JP2016078471A - Vessel speed calculation device and vessel speed calculation method - Google Patents
Vessel speed calculation device and vessel speed calculation method Download PDFInfo
- Publication number
- JP2016078471A JP2016078471A JP2014208098A JP2014208098A JP2016078471A JP 2016078471 A JP2016078471 A JP 2016078471A JP 2014208098 A JP2014208098 A JP 2014208098A JP 2014208098 A JP2014208098 A JP 2014208098A JP 2016078471 A JP2016078471 A JP 2016078471A
- Authority
- JP
- Japan
- Prior art keywords
- route
- ship speed
- ship
- point
- divided
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004364 calculation method Methods 0.000 title claims abstract description 92
- 239000000446 fuel Substances 0.000 claims abstract description 27
- 238000005457 optimization Methods 0.000 description 49
- 230000006870 function Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 9
- 230000010365 information processing Effects 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Landscapes
- Traffic Control Systems (AREA)
Abstract
Description
本発明は、船速算出装置及び船速算出方法に関するものである。 The present invention relates to a ship speed calculation device and a ship speed calculation method.
例えば、長距離を航行する船舶は、船舶のエネルギー需要を考慮し、省エネルギー運転と到着地点に定刻で到着する定刻運転の両立を目的とした最適な船速計画の作成が求められる。
特許文献1には、船舶が通過点を通過予定時刻に通過し、且つ、到着予定時刻に見合うように、気象・海象の情報に基づいて船速及び操舵の制御を行う航海計画支援システムが開示されている。
For example, a ship navigating a long distance is required to create an optimal ship speed plan for the purpose of both energy saving operation and scheduled operation that arrives at the arrival point on time in consideration of the energy demand of the ship.
特許文献1では、図2(b)に開示されているように、設計変数を主機負荷やプロペラ翼角とし、制約条件を運航限界や当舵量等とし、目的関数を最小燃焼消費や最小CO2排出量とした最適化計算を用いることが示唆されている。
すなわち、特許文献1に開示されている航海計画支援システムでは、制約条件を満たしながら目的関数である最小燃焼消費や最小CO2排出量を最小化させる主機負荷やプロペラ翼角を最適解として求めていると解される。
In
That is, in the navigation planning support system disclosed in
しかしながら、航路において中継地点の通過時間が設定されている場合、中継地点の通過時間も制約条件となり、制約条件が増える。制約条件が増えると、それも満たすための最適化計算が複雑となり、最適解を算出するための計算時間が増加する。 However, when the transit time at the relay point is set on the route, the transit time at the relay point is also a constraint condition, and the constraint condition increases. As the constraint condition increases, the optimization calculation for satisfying it becomes complicated, and the calculation time for calculating the optimal solution increases.
本発明は、このような事情に鑑みてなされたものであって、航路に中継地点の通過時間の設定があっても、計算時間の増加を抑制し、かつ船舶の燃料消費量に基づく船速の最適化を高精度に可能とする、船速算出装置及び船速算出方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and the ship speed based on the fuel consumption of the ship is suppressed even if the transit time of the transit point is set on the route. It is an object of the present invention to provide a ship speed calculation device and a ship speed calculation method that enable the optimization of the ship with high accuracy.
上記課題を解決するために、本発明の船速算出装置及び船速算出方法は以下の手段を採用する。 In order to solve the above problems, the ship speed calculation device and the ship speed calculation method of the present invention employ the following means.
本発明の第一態様に係る船速算出装置は、出発地点から到着地点までの航路を疑似的に複数の区間に分け、該区間毎の船速を算出する船速算出装置であって、出発地点から到着地点に達するまでの目標航海時間、前記区間毎の最大船速及び最小船速、並びに前記航路における中継地点の通過時間を設定する設定手段と、前記中継地点の前後で前記航路を疑似的に分けて複数の分割航路とする航路分割手段と、前記分割航路毎に、前記分割航路の航海時間並びに前記区間毎の最大船速及び最小船速を制約条件とし、前記区間毎の船速を制御変数とし、船舶の燃料消費量を目的関数として、前記目的関数を最小とする船速を算出する最適解算出手段と、を備える。 A boat speed calculation device according to a first aspect of the present invention is a boat speed calculation device that divides a route from a departure point to an arrival point into a plurality of sections in a pseudo manner, and calculates a boat speed for each section. Setting means for setting the target voyage time from the point to the arrival point, the maximum and minimum ship speeds for each section, and the transit time of the relay point in the route, and the route is simulated before and after the relay point The route dividing means for dividing the route into a plurality of divided routes, and for each of the divided routes, the cruising time of the divided route and the maximum and minimum ship speeds for each section are set as the constraint conditions, and the ship speed for each section And an optimal solution calculating means for calculating a ship speed that minimizes the objective function, using the fuel consumption of the ship as an objective function.
本構成に係る船速算出装置は、出発地点から到着地点までの航路を疑似的に複数の区間に分け、該区間毎の船速を算出する。この最適化計算は、例えば、制約条件を満たしながら目的関数を最小化又は最大化させる解(制御変数)を求める手法である。制約条件は、例えば出発地点から到着地点に達するまでの目標航海時間や、区間毎の最大船速及び最小船速等である。そして、目的関数は、例えば船舶の燃料消費量であり、制御変数は、例えば船速である。 The boat speed calculation device according to this configuration divides the route from the departure point to the arrival point into a plurality of sections in a pseudo manner, and calculates the boat speed for each section. This optimization calculation is, for example, a technique for obtaining a solution (control variable) that minimizes or maximizes the objective function while satisfying the constraint condition. The constraint conditions are, for example, a target voyage time from the departure point to the arrival point, the maximum boat speed and the minimum boat speed for each section, and the like. The objective function is, for example, the fuel consumption of the ship, and the control variable is, for example, the ship speed.
本構成は、出発地点から到着地点に達するまでの目標航海時間、区間毎の最大船速及び最小船速、並びに航路における中継地点の通過時間が設定手段によって設定される。従来では、中継地点が設定されると、中継地点は制約条件とされる。しかしながら、制約条件が増えると、最適化計算が複雑となり、最適解を算出するための計算時間が増加する。 In this configuration, the target voyage time from the departure point to the arrival point, the maximum ship speed and the minimum ship speed for each section, and the transit time at the relay point on the route are set by the setting means. Conventionally, when a relay point is set, the relay point is set as a constraint condition. However, when the constraint conditions increase, the optimization calculation becomes complicated, and the calculation time for calculating the optimal solution increases.
そこで、航路分割手段によって、中継地点の前後で航路が疑似的に分けられて複数の分割航路とされる。なお、中継地点が複数ある場合は、中継地点の数に応じて分割航路の数も増える。また、中継地点は、航路を各区間に区切る位置と一致していてもよいし、区切る位置と一致していなくてよい。
そして、分割航路毎に、分割航路の航海時間並びに区間毎の最大船速及び最小船速を制約条件とし、船速を制御変数とし、船舶の燃料消費量を目的関数として、目的関数を最小とする船速が最適解算出手段によって算出される。
Therefore, the route is pseudo-divided before and after the relay point by the route dividing means to form a plurality of divided routes. In addition, when there are a plurality of relay points, the number of division routes increases according to the number of relay points. Also, the relay point may or may not coincide with the position where the route is divided into sections.
For each division route, the voyage time of the division route and the maximum and minimum vessel speeds for each section are set as constraints, the vessel speed is the control variable, the fuel consumption of the vessel is the objective function, and the objective function is the minimum. The ship speed to be calculated is calculated by the optimum solution calculating means.
すなわち、航路を中継地点の前後で複数の分割航路に分けることで、中継地点の通過時間はその前後における分割航路の到着時間及び出発時間となる。従って、航路を分割しない場合には3つであった制約条件(出発地点から到着地点に達するまでの目標航海時間、最大船速及び最小船速、中継地点の通過時間)は、航路を分割することで、出発時刻又は到着時刻が中継地点の通過時刻と同じとなるため減少することとなる。 That is, by dividing the route into a plurality of divided routes before and after the relay point, the transit time at the relay point becomes the arrival time and departure time of the divided route before and after the route. Therefore, if the route is not divided, the three constraints (target voyage time from the departure point to the arrival point, maximum boat speed and minimum boat speed, transit time at the relay point) are divided. Thus, since the departure time or arrival time is the same as the transit time at the relay point, the time is reduced.
このように、本構成は、航路に中継地点の通過時間の設定があっても、計算時間の増加を抑制し、かつ船舶の燃料消費量に基づく船速の最適化を高精度に可能とする。 In this way, this configuration suppresses an increase in calculation time and enables high-speed optimization of ship speed based on the fuel consumption of the ship even if the transit time is set on the route. .
上記第一態様では、前記航路の中継地点前後の船速の変化率を所定値以下とする制約条件が加えられてもよい。 In the first aspect, a constraint condition may be added in which the rate of change of the ship speed before and after the relay point on the route is less than or equal to a predetermined value.
分割航路毎に最適化計算を行うと、本来ならば連続しているはずの中継地点前後の船速に大きな差が生じる可能性がある。
本構成によれば、航路の中継地点前後の船速の変化率を所定値以下とする制約条件を加えるので、航路の中継地点前後で船速に大きな差が生じることを抑制できる。
If optimization calculation is performed for each divisional route, there may be a large difference in ship speeds before and after the relay point that should be continuous.
According to this configuration, since the constraint condition that the rate of change of the ship speed before and after the relay point on the route is set to a predetermined value or less is added, it is possible to suppress a large difference in ship speed before and after the relay point on the route.
上記第一態様では、前記制御条件に前記航路の中継地点後の前記区間に前記変化率が加えられてもよい。 In the first aspect, the rate of change may be added to the section after the relay point of the route in the control condition.
本構成によれば、航路の中継地点前後で船速に大きな差が生じることを簡易に抑制できる。 According to this structure, it can suppress easily that a big difference arises in ship speed before and behind the relay point of a channel.
本発明の第二態様に係る船速算出方法は、出発地点から到着地点までの航路を疑似的に複数の区間に分け、該区間毎の船速を算出する船速算出方法であって、発地点から到着地点に達するまでの目標航海時間、前記区間毎の最大船速及び最小船速、並びに前記航路における中継地点の通過時間を設定する第1工程と、前記中継地点の前後で前記航路を疑似的に分けて複数の分割航路とする第2工程と、前記分割航路毎に、前記分割航路の航海時間並びに前記区間毎の最大船速及び最小船速を制約条件とし、前記区間毎の船速を制御変数とし、船舶の燃料消費量を目的関数として、前記目的関数を最小とする船速を算出する第3工程と、を含む。 A boat speed calculation method according to a second aspect of the present invention is a boat speed calculation method for dividing a route from a departure point to an arrival point into a plurality of sections in a pseudo manner and calculating a ship speed for each section. A first step of setting a target voyage time from the point to the arrival point, a maximum ship speed and a minimum ship speed for each section, and a transit time of the relay point in the route, and the route before and after the relay point. The second step, which is divided into a plurality of divided routes in a pseudo manner, and for each divided route, the voyage time of the divided route and the maximum and minimum vessel speeds for each section are set as constraints, and the ships for each section And a third step of calculating a ship speed that minimizes the objective function, using the speed as a control variable and the fuel consumption of the ship as an objective function.
本発明によれば、航路に中継地点の通過時間の設定があっても、計算時間の増加を抑制し、かつ船舶の燃料消費量に基づく船速の最適化を高精度に可能とする、という優れた効果を有する。 According to the present invention, even if there is a transit point transit time setting on the route, the increase in calculation time is suppressed, and the ship speed based on the fuel consumption of the ship can be optimized with high accuracy. Has an excellent effect.
以下に、本発明に係る船速算出装置及び船速算出方法の一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of a boat speed calculation device and a boat speed calculation method according to the present invention will be described with reference to the drawings.
本実施形態に係る船速算出は、船舶の最適な船速を算出するものであり、出発地点から到着地点までの航路を疑似的に複数の区間に分け、該区間毎の最適な船速を算出する船速配分最適化(以下「最適化計算」ともいう。)するものである。この最適化計算は、例えば、制約条件を満たしながら目的関数を最小化又は最大化させる解(制御変数)を求める手法である。 The ship speed calculation according to this embodiment is to calculate the optimum ship speed of the ship. The route from the departure point to the arrival point is divided into a plurality of sections in a pseudo manner, and the optimum ship speed for each section is calculated. The ship speed distribution to be calculated is optimized (hereinafter also referred to as “optimization calculation”). This optimization calculation is, for example, a technique for obtaining a solution (control variable) that minimizes or maximizes the objective function while satisfying the constraint condition.
図1は、最適化計算の概念の一例を示す模式図である。
図1の例に示される最適化計算は、入力ステップ、計算条件決定ステップ、燃料消費量計算ステップ、及び船速配分最適化ステップを有する。
FIG. 1 is a schematic diagram illustrating an example of the concept of optimization calculation.
The optimization calculation shown in the example of FIG. 1 has an input step, a calculation condition determination step, a fuel consumption calculation step, and a ship speed distribution optimization step.
入力ステップでは、船速を算出するために必要な情報として、例えば、航海計画、気象海象予報情報、初期条件等が入力(設定)される。
航海計画は、例えば、船舶の出発地点からの出航時刻及び到着地点への到着時刻、区間毎の船速の制限値(最大船速及び最小船速であり、以下「船速制限値」という。)等である。船速制限値は、その区間における船舶の喫水やトリム、及び区間の水深等によって決定される。なお、船舶の出航時刻及び到着時刻から目標航海時間が得られる。
これら、目標航海時間及び船速制限値が制約条件とされる。
気象海象予報情報は、風向、風速、潮流の流速や潮流の方向、波高、及び波向である。
初期条件は、区間毎の船速配分である。
In the input step, for example, navigation plan, meteorological sea forecast information, initial conditions, etc. are input (set) as information necessary for calculating the ship speed.
In the voyage plan, for example, the departure time from the departure point of the ship, the arrival time at the arrival point, and the limit values of the ship speed for each section (maximum ship speed and minimum ship speed, hereinafter referred to as “ship speed limit value”). ) Etc. The ship speed limit value is determined by the draft and trim of the ship in the section, the depth of the section, and the like. The target voyage time can be obtained from the departure time and arrival time of the ship.
These target voyage time and ship speed limit value are the constraint conditions.
The weather and sea state forecast information includes wind direction, wind speed, tidal current velocity and tidal current direction, wave height, and wave direction.
The initial condition is the distribution of ship speed for each section.
計算条件決定ステップでは、各区間に対する計算条件が決定される。
計算条件は、例えば、各区間に対する船舶の通過時刻、各区間に対する船舶の通過時の緯度及び経度、各区間に対する船舶の通過時の気象海象予測情報である。
In the calculation condition determination step, calculation conditions for each section are determined.
The calculation conditions are, for example, the passage time of the ship for each section, the latitude and longitude when the ship passes for each section, and weather and sea state prediction information when the ship passes for each section.
燃料消費量計算ステップでは、航路の移動、換言すると全区間における船舶の燃料消費量を算出する。
燃料消費量計算ステップでは、船舶の推進負荷が船速や気象海象条件により変動する推進モデルが用いられ、この推進モデルにおいて、推進負荷から燃費を計算し、燃費と各区間の距離から燃料消費量が算出される。なお、推進モデルは、例えばエンジンである主機がプロペラを回転させて推進する船舶がモデル化されるが、これに限らず、例えば、エンジンの動力を電力に変換し、電力で駆動するモータがプロペラを回転させて推進する船舶がモデル化されてもよい。
In the fuel consumption calculation step, the movement of the route, in other words, the fuel consumption of the ship in all sections is calculated.
In the fuel consumption calculation step, a propulsion model is used in which the propulsion load of the ship fluctuates depending on the ship speed and weather conditions. In this propulsion model, fuel consumption is calculated from the propulsion load, and fuel consumption is calculated from the fuel consumption and the distance of each section. Is calculated. The propulsion model is, for example, a ship that is propelled by a main engine that is an engine rotating a propeller. However, the propulsion model is not limited to this. For example, a motor that converts engine power into electric power and that is driven by electric power is a propeller. A ship propelled by rotating may be modeled.
また、推進モデルでは、一例として、客室や空調で消費される電力を固定値としているが、これに限らず、気象や時間帯に応じて変動するとしてもよい。また、推進モデルでは、一例として、補機電力のオンオフが主機に対する負荷条件に応じて切り替わる。 In the propulsion model, as an example, the power consumed in the guest room or the air conditioner is a fixed value. However, the propulsion model is not limited to this, and may vary according to the weather and the time zone. In the propulsion model, as an example, on / off of auxiliary power is switched according to the load condition for the main engine.
そして、船速配分最適化ステップは、燃料消費量を目的関数とし、燃料消費量が最小化するように、入力ステップにおける初期条件である区間毎の船速配分を変更する。
すなわち、区間毎の船速が制御変数とされる。
The ship speed distribution optimization step changes the ship speed distribution for each section, which is the initial condition in the input step, so that the fuel consumption is an objective function and the fuel consumption is minimized.
That is, the ship speed for each section is set as the control variable.
図2は、入力ステップで入力される区間、区間毎の船速制限値、及び船速配分の一例を示す模式図である。図2に示されるように、船速配分は最大船速及び最小船速を満たすように制御(変更)される。船速配分における固定とは、例えば出港や入港の場合等その区間の船速が予め定められた値とされている。すなわち、区間毎の船速は、目標航海時間で到着地点に達するように、区間毎の最大船速及び最小船速の範囲内で決定される。なお、例えば区間毎の距離に区間毎の船速(制御変数)を乗算することで区間毎の航海時間が算出され、その航海時間の総和を総航海時間とされ、目標航海時間と比較される。 FIG. 2 is a schematic diagram showing an example of sections input in the input step, ship speed limit values for each section, and ship speed distribution. As shown in FIG. 2, the ship speed distribution is controlled (changed) so as to satisfy the maximum ship speed and the minimum ship speed. The fixed ship speed distribution is a predetermined value for the speed of the section, for example, when leaving or entering a port. That is, the ship speed for each section is determined within the range of the maximum ship speed and the minimum ship speed for each section so as to reach the arrival point in the target voyage time. For example, the voyage time for each section is calculated by multiplying the distance for each section by the ship speed (control variable) for each section, and the total voyage time is taken as the total voyage time and compared with the target voyage time. .
そして、燃料消費量計算ステップは、新たに入力された船速配分に応じた燃料消費量を算出する。 In the fuel consumption calculation step, the fuel consumption corresponding to the newly input ship speed distribution is calculated.
このように、最適化計算では、出発地点から到着地点に達するまでの目標航海時間(出発時刻と到着時刻)、並びに区間毎の最大船速及び最小船速が制約条件として設定される。そして、区間毎の船速が制御変数とされ、出発地点から到着地点に達するまでの燃料消費量が目的関数とされる。この目的関数を最小とする区間毎の船速が最適解として算出されることとなる。 As described above, in the optimization calculation, the target voyage time (departure time and arrival time) from the departure point to the arrival point, and the maximum ship speed and the minimum ship speed for each section are set as constraints. The ship speed for each section is set as a control variable, and the fuel consumption amount from the departure point to the arrival point is set as an objective function. The ship speed for each section that minimizes this objective function is calculated as the optimum solution.
なお、最適化計算のアルゴリズムは、公知の内点法や逐次二次計画法等が用いられる。 As the optimization calculation algorithm, a known interior point method, sequential quadratic programming, or the like is used.
図3は、本実施形態に係る最適化計算を実行する情報処理装置である船速配分最適化装置10の電気的構成を示すブロック図である。
本実施形態に係る船速配分最適化装置10は、最適化計算に関するプログラムを実行するCPU(Central Processing Unit)12、各種プログラム及び各種データ等が予め記憶されたROM(Read Only Memory)14、CPU12による各種プログラムの実行時のワークエリア等として用いられるRAM(Random Access Memory)16、各種プログラム及び各種データを記憶する記憶手段としてのHDD(Hard Disk Drive)18を備えている。
FIG. 3 is a block diagram showing an electrical configuration of the ship speed
A ship speed
さらに、船速配分最適化装置10は、キーボード及びマウス等から構成され、各種操作の入力を受け付ける操作入力部20、各種画像を表示する、例えば液晶ディスプレイ装置等の画像表示部22、外部インタフェース24を介して他の情報処理装置等と接続され、他の情報処理装置や印刷装置等との間で各種データの送受信を行う外部インタフェース24を備えている。
Further, the ship speed
これらCPU12、ROM14、RAM16、HDD18、操作入力部20、画像表示部22、及び外部インタフェース24は、システムバス26を介して相互に電気的に接続されている。従って、CPU12は、ROM14、RAM16、及びHDD18へのアクセス、操作入力部20に対する操作状態の把握、画像表示部22に対する画像の表示、並びに外部インタフェース24を介した他の情報処理装置等との各種データの送受信等を各々行なうことができる。
The
図4は、本実施形態に係る船速配分最適化装置10の機能ブロック図である。
船速配分最適化装置10は、設定部30、航路分割部32、及び最適解計算部34を備える。
FIG. 4 is a functional block diagram of the boat speed
The ship speed
設定部30は、制約条件(目標航海時間や船速制限値)や航路における中継地点の通過時間(以下「通過指定時刻」という。)等の最適化計算で用いる各種計算条件の入力を、操作入力部20を介して受け付け、設定する。なお、中継地点は、一つであっても複数であってもよい。
The setting
航路分割部32は、中継地点の前後で航路を疑似的に分けて複数の分割航路とする。
The
最適解計算部34は、分割航路毎に、分割航路の航海時間並びに最大船速及び最小船速を制約条件とし、船速を制御変数とし、船舶の燃料消費量を目的関数として、目的関数を最小とする船速を算出する。分割航路の航海時間とは、詳細を後述するように、入力された中継地点の通過時間に基づいて設定される。
The optimal
次に、本実施形態に係る船速配分最適化装置10による最適化計算について説明する。
Next, optimization calculation by the boat speed
本実施形態に係る船速配分最適化装置10は、設定部30によって、航路における中継地点の通過時間が設定可能とされている。
In the boat speed
従来では、中継地点が設定されると、中継地点は制約条件とされる。しかしながら、制約条件が増えると、最適化計算が複雑となり、最適解を算出するための計算時間が増加する。
そこで、航路分割部32によって、中継地点の前後で航路が疑似的に分けられて複数の分割航路とされる。
Conventionally, when a relay point is set, the relay point is set as a constraint condition. However, when the constraint conditions increase, the optimization calculation becomes complicated, and the calculation time for calculating the optimal solution increases.
Therefore, the
図5は、分割航路の一例を示す模式図である。
図5の例では、航路を複数の区間に区切る位置(以下「区切位置」という。)1〜4が中継地点(通過指定時刻)とされている。すなわち、図5の例では、区切位置1〜4と一致する中継地点(通過指定時刻)に応じて航路が分割されるので、分割航路は5つとなる。
FIG. 5 is a schematic diagram illustrating an example of a divided route.
In the example of FIG. 5, positions (hereinafter referred to as “separation positions”) 1 to 4 that divide the route into a plurality of sections are set as relay points (designated passage times). That is, in the example of FIG. 5, the route is divided according to the relay points (passing designated times) that coincide with the demarcation positions 1 to 4, so there are five divided routes.
なお、図5の例では、説明を簡略化するために区切位置1〜4と中継地点の設定を同じとしているが、区切位置1〜4で区切られる各区間はさらに複数の区間に分けられている。すなわち、分割航路が複数の疑似的に複数の区間に分けられている。
また、図5の例では、区切位置1〜4と中継地点が一致しているが、必ずしも区切位置1〜4と中継地点が一致していなくてよい。
In the example of FIG. 5, for the sake of simplification of explanation, the setting of the
In the example of FIG. 5, the
ここで、航路を分割せずに通過指定時刻を制約条件に加える従来の手法では、制御変数である各区間の船速は、船速制限値と共に通過指定時刻を満たし、かつ全体として目標航海時間を満たさなければならない。
このため、航路を分割しない場合、図5の例では、通過指定時刻を満たすように各区間の船速(図5の区間船速)を5つ算出しなければない。すなわち、制御変数は5つとなり、計算時間は制御変数の数の二乗で影響するため、航路全体の最適化計算は、中継地点が設定されない場合に比べて25倍(52=25)の計算時間を要することとなる。
Here, in the conventional method of adding the passage specified time to the constraint condition without dividing the route, the ship speed of each section as a control variable satisfies the passage specified time together with the vessel speed limit value, and the target voyage time as a whole Must be met.
Therefore, when the route is not divided, in the example of FIG. 5, five ship speeds (section ship speeds in FIG. 5) of each section must be calculated so as to satisfy the passage designated time. In other words, since there are five control variables and the calculation time is affected by the square of the number of control variables, the optimization calculation for the entire route is 25 times (5 2 = 25) compared to when no relay point is set. It will take time.
一方、航路を中継地点の通過指定時刻の前後で複数の分割航路に分けることで、通過指定時刻は、その前後で分割された分割航路の到着時間及び出発時間となる。従って、航路を分割することで、航路を分割しない場合には3つであった制約条件(目標航海時間、船速制限値、中継地点の通過時間)が減少することとなる。すなわち、制約条件に通過指定時刻という概念が存在しないこととなる。
このため、航路を分割した場合、図5の例では、分割航路毎の制御変数は1つのままであり、5つの分割航路毎に最適化計算が行われる。このため、図5の例における最適化計算の計算時間は、中継地点が設定されない場合に比べて5倍で済み、航路を分割しない場合に比べて計算時間の増加が抑制される。
On the other hand, by dividing the route into a plurality of divided routes before and after the passage designated time at the relay point, the passage designated time becomes the arrival time and departure time of the divided route divided before and after that. Therefore, by dividing the route, the three constraint conditions (target voyage time, ship speed limit value, transit point transit time) that were not obtained when the route was not divided are reduced. That is, there is no concept of designated passage time in the constraint condition.
For this reason, when the route is divided, in the example of FIG. 5, the control variable for each divided route remains one, and optimization calculation is performed for each of the five divided routes. For this reason, the calculation time of the optimization calculation in the example of FIG. 5 is five times that in the case where no relay point is set, and the increase in calculation time is suppressed as compared with the case where the route is not divided.
より具体的には、図5の例では、分割航路1、分割航路2、分割航路3、分割航路4、分割航路5の順番で最適化計算が行われる。そして、分割航路5の最適化計算が終了すると、分割航路1から分割航路5を連続させた船速配分が最適化計算の結果として得られることとなる。
More specifically, in the example of FIG. 5, the optimization calculation is performed in the order of the divided
このように、本実施形態に係る船速配分最適化装置10は、航路に中継地点の通過時間の設定があっても、計算時間の増加を抑制し、かつ船舶の燃料消費量に基づく船速の最適化を高精度に可能とする。
As described above, the ship speed
また、分割航路毎に最適化計算を行うと、本来ならば連続しているはずの中継地点前後(以下「分割前後」という。)の船速に大きな差が生じる可能性がある。実質的に異なる最適化計算が分割航路毎に実行されるためである。 In addition, if optimization calculation is performed for each divided route, there may be a large difference in ship speeds before and after a relay point that should have been continuous (hereinafter referred to as “before and after division”). This is because substantially different optimization calculations are executed for each divided channel.
図6は、分割前後の船速の一例を示す模式図である。
図6の例では、分割航路Aと分割航路Bとの間(区間A3と区間B1)で、船速に大きな差が生じている。このように連続した区間で船速に大きさ差が生じていると、算出された船速を実際の船舶において実現することが困難な場合がある。
FIG. 6 is a schematic diagram illustrating an example of the ship speed before and after the division.
In the example of FIG. 6, there is a large difference in ship speed between the divided channel A and the divided channel B (section A3 and section B1). If there is a difference in ship speed between consecutive sections as described above, it may be difficult to realize the calculated ship speed in an actual ship.
そこで、本実施形態に係る船速配分最適化装置10は、航路の分割前後の船速の変化率を所定値以下とする制約条件を加える。
Therefore, the ship speed
図6の例では、航路の分割後の区間B1に対して制約条件として船速の変化率を加えることとなる。
これにより、分割航路Bの最適化計算では、分割前の区間(分割航路Aの最後の区間A3)の船速が予め設定され、設定された船速に対して制約条件とされる変化率を満たす区間B1の船速が算出されることとなる。なお、分割航路Aの最適化計算は、上述したように分割航路Bの最適化計算よりも前に終了している。
In the example of FIG. 6, the rate of change in ship speed is added as a constraint condition to the section B1 after the division of the channel.
Thereby, in the optimization calculation of the divided route B, the ship speed of the section before the division (the last section A3 of the divided route A) is set in advance, and the rate of change which is a constraint condition for the set ship speed is set. The ship speed of the section B1 to be satisfied is calculated. Note that the optimization calculation of the divided route A is completed before the optimization calculation of the divided route B as described above.
このように、船速配分最適化装置10は、航路の分割後の区間に対して、制約条件に船速の変化率を加えるので、航路の中継地点前後で船速に大きな差が生じることを抑制できる。また、航路の分割後の区間のみに、制約条件として船速の変化率を加えるので、制約条件が増えることによる最適化計算の計算時間の増加が抑制される。
In this way, the ship speed
図7は、船速配分最適化装置10による最適化計算の流れを示すフローチャートである。
FIG. 7 is a flowchart showing the flow of optimization calculation by the ship speed
まず、ステップ100では、操作入力部20を介してユーザーによって計算条件が入力され、設定部30によって計算条件が設定される。
First, in step 100, calculation conditions are input by the user via the
次のステップ102では、中継地点の通過時間の入力(設定)があるか否かを判定し、肯定判定の場合はステップ106へ移行する一方、否定判定の場合はステップ104へ移行する。
ステップ104へ移行した場合、上述した航路の分割は行われることなく、最適解計算部34が最適化計算を実行し、ステップ112へ移行する。
In the next step 102, it is determined whether or not there is an input (setting) of the transit time at the relay point. If the determination is affirmative, the process proceeds to step 106. If the determination is negative, the process proceeds to step 104.
When the process proceeds to step 104, the optimum
一方、ステップ106では、入力された中継地点の前後で航路を疑似的に分割し、分割航路を生成する。なお、通過指定時刻に基づく中継地点の到着時刻(出発時刻)が、分割航路毎の制約条件となる。 On the other hand, in step 106, the route is pseudo-divided before and after the input relay point to generate a divided route. In addition, the arrival time (departure time) of the relay point based on the designated passage time is a constraint condition for each divided route.
次のステップ108では、最適解計算部34が、目標地点から到着地点に至るまで順番に分割航路毎の最適化計算を実行する。
In the next step 108, the optimum
ステップ110では、全ての分割航路について最適化計算が終了したか否かを判定し、肯定判定の場合はステップ112へ移行し、否定判定の場合はステップ108へ戻り残りの分割航路に対して順番に最適解計算部34が最適化計算を実行する。
In step 110, it is determined whether or not the optimization calculation has been completed for all the divided routes. If the determination is affirmative, the procedure proceeds to step 112. If the determination is negative, the procedure returns to step 108, and the remaining divided routes are sequentially selected. The optimal
そして、ステップ112では、画像表示部22が最適解計算部34によって得られた計算結果を表示し、本最適化計算を終了する。
In step 112, the
以上説明したように、本実施形態に係る船速配分最適化装置10は、航路における中継地点の通過時間を設定された場合に、中継地点の前後で前記航路を疑似的に分けて複数の分割航路とする。そして、船速配分最適化装置10は、分割航路毎に、分割航路の航海時間並びに最大船速及び最小船速を制約条件とし、船速を制御変数とし、船舶の燃料消費量を目的関数として、前記目的関数を最小とする船速を算出する。
As described above, the ship speed
これにより、船速配分最適化装置10は、航路に中継地点の通過時間の設定があっても、計算時間の増加を抑制し、かつ船舶の燃料消費量に基づく船速の最適化を高精度に可能とする。
As a result, the ship speed
以上、本発明を、上記実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記実施形態に多様な変更又は改良を加えることができ、該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。また、上記実施形態を適宜組み合わせてもよい。 As mentioned above, although this invention was demonstrated using the said embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. Various changes or improvements can be added to the above-described embodiment without departing from the gist of the invention, and embodiments to which the changes or improvements are added are also included in the technical scope of the present invention. Moreover, you may combine the said embodiment suitably.
例えば、上記実施形態では、分割航路に対する最適化計算では制約条件を船速制限値及び分割航路の航海時間の2つとする形態について説明したが、本発明は、これに限定されるものではなく、制約条件を船速制限値及び航海時間を含む3つ以上とする形態としてもよい。 For example, in the above-described embodiment, the description has been given of the mode in which the constraint condition is two in the optimization calculation for the divided route, that is, the ship speed limit value and the voyage time of the divided route, but the present invention is not limited to this. The restriction condition may be three or more including the ship speed limit value and the voyage time.
例えば、上記実施形態では、制約条件に船速を含む形態について説明したが、本発明は、これに限定されるものではなく、船速の替りに、主機の負荷を制約条件として用いてもよい。主機の負荷とは一例としてプロペラを駆動させるための推進負荷と、船内の電力供給のための電力負荷の合計値である。 For example, in the above-described embodiment, the form in which the ship speed is included in the constraint condition has been described. However, the present invention is not limited to this, and the load of the main engine may be used as the constraint condition instead of the ship speed. . The load on the main engine is, for example, the total value of the propulsion load for driving the propeller and the power load for supplying power in the ship.
また、上記実施形態で説明した最適化計算の流れも一例であり、本発明の主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよい。 Further, the flow of optimization calculation described in the above embodiment is also an example, and unnecessary steps are deleted, new steps are added, and the processing order is changed within a range not departing from the gist of the present invention. May be.
10 船速配分最適化装置
30 設定部
32 航路分割部
34 最適解計算部
10 Ship speed
Claims (4)
出発地点から到着地点に達するまでの目標航海時間、前記区間毎の最大船速及び最小船速、並びに前記航路における中継地点の通過時間を設定する設定手段と、
前記中継地点の前後で前記航路を疑似的に分けて複数の分割航路とする航路分割手段と、
前記分割航路毎に、前記分割航路の航海時間並びに前記区間毎の最大船速及び最小船速を制約条件とし、前記区間毎の船速を制御変数とし、船舶の燃料消費量を目的関数として、前記目的関数を最小とする船速を算出する最適解算出手段と、
を備える船速算出装置。 A ship speed calculation device that divides a route from a departure point to an arrival point into a plurality of sections in a pseudo manner and calculates a ship speed for each section,
Setting means for setting the target voyage time from the departure point to the arrival point, the maximum ship speed and the minimum ship speed for each section, and the transit time of the relay point on the route;
A route dividing means that divides the route in a pseudo manner before and after the relay point to form a plurality of divided routes;
For each of the divided routes, the voyage time of the divided route and the maximum and minimum ship speeds for each section are set as constraints, the ship speed for each section is a control variable, and the fuel consumption of the ship is an objective function. Optimal solution calculating means for calculating a boat speed that minimizes the objective function;
A ship speed calculation device comprising:
出発地点から到着地点に達するまでの目標航海時間、前記区間毎の最大船速及び最小船速、並びに前記航路における中継地点の通過時間を設定する第1工程と、
前記中継地点の前後で前記航路を疑似的に分けて複数の分割航路とする第2工程と、
前記分割航路毎に、前記分割航路の航海時間並びに前記区間毎の最大船速及び最小船速を制約条件とし、前記区間毎の船速を制御変数とし、船舶の燃料消費量を目的関数として、前記目的関数を最小とする船速を算出する第3工程と、
を含む船速算出方法。 A ship speed calculation method for dividing a route from a departure point to an arrival point into a plurality of sections in a pseudo manner and calculating a ship speed for each section,
A first step of setting a target voyage time from the departure point to the arrival point, a maximum ship speed and a minimum ship speed for each section, and a transit time of the relay point on the route;
A second step in which the route is divided into a plurality of divided routes in a pseudo manner before and after the relay point;
For each of the divided routes, the voyage time of the divided route and the maximum and minimum ship speeds for each section are set as constraints, the ship speed for each section is a control variable, and the fuel consumption of the ship is an objective function. A third step of calculating a boat speed that minimizes the objective function;
Ship speed calculation method including
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014208098A JP6165697B2 (en) | 2014-10-09 | 2014-10-09 | Ship speed calculation device and ship speed calculation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014208098A JP6165697B2 (en) | 2014-10-09 | 2014-10-09 | Ship speed calculation device and ship speed calculation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016078471A true JP2016078471A (en) | 2016-05-16 |
JP6165697B2 JP6165697B2 (en) | 2017-07-19 |
Family
ID=55957283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014208098A Expired - Fee Related JP6165697B2 (en) | 2014-10-09 | 2014-10-09 | Ship speed calculation device and ship speed calculation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6165697B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019012043A (en) * | 2017-06-30 | 2019-01-24 | 川崎重工業株式会社 | Optimal route calculating device and optimal route calculating method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004025914A (en) * | 2002-06-21 | 2004-01-29 | Mitsubishi Heavy Ind Ltd | Operation system for ship |
US20100280750A1 (en) * | 2009-04-30 | 2010-11-04 | The Boeing Company | Estimating Probabilities of Arrival Times for Voyages |
JP2012515395A (en) * | 2009-01-16 | 2012-07-05 | ザ・ボーイング・カンパニー | Navigation efficiency analysis |
JP2014127047A (en) * | 2012-12-26 | 2014-07-07 | Mitsubishi Heavy Ind Ltd | Operation supporting system and operation supporting method |
WO2014115352A1 (en) * | 2013-01-25 | 2014-07-31 | 日本郵船株式会社 | Device, program, storage medium, and method for determining vessel travel speed |
-
2014
- 2014-10-09 JP JP2014208098A patent/JP6165697B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004025914A (en) * | 2002-06-21 | 2004-01-29 | Mitsubishi Heavy Ind Ltd | Operation system for ship |
JP2012515395A (en) * | 2009-01-16 | 2012-07-05 | ザ・ボーイング・カンパニー | Navigation efficiency analysis |
US20100280750A1 (en) * | 2009-04-30 | 2010-11-04 | The Boeing Company | Estimating Probabilities of Arrival Times for Voyages |
JP2014127047A (en) * | 2012-12-26 | 2014-07-07 | Mitsubishi Heavy Ind Ltd | Operation supporting system and operation supporting method |
WO2014115352A1 (en) * | 2013-01-25 | 2014-07-31 | 日本郵船株式会社 | Device, program, storage medium, and method for determining vessel travel speed |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019012043A (en) * | 2017-06-30 | 2019-01-24 | 川崎重工業株式会社 | Optimal route calculating device and optimal route calculating method |
Also Published As
Publication number | Publication date |
---|---|
JP6165697B2 (en) | 2017-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110967022B (en) | Ship navigational speed optimization auxiliary decision-making system | |
Wang et al. | A Three-Dimensional Dijkstra's algorithm for multi-objective ship voyage optimization | |
JP7312263B2 (en) | A device for determining the optimum route of a sea vessel | |
JP6038087B2 (en) | Ship operation plan optimization system and ship operation plan optimization method | |
CN110083983B (en) | Ship sectional navigational speed optimization method and intelligent management system | |
JP2015523557A (en) | Method and system for route determination for ship | |
JP6189278B2 (en) | Main machine load distribution calculation device and main machine load distribution calculation method | |
JP6251842B2 (en) | Ship operation support system and ship operation support method | |
JP6012777B2 (en) | Via point setting device and via point setting program | |
JP2013134089A (en) | Optimal sailing route calculating apparatus and optimal sailing route calculating method | |
JP5649014B1 (en) | Device, program, recording medium and method for determining navigation speed of ship | |
WO2014188584A1 (en) | Ship managing device, ship managing system, and program | |
Wang et al. | Effectiveness of 2D optimization algorithms considering voluntary speed reduction under uncertain metocean conditions | |
WO2019004416A1 (en) | Optimal route searching method and device | |
JP6913537B2 (en) | Optimal flight plan arithmetic unit and optimal flight plan calculation method | |
WO2014128915A1 (en) | Navigational analysis device, navigational analysis method, program, and recording medium | |
JP6165697B2 (en) | Ship speed calculation device and ship speed calculation method | |
JP6121317B2 (en) | Ship speed control device, ship speed control system, ship speed control method, and ship speed control program | |
JP6262116B2 (en) | Ship speed calculation device and ship speed calculation method | |
JP6913536B2 (en) | Optimal route calculation device and optimal route calculation method | |
JP6872954B2 (en) | Flight planning equipment, flight planning system, flight planning method, and program | |
JP2023160116A (en) | Information processor, control device, method, and program | |
JP2023023443A (en) | Sailing route calculation system, sailing route information processing system, sailing route calculation method, and sailing route calculation program | |
KR20180045341A (en) | Providing System for Optimum Ocean Route and method thereof | |
Chen et al. | Strategies to improve the isochrone algorithm for ship voyage optimisation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160825 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170518 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170523 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170621 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6165697 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |