TW201107191A - Marine engine control system and method - Google Patents

Marine engine control system and method Download PDF

Info

Publication number
TW201107191A
TW201107191A TW099129231A TW99129231A TW201107191A TW 201107191 A TW201107191 A TW 201107191A TW 099129231 A TW099129231 A TW 099129231A TW 99129231 A TW99129231 A TW 99129231A TW 201107191 A TW201107191 A TW 201107191A
Authority
TW
Taiwan
Prior art keywords
control
load resistance
control system
mode
marine engine
Prior art date
Application number
TW099129231A
Other languages
Chinese (zh)
Other versions
TWI444309B (en
Inventor
Kazutaka Shimada
Takeshi Aoki
Hidenori Yamamoto
Akira Mitsufuji
Original Assignee
Mitsui Engineering & Shipbuilding Co Ltd
Mitsui Zosen Systems Res Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering & Shipbuilding Co Ltd, Mitsui Zosen Systems Res Inc filed Critical Mitsui Engineering & Shipbuilding Co Ltd
Publication of TW201107191A publication Critical patent/TW201107191A/en
Application granted granted Critical
Publication of TWI444309B publication Critical patent/TWI444309B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/14Use of propulsion power plant or units on vessels the vessels being motor-driven relating to internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/21Control means for engine or transmission, specially adapted for use on marine vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/0205Circuit arrangements for generating control signals using an auxiliary engine speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Feedback Control In General (AREA)

Abstract

Disclosed is a marine engine control system which is characterized by seeking a load resistance factor from the actual revolving speed of a main engine and a fuel index and switching a control mode on the basis of physical values derived from the load resistance factor as parameters.

Description

201107191 ;r、發明說明: 【發明所屬之技術領域】 本發明係關於一種船舶用引擎控制系統,特別是關 於依據海象進行船舶用引擎之控制的控制系統。 【先前技術】 船舶用引擎之控制係進行PID控制以使所設定之目 標旋轉速度與實際旋轉速度之間無偏差。但是,在暴風 雨時等,因螺旋槳之負載扭矩急遽變化,仍假設是在正 常天候下航行而實施增益(gain)之PID控制,可能因超 速而導致發動機故障等。針對此種問題,曾提出有預測 干擾造成螺旋槳旋轉速度之變動,來變更PID控制之增 益的結構(專利文獻一)。 專利文獻一:日本特開平8-200131號公報 【發明内容】 [發明所欲解決之問題] 為了提高油耗效益需要依海象進行調速控制,但是 專利文獻一由於並未進行海象之判斷,因此無法密切對 應於時時刻刻變化的海象。又,旋轉速度控制並非依據 海象,因此油耗效益之效率不佳。 本發明之目的為無須新設感測器,而是藉由判斷海 象之變化,依海象進行調速控制以謀求提高油耗效益。 [解決問題之手段] 本發明之船舶用引擎控制系統的特徵為:從主發動 201107191 機之旋轉速度與燃料指數求出負載阻力係數 ^力係數導出之物理量作為參數,而進行㈣模式之切 物理量中包含負載阻力係數之變動周期或變動之 目至少其中之:。又,控制模式之切換對應於控制 目仏值之切換,此時之㈣模式中例如包含旋轉速度控 制、輸出控制、燃料指數控制至少其中之一個。 使用更新之負載阻力係數進行從目標旋轉速度向 目標燃料指數之變換m目標旋轉速度向目標輸出 值之變換,並將負載阻力係數在指定時間之平均值用於 該變換。 、 又,控制模式之切換例如對應於控制參數之切換。 控制參數之切換例如對應於PI運算之靈敏度,靈敏度之 切換在比例項之靈敏度相對大且積分相對短之模式7與 比例項之靈敏度相對小且積分相對長之模式間進行。〃 本發明之船舶的特徵為.具備前述任何一個船舶用 引擎控制系統。 本發明之船舶用引擎控制方法的特徵為:從主發動 機之旋轉速度與燃料指數求出負載阻力係數,將從^載 阻力係數導出之物理量作為參數,而進行控制模式之切 換0 [發明之效果] 依據本發明,無須新設感測器,可藉由判斷海象之 變化,依海象進行s周速控制以提南油耗效益。 201107191 【實施方式】 以下,就本發明之實施形態,參照圖式作說明。 第一圖係顯示本發明第一種實施形態之船舶用引 擎控制系統的結構之控制區塊圖。 一第一種實施形態之船舶用引擎控制系統1〇例如具 備三個控制模式,各控制模式可依海象之狀態等擇一& 擇。第一控制模式係將主發動機13之實際旋轉速度(轉 速)維持在目標旋轉速度(轉速)N〇的旋轉速度控 制。第二控制模式係將主發動機13之輸出pe維持在目 標值Po的輸出控制。又,第三控制模式係將燃料喷射 量’亦即將作為其指標之燃料指數Fle維持在目標值fi〇 的燃料指數控制。 船舶用引擎控制系統10供操縱者在任何控制模式 中均可賦予旋轉速度(No )作為控制指令。亦即本實施 形態之調速控制時’操縱者僅須認為旋轉速度是控制對 象即可。 第一控制模式(旋轉速度控制)係將作為控制指令 所賦予之目標旋轉速度No與反饋之實際旋轉速度Ne 間的偏差輸入控制器U。來自控制器11之輸出經由切 換開關22而送至致動器15,致動器15將對應於來自控 制器11之輸出的燃料噴射量(燃料指數Fie)之燃料供 給至主發動機13。 另外,切換開關22係進行第一至第三控制模式間 之切換的開關,且在選擇第一控制模式時,連接旋轉速 度控制用之控制器11與致動器丨5。 201107191 第二控制模式(輸出控制)係 予之目標旋轉速度No在旋棘请芦」乍為1制才”所鹎 變換成目標輸出P〇 (後= 度出/上出严塊16中 機Π現在之輸出Pe = i目^:夺,反饋主發動 器17二器=,::/切換開關22連接控制 22而送至致動,^ :制35 17之輸出經由切換開關 向迗至致動态15。致動器15在主發動 it)自控制器17之輪出的燃料喷射(對應於心 中,=卜=二現”輸出^係在輸出算出區塊19 _ U機之貫際旋轉速度Ne與對應於實_ 枓噴射量之燃料指數FIe而算出(後述)。、於貫際燃 将二:由於在旋轉速度,輸出變換區塊^中之變換 、選後述之負載阻力係❹的平均值I作變換者,、 ^負載阻力係數R及其平均值4係在負栽阻力係 轉速而L如後述地從實際燃料指數Fie與實際旋 第三控制模式(燃料指數控制)係將 ,予之目標旋轉速度N。在旋轉速度/ = = ^ 區塊12帽換成目標燃料指數FI〇。另外·:、、: ‘數、交換 使用在負載阻力係數算出區塊24中算出之:J換中仍 數R的平均值Rav。 出之負栽阻力係 ,料減控制時’反饋對應於實際 枓指數He,並將與目標燃料指數FI 2,之燃 制器14 ’在第三控制模式中,切換開關 201107191 14與致動器15, 而送至致動器15 於來自控制器P He)。 來自^工制器14之輪出經由切換開關22 5致動器15在主發動機13中進行對應 14之輸出的燃料噴射(對應於燃料指數 如以上所述’第-種實施形態之船舶用引擎控制系 統10可藉由切換開關22之切換,而在旋轉速度控制'、、 輸出控制、燃料指數控制之間切換控制模式,以進行配 合海象之調速控制。 其次,就旋轉速度/輸出變換區塊16、旋轉速度/ 燃料,數變換區塊12中之控制目標值的變換公式,及 輸出算出區塊19中之輸出算出公式作說明。另外,以 下之說明將旋轉速度N、輸出p、扭矩τ、燃料指數FI 以主發動機13的連續最大額定(MCR)時是1〇〇%的百 分率[%]來表示。 依據螺旋槳定律,輪出p[%]與旋轉速度N[%]之三 次方成正比,而表示為 P = R · (N/100) 3 (!) 其中’ R係取決於前述海象之係數[%],本說明書中 稱為負載阻力係數。另外11[%]於水面平靜狀態(無風浪 之穩定狀態)下航行中為1〇〇〇/0。 另外’由於扭矩T[%]、輸出P[%]及旋轉速度N[%] 之間有如下之關係, T = P/ (N/100) (2) 因此,扭矩Τ於使用負載阻力係數R時,表示為 T = R · (Ν/100) 2 (3) 201107191 又,調速控制中’由於燃料指數FI[%]可看成等於 扭矩τ[%] (π=τ),因此從公式(3)獲得以下公式 FI = R - (N/100) 2 (4) 因此’負載阻力係數R決定時,旋轉速度/輪出變 換區塊16係依據公式(1)從旋轉速度N求出輸出p,旋 轉速度/燃料指數變換區塊12係依據公式(4)求出燃^ 指數FI。 ‘一 又,從公式(4) ’現在之負載阻力係數R的值可從燃 料指數FIe[%]與實際旋轉速度Ne[%],而用 ' R= Fie/ ( Ne/100 ) 2 (5) 求出。 亦即,公式(4)之負載阻力係數R雖依海象而時時刻 刻變化’不過其值可從公式(5)求出。因此,本實施形態 之旋轉速度/輸出變換區塊16及旋轉速度/燃料指數 變換區塊12係將使用公式(5)而算出之負載阻力係數R 在指定時間(例如數十分鐘至數小時程度,並宜為1小 時程度)T 的平均值 Rav=[ S Fie/ (Ne/100) 2 · dt] /T,在每個指定時間T更新、設定,作為在公式(1)、 公式(4)使用之負載阻力係數R的值。 亦即,旋轉速度/輸出變換區塊16係使用BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a marine engine control system, and more particularly to a control system for controlling a marine engine based on a walrus. [Prior Art] The control system of the marine engine performs PID control so that there is no deviation between the set target rotational speed and the actual rotational speed. However, in the event of a storm or the like, the load torque of the propeller changes rapidly, and it is assumed that the PID control is performed while sailing in a normal weather, and engine failure may occur due to overspeed. In response to such a problem, there has been proposed a structure for predicting the fluctuation of the rotation speed of the propeller caused by the disturbance to change the gain of the PID control (Patent Document 1). Patent Document 1: Japanese Laid-Open Patent Publication No. Hei 8-200131 [Summary of the Invention] [Problems to be Solved by the Invention] In order to improve the fuel consumption efficiency, it is necessary to perform speed control according to the walrus, but the patent document 1 cannot be judged by the walrus. It closely corresponds to the walrus that changes moments. Moreover, the rotational speed control is not based on walrus, so the fuel efficiency is not efficient. The object of the present invention is to improve the fuel consumption efficiency by judging the change of the sea image by judging the change of the sea image by judging the change of the sea image. [Means for Solving the Problem] The marine engine control system of the present invention is characterized in that the physical quantity derived from the rotational speed of the main engine 201107191 and the fuel index is obtained as a parameter, and the physical quantity of the (four) mode is performed. It includes at least one of the periods of change or change in the load resistance coefficient: Further, the switching of the control mode corresponds to the switching of the control target value, and at this time, the (four) mode includes, for example, at least one of the rotational speed control, the output control, and the fuel index control. The change from the target rotational speed to the target fuel index is used to convert the target rotational speed to the target output value using the updated load drag coefficient, and the average of the load drag coefficient at the specified time is used for the transformation. Moreover, the switching of the control mode corresponds to, for example, switching of control parameters. The switching of the control parameters corresponds, for example, to the sensitivity of the PI operation, and the switching of the sensitivity is performed between modes in which the sensitivity of the proportional term is relatively large and the integral is relatively short, and the sensitivity of the proportional term is relatively small and the integral is relatively long. The ship of the present invention is characterized in that it has any of the aforementioned marine engine control systems. The ship engine control method according to the present invention is characterized in that the load resistance coefficient is obtained from the rotational speed of the main engine and the fuel index, and the physical quantity derived from the load resistance coefficient is used as a parameter, and the control mode is switched. According to the present invention, it is possible to carry out the s peripheral speed control according to the walrus by judging the change of the walrus without the need for a new sensor to improve the fuel consumption efficiency of the south. [Embodiment] Hereinafter, embodiments of the present invention will be described with reference to the drawings. The first figure shows a control block diagram showing the structure of the marine engine control system according to the first embodiment of the present invention. The marine engine control system 1 of the first embodiment has, for example, three control modes, and each control mode can be selected according to the state of the walrus. The first control mode maintains the actual rotational speed (rotation speed) of the main engine 13 at the rotational speed of the target rotational speed (rotational speed) N〇. The second control mode maintains the output pe of the main engine 13 at the output control of the target value Po. Further, the third control mode is a fuel index control in which the fuel injection amount ' is also maintained as the fuel index Fle of the index at the target value fi. The marine engine control system 10 allows the operator to impart a rotational speed (No) as a control command in any of the control modes. That is, in the speed control of the present embodiment, the operator only has to consider that the rotational speed is a control object. The first control mode (rotational speed control) inputs the deviation between the target rotational speed No given by the control command and the actual rotational speed Ne of the feedback to the controller U. The output from the controller 11 is sent to the actuator 15 via the switching switch 22, and the actuator 15 supplies the fuel corresponding to the fuel injection amount (fuel index Fie) from the output of the controller 11 to the main engine 13. Further, the changeover switch 22 is a switch for switching between the first to third control modes, and when the first control mode is selected, the controller 11 for the rotational speed control and the actuator 丨5 are connected. 201107191 The second control mode (output control) is the target rotation speed No, which is converted to the target output P〇 after the rotation of the spine is "returned to the 1st system" (post = degree out / up and down the block 16) Now the output Pe = i mesh ^, win, feedback main engine 17 two =, ::: switch 22 is connected to control 22 and sent to the actuation, ^: 35 17 output through the switch to the actuator State 15. The fuel injection (corresponding to the heart, = b = two present) output of the actuator 15 from the controller 17 in the main engine is outputted in the output calculation block 19 _ U machine Ne is calculated based on the fuel index FIe corresponding to the actual injection amount (described later). In the case of the continuous combustion, the average of the load resistance system is selected as follows: The value I is changed, and the load resistance coefficient R and the average value 4 thereof are in the load resistance system rotation speed L, as will be described later from the actual fuel index Fie and the actual rotation third control mode (fuel index control). The target rotation speed N. At the rotation speed / = = ^ Block 12 cap is replaced by the target fuel index FI 〇. In addition: And: 'Number, exchange is calculated in the load resistance coefficient calculation block 24: J is still the average value Rav of the number R. The load resistance is the same, the feedback is corresponding to the actual 枓 index He, And in the third control mode, the burner 14' with the target fuel index FI2, the switch 201107191 14 and the actuator 15 are sent to the actuator 15 from the controller P He). The fuel injection from the actuator 14 via the changeover switch 22 5 actuator 15 in the main engine 13 (corresponding to the fuel index as described above) the marine engine of the first embodiment The control system 10 can switch the control mode between the rotational speed control ', the output control, and the fuel index control by switching the switch 22 to perform the speed control of the walrus. Next, the rotation speed/output conversion area The calculation formula of the control target value in the block 16, the rotation speed/fuel, the number conversion block 12, and the output calculation formula in the output calculation block 19 are explained. In addition, the following description will show the rotation speed N, the output p, and the torque. τ, the fuel index FI is expressed as a percentage [%] of the continuous maximum rating (MCR) of the main engine 13. In accordance with the propeller law, the rounding p[%] and the rotational speed N [%] are three times. In proportion, it is expressed as P = R · (N/100) 3 (!) where 'R depends on the coefficient of the above-mentioned walrus [%], which is called the load resistance coefficient in this specification. Another 11 [%] is calm on the surface of the water. State (no wind and wave stability) State) 1 〇〇〇 / 0 in the voyage. In addition, due to the following relationship between torque T [%], output P [%] and rotational speed N [%], T = P / (N / 100) (2) Therefore, when the torque is less than the load resistance coefficient R, it is expressed as T = R · (Ν/100) 2 (3) 201107191 Also, in the speed control, 'the fuel index FI[%] can be regarded as equal to the torque. τ[%] (π=τ), so the following formula FI = R - (N/100) 2 (4) is obtained from the formula (3). Therefore, when the load resistance coefficient R is determined, the rotational speed/round-out conversion block 16 The output p is obtained from the rotational speed N according to the formula (1), and the rotational speed/fuel index conversion block 12 determines the combustion index FI according to the formula (4). 'One again, from the formula (4) 'the current load The value of the drag coefficient R can be obtained from the fuel index FIe [%] and the actual rotational speed Ne [%], and is obtained by ' R = Fie / ( Ne / 100 ) 2 (5). That is, the load of the formula (4) The drag coefficient R varies from time to time depending on the walrus. However, the value can be obtained from equation (5). Therefore, the rotational speed/output conversion block 16 and the rotational speed/fuel index conversion block 12 of the present embodiment will be Calculated using equation (5) The load resistance coefficient R is the average value of the T at a specified time (for example, tens of minutes to several hours, and preferably 1 hour), Rav = [S Fie / (Ne / 100) 2 · dt] / T, in each The specified time T is updated and set as the value of the load resistance coefficient R used in the equations (1) and (4). That is, the rotation speed/output conversion block 16 is used.

Po=Rav · (No/100)3 (6) 作為變換式,旋轉速度/燃料指數變換區塊12係 使用 ⑺ FIo=Rav · (No/100)2 作為變換式。 201107191 又’在輸出鼻出區塊19中异出之輸出pe的值 公式(1)、(5),用 、’從Po=Rav · (No/100)3 (6) As a conversion type, the rotation speed/fuel index conversion block 12 uses (7) FIo=Rav · (No/100)2 as a conversion formula. 201107191 The value of the output pe which is different from the output nose block 19 (1), (5), with ,

Pe=FIe · (Ne/100) (8) 而求出。 第二圖中示意地顯示負載阻力係數r、趣 ,、燃料指數Fie之具體時間序列變化。二轉連 度Ne 第 圖⑻係顯示旋轉速度Ne[%],第二圖(b)係顯示燃二〜 FIe[%]之計測值’第二圖(c)係顯示將第二圖(a) 了第_旨數 (b)所示之實際旋轉速度Ne、燃料指數Fle代入公f圖 而算出之負載阻力係數R[%]的算出值之時間序 者,橫軸係時間[秒]。 1 %北* 如第二圖(a)所示,實際旋轉速度即使在將於 速度(轉速)保持一定之旋轉速度控制中,仍因波f轉 影響而以所設定之目標值為中心而變動,變動之周 船體承受波浪之周期有關。另外’如第二圖(b)所^ 料指數(燃料喷射量)Fie中除了有關旋轉速度變動: 變動外’還存在位數(order)遠比旋轉速度變動之周期大 的流向(trend)。而藉由公式(5) R=Fie/ (Ne/100) 2 算出之負載阻力係數R受到第二圖(a)、第二圖(b)各個 變動之影響,而如第二圖(c)所示地變動。 其次’第三圖中顯示在旋轉速度控制、輸出控制、 燃料指數控制之各控制模式中的主發動機之旋轉速度 [0/〇]的變動(第三圖(a))、燃料指數值之變動(第三圖 (b))、輸出變動(第三圖(c))、負载阻力係數之變動(第 三圖(d))的代表例。 201107191 如第三圖所示,燃料指數控制例如第三圖(d)所示地 係在發生負載阻力係數R之變動小且周期亦短之主發動 機的反應延遲時作選擇。燃料指數控制如第三圖(b)所 示,係將燃料指數維持一定,不過第三圖(a)、第三圖(c) 所示之旋轉速度及輸出係以短的周期稍微變動。 如第三圖(d)所示,輸出控制係在負載阻力係數R之 變動為中等程度,且周期亦某種程度長,主發動機可密 切追隨之狀況下作選擇。主發動機之輸出藉由前述之輸 出控制而如第三圖(c)所示地概略維持一定,而主發動機 穩定地運轉。此時旋轉速度(第三圖(a))及燃料指數(第 三圖(b))以與負載阻力係數R概略相同之周期且以中等 程度之大小而變動。 又,旋轉速度控制例如在波濤巨浪中或在港灣區使 用,例如防止因空轉而造成主發動機過度旋轉等。例如 發生空轉時,如第三圖(d)所示,負載阻力係數R之值突 然變極小。此時,因旋轉速度開始急遽上昇,所以為了 將旋轉速度維持一定,而大幅降低燃料指數(第三圖 (b)),並大幅降低主發動機之輸出(第三圖(c))。藉此防 止旋轉速度過度上昇。 如以上所述,第一種實施形態可依海象等將適切之 物理量設定成控制目標值來進行調速控制,可提高油耗 效益。又,賦予目標旋轉速度No時,獲得適合其值及 此時之海象的輸出控制目標值Po及燃料指數控制目標 值Flo,因此可進一步改善油耗效益。 其次,參照第四圖、第五圖,就本發明第二種實施 10 201107191 之U㈣弓I擎控制系統作說明 船舶用引擎控制系統的結構概略與第一種實\ = =引擎控制系統相同,不過第二種實施形態係二 值作為載阻力係數R之變動有效 = 木進仃至第三控制模式之切換。 值進阻力係㈣之變朗期與有效 man^_.f —技制模式之切換的控制圖(control 數R之辦^周划即第四圖中之橫轴對應於負载阻力係 效值。<躺』,縱㈣應於負雜力係數尺之變動有 小盎波、r為相關’變動有效值之大 為二 相關,並且與雜訊影響之大小 :反庫性低二’本實施形態在變動周期短且主發動機 ^反應,的情況,及雖變動有效值小且m塑 固定:嫩的情況下’係進行燃料指數控制, 模J) 以抑㈣射燃料之浪費(燃料指數控制 及變Ϊ;效動性的情況, 二二 == 定(輸出控制模式)。 勒機之輸出維持- 亦即,第二種實施形態係依據在負載阻力係數算出 201107191 區塊2 4 (第一圖)中异出之負載阻力係婁丈r,進一步瞀 出負載阻力係數R變動之周期與負載阻力係數R變動之 有效值,並參照第四圖之控制圖選擇對應區域之控制模 式來進行切換開關22(第一圖)之切換。 、 此時,第五圖⑷中顯示第二圖⑷所示之負載阻力係 數R[%]的變動成分RV[%]之時間序列變化與Rv之有效 值Re[〇/0]的時間序列變化的曲線圖。另外,第五圖⑷中 之變動成分Rv對應於從第二圖(e)之負載阻力係數尺除 去流向者。又,第五圖(b)中顯示描繪從第五圖之變動 成分R V [ % ]上昇中橫跨〇 [ % ]之時刻至其次的上昇中橫跨 〇[/〇]時刻所花費的時間圖,本實施形態使用該值作為負 載阻力係數R之變動周期。 如以上所述,依據本發明之第二種實施形態,可獲 知與第一種實施形態概略同樣之效果,並且可從負載阻 力係數之變動周期、變動之有效值等的從負載阻力係數 導出之物理量判斷現在之海象,而從控制目標值不同之 複數個控制模式選擇適切之控制模式。 其次,參照第六圖、第七圖就第三種實施形態作說 明。第三種實施形態與第二種實施形態同樣地,係將負 載阻力係數R之變動周期與變動之有效值作為參數來切 換調速控制模式。第二種實施形態之控制模式的切換係 將控制目標值變更為旋轉速度、輸出、燃料指數,而第 三種實施形態不進行控制目標值之變更,係對應於圖 (map)之各區域來變更控制參數。 第三種實施形態之船舶用引擎控制系統例如將旋 201107191 轉速度控制用於調速控制,在對應於第二種實施形態之 控制圖(第四圖)所示的旋轉速度控制、輸出控制、燃 料指數控制之各區域的區域,分別如第六圖之控制圖所 示地選擇敏感控制、中度控制、緩懞控制。 第七圖顯示第三種實施形態之旋轉速度控制的控 制區塊圖。另外,就與第一、第二種實施形態同樣之結 構,使用相同參照符號而省略其說明。第三種實施形態 之旋轉速度控制係將目標旋轉速度No與實際旋轉速度 Ne的偏差輸入控制器25。來自控制器25之輸出輸入至 致動器15,而對主發動機13供給對應於來自控制器25 之輸出的燃料喷射量(燃料指數FIe)。 控制器25例如包含piD控制區塊,各項之增益的 設定係依據來自控制模式切換區塊26之指令而變更。 在控制模式切換區塊26中輸入實際燃料指數FI與實際 轉速Ne,與第一種實施形態之負載阻力係數算出區塊 24同樣地算出負載阻力係數R,並且算出其變動周期及 變動之有效值’並參照第六圖之控制圖。而後’控制模 式切換區塊26對控制器25之PID控制區塊設定依據控 制圖而選擇之控制模式的增益。 表一中顯示在第三種實施形態之各控制模式中進 行HD運算之各項靈敏度的相對性關係,此等藉由變更 各項增益之設定而變更。 13 201107191 [表一] 比例 積分 微分 敏感 大 短 大 中度 中 長 小 緩慢 小 長 小 又,第六圖係劃分控制模式為三個區域,不過亦可 僅劃分兩個控制模式而構成,該情況下例如劃分成敏感 控制與緩慢控制,兩模式中進行PID運算之比例項、積 分項的靈敏度之相對性關係顯示於表二。 [表二] 比例 積分 敏感 大 短 緩慢 小 長 另外,此種情況下亦可僅為PI控制。 如以上所述,第三種實施形態亦可獲得與第二種實 施形態概略同樣之效果。另外,本實施形態係以旋轉速 度控制為例作說明,不過亦可將本實施形態適用於輸出 控制及燃料指數控制。 又,第一至第三種實施形態在加以整合之範圍中, 亦可分別組合而適用。 另外,各種實施形態中,亦可將算出之負載阻力係 數、其變動周期、變動之有效值中的任何一個或從負載 14 201107191 阻力係數導出之物理量的二個以上顯示於操舵室及發 動機室等而構成。又,第二、第三種實施形態中,亦可 僅與負載阻力係數之變動周期、變動之有效值中的任何 一方或是與從負載阻力係數導出之其他物理量組合來 規定將控制模式之切換。又,亦可取代變動周期而使用 變動頻率。再者,本實施形態之操縱者設定旋轉速度作 為控制指令,不過亦可設定燃料指數、輸出、船速及其 他物理量作為控制指令而構成。 又,控制方法不限於PID控制,亦可適用於現代控 制理論、適用控制、學習控制等。例如第三種實施形態 之情況,係依據從負載阻力係數導出之物理量,變更PI 運算及PID運算之靈敏度,來進行控制模式之切換,不 過,例如現代控制理論、適用控制、學習控制等亦可依 據從負載阻力係數導出之物理量變更各個控制中之控 制參數值,來進行控制模式之切換。 15 201107191 【圖式簡單說明】 的控第-種實施形態之—擎控制系統 第二圖係顯示負載阻力係數尺、實 燃料指數FIe之具體時間序列變化的轉逮度心、 控制㈡控制、輸出控制、旋轉速度 ,四圖係第二種實施形態使用之控制圖的例。 變動C示第二圖⑷所示之負載阻力係數R的 传有效值Re之時間序列變化及負載阻力 ir、數R之邊動周期的曲線圖。 第/、圖係第二種實施形態使用之控制圖的例。 【主要元件符號說明】 10 船舶用引擎控制系統 11 控制器 12 旋轉速度/燃料指數變換區塊 13 主發動機 14 控制器 15 致動器 16 旋轉速度/輸出值變換區塊 201107191 17 控制器 19 輸出算出區塊 22 切換開關 24 負載阻力係數算出區塊 25 控制器 26 控制模式切換區塊 FI ' Fie 燃料指數 Flo 目標燃料指數 N 旋轉速度 Ne 實際旋轉速度 No 目標旋轉速度 P 輸出 Pe 主發動機之輸出 Po 目標值 R 負載阻力係數 Rav 負載阻力係數平均值 Rv 負載阻力係數變動成分 Re 有效值 T 扭矩 17Pe=FIe · (Ne/100) (8) and find it. The second graph schematically shows the specific time series variation of the load resistance coefficient r, interest, and fuel index Fie. The second degree of transition Ne is shown in the figure (8) showing the rotation speed Ne [%], the second diagram (b) is the measurement value of the burning II ~ FIe [%] 'the second figure (c) is the second figure (a) The time sequence in which the actual rotational speed Ne shown in the _th order (b) and the calculated value of the load resistance coefficient R[%] calculated by substituting the fuel index Fle into the common f map is the time in the horizontal axis [second]. 1% north* As shown in the second diagram (a), the actual rotation speed is changed even if the speed (rotation speed) is kept constant in the rotation speed control, but the fluctuation is affected by the wave f and the target value is changed. The change of the hull is related to the period of the wave. Further, as shown in the second figure (b), the index (fuel injection amount) Fie has a direction in which the number of bits is far larger than the period in which the rotation speed fluctuates in addition to the fluctuation of the rotation speed. The load drag coefficient R calculated by the formula (5) R=Fie/(Ne/100) 2 is affected by the changes in the second graph (a) and the second graph (b), and as shown in the second graph (c). Change as shown. Next, the third graph shows the variation of the rotational speed [0/〇] of the main engine in each of the control modes of the rotational speed control, the output control, and the fuel index control (third figure (a)), and the change of the fuel index value. (Third (b)), the output variation (third diagram (c)), and the variation of the load resistance coefficient (third diagram (d)). 201107191 As shown in the third figure, the fuel index control is selected, for example, as shown in the third diagram (d) when the reaction delay of the main engine in which the fluctuation of the load resistance coefficient R is small and the period is short is selected. As shown in the third figure (b), the fuel index control maintains the fuel index constant, but the rotation speed and output shown in the third (a) and third (c) diagrams slightly change in a short cycle. As shown in the third diagram (d), the output control system has a moderate fluctuation in the load resistance coefficient R, and the period is also somewhat long, and the main engine can be closely selected to follow the situation. The output of the main engine is maintained substantially constant as shown in the third diagram (c) by the above-described output control, and the main engine is stably operated. At this time, the rotation speed (Fig. 3(a)) and the fuel index (Fig. 3(b)) are changed in a period substantially the same as the load resistance coefficient R and moderately. Further, the rotational speed control is used, for example, in a rough wave or in a harbor area, for example, to prevent excessive rotation of the main engine due to idling. For example, when idling occurs, as shown in the third figure (d), the value of the load resistance coefficient R suddenly becomes extremely small. At this time, since the rotation speed starts to rise sharply, the fuel index is greatly lowered (Fig. 3(b)) in order to maintain the rotation speed constant, and the output of the main engine is greatly reduced (Fig. 3(c)). This prevents the rotation speed from rising excessively. As described above, in the first embodiment, the appropriate physical quantity can be set to the control target value according to the walrus or the like to perform the speed control, and the fuel consumption efficiency can be improved. Further, when the target rotational speed No is given, the output control target value Po and the fuel index control target value Flo which are suitable for the value and the walrus at this time are obtained, so that the fuel economy benefit can be further improved. Next, with reference to the fourth and fifth figures, the structure of the marine engine control system is the same as that of the first real version of the engine control system of the U(four) bow I engine control system of the second embodiment 10 201107191 of the present invention. However, in the second embodiment, the binary value is effective as the variation of the load resistance coefficient R = the switching of the wood into the third control mode. The value of the resistance is (4) and the effective man^_.f - the control mode of the switching of the technical mode (the control number R is the same as the horizontal axis in the fourth figure corresponds to the load resistance system effect value. <Lying, vertical (4) There should be a small ampere wave in the variation of the negative hybrid coefficient ruler, r is related to the change of the effective value of the change, and the magnitude of the influence of the noise: the anti-depositive low two' implementation The form is short in the period of change and the main engine reacts, and although the variation RMS is small and m is plastically fixed: in the case of tender, the fuel index control is performed, and the mold J is used to suppress the fuel waste (fuel index control). And change; the case of action, 22 == (output control mode). The output of the machine is maintained - that is, the second embodiment is based on the load resistance coefficient calculated 201107191 block 2 4 (first The load resistance in the diagram is the same as the effective value of the period of the load resistance coefficient R and the variation of the load resistance coefficient R, and select the control mode of the corresponding area to switch according to the control chart of the fourth figure. Switching of switch 22 (first figure). In the fifth diagram (4), the time series change of the variation component RV[%] of the load resistance coefficient R[%] shown in the second figure (4) and the time series change of the rms value Re[〇/0] of Rv are displayed. In addition, the fluctuation component Rv in the fifth diagram (4) corresponds to the flow direction removal ruler from the second graph (e). Further, the fifth component (b) shows the variation component RV from the fifth graph. [%] The time chart taken from the time when 〇[%] rises to the next rise in the next 〇[/〇], this embodiment uses this value as the fluctuation period of the load resistance coefficient R. According to the second embodiment of the present invention, the same effects as those of the first embodiment can be obtained, and the physical quantity derived from the load resistance coefficient such as the fluctuation period of the load resistance coefficient and the effective value of the fluctuation can be determined. The walrus is selected from a plurality of control modes having different control target values. Next, the third embodiment will be described with reference to the sixth and seventh embodiments. The third embodiment and the second embodiment Similarly, The speed control mode is switched by using the fluctuation period of the load resistance coefficient R and the effective value of the variation as a parameter. The switching of the control mode of the second embodiment changes the control target value to the rotation speed, the output, the fuel index, and the third. In the embodiment, the control parameter is not changed, and the control parameter is changed corresponding to each region of the map. The marine engine control system of the third embodiment uses, for example, the 201107191 rotational speed control for the speed control. In the regions corresponding to the respective regions of the rotational speed control, the output control, and the fuel index control shown in the control map (fourth diagram) of the second embodiment, the sensitive control is selected as shown in the control map of the sixth diagram, Moderate control, slow control. Fig. 7 is a view showing a control block diagram of the rotational speed control of the third embodiment. Incidentally, the same configurations as those of the first and second embodiments are denoted by the same reference numerals, and their description will be omitted. The rotational speed control of the third embodiment inputs a deviation between the target rotational speed No and the actual rotational speed Ne into the controller 25. The output from the controller 25 is input to the actuator 15, and the main engine 13 is supplied with a fuel injection amount (fuel index FIe) corresponding to the output from the controller 25. The controller 25 includes, for example, a piD control block, and the gain setting of each item is changed in accordance with an instruction from the control mode switching block 26. The actual fuel index FI and the actual rotation speed Ne are input to the control mode switching block 26, and the load resistance coefficient R is calculated in the same manner as the load resistance coefficient calculation block 24 of the first embodiment, and the fluctuation period and the effective value of the fluctuation are calculated. 'And refer to the control chart of the sixth figure. The control mode switching block 26 then sets the gain of the control mode selected in accordance with the control map for the PID control block of the controller 25. Table 1 shows the relative relationship between the sensitivity of the HD calculation in each of the control modes of the third embodiment, and these are changed by changing the setting of each gain. 13 201107191 [Table 1] Proportional integral differential sensitivity large short, medium, medium, small, small, slow, small, small, and the sixth picture is divided into three areas, but it can also be divided into two control modes. In this case, For example, it is divided into sensitive control and slow control. The relative relationship between the proportional term and the sensitivity of the integral term in the PID operation in the two modes is shown in Table 2. [Table 2] Proportional Integral Sensitive Large Short Slow Slow Small In addition, in this case, it can also be controlled only by PI. As described above, the third embodiment can also obtain the same effects as those of the second embodiment. Further, in the present embodiment, the rotation speed control is taken as an example, but the present embodiment can be applied to the output control and the fuel index control. Further, the first to third embodiments may be combined and applied in the range of integration. Further, in various embodiments, two or more of the calculated load resistance coefficient, the fluctuation period, and the effective value of the fluctuation or the physical quantity derived from the load factor 14 201107191 may be displayed in the steering room, the engine room, or the like. And constitute. Further, in the second and third embodiments, the switching of the control mode may be specified only in combination with any one of the fluctuation period of the load resistance coefficient and the effective value of the fluctuation or another physical quantity derived from the load resistance coefficient. . Further, the variation frequency can be used instead of the fluctuation period. Further, the operator of the present embodiment sets the rotational speed as a control command, but may also configure the fuel index, the output, the ship speed, and other physical quantities as control commands. Further, the control method is not limited to PID control, and can be applied to modern control theory, applicable control, learning control, and the like. For example, in the case of the third embodiment, the sensitivity of the PI calculation and the PID calculation is changed according to the physical quantity derived from the load resistance coefficient, and the control mode is switched. However, for example, modern control theory, applicable control, and learning control may be used. The control mode is switched by changing the value of the control parameter in each control based on the physical quantity derived from the load resistance coefficient. 15 201107191 [Simple diagram of the diagram] The second diagram of the control system - the control system shows the load resistance coefficient scale, the actual fuel phase index FIe, the specific time series of the change of the heart, control (two) control, output Control, rotational speed, and four figures are examples of control maps used in the second embodiment. The variation C shows a time-series change of the transmitted effective value Re of the load resistance coefficient R shown in the second figure (4), and a graph of the side-cycle of the load resistance ir and the number R. The figure / diagram is an example of a control chart used in the second embodiment. [Main component symbol description] 10 Marine engine control system 11 Controller 12 Rotation speed/fuel index conversion block 13 Main engine 14 Controller 15 Actuator 16 Rotation speed/output value conversion block 201107191 17 Controller 19 Output calculation Block 22 changeover switch 24 load resistance coefficient calculation block 25 controller 26 control mode switching block FI ' Fie fuel index Flo target fuel index N rotation speed Ne actual rotation speed No target rotation speed P output Pe main engine output Po target Value R Load resistance coefficient Rav Load resistance coefficient average value Rv Load resistance coefficient variation component Re RMS T torque 17

Claims (1)

201107191 七 2. 3. 4. 5. 6. 7. 8. 、申請專利範圍:.實引擎控制系統’其特徵為:從主發動機之 模式之切換。 里作為參數,而進行控制 = 圍第1項之船舶用引擎控制系統,里中 月J述物理置中包含前述負載阻 八中 前述變動之有效值至少其中之—。’、之交動周期或 ^申請專利範圍第2項之船舶 =模式之切換係對應於控制目標 St利?圍第3項之船㈣,擎控制系統,其中 月J述控制杈式中包含旋轉速度控制。 、 =專利範圍第3項之船舶用引擎 别述控制模式中包含輸出控制。 八r 利範圍第3項之船舶用引擎控制系統,1中 則述控制模式中包含燃料指數控制。 ΪΓΪΓΤφ圍Γ至第6項中任一項之船舶用引擎 j糸、、先’其中使用更新之前述負載阻力係數進行從 ,旋轉速度向目標燃料指數之變換,或是從目標 轉速度向目標輸出值之變換。 如申請專利範圍第7項之船舶用引擎控制系統,复中 =前述負載阻力係數在指定時間之平均個於前 變換。 如申請專利範圍第1項或第2項之船舶用引擎控制系 統,其中前述控制模式之切換係對應於控制參數之士刀 18 9. 201107191 換。 10. 如申請專利範圍第9項之船舶用引擎控制系統,其中 前述控制參數之切換係對應於PI運算之靈敏度,前 述靈敏度之切換係在前述比例項之靈敏度相對大且 前述積分相對短之模式,與比例項之靈敏度相對小且 前述積分相對長之模式間進行。 11. 一種船舶,其特徵為:具備申請專利範圍第1至第 10項中任一項之船舶用引擎控制系統。 12. —種船舶用引擎控制方法,其特徵為:從主發動機之 實際旋轉速度與燃料指數求出負載阻力係數,將從前 述負載阻力係數導出之物理量作為參數,而進行控制 模式之切換。 19201107191 VII 2. 3. 4. 5. 6. 7. 8. Scope of application: The real engine control system' is characterized by switching from the mode of the main engine. Controlling as a parameter = the marine engine control system of the first item, in which the physical value of the above-mentioned load resistance is at least one of the above-mentioned changes in the load resistance. The transfer period of the ', the transfer cycle or the ship's = mode of the second application patent scope corresponds to the control target St. The ship (4) of the third item, the engine control system, in which the control system of the month contains the rotation speed control. , = Marine engine for the third patent range The output control is included in the control mode. In the marine engine control system of the third item of the third category, the control mode includes the fuel index control.船舶 Γ Γ Γ Γ 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶 船舶The change of value. For example, in the marine engine control system of claim 7 of the patent scope, the intermediate load = the average load resistance coefficient at the specified time is before the change. For example, the marine engine control system of claim 1 or 2, wherein the switching of the aforementioned control mode corresponds to the control parameter of the knife 18 9. 201107191. 10. The marine engine control system according to claim 9, wherein the switching of the control parameters corresponds to the sensitivity of the PI operation, and the switching of the sensitivity is a mode in which the sensitivity of the proportional term is relatively large and the foregoing integral is relatively short. The mode is performed with a mode in which the sensitivity of the proportional term is relatively small and the aforementioned integral is relatively long. A ship characterized by having a marine engine control system according to any one of claims 1 to 10. A ship engine control method characterized in that a load resistance coefficient is obtained from an actual rotation speed of a main engine and a fuel index, and a control amount is switched by using a physical quantity derived from the load resistance coefficient as a parameter. 19
TW099129231A 2009-08-31 2010-08-31 Ship engine control system and method TWI444309B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009201096A JP4750881B2 (en) 2009-08-31 2009-08-31 Marine engine control system and method

Publications (2)

Publication Number Publication Date
TW201107191A true TW201107191A (en) 2011-03-01
TWI444309B TWI444309B (en) 2014-07-11

Family

ID=43628096

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099129231A TWI444309B (en) 2009-08-31 2010-08-31 Ship engine control system and method

Country Status (5)

Country Link
JP (1) JP4750881B2 (en)
KR (1) KR101189101B1 (en)
CN (1) CN102483008B (en)
TW (1) TWI444309B (en)
WO (1) WO2011025005A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6062095B1 (en) * 2016-06-09 2017-01-18 株式会社マリタイムイノベーションジャパン Instruction device for ship propulsion engine
JP6907139B2 (en) * 2018-02-27 2021-07-21 株式会社三井E&Sマシナリー Control system for main marine engine
CN113874614B (en) * 2019-05-22 2023-06-02 国立研究开发法人海上·港湾·航空技术研究所 Engine control method, engine control system and ship
CN114962043B (en) * 2021-12-16 2023-08-15 中国船舶集团有限公司第七一一研究所 Speed regulation control device for diesel engine and ship

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4326663B2 (en) * 2000-03-14 2009-09-09 株式会社アイ・エイチ・アイ マリンユナイテッド Marine position holding apparatus and method for ship
JP4137760B2 (en) * 2003-10-20 2008-08-20 本田技研工業株式会社 Intake air amount control device for internal combustion engine
WO2006049252A1 (en) * 2004-11-04 2006-05-11 National University Corporation Tokyo University Of Marine Science And Technology Method and device for controlling injection of fuel for marine diesel engine
JP4529713B2 (en) * 2005-02-08 2010-08-25 トヨタ自動車株式会社 Control method for internal combustion engine
JP4923482B2 (en) * 2005-08-29 2012-04-25 富士電機株式会社 Electric propulsion device for ships
JP2008045484A (en) * 2006-08-16 2008-02-28 Japan Marine Science Inc Control method and control device for marine internal combustion engine

Also Published As

Publication number Publication date
JP2011052578A (en) 2011-03-17
TWI444309B (en) 2014-07-11
KR101189101B1 (en) 2012-10-10
JP4750881B2 (en) 2011-08-17
CN102483008B (en) 2013-12-18
CN102483008A (en) 2012-05-30
WO2011025005A1 (en) 2011-03-03
KR20120058530A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
Sørensen et al. Torque and power control of electrically driven marine propellers
JP2010001797A (en) Internal combustion engine controller
TW201107191A (en) Marine engine control system and method
EP2178745A1 (en) Efficiency optimizing propeller speed control for ships
CN104590526A (en) Method and device for controlling energy-saving sailing of ship
JP6189278B2 (en) Main machine load distribution calculation device and main machine load distribution calculation method
TWI444310B (en) Ship engine control system and method
CN107922041B (en) Motor control method and control device
CN111188732B (en) Wind power generation variable pitch robust fault-tolerant control method
SE539122C2 (en) Procedure and systems for driving vehicles
JP2007198348A (en) Engine control device
JP4898935B2 (en) Engine control apparatus and method
CN104595040A (en) Method and device for controlling energy-saving sailing of ship
KR102521829B1 (en) Control apparatus for rudder and ship
CN109828462A (en) Wave glider becomes under the speed of a ship or plane adaptive bow to controller and control method
Ghorbani et al. A numerical investigation of a wind-assisted ship to estimate fuel savings
CN102791992A (en) Ship engine control device and method
TW201035439A (en) Marine engine control system
CN114524062B (en) Control system and method for pure electric double-power ship
JP7296438B2 (en) Ship propulsion system, ship propulsion control method, and ship propulsion control program
TW201104064A (en) Governor control device and control method
JP2009174328A (en) Control device of internal combustion engine
Chen et al. Research on Marine Autopilot and its Performance Test
JPH11270360A (en) Accelerating time fuel injection quantity control method for internal combustion engine