JP6189278B2 - Main machine load distribution calculation device and main machine load distribution calculation method - Google Patents

Main machine load distribution calculation device and main machine load distribution calculation method Download PDF

Info

Publication number
JP6189278B2
JP6189278B2 JP2014231562A JP2014231562A JP6189278B2 JP 6189278 B2 JP6189278 B2 JP 6189278B2 JP 2014231562 A JP2014231562 A JP 2014231562A JP 2014231562 A JP2014231562 A JP 2014231562A JP 6189278 B2 JP6189278 B2 JP 6189278B2
Authority
JP
Japan
Prior art keywords
main
ship speed
load
load distribution
ship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014231562A
Other languages
Japanese (ja)
Other versions
JP2016094105A (en
Inventor
祐亮 彌城
祐亮 彌城
丈博 名嘉
丈博 名嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2014231562A priority Critical patent/JP6189278B2/en
Publication of JP2016094105A publication Critical patent/JP2016094105A/en
Application granted granted Critical
Publication of JP6189278B2 publication Critical patent/JP6189278B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Description

本発明は、主機負荷配分算出装置及び主機負荷配分算出方法に関するものである。   The present invention relates to a main machine load distribution calculation device and a main machine load distribution calculation method.

例えば、長距離を航行する船舶は、船舶のエネルギー需要を考慮し、省エネルギー運転と到着地点に定刻で到着する定刻運転の両立を目的とした最適な船速計画の作成が求められる。   For example, a ship navigating a long distance is required to create an optimal ship speed plan for the purpose of both energy saving operation and scheduled operation that arrives at the arrival point on time in consideration of the energy demand of the ship.

特許文献1には、エネルギー源の使用を最適化することで、船舶の燃料効率を最適化する方法として、センサネットワークから受け取ったセンサ信号に依存して、コンピュータシミュレーションモデルから1つ又は複数の最適化されたパラメータを生成し、この最適化されたパラメータを、エネルギーを消費するシステムを含む船舶のシステムを制御するコントローラに伝えることが開示されている。   In US Pat. No. 6,057,056, one or more optimizations from a computer simulation model depend on sensor signals received from a sensor network as a way to optimize ship fuel efficiency by optimizing the use of energy sources. Generating optimized parameters and communicating the optimized parameters to a controller that controls a ship's system, including a system that consumes energy.

特許第5336188号公報Japanese Patent No. 5336188

しかしながら、特許文献1に記載の最適化方法は、船速や船舶内で使用される電力需要に基づく負荷(エネルギー需要)を想定した最適化ではない。また、特許文献1に記載のコンピュータシミュレーションモデルでは、時間軸が特定の1点のみでの最適化であり、出発地点から到着地点までにおける船速配分といった一定の時間帯での最適化は行われていない。   However, the optimization method described in Patent Document 1 is not an optimization that assumes a load (energy demand) based on the ship speed or the power demand used in the ship. Further, in the computer simulation model described in Patent Document 1, the time axis is optimized only at one specific point, and optimization in a certain time zone such as ship speed distribution from the departure point to the arrival point is performed. Not.

さらに、船舶によっては複数台の主機を備えるものがある。このような船舶では、同じ航路であっても、動作させる主機の組み合わせと主機に配分する負荷の大きさとによって燃料消費量も変化する。なお、負荷は、船速や船舶内で使用される電力需要に応じて変化する。
しかしながら、動作させる主機の台数と主機毎に配分する負荷とを同時に最適化することは、「組み合わせ最適化」と呼ばれ、長い計算時間を要するので最適解を算出することが難しい。
Furthermore, some ships have a plurality of main engines. In such a ship, even on the same route, the fuel consumption also varies depending on the combination of main engines to be operated and the load allocated to the main engines. The load varies depending on the ship speed and the power demand used in the ship.
However, simultaneously optimizing the number of main machines to be operated and the load allocated to each main machine is called “combination optimization”, and it takes a long calculation time, so it is difficult to calculate an optimal solution.

本発明は、このような事情に鑑みてなされたものであって、長い計算時間を必要とすることなく、船速配分及び主機に配分する負荷の最適解を算出できる、主機負荷配分算出装置及び主機負荷配分算出方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and a main engine load distribution calculating apparatus capable of calculating an optimal solution for ship speed distribution and a load distributed to the main engine without requiring a long calculation time, and An object is to provide a main engine load distribution calculation method.

上記課題を解決するために、本発明の主機負荷配分算出装置及び主機負荷配分算出方法は以下の手段を採用する。   In order to solve the above problems, the main unit load distribution calculating apparatus and the main unit load distribution calculating method of the present invention employ the following means.

本発明の第一態様に係る主機負荷配分算出装置は、複数台の主機を備える船舶における出発地点から到着地点までの船速、及び前記主機への負荷配分を算出する主機負荷配分算出装置であって、動作させる前記主機の組み合わせを決定する決定手段と、前記決定手段で決定された前記主機の組み合わせ毎に、出発地点から到着地点に達するまでの燃料消費量が最小となる船速を算出し、該船速に基づいて主機負荷の総量を算出し、前記燃料消費量が最小となる前記主機毎の負荷配分を算出する演算手段と、前記演算手段による算出結果から、前記燃料消費量が最小となる前記主機毎の負荷配分と船速とを選択する選択手段と、を備える。   A main engine load distribution calculating apparatus according to a first aspect of the present invention is a main apparatus load distribution calculating apparatus that calculates a ship speed from a departure point to an arrival point and a load distribution to the main engine in a ship having a plurality of main engines. For each combination of the main engines determined by the determining means, the ship speed at which the fuel consumption from the starting point to the arrival point is minimized is calculated. Calculating a total amount of the main engine load based on the ship speed, calculating a load distribution for each main engine that minimizes the fuel consumption, and calculating a result of the calculation from the calculation means to minimize the fuel consumption. Selection means for selecting load distribution and ship speed for each main engine.

本構成に係る主機負荷配分算出装置は、船舶の船速及び複数の主機毎に配分する負荷を算出する。   The main engine load distribution calculating apparatus according to the present configuration calculates the ship speed and the load distributed to each of the plurality of main engines.

演算手段は、まず、出発地点から到着地点までの最適な船速を算出する。この船速算出は、例えば、制約条件を満たしながら目的関数を最小化又は最大化させる最適解(制御変数)を求める手法である。   The computing means first calculates the optimum boat speed from the departure point to the arrival point. This ship speed calculation is, for example, a method for obtaining an optimal solution (control variable) that minimizes or maximizes the objective function while satisfying the constraint conditions.

また、複数台の主機を備える船舶は、常に全ての主機を動作させるのではなく、負荷の大きさに応じて最適な主機を動作させる。しかしながら、動作させる主機の台数と主機毎に配分する負荷とを同時に最適化するための計算は、長い計算時間を要し、最適解を算出することが難しい。
そこで、動作させる主機の組み合わせが決定手段によって決定される。例えば、主機が4台備えられている場合には、1台運転が4通り、2台運転が6通り、3台運転が4通り、4台運転が1通りの計15通りの組み合わせとなる。
Further, a ship having a plurality of main engines does not always operate all the main engines but operates the optimum main engine according to the load. However, the calculation for simultaneously optimizing the number of main machines to be operated and the load allocated to each main machine requires a long calculation time, and it is difficult to calculate an optimal solution.
Therefore, the combination of main machines to be operated is determined by the determining means. For example, in the case where four main engines are provided, there are a total of 15 combinations of 4 units for 1 unit operation, 6 units for 2 unit operation, 4 units for 3 unit operation, and 1 unit for 4 unit operation.

そして、演算手段によって、決定された主機の組み合わせ毎に、算出した船速に基づいて主機負荷の総量が算出され、燃料消費量が最小となる主機毎の負荷配分が算出される。   Then, the calculation means calculates the total amount of main engine load based on the calculated ship speed for each determined combination of main engines, and calculates the load distribution for each main engine that minimizes fuel consumption.

これにより、主機の組み合わせ毎に、船速及び主機毎の負荷配分が算出されるので、主機の台数は最適化計算に含まれない。すなわち、主機の台数は、最適化計算の変数とはならない。このため、最適化計算が複雑化することが無いので、本構成は、長い計算時間を必要とすることなく、船速配分及び主機に配分する負荷の最適解を算出できる。   As a result, the ship speed and the load distribution for each main engine are calculated for each combination of main engines, so the number of main engines is not included in the optimization calculation. That is, the number of main engines is not a variable for optimization calculation. For this reason, since the optimization calculation does not become complicated, this configuration can calculate the optimal solution for the ship speed distribution and the load distributed to the main engine without requiring a long calculation time.

上記第一態様では、前記演算手段が、船速及び船内で用いられる電力の予測値に基づいて前記主機負荷の総量を算出してもよい。   In the first aspect, the calculation means may calculate the total amount of the main engine load based on a ship speed and a predicted value of electric power used in the ship.

本構成によれば、より精度高く、動作させる主機の台数と主機に配分する負荷の最適解を算出することができる。   According to this configuration, it is possible to calculate the optimum solution of the number of main machines to be operated and the load distributed to the main machines with higher accuracy.

上記第一態様では、前記演算手段が、出発地点から到着地点までの航路を疑似的に複数の区間に分け、前記演算手段が、出発地点から到着地点に達するまでの燃料消費量を目的関数とし、出発地点から到着地点に達するまでの目標航海時間並びに前記区間毎の最大船速及び最小船速を制約条件とし、前記区間毎の船速を制御変数とし、前記目的関数を最小とする前記区間毎の船速を最適解として算出する船速最適化計算手段と、前記船速最適化計算手段によって算出された前記区間毎の船速に基づいて前記主機負荷の総量を算出する総主機負荷計算手段と、前記燃料消費量を目的関数とし、前記主機負荷の総量並びに前記主機毎の最大負荷及び最小負荷を制約条件とし、前記主機負荷の総量に基づく前記主機毎の負荷配分を制御変数とし、前記目的関数を最小とする前記主機毎の負荷配分を最適解として算出する主機負荷最適化計算手段と、を備えてもよい。   In the first aspect, the calculation means divides the route from the departure point to the arrival point in a pseudo manner into a plurality of sections, and the calculation means uses the fuel consumption amount from the departure point to the arrival point as an objective function. The section in which the target voyage time from the departure point to the arrival point and the maximum and minimum ship speeds for each section are set as constraints, the ship speed for each section is a control variable, and the objective function is minimized. Ship speed optimization calculating means for calculating the ship speed for each ship as an optimum solution, and total main engine load calculation for calculating the total amount of the main engine load based on the ship speed for each section calculated by the ship speed optimization calculating means Means, and the fuel consumption amount as an objective function, the total amount of the main machine load and the maximum load and the minimum load for each main machine as a constraint, the load distribution for each main machine based on the total amount of the main machine load as a control variable, Previous A main engine load optimization calculation means for calculating the load distribution of each of the main machine for the objective function and the minimum as the optimum solution may be provided.

本構成によれば、より精度高く、動作させる主機の台数と主機に配分する負荷の最適解を算出することができる。   According to this configuration, it is possible to calculate the optimum solution of the number of main machines to be operated and the load distributed to the main machines with higher accuracy.

上記第一態様では、前記演算手段が、相対的に燃料消費が高い前記主機よりも相対的に燃焼消費が低い前記主機に対して、負荷をより多く配分してもよい。   In the first aspect, the calculation means may distribute more load to the main engine having a relatively low combustion consumption than the main engine having a relatively high fuel consumption.

本構成によれば、簡易かつより精度高く、動作させる主機の台数と主機に配分する負荷の最適解を算出することができる。   According to this configuration, the optimum solution of the number of main machines to be operated and the load distributed to the main machines can be calculated simply and with higher accuracy.

本発明の第二態様に係る主機負荷配分算出方法は、複数台の主機を備える船舶における出発地点から到着地点までの船速、及び前記主機への負荷配分を算出する主機負荷配分算出方法であって、動作させる前記主機の組み合わせを決定する第1工程と、前記第1工程で決定された前記主機の組み合わせ毎に、出発地点から到着地点に達するまでの燃料消費量が最小となる船速を算出し、該船速に基づいて主機負荷の総量を算出し、前記燃料消費量が最小となる前記主機毎の負荷配分を算出する第2工程と、前記第2工程による算出結果から、前記燃料消費量が最小となる前記主機毎の負荷配分と船速とを選択する第3工程と、を含む。 The main engine load distribution calculating method according to the second aspect of the present invention is a main engine load distribution calculating method for calculating a ship speed from a departure point to an arrival point and a load distribution to the main engine in a ship having a plurality of main engines. The first step of determining the combination of the main engines to be operated and the boat speed at which the fuel consumption from the starting point to the arrival point is minimized for each combination of the main units determined in the first step. A second step of calculating a total load of the main engine based on the ship speed, and calculating a load distribution for each of the main engines that minimizes the fuel consumption, and from the calculation result of the second step, the fuel And a third step of selecting a load distribution and a ship speed for each main engine that consumes a minimum amount.

本発明によれば、長い計算時間を必要とすることなく、船速配分及び主機に配分する負荷の最適解を算出できる、という優れた効果を有する。   According to the present invention, there is an excellent effect that it is possible to calculate the optimal solution for the ship speed distribution and the load distributed to the main engine without requiring a long calculation time.

本発明の実施形態に係る最適化計算を示す模式図である。It is a schematic diagram which shows the optimization calculation which concerns on embodiment of this invention. 本発明の実施形態に係る入力ステップで入力される区間、区間毎の船速制限値、及び船速配分の一例を示す模式図である。It is a schematic diagram which shows an example of the area input at the input step which concerns on embodiment of this invention, the ship speed limit value for every area, and ship speed distribution. 本発明の実施形態に係る主機負荷配分算出装置の電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the main machine load distribution calculation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る主機負荷配分算出装置の機能ブロック図である。It is a functional block diagram of a main engine load distribution calculating device according to an embodiment of the present invention. 本発明の実施形態に係る最適化計算処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the optimization calculation process which concerns on embodiment of this invention. 本発明の実施形態に係る最適化計算処理のステップ104における処理内容を示したフローチャートである。It is the flowchart which showed the processing content in step 104 of the optimization calculation process which concerns on embodiment of this invention. 本発明の実施形態に係る船速から燃料消費量を算出する計算モデルを示した模式図である。It is the model which showed the calculation model which calculates fuel consumption from the ship speed which concerns on embodiment of this invention. 本発明の実施形態に係る主機負荷最適化計算による主機負荷配分の方法を示す模式図である。It is a schematic diagram which shows the method of the main machine load distribution by the main machine load optimization calculation which concerns on embodiment of this invention.

以下に、本発明に係る主機負荷配分算出装置及び主機負荷配分算出方法の一実施形態について、図面を参照して説明する。
本実施形態に係る主機負荷配分算出装置は、船舶の船速及び複数の主機毎に配分する負荷を算出する。なお、主機負荷配分算出装置は、例えば、制約条件を満たしながら目的関数を最小化又は最大化させる最適解(制御変数)を求める最適化計算を行う。なお、最適化計算のアルゴリズムは、公知の内点法や逐次二次計画法等が用いられる。
Hereinafter, an embodiment of a main machine load distribution calculating apparatus and a main machine load distribution calculating method according to the present invention will be described with reference to the drawings.
The main engine load distribution calculating device according to the present embodiment calculates the ship speed and the load distributed for each of the plurality of main engines. The main engine load distribution calculating device performs, for example, optimization calculation for obtaining an optimal solution (control variable) that minimizes or maximizes the objective function while satisfying the constraint condition. As the optimization calculation algorithm, a known interior point method, sequential quadratic programming, or the like is used.

そして、本実施形態に係る船速算出は、船舶の最適な船速を算出するものであり、出発地点から到着地点までの航路を疑似的に複数の区間に分け、該区間毎の最適な船速を算出する船速配分最適化(以下「船速最適化計算」ともいう。)するものである。   The ship speed calculation according to the present embodiment calculates the optimum ship speed of the ship. The route from the departure point to the arrival point is divided into a plurality of sections, and the optimum ship for each section is calculated. The ship speed distribution optimization for calculating the speed (hereinafter also referred to as “ship speed optimization calculation”) is performed.

図1は、船速最適化計算の概念の一例を示す模式図である。
図1の例に示される船速最適化計算は、入力ステップ、計算条件決定ステップ、燃料消費量計算ステップ、及び船速配分最適化ステップを有する。
FIG. 1 is a schematic diagram showing an example of the concept of ship speed optimization calculation.
The ship speed optimization calculation shown in the example of FIG. 1 includes an input step, a calculation condition determination step, a fuel consumption calculation step, and a ship speed distribution optimization step.

入力ステップでは、船速を算出するために必要な情報として、例えば、航海計画、気象海象予報情報、初期条件等が入力(設定)される。
航海計画は、例えば、船舶の出発地点からの出航時刻及び到着地点への到着時刻、区間毎の船速の制限値(最大船速及び最小船速であり、以下「船速制限値」という。)等である。船速制限値は、その区間における船舶の喫水やトリム、及び区間の水深等によって決定される。なお、船舶の出航時刻及び到着時刻から目標航海時間が得られる。
これら、目標航海時間及び船速制限値が制約条件とされる。
気象海象予報情報は、気温、風向、風速、潮流の流速、潮流の方向、波高、及び波向である。
初期条件は、区間毎の船速配分である。
In the input step, for example, navigation plan, meteorological sea forecast information, initial conditions, etc. are input (set) as information necessary for calculating the ship speed.
In the voyage plan, for example, the departure time from the departure point of the ship, the arrival time at the arrival point, and the limit values of the ship speed for each section (maximum ship speed and minimum ship speed, hereinafter referred to as “ship speed limit value”). ) Etc. The ship speed limit value is determined by the draft and trim of the ship in the section, the depth of the section, and the like. The target voyage time can be obtained from the departure time and arrival time of the ship.
These target voyage time and ship speed limit value are the constraint conditions.
The weather and sea state forecast information includes temperature, wind direction, wind speed, tidal current velocity, tidal current direction, wave height, and wave direction.
The initial condition is the distribution of ship speed for each section.

計算条件決定ステップでは、各区間に対する計算条件が決定される。
計算条件は、例えば、各区間に対する船舶の通過時刻、各区間に対する船舶の通過時の緯度及び経度、各区間に対する船舶の通過時の気象海象予測情報である。
In the calculation condition determination step, calculation conditions for each section are determined.
The calculation conditions are, for example, the passage time of the ship for each section, the latitude and longitude when the ship passes for each section, and weather and sea state prediction information when the ship passes for each section.

燃料消費量計算ステップでは、航路の移動、換言すると全区間における船舶の燃料消費量を算出する。
燃料消費量計算ステップでは、船舶の推進負荷が船速や気象海象条件により変動する推進モデルが用いられ、この推進モデルにおいて、推進負荷から燃費を計算し、燃費と各区間の距離から燃料消費量が算出される。なお、燃料消費量計算ステップの詳細は、図7を参照して後述する。
In the fuel consumption calculation step, the movement of the route, in other words, the fuel consumption of the ship in all sections is calculated.
In the fuel consumption calculation step, a propulsion model is used in which the propulsion load of the ship fluctuates depending on the ship speed and weather conditions. In this propulsion model, fuel consumption is calculated from the propulsion load, and fuel consumption is calculated from the fuel consumption and the distance of each section. Is calculated. Details of the fuel consumption calculation step will be described later with reference to FIG.

そして、船速配分最適化ステップは、燃料消費量を目的関数とし、燃料消費量が最小化するように、入力ステップにおける初期条件である区間毎の船速配分を変更する。
すなわち、区間毎の船速が制御変数とされる。
The ship speed distribution optimization step changes the ship speed distribution for each section, which is the initial condition in the input step, so that the fuel consumption is an objective function and the fuel consumption is minimized.
That is, the ship speed for each section is set as the control variable.

図2は、入力ステップで入力される区間、区間毎の船速制限値、及び船速配分の一例を示す模式図である。図2に示されるように、船速配分は最大船速及び最小船速を満たすように制御(変更)される。船速配分における固定とは、例えば出港や入港の場合等その区間の船速が予め定められた値とされている。すなわち、区間毎の船速は、目標航海時間で到着地点に達するように、区間毎の最大船速及び最小船速の範囲内で決定される。なお、例えば区間毎の距離に区間毎の船速(制御変数)を除算することで区間毎の航海時間が算出され、その航海時間の総和を総航海時間とされ、目標航海時間と比較される。   FIG. 2 is a schematic diagram showing an example of sections input in the input step, ship speed limit values for each section, and ship speed distribution. As shown in FIG. 2, the ship speed distribution is controlled (changed) so as to satisfy the maximum ship speed and the minimum ship speed. The fixed ship speed distribution is a predetermined value for the speed of the section, for example, when leaving or entering a port. That is, the ship speed for each section is determined within the range of the maximum ship speed and the minimum ship speed for each section so as to reach the arrival point in the target voyage time. Note that, for example, the voyage time for each section is calculated by dividing the speed of the section (control variable) by the distance for each section, and the total voyage time is taken as the total voyage time, which is compared with the target voyage time. .

そして、燃料消費量計算ステップは、新たに入力された船速配分に応じた燃料消費量を算出する。   In the fuel consumption calculation step, the fuel consumption corresponding to the newly input ship speed distribution is calculated.

このように、船速最適化計算では、出発地点から到着地点に達するまでの目標航海時間(出発時刻と到着時刻)、並びに区間毎の最大船速及び最小船速が制約条件として設定される。そして、区間毎の船速が制御変数とされ、出発地点から到着地点に達するまでの燃料消費量が目的関数とされる。この目的関数を最小とする区間毎の船速が最適解として算出されることとなる。   As described above, in the ship speed optimization calculation, the target voyage time (departure time and arrival time) from the departure point to the arrival point, and the maximum and minimum ship speeds for each section are set as constraints. The ship speed for each section is set as a control variable, and the fuel consumption amount from the departure point to the arrival point is set as an objective function. The ship speed for each section that minimizes this objective function is calculated as the optimum solution.

ここで、本実施形態に係る最適化計算の対象となる船舶は、複数の主機で発電を行い、その電力をモータに連結されたプロペラの回転や、照明及び空調等の電力需要に用いる。すなわち、本実施形態に係る最適化計算は、一例として、電気推進の船舶を対象としている。   Here, the ship which is the object of the optimization calculation according to the present embodiment generates power with a plurality of main engines, and uses the electric power for power demand such as rotation of a propeller connected to the motor, lighting, and air conditioning. That is, the optimization calculation according to the present embodiment targets an electric propulsion ship as an example.

上記のような複数台の主機を備える船舶は、常に全ての主機を動作させるのではなく、負荷の大きさに応じて最適な主機を動作させる。しかしながら、動作させる主機の台数と主機に配分する負荷とを同時に最適化するための計算は、長い計算時間を要し、最適解を算出することが難しい。
そこで、本実施形態に係る主機負荷配分算出装置は、動作させる主機の組み合わせを予め決定する。例えば、主機が4台備えられている場合には、1台運転が4通り、2台運転が6通り、3台運転が4通り、4台運転が1通りの計15通りの組み合わせとなる。
A ship including a plurality of main engines as described above does not always operate all main engines but operates an optimum main engine according to the magnitude of the load. However, the calculation for simultaneously optimizing the number of main machines to be operated and the load distributed to the main machines requires a long calculation time, and it is difficult to calculate an optimal solution.
Therefore, the main machine load distribution calculating apparatus according to the present embodiment determines in advance a combination of main machines to be operated. For example, in the case where four main engines are provided, there are a total of 15 combinations of 4 units for 1 unit operation, 6 units for 2 unit operation, 4 units for 3 unit operation, and 1 unit for 4 unit operation.

本実施形態に係る主機負荷配分算出装置は、決定した主機の組み合わせ毎に、船速最適化計算によって、出発地点から到着地点に達するまでの燃料消費量が最小となる区間毎の船速を算出し、算出された船速に基づいて主機負荷の総量(以下「総主機負荷」という。)を算出する。
そして、主機負荷配分算出装置は、主機の組み合わせ毎に、燃料消費量が最小となる主機毎の負荷配分(以下「主機負荷配分」という。)を算出する主機負荷最適化計算を行う。
The main engine load distribution calculating apparatus according to the present embodiment calculates the ship speed for each section where the fuel consumption from the departure point to the arrival point is minimized by ship speed optimization calculation for each determined combination of main engines. Then, the total amount of the main engine load (hereinafter referred to as “total main engine load”) is calculated based on the calculated ship speed.
Then, the main machine load distribution calculating device performs main machine load optimization calculation for calculating the load distribution for each main machine that minimizes the fuel consumption for each combination of the main machines (hereinafter referred to as “main machine load distribution”).

図3は、本実施形態に係る最適化計算を実行する情報処理装置である主機負荷配分算出装置10の電気的構成を示すブロック図である。
本実施形態に係る主機負荷配分算出装置10は、最適化計算に関するプログラムを実行するCPU(Central Processing Unit)12、各種プログラム及び各種データ等が予め記憶されたROM(Read Only Memory)14、CPU12による各種プログラムの実行時のワークエリア等として用いられるRAM(Random Access Memory)16、各種プログラム及び各種データを記憶する記憶手段としてのHDD(Hard Disk Drive)18を備えている。
FIG. 3 is a block diagram showing an electrical configuration of the main machine load distribution calculating apparatus 10 which is an information processing apparatus that executes the optimization calculation according to the present embodiment.
The main machine load distribution calculating apparatus 10 according to the present embodiment includes a CPU (Central Processing Unit) 12 that executes a program related to optimization calculation, a ROM (Read Only Memory) 14 in which various programs and various data are stored in advance, and the CPU 12. A RAM (Random Access Memory) 16 used as a work area at the time of execution of various programs, and an HDD (Hard Disk Drive) 18 as storage means for storing various programs and various data are provided.

さらに、主機負荷配分算出装置10は、キーボード及びマウス等から構成され、各種操作の入力を受け付ける操作入力部20、各種画像を表示する、例えば液晶ディスプレイ装置等の画像表示部22、外部インタフェース24を介して他の情報処理装置等と接続され、他の情報処理装置や印刷装置等との間で各種データの送受信を行う外部インタフェース24を備えている。   Further, the main machine load distribution calculating device 10 includes a keyboard and a mouse, and includes an operation input unit 20 that receives input of various operations, an image display unit 22 such as a liquid crystal display device, and an external interface 24 that displays various images. And an external interface 24 that transmits and receives various data to and from other information processing apparatuses and printing apparatuses.

これらCPU12、ROM14、RAM16、HDD18、操作入力部20、画像表示部22、及び外部インタフェース24は、システムバス26を介して相互に電気的に接続されている。従って、CPU12は、ROM14、RAM16、及びHDD18へのアクセス、操作入力部20に対する操作状態の把握、画像表示部22に対する画像の表示、並びに外部インタフェース24を介した他の情報処理装置等との各種データの送受信等を各々行なうことができる。   The CPU 12, ROM 14, RAM 16, HDD 18, operation input unit 20, image display unit 22, and external interface 24 are electrically connected to each other via a system bus 26. Accordingly, the CPU 12 accesses the ROM 14, the RAM 16, and the HDD 18, grasps the operation state of the operation input unit 20, displays an image on the image display unit 22, and various types of information processing apparatuses via the external interface 24. Data can be transmitted and received.

図4は、主機負荷配分算出装置10の機能ブロック図である。
主機負荷配分算出装置10は、組み合せ決定部30、最適化演算部32、及び選択部34を備える。
FIG. 4 is a functional block diagram of the main engine load distribution calculating apparatus 10.
The main machine load distribution calculating apparatus 10 includes a combination determining unit 30, an optimization calculating unit 32, and a selecting unit 34.

組み合せ決定部30は、船舶に備えられている複数の主機のうち、動作させる主機の組み合わせ(以下「台数パターン」という。)を決定する。なお、船舶に備えられる各主機は、負荷(馬力)に対する燃料消費量等の特性が同じでもよく、異なってもよい。   The combination determining unit 30 determines a combination of main machines to be operated (hereinafter referred to as “number pattern”) among a plurality of main machines provided in the ship. In addition, each main machine with which a ship is equipped may have the same characteristics, such as fuel consumption with respect to a load (horsepower), and may differ.

最適化演算部32は、組み合せ決定部30で決定された台数パターン毎に、出発地点から到着地点に達するまでの燃料消費量が最小となる区間毎の船速(以下「区間船速」という。)を算出し、区間船速に基づいて総主機負荷を算出し、燃料消費量が最小となる主機負荷配分を算出する。
すなわち、最適化演算部32は、台数パターン毎に最適化計算を行い、主機の負荷配分と区間船速を算出する。例えば、台数パターンが15通りある場合、最適化演算部32は、15回の最適化計算を行い、15通りの主機の負荷配分と区間船速を算出する。
The optimization calculation unit 32 sets the ship speed for each section where the fuel consumption amount from the departure point to the arrival point is minimized for each unit number pattern determined by the combination determination unit 30 (hereinafter referred to as “section ship speed”). ) And the total main engine load is calculated based on the section ship speed, and the main engine load distribution that minimizes the fuel consumption is calculated.
That is, the optimization calculation unit 32 performs optimization calculation for each number pattern, and calculates load distribution and section ship speed of the main engine. For example, when there are 15 patterns, the optimization calculation unit 32 performs 15 optimization calculations to calculate 15 main engine load distributions and section ship speeds.

選択部34は、最適化演算部32による算出結果から、燃料消費量が最小となる主機負荷配分と区間船速とを選択する。   The selection unit 34 selects the main engine load distribution and the section ship speed at which the fuel consumption is minimized from the calculation result by the optimization calculation unit 32.

このように、主機負荷配分算出装置10は、決定された台数パターン毎に、主機負荷配分及び区間船速を算出するので、主機の台数は最適化計算に含まれない。すなわち、主機の台数は、最適化計算の変数とはならない。このため、最適化計算が複雑化することが無いので、主機負荷配分算出装置10は、長い計算時間を必要とすることなく、動作させる主機の台数と主機に配分する負荷の最適解を算出することができる。
なお、主機の台数は、一般的に数台(例えば4台)であるので、最適化計算を主機の台数の考えられる全ての組み合わせの総当りで行っても、計算時間が膨大になることはなく、現実的な計算時間で対応可能である。
As described above, the main engine load distribution calculating apparatus 10 calculates the main apparatus load distribution and the section ship speed for each determined unit number pattern, so the number of main engines is not included in the optimization calculation. That is, the number of main engines is not a variable for optimization calculation. For this reason, since the optimization calculation does not become complicated, the main machine load distribution calculation device 10 calculates the optimum solution of the number of main machines to be operated and the load distributed to the main machine without requiring a long calculation time. be able to.
Since the number of main units is generally several (for example, four units), even if the optimization calculation is performed for all possible combinations of the number of main units, the calculation time will be enormous. And can be handled with realistic calculation time.

次に、最適化演算部32の詳細について説明する。
最適化演算部32は、船速最適化計算部40、総主機負荷計算部42、及び主機負荷最適化計算部44を備える。
Next, details of the optimization calculation unit 32 will be described.
The optimization calculation unit 32 includes a ship speed optimization calculation unit 40, a total main engine load calculation unit 42, and a main machine load optimization calculation unit 44.

船速最適化計算部40は、出発地点から到着地点に達するまでの燃料消費量を目的関数とし、出発地点から到着地点に達するまでの目標航海時間並びに区間毎の最大船速及び最小船速を制約条件とし、区間船速を制御変数とし、目的関数を最小とする区間船速を最適解として算出する。   The ship speed optimization calculation unit 40 uses the fuel consumption from the departure point to the arrival point as an objective function, and calculates the target voyage time from the departure point to the arrival point and the maximum and minimum ship speeds for each section. As a constraint, the section ship speed is set as a control variable, and the section ship speed that minimizes the objective function is calculated as an optimal solution.

総主機負荷計算部42は、船速最適化計算部40によって算出された区間船速、及び船内での消費電力の予測値(以下「船内電力予測値」という。)に基づいて総主機負荷を算出する。すなわち、総主機負荷計算部42は、区間船速から船速負荷を算出し、船内電力予測値から船内電力負荷を算出し、船速負荷と船内電力負荷との和を、船舶が必要とする負荷の合計である総主機負荷とする。   The total main engine load calculation unit 42 calculates the total main engine load based on the section ship speed calculated by the ship speed optimization calculation unit 40 and the predicted value of power consumption in the ship (hereinafter referred to as “inboard power predicted value”). calculate. That is, the total main engine load calculation unit 42 calculates the ship speed load from the section ship speed, calculates the ship power load from the predicted ship power, and the ship needs the sum of the ship speed load and the ship power load. The total main engine load, which is the total load.

なお、船内電力予測値は、別途外部ネットワーク等から取得した気象海象予報情報から得られる気象条件や海象条件に基づいて算出される。例えば、外気温度に基づいて空調設備の消費電力が予測され、日照量に基づいて照明の消費電力が予測される。   Note that the predicted ship power is calculated based on weather conditions and sea conditions obtained from weather and sea forecast information separately obtained from an external network or the like. For example, the power consumption of the air conditioning equipment is predicted based on the outside air temperature, and the power consumption of lighting is predicted based on the amount of sunlight.

そして、主機負荷最適化計算部44は、燃料消費量を目的関数とし、総主機負荷並びに主機毎の最大負荷及び最小負荷を制約条件とし、総主機負荷に基づく主機負荷配分を制御変数とし、目的関数を最小とする主機負荷配分を最適解として算出する。主機負荷配分は、主機毎に配分される負荷の大きさであるため、以下の説明で「個別主機負荷」ともいう。   The main engine load optimization calculation unit 44 uses the fuel consumption as an objective function, sets the total main machine load and the maximum and minimum loads for each main machine as constraints, sets the main machine load distribution based on the total main machine load as a control variable, The main engine load distribution that minimizes the function is calculated as the optimal solution. Since the main machine load distribution is the size of the load distributed to each main machine, it is also referred to as “individual main machine load” in the following description.

下記表1は、船速最適化計算部40による計算条件(船速最適化計算条件)、及び総主機負荷計算部42による計算条件(主機負荷最適化計算条件)の一覧である。

Figure 0006189278
Table 1 below is a list of calculation conditions (ship speed optimization calculation conditions) by the ship speed optimization calculation unit 40 and calculation conditions (main machine load optimization calculation conditions) by the total main engine load calculation unit 42.
Figure 0006189278

すなわち、船速最適化計算部40は、目標航海時間を満たすように区間毎の最大船速及び最小船速の範囲内で、燃料消費量が最小となる区間船速を算出するものである。また、主機負荷最適化計算部44は、総主機負荷計算部42で算出された総主機負荷を満たすように主機毎の最大負荷及び最小負荷の範囲内で、燃料消費量が最小となる主機負荷配分を算出するものである。
そして、最適化演算部32は、台数パターン毎に、船速最適化計算部40、総主機負荷計算部42、及び主機負荷最適化計算部44による演算を行い、主機負荷最適化計算部44による演算結果を選択部34に出力する。
That is, the ship speed optimization calculation unit 40 calculates the section ship speed at which the fuel consumption is minimum within the range of the maximum ship speed and the minimum ship speed for each section so as to satisfy the target voyage time. The main engine load optimization calculation unit 44 also has a main engine load that minimizes fuel consumption within the range of the maximum load and the minimum load for each main unit so as to satisfy the total main unit load calculated by the total main unit load calculation unit 42. The allocation is calculated.
Then, the optimization calculation unit 32 performs calculations by the ship speed optimization calculation unit 40, the total main engine load calculation unit 42, and the main unit load optimization calculation unit 44 for each number pattern, and the main unit load optimization calculation unit 44 performs the calculation. The calculation result is output to the selection unit 34.

図5は、本実施形態に係る最適化計算処理の流れを示すフローチャートである。   FIG. 5 is a flowchart showing the flow of optimization calculation processing according to this embodiment.

まず、ステップ100では、組み合せ決定部30によって台数パターンを決定する。   First, in step 100, the combination number determining unit 30 determines the number pattern.

また、ステップ102では、気象海象予報情報から得られる気象条件や海象条件に基づいて、船内電力予測値を算出する。   In step 102, an inboard power prediction value is calculated based on weather conditions and sea conditions obtained from the weather and sea forecast information.

次のステップ104では、ステップ100で決定した台数パターン毎に、船速最適化計算及び主機負荷最適化計算を行う。この最適化計算において、ステップ102で算出した船内電力予測値が用いられる。   In the next step 104, ship speed optimization calculation and main engine load optimization calculation are performed for each number pattern determined in step 100. In this optimization calculation, the predicted ship power value calculated in step 102 is used.

次のステップ106では、ステップ104による最適化計算で算出した主機負荷配分や燃料消費量等を台数パターン毎に、HDD18に記憶させる。   In the next step 106, the main machine load distribution and the fuel consumption calculated by the optimization calculation in step 104 are stored in the HDD 18 for each number pattern.

次のステップ108では、全ての台数パターンに対して最適化計算が終了したか否かを判定し、肯定判定の場合はステップ110へ移行する。否定判定の場合はステップ104へ戻り、全ての台数パターンに対して終了するまで最適化計算を繰り返す。   In the next step 108, it is determined whether or not the optimization calculation has been completed for all the number patterns. If the determination is affirmative, the process proceeds to step 110. In the case of negative determination, the process returns to step 104, and the optimization calculation is repeated until completion for all the number patterns.

ステップ110では、全ての台数パターンのうち、最も燃料消費量が少なくなる台数パターンをHDD18から読み出し、その台数パターンにおける主機負荷配分を最適解として決定し、最適化計算処理を終了する。   In step 110, among all the unit number patterns, the unit number pattern with the smallest fuel consumption is read from the HDD 18, the main engine load distribution in the unit number pattern is determined as the optimal solution, and the optimization calculation process is terminated.

図6は、ステップ104における処理内容を示したフローチャートである。   FIG. 6 is a flowchart showing the processing contents in step 104.

まず、ステップ200では、船速最適化計算により区間船速を算出する。   First, in step 200, the section ship speed is calculated by ship speed optimization calculation.

ステップ202では、燃費消費量集束計算を行う。ステップ200で算出した区間船速を用いて主機馬力を算出し、予めHDD18に記憶されている馬力・燃費情報に基づいて、区間船速に応じた燃費を算出する。馬力・燃費情報は、主機馬力(主機負荷)と燃料消費(以下「燃費」ともいう。)との相関関係を示す情報(例えば関数)である。
なお、ステップ202で燃料消費量を算出する過程では、ステップ102で算出した船内電力予測値を用いることで、総主機負荷も算出される。
In step 202, fuel consumption consumption focusing calculation is performed. The main engine horsepower is calculated using the section ship speed calculated in step 200, and the fuel consumption corresponding to the section ship speed is calculated based on the horsepower / fuel consumption information stored in the HDD 18 in advance. The horsepower / fuel consumption information is information (for example, a function) indicating a correlation between main engine horsepower (main engine load) and fuel consumption (hereinafter also referred to as “fuel consumption”).
In the process of calculating the fuel consumption in step 202, the total main engine load is also calculated by using the predicted inboard power calculated in step 102.

また、船舶は航行において水が抵抗となるため、実際には、船速最適化計算で算出した区間船速に対して水の抵抗を考慮する必要がある。このため、ステップ202では、水の抵抗等を考慮した高精度な燃料消費量を算出する。そして、船速最適化計算で算出した区間船速に対して水の抵抗を考慮した修正を行う。この修正された船速(以下「修正船速」)は、船速最適化計算の制御変数として用いられる。
船速最適化計算は、修正船速を基準として区間船速を再び算出し、ステップ202で燃料消費量の算出と修正船速の算出を行う。そして、船速最適化計算で求めた区間船速と修船速とがほぼ一致するまで、すなわち収束するまでステップ200とステップ202が繰り返される。
In addition, since water becomes resistance during navigation, it is actually necessary to consider the resistance of water against the section ship speed calculated by the ship speed optimization calculation. For this reason, in step 202, highly accurate fuel consumption considering water resistance and the like is calculated. And the correction which considered the resistance of water is performed with respect to the section ship speed calculated by ship speed optimization calculation. This corrected ship speed (hereinafter referred to as “corrected ship speed”) is used as a control variable for ship speed optimization calculation.
In the ship speed optimization calculation, the section ship speed is calculated again based on the corrected ship speed, and the fuel consumption amount and the corrected ship speed are calculated in step 202. Then, Step 200 and Step 202 are repeated until the section ship speed obtained by the ship speed optimization calculation and the ship repair speed substantially coincide, that is, until convergence.

ステップ204では、ステップ202で算出した総主機負荷と台数パターンに基づいた、主機負荷最適化計算を行う。   In step 204, main machine load optimization calculation based on the total main machine load calculated in step 202 and the number pattern is performed.

ステップ206では、主機負荷最適化計算によって決定された主機毎の負荷配分に基づいた燃料消費量の計算を、馬力・燃費情報を用いて行う。   In step 206, calculation of the fuel consumption based on the load distribution for each main engine determined by the main engine load optimization calculation is performed using the horsepower / fuel consumption information.

図7は、船速から燃料消費量を算出する計算モデル50を示した模式図である。すなわち、図7に示される計算モデル50は、上述したステップ202に相当する。   FIG. 7 is a schematic diagram showing a calculation model 50 for calculating the fuel consumption from the ship speed. That is, the calculation model 50 shown in FIG. 7 corresponds to step 202 described above.

まず、制御変数である船速は、推進力計算モデル52に入力される。
推進力計算モデル52は、船形やプロペラ形状等の船舶仕様に基づいて、入力された船速を実現するための推進馬力を算出すると共に、入力された船速を実現するための基準となるプロペラの回転数やプロペラの翼角等の作動点を算出する。
First, the ship speed, which is a control variable, is input to the propulsive force calculation model 52.
The propulsive force calculation model 52 calculates the propulsion horsepower for realizing the input ship speed based on the ship specifications such as the ship shape and the propeller shape, and also serves as a reference propeller for realizing the input ship speed. The operating point such as the number of rotations and the blade angle of the propeller is calculated.

総必要電力算出部54は、算出した推進馬力を実現するための必要電力と船内電力予測値とを合計し、船舶で必要とする電力の合計値である総必要電力を算出する。   The total required power calculation unit 54 adds the required power for realizing the calculated propulsion horsepower and the predicted power value in the ship, and calculates the total required power that is the total value of the power required by the ship.

作動点調整部56は、推進力計算モデル52で算出された作動点に対して、プロペラに作用する水の抵抗等に基づいて調整(補正)を行い、実際のプロペラの回転数等(以下「調整作動点」という。)を算出する。   The operating point adjustment unit 56 adjusts (corrects) the operating point calculated by the propulsive force calculation model 52 based on the resistance of water acting on the propeller, etc. "Adjustment operating point").

そして、燃料消費量計算モデル58は、総必要電力算出部54から入力される総必要電力や、作動点調整部56から入力される調整作動点に基づいて、主機で生じさせるべき馬力(総主機負荷)を計算し、予め記憶されている馬力・燃費情報に基づいて、船舶の燃料消費量を算出する。なお、主機を運転する時間に燃費を乗算することで、燃料消費量が算出される。   The fuel consumption calculation model 58 is based on the total required power input from the total required power calculation unit 54 and the adjustment power point input from the operating point adjustment unit 56. Load) and the fuel consumption of the ship is calculated based on the horsepower / fuel consumption information stored in advance. The fuel consumption amount is calculated by multiplying the time for driving the main engine by the fuel consumption.

また、船速再計算部60は、調整作動点に基づく船速を計算し、修正船速とする。船速再計算部60で算出された修正船速は、制御変数として船速最適化計算に用いられる。   Further, the ship speed recalculation unit 60 calculates a ship speed based on the adjustment operating point and sets it as a corrected ship speed. The corrected ship speed calculated by the ship speed recalculation unit 60 is used as a control variable for the ship speed optimization calculation.

このように、本実施形態に係る最適化計算は、図7に示すように、船内の電力消費や船舶に作用する水の抵抗等を考慮することで、船舶の燃料消費量を高精度に求めることができる。   As described above, the optimization calculation according to the present embodiment obtains the fuel consumption of the ship with high accuracy by considering the power consumption in the ship and the resistance of water acting on the ship, as shown in FIG. be able to.

図8は、主機負荷最適化計算による主機負荷配分の方法を示す模式図である。   FIG. 8 is a schematic diagram showing a main machine load distribution method by main machine load optimization calculation.

図8に示されるように、主機負荷最適化計算では、相対的に燃料消費が高い主機よりも相対的に燃焼消費が低い主機に対して、負荷をより多く配分する。   As shown in FIG. 8, in the main engine load optimization calculation, more load is distributed to the main engine having a relatively low combustion consumption than the main engine having a relatively high fuel consumption.

図8の例において、主機1、主機2、主機3は、各々負荷(馬力)と燃料消費との相関関係が異なる。
主機1では、負荷が小さくても燃料消費は大きいが、負荷がある程度以上となると負荷の大きさに関わらず燃料消費がほぼ一定となる。主機2では、負荷が大きくても燃料消費は小さい。主機3では、負荷の増加に比例して燃料消費も大きくなる。
なお、図8に示されるような負荷(馬力)と燃料消費との相関関係を示したグラフは、上述した馬力・燃費情報に相当する。
In the example of FIG. 8, main machine 1, main machine 2, and main machine 3 have different correlations between load (horsepower) and fuel consumption.
In the main engine 1, the fuel consumption is large even if the load is small, but if the load exceeds a certain level, the fuel consumption becomes almost constant regardless of the magnitude of the load. In the main engine 2, fuel consumption is small even when the load is large. In the main engine 3, the fuel consumption increases in proportion to the increase in load.
Note that the graph showing the correlation between the load (horsepower) and the fuel consumption as shown in FIG. 8 corresponds to the horsepower / fuel consumption information described above.

そこで、図8の例では、主機2に最も多く負荷を配分し、次に主機3、主機1の順番に多くの負荷を配分する。なお、図8に示される相関関係を示したグラフにおける黒点の位置が、各主機に配分する負荷及び負荷に応じた燃料消費である。   Therefore, in the example of FIG. 8, the most load is allocated to the main unit 2, and then the large load is allocated in the order of the main unit 3 and the main unit 1. In addition, the position of the black dot in the graph showing the correlation shown in FIG. 8 is the load allocated to each main engine and the fuel consumption corresponding to the load.

これにより、主機負荷最適化計算は、簡易かつより精度高く、動作させる主機の台数と主機に配分する負荷の最適解を算出することができる。   Thereby, the main machine load optimization calculation can calculate the optimum solution of the number of main machines to be operated and the load distributed to the main machines in a simple and more accurate manner.

以上説明したように、本実施形態に係る主機負荷配分算出装置10は、出発地点から到着地点までの航路を疑似的に複数の区間に分け、複数台の主機を備える船舶における該区間毎の船速、及び前記主機への負荷配分を算出する。
主機負荷配分算出装置10は、組み合せ決定部30によって、動作させる主機の組み合わせを決定する。そして、最適化演算部32が、決定した主機の組み合わせ毎に、出発地点から到着地点に達するまでの燃料消費量が最小となる区間毎の船速を算出し、該船速に基づいて主機負荷を算出し、燃料消費量が最小となる主機毎の負荷配分を算出する。そして、選択部34が、最適化演算部32による算出結果から、燃料消費量が最小となる主機毎の負荷配分と区間毎の船速とを選択する。
As described above, the main engine load distribution calculating device 10 according to this embodiment divides the route from the departure point to the arrival point into a plurality of sections in a pseudo manner, and ships for each section in a ship including a plurality of main engines. Speed and load distribution to the main engine are calculated.
The main machine load distribution calculating apparatus 10 determines a combination of main machines to be operated by the combination determining unit 30. Then, the optimization calculation unit 32 calculates the ship speed for each section in which the fuel consumption amount from the departure point to the arrival point is minimized for each determined combination of the main engine, and the main engine load is calculated based on the ship speed. And the load distribution for each main engine that minimizes the fuel consumption is calculated. And the selection part 34 selects the load distribution for every main engine and the ship speed for every section from which the amount of fuel consumption becomes the minimum from the calculation result by the optimization calculating part 32. FIG.

これにより、本実施形態に係る主機負荷配分算出装置10は、長い計算時間を必要とすることなく、船速配分及び主機に配分する負荷の最適解を算出できる。   Thereby, the main engine load distribution calculating apparatus 10 according to the present embodiment can calculate the optimal solution for the ship speed distribution and the load to be distributed to the main engine without requiring a long calculation time.

以上、本発明を、上記実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記実施形態に多様な変更又は改良を加えることができ、該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。また、上記実施形態を適宜組み合わせてもよい。   As mentioned above, although this invention was demonstrated using the said embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. Various changes or improvements can be added to the above-described embodiment without departing from the gist of the invention, and embodiments to which the changes or improvements are added are also included in the technical scope of the present invention. Moreover, you may combine the said embodiment suitably.

例えば、上記実施形態では、船舶の燃料消費量を算出する際に、船内の電力消費量を考慮するする形態について説明したが、本発明は、これに限定されるものではなく、例えば、船内の電力消費量が推進力に要する負荷に比べて非常に小さい船舶等の場合、船内の電力消費量を考慮せずに、船速から総主機負荷を一意に決定する形態としてもよい。   For example, in the above-described embodiment, the mode in which the power consumption in the ship is taken into account when calculating the fuel consumption in the ship has been described, but the present invention is not limited to this. In the case of a ship or the like whose power consumption is very small compared to the load required for propulsive force, the total main engine load may be uniquely determined from the ship speed without considering the power consumption in the ship.

また、上記実施形態で説明した各処理の流れも一例であり、本発明の主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよい。   The flow of each process described in the above embodiment is also an example, and unnecessary steps are deleted, new steps are added, or the processing order is changed within a range not departing from the gist of the present invention. Also good.

10 主機負荷配分算出装置
30 組み合せ決定部
32 最適化演算部
34 選択部
40 船速最適化計算部
42 総主機負荷計算部
44 主機負荷最適化計算部
DESCRIPTION OF SYMBOLS 10 Main machine load distribution calculation apparatus 30 Combination determination part 32 Optimization calculation part 34 Selection part 40 Ship speed optimization calculation part 42 Total main machine load calculation part 44 Main machine load optimization calculation part

Claims (5)

複数台の主機を備える船舶における出発地点から到着地点までの船速、及び前記主機への負荷配分を算出する主機負荷配分算出装置であって、
動作させる前記主機の組み合わせを決定する決定手段と、
前記決定手段で決定された前記主機の組み合わせ毎に、出発地点から到着地点に達するまでの燃料消費量が最小となる船速を算出し、該船速に基づいて主機負荷の総量を算出し、前記燃料消費量が最小となる前記主機毎の負荷配分を算出する演算手段と、
前記演算手段による算出結果から、前記燃料消費量が最小となる前記主機毎の負荷配分と船速とを選択する選択手段と、
を備える主機負荷配分算出装置。
A main machine load distribution calculating device for calculating a ship speed from a departure point to an arrival point in a ship having a plurality of main machines, and load distribution to the main machine,
Determining means for determining a combination of the main machines to be operated;
For each combination of the main engines determined by the determining means, calculate the ship speed at which the fuel consumption from the departure point to the arrival point is minimized, and calculate the total amount of the main engine load based on the ship speed, Computing means for calculating a load distribution for each main engine that minimizes the fuel consumption;
A selection means for selecting a load distribution and a ship speed for each of the main engines from which the fuel consumption is minimized from the calculation result by the calculation means;
A main engine load distribution calculating device.
前記演算手段は、船速及び船内で用いられる電力の予測値に基づいて前記主機負荷の総量を算出する請求項1記載の主機負荷配分算出装置。   The main engine load distribution calculating device according to claim 1, wherein the calculation means calculates a total amount of the main engine load based on a ship speed and a predicted value of electric power used in the ship. 前記演算手段は、出発地点から到着地点までの航路を疑似的に複数の区間に分け、
出発地点から到着地点に達するまでの燃料消費量を目的関数とし、出発地点から到着地点に達するまでの目標航海時間並びに前記区間毎の最大船速及び最小船速を制約条件とし、前記区間毎の船速を制御変数とし、前記目的関数を最小とする前記区間毎の船速を最適解として算出する船速最適化計算手段と、
前記船速最適化計算手段によって算出された前記区間毎の船速に基づいて前記主機負荷の総量を算出する総主機負荷計算手段と、
前記燃料消費量を目的関数とし、前記主機負荷の総量並びに前記主機毎の最大負荷及び最小負荷を制約条件とし、前記主機負荷の総量に基づく前記主機毎の負荷配分を制御変数とし、前記目的関数を最小とする前記主機毎の負荷配分を最適解として算出する主機負荷最適化計算手段と、
を備える請求項1又は請求項2記載の主機負荷配分算出装置。
The arithmetic means divides the route from the departure point to the arrival point in a plurality of sections in a pseudo manner,
The fuel consumption from the departure point to the arrival point is used as an objective function, the target voyage time from the departure point to the arrival point and the maximum and minimum boat speeds for each section are set as constraints. A ship speed optimization calculating means for calculating a ship speed as an optimal solution with a ship speed as a control variable and a ship speed for each section that minimizes the objective function;
Total main engine load calculation means for calculating the total amount of the main engine load based on the ship speed for each section calculated by the ship speed optimization calculation means;
The fuel consumption is an objective function, the total amount of the main engine load and the maximum load and the minimum load for each main machine are set as constraints, the load distribution for each main machine based on the total amount of the main machine load is a control variable, and the objective function Main machine load optimization calculating means for calculating the load distribution for each main machine that minimizes
The main machine load distribution calculation apparatus of Claim 1 or Claim 2 provided with.
前記演算手段は、相対的に燃料消費が高い前記主機よりも相対的に燃焼消費が低い前記主機に対して、負荷をより多く配分する請求項1から請求項3の何れか1項記載の主機負荷配分算出装置。   The main unit according to any one of claims 1 to 3, wherein the arithmetic unit distributes more load to the main unit that consumes relatively less fuel than the main unit that consumes relatively higher fuel. Load distribution calculation device. 複数台の主機を備える船舶における出発地点から到着地点までの船速、及び前記主機への負荷配分を算出する主機負荷配分算出方法であって、
動作させる前記主機の組み合わせを決定する第1工程と、
前記第1工程で決定された前記主機の組み合わせ毎に、出発地点から到着地点に達するまでの燃料消費量が最小となる船速を算出し、該船速に基づいて主機負荷の総量を算出し、前記燃料消費量が最小となる前記主機毎の負荷配分を算出する第2工程と、
前記第2工程による算出結果から、前記燃料消費量が最小となる前記主機毎の負荷配分と船速とを選択する第3工程と、
を含む主機負荷配分算出方法。
A main engine load distribution calculation method for calculating a ship speed from a departure point to an arrival point in a ship having a plurality of main engines, and load distribution to the main engine,
A first step of determining a combination of the main machines to be operated;
For each combination of the main engines determined in the first step, the ship speed at which the fuel consumption from the departure point to the arrival point is minimized is calculated, and the total amount of the main engine load is calculated based on the ship speed. A second step of calculating a load distribution for each main engine that minimizes the fuel consumption;
A third step of selecting a load distribution and a ship speed for each main engine that minimizes the fuel consumption from the calculation result of the second step;
The main engine load distribution calculation method.
JP2014231562A 2014-11-14 2014-11-14 Main machine load distribution calculation device and main machine load distribution calculation method Active JP6189278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014231562A JP6189278B2 (en) 2014-11-14 2014-11-14 Main machine load distribution calculation device and main machine load distribution calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014231562A JP6189278B2 (en) 2014-11-14 2014-11-14 Main machine load distribution calculation device and main machine load distribution calculation method

Publications (2)

Publication Number Publication Date
JP2016094105A JP2016094105A (en) 2016-05-26
JP6189278B2 true JP6189278B2 (en) 2017-08-30

Family

ID=56071049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014231562A Active JP6189278B2 (en) 2014-11-14 2014-11-14 Main machine load distribution calculation device and main machine load distribution calculation method

Country Status (1)

Country Link
JP (1) JP6189278B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6856740B2 (en) * 2017-03-09 2021-04-14 日本郵船株式会社 Voyage planning support system and voyage planning support program
DE202017105323U1 (en) * 2017-09-05 2017-09-25 Man Diesel & Turbo Se Control device for operating a system of several internal combustion engines
DE102017123040A1 (en) * 2017-10-05 2019-04-11 Man Energy Solutions Se Method and control device for operating a system of several internal combustion engines
DE102017123044A1 (en) * 2017-10-05 2019-04-11 Man Diesel & Turbo Se Method and control device for operating a system of several internal combustion engines
JP2021116011A (en) * 2020-01-28 2021-08-10 ナブテスコ株式会社 Vessel
US20210278846A1 (en) * 2020-03-06 2021-09-09 Brunswick Corporation System and method for controlling speed of a marine vessel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078678B2 (en) * 1986-07-04 1995-02-01 三菱重工業株式会社 Electric propulsion ship with computing device for propulsion load estimation
JP3868338B2 (en) * 2002-06-21 2007-01-17 三菱重工業株式会社 Ship operation system
US20100094490A1 (en) * 2007-04-19 2010-04-15 Glacier Bay, Inc Power generation system for marine vessel
JP2013027285A (en) * 2011-07-26 2013-02-04 Hitachi Ltd Load sharing method of power generator
US9157746B2 (en) * 2011-11-16 2015-10-13 The Boeing Company Vessel routing system
JP5931712B2 (en) * 2012-12-26 2016-06-08 三菱重工業株式会社 Energy optimal operation system, energy optimal operation method
JP6000118B2 (en) * 2012-12-26 2016-09-28 三菱重工業株式会社 Operation support system and operation support method

Also Published As

Publication number Publication date
JP2016094105A (en) 2016-05-26

Similar Documents

Publication Publication Date Title
JP6189278B2 (en) Main machine load distribution calculation device and main machine load distribution calculation method
CN110967022B (en) Ship navigational speed optimization auxiliary decision-making system
JP2015523557A (en) Method and system for route determination for ship
JP5702466B2 (en) Method and apparatus for controlling energy consumption in a ship
JP5328874B2 (en) Navigation support equipment and ships
JP2015526778A (en) And system for predicting ship performance
JP7312263B2 (en) A device for determining the optimum route of a sea vessel
JP6000118B2 (en) Operation support system and operation support method
NO345705B1 (en) A method for optimizing an efficiency of a vessel on a voyage
CN102282472A (en) Analyzing voyage efficiencies
JP2013134089A (en) Optimal sailing route calculating apparatus and optimal sailing route calculating method
WO2016136297A1 (en) Ship operation assistance system, and ship operation assistance method
WO2019004416A1 (en) Optimal route searching method and device
JPWO2014115352A1 (en) Device, program, recording medium and method for determining navigation speed of ship
JP6121317B2 (en) Ship speed control device, ship speed control system, ship speed control method, and ship speed control program
CN102959216A (en) Ship engine control device and ship engine control method
KR20160016121A (en) Method of providing ship navigation information, server performing the same and storage media storing the same
KR20230041514A (en) System and method for operating rotor sail on real sea area by using machine learning and computer-readable recording medium including the same
KR20160063593A (en) Method of controling ship navigation, apparatus performing the same and storage media storing the same
JP2016078472A (en) Vessel speed calculation device and vessel speed calculation method
JP2015123904A (en) Ship
JP4790072B1 (en) Marine engine control apparatus and method
JP2016078471A (en) Vessel speed calculation device and vessel speed calculation method
JP2021116057A (en) Steering control device and marine vessel
JP2013129242A (en) Propeller position optimization program and method of optimizing propeller position for vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170802

R150 Certificate of patent or registration of utility model

Ref document number: 6189278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150