can be accommodated. Therefore, the content of the LiW component is preferably more than 〇% with respect to the total mass of oxygen == glass, more preferably 〇1%, and most preferably 0.15% lower limit. The WO3 component is a component which adjusts the refractive index and dispersion of the glass and enhances the devitrification resistance of the glass. In particular, when the content of the W〇3 component is made 1% or more, the effect of lowering the liquidus temperature of the glass can be obtained, and the devitrification resistance of the glass can be improved. Further, since the viscosity of the liquid phase temperature of the molten glass is increased, a preformed preform having a large diameter can be easily obtained. Moreover, the glass transition point of the glass can be lowered. On the other hand, when the content of the W〇3 component is 25 〇% or less, the color of the glass can be lowered, and in particular, the transmittance in the visible-short wavelength region (less than 500 nm) is hardly lowered. Therefore, the content of the W〇3 component is preferably 1% by mole, more preferably 2% by weight, and most preferably 2.5%, and preferably 25.0%, more preferably, relative to the entire composition of the oxide-converted composition. Preferably, it is 15.0%, more preferably 12.0%, and most preferably 10%. The w〇3 component can be contained in the glass using, for example, W〇3 as a raw material. In the optical glass of the present invention, it is preferred that the total content of the Rn2〇 component is within a predetermined range with respect to the content of the w〇3 component. Thereby, a large preformed preform can be easily formed in a desired shape by increasing the viscosity in the liquid phase temperature of the optical glass. Therefore, the mass ratio (Rn20/W03) in the oxide conversion step is preferably 3.GG, more preferably 2 (10), still more preferably 2 5 Torr, and most preferably 2.00. Further, even if the mass ratio (Rn2〇/W〇3) is 0′, it is possible to obtain a glass having desired characteristics, but when the mass ratio is more than or equal to, the glass transition point becomes low, and the optical which is easy to press-form can be easily obtained. glass. Therefore, the mass ratio (Rn2〇/w〇3) in the oxide-converted composition is preferably G.G1, more preferably G.G2, and most preferably (4)3 as a lower limit.
ZnO成分為降低玻璃轉移溫度(Tg)的效果大且有 改善化學的耐久性的效果的成分,為本發明之光學玻璃中 之任意成分。然而,Zn〇成分之含有量過多時’玻璃之财 失透性容易變惡化。因此,相對於氧化物換算组成之玻璃 全質量,ZnO成分之含有率較佳以4〇 〇%、更佳以2〇 〇% 、再更佳以18.G%、最細16 ()%為上限。加成分可使 用例如ZnO、ZnF2等作為原料而含於玻璃内。又即使未 含有ZnQ成分亦可崎得具有所欲特㈣玻璃,經由含 有Zn〇成分,因玻璃轉移點變低,可容易獲得容易進行壓 製成形的光學玻璃。因此,相對於氧化物換算組成之玻璃 全質量,ZnO成分之含有量較佳以議、更佳以〇 5%、 最佳以1.0%為下限。 本發明之光學玻璃,U2〇成分之含有量乘以8的値盘 細成分之含有量之合計値為25 0%以下者較佳。與相同 13 201107265 人The ZnO component is a component having a large effect of lowering the glass transition temperature (Tg) and having an effect of improving chemical durability, and is an optional component in the optical glass of the present invention. However, when the content of the Zn〇 component is too large, the devitrification property of the glass is likely to deteriorate. Therefore, the content of the ZnO component is preferably 4% by mole, more preferably 2% by weight, still more preferably 18. G%, and the finest 16 (%) is based on the total mass of the glass of the oxide-converted composition. Upper limit. The additive may be contained in the glass by using, for example, ZnO, ZnF2 or the like as a raw material. Further, even if the ZnQ component is not contained, it is possible to obtain the desired (tetra) glass. By containing the Zn ray component, the glass transition point is lowered, and the optical glass which is easily formed by press molding can be easily obtained. Therefore, the content of the ZnO component is preferably in the range of 5%, more preferably 1.0%, based on the total mass of the glass of the oxide-converted composition. In the optical glass of the present invention, the total amount of the U2 〇 component is multiplied by 8 and the total content of the enamel disk is preferably 25% or less. With the same 13 201107265 people
s里之ΖηΟ成分相比,Li2〇成分為降低玻璃轉移點(Tg) 的作用約8件+ ΛΑ 〇、/V °人的成分’但與ΖηΟ成分相比,使耐失透性 或化。予的耐久性惡化的作用亦強。因此,此等之合計値為 0以下可獲得耐失透性及化學的耐久性優異的玻璃。 據一相對於氧化物換算組成之玻璃全質量的含有量有 關的。(8 Li2〇 + 2;nO)之合計値,較佳以25 〇%、更佳以 15.〇/°、再更佳以U.5%、最佳以9.0%為上限。Compared with the Ζ Ο component of s, the Li 2 〇 component has a function of lowering the glass transition point (Tg) by about 8 pieces + ΛΑ 〇, /V ° human component', but devitrification resistance is compared with the ΖηΟ component. The effect of deterioration of durability is also strong. Therefore, when the total amount of these is 0 or less, a glass excellent in devitrification resistance and chemical durability can be obtained. It is related to the total mass content of the glass relative to the composition of the oxide. The total of (8 Li2〇 + 2; nO) is preferably 25%, more preferably 15.〇/°, still more preferably U.5%, and most preferably 9.0%.
Ta2〇5成分為提高玻璃之折射率且提高玻璃之耐失透 陧t成刀,為本發明之光學玻璃中.之任意成分。尤其,Ta2〇5 成刀之含有率為25.0〇/〇以下時,經由Ta205成分之含有過 剩可抑制玻璃之耐失透性之惡化。據此,相對於氧化物 換算組成之玻璃全質量的Ta205成分之含有率較佳以 25’0/。、更佳以23 〇%、最佳以21 〇%為上限。又,未含有 Ta2〇5成分並無技術上的不利益,但含有1.0%以上時,可 提局溶融玻璃之高溫中的黏性。又,因玻璃之透過率(例 如λ5之値)被提高,可提高對玻璃之可見光的透明性。因 此’相對於氧化物換算組成之玻璃全質量,Ta205成分之含 有率較佳以1.0%為下限,更佳含有大於5.0%、再更佳含 有大於8.〇%、最佳含有大於10.0%。Ta205成分可使用例 如丁a2〇5等作為原料含於玻璃内。 本發明之光學玻璃中,相對於W03成分之含有量, Ta2〇5成分之含有量於規定範圍者較佳。由此,提高光學玻 璃之折射率且可容易獲得所欲之低分散。又,可減低玻璃 之著色,尤其可較難降低可視一短波長領域(低於500nm 201107265 )中的透過率。因此’氧化物換算組成中的質量比( Ta2〇5/W〇3)車又佳以〇 5〇、更佳以〇 8〇、更佳以〗、再 更佳以2.50、最佳以5.00為下限,較佳以25.00、更佳以 22.00、最佳以2〇 〇〇為上限。The Ta2〇5 component is an optional component of the optical glass of the present invention in order to increase the refractive index of the glass and to improve the resistance to devitrification of the glass. In particular, when the content of the Ta2〇5 forming knives is 25.0 Å/〇 or less, the deterioration of the devitrification resistance of the glass can be suppressed by the excessive content of the Ta205 component. Accordingly, the content of the Ta205 component of the total mass of the glass with respect to the oxide-converted composition is preferably 25'0/. More preferably, it is 23%, and the best is 21%. Further, the absence of the Ta2〇5 component is not technically advantageous, but when it is contained in an amount of 1.0% or more, the viscosity at the high temperature of the molten glass can be raised. Further, since the transmittance of the glass (e.g., λ5) is improved, the transparency to visible light of the glass can be improved. Therefore, the content of the Ta205 component is preferably 1.0% as the lower limit, more preferably more than 5.0%, still more preferably more than 8%, and most preferably more than 10.0%, relative to the total mass of the glass of the oxide-converted composition. The Ta205 component can be contained in the glass using, for example, butyl a2〇5 as a raw material. In the optical glass of the present invention, the content of the Ta2〇5 component is preferably within a predetermined range with respect to the content of the W03 component. Thereby, the refractive index of the optical glass is increased and the desired low dispersion can be easily obtained. In addition, the color of the glass can be reduced, and in particular, it is difficult to reduce the transmittance in a short wavelength region (less than 500 nm 201107265). Therefore, the mass ratio (Ta2〇5/W〇3) in the oxide conversion composition is preferably 〇5〇, more preferably 〇8〇, more preferably 〗, even more preferably 2.50, and optimally 5.00 The lower limit is preferably 25.00, more preferably 22.00, and most preferably 2〇〇〇.
Si〇2成分為提高熔融玻璃之黏度的成分,且促進安定 的玻璃形成T ’作為光學玻璃,為減低不佳的失透(結晶 物之發生)的成分’為本發明之光學玻璃中任意成分。尤 其,將Si〇2成分之含有率作成15 〇%以下,可抑制玻螭轉 移點(Tg)之上昇’同時亦可容易獲得為本發明目的的折 射^ °據此’ 4目對於氧化物換算組成之玻璃全質量的Si〇2 成分之含有率’較佳以15.0%、更佳以12.0%、最佳以10.0% 為上=° X ’不含有Si〇2成分雖無技術上的不似但含 有0.1%以上時’因玻璃之液相溫度被提高,玻璃可較難失 透。因此,相對於氧化物換算組成之玻璃全質量,叫成 刀之3有率較佳以〇 1%、更佳以i 〇%、更佳以】5〇/。、最 佳以2.0/〇為下限。Si〇2成分可使用例如⑽2、K2SiF6、 NaJiF6等作為原料含於玻璃内。The Si〇2 component is a component that enhances the viscosity of the molten glass, and promotes stable glass formation T′ as an optical glass, and a component that reduces poor devitrification (occurrence of crystallized matter) is an optional component of the optical glass of the present invention. . In particular, when the content of the Si〇2 component is 15% or less, the increase in the glass transition point (Tg) can be suppressed, and the refractive index for the purpose of the present invention can be easily obtained. The content ratio of the Si全2 component of the total mass of the glass is preferably 15.0%, more preferably 12.0%, and most preferably 10.0% is upper = ° X 'The composition containing no Si〇2 is not technically similar. However, when it contains 0.1% or more, the temperature of the liquid phase of the glass is increased, and the glass is more difficult to devitrify. Therefore, the ratio of the total mass of the glass to the oxide-converted composition is preferably 〇 1%, more preferably i 〇 %, more preferably 5 〇 /. It is best to use 2.0/〇 as the lower limit. The Si 2 component can be contained in the glass using, for example, (10) 2, K 2 SiF 6 , NaJi F 6 or the like as a raw material.
Gd2〇3成分為提高玻璃之折射率且提高阿貝數的成分 之含有光學玻璃中任意成分。尤其,將⑽03成分 光風a* 3G.G%以下,同時變的容易獲得玻璃之所欲 璃^^可抑制玻璃轉移點(Tg)之上昇,且可提高玻 此’相對於氧化物換算組成之玻璃全質 H 含有率各自較佳以则%、更佳以鮮/〇 再更佳以15.0%、最佳以1〇〇%為上限。又,未含有⑸必 15 201107265 成分雖無技術上的不利益,但含有1.G%以上時,因破璃之 折射率及阿貝數被提高,可容易獲得所欲之光學常數。因 此’相對於氣化物換算組成之玻璃全質量,叫〇 含有率較細㈣、更佳以2 G%、最佳以2 5%為下限。 =d2〇3成分可使用例如_3、哪等作為原料含於破璃The Gd2〇3 component contains any component of the optical glass which is a component which increases the refractive index of the glass and increases the Abbe number. In particular, if the (10)03 component is a light wind of a*3G.G% or less, and the desired glass is easily obtained, the glass transition point (Tg) can be suppressed, and the glass composition can be increased in terms of oxide conversion. The glass full-content H content ratio is preferably at least %, more preferably fresh/〇, more preferably 15.0%, and most preferably 1% by weight. Further, it does not contain (5) must be 15 201107265 The composition is not technically advantageous, but when it contains 1. G% or more, the refractive index and the Abbe number of the glass are improved, and the desired optical constant can be easily obtained. Therefore, the total mass of the glass relative to the composition of the vapor conversion is called finer (four), more preferably 2 G%, and most preferably 25% lower. =d2〇3 component can be used, for example, _3, which is used as raw material in the glass
ZrO, 、成分為賦與玻璃之高折射率及低分散的同時,提 升十失透陵的成分,為本發明之光學玻璃中任意成分。然 而,zr〇2量過多時,相反地耐失透性會惡化。因此對 於氧化物換算域之玻璃全質量,吨成分之含有率較佳 以10.0%、更佳以8.0%、最佳以7 〇%為上限。又未 zr〇2成分_無技術上料利益,但於容祕得提高 透性的效果的場合,較佳以G.5%、更佳以1G%、最 2爲為下限。Zr〇2成分可使用例如Zr〇2、邱等作 含於玻璃内。 尽寸斗 叫〇5成分為提高玻璃折射率的同時,提升耐失透性的 成分,為本發明之光學麵巾任意成分。尤其,_〇 分之含有率作成低於ΗΧΟ%時,可抑制由於含有過剩叫〇5 成分所狀玻歡耐失透性惡化,㈣破卿可見光的透 過率降低。因此,相對於氧化物換算組成之玻璃全質量, 2〇5成分之含㈣較佳為低於则%、更佳為低於 ㈣、最佳為低於通。Nb2〇5成分可使用例如灿2〇5等 作為原料含於玻璃内。ZrO, a component that imparts high refractive index and low dispersion to the glass, and enhances the composition of the lost glass, is an arbitrary component of the optical glass of the present invention. However, when the amount of zr〇2 is too large, the devitrification resistance is deteriorated. Therefore, the content of the ton component is preferably 10.0%, more preferably 8.0%, and most preferably 7 〇%, based on the total mass of the glass in the oxide conversion domain. Further, there is no zr〇2 component _ no technical benefit, but when it is difficult to improve the effect of permeability, it is preferable to use G.5%, more preferably 1G%, and most 2 as the lower limit. The Zr〇2 component can be contained in the glass using, for example, Zr〇2, Qiu or the like. The ingredient of 〇5 is a component that increases the refractive index of the glass and enhances the devitrification resistance, and is an optional component of the optical face towel of the present invention. In particular, when the content of the _〇 component is less than ΗΧΟ%, it is possible to suppress deterioration of the devitrification resistance of the glassy component due to the excessive sputum 5 component, and (4) the decrease in the transmittance of the visible light. Therefore, the content of the 2〇5 component (4) is preferably less than the %, more preferably less than (4), and most preferably less than the pass, relative to the total mass of the glass in the oxide-converted composition. The Nb2〇5 component can be contained in the glass using, for example, Can 2, 5 or the like as a raw material.
MgO成分為調整玻璃折射率的成分,為本發明之光學 201107265 玻Γ中Γ思成分。尤其’Mg〇成分之含有率作成ι〇.〇%以 下夺可谷易獲得戶斤欲之折射率,且可減低玻璃失透之發 ^。據此,相對於氧化物換算組成之玻璃全質量,MgO成 分之含有率較細削%、更佳為以8.0%、最佳以5.0% 為上限MgO成分可使用例如MgC〇;、吨匕等作為原料 含於玻璃内。 成刀為改善玻璃炼融性的成分,為本發明之光學 玻璃中任意成分。尤其,CaO成分之含有率作成10.0%以 下時’可容易獲得所欲之折射率,降低玻璃之失透。因此 相對於氧化物換算組成之玻璃全質量,成分之含有 率較佳為卩10.0%、更佳以8.0%、最佳以5.0%為上限。 成刀可使用例如CaC〇3、CaF2等作為原料含於破璃内 〇 八Sr〇成分為調整玻璃折射率,且改善玻璃失透性的成 $,為本發明之光學玻璃中任意成分。尤其,SrO成分之 含有率作成1G.G%以下時,可容易獲得所欲之折射率。因 此:相對於氧化物換算組成之玻璃全質量,SrO成分之含 有=較佳以1〇.〇〇/〇、更佳以8 〇%、最佳以5㈣為上限。 、可使用例如sr (NO3) 2、SrF2等作為原料含於玻璃内 〇 、Ba〇成分為調整玻璃折射率,且改善玻璃失透性的成 ^ ^本發明之光學玻璃中任意成分。尤其,BaO成分之 各有率作成10.0%以下時,可容易獲得所欲之折射率。因 此相對於氧化物換算組成之玻璃全質量,BaO成分之含 17 201107265 有率較佳以10.0%、更佳以8.0%、最佳以5.0%為上限。 BaO成分可使用例如BaC〇3、Ba ( N03) 2、BaF2等作為原 料含於玻璃内。 本發明之光學玻璃中RO成分(式中,r為選自Mg、 Ca、Sr、Ba組成之群之1種以上)之含有量之合計為1〇 〇% 以下者較佳。由此,可容易獲得所欲之折射率。因此,相 對於氧化物換算組成之玻璃全質量,質量和(Mg〇 + Ca〇 + SrO + BaO)較佳以ΐ〇·0%為上限,更佳低於8 〇%,最佳 低於5.0%。The MgO component is a component that adjusts the refractive index of the glass, and is a component of the optical 201107265 glass bottle of the present invention. In particular, the content of the 'Mg〇 component is made into ι〇.〇%, and the refractive index of the household is reduced, and the glass devitrification can be reduced. According to this, the content of the MgO component is more than 5% by mass, more preferably 8.0%, and most preferably 5.0% as the upper limit of the glass-equivalent composition of the oxide-converted composition. For example, MgC 〇; It is contained in the glass as a raw material. The knives are components which improve the glass smelting property and are arbitrary components in the optical glass of the present invention. In particular, when the content of the CaO component is made 10.0% or less, the desired refractive index can be easily obtained, and the devitrification of the glass can be lowered. Therefore, the content of the component is preferably 卩10.0%, more preferably 8.0%, and most preferably 5.0% as the upper limit of the total mass of the glass in terms of the oxide conversion composition. For example, CaC〇3, CaF2, or the like can be used as a raw material in the glass. The composition of the Sr〇 composition is adjusted to the refractive index of the glass, and the glass devitrification property is improved. It is an optional component in the optical glass of the present invention. In particular, when the content ratio of the SrO component is 1 G.G% or less, the desired refractive index can be easily obtained. Therefore, the content of the SrO component is preferably 1 〇.〇〇/〇, more preferably 8 〇%, and most preferably 5 (4) as the upper limit with respect to the total mass of the glass of the oxide conversion composition. For example, sr (NO3) 2, SrF2 or the like can be used as a raw material in the glass, and the Ba 〇 component is an optional component in the optical glass of the present invention which is used to adjust the refractive index of the glass and to improve the glass devitrification. In particular, when the respective yields of the BaO components are 10.0% or less, the desired refractive index can be easily obtained. Therefore, the percentage of the BaO component 17 201107265 is preferably 10.0%, more preferably 8.0%, and most preferably 5.0% as the upper limit of the total mass of the glass in terms of the oxide conversion composition. The BaO component can be contained in the glass using, for example, BaC〇3, Ba(N03) 2, BaF2 or the like as a raw material. In the optical glass of the present invention, the total content of the RO component (wherein r is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) is preferably 1% or less. Thereby, the desired refractive index can be easily obtained. Therefore, the mass and (Mg 〇 + Ca 〇 + SrO + BaO) with respect to the oxide-converted composition are preferably ΐ〇·0% as the upper limit, more preferably less than 8%, and most preferably less than 5.0. %.
Ti〇2成分為調整玻璃之折射率及阿貝數且改善耐失透 性的成分,為本發明之光學玻璃中任意成分。然而,Ti〇2 過多時,反而耐失透性會變差,可視短波長(5〇〇nm以下) 中的玻璃之透過率亦惡化。因此,相對於氧化物換算組成 之玻璃全質量’ Ti〇2成分之含有率較佳以1〇 〇%、更佳以 8.0 /〇、隶佳以5.0%為上限。Ti〇2成分可使用例如丁1〇2等 作為原料含於玻璃内。The Ti 2 component is a component which adjusts the refractive index and Abbe number of the glass and improves the resistance to devitrification, and is an optional component in the optical glass of the present invention. However, when there is too much Ti〇2, the devitrification resistance is deteriorated, and the transmittance of the glass in the short wavelength (below 5 nm) is also deteriorated. Therefore, the content of the glass total mass 'Ti〇2 component with respect to the oxide-converted composition is preferably 1% 、%, more preferably 8.0 / 〇, and preferably 5.0%. The Ti 2 component can be contained in the glass using, for example, butyl ruthenium or the like as a raw material.
Bi2〇3成分為提高折射率的同時降低玻璃轉移點(Tg) 的成分,為本發明之光學玻璃中任意成分。尤其,則2〇3 成分之含有率作成20·〇%以下,因會抑制液相溫度之上 昇,可抑制玻璃之耐失透性之降低。因此,相對於氧化物 換鼻、、且成之玻璃王質量,Bi2〇3成分之含有率較佳以〇% 為上限,更佳為低於1〇.〇%,最佳為低於5 〇%。出2〇3成 分可使用例如Bi2〇3等作為原料含於玻璃内。The Bi2〇3 component is a component which reduces the glass transition point (Tg) while increasing the refractive index, and is an optional component in the optical glass of the present invention. In particular, when the content of the 2〇3 component is 20% or less, the liquidus temperature is prevented from rising, and the deterioration of the devitrification resistance of the glass can be suppressed. Therefore, the content of the Bi2〇3 component is preferably 〇% as the upper limit, more preferably less than 1〇.〇%, and most preferably less than 5 相对, relative to the oxide-changing, and the quality of the glass king. %. Two or three components can be contained in the glass using, for example, Bi2?3 as a raw material.
Te〇2成分為提高折射率的同時降低玻璃轉移點(Tg) 201107265 的成分,為本發明之光學玻璃中任意成分。然而,於使用 白金製之㈣4與馳玻璃接著料為以自金所形成的熔 融槽來熔融麵顧之際,吨有與白金會合金化的問 題因此才目對於氧化物換算組成之玻璃全質量,Te02成 分之含有率較佳以2〇.〇%為上限,更佳為低於1〇 〇%,最 佳為低於5.G/。。Te〇2成分可使用例如Te〇2等作為原料含 於玻璃内。 P2〇5成分為具有使玻璃液相溫度下降而提升耐失透性 的效果的成分,為本發明之光學玻财任意成分。尤其, 2 5成刀之3有率作成J0 0〇/〇以下時,可抑制玻璃之化學 上的耐久14之降低,尤其是抑制耐水性之降低。因此,相 對於氧化物換算組成之玻璃全s#,秘成分之含有率較 佳以⑽%、更佳以8.0%、最佳以5 G%為上限 分可使縣i如A1(P〇3)3、Ca㈤山、Ba⑽山、Bp〇4 、H3P〇4等作為原料含於玻璃内。 ㈣2成分為具有提高_折射率的_使耐失透性 提升效果的齡,為树明之料_中妹意成分。然 而,由於Ge〇2之原料價格高,因其量多時 : ^變的:實用。因此,相對於氧化物換算組成之玻璃全 質里’ Ge〇2成分之含有率較佳以1〇 〇%、更佳以8 佳以遍為上限。Ge〇2成分可使用例如g 含於玻璃内。 Α1Λ成分為提升玻璃化學上的耐久性的同時, 融玻璃之耐料性的成分’為本發明之光學麵中任意成 201107265 分。尤其,Al2〇3成分之含有率作成10 〇%以下時會減弱 玻璃之失賴向,可提高麵之安定性。因此,相對於氧 化物換算組成之玻璃全質量,Α1Α成分之含有率較佳以 10.0%、更佳以8.0%、最佳以5 〇%為上限。Al2〇3成分可 使用例如Α1203、A1 ( OH ) 3、A1F3等作為原料含於玻璃内 〇The Te〇2 component is a component which increases the refractive index and lowers the glass transition point (Tg) 201107265, and is an optional component in the optical glass of the present invention. However, in the case of the use of platinum (4) 4 and the glass binder is melted in the molten bath formed from gold, the problem of alloying with platinum is therefore the total quality of the glass composed of oxides. The content of the Te02 component is preferably 2 〇.〇% as the upper limit, more preferably less than 1%, and most preferably less than 5. G/. . The Te〇2 component can be contained in the glass using, for example, Te〇2 or the like as a raw material. The component P2〇5 is a component having an effect of lowering the temperature of the liquid phase of the glass and improving the resistance to devitrification, and is an optically viable component of the present invention. In particular, when the yield of 25% of the knives is less than J0 0 〇/〇, the chemical endurance 14 of the glass can be suppressed from decreasing, and in particular, the decrease in water resistance can be suppressed. Therefore, the content of the secret component relative to the oxide-converted composition is preferably (10)%, more preferably 8.0%, and most preferably 5 G% as the upper limit, so that the county i is as A1 (P〇3). 3, Ca (5) mountain, Ba (10) mountain, Bp 〇 4, H3P 〇 4, etc. are contained in the glass as a raw material. (4) The two components are ages having an effect of improving the _refractive index and improving the devitrification resistance, and are the ingredients of the tree. However, since the raw material price of Ge〇2 is high, because of its large amount: ^Change: practical. Therefore, the content of the 'Ge〇2 component in the glass whole composition with respect to the oxide-converted composition is preferably 1% 、%, more preferably 8 Å. The Ge〇2 component can be contained in the glass using, for example, g. The composition of the Α1Λ is to enhance the chemical durability of the glass, and the component of the glass-resistance of the glass is arbitrarily set to 201107265 points in the optical surface of the present invention. In particular, when the content of the Al2〇3 component is 10% or less, the glass is weakened, and the stability of the surface can be improved. Therefore, the content of the Α1 Α component is preferably 10.0%, more preferably 8.0%, and most preferably 5% by weight, based on the total mass of the glass of the oxide-converted composition. The Al2〇3 component can be contained in the glass using, for example, ruthenium 1203, A1 (OH) 3, A1F3 or the like as a raw material.
Na20成分為改善玻璃之熔融性,且降低玻璃轉移點的 同時’提高玻璃之私透性的成分,為本發明之光學玻璃 中任意成分。尤其’Na20成分之含有率作成1G ()%以下時, 難以降低玻璃之折射率,且提高玻璃之安定性下可減低失 透等之發生。因此’相對於氧化物換算組成之玻璃全質量, Na20成分之含有率較佳以、更佳以8 ()%、最佳以 5.0%為上限。Na20成分可使用例如Μ%、_〇3、_、 Najih等作為原料含於玻璃内。 K2〇成分為改善玻璃之㈣性,且降低玻璃轉移點的 同時’調整玻璃折射率及阿貝數喊分,為本發明之光學 玻璃中任思成77 ;t其,Κ2〇成分之含有率作成1〇 〇%以 下時,難以降低玻璃折射率的同時,提高玻璃之安定性下 可減低失透等之發生。因此,㈣於氧化㈣該成之玻 璃全質量’K2〇成分之含有率較佳以1〇 〇%、更佳以識、 最佳以遵為上限。K2〇成分可使用例如K2c〇3、κ KF、KHF2、K湖6#作騎料含於玻璃内。 Y2〇3 Μ ' Yb203成分、及LU2G3成分為提高玻璃折 射率、使分散變小的成分,為本發明之光學玻璃中任意成 20 201107265 刀尤其’ Υ2〇3成分、Yb2〇3成分之含有率各自作成H 以下、Lu2〇3成分之含有率各自作成1()舰以下於容 得玻璃之所欲光學常數的_,可提高破璃之耐失透性。 因此相對於氧化物換算組成之玻璃全質量,Y2〇3及Yb2〇3 各成分。之含有率各自較佳以15 G%、更佳以、最佳 以5.0〇/〇為上限。相對於氧化物換算組成之玻璃全質量, Lu203成分之含有率較佳以、更佳以識、最佳以 5.0%為上限。γ2〇3、Yb2〇3、及Lu2〇3各成分可使用例如 2 3 YF3 Yb2〇3、Lu2〇3等作為原料含於玻璃内。又, 不含有Lu2〇3雖無技術上的不利益,但Lu2〇3併用其他稀 土類氧化物時可進—步提升玻璃之安定性。因此,相對於 氧化物換算組成之玻璃全質量,Lu203成分之含有率較佳 以0.01〇/〇、更佳以0.03%、最佳以〇 〇5%為下限。The Na20 component is a component which is a component of the optical glass of the present invention in order to improve the meltability of the glass and to lower the glass transition point while increasing the privacy of the glass. In particular, when the content of the Na20 component is 1 G (%) or less, it is difficult to lower the refractive index of the glass, and the stability of the glass can be improved to reduce the occurrence of devitrification or the like. Therefore, the content of the Na20 component is preferably, more preferably, 8 ()%, and most preferably 5.0% as the upper limit of the total mass of the glass in terms of oxide conversion composition. The Na20 component can be contained in the glass using, for example, Μ%, 〇3, _, Najih or the like as a raw material. The K2 bismuth component is used to improve the glass (four) property, and to reduce the glass transition point while adjusting the refractive index of the glass and the Abbe number, which is the optical glass of the present invention, Ren Sicheng 77; t, the content of the Κ2〇 component is made into 1 When 〇〇% or less, it is difficult to lower the refractive index of the glass, and the stability of the glass can be improved to reduce the occurrence of devitrification. Therefore, (4) the content of the total mass 'K2 〇 component of the glass which is oxidized (4) is preferably 1% 、%, more preferably, and preferably the upper limit. The K2 bismuth component can be contained in the glass using, for example, K2c〇3, κ KF, KHF2, and K Lake 6#. Y2〇3 Μ 'Yb203 component and LU2G3 component are components for increasing the refractive index of the glass and making the dispersion smaller, and the content of any of the optical glass of the present invention is 20 201107265, especially the content of the component of ''2〇3 and Yb2〇3. Each of H and below and the content ratio of the Lu2〇3 component are each made into a __ below the desired optical constant of the glass, which can improve the devitrification resistance of the glass. Therefore, the total mass of the glass in terms of oxide conversion, Y2〇3 and Yb2〇3 components. The content ratios are each preferably 15 G%, more preferably, and most preferably 5.0 Å/〇. The content of the Lu203 component is preferably, more preferably, preferably 5.0% as the upper limit of the total mass of the glass in terms of oxide conversion composition. Each component of γ2〇3, Yb2〇3, and Lu2〇3 can be contained in the glass using, for example, 2 3 YF3 Yb2〇3, Lu2〇3, or the like as a raw material. Moreover, the absence of Lu2〇3 has no technical disadvantage, but when Lu2〇3 is used with other rare earth oxides, the stability of the glass can be improved. Therefore, the content of the Lu203 component is preferably 0.01 Å/Å, more preferably 0.03%, and most preferably 〇 5% as the lower limit with respect to the total mass of the glass of the oxide-converted composition.
SthO3成分為將熔融玻璃脱泡的成分,為本發明之光學 玻璃中任意成分。Sb203量過多時,可見光領域之短波長 領域中的透過率會變差。因此,相對於氧化物換算組成之 玻璃全質量,Sbz〇3成分之含有率較佳以1〇%、更佳以 0.7%、最佳以〇.5%為上限。外2〇3成分可使用例如%2〇3、 SbA、Na^SbA · 5H2〇等作為原料含於玻璃内。 又’將玻璃澄清並脱泡的成分並未限定於上述之Sb2〇3 成分,可使用玻璃製造領域中公知之澄清劑、脱泡劑或此 等之組合。 F成分為降低玻璃之分散且降低玻璃轉移點(丁轻)同 時提升耐失透性的成分,為本發明之光學玻璃甲任意成 21 201107265 分。然而,F成分之含有量,即上述各金屬元素之丨種或2 種以上之氧化物之一部分或全部與經取代氟化物之F之合 計量超過6.0%時,因F成分之揮發量變多,獲得安定的光 學常數變困難,變得難以獲得均質的玻璃。因此,相對於 氧化物換算組成之玻璃全質量,F成分之含有量較佳以 6.0%、更佳以5.0%、最佳以3·0%為上限。F成分可使用例 如ZrF4、A1F3、NaF、CaF2等作為原料含於玻璃内。 <關於不應含有的成分> 其次,說明本發明之光學玻璃中不應含有的成分、及 含有者為不佳的成分。 於不損害本案發明之玻璃特性的範圍内,視必要可添 加其他成分。惟,Ti、Zr、Nb、W、La、Gd、Y、Yb、Lu 除外,V、Cr、Mn、Fe、Co、Ni、Cu、Ag 及 M〇 等之各 過渡金屬成分,即使各自單獨或複合少量而含有的場合, 因有玻璃著色,於可視域之特定波長發生吸收的性質, 尤其使用可視領域之波長的光學玻璃,實質上不含者為較 佳。 又,Pb〇等之錯化合物及As2〇3 #之石申化合物,因係 環境負荷高的成分,實質上不含有者,即,除了不可避免 的混入外,一切不含有者為所欲的。 再者’ Th、Cd、τι、Os、Be、及Se之各成分作為有 害化學物冑料來冑控制使㈣傾肖 程、’加工工程、及至製品化後之處分’環境對策上=施 為必要Θ此’於重視環境上之影響的場合,實質上不含 22 201107265 有此等者為較佳。 本發明之玻璃組成物,其組成相對於氧化物換算組成 之玻璃全質量,因以質量%表示,而非直接以莫耳%之記 載所表示者,但依據滿足本發明中所要求的諸特性的玻璃 組成物中存在的各成分之莫耳%表示的組成,以氧化物換 算組成計,大概為以下之値。 B2〇3成分7.0〜50.0莫耳%、The SthO3 component is a component which defoams the molten glass and is an optional component in the optical glass of the present invention. When the amount of Sb203 is too large, the transmittance in the short-wavelength region in the visible light region is deteriorated. Therefore, the content of the Sbz〇3 component is preferably 1% by mole, more preferably 0.7%, and most preferably 5% by weight, based on the total mass of the glass of the oxide-converted composition. The outer 2〇3 component can be contained in the glass using, for example, %2〇3, SbA, Na^SbA·5H2〇 or the like as a raw material. Further, the component for clarifying and defoaming the glass is not limited to the above-mentioned Sb2〇3 component, and a clarifier, a defoaming agent or a combination thereof which is well known in the field of glass production can be used. The F component is a component which lowers the dispersion of the glass and lowers the glass transition point (lightening) while improving the devitrification resistance, and is an optical glass of the present invention. 21 201107265 points. However, when the content of the F component, that is, the total amount of one or both of the above-mentioned respective metal elements or one or more of the oxides of the two or more kinds and the F of the substituted fluoride exceeds 6.0%, the amount of volatilization of the F component increases. It is difficult to obtain a stable optical constant, and it becomes difficult to obtain a homogeneous glass. Therefore, the content of the F component is preferably 6.0%, more preferably 5.0%, and most preferably 3.0% as the upper limit of the total mass of the glass in terms of the oxide conversion composition. The F component can be contained in the glass using, for example, ZrF4, A1F3, NaF, CaF2 or the like as a raw material. <Components which should not be contained> Next, the components which should not be contained in the optical glass of the present invention and the components which are not preferred are described. Other components may be added as necessary within the range not impairing the characteristics of the glass of the invention of the present invention. Except for Ti, Zr, Nb, W, La, Gd, Y, Yb, and Lu, each transition metal component such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and M〇, even if they are individually or When it is contained in a small amount, it is preferable to use a glass which is colored at a specific wavelength in the visible region, and in particular, an optical glass having a wavelength in the visible region is used. Further, the compound of Pb〇 or the like and the compound of As2〇3# are not contained in the component having a high environmental load, that is, in addition to unavoidable incorporation, everything that is not contained is desirable. In addition, the components of 'Th, Cd, τι, Os, Be, and Se are used as harmful chemical materials to control (4) the process, the 'processing engineering, and the point after the productization' If necessary, in the case of paying attention to the influence of the environment, it does not substantially contain 22 201107265. The glass composition of the present invention has a composition based on the total mass of the glass in terms of oxide conversion, expressed by mass%, rather than directly expressed in the description of the mole %, but according to the characteristics required to satisfy the present invention. The composition expressed by mol% of each component present in the glass composition is approximately the following in terms of oxide conversion composition. B2〇3 composition 7.0~50.0 mol%,
La203成分 4.0〜25.0莫耳%、及 W03成分0.5〜15.0莫耳0/〇、La203 component 4.0~25.0 mol%, and W03 component 0.5~15.0 mol 0/〇,
Li20成分0〜20.0莫耳%及/或 ZnO成分0〜60.0莫耳%及/或 Ta205成分 0〜10.0莫耳%及/或 Si02成分0〜30.0莫耳%及/或 Gd203成分 0〜10.0莫耳%及/或 Zr02成分0〜10.0莫耳%及/或 Nb205成分 0〜5.0莫耳%及/或 MgO成分0〜30.0莫耳%及/或 CaO成分0〜20.0莫耳%及/或 SrO成分 0〜15.0莫耳%及/或 BaO成分0〜10.0莫耳%及/或 Ti02成分0〜15.0莫耳%及/或 Bi203成分 0〜7.0莫耳%及/或Li20 component 0~20.0 mol% and/or ZnO component 0~60.0 mol% and/or Ta205 component 0~10.0 mol% and/or SiO2 component 0~30.0 mol% and/or Gd203 component 0~10.0 mo Ear % and / or Zr02 component 0 ~ 10.0 mol% and / or Nb205 component 0 ~ 5.0 mol% and / or MgO component 0 ~ 30.0 mol% and / or CaO component 0 ~ 20.0 mol% and / or SrO Component 0~15.0 mol% and/or BaO component 0~10.0 mol% and/or Ti02 component 0~15.0 mol% and/or Bi203 component 0~7.0 mol% and/or
Te02成分0〜15.0莫耳%及/或 P2〇5成分〇〜10.0莫耳%及/或 23 201107265Te02 component 0~15.0 mol% and/or P2〇5 component 〇~10.0 mol% and/or 23 201107265
Ge02成分0〜7.0莫耳%及/或 Α12〇3成分 0〜12.0莫耳%及/或 Na20成分0〜15.0莫耳%及/或 K20成分0〜10.0莫耳%及/或 Υ2〇3成分〇〜7.0莫耳%及/或 Yb203成分 0〜5.0莫耳%及/或 Lu203成分 0〜4.0莫耳%及/或 Sb203成分 0〜0.3莫耳% 以及,上述各金屬元素之1種或2種以上之氧化物之 一部分或全部與經取代氟化物之F之合計量為0〜40.0莫 耳% 〔製造方法〕 本發明之光學玻璃例如以下述的方式被製作。即,將 上述原料以成為各成分所規定含有率之範圍内的方式均一 地混合,將製作的混合物投入白金甜禍,視玻璃組成之炫 融難易度,於電爐中1100〜1500°c之溫度範圍熔融2〜5 小時,攪拌均質化後,降至適當溫度後,於模具中鑄模, 經緩慢冷卻而被製作。 〔物性〕 本發明之光學玻璃有具有高折射率(nd)及低分散性 的必要。尤其,本發明之光學玻璃之折射率(nd)較佳以 1.75、更佳以1.77、最佳以1.80為下限,較佳以1.95、更 佳以1.92、最佳以1.90為上限。又,本發明之光學玻璃之 阿貝數(vd)較佳以30、更佳以33、最佳以35為下限, 24 201107265 較佳以50、更佳以47、最佳以45為上限。由此,光學設 §十之自由度廣,即使進一步謀求元件之薄型化亦可獲得大 的光折射量。 又’本發明之光學玻璃具有低的部分分散比(eg,f) 。更具體而έ,本發明之光學玻璃之部分分散比,F) ,與阿貝數(vd)之間,Vd>25之範圍中滿足(_2_5〇xl〇 xvd+0.6571 ) ^ (0g»F) ^ (-2.50xl0~3xvd+0.6971 )之關係。由此’因獲得具有標準線(n〇rmal line)附近 的部分分散比(0g,F)之光學玻璃,可減低由此光學玻璃 形成的光學兀件之色像差(chromatic aberration)。此處,vd 中的光學玻璃之部分分散比〇g,F)較佳以(—2 5〇χΐ〇 _3xvd+0.6571 )、更佳以(―25〇xl(r3xVd+〇 6591 )、最佳 以(~2.5〇xl(T3xVd+0.6611)為下限。另一方面,光學玻 璃之部分分散比Ug,F)之上限較佳為(_25〇xl〇-3xVd + 0.6971)、更佳為(—2 5〇xl〇-3XVd+〇 6921)、最佳為( -2.5〇xl〇_3xvd+0.6871 )。 又,本發明之光學玻璃之耐失透性高為必要。尤其, 本發明之鮮玻璃較佳具有12耽以下之低液相溫度。更 具體而言’本發明之光學玻璃之液相溫度較佳以i25〇t>c、 更佳以120(TC、最佳以11〇(rc為上限。由此,即使以較低 的溫度流出熔融玻璃,因製作的玻璃之結晶化被減低,由 熔融狀態形成玻璃時可提高耐失透性,可減低對使用玻璃 的光學元件之光學特性之影響。χ,因可安定生産預成型 胚材的黏度範隨廣,即使降低玻璃之轉溫度亦可形成 25 201107265 預成型胚材,於預成型胚材之形成時可抑制消費的能量。 另:方面,本發明之光學玻璃之液相溫度之下限並未特別 限定,但依據本發明所獲得的玻璃之液相溫度大約5⑼。c 以上,具體而言,為550〇c以上,更具體而言,經常為6〇〇。匸 、上又’本說明書中的「液相溫度」係表示’於50ml 容量之白金製坩堝中,將3〇cc之碎玻璃狀之玻螭試料放入 白金掛禍,於1250C下作成完全地熔融狀態,降溫至規定 溫度,保持12小時,取出爐外冷卻後,直接觀察玻璃表面 及玻璃中之結晶之有無,不認為有結晶的最低溫度。此處 所謂規定之溫度係表示118(TC〜至1000T:每2(TC所設定 的溫度。 又’本發明之光學玻璃於液相溫度具有適度高的黏性 。尤其’本發明之光學玻璃之液相溫度中的黏度η〔 dpa · s〕之對數logi]之値較佳以0.90、更佳以1.00為下限,最 佳作成較1.10大的値。又,此logrj之値較佳以2.00、更 佳以1.80、最佳以1.60為上限。由此,因減低形成的玻璃 之脈理’可製作適用作為光學元件的玻璃。又,由此確保 炫融玻璃之變形性,同時因提高熔融玻璃之表面張力,例 如以浮上成形等之手段,可形狀佳地製作較大口徑之預成 型胚材。 又’本發明之光學玻璃具有680Ϊ以下之玻璃轉移點( Tg)。由此,因玻璃以較低溫度軟化,可容易以較低溫度 將玻璃壓製成形。又,亦可減輕壓製成形所使用的金型之 氧化而謀求金型之長壽命化。因此,本發明之光學玻璃之 26 201107265 玻璃轉移點.^ & 。 64(TC為上阳 較佳以_C、更佳以66G°C、最佳以 )之下H。又’本發明之光學玻璃之玻璃轉移點⑴ 璃轉移點、('τ ?別限定’但依據本發明所獲得的破璃之玻 以上大約為1GG°C以上,具體而言,為15〇t>C 更具體而言經常為200。。以上。 …又變:學玻璃較佳具有靴以下之變形點( 璃之二二)為與玻璃轉移點(Tg)同樣地顯示玻 .^ 、指標之―,為顯示壓製成形溫度附近的溫度 t 因此’經由使用變形點(㈣為720°C以下之玻 制=於較低溫度下之壓製成形成為可能,可更容易進行 以™。^因此’本發明之光學玻璃之變形點(At)較佳 ^0C、更佳以·。c、最佳以靴為上限。又,本發 2先學玻璃之變形點(At)之下限並未特觀定,但依 據本發明所獲得的玻璃之變形點(At)約丨以上, 具體而言,為20(TC以上,更具體而言,經常為2机以上 〇 又,本發明之光學玻璃以著色少者為較佳。尤其,本 =曰月之光學玻璃以玻璃之透過率表科,以厚度1〇腿之 樣品’顯示分光透過率70%的波長(λ7〇)為45〇nm以下, 更佳為430nm以下,最佳為410nm α 丁 ^ 取住两41Unm以下。又,顯示分光透 過率5%的波長(λ5)為400nm以下,更佳為遍⑽以下 ’最佳為36Gnm以下。又’顯示分光透過率嶋的波長( ho)為500nm以下,更佳為480nm以下,最 〇nm 以下。由此,玻璃之吸収端位於紫外線領域附近的方式, 27 201107265 因可視域巾㈣叙料赌提高,此光學玻射 用作為透鏡等之光學元件之材料。 牲使 〔預成型胚材及光學元件] 如此,本發明之光學玻璃有用於各式各樣光學元 光學設計’但其中尤其為,自本發明之光學玻璃形 型胚材,使用此預成型胚材進行再加熱縣成形或精密= 製成形等’製作透鏡或棱鏡等之光學元件者為較佳。 ,因徑大的預成型胚材之形成成為可能,謀求光學元件之 大型化時,於相機或投影機等之光學機器使料可同 現高精細之高精度結像特性及投影特性。 【實施例】 本發明之實施例(No.l〜No.120)及比較例(n〇 a〜e )之組成、及此等玻璃之折射率(nd)、阿貝數(々)、部 分分散比(eg ’ F)、玻璃轉移點(Tg)、變形點(At)、以 及顯示分光透過率為5%、70%及80%的波長(人5、17〇及λ8〇 )之結果示於表1〜表13。又,本發明之實施例(N〇j〜 No.120)及比較例(Νο·Α〜Ε)之液相溫度、及液相溫度 中的黏性(η)之結果示於表14〜表19。又,以下之實施 例徹底地為例示之目的,並非僅限定於此等實施例。 本發明之實施例(No.l〜No.120)之光學玻璃及比較 例(No.A〜E)之玻璃係,選定各自相當的氧化物、氫氧 化物、碳酸鹽、硝酸鹽、氟化物、氫氧化物、偏磷酸化合 物等之通常之光學玻璃所使用的高純度原料作為任一各成 分之原料’以如表1〜表13所示的各實施例之組成之比率 28 201107265 的方式抨里而均—混合後,投人白金掛竭,視玻璃組成之 熔融難易度於電爐中於测〜测。c之溫度範圍熔融2〜 5小時後,授拌均質化後於模具等鑄模,緩慢冷卻而製作 玻璃。 此處’實施例(No.l〜N0.12G)之光學玻璃及比較例 (No.A〜E)玻璃之折射率(…)、阿貝數(Vd)、及部分分 散比(eg,f )係基於日本光學硝子工業會規格 JOGISOl-2GG3測定。之後,於所求得的阿貝數(Vd)及 部分分散比(0g,F)之値,求得關係式(%,F) = —a% + b中,傾斜度&為0.0025時之切片b。其中,折射率(d 〜)、阿貝數(vd)、及部分分散比(eg,F)於緩慢冷降溫 速度為一25°C/hr所得的玻璃進行測定而求得。 又’實施例(No.l〜No.120)及比較例(N〇 a〜E)玻 璃之液相溫度係,於5〇ml容量之白金製_中將3〇cc碎 玻璃狀之玻璃試料放人白錢堝,於125代作成完全炫融 狀態,mG°C〜至謂代以每2(rc所設定的任—溫度降溫 保持12+時’取出爐外冷卻後直接觀察破璃表面及玻璃中 之結晶之有無,求得不認為有結晶的最低溫度。 又’實施例(No.l〜Ν〇·120)之光學玻璃及比較例( No.A〜E)玻璃之液相溫度中的黏度η((1ρ3·δ)係,使用 落球式黏度計,於液相溫度測定黏度。又,於表丨4〜表19 中表示黏度的場合,以黏度η之常用對數丨〇约表示。 又,實施例(No.l〜No.120)之光學破璃及比較例( No.A〜E)玻璃之玻璃轉移點(Tg)及變形點(At)係使Ge02 component 0~7.0 mol% and/or Α12〇3 component 0~12.0 mol% and/or Na20 component 0~15.0 mol% and/or K20 component 0~10.0 mol% and/or Υ2〇3 component 〇~7.0 mol% and/or Yb203 component 0-5.0 mol% and/or Lu203 component 0-4.0 mol% and/or Sb203 component 0-0.3 mol% and one or two of the above metal elements The total amount of some or all of the oxides of the above-mentioned substituted fluorides is 0 to 40.0 mol%. [Production Method] The optical glass of the present invention is produced, for example, in the following manner. In other words, the above-mentioned raw materials are uniformly mixed so as to be within the range of the content ratio of each component, and the produced mixture is put into platinum sweetness, and the temperature of the glass composition is 1100 to 1500 ° C in the electric furnace. The range was melted for 2 to 5 hours, homogenized by stirring, and then lowered to an appropriate temperature, and then molded in a mold and slowly cooled to be produced. [Physical Properties] The optical glass of the present invention is required to have a high refractive index (nd) and low dispersibility. In particular, the refractive index (nd) of the optical glass of the present invention is preferably 1.75, more preferably 1.77, most preferably 1.80, and preferably 1.95, more preferably 1.92, and most preferably 1.90. Further, the Abbe number (vd) of the optical glass of the present invention is preferably 30, more preferably 33, and most preferably 35, and 24 201107265 is preferably 50, more preferably 47, and most preferably 45. Therefore, the degree of freedom of the optical design is wide, and a large amount of light refraction can be obtained even if the thickness of the element is further reduced. Further, the optical glass of the present invention has a low partial dispersion ratio (eg, f). More specifically, the partial dispersion ratio of the optical glass of the present invention, F), and the Abbe number (vd), satisfies in the range of Vd > 25 (_2_5〇xl〇xvd+0.6571) ^ (0g»F) ^ (-2.50xl0~3xvd+0.6971) relationship. Thus, the chromatic aberration of the optical element formed by the optical glass can be reduced by obtaining an optical glass having a partial dispersion ratio (0g, F) in the vicinity of the standard line (n〇rmal line). Here, the partial dispersion ratio 〇g, F) of the optical glass in vd is preferably (-25 5 〇χΐ〇 _3 x vd + 0.6571), more preferably ( ― 25 〇 xl (r3 x Vd + 〇 6591), optimally (~2.5〇xl (T3xVd+0.6611) is the lower limit. On the other hand, the upper limit of the partial dispersion ratio Ug, F) of the optical glass is preferably (_25〇xl〇-3xVd + 0.6971), more preferably (-25) 〇xl〇-3XVd+〇6921), preferably (-2.5〇xl〇_3xvd+0.6871). Further, the optical glass of the present invention has high resistance to devitrification. In particular, the fresh glass of the present invention preferably has The liquidus temperature below 12 。. More specifically, the liquidus temperature of the optical glass of the present invention is preferably i25 〇 t > c, more preferably 120 (TC, preferably 11 〇 (rc is the upper limit. Therefore, even if the molten glass flows out at a relatively low temperature, the crystallization of the produced glass is reduced, and when the glass is formed in a molten state, the devitrification resistance can be improved, and the influence on the optical characteristics of the optical element using glass can be reduced. Because of the wide range of viscosity of the preformed preforms, even if the glass transition temperature is lowered, 25 201107265 preformed preforms can be formed. In addition, the lower limit of the liquidus temperature of the optical glass of the present invention is not particularly limited, but the liquidus temperature of the glass obtained according to the present invention is about 5 (9). More specifically, the above is 550 〇 c or more, and more specifically, it is usually 6 〇〇. 匸,上上 'The liquid phase temperature in the present specification means 'in a 50 ml capacity platinum 坩埚, 3〇cc broken glassy glassy sample was put into platinum, and it was completely melted at 1250C. The temperature was lowered to the specified temperature for 12 hours. After cooling outside the furnace, the glass surface and the crystal in the glass were directly observed. The temperature is not considered to be the lowest temperature of crystallization. The predetermined temperature here means 118 (TC~ to 1000T: every 2 (temperature set by TC.) The optical glass of the present invention has a moderately high liquidus temperature. Viscosity. Especially, the logarithm of the viscosity η [dpa · s] in the liquidus temperature of the optical glass of the present invention is preferably 0.90, more preferably 1.00, and is preferably made to be larger than 1.10. Again, this logrj Preferably, the thickness is 2.00, more preferably 1.80, and most preferably 1.60. Thereby, the glass which is an optical element can be produced by reducing the pulse of the formed glass. Further, the deformability of the glazed glass is ensured. At the same time, by increasing the surface tension of the molten glass, for example, by means of floating upper molding, a preform having a larger diameter can be produced in a shape. Further, the optical glass of the present invention has a glass transition point (Tg) of 680 Å or less. Thus, since the glass is softened at a lower temperature, the glass can be easily press-formed at a lower temperature. Further, it is possible to reduce the oxidation of the gold type used for press forming and to achieve a long life of the gold type. Therefore, the optical glass of the present invention 26 201107265 glass transfer point. ^ & 64 (TC is upper yang preferably _C, more preferably 66G ° C, optimally) H. Further, the glass transition point of the optical glass of the present invention (1) is a glass transition point, ('τ?? is not limited', but the glass of the glass obtained according to the present invention is about 1 GG ° C or more, specifically, 15 〇 t > More specifically, it is often 200.. Above....Changed: The glass is better to have the deformation point below the boot (the second of the glass) is the same as the glass transition point (Tg). ―, in order to display the temperature t near the press forming temperature, it is therefore possible to carry out press forming at a lower temperature via the use of a deformation point ((4) is 720 ° C or less, and it is easier to carry out TM. ^ Therefore 'this The deformation point (At) of the optical glass of the invention is preferably ^0C, more preferably ··c, and the upper limit of the shoe is optimal. Moreover, the lower limit of the deformation point (At) of the first glass of the present invention is not specified. However, the deformation point (At) of the glass obtained according to the present invention is about 丨 or more, specifically 20 (TC or more, more specifically, often 2 or more, and the optical glass of the present invention is less colored. It is better. In particular, this is the thickness of the glass of the glass of the moon. The sample of 1 leg shows that the wavelength (λ7〇) at which the spectral transmittance is 70% is 45 〇 nm or less, more preferably 430 nm or less, and most preferably 410 nm α ^ ^ is taken below two 41 Unm. Further, the spectral transmittance is shown to be 5 The % wavelength (λ5) is 400 nm or less, more preferably (10) or less, and the optimum is 36 Gnm or less. Further, the wavelength (ho) of the spectral transmittance 嶋 is 500 nm or less, more preferably 480 nm or less, and most 〇 nm or less. Thus, the absorption end of the glass is located in the vicinity of the ultraviolet field, 27 201107265. The optical glass is used as a material for optical elements such as lenses, because of the improvement of the visual field towel (4). [Preformed preforms and optical components] Thus, the optical glass of the present invention is used in a wide variety of optical element optical designs 'but in particular, from the optical glass-shaped blank of the present invention, the pre-formed blank is used for reheating county forming or precision = It is preferable to form an optical element such as a lens or a prism, etc. It is possible to form a preformed blank material having a large diameter, and to increase the size of the optical element, it is used for an optical device such as a camera or a projector. High-precision high-resolution image forming characteristics and projection characteristics of the present invention. [Embodiment] The compositions of the present invention (No. 1 to No. 120) and the comparative examples (n〇a to e), and the glass Refractive index (nd), Abbe number (々), partial dispersion ratio (eg 'F), glass transition point (Tg), deformation point (At), and display spectral transmittance of 5%, 70%, and 80% The results of the wavelengths (human 5, 17 〇 and λ 8 〇) are shown in Tables 1 to 13. Further, the liquid phases of the examples (N〇j to No. 120) and the comparative examples (Νο·Α~Ε) of the present invention. The results of viscosity (η) in temperature and liquidus temperature are shown in Table 14 to Table 19. Further, the following examples are thoroughly for illustrative purposes and are not limited to the examples. In the optical glass of the examples (No. 1 to No. 120) of the present invention and the glass systems of Comparative Examples (No. A to E), oxides, hydroxides, carbonates, nitrates, and fluorides corresponding to each were selected. A high-purity raw material used for a usual optical glass such as a hydroxide or a metaphosphoric acid compound is used as a raw material of any of the components 'in the ratio of the composition of each of the examples shown in Tables 1 to 13 to 28 201107265. In the meantime - after mixing, the investment of platinum is exhausted, depending on the melting difficulty of the glass composition in the electric furnace. After the temperature range of c is melted for 2 to 5 hours, the mixture is homogenized, molded in a mold or the like, and slowly cooled to prepare a glass. Here, the refractive index (...), the Abbe's number (Vd), and the partial dispersion ratio (eg, f) of the optical glass of the examples (No. 1 to N0.12G) and the comparative examples (No. A to E). ) is based on the Japan Optical Glass Industry Association specification JOGISOl-2GG3. Then, after the obtained Abbe number (Vd) and partial dispersion ratio (0g, F), the relationship (%, F) = -a% + b is obtained, and the inclination & Slice b. Here, the refractive index (d ~), the Abbe number (vd), and the partial dispersion ratio (eg, F) were determined by measuring a glass having a slow cold drop rate of 25 ° C / hr. Further, the liquid phase temperature of the glass of the examples (No. 1 to No. 120) and the comparative example (N〇a to E) was 3 cc cullet-shaped glass sample in a platinum 5% capacity Putting money into the money, in the 125th generation, it is completely glazed, and mG°C~~ is replaced by 2 every 2 (the temperature set by rc is kept at 12+). The presence or absence of crystals in the glass, and the lowest temperature at which crystals are not considered. The optical glass of the examples (No. 1 to Ν〇 120) and the liquid phase temperature of the comparative examples (No. A to E) glass were obtained. The viscosity η ((1ρ3·δ) system is measured by the falling ball type viscometer at the liquidus temperature. Further, when the viscosity is shown in Tables 4 to 19, the common logarithm of the viscosity η is expressed. Further, the optical glass of the examples (No. 1 to No. 120) and the glass transition point (Tg) and the deformation point (At) of the glass of Comparative Example (No. A to E) were used.
Q 201107265 用横型膨張測定器進行測定而求得。此處,進行測定之際 之樣品係使用φ4.8mm、長度50〜55mm者,昇溫速度為 4°C /min。 又’實施例(No. 1〜No.120)之光學玻璃及比較例(No.A 〜E)玻璃之透過率依據日本光學硝子工業會規格j〇gis〇2 測定。又,於本發明,測定玻璃之透過率時,求得玻璃之 者色之有無與程度。具體而言,將厚度1 〇±〇 1 mm之對面 平行研磨品依據JISZ8722,測定200〜800nm之分光透過 率,求得Μ (透過率5%時之波長)、、“透過率7〇。/。時= 波長)及λ8〇 (透過率80%時之波長)。 30 201107265 【表1】 J. 1施例 1 2 3 4 5 6 7 8 9 10 B2O3 16.02 16.080 15.790 16.080 15.790 15.520 13.300 11.300 15.200 14.900 La2〇3 33.20 37.290 37.440 36.780 37.190 37.640 37.800 37.800 36.860 36.150 W〇3 5.47 1.510 1.500 2.010 1.750 1.500 1.500 1.500 1.470 1.440 Li20 0.15 0.500 0.750 0.500 0.750 0.900 1.000 1.000 0.980 0.960 Na20 K20 ZnO 13.96 5.430 5.410 5.430 5.410 5.410 5.400 5.400 5.290 5.190 Ta205 13.99 18.590 18.550 18.590 18.550 18.520 18.500 18.500 18.140 17.790 Si02 3.22 5.430 5.410 5.430 5.410 5.410 7.400 9.400 5.290 5.190 Gd2〇3 9.92 7.040 7.020 7.040 7.020 7.010 7.000 7.000 6.860 6.730 Zr02 3.97 6.030 6.020 6.030 6.020 6.010 6.000 6.000 5.880 5.770 Nb205 2.010 2.010 2.010 2.010 2.000 2.000 2.000 1.960 1.920 MgO CaO SrO BaO Ti02 Bl2〇3 Te02 P2〇5 Ge〇2 AI2O3 1.960 3.850 y2〇3 Yb2〇3 Lll2〇3 Sb2〇3 0.10 0.100 0.100 0.101 0.100 0.100 0.100 0.100 0.100 0.100 F 合計 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Rn2〇 0.15 0.50 0.75 0.50 0.75 0.90 1.00 1.00 0.98 0.96 RO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Rll2〇/W 〇3 0.027 0.331 0.500 0.249 0.429 0.600 0.667 0.667 0.667 0.667 Li2〇/Rn2〇 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (8xLi20 十 ZnO) 15.160 9.430 11.410 9.430 11.410 12.610 13.400 13.400 13.130 12.870 Ta2〇5/W O3 2.558 12.311 12.367 9.249 10.600 12.347 12.333 12.333 12.340 12.354 nd 1.852 1.852 1.852 1.853 1.853 1.854 1.853 1.843 1.834 Vd 40.3 40.4 40.1 40.2 40.3 40.2 40.1 40.7 41.0 Tg (°C) 636 626 622 λ8〇(ηιη) 420 420 418 415 407 411 412 410 λ7〇(ηιη) 375 377 376 373 364 372 374 370 λ5(ηιη) 334 336 334 332 315 332 332 332 31 201107265 【表2】 1 f施例 11 12 13 14 15 16 17 18 19 20 B2O3 15.200 14.900 15.820 16.150 15.820 16.150 15.500 15.500 15.500 15.500 La2〇3 36.860 36.150 38.370 39.170 38.370 39.170 35.600 33.600 39.600 41.600 W〇3 1.470 1.440 1.530 1.560 1.530 1.560 1.500 1.500 1.500 1.500 Li20 0.980 0.960 1.020 1.040 1.020 1.040 1.000 1.000 1.000 1.000 Na2〇 K20 ZnO 5.290 5.190 5.510 5.630 3.470 1.460 5.400 5.400 5.400 5.400 Ta205 18.140 17.790 18.800 19.270 18.800 19.270 18.500 18.500 18.500 18.500 Si02 5.290 5.190 5.510 5.630 5.510 5.630 5.400 5.400 5.400 5.400 Gd2〇3 6.860 6.730 7.140 7.290 7.140 7.290 7.000 7.000 5.000 3.000 Zr02 5.880 5.770 4.080 2.080 6.120 6.250 6.000 6.000 6.000 6.000 Nb2〇5 1.960 1.920 2.040 2.080 2.040 2.080 2.000 2.000 2.000 2.000 MgO CaO SrO BaO Ti02 1.960 3.850 Bl2〇3 Te02 P2O5 Ge〇2 AI2O3 y2〇3 2.000 4.000 Yb203 LU2O3 Sb2〇3 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 F 合計 100.0 100.0 99.9 100.0 99.9 100.0 100.0 100.0 100.0 100.0 Rri2〇 0.98 0.96 1.02 1.04 1.02 1.04 1.00 1.00 1.00 1.00 RO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Rn2〇AV〇3 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 Li2〇/Rn2〇 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (8xLi2〇+ZnO) 13.130 12.870 13.670 13.950 11.630 9.780 13.400 13.400 13.400 13.400 Ta205/W03 12.340 12.354 12.288 12.353 12.288 12.353 12.333 12.333 12.333 12.333 nd 1.868 1.881 1.847 1.841 1.852 1.851 1.852 1.851 1.854 1.854 Vd 38.1 36.2 40.7 41.0 40.5 40.5 40.4 40.5 40.3 40.4 Tg (°C) 629 639 λ8〇(ηιη) 446 468 412 407 415 409 416 416 λ7〇(ηιη) 391 402 372 373 373 371 373 373 λ5(ηιη) 345 353 332 332 332 332 332 332 32 201107265 【表3】 1 f施例 21 22 23 24 25 26 27 28 29 30 B203 15.500 15.050 15.460 15.440 15.360 15.440 15.050 15.050 15.050 15.050 La2〇3 37.600 36.500. 35.850 39.590 37.260 38.140 36.500 36.500 36.500 36.500 w〇3 3.000 1.460 1.450 1.550 1.490 1.510 1.460 1.460 1.460 1.460 Li20 1.000 0.970 0.480 1.550 0.890 1.110 0.970 0.970 0.970 0.970 Na20 2.910 K20 2.910 ZnO 5.400 5.240 9.080 1.450 6.340 4.440 5.240 5.240 5.240 5.240 Ta205 17.000 17.960 17.870 19.170 18.330 18.670 17.960 17.960 17.960 17.960 Si02 5.400 5.240 5.220 5.600 5.350 5.450 5.240 5.240 5.240 5.240 Gd203 7.000 6.800 6.760 7.250 6.940 7.060 6.800 6.800 6.800 6.800 Zr02 6.000 5.880 5.800 6.220 5.950 6.050 5.880 5.880 5.880 5.880 Nb205 2.000 1.940 1.930 2.070 1.980 2.020 1.940 1.940 1.940 1.940 MgO 2.910 2.910 CaO SrO BaO 2.910 Ti02 B12O3 Te02 P2O5 Ge〇2 AI2O3 Y2O3 Yb2〇3 LU2O3 Sb203 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 F 合計 100.0 100.1 100.0 100.0 100.0 100.0 100.1 100.1 100.1 100.1 Rn2〇 1.00 0.97 0.48 1.55 0.89 1.11 3.88 0.97 3.88 0.97 RO 0.00 2.91 0.00 0.00 0.00 0.00 0.00 2.91 0.00 2.91 Rll2〇/W〇3 0.333 0.664 0.331 1.000 0.597 0.735 2.658 0.664 2.658 0.664 Li2〇/Rn2〇 1.000 1,000 1.000 1.000 1.000 1.000 0.250 1.000 0.250 1.000 (8xLi20+Zn0) 13.400 13.000 12.920 13.850 13.460 13.320 13.000 13.000 13.000 13.000 Ta2〇s/W O3 5.667 12.301 12.324 12.368 12.302 12.364 12.301 12.301 12.301 12.301 nd 1.852 1.850 1.853 1.852 1.854 1.853 1.825 1.848 1.825 1.843 Vd 40.1 40.5 40.2 40.4 40.3 40.4 40.4 40.7 40.6 40.8 Tg (°C) 622 620 618 619 λ8〇(ηιη) 420 410 412 412 413 412 415 411 399 409 λ7〇(ηπι) 378 370 373 372 372 372 375 374 367 373 λ5(ηιη) 337 330 333 331 332 331 341 341 331 331 33 201107265 【表4】 1 f施例 31 32 33 34 35 36 37 38 39 40 B2〇3 15.050 15.050 16.157 17.500 15.979 15.049 15.979 15.049 15.979 15.049 La2〇3 36.500 36.505 35.840 37.600 38.763 36.505 38.763 39.417 35.670 36.505 W〇3 1.460 1.456 1.469 1.500 1.546 1.456 1.546 1.456 1.546 1.456 Li20 0.970 0.970 0.118 1.000 1.031 0.971 1.031 0.971 1.031 0.971 Na20 K20 ZnO 5.240 8.155 8.226 5.400 5.567 5.243 5.567 5.243 5.567 5.243 Ta2〇5 17.960 17.961 18.116 18.500 19.072 17.961 19.072 17.961 19.072 20.874 Si〇2 5.240 5.240 5.288 3.400 2.474 5.243 5.567 5.243 5.567 5.243 Gd2〇3 6.800 6.796 6.855 7.000 7.216 9.709 4.124 6.796 7.216 6.796 Zr〇2 5.880 5.825 5.875 6.000 6.186 5.825 6.186 5.825 6.186 5.825 Nb205 1.940 1.942 1.958 2.000 2.062 1.942 2.062 1.942 2.062 1.942 MgO CaO SrO 2.910 BaO Ti02 Bl2〇3 Te02 P2〇5 Ge02 Al2〇3 Y2O3 Yb2〇3 Lll2〇3 Sb2〇3 0.100 0.100 0.098 0.100 0.100 0.097 0.103 0.097 0.103 0.097 F 合計 100.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Rn2〇 0.97 0.97 0.12 1.00 1.03 0.97 1.03 0.97 1.03 0.97 RO 2.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Rn2〇/W O3 0.664 0.666 0.080 0.667 0.667 0.667 0.667 0.667 0.667 0.667 Li2〇/Rn2〇 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (8xLi20+Zn0) 13.000 15.915 9.170 13.400 13.815 13.011 13.815 13.011 13.815 13.011 Ta2〇5/W〇3 12.301 12.336 12.332 12.333 12.336 12.336 12.336 12.336 12.336 14.337 nd 1.849 1.853 1.851 1.853 1.872 1.856 1.849 1.857 1.848 1.859 Vd 40.5 40.3 40.3 40.5 39.6 40.4 40.3 40.4 40.3 39.8 Tg (°C) λ8〇(ηιη) 404 408 411 412 420 419 427 415 413 419 λ7〇(ηιη) 370 372 374 373 376 372 373 371 371 372 λ5(ηηι) 330 331 334 332 334 332 332 331 332 332 34 201107265 【表5】 1 f施例 41 42 43 44 45 46 47 48 49 50 02〇3 15.979 15.049 15.049 15.816 15.049 15.049 17.961 15.049 15.049 15.728 L&2〇3 38.763 36.505 36.505 38.367 36.505 36.505 36.505 36.505 36.505 33.377 wo3 1.546 4.369 1.456 1.531 1.456 1.456 1.456 1.456 1.456 5.579 Li20 1.031 0.971 0.971 1.020 0.971 0.971 0.971 0.971 0.971 0.250 Na2〇 K20 ZnO 5.567 5.243 5.243 5.510 5.243 5.243 5.243 5.243 5.243 13.109 Ta2〇5 15.979 17.961 17.961 18.878 17.961 17.961 17.961 17.961 17.961 14.099 Si〇2 5.567 5.243 5.243 5.510 5.243 5.243 5.243 5.243 5.243 3.080 Gd2〇3 7.216 6.796 6.796 7.143 6.796 6.796 6.796 6.796 6.796 10.379 Zr〇2 6.186 5.825 5.825 6.122 5.825 5.825 5.825 5.825 5.825 4.300 Nb2〇5 2.062 1.942 4.854 1.942 1.942 1.942 1.942 1.942 MgO CaO SrO BaO Ti02 Bi203 2.913 Te02 P2〇5 Ge〇2 2.913 AI2O3 Y2O3 2.913 Yb203 2.913 LU2O3 Sb2〇3 0.103 0.097 0.097 0.102 0.097 0.097 0.097 0.097 0.097 0.100 F 合計 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Rn2〇 1.03 0.97 0.97 1.02 0.97 0.97 0.97 0.97 0.97 0.25 RO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Rn20/W03 0.667 0.222 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.045 Li2〇/Rn2〇 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (8xLi20+Zn0) 13.815 13.011 13.011 13.670 13.011 13.011 13.011 13.011 13.011 15.109 Ta2〇s/W〇3 10.336 4.111 12.336 12.331 12.336 12.336 12.336 12.336 12.336 2.527 n<i 1.847 1.858 1.865 1.844 1.862 1.848 1.835 1.856 1.855 1.855 Vd 41.0 39.4 38.7 41.7 38.9 40.4 41.2 40.5 40.4 40.2 Tg(°C) λ8〇(ηηι) 411 417 412 393 438 406 402 408 407 417 λ7〇(ηιη) 370 381 375 365 391 369 368 370 369 381 λ5(ηιη) 331 348 334 329 354 331 330 330 330 342 35 201107265 【表6】 實施例 51 52 53 54 55 56 57 58 59 60 B2〇3 16.185 16.116 17.343 15.728 16.254 15.520 16.02 15.682 16.596 15.533 La2〇3 35.276 33.401 35.945 33.318 35.301 33.999 33.20 32.978 33.642 34.029 W〇3 6.664 5.501 5.920 6.076 7.111 5.501 5.47 8.056 5.499 5.505 U20 1.002 0.254 1.094 0.245 1.016 0.254 0.15 0.247 0.254 0.254 Na2〇 K20 ZnO 5.412 13.330 5.909 13.131 5.486 13.330 13.96 13.007 12.327 13.341 Ta2〇5 15.133 14.072 15.144 13.816 14.222 14.072 13.99 9.951 14.069 13.081 Si02 3.387 3.244 3.491 3.087 3.302 3.243 3.22 3.121 2.539 3.246 Gd2〇3 11.825 9.985 10.745 10.289 11.936 9.984 9.92 12.987 10.977 10.909 Zr02 5.011 3.996 4.300 4.213 5.267 3.996 3.97 3.875 3.995 3.999 Nb2〇5 MgO CaO SrO BaO Ti02 Bi203 Te02 P2〇5 Ge〇2 AI2O3 y2〇3 Yb203 Lu2〇3 Sb2〇3 0.105 0.102 0.109 0.098 0.105 0.102 0.10 0.096 0.102 0.102 F 合計 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Rn2〇 1.00 0.25 1.09 0.24 1.02 0.25 0.15 0.25 0.25 0.25 RO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Rn2〇AV〇3 0.150 0.046 0.185 0.040 0.143 0.046 0.027 0.031 0.046 0.046 Li2〇/Rn2〇 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (8xLi20+Zn0) 13.428 15.362 14.661 15.091 13.614 15.362 15.160 14.983 14.359 15.373 Ta205AV03 2.271 2.558 2.558 2.274 2.000 2.558 2.558 1.235 2.558 2.376 nd 1.855 1.850 1.843 1.855 1.855 1.855 1.850 1.853 1.853 1.854 Vd 40.3 40.5 4U 40.1 40.3 40,2 40.4 40.2 40.4 40.4 Tg (°C) 609 611 λ8〇(ηιη) 420 418 412 420 415 416 418 416 418 λ7〇(ηχη) 383 382 379 382 381 380 384 380 380 λ5(ηιη) 343 342 340 343 342 342 345 342 342 36 201107265 【表7】 1 f施例 61 62 63 64 65 66 67 68 69 70 B2〇3 15.83 15.98 16.071 16.13 15.50 15.50 15.83 15.83 15.83 15.83 L&2〇3 33.43 33.63 33.294 32.43 37.60 34.60 32.43 30.43 34.43 36.43 wo3 5.51 6.13 6.071 5.51 1.50 1.50 5.51 5.51 5.51 5.51 Li20 0.17 0.17 0.170 0.17 0.17 0.17 0.17 0.17 0.17 0.17 Na20 K20 ZnO 13.34 13.26 13.122 13.34 14.00 14.00 13.34 13.34 13.34 13.34 Ta2〇5 14.08 13.95 12.808 15.08 18.50 18.50 14.08 14.08 14.08 14.08 Si〇2 3.25 3.15 3.118 3.25 5.40 5.40 3.25 3.25 3.25 3.25 Gd2〇3 10.29 10.39 11.037 9.99 7.00 10.00 11.29 13.29 9.29 7.29 Zr〇2 4.00 3.24 4.210 4.00 4.00 4.30 4.00 4.00 4.00 4.00 Nt>2〇5 2.00 2.00 MgO CaO SrO BaO Ti02 Bl2〇3 Te02 P2O5 Ge〇2 ai2〇3 Y2〇3 Yb2〇3 LU2O3 Sb2〇3 0.10 0.10 0.098 0.10 0.10 0.10 0.10 0.10 0.10 0.10 F 合計 100.0 100.0 100.0 100.0 105.8 106.1 100.0 100.0 100.0 100.0 Rn2〇 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 RO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Rn2〇/W〇3 0.031 0.028 0.028 0.031 0.113 0.113 0.031 0.031 0.031 0.031 Li2〇/Rn2〇 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (8xLi20+Zn0) 14.700 14.620 14.482 14.700 15.360 15.360 14.700 14.700 14.700 14.700 Ta205/W03 2.555 2.276 2.110 2.737 12.333 12.333 2.555 2.555 2.555 2.555 nd 1.853 1.851 1.851 1.851 1.853 1.853 1.852 1.851 1.851 1.854 Vd 40.4 40.3 40.3 40.3 40.1 40.1 40.3 40.3 40.3 40.3 Tg (°C) 612 λ8〇(ηιη) 417 417 415 413 413 412 415 412 λ7〇(ηπι) 381 382 381 381 381 382 382 380 λ$(ηχη) 343 343 343 343 343 343 343 342 37 201107265 【表8】 1 f施例 71 72 73 74 75 76 77 78 79 80 02〇3 15.73 15.83 15.83 14.8+3 15.63 15.78 15.83 15.71 15.68 15.66 La2〇3 32.53 32.31 32.43 32.43 32.43 32.43 32.14 32.78 32.73 32.89 W〇3 5.08 4.92 4.51 5.51 5.18 5.51 5.09 5.28 5.51 6.03 Li20 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 Na2〇 K20 ZnO 13.34 13.34 14.34 14.34 13.87 13.96 13.34 13.34 13.34 13.34 Ta205 14.51 14.08 14.08 14.08 14.08 13.71 14.08 14.08 13.93 13.28 Si02 3.25 3.25 3.25 3.25 3.25 3.05 3.25 3.25 3.25 3.25 Gd2〇3 11.29 11.29 11.29 11.29 11.29 11.29 11.29 11.29 11.29 11.29 Zr02 4.00 4.71 4.00 4.00 4.00 4.00 4.71 4.00 4.00 4.00 Nb2〇5 MgO CaO SrO BaO Ti02 Bi2〇3 Te02 P2〇s Ge〇2 AI2O3 y2〇3 Yb203 LU2O3 St>2〇3 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 F 合計 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Rn2〇 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 RO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Rn2〇/W〇3 0.033 0.035 0.038 0.031 0.033 0.031 0.033 0.032 0.031 0.028 Li2〇/Rn2〇 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (8xLi20+Zn0) 14.700 14.700 15.700 15.700 15.230 15.320 14.700 14.700 14.700 14.700 Ta2〇5/W〇3 2.856 2.862 3.122 2.555 2.718 2.488 2.766 2.667 2.528 2.202 η<ι 1.853 1.853 1.851 1.853 1.853 1.853 1.853 1.853 1.853 Vd 40.3 40.4 40.6 40.4 40.4 40.4 40.4 40.3 40.2 Tg (°C) λ8〇(ηιη) 415 415 409 400 412 414 411 410 λ7〇(ηιη) 380 380 378 376 379 380 379 379 λ5(ηιη) 342 342 340 342 342 342 342 342 38 201107265 【表9】 1 f施例 81 82 83 84 85 86 87 88 89 90 02〇3 16.12 16.36 16.36 16.36 16.12 16.20 16.31 15.95 16.10 16.36 La2〇3 32.61 32.83 33.13 32.83 32.61 33.01 32.90 33.26 33.11 32.60 W〇3 5.51 5.51 5.51 5.51 5.51 3.51 4.01 3.61 4.01 5.51 Li20 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 Na2〇 K20 ZnO 13.34 13.34 13.34 13.34 13.34 13.34 13.34 13.34 13.34 13.34 Ta2〇5 13.36 14.08 14.08 14.08 13.36 14.08 12.88 15.98 14.38 14.08 Si〇2 3.25 2.72 2.72 2.72 3.25 3.25 3.25 3.25 3.25 2.72 Gd2〇3 10.29 10.49 10.34 10.49 10.29 10.29 10.29 10.29 10.29 10.49 Zr〇2 4.00 4.35 4.20 4.35 4.00 4.80 5.50 2.80 4.00 4.58 Nb2〇5 1.20 1.20 1.20 1.20 1.20 1.20 MgO CaO SrO BaO Ti02 Bl2〇3 Te02 P2O5 Ge〇2 ai2〇3 Y2O3 Yb203 LU2〇3 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Sb2〇3 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 F 合計 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Rn2〇 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 RO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Rn2〇/W〇3 0.031 0.031 0.031 0.031 0.031 0.048 0.042 0.047 0.042 0.031 Li2〇/Rn2〇 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (8xLi20+Zn0) 14.700 14.700 14.700 14.700 14.700 14.700 14.700 14.700 14.700 14.700 T&2〇5 AV O3 2.425 2.555 2.555 2.555 2.425 4.011 3.212 4.427 3.586 2.555 n<i 1.853 1.854 1.855 1.853 1.853 1.853 1.853 1.853 1.853 1.853 Vd 40.4 40.0 40.4 40.4 39.9 40.3 40.3 40.2 40.2 40.2 Ts (°C) λ80(ηιη) λ7〇(ηιη) λ5(ητη) 39 201107265 【表10】 實施例 比較例 91 92 A B C D E B2O3 16.36 16.36 14.30 18.31 14.17 17.30 15.50 La2〇3 32.65 32.04 30.32 32.80 38.32 36.60 38.60 wo3 5.21 5.14 Li20 0.17 0.17 3.25 3.22 3.22 1.50 1.00 Na2〇 K20 ZnO 13.34 13.34 16.53 16.38 16.38 5.40 5.40 Ta2〇5 14.38 14.08 2.79 3.68 3.68 20.70 19.00 Si02 2.72 2.72 11.61 7.36 11.50 3.40 5.40 Gd2〇3 10.49 11.29 7.00 7.00 Zr02 4.53 4.71 2.60 2.58 2.58 6.00 6.00 Nb2〇5 2.00 2.00 MgO CaO SrO BaO Ti02 Bi203 Te02 P2〇5 Ge〇2 AI2O3 y2〇3 18.57 15.64 10.12 Yb203 LU2O3 0.05 0.05 Sb2〇3 0.10 0.10 0.05 0.05 0.05 0.10 0.10 F 合計 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Rn2〇 0.17 0.17 3.25 3.22 3.22 1.50 1.00 RO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Rn2〇/W O3 0.033 0.033 0.00 0.00 0.00 0.00 0.00 Li2〇/Rn2〇 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (8xLi20+Zn0) 14.700 14.700 42.53 42.14 42.14 17.4 13.4 Ta2〇5/W〇3 2.760 2.739 nd 1.853 1.855 1.770 1.772 1.774 1.855 1.853 Vd 40.4 40.4 47.2 47.3 46.9 40.3 40.9 Tg (°C) λ8〇(ηπι) 410 λ7〇(ηιη) 376 λ5(ηιη) 341 40 201107265 【表11】 1 r施例 93 94 95 96 97 98 99 100 101 102 B2O3 14.053 11.877 12.983 13.234 14.329 13.851 13.327 11.856 11.856 14.746 La2〇3 33.988 28.725 31.402 34.172 34.656 33.501 32.234 28.676 28.676 34.456 W〇3 14.706 12.429 3.920 2.888 2.758 2.770 13.947 11.408 9.408 14.909 Li20 0.362 0.158 0.163 0.172 0.172 0.568 Na20 K20 ZnO 5.418 20.353 15.259 15.950 15.213 18.254 14.051 20.318 20.318 3.912 Ta2〇5 12.963 10.956 19.319 14.918 14.016 13.207 12.294 11.937 13.937 13.142 Si〇2 3.268 2.762 3.019 3.470 3.332 3.221 3.099 2.757 2.757 2.813 Gd2〇3 11.547 9.759 10.669 11.881 11.774 11.382 10.951 9.742 9.742 11.706 Zr02 3.595 3.038 3.321 3.384 3.666 3.543 0.000 3.033 3.033 3.644 Nb205 MgO CaO SrO BaO Ti〇2 Bl2〇3 Te02 P2O5 Ge〇2 ai2〇3 y2〇3 Υΐ>2〇3 Sb2〇3 0.101 0.100 0.108 0.103 0.099 0.107 0.096 0.100 0.100 0.103 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Rri2〇 0.362 0.000 0.000 0.000 0.158 0.163 0.000 0.172 0.172 0.568 RO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Rn2〇/W〇3 0.025 0.000 0.000 0.000 0.057 0.059 0.000 0.015 0.018 0.038 Li2〇/Rn2〇 1.000 \ 1.000 1.000 \ 1.000 1.000 1.000 (8xLi20+Zn0) 8.312 20.353 15.259 15.950 16.476 19.558 14.051 21.692 21.692 8.452 T&2〇5/W O3 0.881 0.881 4.929 5.166 5.083 4.767 0.881 1.046 1.481 0.881 nd 1.878 1.883 1.878 1.867 1.859 1.859 1.870 1.881 1.882 1.877 Vd 37.4 36.5 38.7 40.1 40.8 40.5 37.5 36.7 37.0 37.5 9g,F 0.5769 0.5788 0.5721 0.5687 0.5677 0.5687 0.5781 0.5785 0.5778 0.5771 切片 a=0.0025 0.6704 0.6701 0.6689 0.6690 0.6697 0.6699 0.6719 0.6703 0.6703 0.6708 Tg (°C) 628 599 630 At ΓΟ 678 642 673 λ8〇(ηιη) 449.5 451.5 429 411.5 410.5 405.5 448 453.5 453.5 444 λ7〇(ηιη) 399.5 397.5 382.5 375 371 369.5 394.5 396.5 395 398.5 λ5(ηιη) 353.5 353 342.5 338.5 336 336 352 352 350.5 353.5 41 201107265 【表12】 1 f施例 103 104 105 106 107 108 109 110 111 112 B2O3 15.008 14.376 14.225 14.298 13.998 10.408 8.980 11.859 11.933 12.036 La2〇3 35.089 33.774 33.418 33.591 32.884 28.656 28.713 28.683 28.845 29.095 W〇3 15.183 14.614 14.459 14.534 14.229 12.399 12.424 10.825 12.481 12.589 Li20 0.797 0.375 0.371 0.373 0.365 0.170 0.170 0.171 0.171 0.172 Na20 0.370 1.100 K20 ZnO 1.929 5.635 5.829 5.604 5.735 20.572 20.613 20.326 20.708 20.887 Ta205 13.383 12.882 12.746 12.812 12.542 10.930 10.951 10.940 11.002 11.097 Si02 2.874 2.829 2.866 2.813 2.820 3.998 5.257 2.758 2.768 2.792 Gd203 11.921 11.474 11.353 11.412 11.172 9.736 9.755 9.745 9.800 9.885 Zr02 3.711 3.572 3.535 3.553 3.478 3.031 3.037 3.034 2.192 1.345 Nb2〇5 MgO CaO SrO BaO 0.910 2.679 Ti〇2 Bl2〇3 Te02 P2〇s Ge〇2 AI2O3 y2〇3 1.558 Yb203 Sb2〇3 0.104 0.100 0.099 0.100 0.097 0.100 0.100 0.100 0.101 0.101 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Rii2〇 0.797 0.745 1.471 0.373 0.365 0.170 0.170 0.171 0.171 0.172 RO 0.000 0.000 0.000 0.910 2.679 0.000 0.000 0.000 0.000 0.000 Rll2〇/W 〇3 0.052 0.051 0.102 0.026 0.026 0.014 0.014 0.016 0.014 0.014 Li2〇/Rn2〇 1.000 0.503 0.252 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (8xLi20+Zn0) 8.303 8.631 8.793 8.585 8.653 21.928 21.972 21.695 22.073 22.264 Ta205/W03 0.881 0.881 0.881 0.881 0.881 0.881 0.881 1.011 0.881 0.881 n<i 1.874 1.875 1.866 1.878 1.875 1.885 1.888 1.881 1.879 1.876 Vd 37.7 37.5 37.6 37.5 37.6 36.3 36.1 37.0 36.7 36.8 9g,F 0.5774 0.5771 0.5769 0.5767 0.5767 0.5800 0.5812 0.5778 0.5792 0.5793 切片 a=0.002 5 0.6717 0.6709 0.6709 0.6704 0.6707 0.6707 0.6715 0.6703 0.6710 0.6713 Tg (°C) 626 614 602 623 620 At (°C) 673 664 656 673 670 λ8〇(ηιη) 440 452 440 453.5 449 455.5 459 452 442 439.5 λ7〇(ηιη) 399 398 395.5 399.5 397 397.5 398.5 394.5 393.5 393.5 λ5(ηιη) 354 353 351 353.5 352 353 353.5 351 351.5 351 42 201107265 【表13】 1 t1施例 113 114 115 116 117 118 119 120 B2〇3 12.200 13.753 13.753 11.868 12.865 14.753 16.753 13.900 La2〇3 29.492 34.288 33.988 29.121 29.121 34.288 34.288 32.629 W〇3 12.761 14.706 14.706 12.466 12.466 14.706 14.706 15.535 Li20 0.174 0.362 0.362 0.170 Ο.ΠΟ 0.362 0.362 1.446 Na2〇 K20 ZnO 21.172 5.418 5.418 20.545 20.545 5.418 5.418 5.359 Ta205 11.248 12.963 12.963 10.871 10.871 12.963 12.963 12.822 Si02 2.830 3.268 3.268 2.992 1.995 2.268 0.268 3.232 Gd2〇3 10.020 11.547 11.847 8.577 8.577 11.547 11.547 11.421 Zr02 3.595 3.595 3.291 3.291 3.595 3.595 3.556 Nb205 MgO CaO SrO BaO Ti〇2 Bl2〇3 Te02 P2〇5 Ge〇2 Al2〇3 Y203 Yb2〇3 Sb2〇3 0.103 0.101 0.101 0.100 0.100 0.101 0.101 0.100 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Rn2〇 0.174 0.362 0.362 0.170 0.170 0.362 0.362 1.446 RO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Rn2〇/W O3 0.014 0.025 0.025 0.014 0.014 0.025 0.025 0.093 Li2〇/Rn2〇 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (8xLi20+Zn0) 22.568 8.312 8.312 21.901 21.901 8.312 8.312 16.927 Ta2〇5/W〇3 0.881 0.881 0.881 0.872 0.872 0.881 0.881 0.825 nd 1.871 1.881 1.881 1.879 1.878 1.881 1.880 Vd 37.0 37.3 37.3 36.6 36.8 37.4 37.5 丨g,F 0.5796 0.5774 0.5772 0.5784 0.5785 0.5777 0.5771 切片 a=0.002 5 0.6721 0.6706 0.6704 0.6699 0.6705 0.6712 0.6708 Tg (°C) At (°C) λ8〇(ηιη) 436.5 453 460.5 453 457 454 453.5 λ7〇(ηιη) 392.5 400.5 402 396 396 403.5 403 λ5(ητη) 351 354.5 355 352 352 356 356 43 201107265 【表14】Q 201107265 Determined by measurement with a horizontal expansion tester. Here, the sample used for the measurement was φ4.8 mm and the length was 50 to 55 mm, and the temperature increase rate was 4 °C /min. Further, the transmittances of the optical glasses of the examples (No. 1 to No. 120) and the comparative examples (No. A to E) were measured in accordance with the specifications of the Japan Optical Glass Industry Association, j〇gis 〇 2 . Further, in the present invention, when the transmittance of the glass is measured, the presence or absence of the color of the glass is determined. Specifically, the opposite parallel polishing product having a thickness of 1 〇 ± 〇 1 mm is measured according to JIS Z8722, and the spectral transmittance of 200 to 800 nm is measured to obtain Μ (wavelength at a transmittance of 5%) and "transmittance of 7 〇. Time = wavelength) and λ8 〇 (wavelength at 80% transmittance) 30 201107265 [Table 1] J. 1 Example 1 2 3 4 5 6 7 8 9 10 B2O3 16.02 16.080 15.790 16.080 15.790 15.520 13.300 11.300 15.200 14.900 La2〇3 33.20 37.290 37.440 36.780 37.190 37.640 37.800 37.800 36.860 36.150 W〇3 5.47 1.510 1.500 2.010 1.750 1.500 1.500 1.500 1.470 1.440 Li20 0.15 0.500 0.750 0.500 0.750 0.900 1.000 1.000 0.980 0.960 Na20 K20 ZnO 13.96 5.430 5.410 5.430 5.410 5.410 5.400 5.400 5.290 5.190 Ta205 13.99 18.590 18.550 18.590 18.550 18.520 18.500 18.500 18.140 17.790 Si02 3.22 5.430 5.410 5.430 5.410 5.410 7.400 9.400 5.290 5.190 Gd2〇3 9.92 7.040 7.020 7.040 7.020 7.010 7.000 7.000 6.860 6.730 Zr02 3.97 6.030 6.020 6.030 6.020 6.010 6.000 6.000 5.880 5.770 Nb205 2.010 2.010 2.010 2.010 2.000 2.000 2.00 0 1.960 1.920 MgO CaO SrO BaO Ti02 Bl2〇3 Te02 P2〇5 Ge〇2 AI2O3 1.960 3.850 y2〇3 Yb2〇3 Lll2〇3 Sb2〇3 0.10 0.100 0.100 0.101 0.100 0.100 0.100 0.100 0.100 0.100 F Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Rn2〇0.15 0.50 0.75 0.50 0.75 0.90 1.00 1.00 0.98 0.96 RO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Rll2〇/W 〇3 0.027 0.331 0.500 0.249 0.429 0.600 0.667 0.667 0.667 0.667 Li2〇/Rn2〇1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (8xLi20 ten ZnO) 15.160 9.430 11.410 9.430 11.410 12.610 13.400 13.400 13.130 12.870 Ta2〇5/W O3 2.558 12.311 12.367 9.249 10.600 12.347 12.333 12.333 12.340 12.354 nd 1.852 1.852 1.852 1.853 1.853 1.854 1.853 1.843 1.834 Vd 40.3 40.4 40.1 40.2 40.3 40.2 40.1 40.7 41.0 Tg (°C) 636 626 622 λ8〇(ηιη) 420 420 418 415 407 411 412 410 λ7〇(ηιη) 375 377 376 373 364 372 374 370 λ5(ηιη) 334 336 334 332 315 332 332 332 31 201107265 [Table 2] 1 f Example 11 12 13 14 15 16 17 18 19 20 B2O3 15.200 14.900 15.820 16.150 15.820 16.150 15.500 15.500 15.500 15.500 La2〇3 36.860 36.150 38.370 39.170 38.370 39.170 35.600 33.600 39.600 41.600 W〇3 1.470 1.440 1.530 1.560 1.530 1.560 1.500 1.500 1.500 1.500 Li20 0.980 0.960 1.020 1.040 1.020 1.040 1.000 1.000 1.000 1.000 Na2〇K20 ZnO 5.290 5.190 5.510 5.630 3.470 1.460 5.400 5.400 5.400 5.400 Ta205 18.140 17.790 18.800 19.270 18.800 19.270 18.500 18.500 18.500 18.500 Si02 5.290 5.190 5.510 5.630 5.510 5.630 5.400 5.400 5.400 5.400 Gd2〇3 6.860 6.730 7.140 7.290 7.140 7.290 7.000 7.000 5.000 3.000 Zr02 5.880 5.770 4.080 2.080 6.120 6.250 6.000 6.000 6.000 6.000 Nb2〇5 1.960 1.920 2.040 2.080 2.040 2.080 2.000 2.000 2.000 2.000 MgO CaO SrO BaO Ti02 1.960 3.850 Bl2 3 Te02 P2O5 Ge〇2 AI2O3 y2〇3 2.000 4.000 Yb203 LU2O3 Sb2〇3 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 F Total 100.0 100.0 99.9 100.0 99.9 100.0 100.0 100.0 100.0 100.0 Rri2〇0.98 0.96 1.02 1.04 1.02 1.04 1.00 1.00 1.00 1.00 RO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Rn2〇AV〇3 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 Li2〇/Rn2〇1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (8xLi2〇+ZnO) 13.130 12.870 13.670 13.950 11.630 9.780 13.400 13.400 13.400 13.400 Ta205/W03 12.340 12.354 12.288 12.353 12.288 12.353 12.333 12.333 12.333 12.333 nd 1.868 1.881 1.847 1.841 1.852 1.851 1.852 1.851 1.854 1.854 Vd 38.1 36.2 40.7 41.0 40.5 40.5 40.4 40.5 40.3 40.4 Tg (°C) 629 639 Λ8〇(ηιη) 446 468 412 407 415 409 416 416 λ7〇(ηιη) 391 402 372 373 373 371 373 373 λ5(ηιη) 345 353 332 332 332 332 332 332 32 201107265 [Table 3] 1 fExample 21 22 23 24 25 26 27 28 29 30 B203 15.500 15.050 15.460 15.440 15.360 15.440 15.050 15.050 15.050 15.050 La2〇3 37.600 36.500. 35.850 39.590 37.260 38.140 36.500 36.500 36.500 36.500 w〇3 3.000 1.460 1.450 1.550 1.490 1.510 1.460 1.460 1.460 1.460 Li20 1.000 0.970 0.480 1.550 0.890 1.110 0.970 0.970 0.970 0.970 Na20 2.910 K20 2.910 ZnO 5.400 5.240 9.080 1.450 6.340 4.440 5.240 5.240 5.240 5.240 Ta205 17.000 17.960 17.870 19.170 18.330 18.670 17.960 17.960 17.960 17.960 Si02 5.400 5.240 5.220 5.600 5.350 5.450 5.240 5.240 5.240 5.240 Gd203 7.000 6.800 6.760 7.250 6.940 7.060 6.800 6.800 6.800 6.800 Zr02 6.000 5.880 5.800 6.220 5.950 6.050 5.880 5.880 5.880 5.880 Nb205 2.000 1.940 1.930 2.070 1.980 2.020 1.940 1.940 1.940 1.940 MgO 2.910 2.910 CaO SrO BaO 2.910 Ti02 B12O3 Te02 P2O5 Ge〇2 AI2O3 Y2O3 Yb2〇3 LU2O3 Sb203 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 F Total 100.0 100.1 100.0 100.0 100.0 100.0 100.1 100.1 100.1 100.1 Rn2〇1.00 0.97 0.48 1.55 0.89 1.11 3.88 0.97 3.88 0.97 RO 0.00 2.91 0.00 0.00 0.00 0.00 0.00 2.91 0.00 2.91 Rll2〇/W〇3 0.333 0.664 0.331 1.000 0.597 0.735 2.658 0.664 2.658 0.664 Li2〇/Rn2〇1.000 1,000 1.000 1.000 1.000 1.000 0.250 1.000 0.250 1.000 (8xLi20+Zn0) 13.400 13.000 12.920 13.850 13.460 13.320 13.000 13.000 13.000 13.000 Ta2〇s/ 。 。 。 。 。 。 。 412 412 413 412 415 411 399 409 λ7〇(ηπι) 378 370 373 372 372 372 375 374 367 373 λ5(ηιη) 337 330 333 331 332 331 341 341 331 331 33 201107265 [Table 4] 1 f Example 31 32 33 34 35 36 37 38 39 40 B2 3 15.050 15.050 16.157 17.500 15.979 15.049 15.979 15.049 15.979 15.049 La2〇3 36.500 36.505 35.840 37.600 38.763 36.505 38.763 39.417 35.670 36.505 W〇3 1.460 1.456 1.469 1.500 1.546 1.456 1.546 1.456 1.546 1.456 Li20 0.970 0.970 0.118 1.000 1.031 0.971 1.031 0.971 1.031 0.971 Na20 K20 ZnO 5.240 8.155 8.226 5.400 5.567 5.243 5.567 5.243 5.567 5.243 Ta2〇5 17.960 17.961 18.116 18.500 19.072 17.961 19.072 17.961 19.072 20.874 Si〇2 5.240 5.240 5.288 3.400 2.474 5.243 5.567 5.243 5.567 5.243 Gd2〇3 6.800 6.796 6.855 7.000 7.216 9.709 4.124 6.796 7.216 6.796 Zr〇2 5.880 5.825 5.875 6.000 6.186 5.825 6.186 5.825 6.186 5.825 Nb205 1.940 1.942 1.958 2.000 2.062 1.942 2.062 1.942 2.062 1.942 MgO CaO SrO 2.910 BaO Ti02 Bl2〇3 Te02 P2〇5 Ge02 Al2〇3 Y2O3 Yb2〇3 Lll2〇3 Sb2〇 3 0.100 0.100 0.098 0.100 0.100 0.097 0.103 0.097 0.103 0.097 F Total 100.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Rn2〇0.97 0.97 0.12 1.00 1.03 0.97 1.03 0.97 1.03 0.97 RO 2.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Rn2〇/W O3 0.664 0.666 0.080 0.667 0.667 0.667 0.667 0.667 0.667 0.667 Li2〇/Rn2〇1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (8xLi20+Zn0) 13.000 15.915 9.170 13.400 13.815 13.011 13.815 13.011 13.815 13.011 Ta2〇5/W〇3 12.301 12.336 12.332 12.333 12.336 12.336 12.336 12.336 12.336 14.337 nd 1.849 1.853 1.851 1.853 1.872 1.856 1.849 1.857 1.848 1.859 Vd 40.5 40.3 40.3 40.5 39.6 40.4 40.3 40.4 40.3 39.8 Tg (°C) λ8〇(ηιη) 404 408 411 412 420 419 427 415 413 419 λ7〇(ηιη) 370 372 374 373 376 372 373 371 371 372 λ5(ηηι) 330 331 334 332 334 332 332 331 332 332 34 201107265 [Table 5] 1 f Example 41 42 43 44 45 46 47 48 49 50 02〇3 15.979 15.049 15.049 15.816 15.049 15.049 17.961 15.049 15.049 15.728 L&2〇3 38.763 36.505 36.505 38.367 36.505 36.505 36.505 36.505 36.505 33.377 wo3 1.546 4.369 1.456 1.531 1.456 1.456 1.456 1.456 1.456 5.579 Li20 1.031 0.971 0.971 1.020 0.971 0.971 0.971 0.971 0.971 0.250 Na2〇K20 ZnO 5.567 5.243 5.243 5.510 5.243 5.243 5.243 5.243 5.243 13.109 Ta2〇5 15.979 17.961 17.961 18.878 17.961 17.961 17.961 17.961 17.961 14.099 Si〇2 5.567 5.243 5.243 5.510 5.243 5.243 5.243 5.243 5.243 3.080 Gd2〇3 7.216 6.796 6.796 7.143 6.796 6.796 6.796 6.796 6.796 10.379 Zr〇2 6.186 5.825 5.825 6.122 5.825 5.825 5.825 5.825 5.825 4.300 Nb2〇5 2.062 1.942 4.854 1.942 1.942 1.942 1.942 1.942 MgO CaO SrO BaO Ti02 Bi203 2.913 Te02 P2〇5 Ge〇2 2.913 AI2O3 Y2O3 2.913 Yb203 2.913 LU2O3 Sb2〇3 0.103 0.097 0.097 0.102 0.097 0.097 0.097 0.097 0.097 0.100 F Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Rn2〇1.03 0.97 0.97 1.02 0.97 0.97 0.97 0.97 0.97 0.25 RO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Rn20/W03 0.667 0.222 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.045 Li2〇/Rn2〇1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (8xLi20+Zn0) 13.815 13.011 13.011 13.670 13.011 13.011 13.011 13.011 13.011 15.109 Ta2〇s/W〇3 10.336 4.111 12.336 12.331 12.336 12.336 12.336 12.336 12.336 2.527 n<i 1.847 1.858 1.865 1.844 1.862 1.848 1.835 1.856 1.855 1.855 Vd 41.0 39.4 38.7 41.7 38.9 40.4 41.2 40.5 40.4 40.2 Tg(°C) λ8〇(ηηι) 411 417 412 393 438 406 402 408 407 417 λ7〇(ηιη) 370 381 375 365 391 369 368 370 369 381 λ5(ηιη) 331 348 334 329 354 331 330 330 330 342 35 201107265 [Table 6] Example 51 52 53 54 55 56 57 58 59 60 B2〇3 16.185 16.116 17.343 15.728 16.254 15.520 16.02 15.682 16.596 15.533 La2〇3 35.276 33.401 35.945 33.318 35.301 33.999 33.20 32.978 33.642 34.029 W〇3 6.664 5.501 5.920 6.076 7.111 5.501 5.47 8.47 8.056 5.056 5.505 U20 1.002 0.254 1.094 0.245 1.016 0.254 0.15 0.247 0.254 0.254 Na2〇K20 ZnO 5.412 13.330 5.909 13.131 5.486 13.330 13.96 13.007 12.327 13.341 Ta2〇5 15.133 14.072 15.144 13.816 14.222 14.072 13.99 9.951 14.069 13.081 Si02 3.387 3.244 3.491 3.087 3.302 3.243 3.22 3.121 2.539 3.246 Gd2〇3 11.825 9.985 10.745 10.289 11.936 9.984 9.92 12.987 10.977 10.909 Zr02 5.011 3.996 4.300 4.213 5.267 3.996 3.97 3.875 3.995 3.999 Nb2〇5 MgO CaO SrO BaO Ti02 Bi203 Te02 P2〇5 Ge〇2 AI2O3 y2〇3 Yb203 Lu2〇3 Sb2〇3 0.105 0.102 0.109 0.098 0.105 0.102 0.10 0.096 0.102 0.102 F Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Rn2〇1.00 0.25 1.09 0.24 1.02 0.25 0.15 0.25 0.25 0.25 RO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Rn2〇AV〇3 0.150 0.046 0.185 0.040 0.143 0.046 0.027 0.031 0.046 0.046 Li2〇/Rn2〇1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (8xLi20+Zn0) 13.428 15.362 14.661 15.091 13.614 15.362 15.160 14.983 14.359 15.373 Ta205AV03 2.271 2.558 2.558 2.274 2.000 2.558 2.558 1.235 2.558 2.376 Nd 1.855 1.850 1.843 1.855 1.855 1.855 1.850 1.853 1.853 1.854 Vd 40.3 40.5 4U 40.1 40.3 40,2 40.4 40.2 40.4 40.4 Tg (°C) 609 611 λ8〇(ηιη) 420 418 412 420 415 416 418 416 418 λ7〇(ηχη) 383 382 379 382 381 380 384 380 380 λ5(ηιη) 343 342 340 343 342 342 345 342 342 36 201107265 [Table 7] 1 f Example 61 62 63 64 65 66 67 68 69 70 B2〇3 15.83 15.98 16.071 16.13 15.50 15.50 15.83 15.83 15.83 15.83 L&2〇3 33.43 33.63 33.294 32.43 37.60 34.60 32.43 30.43 34.43 36.43 wo3 5.51 6.13 6.071 5.51 1.50 1.50 5.51 5.51 5.51 5.51 Li20 0.17 0.17 0.170 0.17 0.17 0.17 0.17 0.17 0.17 0.17 Na20 K20 ZnO 13.34 13.26 13.122 13.34 14.00 14.00 13.34 13.34 13.34 13.34 Ta2〇5 14.08 13.95 12.808 15.08 18.50 18.50 14.08 14.08 14.08 14.08 Si〇2 3.25 3.15 3.118 3.25 5.40 5.40 3.25 3.25 3.25 3.25 Gd2〇3 10.29 10.39 11.037 9.99 7.00 10.00 11.29 13.29 9.29 7.29 Zr〇2 4.00 3.24 4.210 4.00 4.00 4.30 4.00 4.00 4.00 4.00 Nt>2〇5 2.00 2.00 MgO CaO SrO BaO Ti02 Bl2〇3 Te02 P2O5 Ge〇2 ai2〇3 Y2〇3 Yb2〇3 LU2O3 Sb2〇3 0.10 0.10 0.098 0.10 0.10 0.10 0.10 0.10 0.10 0.10 F Total 100.0 100.0 100.0 100.0 105.8 106.1 100.0 100.0 100.0 100.0 Rn2〇0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 RO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 〇 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (8xLi20+Zn0) 14.700 14.620 14.482 14.700 15.360 15.360 14.700 14.700 14.700 14.700 Ta205/W03 2.555 2.276 2.110 2.737 12.333 12.333 2.555 2.555 2.555 2.555 nd 1.853 1.851 1.851 1.851 1.853 1.853 1.852 1.851 1.851 1.854 Vd 40.4 40.3 40.3 40.3 40.1 40.1 40.3 40.3 40.3 40.3 Tg (°C) 612 λ8〇(ηιη) 417 417 415 413 413 412 415 412 λ7〇(ηπι) 381 382 381 381 381 382 382 380 λ$(ηχη) 343 343 343 343 343 343 343 342 37 201107265 [Table 8] 1 f Example 71 72 73 74 75 76 77 78 79 80 02〇3 15.73 15.83 15.83 14.8+3 15.63 15.78 15.83 15.71 15.68 15.66 La2〇3 32.53 32.31 32.43 32.43 32.43 32.43 32.14 32.78 32.73 32.89 W〇3 5.08 4.92 4.51 5.51 5.18 5.51 5.09 5.28 5.51 6.03 Li20 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 Na2 〇K20 ZnO 13.34 13.34 14.34 14.34 13.87 13.96 13.34 13.34 13.34 13.34 Ta205 14.51 14.08 14.08 14.08 14.08 13.71 14.08 14.08 13.93 13.28 Si02 3.25 3.25 3.25 3.25 3.25 3.05 3.25 3.25 3.25 3.25 Gd2〇3 11.29 11.29 11.29 11.29 11.29 11.29 11.29 11.29 11.29 11.29 Zr02 4.00 4.71 4.00 4.00 4.00 4.00 4.71 4. 00 4.00 4.00 Nb2〇5 MgO CaO SrO BaO Ti02 Bi2〇3 Te02 P2〇s Ge〇2 AI2O3 y2〇3 Yb203 LU2O3 St>2〇3 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 F Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Rn2〇0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 RO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Rn2〇/W〇3 0.033 0.035 0.038 0.031 0.033 0.031 0.033 0.032 0.031 0.028 Li2〇/Rn2〇1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (8xLi20+Zn0) 14.700 14.700 15.700 15.700 15.230 15.320 14.700 14.700 14.700 14.700 Ta2〇5/W〇3 2.856 2.862 3.122 2.555 2.718 2.488 2.766 2.667 2.528 2.202 η<ι 1.853 1.853 1.851 1.853 1.853 1.853 1.853 1.853 1.853 Vd 40.3 40.4 40.6 40.4 40.4 40.4 40.4 40.3 40.2 Tg (°C) λ8〇(ηιη) 415 415 409 400 412 414 411 410 λ 7〇(ηιη) 380 380 378 376 379 380 379 379 λ5(ηιη) 342 342 340 342 342 342 342 342 38 201107265 [Table 9] 1 f Example 81 82 83 84 85 86 87 88 89 90 02〇3 16.12 16.36 16.36 16.36 16.12 16.20 16.31 15.95 16.10 16.36 La2〇3 32.61 32.83 33.13 32.83 32.61 33.01 32.90 33.26 33.11 32.60 W〇3 5.51 5.51 5.51 5.51 5.51 3.51 4.01 3.61 4.01 5.51 Li20 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 Na2〇K20 ZnO 13.34 13.34 13.34 13.34 13.34 13.34 13.34 13.34 13.34 13.34 Ta2〇5 13.36 14.08 14.08 14.08 13.36 14.08 12.88 15.98 14.38 14.08 Si〇2 3.25 2.72 2.72 2.72 3.25 3.25 3.25 3.25 3.25 2.72 Gd2〇3 10.29 10.49 10.34 10.49 10.29 10.29 10.29 10.29 10.29 10.49 Zr〇 2 4.00 4.35 4.20 4.35 4.00 4.80 5.50 2.80 4.00 4.58 Nb2〇5 1.20 1.20 1.20 1.20 1.20 1.20 MgO CaO SrO BaO Ti02 Bl2〇3 Te02 P2O5 Ge〇2 ai2〇3 Y2O3 Yb203 LU2〇3 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Sb2〇3 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 F Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Rn2〇0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 RO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Rn2〇/W〇3 0.031 0.031 0.031 0.031 0.031 0.048 0.042 0.047 0.042 0.031 Li2〇/Rn2〇1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (8xLi20+Zn0) 14.700 14.700 14.700 14.700 14.700 14.700 14.700 14.700 14.700 14.700 T&2〇5 AV O3 2.425 2.555 2.555 2.555 2.425 4.011 3.212 4.427 3.586 2.555 n<i 1.853 1.854 1.855 1.853 1.853 1.853 1.853 1.853 1.853 Vd 40.4 40.0 40.4 40.4 39.9 40.3 40.3 40.2 40.2 40.2 Ts ( °C) λ80(ηιη) λ7〇(ηιη) λ5(ητη) 39 201107265 [Table 10] Example Comparative Example 91 92 ABCDE B2O3 16.36 16.36 14.30 18.31 14.17 17.30 15.50 La2〇3 32.65 32.04 30.32 32.80 38.32 36.60 38.60 wo3 5.21 5 . 14 Li20 0.17 0.17 3.25 3.22 3.22 1.50 1.00 Na2〇K20 ZnO 13.34 13.34 16.53 16.38 16.38 5.40 5.40 Ta2〇5 14.38 14.08 2.79 3.68 3.68 20.70 19.00 Si02 2.72 2.72 11.61 7.36 11.50 3.40 5.40 Gd2〇3 10.49 11.29 7.00 7.00 Zr02 4.53 4.71 2.60 2.58 2.58 6.00 6.00 Nb2〇5 2.00 2.00 MgO CaO SrO BaO Ti02 Bi203 Te02 P2〇5 Ge〇2 AI2O3 y2〇3 18.57 15.64 10.12 Yb203 LU2O3 0.05 0.05 Sb2〇3 0.10 0.10 0.05 0.05 0.05 0.10 0.10 F Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Rn2〇0.17 0.17 3.25 3.22 3.22 1.50 1.00 RO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Rn2〇/W O3 0.033 0.033 0.00 0.00 0.00 0.00 0.00 Li2〇/Rn2〇1.000 1.000 1.000 1.000 1.000 1.000 1.000 (8xLi20+Zn0) 14.700 14.700 42.53 42.14 42.14 17.4 13.4 Ta2〇5/W〇3 2.760 2.739 nd 1.853 1.855 1.770 1.772 1.774 1.855 1.853 Vd 40.4 40.4 47.2 47.3 46.9 40.3 40.9 Tg (°C) λ8〇 ( Ηπι) 410 λ7〇(ηιη) 376 λ5(ηιη) 341 40 201107265 [Table 11] 1 r Example 93 94 95 96 97 98 99 100 101 102 B2O3 14.053 11.877 12.983 13.234 14.329 13.851 13.327 11.856 11.856 14.746 La2〇3 33.988 28.725 31.402 34.172 34.656 33.501 32.234 28.676 28.676 34.456 W〇3 14.706 12.429 3.920 2.888 2.758 2.770 13.947 11.408 9.408 14.909 Li20 0.362 0.158 0.163 0.172 0.172 0.568 Na20 K20 ZnO 5.418 20.353 15.259 15.950 15.213 18.254 14.051 20.318 20.318 3.912 Ta2〇5 12.963 10.956 19.319 14.918 14.016 13.207 12.294 11.937 13.937 13.142 Si〇2 3.268 2.762 3.019 3.470 3.332 3.221 3.099 2.757 2.757 2.813 Gd2〇3 11.547 9.759 10.669 11.881 11.774 11.382 10.951 9.742 9.742 11.706 Zr02 3.595 3.038 3.321 3.384 3.666 3.543 0.000 3.033 3.033 3.644 Nb205 MgO CaO SrO BaO Ti〇2 Bl2 〇3 Te02 P2O5 Ge〇2 ai2〇3 y2〇3 Υ ΐ>2〇3 Sb2〇3 0.101 0.100 0.108 0.103 0.099 0.107 0.096 0.100 0.100 0.103 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Rri2〇0.362 0.000 0.000 0.000 0.158 0.163 0.000 0.172 0.172 0.568 RO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Rn2〇/W〇3 0.025 0.000 0.000 0.000 0.057 0.059 0.000 0.015 0.018 0.038 Li2〇/Rn2〇1.000 \ 1.000 1.000 \ 1.000 1.000 1.000 (8xLi20+Zn0) 8.312 20.353 15.259 15.950 16.476 19.558 14.051 21.692 21.692 8.452 T&2〇 5/W O3 0.881 0.881 4.929 5.166 5.083 4.767 0.881 1.046 1.481 0.881 nd 1.878 1.883 1.878 1.867 1.859 1.859 1.870 1.881 1.882 1.877 Vd 37.4 36.5 38.7 40.1 40.8 40.5 37.5 36.7 37.0 37.5 9g, F 0.5769 0.5788 0.5721 0.5687 0.5677 0.5687 0.5781 0.5785 0.5778 0.5771 a=0.0025 0.6704 0.6701 0.6689 0.6690 0.6697 0.6699 0.6719 0.6703 0.6703 0.6708 Tg (°C) 628 599 630 At ΓΟ 678 642 673 λ8〇(ηιη) 449.5 451.5 429 411.5 410.5 405.5 448 453.5 453.5 444 Λ7〇(ηιη) 399.5 397.5 382.5 375 371 369.5 394.5 396.5 395 398.5 λ5(ηιη) 353.5 353 342.5 338.5 336 336 352 352 350.5 353.5 41 201107265 [Table 12] 1 f Example 103 104 105 106 107 108 109 110 111 112 B2O3 15.008 14.376 14.225 14.298 13.998 10.408 8.980 11.859 11.933 12.036 La2〇3 35.089 33.774 33.418 33.591 32.884 28.656 28.713 28.683 28.845 29.095 W〇3 15.183 14.614 14.459 14.534 14.229 12.399 12.424 10.825 12.481 12.589 Li20 0.797 0.375 0.371 0.373 0.365 0.170 0.170 0.171 0.171 0.172 Na20 0.370 1.100 K20 ZnO 1.929 5.635 5.829 5.604 5.735 20.572 20.613 20.326 20.708 20.887 Ta205 13.383 12.882 12.746 12.812 12.542 10.930 10.951 10.940 11.002 11.097 Si02 2.874 2.829 2.866 2.813 2.820 3.998 5.257 2.758 2.768 2.792 Gd203 11.921 11.474 11.353 11.412 11.172 9.736 9.755 9.745 9.800 9.885 Zr02 3.711 3.572 3.535 3.553 3.478 3.031 3.037 3.034 2.192 1.345 Nb2〇5 MgO CaO SrO BaO 0.910 2.679 Ti〇2 Bl2〇3 Te02 P2〇s Ge〇2 AI2O3 y2〇3 1.558 Yb203 Sb2〇3 0.104 0.100 0.099 0.100 0.097 0.100 0.100 0.100 0.101 0.101 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Rii2〇0.797 0.745 1.471 0.373 0.365 0.170 0.170 0.171 0.171 0.172 RO 0.000 0.000 0.000 0.910 2.679 0.000 0.000 0.000 0.000 0.000 Rll2〇/W 〇3 0.052 0.051 0.102 0.026 0.026 0.014 0.014 0.016 0.014 0.014 Li2〇/Rn2〇1.000 0.503 0.252 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (8xLi20+Zn0) 8.303 8.631 8.793 8.585 8.653 21.928 21.972 21.695 22.073 22.264 Ta205/W03 0.881 0.881 0.881 0.881 0.881 0.881 0.881 1.011 0.881 0.881 n<i 1.874 1.875 1.866 1.878 1.875 1.885 1.888 1.881 1.879 1.876 Vd 37.7 37.5 37.6 37.5 37.6 36.3 36.1 37.0 36.7 36.8 9g,F 0.5774 0.5771 0.5769 0.5767 0.5767 0.5800 0.5812 0.5778 0.5792 0.5793 Slice a=0.002 5 0.6717 0.6709 0.6709 0.6704 0.6707 0.6707 0.6715 0.6703 0.6710 0.6713 Tg (°C) 626 614 602 623 620 At (°C) 673 664 656 673 670 λ8〇(ηιη) 440 452 440 453.5 449 455.5 459 452 442 439.5 λ7〇(ηιη) 399 398 395.5 399.5 397 397.5 398.5 394.5 393.5 393.5 Λ5(ηιη) 354 353 351 353.5 352 353 353.5 351 351.5 351 42 201107265 [Table 13] 1 t1 Example 113 114 115 116 117 118 119 120 B2〇3 12.200 13.753 13.753 11.868 12.865 14.753 16.753 13.900 La2〇3 29.492 34.288 33.988 29.121 29.121 34.288 34.288 32.629 W〇3 12.761 14.706 14.706 12.466 12.466 14.706 14.706 15.535 Li20 0.174 0.362 0.362 0.170 Ο.ΠΟ 0.362 0.362 1.446 Na2〇K20 ZnO 21.172 5.418 5.418 20.545 20.545 5.418 5.418 5.359 Ta205 11.248 12.963 12.963 10.871 10.871 12.963 12.963 12.822 Si02 2.830 3.268 3.268 2.992 1.995 2.268 0.268 3.232 Gd2〇3 10.020 11.547 11.847 8.577 8.577 11.547 11.547 11.421 Zr02 3.595 3.595 3.291 3.291 3.595 3.595 3.556 Nb205 MgO CaO SrO BaO Ti〇2 Bl2〇3 Te02 P2〇5 Ge〇2 Al2〇3 Y203 Yb2〇3 Sb2〇3 0.103 0.101 0.101 0.100 0.100 0.101 0.101 0.100 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Rn2〇0.174 0.362 0.362 0.170 0.170 0.362 0.362 1.446 RO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Rn2〇/W O3 0.014 0.025 0.025 0.014 0.014 0.025 0.025 0.093 Li2〇/Rn2〇1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (8xLi20+Zn0) 22.568 8.312 8.312 21.901 21.901 8.312 8.312 16.927 Ta2〇5/W〇3 0.881 0.881 0.881 0.872 0.872 0.881 0.881 0.825 nd 1.871 1.881 1.881 1.879 1.878 1.881 1.880 Vd 37.0 37.3 37.3 36.6 36.8 37.4 37.5 丨g, F 0.5796 0.5774 0.5772 0.5784 0.5785 0.5777 0.5771 Slice a=0.002 5 0.6721 0.6706 0.6704 0.6699 0.6705 0.6712 0.6708 Tg (°C) At (°C) λ8〇(ηιη) 436.5 453 460.5 453 457 454 453.5 λ7〇(ηιη) 392.5 400.5 402 396 396 403.5 403 λ5(ητη) 351 354.5 355 352 352 356 356 43 201107265 [Table 14]
No. 實施例 2 3 6 16 52 54 57 64 67 71 液相溫度(°C) 1080 1080 1080 1080 1030 1040 1030 1010 1020 1030 液相溫度中的 黏度(dPa · s) 1.02 1.00 1.05 1.11 【表15】No. Example 2 3 6 16 52 54 57 64 67 71 Liquid phase temperature (°C) 1080 1080 1080 1080 1030 1040 1030 1010 1020 1030 Viscosity in liquid phase temperature (dPa · s) 1.02 1.00 1.05 1.11 [Table 15]
No. 實施例 77 78 83 84 86 90 91 液相溫度(°C) 1020 1030 1020 1020 1020 1020 1020 液相溫度中的 黏度(dPa · s) 1.12 1.11 【表16】 No. 比較例 A B C D E 液相溫度(°C) 1100 1080 1100 1105 1120 液相溫度中的 黏度(dPa · s) 0.55 0.53 0.54 0.66 0.63 【表17】No. Example 77 78 83 84 86 90 91 Liquid phase temperature (°C) 1020 1030 1020 1020 1020 1020 1020 Viscosity in liquid phase temperature (dPa · s) 1.12 1.11 [Table 16] No. Comparative Example ABCDE Liquidus temperature (°C) 1100 1080 1100 1105 1120 Viscosity in liquid phase temperature (dPa · s) 0.55 0.53 0.54 0.66 0.63 [Table 17]
No. 實施例 93 94 95 96 97 98 99 100 101 102 液相溫度(°C) (Clear) 1000 1060 1160 1160 1160 1160 1000 1120 1160 1020 液相溫度中的 黏度(dPa · s) 1.35 44 201107265 【表18】No. Example 93 94 95 96 97 98 99 100 101 102 Liquid phase temperature (°C) (Clear) 1000 1060 1160 1160 1160 1160 1000 1120 1160 1020 Viscosity in liquidus temperature (dPa · s) 1.35 44 201107265 [Table 18]
No. 實办 _ 103 104 105 106 107 108 109 110 111 112 液相溫度(°C) (Clear) 1020 1040 1060 1020 1060 1060 1080 1040 1020 1020 液相溫度中的 黏度(dPa · s) 【表19】No. _ 103 104 105 106 107 108 109 110 111 112 Liquid phase temperature (°C) (Clear) 1020 1040 1060 1020 1060 1060 1080 1040 1020 1020 Viscosity in liquid phase temperature (dPa · s) [Table 19]
No. 液相溫度(°C) (Clear) 液相溫度中的 黏度(dPa · s) 113 1040 114 1020 115 1020 實施例 ~U6~ 1060 117 1040 118 1020 119 1020 如表14〜表19所表示,本發明之實施例(No.l〜 =〇·12〇1之光學玻璃任—者液相溫度皆為125G°C以下,更 詳為116G°C以下’係於所欲之範11内。因此,可 知本發明實施例之絲玻璃,液相溫度低。 性皆學玻璃任一者液相溫度中的黏 範圍内。因此更“而言,為1.00以上,係於所欲之 中的黏性高/可知本發明實_之光學_,液相溫度 任-二=二表:本發 W砂點Ug)皆為680〇c以下,争 63代以下,係於所欲 :為 之光學_,坡發明實施例 之光學玻璃任—者點(g變低。又,本發明實施例 者變形點Ut)皆為72(rcj^T,更詳細 45 201107265 而言為678°C以下,於所欲之範圍内。 又,本發明實施例之光學玻璃,λ7〇 (透過率70%時之 波長)任一者皆450nm以下,更詳細而言為410nm以下。 又,本發明實施例之光學玻璃,λ5 (透過率5%時之波長) 任一者皆為400nm以下,更詳細而言為356nm以下。又’ 本發明實施例之光學玻璃,λ8〇 (透過率80%時之波長)任 一者皆為500nm以下,更詳細而言為468nm以下。因此可 知,本發明實施例之光學玻璃係難著色。 又,本發明實施例之光學玻璃任一者折射率(nd)皆 為1.75以上,更詳細而言為1.82以上,同時此折射率(nd )為1.95以下,更詳細而言為1.89以下,為所欲之範圍内 〇 又,本發明實施例之光學玻璃任一者阿貝數(vd)皆 為30以上,更詳細而言為36以上,同時此阿貝數(vd) 為50以下,更詳細而言為42以下,為所欲之範圍内。 又,本發明實施例之光學玻璃任一者部分分散比(eg ,F)皆為(_2.50xl0_3xvd+0.6571 )以上,更詳細而言 為(一2.50xl0_3xvd+0.6689)以上。其反面,本發明實施 例之光學玻璃之部分分散比為(一2.5〇xl(T3xvd+ 0.6971 )以下,更詳細而言為(一2.50χ10 3><Vd+0.6721)以下。 因此,可知此等部分分散比(,F)於所欲範圍内。 因此可知,本發明實施例之光學玻璃,折射率(nd) 及阿貝數(vd)於所欲之範圍内,且兼具脈理少與難產生 失透,且可形成徑大的預成型胚材。又,本發明實施例之 46 201107265 光學玻璃,經由加熱軟化容易進行壓製成形,著色少,且 色像差小。 以上,以例示之目的詳細地說明本發明,但本實施例 僅僅作為例示之目的,在未脫離本發明之思想及範圍下, 應理解由熟悉該項技術領域者可完成許多改變。 【圖式簡單說明】 益〇 Ό、 【主要元件符號說明】 無0 47No. Liquidus temperature (°C) (Clear) Viscosity in liquid phase temperature (dPa · s) 113 1040 114 1020 115 1020 Example ~U6~ 1060 117 1040 118 1020 119 1020 As shown in Table 14 to Table 19, In the embodiment of the present invention (the optical glass of No. 1 to = 〇 · 12 〇 1), the liquidus temperature is 125 G ° C or less, and more specifically 116 G ° C or less is within the desired range 11. Therefore, It can be seen that the silk glass of the embodiment of the present invention has a low liquidus temperature. The properties are all in the viscosity range of the liquidus temperature of any of the glass. Therefore, more than 1.00 is the viscosity in the desired manner. High / know the optical _ of the present invention, liquid phase temperature - two = two tables: the original W sand point Ug) are below 680 〇 c, vying for 63 generations or less, is desired: for optical _, The optical glass of the embodiment of the invention has a point (g becomes lower. Further, the deformation point Ut of the embodiment of the present invention) is 72 (rcj^T, more detailed 45 201107265 is 678 ° C or less, whatever is desired Further, in the optical glass of the embodiment of the present invention, λ7 〇 (wavelength at a transmittance of 70%) is 450 nm or less, and more specifically 410 nm or less. In the optical glass of the embodiment of the invention, λ5 (wavelength at a transmittance of 5%) is 400 nm or less, and more specifically 356 nm or less. Further, the optical glass of the embodiment of the present invention, λ8 〇 (transmittance 80%) Any of the wavelengths of the time is 500 nm or less, and more specifically 468 nm or less. Therefore, it is understood that the optical glass of the embodiment of the present invention is difficult to color. Further, the refractive index of any of the optical glasses of the embodiment of the present invention (nd ) is 1.75 or more, and more specifically 1.82 or more, and the refractive index (nd) is 1.95 or less, and more specifically 1.89 or less, which is within the desired range, and the optical glass of the embodiment of the present invention is The Abbe number (vd) is 30 or more, more specifically 36 or more, and the Abbe number (vd) is 50 or less, and more specifically 42 or less, which is within the desired range. The partial dispersion ratio (eg, F) of any of the optical glasses of the embodiment of the present invention is (_2.50×10×3×vd+0.6571) or more, and more specifically (a 2.50×10×3×vd+0.6689) or more. On the reverse side, the embodiment of the present invention The partial dispersion ratio of the optical glass is (a 2.5〇xl (T3x Vd+0.6971) or less, more specifically, (a 2.50 χ 10 3 >< Vd + 0.6721) or less. Therefore, it is understood that these partial dispersion ratios (F) are within a desired range. Therefore, it is understood that the embodiment of the present invention The optical glass has a refractive index (nd) and an Abbe number (vd) within a desired range, and has a small number of veins and is difficult to devitrify, and can form a preformed preform having a large diameter. Further, in the embodiment of the present invention, 46 201107265 optical glass is easily subjected to press molding by heat softening, and the coloring is small, and the chromatic aberration is small. The present invention has been described in detail with reference to the preferred embodiments of the present invention. [Simple description of the diagram] 益〇 Ό, [Main component symbol description] No 0 47
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009156432 | 2009-06-30 | ||
JP2010052153A JP5917791B2 (en) | 2009-06-30 | 2010-03-09 | Optical glass, preform material and optical element |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201107265A true TW201107265A (en) | 2011-03-01 |
TWI532698B TWI532698B (en) | 2016-05-11 |
Family
ID=43635379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099121348A TWI532698B (en) | 2009-06-30 | 2010-06-30 | Optical glass, preformed stock and optical components |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5917791B2 (en) |
TW (1) | TWI532698B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI635065B (en) * | 2014-01-23 | 2018-09-11 | 成都光明光電股份有限公司 | Optical glass and optical components |
CN110028239A (en) * | 2019-05-23 | 2019-07-19 | 成都光明光电股份有限公司 | Optical glass, gas preform, optical element and optical instrument |
CN113024110A (en) * | 2021-03-18 | 2021-06-25 | 成都光明光电股份有限公司 | Glass composition |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI594966B (en) * | 2010-10-08 | 2017-08-11 | Ohara Kk | Optical glass, preform and optical element |
JP5748614B2 (en) * | 2011-03-29 | 2015-07-15 | 株式会社オハラ | Optical glass, preform and optical element |
CN103459339A (en) * | 2011-03-29 | 2013-12-18 | 株式会社小原 | Optical glass, preform, and optical element |
JP5748613B2 (en) * | 2011-03-29 | 2015-07-15 | 株式会社オハラ | Optical glass, preform and optical element |
WO2012133422A1 (en) * | 2011-03-29 | 2012-10-04 | 株式会社オハラ | Optical glass, preform, and optical element |
KR101255020B1 (en) | 2011-06-02 | 2013-04-16 | 주식회사 이글래스 | Optica Glass Composition for Aspheric Lens Applicable by Precision Molding and Manufacturing Method of Optica Glass using It and Product Thereof |
CN102424523B (en) * | 2011-09-08 | 2014-06-04 | 成都光明光电股份有限公司 | Optical glass, prefabricated member for mould pressing and optical element |
JP6095356B2 (en) * | 2011-12-28 | 2017-03-15 | 株式会社オハラ | Optical glass and optical element |
CN103771706A (en) * | 2012-10-19 | 2014-05-07 | 成都光明光电股份有限公司 | Optical glass |
JP6164923B2 (en) * | 2013-05-14 | 2017-07-19 | 株式会社オハラ | Optical glass and optical element |
WO2019017205A1 (en) * | 2017-07-20 | 2019-01-24 | Hoya株式会社 | Optical glass and optical element |
JP6517411B2 (en) * | 2017-07-20 | 2019-05-22 | Hoya株式会社 | Optical glass and optical element |
JP7257345B2 (en) * | 2019-04-04 | 2023-04-13 | 株式会社オハラ | Optical glass manufacturing method |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5490218A (en) * | 1977-12-28 | 1979-07-17 | Minolta Camera Kk | Optical glass |
JPS60221338A (en) * | 1984-04-12 | 1985-11-06 | Ohara Inc | Optical glass |
JP4127949B2 (en) * | 2000-06-27 | 2008-07-30 | Hoya株式会社 | Optical glass and optical product using the same |
JP3912774B2 (en) * | 2002-03-18 | 2007-05-09 | Hoya株式会社 | Optical glass for precision press molding, preform for precision press molding and manufacturing method thereof |
JP5108209B2 (en) * | 2004-06-02 | 2012-12-26 | 株式会社オハラ | Optical glass |
JP2006016295A (en) * | 2004-06-02 | 2006-01-19 | Ohara Inc | Optical glass |
JP4508987B2 (en) * | 2005-08-31 | 2010-07-21 | Hoya株式会社 | Optical glass, precision press-molding preform and manufacturing method thereof, and optical element and manufacturing method thereof |
JP4459178B2 (en) * | 2006-03-02 | 2010-04-28 | Hoya株式会社 | Precision press molding preform manufacturing method and optical element manufacturing method |
JP4459184B2 (en) * | 2006-03-20 | 2010-04-28 | Hoya株式会社 | Aspherical lens and manufacturing method thereof |
JP4785047B2 (en) * | 2006-03-27 | 2011-10-05 | Hoya株式会社 | Lens and manufacturing method thereof |
JP5450937B2 (en) * | 2006-08-01 | 2014-03-26 | キヤノン株式会社 | Optical glass and optical element |
JP2008100872A (en) * | 2006-10-19 | 2008-05-01 | Hoya Corp | Method of manufacturing glass preform and method of manufacturing optical element |
WO2009072335A1 (en) * | 2007-12-06 | 2009-06-11 | Asahi Glass Co., Ltd. | Optical glass and preforms for precision press molding and optical elements made by using the glass |
-
2010
- 2010-03-09 JP JP2010052153A patent/JP5917791B2/en active Active
- 2010-06-30 TW TW099121348A patent/TWI532698B/en active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI635065B (en) * | 2014-01-23 | 2018-09-11 | 成都光明光電股份有限公司 | Optical glass and optical components |
CN110028239A (en) * | 2019-05-23 | 2019-07-19 | 成都光明光电股份有限公司 | Optical glass, gas preform, optical element and optical instrument |
CN113024110A (en) * | 2021-03-18 | 2021-06-25 | 成都光明光电股份有限公司 | Glass composition |
Also Published As
Publication number | Publication date |
---|---|
JP2011026185A (en) | 2011-02-10 |
TWI532698B (en) | 2016-05-11 |
JP5917791B2 (en) | 2016-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201107265A (en) | Optical glass, premolded blank material and optical component | |
JP6033486B2 (en) | Optical glass, preform material and optical element | |
JP4351730B2 (en) | Optical glass | |
TWI359120B (en) | ||
TWI612019B (en) | Optical glass, preforms and optical components | |
JP2006327926A (en) | Optical glass | |
TW201803821A (en) | Optical glass and optical element | |
JP5271483B2 (en) | Optical glass | |
JP5946237B2 (en) | Optical glass, preform material and optical element | |
JP6188553B2 (en) | Optical glass, preform material and optical element | |
JP6363141B2 (en) | Optical glass, preform material and optical element | |
JP6055876B2 (en) | Optical glass, preform and optical element | |
JP5865579B2 (en) | Optical glass, preform material and optical element | |
TWI659004B (en) | Optical glass, preforms and optical components | |
TW201731785A (en) | Optical glass, preform material and optical element | |
JP5770973B2 (en) | Optical glass and optical element | |
JP6049591B2 (en) | Optical glass, preform material and optical element | |
JP4641863B2 (en) | Optical glass and optical product manufacturing method | |
JP2012166962A (en) | Optical glass, preform material, and optical element | |
JP2017057121A (en) | Optical glass, preform and optical element | |
JP6611410B2 (en) | Optical glass, preform material and optical element | |
JP2012082100A (en) | Optical glass, preform material, and optical element |