JP2019012043A - Optimal route calculating device and optimal route calculating method - Google Patents

Optimal route calculating device and optimal route calculating method Download PDF

Info

Publication number
JP2019012043A
JP2019012043A JP2017129785A JP2017129785A JP2019012043A JP 2019012043 A JP2019012043 A JP 2019012043A JP 2017129785 A JP2017129785 A JP 2017129785A JP 2017129785 A JP2017129785 A JP 2017129785A JP 2019012043 A JP2019012043 A JP 2019012043A
Authority
JP
Japan
Prior art keywords
route
area
calculation
region
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017129785A
Other languages
Japanese (ja)
Other versions
JP6913536B2 (en
Inventor
政樹 大嶺
Masaki Omine
政樹 大嶺
直子 嶋谷
Naoko Shimatani
直子 嶋谷
久之輔 河田
Hisanosuke Kawada
久之輔 河田
成子 大橋
Shigeko Ohashi
成子 大橋
恭平 石上
Kyohei Ishigami
恭平 石上
貴昭 村井
Takaaki Murai
貴昭 村井
智行 ▲高▼月
智行 ▲高▼月
Tomoyuki Takatsuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2017129785A priority Critical patent/JP6913536B2/en
Priority to PCT/JP2018/024872 priority patent/WO2019004443A1/en
Publication of JP2019012043A publication Critical patent/JP2019012043A/en
Application granted granted Critical
Publication of JP6913536B2 publication Critical patent/JP6913536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Ocean & Marine Engineering (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

To provide an optimal route calculating device and an optimal route calculating method that can automatically perform optimal route calculation in the entire route from a departure place to a destination, while reducing the amount of calculation.SOLUTION: An optimal route calculation device comprises: an information input receiving unit that receives input of information including a departure place, a destination, and a departure time of a ship; an optimal route calculating unit that calculates an optimal route on the basis of the input information, ship performance data, and weather data in a route area where the ship travels; and a determination unit that determines whether a predetermined fixed route area is present between the departure place and the destination. When the fixed route area is determined to be present, the optimal route calculating unit adopts a fixed predetermined route in the fixed route area, divides the rest of the area into a plurality of areas partitioned by the departure place, the ends of the fixed route area, or the destination, and calculates the optimal route for each of the plurality of areas.SELECTED DRAWING: Figure 2

Description

本発明は、船舶の最適航路演算装置および最適航路演算方法に関する。   The present invention relates to an optimum route calculation device and an optimum route calculation method for a ship.

燃料価格高騰に伴う運航コストの削減、温室効果ガス(GHG)排出削減問題、さらには安全運航、輸送品質の維持向上などのニーズの高まりから、船舶における最適航路演算は船舶の運航管理における有効手段として重要視されている。   Optimal route calculation on ships is an effective means for ship operation management due to the growing needs for reductions in operational costs associated with soaring fuel prices, greenhouse gas (GHG) emission reduction problems, and safe operation and maintenance and improvement of transportation quality. As important.

従来の最適航路演算は、燃費削減効果の高い北太平洋等の一大洋に対して、計画される出港時刻および入港時刻の拘束条件のもと、一定の船速または一定の主機回転数にて運航するという仮定で航路(緯度および経度)のみを最適化演算している。   Conventional optimal route calculation operates at a constant ship speed or a constant main engine speed for a large ocean, such as the North Pacific, where fuel efficiency is reduced, under the constraints of planned departure and arrival times. Only the route (latitude and longitude) is optimized.

しかし、全球(全地球)に対応した最適航路演算を実施するためには、多数の諸島または浅瀬が存在する海域や、運河または海峡を挟んだ海域を通過する場合に、必須となる通過地点を経由した航路を自動的に演算する必要がある。   However, in order to carry out the optimum route calculation corresponding to the entire globe (global), it is necessary to set the necessary transit point when passing through a sea area where there are many islands or shallows, or a sea area across a canal or a strait. It is necessary to automatically calculate the route that passed through.

このために、例えば、下記特許文献1のように、最適航路探索のための格子点(ノード)に重み付けをする構成が提案されている。また、例えば、下記特許文献2のように、航路途中に必須通過地点を設定し、当該必須通過地点を必ず通るように最適航路の演算を行うことが提案されている。   For this purpose, for example, a configuration for weighting lattice points (nodes) for optimum route search has been proposed as in Patent Document 1 below. Further, for example, as in Patent Document 2 below, it is proposed that an essential passage point is set in the course of a route and an optimum route is calculated so as to pass through the mandatory passage point.

特許第4247497号公報Japanese Patent No. 4247497 特許第4934756号公報Japanese Patent No. 4934756

しかし、特許文献1,2のような態様では、結局出発地から到着地までの全域について格子点を配置する必要があり、狭い海域等では航行不能な領域にも格子点が配置されることになる。このため、最適航路演算において無意味な格子点が設けられることにより、無駄な演算が行われる余地がある。   However, in aspects such as Patent Documents 1 and 2, it is necessary to arrange grid points for the entire region from the departure place to the arrival place, and the grid points are also arranged in areas that cannot be navigated in narrow sea areas. Become. For this reason, there is room for unnecessary computation by providing meaningless grid points in the optimum route computation.

また、狭い海域等に必ず格子点または必須通過地点を設定するためには、格子点間の距離を短くする必要があるが、狭い海域と広い海域との両方を通る航路においては、広い海域における格子点間の距離も狭い海域に合わせて短く設定する必要が生じ、演算量が多くなり、演算効率が悪化する。   In addition, in order to always set grid points or essential passage points in narrow sea areas, etc., it is necessary to shorten the distance between the grid points. However, in a route that passes both narrow and wide sea areas, The distance between grid points also needs to be set short according to the narrow sea area, the amount of calculation increases, and the calculation efficiency deteriorates.

本発明は上記に鑑みなされたものであり、出発地から到着地までの航路全体における最適航路演算を、演算量を抑制しつつ自動的に行うことができる最適航路演算装置および最適航路演算方法を提供することを目的とする。   The present invention has been made in view of the above, and provides an optimum route calculation device and an optimum route calculation method capable of automatically performing optimum route calculation in the entire route from the departure point to the arrival point while suppressing the amount of calculation. The purpose is to provide.

本発明の一態様に係る最適航路演算装置は、船舶の出発地、到着地および出発時刻を含む情報の入力を受け付ける情報入力受付部と、入力された前記情報と、前記船舶の性能データと、前記船舶が航行する航路領域の気象データと、に基づいて、最適航路を演算する最適航路演算部と、前記出発地と前記到着地との間に、予め定められた固定航路領域があるか否かを判定する判定部と、を備え、前記最適航路演算部は、前記固定航路領域があると判定された場合、前記固定航路領域においては予め定められた固定航路を採用し、残りの領域を、前記出発地、前記固定航路領域の端部または前記到着地によって区切られる複数の領域に分割し、当該複数の領域のそれぞれについて最適航路を演算するよう構成される。   The optimum route calculation device according to one aspect of the present invention includes an information input receiving unit that receives an input of information including a departure place, an arrival place, and a departure time of a ship, the input information, the performance data of the ship, Whether or not there is a predetermined fixed route area between the optimum route calculation unit for calculating the optimum route based on the weather data of the route region where the ship navigates, and the departure place and the arrival place A determination unit that determines whether or not the optimum route calculation unit adopts a fixed route that is determined in advance in the fixed route region and determines the remaining region when it is determined that the fixed route region exists. The vehicle is divided into a plurality of areas divided by the departure point, an end of the fixed route area, or the arrival place, and an optimum route is calculated for each of the plurality of areas.

上記構成によれば、出発地と到着地との間において固定航路領域が含まれる場合には、自動的に当該固定航路領域については予め定められた固定航路が採用され、残りの領域が、固定航路領域によって区切られる複数の領域に分割され、それぞれの領域について最適航路が演算される。したがって、多数の諸島または浅瀬が存在する海域、運河または海峡等の最適航路演算の余地が少ない領域を固定航路領域として予め定められた航路とし、その他の領域についてのみ最適航路を演算することにより、当該固定航路領域を含む航路全体の最適航路演算を、演算量を抑制しつつ自動的に行うことができる。   According to the above configuration, when a fixed route area is included between the departure place and the arrival place, a predetermined fixed route is automatically adopted for the fixed route area, and the remaining areas are fixed. The route is divided into a plurality of regions divided by the route region, and the optimum route is calculated for each region. Therefore, by calculating the optimal route only for other areas, the fixed route area is the area where there is little room for calculating the optimal route such as sea areas where there are many islands or shallows, canals or straits. The optimum route calculation of the entire route including the fixed route region can be performed automatically while suppressing the amount of calculation.

前記判定部は、前記出発地から前記到着地までの予め定められた基準航路と、最適航路を演算する領域として予め設定された航路演算領域の境界線とが交差する境界地点があるか否かを判定することにより、前記固定航路領域があるか否かを判定するよう構成され、前記最適航路演算部は、前記境界地点があると判定された場合、前記航路演算領域外の前記固定航路領域においては前記基準航路を前記固定航路として採用し、複数の境界地点間または当該境界地点と前記出発地もしくは前記到着地との間で区切られる航路演算領域について最適航路を演算してもよい。出発地から到着地までの基準航路および最適航路を演算するように設定された航路演算領域を予め定めておくことで、最適航路の演算を行う領域と、固定航路領域とを、自動的に判定することができる。   Whether the determination unit has a boundary point where a predetermined reference route from the departure point to the arrival point intersects with a boundary line of a route calculation region set in advance as a region for calculating the optimum route And determining whether there is the fixed route region, and when the optimum route calculation unit determines that there is the boundary point, the fixed route region outside the route calculation region. In the above, the reference route may be adopted as the fixed route, and the optimum route may be calculated for a route calculation region divided between a plurality of boundary points or between the boundary points and the departure point or the arrival point. By automatically determining the route calculation area that is set to calculate the reference route and the optimum route from the departure point to the arrival point, the optimum route calculation area and the fixed route area are automatically determined. can do.

前記判定部は、前記航行可能領域か否かの境界線を示す地図データを読み出し、当該地図データ上に前記出発地から前記到着地までの予め定められた基準航路を重ね合わせ、前記境界線を前記航行可能領域側に所定距離拡張し、当該拡張後の境界線より前記航行可能領域とは反対側に前記基準航路が含まれるようになった領域を前記固定航路領域として判定してもよい。これによれば、地図データ上の狭小領域が自動的に固定航路領域として判定されるため、最適航路を演算する航路演算領域および/または固定航路領域を予め定めることなく、最適航路の演算を行う領域と、固定航路領域とを、自動的に判定することができる。   The determination unit reads map data indicating a boundary line indicating whether or not the navigable region is present, superimposes a predetermined reference route from the departure point to the arrival point on the map data, and sets the boundary line A predetermined distance may be extended to the navigable region side, and an area in which the reference route is included on the opposite side of the navigable region from the expanded boundary line may be determined as the fixed route area. According to this, since the narrow area on the map data is automatically determined as the fixed route area, the optimum route is calculated without predetermining the route calculation area and / or the fixed route area for calculating the optimum route. The area and the fixed route area can be automatically determined.

本発明の他の態様に係る最適航路演算方法は、船舶の出発地、到着地および出発時刻を含む情報の入力を受け付ける情報入力受付ステップと、入力された前記情報と、前記船舶の性能データと、前記船舶が航行する航路領域の気象データと、に基づいて、最適航路を演算する最適航路演算ステップと、前記出発地と前記到着地との間に、予め定められた固定航路領域があるか否かを判定する判定ステップと、を含み、前記最適航路演算ステップは、前記固定航路領域があると判定された場合、前記固定航路領域においては予め定められた固定航路を採用し、残りの領域を、前記出発地、前記固定航路領域の端部または前記到着地によって区切られる複数の領域に分割し、当該複数の領域のそれぞれについて最適航路を演算する。   An optimum route calculation method according to another aspect of the present invention includes an information input reception step for receiving input of information including a departure place, an arrival place and a departure time of a ship, the input information, and the performance data of the ship. Whether there is a predetermined fixed route area between the departure point and the arrival point, and an optimum route calculation step for calculating an optimum route based on weather data of the route region where the ship navigates A determination step for determining whether or not the optimum route calculation step adopts a fixed route predetermined in the fixed route region and determines the remaining route region when it is determined that there is the fixed route region. Is divided into a plurality of regions delimited by the departure point, the end of the fixed route region or the arrival point, and the optimum route is calculated for each of the plurality of regions.

上記方法によれば、出発地と到着地との間において固定航路領域が含まれる場合には、自動的に当該固定航路領域については予め定められた固定航路が採用され、残りの領域が、固定航路領域によって区切られる複数の領域に分割され、それぞれの領域について最適航路が演算される。したがって、多数の諸島または浅瀬が存在する海域、運河または海峡を固定航路領域として予め定められた航路とすることにより、当該固定航路領域を含む航路全体の最適航路演算を、演算量を抑制しつつ自動的に行うことができる。   According to the above method, when a fixed route area is included between the departure place and the arrival place, a predetermined fixed route is automatically adopted for the fixed route area, and the remaining areas are fixed. The route is divided into a plurality of regions divided by the route region, and the optimum route is calculated for each region. Therefore, by setting the sea area, canal or strait where a large number of islands or shallows exist as a fixed route area, the optimum route calculation of the entire route including the fixed route area is suppressed while reducing the amount of calculation. It can be done automatically.

本発明によれば、出発地から到着地までの航路全体における最適航路演算を、演算量を抑制しつつ自動的に行うことができる。   ADVANTAGE OF THE INVENTION According to this invention, the optimal route calculation in the whole route from a departure place to an arrival place can be performed automatically, suppressing a calculation amount.

図1は本発明の一実施の形態に係る最適航路演算装置の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of an optimum route calculation device according to an embodiment of the present invention. 図2は本実施の形態における航路領域を示す図である。FIG. 2 is a diagram showing a route area in the present embodiment. 図3は本実施の形態における最適航路演算処理の流れを示すフローチャートである。FIG. 3 is a flowchart showing the flow of optimum route calculation processing in the present embodiment. 図4は図2に示す地図において地図拡張処理を行う場合の概念図である。FIG. 4 is a conceptual diagram when map expansion processing is performed on the map shown in FIG. 図5は本実施の形態における航路演算を行う判定点抽出処理の流れを示すフローチャートである。FIG. 5 is a flowchart showing the flow of determination point extraction processing for performing route calculation in the present embodiment. 図6はDP法による最適航路演算を説明するための図である。FIG. 6 is a diagram for explaining the optimum route calculation by the DP method.

以下、本発明を実施するための形態について、図面を参照しながら、詳細に説明する。なお、以下では全ての図を通じて同一または相当する要素には同一の参照符号を付して、その重複する説明を省略する。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding elements are denoted by the same reference symbols throughout all the drawings, and redundant description thereof is omitted.

図1は本発明の一実施の形態に係る最適航路演算装置の概略構成を示すブロック図である。図1に示す最適航路演算装置1は、入力部2、記憶部3、演算部4、および出力部5を備えている。各構成1〜5は、バス6により相互にデータ伝達を行う。最適航路演算装置1は、陸上の施設におけるコンピュータによって構成されてもよいし、船舶に設置されたコンピュータまたは制御装置として構成されてもよい。また、最適航路演算装置1を構成する一部の機能を船舶に設置されたコンピュータが発揮し、他の機能を陸上に設置されたコンピュータが発揮し、船陸間通信等の通信手段によって相互にデータの相互通信が行われるように構成されてもよい。   FIG. 1 is a block diagram showing a schematic configuration of an optimum route calculation device according to an embodiment of the present invention. An optimal route calculation device 1 shown in FIG. 1 includes an input unit 2, a storage unit 3, a calculation unit 4, and an output unit 5. Each of the components 1 to 5 transmits data to each other via the bus 6. The optimum route calculation device 1 may be configured by a computer in a land facility, or may be configured as a computer or a control device installed on a ship. In addition, some of the functions constituting the optimum route calculation device 1 are exhibited by a computer installed on the ship, and other functions are exhibited by a computer installed on the land, and are mutually communicated by communication means such as ship-land communication. It may be configured to perform mutual communication of data.

入力部2は、船舶の出発地、到着地、出発時刻および到着時刻等の情報をユーザが入力可能な入力装置として構成される。記憶部3は、入力部2から入力された情報を記憶する。また、記憶部3には、船舶の性能データと、少なくとも船舶が航行する航路領域の気象データと、最適航路演算プログラムが予め記憶されている。   The input unit 2 is configured as an input device that allows a user to input information such as the departure place, arrival place, departure time, and arrival time of a ship. The storage unit 3 stores information input from the input unit 2. Further, the storage unit 3 stores in advance ship performance data, at least weather data of a route area where the ship navigates, and an optimum route calculation program.

船舶の性能データは、各船舶が個別に備える性能に関するデータである。気象データは、例えば外部機関等から提供される。気象データは、例えば現在から1週間先の、航路領域等における気象(海気象)に関するデータである。なお、気象データは、ネットワークを通じて外部から逐次送信され、記憶部3に自動的に蓄積されるように構成されてもよい。   Ship performance data is data relating to the performance of each ship. The weather data is provided from an external organization, for example. The meteorological data is, for example, data related to the weather (sea weather) in the route area, etc. one week from now. The weather data may be configured to be sequentially transmitted from the outside through a network and automatically stored in the storage unit 3.

演算部4は、記憶部3に記憶された各種の情報に基づいて船舶の最適航路を演算する最適航路演算処理を実行する。このために、演算部4は、最適航路演算プログラムを実行することにより、情報入力受付部41、最適航路演算部42および判定部43の機能を発揮する。   The calculation unit 4 executes an optimum route calculation process for calculating the optimum route of the ship based on various information stored in the storage unit 3. For this reason, the calculating part 4 exhibits the function of the information input reception part 41, the optimal route calculating part 42, and the determination part 43 by running the optimal route calculating program.

情報入力受付部41は、船舶の出発地、到着地、出発時刻および到着時刻を含む情報の入力を受け付ける。最適航路演算部42は、入力された情報と、記憶部3に記憶されている船舶の性能データと、船舶が航行する航路領域の気象データと、に基づいて、最適航路を演算する。判定部43は、出発地と到着地との間に、予め定められた固定航路領域があるか否かを判定する。最適航路演算部42は、判定部43により固定航路領域があると判定された場合、固定航路領域においては予め定められた固定航路を採用し、残りの領域を、出発地、固定航路領域の端部または到着地によって区切られる複数の領域に分割し、当該複数の領域のそれぞれについて最適航路を演算する。   The information input receiving unit 41 receives input of information including the departure place, arrival place, departure time and arrival time of the ship. The optimum route calculation unit 42 calculates the optimum route based on the input information, the performance data of the ship stored in the storage unit 3, and the weather data of the route region where the ship navigates. The determination unit 43 determines whether or not there is a predetermined fixed route area between the departure place and the arrival place. When the determination unit 43 determines that there is a fixed route region, the optimum route calculation unit 42 adopts a predetermined fixed route in the fixed route region, and uses the remaining region as the departure point and the end of the fixed route region. The vehicle is divided into a plurality of areas divided by a part or an arrival place, and an optimum route is calculated for each of the plurality of areas.

出力部5は、演算部4における演算結果を出力する。例えば、出力部5は、最適航路演算装置1に接続された表示装置(図示せず)に、地図(海図)上に演算部4によって演算された最適航路を表示する。   The output unit 5 outputs the calculation result in the calculation unit 4. For example, the output unit 5 displays the optimum route calculated by the calculation unit 4 on a map (nautical chart) on a display device (not shown) connected to the optimum route calculation device 1.

以下、最適航路演算処理の具体例を説明する。   Hereinafter, a specific example of the optimum route calculation process will be described.

図2は本実施の形態における航路領域を示す図である。本実施の形態では、図2に示すように、出発地Sから到着地Gまでの間に狭い海域(運河、港湾部等)と広い海域(大洋等)とが含まれている。本実施の形態では、最適航路演算を行う領域が狭い海域である固定航路領域AS(m=1,2,…)と、広い海域である航路演算領域AC(n=1,2,…)とに分割され、航路演算領域について最適航路演算が行われる。 FIG. 2 is a diagram showing a route area in the present embodiment. In the present embodiment, as shown in FIG. 2, a narrow sea area (canal, port portion, etc.) and a wide sea area (ocean, etc.) are included between the departure place S and the arrival place G. In the present embodiment, the fixed route area AS m (m = 1, 2,...), Which is a narrow sea area where the optimum route calculation is performed, and the route calculation area AC n (n = 1, 2,...), Which is a wide sea area. And the optimum route calculation is performed for the route calculation region.

本実施の形態において、記憶部3には、船舶が航行可能な航行可能領域か否かの境界線を示す(例えば、船舶が航行可能な水深の最低値を境界線とする)地図データが記憶されている。さらに、記憶部3には、出発地Sから到着地Gまでの予め定められた基準航路fsが記憶されている。基準航路fsは、例えば、国際水路機関等から発行される航路情報であってもよい。これに代えて、過去の同様の航路における最適航路演算結果(最適航路)を記憶部3に蓄積し、蓄積されたデータの平均的な航路、または、蓄積された複数の航路のうち所定条件を満足する一の航路(例えば安全性と燃費とをパラメータとする評価関数が最小である航路)を基準航路fsとしてもよい。また、ユーザ(例えば船舶の船長または管理者)が設定した航路を基準航路fsとしてもよい。所定領域ごとの最短航路(大圏航路)を繋ぎ合わせた航路を基準航路fsとしてもよい。   In the present embodiment, the storage unit 3 stores map data indicating a boundary line indicating whether or not the ship is a navigable region (for example, a boundary value is a minimum water depth at which the ship can navigate). Has been. Further, the storage unit 3 stores a predetermined reference route fs from the departure point S to the arrival point G. The reference route fs may be, for example, route information issued from an international waterway organization or the like. Instead of this, the optimum route calculation result (optimum route) in the same route in the past is stored in the storage unit 3, and an average route of the accumulated data or a predetermined condition among the plurality of accumulated routes is set. One satisfied route (for example, a route having the smallest evaluation function with safety and fuel consumption as parameters) may be used as the reference route fs. Further, a route set by a user (for example, a ship captain or an administrator) may be set as the reference route fs. The reference route fs may be a route obtained by connecting the shortest routes (large circle routes) for each predetermined region.

さらに、記憶部3には、航路演算領域ACを識別するための演算領域データが記憶されている。演算領域データは、例えば一の航路演算領域ACの境界線のデータを含む。例えば、一の航路演算領域ACの北端の緯度、南端の緯度、東端の経度および西端の経度の情報を含む。この場合、航路演算領域ACは、図2に示すAC,ACように、緯線および経線に沿った形状を有する領域となる。 Further, the storage unit 3 stores calculation area data for identifying the route calculation area AC j . Calculation region data comprises data for example one route calculation region AC n border. For example, the north end of the latitude of one route calculation region AC n, southern end of latitude, the information of the easternmost longitude and westernmost longitude. In this case, the route calculation area AC n is an area having a shape along the latitude and longitude lines, such as AC 1 and AC 2 shown in FIG.

図3は本実施の形態における最適航路演算処理の流れを示すフローチャートである。図3に示すように、情報入力受付部41は、出発地S、到着地G、出発時刻T、到着時刻T、基準航路fsを含む情報入力を受け付ける(ステップS1)。なお、船舶を出発時刻Tから一定回転数で航行させる場合等において、到着時刻Tの情報入力を不要としてもよい。判定部43は、出発地Sと到着地Gとの間に、予め定められた固定航路領域ASがあるか否かを判定する。このために、判定部43は、基準航路fsと、航路演算領域ACの境界線とが交差する境界地点があるか否かを判定する(ステップS3)。 FIG. 3 is a flowchart showing the flow of optimum route calculation processing in the present embodiment. As illustrated in FIG. 3, the information input receiving unit 41 receives information input including a departure place S, an arrival place G, a departure time T S , an arrival time T G , and a reference route fs (Step S <b> 1). In addition, when navigating a ship at a fixed number of rotations from the departure time T S , it is not necessary to input information on the arrival time T G. The determination unit 43 determines whether or not there is a predetermined fixed route area AS m between the departure point S and the arrival point G. For this, the determination unit 43 determines a reference route fs, and the boundary of the route calculation region AC n whether there is a boundary point intersecting (step S3).

本実施の形態において、判定部43は、基準航路fs上に複数の判定点WP(u=1,2,3,…,U)を配置する(ステップS2)。なお、本実施の形態では、1つ目の判定点WPは出発地Sに一致し、最後の判定点WPは到着地Gに一致する。例えば、判定点WPは、出発地Sから到着地Gまでの間に等間隔に配置される。これに代えて、基準航路fsの曲率に応じて(例えば曲率が大きいほど間隔が短くなるように)配置間隔を変化させてもよいし、出発地S,到着地Gおよび/または予め定められた位置近傍における近接する判定点WP間の間隔を他に比べて短くしてもよい。 In the present embodiment, the determination unit 43 arranges a plurality of determination points WP u (u = 1, 2, 3,..., U) on the reference channel fs (step S2). In the present embodiment, the first determination point WP 1 matches the departure point S, and the last determination point WP U matches the arrival point G. For example, the determination points WP u are arranged at equal intervals between the departure point S and the arrival point G. Instead of this, the arrangement interval may be changed according to the curvature of the reference route fs (for example, the larger the curvature, the shorter the interval), or the departure place S, the arrival place G, and / or a predetermined distance. the interval between decision point WP u proximate at located near may be shorter than the other.

判定部43は、固定航路とする判定点WPと航路演算を行う判定点WPとを抽出する(ステップS3)。例えば、判定部43は、以下に示す地図拡張処理を行うことにより固定航路領域の判定および抽出を行う。図4は図2に示す地図において地図拡張処理を行う場合の概念図である。地図拡張処理において、判定部43は、記憶部3から地図データを読み出し、当該地図データ上に基準航路fsを重ね合わせ、地図データにおいて航行可能領域を示す境界線を航行可能領域側(海側)に所定距離拡張する。 The determination unit 43 extracts a determination point WP u that is a fixed route and a determination point WP u that is used for route calculation (step S3). For example, the determination unit 43 determines and extracts a fixed route area by performing the map expansion process described below. FIG. 4 is a conceptual diagram when map expansion processing is performed on the map shown in FIG. In the map expansion process, the determination unit 43 reads the map data from the storage unit 3, superimposes the reference route fs on the map data, and sets the boundary line indicating the navigable region in the map data to the navigable region side (sea side). Extend a predetermined distance.

図4には本来の航行可能領域を示す境界線Coを海側に所定距離(例えば数10海里)拡張した境界線Ceが示されている。この結果、例えば図4の中央部に示す海峡部は、互いの岸が前進することにより航行可能領域がなくなっている。判定部43は、境界線Coの拡張の結果、当該拡張後の境界線Ceより航行可能領域とは反対側(陸側)に基準航路fsが含まれるようになった領域を固定航路領域ASとして判定し、当該固定航路領域ASに含まれる判定点WPを抽出する。 FIG. 4 shows a boundary line Ce obtained by extending the boundary line Co indicating the original navigable area to the sea side by a predetermined distance (for example, several tens of nautical miles). As a result, for example, in the strait part shown in the central part of FIG. As a result of the expansion of the boundary line Co, the determination unit 43 determines an area in which the reference navigation path fs is included on the side (land side) opposite to the navigable area from the expanded boundary line Ce as the fixed navigation area AS m. And the determination point WP u included in the fixed route area AS m is extracted.

図4においては、判定点WP(出発地S),WP〜WP12(海峡部),WP(到着地G)が、陸側に位置することとなるため、判定部43は、これらの判定点WPを抽出する。これらの判定点WPは、固定航路領域ASに含まれる判定点として記憶部3に一時記憶される。 In FIG. 4, the determination points WP 1 (departure point S), WP 7 to WP 12 (strait portion), and WP U (arrival point G) are located on the land side. The determination point WP u is extracted. These determination points WP u are temporarily stored in the storage unit 3 as determination points included in the fixed route area AS m .

このように、地図拡張処理を行うことにより、地図データ上の狭小領域が自動的に固定航路領域ACとして判定されるため、最適航路を演算する航路演算領域ASおよび/または固定航路領域ACを予め定めなくても、最適航路の演算を行う領域ASと、固定航路領域ACとを、自動的に判定することができる。なお、本実施の形態では、地図拡張処理により固定航路領域ACが特定されるだけでなく、航路演算領域ASが特定される。 Thus, by performing a map expansion process, since the narrow region on the map data is automatically determined as a fixed route region AC n, route calculation region AS m and / or fixed route region AC calculates the optimum route Even if n is not determined in advance, it is possible to automatically determine the area AS m for calculating the optimum route and the fixed route area AC n . In the present embodiment, not only the fixed route area AC n is specified by the map expansion process, but also the route calculation area AS m is specified.

図2の例においては、航路演算領域ACに含まれる判定点WP〜WPおよび航路演算領域ACに含まれる判定点WP12〜WPU−1が抽出される。これらの判定点WPは、該当する航路演算領域ACとともに記憶部3に一時記憶される。具体的な抽出方法については後述する。 In the example of FIG. 2, determination points WP 2 to WP 6 included in the route calculation area AC 1 and determination points WP 12 to WP U-1 included in the route calculation area AC 2 are extracted. These determination points WP u are temporarily stored in the storage unit 3 together with the corresponding route calculation area AC n . A specific extraction method will be described later.

最適航路演算部42は、上述のように航路演算領域ACに含まれる判定点WPがあると判定された場合、航路演算を行う判定点WPuが連続する区間(後述する各航路演算領域ACにおける境界地点の始点Sと、終点G間)ごとに最適航路を演算する(ステップS4)。図2の例では、第1の境界地点S−G間における最適航路が、第1の演算開始位置Sの出発時刻を基準航路fsにおける判定点WPへの到着時刻とし、第1の演算終了位置Gの到着時刻を基準航路fsにおける判定点WPへの到着時刻とすることにより演算される。また、第2の境界地点S−G間における最適航路が、第2の演算開始位置Sの出発時刻を基準航路fsにおける判定点WP12への到着時刻とし、第2の演算終了位置Gの到着時刻を基準航路fsにおける判定点WPU−1への到着時刻とすることにより演算される。 Optimum route calculation unit 42, when it is determined that there is decision point WP u included in the route calculation region AC n as described above, the route calculation region AC which decision point WPu to section continuous (described later to perform the route calculation The optimum route is calculated for each boundary point start point S j and end point G j at n (step S4). In the example of FIG. 2, the optimal route between the first boundary points S 1 and G 1 uses the departure time of the first calculation start position S 1 as the arrival time at the determination point WP 2 in the reference route fs, It is calculated by the arrival time of the operation end position G 1 between the arrival time at the determination point WP 6 in the reference route fs. In addition, the optimum route between the second boundary points S 2 and G 2 uses the departure time of the second calculation start position S 2 as the arrival time at the determination point WP 12 in the reference route fs, and the second calculation end position. the arrival time of G 2 is calculated by the arrival time at the decision point WP U-1 in the reference route fs.

また、最適航路演算部42は、航路演算領域AC外の固定航路領域ASにおいては基準航路fsを固定航路として採用する。 In addition, the optimum route calculation unit 42 adopts the reference route fs as the fixed route in the fixed route area AS m outside the route calculation area AC n .

最適航路演算部42は、演算した最適航路(各境界地点S,G間における最適航路)およびそれ以外の区間の固定航路(基準航路fs)を連結し、これを出発地Sから到着地Gまでの最適航路として出力する(ステップS5)。 The optimum route calculation unit 42 connects the calculated optimum route (the optimum route between the boundary points S j and G j ) and the fixed route (reference route fs) in other sections, and connects this from the departure point S to the arrival point. Output as the optimum route to G (step S5).

以下に、航路演算を行う判定点WPの抽出処理の具体例を説明する。図5は本実施の形態における航路演算を行う判定点抽出処理の流れを示すフローチャートである。図5に示すように、判定部43は、探索回数j=1とし、探索基準位置SPを出発地Sに設定する(ステップS31)。その上で、判定部43は、探索基準位置SP(出発地S)から到着地Gに向けて探索し、最初に航路演算領域ACに含まれる判定点WPを抽出する(ステップS32)。図2の例では、航路演算領域ACに含まれる判定点WPが抽出される。 Hereinafter, a specific example of a process of extracting the decision point WP u performing route calculation. FIG. 5 is a flowchart showing the flow of determination point extraction processing for performing route calculation in the present embodiment. As shown in FIG. 5, the determination unit 43 sets the number of searches j = 1 and sets the search reference position SP as the departure point S (step S31). Then, the determination unit 43 searches from the search reference position SP (departure point S) toward the arrival point G, and first extracts the determination point WP u included in the route calculation area AC n (step S32). In the example of FIG. 2, the decision point WP 2 included in the route calculation region AC 1 is extracted.

判定部43は、抽出した判定点WP(図2におけるWP)を演算開始位置Sに設定し(ステップS33)、抽出した判定点WPが属する航路演算領域ACを抽出エリアjに設定する(ステップS34)。図2の例では、抽出した判定点WPが演算開始位置Sに設定され、当該判定点WPが属する航路演算領域ACが抽出エリア1に設定される。 Determining unit 43 sets the extracted decision point WP u (WP 2 in FIG. 2) to the operation start position S j (step S33), the extracted decision point WP u belongs route calculation region AC n to the extraction area j Set (step S34). In the example of FIG. 2, the extracted determination point WP 2 is set as the calculation start position S 1, and the route calculation area AC 1 to which the determination point WP 2 belongs is set as the extraction area 1.

また、判定部43は、到着地Gから探索基準位置SP(出発地S)に向けて探索し、最初に抽出エリアj(=1)に含まれる判定点WPを抽出する(ステップS35)。図2の例では、抽出エリア1(航路演算領域AC)に含まれる判定点WPのうち最も到着地G側(航路下流側)に位置する判定点WPが抽出される。判定部43は、抽出した判定点WP(図2におけるWP)を演算終了位置Gに設定する(ステップS36)。 The determination unit 43 searches from the arrival point G toward the search reference position SP (departure point S), and first extracts the determination point WP u included in the extraction area j (= 1) (step S35). In the example of FIG. 2, the determination point WP 6 that is located closest to the arrival point G (the downstream side of the route) is extracted from the determination points WP u included in the extraction area 1 (the route calculation area AC 1 ). The determination unit 43 sets the extracted determination point WP u (WP 6 in FIG. 2) as the calculation end position G j (step S36).

このように、ステップS31からステップS36までの処理により、基準航路fsと1つ目の航路演算領域AC(抽出エリア1)とが交差する境界地点S,Gが抽出される。 In this manner, the boundary points S 1 and G 1 where the reference route fs and the first route calculation area AC 1 (extraction area 1) intersect are extracted by the processing from step S31 to step S36.

この後、判定部43は、探索回数jに1を加え(j=j+1)、演算終了位置G(G)の次の判定点WPを次回の探索基準位置SPに設定する(ステップS37)。例えば、j=j+1=2が設定された場合、抽出エリア1の演算終了位置G(=WP)の次の判定点WPが探索基準位置SPに設定される。 Thereafter, the determination unit 43 adds 1 to the search count j (j = j + 1), and sets the next determination point WP u after the calculation end position G j (G 1 ) as the next search reference position SP (step S37). ). For example, when j = j + 1 = 2 is set, the determination point WP 7 next to the calculation end position G 1 (= WP 6 ) of the extraction area 1 is set as the search reference position SP.

判定部43は、探索基準位置SPが到着地Gであるか否かを判定する(ステップS38)。探索基準位置SPが到着地Gではない場合(ステップS38でNo)、判定部43は、新たな探索基準位置SPを用いたステップS31からステップS36までの処理により、基準航路fsとj番目の航路演算領域AC(抽出エリアj)とが交差する境界地点S,Gを抽出する。 The determination unit 43 determines whether or not the search reference position SP is the arrival point G (step S38). When the search reference position SP is not the arrival place G (No in step S38), the determination unit 43 performs the processes from step S31 to step S36 using the new search reference position SP, thereby determining the reference route fs and the jth route. Boundary points S j and G j where the calculation area AC n (extraction area j) intersects are extracted.

図2の例では、上記抽出エリア1における演算開始位置Sおよび演算終了位置Gに加えて、抽出エリア2(航路演算領域AC)における演算開始位置Sおよび演算終了位置Gが抽出される。演算開始位置Sとして判定点WP12が抽出され、演算終了位置Gとして判定点WPU−1が抽出される。 In the example of FIG. 2, in addition to the operation start position S 1 and calculating the end position of G 1 in the extraction area 1, the extraction area 2 (route calculation region AC 2) calculating the start position S 2, and operation end position G 2 in the extraction Is done. Determined point WP 12 is extracted as an operation start position S 2, determination points WP U-1 is extracted as the operation end position G 2.

ステップS37において、探索回数j=3となった場合、抽出エリア2の演算終了位置G(=WPU−1)の次の判定点WPが探索基準位置SPに設定される。探索基準位置SPに設定された判定点WPは、到着地Gであるため(ステップS38でYes)、判定部43は、基準航路fsと、航路演算領域ACの境界線とが交差する境界地点があるか否かの判定を終了する。 In step S37, when the number of searches j = 3, the determination point WP U next to the calculation end position G 2 (= WP U-1 ) of the extraction area 2 is set as the search reference position SP. Search reference position SP decision point WP U set to are the arrival G (Yes in step S38), the determination unit 43 includes a reference route fs, and the boundary of the route calculation region AC n intersecting boundary The determination of whether or not there is a point ends.

この結果、図2の例では、出発地Sから判定点WPまでの間、判定点WPから判定点WP12までの間、および、判定点WPU−1から到着地Gまでの間が固定航路領域ASと判定され、判定点WPから判定点WPまでの間、および、判定点WP12から判定点WPU−1までの間が航路演算領域ACと判定される。各判定点WPが属する領域AS,ACの情報は、記憶部3に一時記憶され、最適航路演算処理の以降のステップ(S4,S5)で適宜読み出され、演算に用いられる。 As a result, in the example of FIG. 2, the distance from the departure point S to the determination point WP 2 , the determination point WP 6 to the determination point WP 12 , and the determination point WP U−1 to the arrival point G. it is determined that the fixed route area aS m, between the decision point WP 2 to the decision point WP 6, and, between the decision point WP 12 to decision point WP U-1 is determined as route calculation region AC n. Information on the areas AS m and AC n to which the respective determination points WP u belong is temporarily stored in the storage unit 3, and is appropriately read out in the subsequent steps (S4 and S5) of the optimum route calculation process and used for calculation.

上記構成によれば、出発地Sと到着地Gとの間において固定航路領域ASが含まれる場合には、自動的に当該固定航路領域ASについては予め定められた固定航路(基準航路fs)が採用され、残りの領域が、固定航路領域ASによって区切られる複数の航路演算領域ACに分割され、それぞれの航路演算領域ACについて最適航路が演算される。したがって、多数の諸島または浅瀬が存在する海域、運河または海峡等の最適航路演算の余地が少ない領域を固定航路領域ASとして予め定められた航路とし、その他の領域についてのみ最適航路を演算することにより、当該固定航路領域ASを含む航路全体の最適航路演算を、演算量を抑制しつつ自動的に行うことができる。 According to the above configuration, when the fixed route area AS m is included between the departure place S and the arrival place G, the fixed route area AS m is automatically set in advance for the fixed route area AS m (reference route fs). The remaining area is divided into a plurality of route calculation areas AC n divided by the fixed route area AS m , and the optimum route is calculated for each route calculation area AC n . Therefore, the area where there is little room for calculating the optimum route, such as a sea area where there are many islands or shallows, canals or straits, is defined as the fixed route area AS m , and the optimum route is calculated only for other areas. Thus, the optimum route calculation of the entire route including the fixed route region AS m can be automatically performed while suppressing the amount of calculation.

また、出発地Sから到着地Gまでの基準航路fsおよび最適航路を演算するように設定された航路演算領域ACを予め定めておくことで、最適航路の演算を行う領域ACと、固定航路領域ASとを、自動的に判定することができる。 Further, by leaving define the set route calculation region AC n to compute the reference route fs and the optimum route from the departure point S to arrival G advance, a region AC n to perform calculation of the optimal route, fixed The route area AS m can be automatically determined.

[変形例]
なお、上記実施の形態では、固定航路領域ASと航路演算領域ACとが互いに重複しない領域として設定されることを前提とした例について説明した。しかし、例えばより複雑な航行可能領域の境界線を含む領域における最適航路演算においては、固定航路領域ASと航路演算領域ACとが重複する可能性を許容するように、航路演算領域ACを大きめに設定することが好ましい場合がある。
[Modification]
In the above embodiment, the example has been described on the assumption that the fixed route area AS m and the route calculation area AC n are set as areas that do not overlap each other. However, for example, the optimum route in the operation in a region including a boundary of more complex navigable area, as a fixed route region AS m and route calculation region AC n to allow the possibility of duplication, route calculation region AC n It may be preferable to set a larger value.

そこで、このような場合、判定部43は、図5におけるステップS32で抽出した判定点WPをそのまま演算開始位置Sに設定せずに、仮演算開始位置S’に設定する。同様に、判定部43は、図5におけるステップS35で抽出した判定点WPをそのまま演算終了位置Gに設定せずに、仮演算終了位置G’に設定する。 Thus, in such a case, the judgment unit 43, without setting a decision point WP u extracted with step S32 as the calculation start position S j in FIG. 5, is set to the temporary operation start position S j '. Similarly, the determination unit 43, without setting a decision point WP u extracted in a step S35 as it is to the operation end position G j in FIG. 5, is set to the temporary operation end position G j '.

そして、図5のステップS36の後かつステップS37の前に、以下のステップを追加する。まず、判定部43は、設定された仮演算開始位置S’が固定航路領域ASにも含まれているか否かを判定する。固定航路領域ASには含まれていない場合(すなわち、仮演算開始位置S’が航路演算領域ACのみに属する場合)、判定部43は、仮演算開始位置S’を演算開始位置Sに設定する。 Then, the following steps are added after step S36 of FIG. 5 and before step S37. First, the determination unit 43 determines whether or not the set provisional calculation start position S j ′ is also included in the fixed route area AS m . When it is not included in the fixed route area AS m (that is, when the temporary calculation start position S j ′ belongs only to the route calculation area AC n ), the determination unit 43 sets the temporary calculation start position S j ′ as the calculation start position. Set to S j .

一方、固定航路領域ASにも含まれている場合(すなわち、仮演算開始位置S’が航路演算領域ACと固定航路領域ASとが重複する領域に属している場合)、判定部43は、仮演算開始位置S’から仮演算終了位置G’に向けて探索し、固定航路領域ASから最初に出た(最初に航路演算領域ACにのみの領域に属する)判定点WPを演算開始位置Sに設定する。 On the other hand, when it is also included in the fixed route area AS m (that is, when the temporary calculation start position S j ′ belongs to an area where the route calculation area AC n and the fixed route area AS m overlap), the determination unit 43 is a search from the provisional calculation start position S j ′ toward the provisional calculation end position G j ′, and a determination that first comes out of the fixed route area AS m (belongs first to the route calculation area AC n only) The point WP u is set to the calculation start position S j .

仮演算終了位置Gj’に対しても同様に、判定部43は、設定された仮演算終了位置G’が固定航路領域ASにも含まれているか否かを判定する。固定航路領域ASには含まれていない場合(すなわち、仮演算終了位置G’が航路演算領域ACのみに属する場合)、判定部43は、仮演算終了位置G’を演算終了位置Gに設定する。 Similarly, for the temporary calculation end position Gj ′, the determination unit 43 determines whether or not the set temporary calculation end position G j ′ is also included in the fixed route area AS m . When it is not included in the fixed route area AS m (that is, when the temporary calculation end position G j ′ belongs only to the route calculation area AC n ), the determination unit 43 sets the temporary calculation end position G j ′ as the calculation end position. Set to G j .

一方、固定航路領域ASにも含まれている場合(すなわち、仮演算終了位置G’が航路演算領域ACと固定航路領域ASとが重複する領域に属している場合)、判定部43は、仮演算終了位置G’から演算開始位置Sに向けて探索し、固定航路領域ASから最初に出た(最初に航路演算領域ACにのみの領域に属する)判定点WPを演算終了位置Gに設定する。 On the other hand, when it is also included in the fixed route area AS m (that is, when the provisional calculation end position G j ′ belongs to an area where the route calculation area AC n and the fixed route area AS m overlap), the determination unit 43 is a search point from the provisional calculation end position G j ′ toward the calculation start position S j , and a determination point WP that first comes out of the fixed route area AS m (belongs to the area only in the route calculation area AC n first). u is set to the calculation end position Gj .

なお、固定航路領域ASと航路演算領域ACとの重複を許容した場合、仮演算開始位置S’および仮演算終了位置G’が抽出された段階で、判定部43は、仮演算開始位置S’から仮演算終了位置G’までの間のすべての判定点WPが固定航路領域ASにも含まれているか否かを判定してもよい。仮演算開始位置S’から仮演算終了位置G’までの間のすべての判定点WPが固定航路領域ASにも含まれている(すなわち、航路演算領域ACと固定航路領域ASとが重複する領域に属している)場合、仮演算開始位置S’から仮演算終了位置G’までの間の領域は、固定演算領域ASとして扱われる。したがって、この場合、その後の上記判定を行うことなく、当該探索基準位置SPにおける演算開始位置Sおよび演算終了位置Gは設定されない状態で、判定部43は、仮演算終了位置G’の次の判定点WPを次回の探索基準位置SPに設定する(ステップS11)。 In addition, when the overlap of the fixed route area AS m and the route calculation area AC n is permitted, the determination unit 43 performs the temporary calculation at the stage where the temporary calculation start position S j ′ and the temporary calculation end position G j ′ are extracted. It may be determined whether or not all determination points WP u between the start position S j ′ and the provisional calculation end position G j ′ are also included in the fixed route area AS m . All the determination points WP u between the temporary calculation start position S j ′ and the temporary calculation end position G j ′ are also included in the fixed route area AS m (that is, the route calculation area AC n and the fixed route area AS). m belongs to an area overlapping with m ), the area from the temporary calculation start position S j ′ to the temporary calculation end position G j ′ is treated as a fixed calculation area AS m . Therefore, in this case, the determination unit 43 sets the temporary calculation end position G j ′ without setting the calculation start position S j and the calculation end position G j at the search reference position SP without performing the above determination. The next determination point WP u is set as the next search reference position SP (step S11).

以上のように、予め航路演算領域ACを大きめに設定した上で、実際に演算する領域として、当該航路演算領域ACに含まれる領域であっても固定航路領域ASにも含まれる領域は除外することにより、航路演算領域ACの設定時の煩雑さを回避しつつ固定航路領域ASと航路演算領域ACとの峻別を正確に行うことができる。 As described above, the route calculation area AC n is set to be large in advance, and the area actually included in the calculation is the area included in the fixed route area AS m even if the area is included in the route calculation area AC n. can is that by excluding, performs distinction between fixed route region aS m and route calculation region AC n while avoiding setting complication during the route calculation region AC n accurately.

[最適航路演算の例]
最適航路演算部42は、気象データに基づく波高、船体動揺等の航行の安全性に関するパラメータと、船舶の性能データに基づく燃費との評価関数を最小化するような航路を最適航路として演算する。
[Example of optimal route calculation]
The optimum route calculation unit 42 calculates a route that minimizes an evaluation function of navigation safety parameters such as wave height and ship motion based on weather data and fuel efficiency based on ship performance data as the optimum route.

なお、最適航路の演算自体は一般的な最適航路演算が適用可能である。例えば、以下のようなダイナミックプログラミング(DP)法を採用することができる。図5はDP法による最適航路演算を説明するための図である。   Note that the optimum route calculation itself can be applied to a general optimum route calculation. For example, the following dynamic programming (DP) method can be employed. FIG. 5 is a diagram for explaining the optimum route calculation by the DP method.

DP法において、まず、最適航路演算部42は、演算開始位置Sと演算終了位置Gとの間の最短距離を結ぶ最短距離航路(大圏航路)Rを演算する。そして、最適航路演算部42は、当該最短距離航路RをN等分し、各等分点において直交する仮想線分(大圏)Mを設定する。さらに、最適航路演算部42は、各仮想線分M上に等間隔で格子点Lを配置する。出発地Sからk本目の仮想線分M上のi番目の格子点をL(k,i)とする。最適航路演算部42は、各仮想線分M上の何れかの格子点Lを1つずつ選択し、出発地Sと到着地Gとの間で順に繋いだものを航路(最適航路)Rとして演算する。すなわち、最適航路Rは、演算開始位置S、格子点L(1.i),格子点L(2,i),…,L(k,i),…,演算終了位置Gを順に繋いだものとなる。 In the DP method, first, the optimum route calculation unit 42 calculates the shortest distance route (large circle route) R 0 that connects the shortest distances between the calculation start position S j and the calculation end position G j . Then, the optimum route calculation unit 42 divides the shortest distance route R0 into N equal parts, and sets a virtual line segment (great circle) M that is orthogonal at each equally divided point. Furthermore, the optimum route calculation unit 42 arranges the lattice points L at equal intervals on each virtual line segment M. The i-th lattice point on the k-th virtual line segment M from the departure point S is assumed to be L (k, i k ). The optimum route calculation unit 42 selects one of the lattice points L on each virtual line segment M one by one, and the route (optimum route) R S that is sequentially connected between the departure point S and the arrival point G. Calculate as That is, the optimum route R S includes the calculation start position S j , the grid point L (1.i 1 ), the grid point L (2, i 2 ),..., L (k, i k ),. j in order.

船舶は、k本目の仮想線分M上の格子点L(k,i)を時刻tに出発し、k+1本目の仮想線分M上の格子点L(k+1,ik+1)に時刻tk+1に到着するものとする。このときの格子点L(k,i)から格子点L(k+1,ik+1)までの評価値J(L(k,i),L(k+1,ik+1),t,n)を燃料消費量F(L(k,i),L(k+1,ik+1),t,n)と運航限界に対するペナルティP(L(k,i),L(k+1,ik+1),t,n)の和で表す(J=F+P)。ここで、nは格子点L(k,i)から格子点L(k+1,ik+1)まで航行する間の船舶のプロペラ回転数を示す。また、運航限界に対するペナルティPは、例えばその格子点間で遭遇する波高や船体の動揺(ロール角、ピッチ角)などを示す。 The ship departs at the time t k at the grid point L (k, i k ) on the kth virtual line segment M, and at time t at the grid point L (k + 1, i k + 1 ) on the k + 1th virtual line segment M. Suppose we arrive at k + 1 . Evaluation values J (L (k, i k ), L (k + 1, i k + 1 ), t k , n k ) from the lattice point L (k, i k ) to the lattice point L (k + 1, i k + 1 ) at this time Is the fuel consumption F (L (k, i k ), L (k + 1, i k + 1 ), t k , n k ) and penalty P (L (k, i k ), L (k + 1, i k + 1 ) against the operational limit , T k , n k ) (J = F + P). Here, n k represents the propeller rotation speed of the ship while navigating from the lattice point L (k, i k ) to the lattice point L (k + 1, i k + 1 ). Further, the penalty P with respect to the operational limit indicates, for example, the wave height encountered between the lattice points, the hull motion (roll angle, pitch angle), and the like.

格子点L(k+1,ik+1)への到着時刻tk+1は、tk+1=t+T(L(k,i),L(k+1,ik+1),t,n)と表せる。ここで、T(L(k,i),L(k+1,ik+1),t,n)は、格子点L(k,i)から格子点L(k+1,ik+1)までの航行時間を示す。 The arrival time t k + 1 at the lattice point L (k + 1, i k + 1 ) can be expressed as t k + 1 = t k + T (L (k, i k ), L (k + 1, i k + 1 ), t k , n k ). Here, T (L (k, i k ), L (k + 1, i k + 1 ), t k , n k ) is from the lattice point L (k, i k ) to the lattice point L (k + 1, i k + 1 ). Indicates navigation time.

最適航路演算部42は、時刻tに格子点L(k,i)から演算終了位置Gに向けて航行した場合の演算終了位置Gまでの最小評価値Jmin(L(k.i),t)を、格子点L(k,i)から格子点L(k+1,ik+1)までの評価値と時刻tk+1に格子点L(k+1,ik+1)から演算終了位置Gに向けて航行した場合の演算終了位置Gまでの最小評価値との和を、iK+1とnとをパラメータとして最小化することで求める。 Optimum route calculation unit 42, the time t k to the lattice point L (k, i k) the minimum evaluation value from up operation end position G j in the case of sailing toward the operation end position G j J min (L (k . i k), the t k), calculating the end position from the lattice point L (k, lattice point from i k) L (k + 1 , i k + 1) grid point to the evaluation value and the time t k + 1 to L (k + 1, i k + 1) The sum with the minimum evaluation value up to the calculation end position G j when sailing toward G j is obtained by minimizing i K + 1 and n k as parameters.

すなわち、最適航路演算部42は、
Jmin(L(k.ik),tk)
=Min(ik+1,nk){J(L(k,ik),L(k+1,ik+1),tk,nk)+Jmin(L(k+1,ik+1),tk+T(L(k,ik),L(k+1,ik+1),tk,nk))}
(k=N−2,…,1,0) … (1)
を演算する。ここで、Min(ik+1,n){J}は,J内をik+1,nをパラメータとして最小化することを意味する。k=0のときの格子点L(0,i)は演算開始位置Sに等しい。
That is, the optimum route calculation unit 42
J min (L (ki k ), t k )
= Min (i k + 1 , n k ) {J (L (k, i k ), L (k + 1, i k + 1 ), t k , n k ) + J min (L (k + 1, i k + 1 ), t k + T (L (k, i k ), L (k + 1, i k + 1 ), t k , n k ))}
(K = N−2,..., 1, 0) (1)
Is calculated. Here, Min (i k + 1 , nk ) {J} means that the inside of J is minimized using i k + 1 and nk as parameters. The lattice point L (0, i 0 ) when k = 0 is equal to the calculation start position S j .

また、最適航路演算部42は、N−1本目の仮想線分M上の格子点L(N−1,iN−1)から演算終了位置Gまで航行する間の最小評価値Jmin(L(N−1,iN−1),tN−1)を以下の式を用いて演算する。
Jmin(L(N-1,iN-1),tN-1)=Min(nN-1){J(L(N-1,iN-1),G,tN-1,nN-1)} … (2)
Further, the optimum route calculation unit 42 sets the minimum evaluation value J min ( N min while traveling from the lattice point L (N−1, i N−1 ) on the N− 1th virtual line segment M to the calculation end position G j. L (N−1, i N−1 ), t N−1 ) is calculated using the following equation.
J min (L (N-1, i N-1 ), t N-1 ) = Min (n N-1 ) {J (L (N-1, i N-1 ), G, t N-1 , n N-1 )} (2)

最適航路演算部42は、上記(1)および(2)式をDP法における関数再帰方程式として用いて、N−1本目の仮想線分Mから演算開始位置Sへ仮想線分Mを1本ずつ遡りながら各格子点Lから演算終了位置Gまでの最小評価値を算出し、最終的に演算開始位置Sから演算終了位置Gまでの最小評価値を求める。最適航路演算部42は、最小評価値を得ることができる格子点Lの集合を最適航路Rとして出力する。複数の境界地点S,G間について個別に上記最適航路演算が行われる。なお、この際、仮想線分Mの数(N)および格子点Lの間隔は、最適航路演算を行う境界地点S,G間(航路演算領域AC)ごとに異なっていてもよい。 The optimum route calculation unit 42 uses the above equations (1) and (2) as a function recursive equation in the DP method to generate one virtual line segment M from the (N-1) th virtual line segment M to the calculation start position Sj . The minimum evaluation value from each lattice point L to the calculation end position G j is calculated while going back step by step, and finally the minimum evaluation value from the calculation start position S j to the calculation end position G j is obtained. The optimum route calculation unit 42 outputs a set of grid points L from which the minimum evaluation value can be obtained as the optimum route RS . The optimum route calculation is performed individually between a plurality of boundary points S j and G j . At this time, the number (N) of the virtual line segments M and the interval between the grid points L may be different for each boundary point S j and G j (route calculation area AC n ) where the optimum route calculation is performed.

また、最適航路演算部42は、上記のようなDP法を用いた最適航路演算に代えて、変分法、ダイクストラ法、A法、等時間曲線法等によって最適航路演算を行ってもよい。また、上記例では、運航限界をペナルティPとして評価値に加えた最適化計算の例を示したが、運航限界以下となる航路を選択することを拘束条件として最適航路演算が行われてもよい。 Further, the optimum route calculation unit 42 may perform the optimum route calculation by a variational method, Dijkstra method, A * method, isochronous curve method, or the like, instead of the optimum route calculation using the DP method as described above. . Moreover, although the example of the optimization calculation which added the operation limit to the evaluation value as penalty P was shown in the said example, optimal route calculation may be performed on the constraint that selecting the route which becomes below an operation limit. .

[その他の変形例]
以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲内で種々の改良、変更、修正が可能である。
[Other variations]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various improvements, changes, and modifications can be made without departing from the spirit of the present invention.

例えば、上記実施の形態においては、出発地Sから到着地Gまでの間の全域にわたる基準航路fsを用いて、そのうちの固定航路領域ASにおける最適航路を、当該基準航路fs部分とする態様について説明した。これに代えて、例えば、予め定められる基準航路fsは、固定航路領域ASにのみ設定されてもよい。 For example, in the above embodiment, the reference route fs over the entire area from the departure point S to the arrival point G is used, and the optimum route in the fixed route region AS m is defined as the reference route fs portion. explained. Instead of this, for example, the predetermined reference route fs may be set only in the fixed route region AS m .

また、上記実施の形態においては、出発地Sおよび到着地Gが固定航路領域ASに含まれる態様を例示したが、出発地Sおよび/または到着地Gが航路演算領域ACに含まれてもよい。すなわち、最適航路を演算する航路演算領域ACは、複数の境界地点間で区切られた領域に限られず、境界地点と出発地Sもしくは到着地Gとの間で区切られた領域であってもよい。言い換えると、出発地Sを演算開始位置Sとしてもよいし、到着地Gを演算終了位置Gとしてもよい。 In the above embodiment, the departure point S and the arrival point G are exemplified in the fixed route area AS m . However, the departure point S and / or the arrival point G is included in the route calculation area AC n. Also good. In other words, the route calculation area AC n for calculating the optimum route is not limited to the area divided between the plurality of boundary points, and may be an area divided between the boundary point and the departure point S or the arrival point G. Good. In other words, the departure point S may be the calculation start position S j , and the arrival point G may be the calculation end position G j .

また、上記実施の形態においては、固定航路領域ASの判定と航路演算領域ACの判定とを両方とも行っているが、何れか一方の領域であるか否かについての判定のみを行い、それ以外の領域は別途判定を行うことなく他方の領域に設定してもよい。 Further, in the above embodiment, both the determination of the fixed route area AS m and the determination of the route calculation area AC n are performed, but only the determination as to whether or not it is one of the areas is performed. Other areas may be set as the other area without separate determination.

また、上記実施の形態では、船舶の出航前に予め最適航路演算を行うことを想定して説明したが、上記態様は、船舶の出航前だけでなく、船舶の出航後において実施することも可能である。この場合、船舶の現在位置または未来の位置(航行予定位置)が出発地Sとなり、現在時刻または航行予定位置への到達予定時刻が出発時刻Tとして入力される。 Further, in the above embodiment, the description has been made on the assumption that the optimum route calculation is performed in advance before the ship departs. It is. In this case, the current position or the future of the position of the ship (sailing schedule position) is the departure point S next to, the estimated time of arrival to the current time or navigation scheduled position is input as a starting time T S.

本発明は、出発地から到着地までの航路全体における最適航路演算を、演算量を抑制しつつ自動的に行うことができる最適航路演算装置および最適航路演算方法を提供するために有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for providing an optimum route calculation device and an optimum route calculation method that can automatically perform an optimum route calculation for the entire route from a departure point to an arrival point while suppressing the amount of calculation.

1 最適航路演算装置
41 情報入力受付部
42 最適航路演算部
43 判定部
AC 航路演算領域
AS 固定航路領域
f 基準航路
G 到着地
S 出発地
DESCRIPTION OF SYMBOLS 1 Optimal route calculation apparatus 41 Information input reception part 42 Optimum route calculation part 43 Judgment part AC n route calculation area AS m fixed route area f reference route G arrival place S departure place

Claims (4)

船舶の出発地、到着地および出発時刻を含む情報の入力を受け付ける情報入力受付部と、
入力された前記情報と、前記船舶の性能データと、前記船舶が航行する航路領域の気象データと、に基づいて、最適航路を演算する最適航路演算部と、
前記出発地と前記到着地との間に、予め定められた固定航路領域があるか否かを判定する判定部と、を備え、
前記最適航路演算部は、前記固定航路領域があると判定された場合、前記固定航路領域においては予め定められた固定航路を採用し、残りの領域を、前記出発地、前記固定航路領域の端部または前記到着地によって区切られる複数の領域に分割し、当該複数の領域のそれぞれについて最適航路を演算する、最適航路演算装置。
An information input receiving unit that receives input of information including a ship's departure place, arrival place, and departure time;
Based on the input information, the performance data of the ship, and the weather data of the route area where the ship navigates, an optimum route calculation unit that calculates an optimum route,
A determination unit that determines whether there is a predetermined fixed route area between the departure place and the arrival place,
When it is determined that the fixed route region is present, the optimum route calculation unit adopts a fixed route that is determined in advance in the fixed route region, and sets the remaining region as an end of the fixed route region. An optimum route computation device that divides the vehicle into a plurality of regions divided by a part or the arrival place and computes an optimum route for each of the plurality of regions.
前記判定部は、前記出発地から前記到着地までの予め定められた基準航路と、最適航路を演算する領域として予め設定された航路演算領域の境界線とが交差する境界地点があるか否かを判定することにより、前記固定航路領域があるか否かを判定するよう構成され、
前記最適航路演算部は、前記境界地点があると判定された場合、前記航路演算領域外の前記固定航路領域においては前記基準航路を前記固定航路として採用し、複数の境界地点間または当該境界地点と前記出発地もしくは前記到着地との間で区切られる航路演算領域について最適航路を演算する、請求項1に記載の最適航路演算装置。
Whether the determination unit has a boundary point where a predetermined reference route from the departure point to the arrival point intersects with a boundary line of a route calculation region set in advance as a region for calculating the optimum route Is configured to determine whether or not the fixed route area exists,
When it is determined that there is the boundary point, the optimum route calculation unit adopts the reference route as the fixed route in the fixed route region outside the route calculation region, and between the boundary points or the boundary point The optimum route calculation device according to claim 1, wherein an optimum route is calculated for a route calculation region that is divided between a departure point and the departure point or the arrival point.
前記判定部は、前記航行可能領域か否かの境界線を示す地図データを読み出し、当該地図データ上に前記出発地から前記到着地までの予め定められた基準航路を重ね合わせ、前記境界線を前記航行可能領域側に所定距離拡張し、当該拡張後の境界線より前記航行可能領域とは反対側に前記基準航路が含まれるようになった領域を前記固定航路領域として判定する、請求項1または2に記載の最適航路演算装置。   The determination unit reads map data indicating a boundary line indicating whether or not the navigable region is present, superimposes a predetermined reference route from the departure point to the arrival point on the map data, and sets the boundary line 2. A predetermined distance is extended to the navigable area side, and an area in which the reference route is included on the opposite side of the navigable area from the expanded boundary line is determined as the fixed route area. Or the optimum route calculation device according to 2; 船舶の出発地、到着地および出発時刻を含む情報の入力を受け付ける情報入力受付ステップと、
入力された前記情報と、前記船舶の性能データと、前記船舶が航行する航路領域の気象データと、に基づいて、最適航路を演算する最適航路演算ステップと、
前記出発地と前記到着地との間に、予め定められた固定航路領域があるか否かを判定する判定ステップと、を含み、
前記最適航路演算ステップは、前記固定航路領域があると判定された場合、前記固定航路領域においては予め定められた固定航路を採用し、残りの領域を、前記出発地、前記固定航路領域の端部または前記到着地によって区切られる複数の領域に分割し、当該複数の領域のそれぞれについて最適航路を演算する、最適航路演算方法。

An information input accepting step for accepting input of information including the departure place, arrival place and departure time of the ship;
An optimum route calculation step for calculating an optimum route based on the input information, the performance data of the vessel, and weather data of a route region where the vessel navigates;
Determining whether there is a predetermined fixed route area between the departure place and the arrival place, and
In the optimum route calculation step, when it is determined that there is the fixed route region, a predetermined fixed route is adopted in the fixed route region, and the remaining region is defined as the end of the fixed route region. Or an optimum route calculation method for calculating an optimum route for each of the plurality of regions.

JP2017129785A 2017-06-30 2017-06-30 Optimal route calculation device and optimal route calculation method Active JP6913536B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017129785A JP6913536B2 (en) 2017-06-30 2017-06-30 Optimal route calculation device and optimal route calculation method
PCT/JP2018/024872 WO2019004443A1 (en) 2017-06-30 2018-06-29 Device for computing optimal course and method for computing optimal course

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017129785A JP6913536B2 (en) 2017-06-30 2017-06-30 Optimal route calculation device and optimal route calculation method

Publications (2)

Publication Number Publication Date
JP2019012043A true JP2019012043A (en) 2019-01-24
JP6913536B2 JP6913536B2 (en) 2021-08-04

Family

ID=64742824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017129785A Active JP6913536B2 (en) 2017-06-30 2017-06-30 Optimal route calculation device and optimal route calculation method

Country Status (2)

Country Link
JP (1) JP6913536B2 (en)
WO (1) WO2019004443A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109465901A (en) * 2018-12-27 2019-03-15 罗马斯精密塑料(苏州)有限公司 A kind of slicer for plastic sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111752300B (en) * 2019-12-30 2022-08-16 广州极飞科技股份有限公司 Unmanned aerial vehicle route planning method, device and system and computer readable storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104690A (en) * 2011-11-10 2013-05-30 Mitsui Eng & Shipbuild Co Ltd Optimum ship route calculation system for vessels, operation supporting system for vessels, optimum ship route calculation method for vessels, and operation supporting method for vessels
JP2013134089A (en) * 2011-12-26 2013-07-08 Mitsubishi Heavy Ind Ltd Optimal sailing route calculating apparatus and optimal sailing route calculating method
JP2016078471A (en) * 2014-10-09 2016-05-16 三菱重工業株式会社 Vessel speed calculation device and vessel speed calculation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022446A (en) * 2010-07-13 2012-02-02 Ship Security Service Co Ltd Running-aground prevention support device, running-aground prevention support system, and running-aground prevention support program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104690A (en) * 2011-11-10 2013-05-30 Mitsui Eng & Shipbuild Co Ltd Optimum ship route calculation system for vessels, operation supporting system for vessels, optimum ship route calculation method for vessels, and operation supporting method for vessels
JP2013134089A (en) * 2011-12-26 2013-07-08 Mitsubishi Heavy Ind Ltd Optimal sailing route calculating apparatus and optimal sailing route calculating method
JP2016078471A (en) * 2014-10-09 2016-05-16 三菱重工業株式会社 Vessel speed calculation device and vessel speed calculation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109465901A (en) * 2018-12-27 2019-03-15 罗马斯精密塑料(苏州)有限公司 A kind of slicer for plastic sheet

Also Published As

Publication number Publication date
JP6913536B2 (en) 2021-08-04
WO2019004443A1 (en) 2019-01-03

Similar Documents

Publication Publication Date Title
CN110967022B (en) Ship navigational speed optimization auxiliary decision-making system
US20210348926A1 (en) An apparatus for determining an optimal route of a maritime ship
JP4247497B2 (en) Optimal route search system
Sen et al. An approach for development of a ship routing algorithm for application in the North Indian Ocean region
CN110608738B (en) Unmanned ship global meteorological air route dynamic planning method and system
Simonsen et al. State-of-the-art within ship weather routing
KR102589008B1 (en) A device for determining the optimal route of a maritime vessel
JP5312425B2 (en) Ship operation support system
JP6038087B2 (en) Ship operation plan optimization system and ship operation plan optimization method
EP2594900A1 (en) Vessel routing system
Takashima et al. 4 On the fuel saving operation for coastal merchant ships using weather routing
JP2013134089A (en) Optimal sailing route calculating apparatus and optimal sailing route calculating method
JP6913537B2 (en) Optimal flight plan arithmetic unit and optimal flight plan calculation method
Guinness et al. A method for ice-aware maritime route optimization
JP6251842B2 (en) Ship operation support system and ship operation support method
Wang et al. Effectiveness of 2D optimization algorithms considering voluntary speed reduction under uncertain metocean conditions
CN113916234A (en) Automatic planning method for ship collision avoidance route under complex dynamic condition
JP2019012043A (en) Optimal route calculating device and optimal route calculating method
Muñuzuri et al. Planning navigation in inland waterways with tidal depth restrictions
Calvert et al. A dynamic system for fuel optimization trans-ocean
KR20200022293A (en) System and method for providing optimized vessel seaway and computer-readable recording medium thereof
Larsson et al. DIRECT optimization algorithm in weather routing of ships
Skoglund A new method for robust route optimization in ensembleweather forecasts
CN114166247A (en) Course evaluation system, method and storage medium based on ocean current numerical forecast information
Eskild Development of a method for weather routing of ships

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R150 Certificate of patent or registration of utility model

Ref document number: 6913536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150