TW201104770A - Semiconductor device and method of forming stress relief layer between die and interconnect structure - Google Patents

Semiconductor device and method of forming stress relief layer between die and interconnect structure Download PDF

Info

Publication number
TW201104770A
TW201104770A TW099115255A TW99115255A TW201104770A TW 201104770 A TW201104770 A TW 201104770A TW 099115255 A TW099115255 A TW 099115255A TW 99115255 A TW99115255 A TW 99115255A TW 201104770 A TW201104770 A TW 201104770A
Authority
TW
Taiwan
Prior art keywords
conductive
layer
semiconductor
encapsulant
insulating layer
Prior art date
Application number
TW099115255A
Other languages
Chinese (zh)
Other versions
TWI570820B (en
Inventor
Il-Kwon Shim
Seng Guan Chow
Yao-Jian Lin
Original Assignee
Stats Chippac Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/481,404 external-priority patent/US8039303B2/en
Application filed by Stats Chippac Ltd filed Critical Stats Chippac Ltd
Publication of TW201104770A publication Critical patent/TW201104770A/en
Application granted granted Critical
Publication of TWI570820B publication Critical patent/TWI570820B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1017All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
    • H01L2225/1035All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the device being entirely enclosed by the support, e.g. high-density interconnect [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A semiconductor device is made by forming a first conductive layer over a sacrificial carrier. A conductive pillar is formed over the first conductive layer. An active surface of a semiconductor die is mounted to the carrier. An encapsulant is deposited over the semiconductor die and around the conductive pillar. The carrier and adhesive layer are removed. A stress relief insulating layer is formed over the active surface of the semiconductor die and a first surface of the encapsulant. The stress relief insulating layer has a first thickness over the semiconductor die and a second thickness less than the first thickness over the encapsulant. A first interconnect structure is formed over the stress relief insulating layer. A second interconnect structure is formed over a second surface of encapsulant opposite the first interconnect structure. The first and second interconnect structures are electrically connected through the conductive pillar.

Description

201104770 六、發明說明: 【發明所屬之技術領域】 本發明基本上有關於半導體元件,特別是關於形成應 力減輕絕緣層於半導體晶粒及增層互連結構之間的半導體 元件及方法。 【先前技術】 半導體元件普遍見於近代電子產品之中。不同半導體 元件内含電氣組件的數目和密度各有所差異。獨件式半導 體元件通常包含一種電氣組件’例如,發光二極體 emitting diode ; LED)、小信號電晶體、電阻器、電容器、 電感器以及功率型金屬氧化物半導體場效電晶體(metal oxide semiconductor field effect transistor ; M0SFET)。整 合式半導體元件則基本上内含數百到數百萬個電氣組件。 整合式半導體元件的實例包含微控制器(micr〇c〇ntr〇Uer)、 微處理器(microprocessor)、電荷耦合元件(charged-coupled device ’ CCD)、太陽能電池(s〇iar ceu)以及數位微鏡元件 (digital micro-mirror device ; DMD)。 半導體元件執行種類繁多的功能,諸如高速計算、傳 送及接收電磁信號、控制電子裝置、將太陽光轉換成電力 以及產生電視顯示器之視覺投映。半導體元件應用於娛 樂、通信、功率轉換、網路、電腦以及消費性產品等領域。 半導體元件亦可見於軍事應用、航空、汽車、工業控制器 以及辦公室設備。 半導體元件利用半導體材料之電氣特性。半導體材料 5 201104770 ,料結構使得其導電性可以應用電場或經由換雜(d_g) ',力乂控制。摻雜係將雜質掺入半導體材料以操縱及控 制半導體元件之導電性。 半導體元件包含主動式(⑽ive)及被動式(passive)電氣 ::構:主動式結構,包含雙載子及場效式電晶體,控制電 動藉由改變摻雜的程度和施加電場或基極電流, =電曰曰體中的電流流動加以提升或抑制。被動式結構,包 含電阻器、電容器、和電感器,建立特定之電壓和電流間 的關係以實現各種電氣功能。被動式和主動式結構彼此電 性連接以構成電路,其致使半導體元件可以執行高速計算 以及其他有有用的功能。 半導體兀件的生產一般而言係利用二個複雜的製程, 意即二前端產製和後端產製,其各自均可能包含數百個步 月】、產製包含在-半導體晶圓(semiconductor wafer)的 表面上形成複數個晶粒(die)。每一晶粒基本上彼此相同且 ^ 3藉由電性連接主動式和被動式組件所構成的電路。後 端產製包含自完成的晶圓單片化個別晶粒並封裝晶粒以提 供結構上的支承及環境隔絕。 半導體產製的目標之-係生產較小型的半導體元件。 較小型的元件通常耗用較少之電力、具有較高之效能且可 以更有效率地生產。此外,較小型的半導體元件具有較小 的覆伯面積,為小型產品所必須。較小型的晶粒尺寸可以 藉由改善前端製程達成’其產生具有較小型而較高密度主 動式和被動式組件之晶粒。後端製程藉由電氣互連及:裝 6 201104770 材料上的改善可以產生具有較小覆佔面積的半導體元件封 裝。 疊層式半導體晶粒間的電性互連可以經由導電性的矽 通孔(through silicon vias ; TSV)或導穿孔(through hole vias ; THV)以及中介的增層互連層達成。為了形成TS v或 THV ’其在半導體材料或環繞半導體晶粒的周邊區域切穿一 穿孔。該穿孔接著被填充以電性傳導物質,例如,經由一 電鍍製程之銅質沉積(deposition)。介於半導體晶粒之熱膨 脹係數(coefficient of thermal expansion ; CTE)和固定板或 中介增層互連層間的潛在性不匹配將產生可能導致THV或 TSV接合失敗以及晶粒自相鄰互連結構疊層分離的應力。 此等元件失效降低良率並增加製造成本。 【發明内容】 其有需要針對疊層式半導體元件提出一種具有較低故 障率之垂直互連結構。有鑑於此,在一實施例中,本發明 係一種製造半導體元件的方法’其步驟包含提供一暫時性 載體、形成一第一導電層於該暫時性載體上、形成一導電 柱狀結構於該第一導電層上以及以一黏著層(adhesive Uyer) 將一半導體晶粒之一主動表面(active surface)固定至該暫 時性載體。該半導體晶粒藉由該黏著層垂直偏移自該第一 導電層。此方法之步驟更包含沉積一封裝劑(encapsulant)於 該半導體晶粒上及該導電柱狀結構周圍、移除該暫時性載 體及黏著層、以及形成一應力減輕絕緣層(stress reHef msuUting layer)於該半導體晶粒之該主動表面及該封裝劑 201104770 之第表面上。該應力減輕絕緣層在該半導體晶粒上具 有第—厚度,且在該封裝劑上具有一小於該第一厚度之 第一厚度。此方法之步驟更包含形成一第一互連結構於該 應力減輕絕緣層上,以及形成一第二互連結構於該第一互 連結構對側之封裝劑之一第二表面上。上述之第一及第二 互連結構透過該導電柱狀結構彼此電性連接。 在另一實施例中,本發明係一種製造半導體元件的方 法,其步驟包含提供一第一載體、形成一導電柱狀結構於 該第一載體上、將一半導體組件固定至該第一載體、沉積 封裝劑於該半導體組件上及該導電柱狀結構周圍、移除 6亥第一載體以及形成一應力減輕絕緣層於該半導體組件及 该封裝劑之一第一表面上。該應力減輕絕緣層在該半導體 組件上具有一第一厚度,且在該封裝劑上具有一小於該第 一厚度之第二厚度。此方法之步驟更包含形成一第一互連 結構於該應力減輕絕緣層上,以及形成一第二互連結構於 該第一互連結構對側之封裝劑之一第二表面上。上述之第 一及第二互連結構透過該導電柱狀結構彼此電性連接。 在另一實施例中,本發明係一種製造半導體元件的方 法,其步驟包含提供一第一載體、形成一導電柱狀結構於 該第一載體上、將一半導體組件固定至該第一載體、沉積 一封裝劑於該半導體組件上及該導電柱狀結構周圍、移除 該第一載體、形成一應力減輕絕緣層於該半導體組件及該 封裝劑之一第一表面上以及形成一第一互連結構於該應力 減板絕緣層上。上述之第一互連結構電性連接至該導電柱 8 201104770 狀結構。 在另一實施例中,本發明係一種包含半導體組件及導 電柱狀結構之半導體元件,該導電柱狀結 體組件周目…«劑㈣於該W件上=導2 狀結構周圍。一應力減輕絕緣層形成於該半導體組件及該 封裝劑之-第-表面上。-第—互連結構形成於該應力減 輕絕緣層上。-第二互連結構形成於該第一互連結構對側 之封裝劑之-第二表面上。上述之第—及第二互連結構透 過該導電柱狀結構彼此電性連接。 【實施方式】 以下透過配合圖式之實施例說明本發明之細節,圖式 中相同之標號代表相同或類似之構件。雖然本發明之說明 係呈現達成其目標之最佳模式,❻f於斯藝之人士應能了 解’其涵蓋後时請專利範圍所界定之本發明之精神和範 疇斤包3之替 戈、修改及等效結構或方法,以及以下揭示 和圖式所支持之等效結構或方法。 半導體元件的生產一般而言係利用二個複雜的製程: 前端產製和後端產製。前端產製包含在一半導體晶圓的表 面上形成複數個晶粒。晶圓上的每—晶粒包含主動式及被 動式電氣組件,其彼此電性連接以形成功能性之電路。諸 ^電晶體和二極體之主動式電氣組件具有控制電流流動之 諸如電谷器、電感器、電阻器和變壓器之被動式電 乂組件建立實現各種電路功能所需之特定電 間的 關係。 201104770 藉由連串包s摻雜、沉積、光學微影術 (Photonthography)、姓亥,j (etching)及平面化(pUnarizati〇n) 之製程步驟,被動式和主動式組件形成於半導體晶圓之表 面上。摻雜程序藉由諸如離子植入(1〇n implantati〇n)或熱擴 散(thermal心^113丨011)等技術將雜質掺入半導體材料之中。 摻雜處理修改主動元件中半導體材料之導電性、將半導體 材料轉換成絕緣體、導體或者因應電場或基極電流動態地 改變半導體材料導電性。電晶體包含依據所需配置之不同 型態和摻雜程度之區域,使電晶體依據施加之電場或基極 電流而能夠對電流之流動加以提升或抑制。 主動式和被動式組件係藉由具有不同電氣特性之材料 疊層所形成。此等疊層之形成可以藉由各種沉積技術,該 等技術在某種程度上係決定於被沉積之材料種類。例如, 薄膜沉積可以包含化學氣相;冗積( — a〗 deposition,· CVD)、物理氣相沉積(physicai —Uon ; PVD)、電解式電鑛吻以piating)、以及 無電式電鐘(electr0less plating)製程。每一曼層通常被圖案 化(patterned)以形成主動式組件、被動式組件或介於組件間 的電性連接部分。 疊層可以利用光學微影技術加以圖案化,該技術包含 例如光阻劑之感光物質沉積於待圖案化的疊層之上。圖案 利用光被自-光罩(photomask)轉移至光阻劑。其使用溶劑 移除耐光之光阻劑圖案部分,以露出下層待圖案化的部 分。剩餘之光阻劑移除之後’餘留一圆案化之疊層。或者, 10 201104770 某些材料之圖案化係藉由直接沉積材料至利用諸如無電气 及電解式電鍍等技術由一先前之沉積/蝕刻製程形成之區' 或空間上。 °°° $ ;冗積-薄膜材料於-現有之圖案上可以擴大其下之圓 案並產生一不均勻之平坦表面。其需要一均勻之平坦表面 以產生較小且結構密集之主動式和被動式組 用平面化製程以自晶圓表面移除材料並產生— -j -j 平坦 表面。平面化包含以一研磨墊磨平晶圓之表面。磨平期間, 磨敍材料和腐蝕性化學藥品被加入晶圓之表面。磨餘材0料 之機械主動結合化學藥品之腐蝕主動移除任何不規則之表 面凹凸’進而產生一均勻之平坦表面。 後端產製包含將完成的晶圓切割或單片化成個別之晶 粒,接著並封裝晶粒以提供結構上的支承及環境隔絕。就 單片化晶粒而言,晶圓被標劃刻線且沿著晶圓上被稱為鋸 道或鋸線之非功能性區域切斷。晶圓之單片化係利用一雷 射切割工具或鋸片。單片化之後,個別晶粒被固定至一封 裝基板,該基板包含用以與其他系統組件互連之接腳(pin) 或接墊(contact pad^形成於半導體晶粒上的接墊接著被連 接至封裝㈣之接^此電性連接可以藉由銲錫凸塊㈣Μ hmp)、& 柱凸塊(stud bump)、導電膠(c〇nduetivepaste)或 打線接合(―而達成。一封裝劑或其他模封材料沉積 於封裝上以提供實體之支持和電性之絕緣。完成之封裝插 入電氣系統中’使得該半導體㈣之功能可以為其他系統 組件所用。 201104770 圖1例不一電子妒署η .BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates generally to semiconductor devices, and more particularly to semiconductor devices and methods for forming stress mitigating insulating layers between semiconductor dies and build-up interconnect structures. [Prior Art] Semiconductor components are commonly found in modern electronic products. The number and density of electrical components contained in different semiconductor components vary. A single-piece semiconductor component typically includes an electrical component 'eg, a light emitting diode emitting diode; LED), a small signal transistor, a resistor, a capacitor, an inductor, and a power metal oxide semiconductor field oxide transistor (metal oxide semiconductor) Field effect transistor ; M0SFET). Integral semiconductor components contain essentially hundreds to millions of electrical components. Examples of integrated semiconductor components include a microcontroller (micr〇c〇ntr〇Uer), a microprocessor, a charged-coupled device 'CCD, a solar cell (s〇iar ceu), and a digital micro Digital micro-mirror device (DMD). Semiconductor components perform a wide variety of functions, such as high speed computing, transmitting and receiving electromagnetic signals, controlling electronics, converting sunlight into electricity, and producing visual representations of television displays. Semiconductor components are used in entertainment, communications, power conversion, networking, computers, and consumer products. Semiconductor components can also be found in military applications, aerospace, automotive, industrial controllers, and office equipment. Semiconductor components utilize the electrical properties of semiconductor materials. Semiconductor material 5 201104770, the material structure makes its electrical conductivity can be applied by electric field or via mismatch (d_g) ', force control. The doping incorporates impurities into the semiconductor material to manipulate and control the conductivity of the semiconductor component. The semiconductor device comprises an active ((10)ive) and passive electrical:: an active structure comprising a bi-carrier and a field-effect transistor, controlling the electric force by changing the degree of doping and applying an electric field or a base current, = Current flow in the electrical body is boosted or suppressed. Passive structures, including resistors, capacitors, and inductors, establish a specific relationship between voltage and current for various electrical functions. The passive and active structures are electrically connected to one another to form a circuit that enables the semiconductor component to perform high speed calculations and other useful functions. The production of semiconductor components generally uses two complicated processes, that is, two front-end production and back-end production, each of which may contain hundreds of steps], and the production system includes semiconductor wafers (semiconductor) A plurality of dies are formed on the surface of the wafer. Each of the dies is substantially identical to each other and a circuit formed by electrically connecting the active and passive components. The back end production includes self-finishing wafer singulation of individual dies and encapsulating the dies to provide structural support and environmental isolation. The goal of semiconductor manufacturing is to produce smaller semiconductor components. Smaller components typically consume less power, are more efficient, and can be produced more efficiently. In addition, smaller semiconductor components have a smaller coverage area and are necessary for small products. The smaller grain size can be achieved by improving the front-end process to produce grains with smaller and higher density active and passive components. The back-end process can be fabricated with electrical interconnects and improvements in materials that can be used to produce semiconductor component packages with a small footprint. The electrical interconnection between the stacked semiconductor dies can be achieved via conductive through silicon vias (TSV) or through hole vias (THV) and intervening buildup interconnect layers. To form TS v or THV ', a through hole is cut through the semiconductor material or a peripheral region surrounding the semiconductor die. The perforations are then filled with an electrically conductive material, for example, by a copper deposition process. A potential mismatch between the coefficient of thermal expansion (CTE) of the semiconductor die and the fixed or dielectric buildup interconnect layer will result in a failure of the THV or TSV bond and the die from adjacent interconnect structures. The stress of layer separation. These component failures reduce yield and increase manufacturing costs. SUMMARY OF THE INVENTION There is a need for a vertical interconnect structure having a low failure rate for a stacked semiconductor device. In view of the above, in one embodiment, the present invention is a method of fabricating a semiconductor device, the step of which includes providing a temporary carrier, forming a first conductive layer on the temporary carrier, and forming a conductive pillar structure thereon. An active surface of one of the semiconductor dies is fixed to the temporary carrier on the first conductive layer and by an adhesive Uyer. The semiconductor die is vertically offset from the first conductive layer by the adhesive layer. The method further includes depositing an encapsulant on the semiconductor die and surrounding the conductive pillar structure, removing the temporary carrier and the adhesive layer, and forming a stress re-relief insulation layer (stress reHef msuUting layer) On the active surface of the semiconductor die and the surface of the encapsulant 201104770. The stress mitigation insulating layer has a first thickness on the semiconductor die and a first thickness on the encapsulant that is less than the first thickness. The method further includes forming a first interconnect structure on the stress mitigating insulating layer and forming a second interconnect structure on a second surface of the encapsulant opposite the first interconnect structure. The first and second interconnect structures are electrically connected to each other through the conductive columnar structure. In another embodiment, the present invention is a method of fabricating a semiconductor device, the method comprising: providing a first carrier, forming a conductive pillar structure on the first carrier, securing a semiconductor component to the first carrier, Depositing an encapsulant on the semiconductor component and around the conductive pillar structure, removing the first carrier and forming a stress mitigating insulating layer on the first surface of the semiconductor component and the encapsulant. The stress mitigation insulating layer has a first thickness on the semiconductor component and a second thickness on the encapsulant that is less than the first thickness. The method further includes forming a first interconnect structure on the stress mitigation insulating layer and forming a second interconnect structure on a second surface of the encapsulant opposite the first interconnect structure. The first and second interconnect structures are electrically connected to each other through the conductive columnar structure. In another embodiment, the present invention is a method of fabricating a semiconductor device, the method comprising: providing a first carrier, forming a conductive pillar structure on the first carrier, securing a semiconductor component to the first carrier, Depositing an encapsulant on the semiconductor component and surrounding the conductive pillar structure, removing the first carrier, forming a stress mitigating insulating layer on the first surface of the semiconductor component and the encapsulant, and forming a first mutual The structure is on the insulating layer of the stress reduction plate. The first interconnect structure is electrically connected to the conductive pillar 8 201104770-like structure. In another embodiment, the present invention is a semiconductor component comprising a semiconductor component and a conductive pillar structure, the conductive columnar component assembly being surrounded by a material (4) on the W component. A stress mitigating insulating layer is formed on the -surface of the semiconductor component and the encapsulant. - a first interconnect structure is formed on the stress-reducing insulating layer. a second interconnect structure formed on the second surface of the encapsulant on the opposite side of the first interconnect structure. The first and second interconnect structures are electrically connected to each other through the conductive columnar structure. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention are described in the following with reference to the embodiments of the drawings. Although the description of the present invention presents the best mode for achieving its objectives, those skilled in the art should be able to understand the spirit and scope of the invention as defined by the scope of the patent. Equivalent structure or method, and equivalent structures or methods supported by the following disclosure and drawings. The production of semiconductor components generally utilizes two complex processes: front-end production and back-end production. Front end production involves forming a plurality of grains on the surface of a semiconductor wafer. Each die on the wafer contains active and passive electrical components that are electrically connected to one another to form a functional circuit. The active electrical components of the transistors and diodes have passive electrical components such as electric grids, inductors, resistors, and transformers that control the flow of current to establish the specific electrical relationships required to perform various circuit functions. 201104770 Passive and active components are formed on semiconductor wafers by a series of process steps such as s doping, deposition, photonthography, surging, jetching, and planarization (pUnarizati〇n) On the surface. The doping process incorporates impurities into the semiconductor material by techniques such as ion implantation or thermal diffusion (113 011). The doping process modifies the conductivity of the semiconductor material in the active device, converts the semiconductor material into an insulator, a conductor, or dynamically changes the conductivity of the semiconductor material in response to an electric field or base current. The transistor contains regions of different types and doping levels depending on the desired configuration, enabling the transistor to boost or suppress the flow of current depending on the applied electric field or base current. Active and passive components are formed by a stack of materials with different electrical characteristics. The formation of such laminates can be accomplished by a variety of deposition techniques that are somewhat dependent on the type of material being deposited. For example, thin film deposition can include chemical vapor phase; redundancy (- a deposition, CVD), physical vapor deposition (physicai-Uon; PVD), electrolytic electro-mine kiss to piating, and electroless electric clock (electr0less) Plating) Process. Each of the layers is typically patterned to form an active component, a passive component, or an electrical connection between components. The laminate can be patterned using optical lithography, which involves depositing a photosensitive material such as a photoresist onto the laminate to be patterned. The pattern is transferred from light to a photoresist using a photomask. It uses a solvent to remove the light-resistant photoresist pattern portion to expose the underlying portion to be patterned. After the remaining photoresist is removed, a rounded stack is left. Alternatively, 10 201104770 The patterning of certain materials is by direct deposition of materials into regions or spaces formed by a prior deposition/etch process using techniques such as electroless and electrolytic plating. °°° $ ; redundancy - film material on the existing pattern can enlarge the underlying pattern and produce a non-uniform flat surface. It requires a uniform flat surface to create a small and structurally dense active and passive planarization process to remove material from the wafer surface and produce a -j -j flat surface. Planarization involves smoothing the surface of the wafer with a polishing pad. During the smoothing process, abrasive materials and corrosive chemicals are added to the surface of the wafer. The mechanical active combination of the abrasive material 0 actively corrodes any irregular surface irregularities to produce a uniform flat surface. The back end production involves cutting or singulating the finished wafer into individual granules, and then encapsulating the dies to provide structural support and environmental isolation. In the case of a singulated die, the wafer is scored and cut along a non-functional area on the wafer called a saw or saw wire. Wafer singulation utilizes a laser cutting tool or saw blade. After singulation, individual dies are fixed to a package substrate that includes pins or pads for interconnecting with other system components (contact pads are formed on the semiconductor dies and then Connected to the package (4), the electrical connection can be achieved by solder bumps (4) Μ hmp), & stud bumps, conductive adhesives (c〇nduetivepaste) or wire bonding (". Other molding materials are deposited on the package to provide physical support and electrical insulation. The completed package is inserted into the electrical system 'so that the function of the semiconductor (4) can be used by other system components. 201104770 Figure 1 .

裝置5〇,具有一晶片載體基板或PCB ’複數個半導體封裝 疋於其表面之上。取決於其應用, 電子裝置5〇可以具有一種丰,, ^ 種牛導體封裝’或者多種型離之半 導體封裝。基於例-夕曰认㈤ ^ ^ 、 目的,圖1顯不不同種類之半導體 封裝。 /子裝置50可以是一獨立系統,其使用該等半導體封 裝執行4夕種電性功能。或者,電子裝置Μ可以是一更 大系統中的一個次組件。舉例而言,電子裝置50可以是一 、·會圖卡 '網路介面卡、或其他可以插入電腦t的信號處理 卡。半導體封裝可以包含微處理器、記憶體、特定用途積 integrated circuit ; ASIC)、邏輯 、獨立元件或者其他半導體晶粒 體電路(application specific 電路、類比電路、RF電路 或電氣組件。 在圖1之中’ PCB 52提供一公用基板做為結構上的支 承以及與固定於PCB上的半導體封裝之電性互連。導電信 號走線54利用蒸鍍(evap〇rati〇n)、電解式電鍍 '無電式電 鍍、網印(screen printlng)、或其他適當之金屬沉積製1形 成於PCB 52之一表面或疊層内,信號走線M提供半導體 封裝、固定組件、及其他外部系統組件間的電性通信。走 線54同時亦提供電源及接地連接至每一半導體封穿。 在一些實施例之中,一半導體元件具有二封裝層級。 第一層級封裝係一用以機械性及電性裝配半導體晶粒至— 中介載體之技術。第二層級封裝包含機械性及電性裝配該 中介載體至PCB。在其他實施例中,—半導體元件可以僅 12 201104770 具有第一層級封裝,其中晶粒被以機械性及電性方式直接 固定至PCB。 為了例示之目的’許多第一層級封裝之型態,包括打 線接合封裝56以及覆晶(flip chip)58,均顯示於PCB 52之 上。此外,多種型態之第二層級封裝,包括球柵陣列(ball grid array ; BGA)60、.凸塊晶片載體(bump chip carrier ; BCC)62、 雙排型封裝(dual in-line package ; DIP)64、地柵格陣列(land grid array ’ LGA)66、多晶片模組(muiti-chip module ; MCM)68、四側無引腳扁平封裝(quad flat non-leaded package ; QFN)70 以及四面扁平封裝(quad nat package)72, 均顯示固定於PCB 52之上。取決於系統需求,半導體封裝 的任何組合,配置成第一及第二層級封裝形式的任何組 合,以及其他電子組件,均可以連接至pCB 52。在一些實 施例之中,電子裝置50包含一單一裝配之半導體封裝,而 ::他實施例可能需要多個互連之封裝。藉由結合一或多個 $導體封裝於單—基板上,生產者可以將組件成品加入電 子裝置及系統之中。由於半導體封裝包含複雜之功能,電 子裝置$ -Γ 式, 產可以利用價格較低廉之組件以及一流動產線 1 由此產出之裝置較不易故障且生產代價較不昂 貝’使得對消費者的成本較低。 "’頁示示範性半導體封裝。圖2a例示固定於PCB 上的 DlP64:^、& F ,, ^ 之進一步細節。半導體晶粒74包含一主動 &域,其包含會夂莉 電層之類m 動儿件'被動元件、導電層、及介 5位電路形成於該晶粒之内,且依據該晶粒 13 201104770 之電氣設計彼此電性互連。例, 5亥電路可以包含一或多 個電晶體、二極體、電感、電容、電阻器,以及形成於半 導體晶粒74之主動區域内的其他電路構件。接塾%係一 或夕層導電材料,諸如紹(A1)、銅(Cu)、錫(㈣、鎮(Ni)、 金(Au)或銀(Ag),其電性連接至形成於半導體晶,粒内之 電路構件。在DIP64的組配期間,半導體晶粒㈣用一金 夕-熔層(g〇id-slilcon eutectic layer)或諸如熱環氧樹脂 (thermal epoxy)之黏著材料固定至一中介載體78。封裝主體 包含一諸如聚合物(polymer)或陶瓷(ceramic)之絕緣封裝材The device 5 has a wafer carrier substrate or PCB' plurality of semiconductor packages mounted on its surface. Depending on the application, the electronic device 5 can have a rich, or a plurality of shaped semiconductor packages. Based on the example - 曰 曰 (5) ^ ^, the purpose, Figure 1 shows a different type of semiconductor package. The sub-device 50 can be a stand-alone system that performs four electrical functions using the semiconductor packages. Alternatively, the electronic device can be a secondary component in a larger system. For example, the electronic device 50 can be a graphics card, a network interface card, or other signal processing card that can be inserted into the computer t. The semiconductor package may comprise a microprocessor, a memory, an integrated circuit, an ASIC, a logic, a separate component, or other semiconductor die circuit (application specific circuit, analog circuit, RF circuit, or electrical component. The PCB 52 provides a common substrate for structural support and electrical interconnection with a semiconductor package mounted on the PCB. The conductive signal traces 54 are evaporated (evap〇rati〇n), electrolytically plated 'electroless' Electroplating, screen printing, or other suitable metal deposition 1 is formed on one surface or laminate of PCB 52, and signal traces M provide electrical communication between the semiconductor package, the fixed components, and other external system components. The trace 54 also provides a power and ground connection to each semiconductor package. In some embodiments, a semiconductor component has two package levels. The first level package is used to mechanically and electrically assemble the semiconductor die. To - the technique of an intermediary carrier. The second level package comprises mechanically and electrically assembling the intermediate carrier to the PCB. In other embodiments, - The semiconductor component may only have 12 201104770 with a first level package in which the die is directly fixed to the PCB in a mechanical and electrical manner. For the purposes of illustration 'many of the first level package types, including the wire bond package 56 and the overlay Flip chips 58 are all displayed on the PCB 52. In addition, a plurality of types of second level packages, including a ball grid array (BGA) 60, a bump chip carrier (BCC) 62, dual in-line package (DIP) 64, land grid array 'LGA 66, multi-chip module (MCM) 68, four sides without lead The quad flat non-leaded package (QFN) 70 and the quad nat package 72 are shown to be fixed on the PCB 52. Depending on the system requirements, any combination of semiconductor packages is configured as the first and the first Any combination of the two-level package form, as well as other electronic components, can be coupled to the pCB 52. In some embodiments, the electronic device 50 includes a single assembled semiconductor package, and:: his embodiment may A package with multiple interconnects. By combining one or more $conductors on a single-substrate, the manufacturer can add the finished component to the electronic device and system. Since the semiconductor package contains complex functions, the electronic device $- Γ, production can use lower-cost components and a mobile production line 1 The resulting device is less prone to failure and the production cost is less expensive, making the cost to consumers lower. "' page shows an exemplary semiconductor package. Figure 2a illustrates further details of DlP64:^, & F,, ^ fixed on the PCB. The semiconductor die 74 includes an active & field comprising a passive component, a conductive layer, and a 5-bit circuit formed in the die, and according to the die 13 The electrical design of 201104770 is electrically interconnected. For example, a 5H circuit can include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit components formed in the active region of the semiconductor die 74. The interface is a one- or one-layer conductive material, such as Shao (A1), copper (Cu), tin ((four), town (Ni), gold (Au) or silver (Ag), which is electrically connected to the semiconductor crystal a circuit component within the granule. During the assembly of the DIP 64, the semiconductor die (4) is fixed to the glazing material by a g〇id-slilcon eutectic layer or an adhesive such as thermal epoxy. Intermediate carrier 78. The package body comprises an insulating package such as polymer or ceramic

料。導體引線80和打線接合82提供半導體晶粒74和pcB 52之間的電性互連。封裝劑84沉積於封裝上,藉由防止溼 氣和微粒進入封裝污染晶粒74或打線接合82而達到環境 防護之目的。 圖2b例示固定於PCB 52上的bcc 62之進一步細節。 半導體晶粒8 .8利用一底部填充或環氧合成樹脂黏著材料% 被固定於載體90之上。打線接合94提供接墊96和98間 的第層級封裝互連。模封材料(molding compound)或封裝 幻1 〇 0 /儿積於半導體晶粒8 8及打線接合9 4之上以提供該 元件實體之支持和電性之絕緣。接墊丨〇2利用一諸如電解 式電鑛或無電式電鍍之適當金屬沉積形成於PCB 52之—表 面上以防止氧化。接墊102電性連接至PCB 52中的一或多 條導電信號走線54。凸塊104形成於BCC 62的接墊98和 PCB 52的接墊1〇2之間。 在圖2c之中,半導體晶粒58以一覆晶形式第一層級封 14 201104770 裝面朝下地固定至中介載體106。半導體晶粒58之主動區 域108 &含實施為主動元件、被動元件、導電層、及介電 層之類比或數位電路依據該晶粒之電氣設計形成。例如, 該電路可以包含一或多個電晶體、二極體、電感、電容、 電阻器,以及主動區域108内的其他電路構件。半導體晶 粒58經由凸塊110電性且機械性地連接至載體1〇6。 Bamaterial. Conductor lead 80 and wire bond 82 provide an electrical interconnection between semiconductor die 74 and pcB 52. Encapsulant 84 is deposited on the package for environmental protection by preventing moisture and particulates from entering the package contamination grain 74 or wire bond 82. Figure 2b illustrates further details of the bcc 62 affixed to the PCB 52. The semiconductor die 8.8 is fixed to the carrier 90 by an underfill or epoxy synthetic resin adhesive. Wire bonding 94 provides a first level package interconnect between pads 96 and 98. A molding compound or package is formed on the semiconductor die 8 8 and the wire bond 94 to provide support and electrical insulation of the component body. The pad 2 is formed on the surface of the PCB 52 by a suitable metal deposition such as electrolytic or electroless plating to prevent oxidation. The pads 102 are electrically connected to one or more conductive signal traces 54 in the PCB 52. The bumps 104 are formed between the pads 98 of the BCC 62 and the pads 1〇2 of the PCB 52. In Fig. 2c, the semiconductor die 58 is fixed to the interposer carrier 106 face down in a flip chip form first level seal 14 201104770. The active regions 108 & of the semiconductor die 58 include analog or digital circuits implemented as active components, passive components, conductive layers, and dielectric layers in accordance with the electrical design of the die. For example, the circuit can include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit components within the active region 108. The semiconductor crystal grain 58 is electrically and mechanically connected to the carrier 1〇6 via the bumps 110. Ba

BGA 60利用凸塊112以- BGA形式第二層級封裝電 性且機械性地連接至PCB 52。半導體晶粒58透過凸塊 110、信號線U4以及凸塊m電性連接至PCB 52中的導 電信號走線54。一模封材料或封裝劑116沉積於半導體晶 粒58及載體1〇6之上以提供該元件實體之支持和電性之絕 緣。此覆晶式半導體元件提供一條從半導體晶粒58上的主 動元件到PCB 52上的導電走線間的極短電性傳導路徑,以 降低信號傳播距離、減少電容、並增進整體電路效能。在 另一實施例中,半導體晶粒58可以利用覆晶式第一層級封 裝不經由中介載體1〇6即電性且機械性地直接連接至pcB 圖3a-3m例示形成一垂直互連結構之製程,該垂直互 連結構具有介於半導體晶粒和增層互連結構間之導電柱狀 結構及應力減輕層。在圖3a之中,一犧牲或暫時基板或載 體120包含一基座材料’諸如矽、聚合物、聚合式合成物、 金屬绪片、陶瓷、玻璃、玻璃環氧樹脂、氧化鈹(berylHum oxide)、膠帶或其他用以結構性支承之適當低價、堅固材 料。一選擇性介面層122可以形成於載體12〇上做為一蝕 15 201104770 刻終止層。一電性傳導層124利用圖案化配合pvD、CVD、 濺鐘(—Μ)、電解式電鐘、無電式電錄製程、或其他適 當之金屬沉積製程形成於載體120上。導電層124可以是 一或多層由铭、銅、錫 '錦、金、銀、鎮、多晶石夕(p〇iy siiic〇n) 或其他適當電性傳導物質構成之疊層。導電層i24包含可 濕性接墊(wettable c〇ntact pad)以利後續導電柱狀結構之形 成在實施例中,導電層i 24之可濕性接塾係預先電錢 於載體120之上。 在圖3b之中,複數個導電柱狀結構或杆狀結構128形 成於導制124之可濕性接塾上。在—實施例中,導電柱 狀結構128之形成係藉由沉積一或多層光阻劑於介面層122 或載體120 ±。導電層124上的光阻劑部分經由一钮刻顯 影製程被曝光並移除。導電材料利用一選擇性電鍍製程被 沉積於該光阻層之被移除部分。光阻層被剝離而留下個別 之導電柱狀結構128 ^導電柱狀結構128可以是銅、鋁、鎢 (W)、金、焊錫或其他適當之電性傳導物質。導電柱狀結構 128具有之高度範圍係2_12〇微米("m)。在另一實施例中, 導電柱狀結構12 8可以形成為凸柱凸塊或堆疊凸塊。 複數個半導體晶粒或組件130經由保護黏著層132以 覆晶配置方式固定至介面層122。接墊134及主動表面136 方位朝下而位於介面層122和載體120上。保護黏著層132 可以是一或多層紫外線(UV)可固化且熱穩定之黏著膠帶。 保護黏著層132在主動表面136和導電層124之間建立一 垂直偏移。 201104770The BGA 60 utilizes bumps 112 to electrically and mechanically connect to the PCB 52 in a second level package in the form of -BGA. The semiconductor die 58 is electrically connected to the conductive signal trace 54 in the PCB 52 through the bump 110, the signal line U4, and the bump m. A molding material or encapsulant 116 is deposited over the semiconductor crystal particles 58 and the carrier 1〇6 to provide support and electrical insulation of the element body. The flip-chip semiconductor component provides a very short electrical conduction path from the active components on the semiconductor die 58 to the conductive traces on the PCB 52 to reduce signal propagation distance, reduce capacitance, and improve overall circuit performance. In another embodiment, the semiconductor die 58 can utilize a flip-chip first level package without electrical interposer 1 , ie, electrically and mechanically directly connected to the pcB. FIGS. 3a-3m illustrate the formation of a vertical interconnect structure. The process, the vertical interconnect structure has a conductive pillar structure and a stress mitigation layer between the semiconductor die and the build-up interconnect structure. In FIG. 3a, a sacrificial or temporary substrate or carrier 120 comprises a susceptor material such as ruthenium, polymer, polymeric composition, metal sheet, ceramic, glass, glass epoxy, beryllium oxide (berylHum oxide). , tape or other suitable low cost, strong material for structural support. A selective interface layer 122 can be formed on the carrier 12 as an etch stop layer. An electrically conductive layer 124 is formed on the carrier 120 by patterning pvD, CVD, a sputtering clock, an electrolytic clock, an electroless electrical recording, or other suitable metal deposition process. Conductive layer 124 can be a laminate of one or more layers of etch, copper, tin, gold, silver, stellite, polycrystalline, or other suitable electrically conductive material. The conductive layer i24 includes a wettable c〇ntact pad to facilitate the formation of a subsequent conductive columnar structure. In the embodiment, the wettable interface of the conductive layer i 24 is pre-charged on the carrier 120. In Fig. 3b, a plurality of electrically conductive columnar structures or rod-like structures 128 are formed on the wettable joint of the guide 124. In an embodiment, the conductive pillar structure 128 is formed by depositing one or more layers of photoresist on the interface layer 122 or the carrier 120. The photoresist portion on conductive layer 124 is exposed and removed via a button engraving process. The conductive material is deposited on the removed portion of the photoresist layer using a selective plating process. The photoresist layer is stripped leaving an individual conductive pillar structure 128. The conductive pillar structure 128 can be copper, aluminum, tungsten (W), gold, solder or other suitable electrically conductive material. The conductive columnar structure 128 has a height range of 2_12 〇 micrometers ("m). In another embodiment, the conductive pillar structures 128 may be formed as stud bumps or stacked bumps. A plurality of semiconductor dies or components 130 are secured to the interface layer 122 in a flip chip configuration via a protective adhesion layer 132. The pads 134 and the active surface 136 are located face down on the interface layer 122 and the carrier 120. The protective adhesive layer 132 can be one or more layers of ultraviolet (UV) curable and heat stable adhesive tape. The protective adhesive layer 132 establishes a vertical offset between the active surface 136 and the conductive layer 124. 201104770

半導體晶粒130包含一主動表面i36,其包含實施為主 動元件、被動元件、導電層、及介電層之類比或數位電路 形成於該晶粒之内’且依據該晶粒之電氣設計及功能彼此 電性互連。舉例而言,該電路可以包含一或多個電晶體、 二極體、以及其他電路構件形成於主動表面136内以實施 基頻類比電路或數位電路,諸如數位信號處理器(digitaI signal processor ; DSP)、ASIC、記憶體或其他信號處理電 路。半導體晶粒130亦可以包含IPD(integrated passive device ;整合式被動元件),諸如用於RF信號處理之電感、 電容和電阻器。在另一實施例中,一獨立半導體組件可以 被固定至介面層122或載體12卜導電柱狀結構128配置於 半導體晶粒1 3 0周圍。 圖3 d顯示一封裝劑或模封材料丨3 8利用膏劑印刷 (paste printing)、壓縮模封(compressive m〇lding)、轉注模 封(transfer molding)、液態封裝劑模封(Hquid molding)、真空層壓(vacuum ianiinati〇n)、或其他適當之塗 佈機制沉積於半導體晶粒13〇及導電柱狀結構丨28上。封 裝劑138可以是聚合物合成材料,諸如具有填充劑(fuier) 之環氧合成樹脂(epoxy resin)、具有填充劑之環氧丙烯酸酯 (epoxy acrylate)或是具有適當填充劑之聚合物。封裝劑us 係非導電性的,且能在環境上保護半導體元件免於外部構 件之影響及污染。保護黏著層丨32防止封裝劑138流入主 動表面136。 在圖3e之中,載體120、介面層122和保護黏著層132 17 201104770 被以化學濕式蝕刻(chemical wet etching)、電漿乾式蝕刻 (plasma dry etching)、機械剝除(mechanical peel-off)、 CMP、機械研磨(mechanical grinding)、熱烘(thermal bake)、 雷射掃描(laser scanning)或濕式剝離(wet stripping)加以移 除。在移除載體120之後,封裝劑丨38提供結構上的支承 予半導體晶粒13(^隨著載體120、介面層122、和保護黏 著層132之移除,導電層124和半導體晶粒130之接墊134 被暴露出來。 在圖3f之中,上述之結構被倒置且一應力減輕絕緣層 140 利用 PVD、CVD、印刷(printing)、旋轉塗佈(spin coating)、喷霧塗佈(spray c〇ating)、燒結(sintedng)、或熱 氧化(thermal oxidation)形成於封裝劑138、導電層124和主 動表面136上。上述之應力減輕絕緣層丨4〇可以是一或多 層由二氧化矽(Si02)、氮化矽(Si3N4)、氮氧化矽(Si〇N)、 五氧化鈕(Ta2〇5)、氧化鋁(A1303)、或其他具有類似絕緣和 構特性之材料所構成之疊層。由於保護黏著層13 2之垂 直偏移,絕緣層14〇在主動區域136上比在封裝劑138及 導電層1 24上更厚,以提供半導體晶粒130額外之應力減 輕。在一實施例中,絕緣層140在主動區域136上的部分 的厚度乾圍係5-1 〇〇 // m,而絕緣層14〇在封裝劑i 3 8上的 °”刀的厚度範圍係2-5〇 # m。-部分絕緣層140被一圖案 化及蝕刻製程移除以暴露出導電層124及接墊134,如圖 3g所示。 在圖3h中,一底側增層互連結構i42形成於絕緣層1々ο is 201104770 電f生傳導層144利用圖案化配合PVD、CVD、濺鍍、 弋電鍵無電式電鑛製程、或其他適當之金屬沉積製 程形成於絕緣層14G、導電層124、和接墊134之上。導電 曰,144可以疋—或多層由紹、銅、錫、錄、金、銀或其他 適田之電性傳導物質構成之疊層。部分之導電I⑷電性 連接至導電柱狀結構128、導電層124以及接墊其他 部分之導電層144可以是彼此電性相通或電性絕緣,取決 於該半導體元件之設計及功能。例如,導電層144之部分 145係充虽一重新分佈層hya ; RDL)或者滑 槽(rUnner)以延伸導電柱狀結構128及導電層124之導電性。 在圖Μ之中’一絕緣或鈍化層(passivati〇n iayer)i46 利用PVD、CVD、印刷、旋轉塗佈、噴霧塗佈、燒結、或 熱氧化形成於絕緣層140和導電層144之上。鈍化層146 可以是一或多層由 Si02、Si3N4、SiON、Ta205、Al2〇3、或 其他具有類似絕緣及結構特性之材料構成之疊層。一部分 鈍化層146藉由一蝕刻製程被移除以暴露出導電層丨44。 一電性傳導層148利用圖案化配合ρν〇、CVD、濺鑛、 電解式電鍍、無電式電鍍製程或其他適當之金屬沉積製程 形成於鈍化層146和導電層144之上。導電層148可以是 一或多層由鋁、銅、錫、鎳、金、銀或其他適當之電性傳 導物質構成之疊層。導電層148電性連接至導電層144。導 電層148係一與導電層144和導電柱狀結構128電性接觸 之凸塊下金屬層(under bump metallization; UBM)。UBM 148 可以是一具有黏著層、阻障層(barrier layer)以及晶種或潤 19 201104770 濕層(wetting layer)之多重金屬堆疊。該黏著層形成於導電 層144之上,且可以由鈦(Ti)、氮化鈦(TiN)、鈦鎢(Tiw)、 鋁或鉻(Cr)構成。該阻障層形成於該黏著層之上,且可以由 鎳、鎳釩(NiV)、鉑(Pt)、鈀(Pd)、鈦鎢或鉻銅(CrCu)構成。 該阻障層阻止銅擴散入晶粒之主動區域。該晶種層(μμ layer)可以是銅、鎳、鎳釩、金或鋁。該晶種層形成於該阻 障層之上’且充當一介於導電層144及後續銲錫凸塊或其 他互連結構間之中介導電層。UBM 148提供一通往導電層 144之低電阻連接,以及一焊錫擴散之阻障和焊錫濕潤性之 晶種層。 在圖3j之中,封裝劑138接受研磨或電漿蝕刻平面化 其表面以備頂部增層互連結構之形成。該研磨動作暴露導 電柱狀結構128之一表面。一選擇性製程載體15〇,諸如背 研磨膠帶(backgrinding tape),可以透過黏著層152固定至 純化層146和導電層148以在研磨動作期間增加結構支承。 在圖3k之中’該結構被倒置而一頂部增層互連結構1 54 形成於封裝劑138及導電柱狀結構128之上。一絕緣或鈍 化層156利用pvd、CVD、印刷、旋轉塗佈、喷霧塗佈、 燒結或熱氧化形成於封裝劑1 38和導電柱狀結構128之 上。純化層156可以是一或多層由Si02、Si3N4、SiON、 Ta2〇5、A12〇3或其他具有類似絕緣及結構特性之材料構成 之疊層° 一部分鈍化層156藉由一蝕刻製程被移除以暴露 出導電柱狀結構128。 一電性傳導層1 58利用圖案化配合PVD、CVD、濺鍍、 20 201104770 ,' ^無電式電錄製程或其他適當之金屬沉積製程 形成於純化層156和導電柱狀結構128之上。導電層158 可以是一或多層由紹、銅、錫、錄、金、銀或其他適當之 電性傳導物f構成之疊層。-部分導電層158電性連接至 導電柱狀結構128。其他部分之導電層158可以是彼此電性 相通或電性絕緣,取決於該半導體元件之設計及功能。例 如,導電層158之部分159係充當一 RDL或者滑槽以延伸 導電柱狀結構128之導電性。 在圖31之中’一絕緣或鈍化層160利用PVD、CVD、 P刷旋轉塗佈、喷霧塗佈、燒結或熱氧化形成於鈍化層 和導電層158之上。鈍化層“Ο可以是一或多層由 Si〇2、Sl3N4、Si0N、Ta2〇5、Al2〇3或其他具有類似絕緣及 、”°構特性之材料構成之疊層。一部分鈍化層1 60藉由一蝕 刻製程被移除以暴露出導電層1 58。 電性傳導層162利用圖案化配合pvd、CVD、濺鍍、 電解式電鍍、無電式電鍍製程或其他適當之金屬沉積製程 形成於鈍化層160和導電層158之上。導電層162可以是 —或多層由鋁、銅、錫、鎳、金、銀或其他適當之電性傳 導物質構成之疊層。導電層162係一與導電層158和導電 枝狀結構128電性接觸之UBM。UBM 162可以是一具有黏 著層、阻障層以及晶種或潤濕層之多重金屬堆疊。該黏著 層形成於導電層158之上,且可以由鈦、氮化鈦、鈦鎢、 鋁、或鉻構成。該阻障層形成於該黏著層之上,且可以由 鎳、鎳釩、鉑、鈀、鈦鎢或鉻銅構成。該阻障層阻止銅擴 21 201104770 散入晶粒之主動區域。f亥晶種層可以是銅、鎳、鎳釩、金 或紹°該晶種層形成於該阻障層之上,且充當-介於導電The semiconductor die 130 includes an active surface i36 including an analog or digital circuit implemented as an active device, a passive component, a conductive layer, and a dielectric layer formed within the die and based on electrical design and function of the die Electrically interconnected with each other. For example, the circuit can include one or more transistors, diodes, and other circuit components formed in active surface 136 to implement a baseband analog circuit or digital circuit, such as a digita signal processor (DSP). ), ASIC, memory or other signal processing circuit. The semiconductor die 130 may also include an IPD (integrated passive device) such as an inductor, a capacitor, and a resistor for RF signal processing. In another embodiment, a separate semiconductor component can be attached to the interface layer 122 or the carrier 12. The conductive pillar structure 128 is disposed around the semiconductor die 130. Figure 3d shows an encapsulant or molding material 丨38 using paste printing, compressive muffing, transfer molding, liquid encapsulation (Hquid molding), Vacuum lamination (vacuum ianiinati〇n), or other suitable coating mechanism is deposited on the semiconductor die 13 and the conductive columnar structure 28. The encapsulant 138 may be a polymer composite material such as an epoxy resin having a fuier, an epoxy acrylate having a filler, or a polymer having a suitable filler. The encapsulant us is non-conductive and environmentally protects the semiconductor components from external components and contamination. The protective adhesive layer 32 prevents the encapsulant 138 from flowing into the active surface 136. In FIG. 3e, the carrier 120, the interface layer 122, and the protective adhesive layer 132 17 201104770 are subjected to chemical wet etching, plasma dry etching, mechanical peel-off. , CMP, mechanical grinding, thermal bake, laser scanning or wet stripping are removed. After the carrier 120 is removed, the encapsulant 38 provides structural support to the semiconductor die 13 (with the removal of the carrier 120, the interface layer 122, and the protective adhesive layer 132, the conductive layer 124 and the semiconductor die 130) The pad 134 is exposed. In Figure 3f, the above structure is inverted and a stress relief insulating layer 140 is utilized by PVD, CVD, printing, spin coating, spray coating (spray c 〇 ating, sintedng, or thermal oxidation is formed on the encapsulant 138, the conductive layer 124, and the active surface 136. The stress mitigating insulating layer 上述4〇 may be one or more layers of cerium oxide ( Si02), tantalum nitride (Si3N4), niobium oxynitride (Si〇N), niobium oxide (Ta2〇5), aluminum oxide (A1303), or other laminates having materials having similar insulating and structural properties. Due to the vertical offset of the protective adhesive layer 132, the insulating layer 14 is thicker on the active region 136 than on the encapsulant 138 and the conductive layer 146 to provide additional stress relief for the semiconductor die 130. In one embodiment The insulating layer 140 is on the active region 136 The thickness of the sub-layer is 5-1 〇〇 / / m, and the thickness of the insulating layer 14 〇 on the encapsulant i 3 8 is 2-5 〇 # m. - The partial insulating layer 140 is patterned The etching and etching processes are removed to expose the conductive layer 124 and the pads 134, as shown in FIG. 3g. In FIG. 3h, a bottom side build-up interconnect structure i42 is formed on the insulating layer 1 々ο is 201104770 The layer 144 is formed on the insulating layer 14G, the conductive layer 124, and the pad 134 by patterning with PVD, CVD, sputtering, 弋-key electroless electrowinning, or other suitable metal deposition process.疋—or a multilayer of layers consisting of conductive, copper, tin, gold, silver, or other electrically conductive materials of the field. Part of the conductive I(4) is electrically connected to the conductive columnar structure 128, the conductive layer 124, and the pads. The other portions of conductive layer 144 may be electrically or electrically insulated from one another, depending on the design and function of the semiconductor component. For example, portion 145 of conductive layer 144 is charged with a redistribution layer hya; RDL) or chute ( rUnner) to extend the conductivity of the conductive columnar structure 128 and the conductive layer 124. In the figure, an insulating or passivation layer i46 is formed over the insulating layer 140 and the conductive layer 144 by PVD, CVD, printing, spin coating, spray coating, sintering, or thermal oxidation. Layer 146 can be one or more layers of SiO 2 , Si 3 N 4 , SiON, Ta 205, Al 2 〇 3, or other materials having similar insulating and structural properties. A portion of passivation layer 146 is removed by an etch process to expose conductive layer 丨44. An electrically conductive layer 148 is formed over passivation layer 146 and conductive layer 144 by patterning, CVD, sputtering, electrolytic plating, electroless plating, or other suitable metal deposition process. Conductive layer 148 can be one or more layers of aluminum, copper, tin, nickel, gold, silver or other suitable electrically conductive material. The conductive layer 148 is electrically connected to the conductive layer 144. The conductive layer 148 is an under bump metallization (UBM) that is in electrical contact with the conductive layer 144 and the conductive pillar structure 128. UBM 148 can be a multiple metal stack with an adhesive layer, a barrier layer, and a seed or wetting layer. The adhesive layer is formed on the conductive layer 144 and may be composed of titanium (Ti), titanium nitride (TiN), titanium tungsten (Tiw), aluminum or chromium (Cr). The barrier layer is formed on the adhesive layer and may be composed of nickel, nickel vanadium (NiV), platinum (Pt), palladium (Pd), titanium tungsten or chromium copper (CrCu). The barrier layer prevents copper from diffusing into the active regions of the die. The seed layer (μμ layer) may be copper, nickel, nickel vanadium, gold or aluminum. The seed layer is formed over the barrier layer and acts as an intermediate conductive layer between the conductive layer 144 and subsequent solder bumps or other interconnect structures. UBM 148 provides a low resistance connection to conductive layer 144, as well as a seed layer for solder diffusion barrier and solder wettability. In Figure 3j, encapsulant 138 is subjected to grinding or plasma etching to planarize its surface for the formation of a top build-up interconnect structure. This polishing action exposes one surface of the conductive columnar structure 128. A selective process carrier 15, such as a backgrinding tape, can be secured to the purification layer 146 and the conductive layer 148 through the adhesive layer 152 to increase structural support during the lapping action. In Figure 3k, the structure is inverted and a top build-up interconnect structure 154 is formed over encapsulant 138 and conductive pillar structure 128. An insulating or passivation layer 156 is formed over encapsulant 138 and conductive pillar structure 128 by pvd, CVD, printing, spin coating, spray coating, sintering or thermal oxidation. The purification layer 156 may be one or more layers of SiO 2 , Si 3 N 4 , SiON, Ta 2 〇 5, A 12 〇 3 or other materials having similar insulating and structural properties. A portion of the passivation layer 156 is removed by an etching process. The conductive columnar structure 128 is exposed. An electrically conductive layer 158 is formed over the purification layer 156 and the conductive pillar structure 128 by patterning in conjunction with PVD, CVD, sputtering, 20201104770, '^ electroless electrical recording, or other suitable metal deposition process. Conductive layer 158 can be one or more layers of lamination, copper, tin, gold, silver, or other suitable electrically conductive material f. A portion of the conductive layer 158 is electrically connected to the conductive pillar structure 128. Other portions of conductive layer 158 may be electrically or electrically insulated from one another, depending on the design and function of the semiconductor component. For example, portion 159 of conductive layer 158 acts as an RDL or chute to extend the conductivity of conductive pillar structure 128. In Fig. 31, an insulating or passivation layer 160 is formed over the passivation layer and conductive layer 158 by PVD, CVD, P-brush spin coating, spray coating, sintering or thermal oxidation. The passivation layer "Ο" may be one or more layers of Si 2 , S 3 N 4 , SiO 2 , Ta 2 〇 5, Al 2 〇 3 or other materials having similar insulating and "structural properties". A portion of the passivation layer 1 60 is removed by an etching process to expose the conductive layer 158. The electrically conductive layer 162 is formed over the passivation layer 160 and the conductive layer 158 by patterning pvd, CVD, sputtering, electrolytic plating, electroless plating, or other suitable metal deposition process. Conductive layer 162 can be - or a plurality of layers of aluminum, copper, tin, nickel, gold, silver or other suitable electrically conductive material. Conductive layer 162 is a UBM that is in electrical contact with conductive layer 158 and conductive dendritic structure 128. UBM 162 can be a multiple metal stack with an adhesive layer, a barrier layer, and a seed or wetting layer. The adhesive layer is formed over the conductive layer 158 and may be composed of titanium, titanium nitride, titanium tungsten, aluminum, or chromium. The barrier layer is formed over the adhesive layer and may be composed of nickel, nickel vanadium, platinum, palladium, titanium tungsten or chromium copper. The barrier layer prevents the copper from expanding into the active region of the die. The f-seed layer may be copper, nickel, nickel vanadium, gold or the like. The seed layer is formed on the barrier layer and acts as a conductive

層158及後續辉錫凸塊或其他互連結才聋之中介導電層。UBM 162提供—通往導電層158之低電阻連接,以及—焊錫擴散 之阻障和焊錫濕潤性之晶種層。 在圖之中,載體150和黏著層1 52被以化學濕式蝕 刻、電t乾式姓刻、機械剝除、CMp、機械研磨、熱棋、 雷射掃描或濕式剝離加以移除。底側增層i連結才冓⑷包 含導電層144、鈍化層146以及UBM148i部增層互連結 構154包含鈍化層156、導電層158、純化層16〇、以及⑽μ 162 ° -導電凸塊材料利用蒸鍍、電解式電鍍、無電式電鍍、 錫球投入(ball drop)或網印製程沉積於UBM 148之上。凸塊 材料可以是鋁 '錫、鎳、金、銀 '鈀(pb)'鉍_、銅、焊 錫以及前述項目之組合,外加—選擇性之㈣劑。舉例而 S,凸塊材料可以是共熔錫/鈀、高鉛焊錫或無鉛焊錫。凸 塊材料利用—適當之黏附或接合製程黏接至ϋΒΜ 148。在 一實施例中,凸塊材料藉由將該材料加熱至其溶點以上以 形成球狀的錫球或凸塊164而進行回流⑽lQw)。在一些應 用之中,凸塊1 64被第二次回流以增進與UBM 148之電性 接觸凸塊亦可以被壓接(compression bond)至UBM 148。 凸塊164代表可以形^ UBM 148上的一種互連結構類 型。該互連結構亦可以使用接線、導電膠、凸柱凸塊、微 凸塊(micro bump)或其他電性連接。 22 201104770 半導體晶粒130係以鋸片或雷射切割工具被單片化成 個別的半導體元件168。單片化之後,個別半導體元件168 可以被堆疊’如圖4所示。導電柱狀結構128提供頂側增 層互連層1 54和底側增層互連層142間的垂直z方向互連。 導電層158經由導電柱狀結構128電性連接至每一半導體 元件168之導電層124及接墊134。 配置於主動表面136上的厚保護性絕緣層丨4〇降低了 由半導體晶粒130和底側增層互連結構丨42間的CTE不匹 配所產生的應力。絕緣層14 0所提供的應力緩衝減少導電 柱狀結構138的接合故障率以及半導體晶粒13〇和增層互 連結構142間的疊層分離。 圖5顯示圖製程流程之一變異。封裝劑13 8和導電 柱狀結構128接受研磨或電漿蝕刻對封裝劑表面進行平面 化以利頂側增層互連層154之形成。該研磨動作暴露出半 導體晶粒13G之-背側表面,其與導電柱狀結肖128之暴 露表面共平面。此製程的其餘部分同圖3k-3m之說明β 圖6例不具有多個IpD形成於頂側互連結構中之垂直 互連結構之實施例。類似圖3a_3m所述之製程,半導體元 件17(M吏用具有—選擇性介面層之犧牲或暫時基板或載Layer 158 and subsequent solder bumps or other interconnected conductive layers. UBM 162 provides a low resistance connection to conductive layer 158, as well as a seed layer for solder diffusion barrier and solder wettability. In the figure, the carrier 150 and the adhesive layer 152 are removed by chemical wet etching, electric dry etching, mechanical stripping, CMp, mechanical grinding, hot chess, laser scanning or wet stripping. The bottom side build-up layer (4) includes a conductive layer 144, a passivation layer 146, and a UBM 148i portion build-up interconnect structure 154 including a passivation layer 156, a conductive layer 158, a purification layer 16A, and (10) μ 162 ° - conductive bump material utilization. Evaporation, electrolytic plating, electroless plating, ball drop or screen printing processes are deposited on top of UBM 148. The bump material may be aluminum 'tin, nickel, gold, silver 'palladium (pb)' 铋, copper, solder, and combinations of the foregoing, plus a selective (iv) agent. For example, S, the bump material can be eutectic tin/palladium, high lead solder or lead free solder. The bump material is bonded to the crucible 148 using a suitable adhesion or bonding process. In one embodiment, the bump material is reflowed (10) lQw by heating the material above its melting point to form spherical solder balls or bumps 164. In some applications, the bumps 1 64 are reflowed a second time to enhance the electrical contact bumps with the UBM 148 and may also be bonded to the UBM 148. Bump 164 represents an interconnect structure type that can be formed on UBM 148. The interconnect structure can also use wiring, conductive paste, stud bumps, micro bumps, or other electrical connections. 22 201104770 The semiconductor die 130 is singulated into individual semiconductor components 168 by saw blades or laser cutting tools. After singulation, individual semiconductor components 168 can be stacked as shown in FIG. The conductive pillar structure 128 provides a vertical z-direction interconnect between the top side build up interconnect layer 154 and the bottom side build up interconnect layer 142. The conductive layer 158 is electrically connected to the conductive layer 124 and the pads 134 of each of the semiconductor elements 168 via the conductive pillar structures 128. The thick protective insulating layer disposed on the active surface 136 reduces the stress generated by the CTE mismatch between the semiconductor die 130 and the bottom side buildup interconnect structure 42. The stress buffer provided by the insulating layer 140 reduces the junction failure rate of the conductive pillar structure 138 and the lamination separation between the semiconductor die 13A and the build-up interconnect structure 142. Figure 5 shows a variation of the diagram process flow. Encapsulant 13 8 and conductive pillar structure 128 are subjected to grinding or plasma etching to planarize the surface of the encapsulant to facilitate formation of topside build-up interconnect layer 154. This polishing action exposes the backside surface of the semiconductor die 13G which is coplanar with the exposed surface of the conductive pillars 128. The remainder of this process is illustrated in Figures 3k-3m. Figure 6 illustrates an embodiment of a vertical interconnect structure having no plurality of IpDs formed in the topside interconnect structure. Similar to the process illustrated in Figures 3a-3m, semiconductor component 17 (M吏 uses a sacrificial or temporary substrate or carrier with a selective interface layer)

體,其係做為一 Ί虫刻软|溫 «Β. ί L 、、止層。一電性傳導層丨72利用圖案 化配合PVD、CVD、游蚀 ^ . 賤鍍、電解式電鍍、無電式電鍍製程、 或其他適當之金屬沉積製程形成於載體 可以是—❹層由銘、銅1 1錫、鎳、金、銀、鎢、多晶矽 或其他適當電性傳導物暂 号等物質構成之疊層。導電層172包含可 23 201104770 濕性接塾以利後續導電柱狀結構之形成。 複數個導電柱狀結構或杆狀結構178形成於導電層172 之可濕性接墊上。在一實施例中,導電柱狀結構丨78之形 成係藉由沉積一或多層光阻劑於載體及介面層上。導電層 172上的光阻劑部分經由一蝕刻顯影製程被曝光並移除。導 電材料利用一選擇性電鍍製程被沉積於該光阻層之被移除 部分。光阻層被剝離而留下個別之導電柱狀結構178。導電 柱狀結構178可以是銅、鋁、鎢、金、焊錫或其他適當之 電性傳導物質《導電柱狀結構178具有之高度範圍係2_12〇 M 。在另一實施例中,導電柱狀結構丨78可以形成為凸柱 凸塊或堆叠凸塊。 複數個半導體晶粒或組件1 8〇經由保護黏著層以覆晶 配置方式固定至介面層,接墊184及主動表面186方位朝 下而位於介面層和載體上。保護黏著層可以是一或多層 可固化且熱穩定之黏著膠帶。保護黏著層在主動表面186 和導電層172之間產生一垂直偏移。半導體晶粒18〇包含 一主動表面186,其包含實施為主動元件、被動元件、導電 層及介電層之類比或數位電路形成於該晶粒之内,且依據 該晶粒之電氣設計及功能彼此電性互連。舉例而言,續電 路可以包含一或多個電晶體、二極體以及其他電路構件形 成於主動表面186内以實施基頻類比電路或數位電路,諸 如DSP、ASIC、記憶體或其他信號處理電路。半導體晶粒 180亦可以包含IPD,諸如用於RF信號處理之電感、電容 和電阻器。在另一實施例中,一獨立半導體組件可以被固 24 201104770 定至介面層或载體。 封裝劑或模封材外斗18 轉注模封、液態封 ㈣㈣封' 機制沉積於半導體曰真空層壓或其他適當之塗佈 1QQ 導體日日粒180及導電柱狀結構178上。封梦 劑188可以是臂人此人L 工封裝 〇物5成材料,諸如具有填充劑之環氧合 成樹月曰、具有填夯逾丨 、充劑之%氧丙烯酸酯、或是具有適當填充 背丨1之聚合物。封裝劑 護丰導m 電性的’且能在環境上保 5 疋件免於外部構件之影響及污染。 〃載體)|面層和保護黏著層被以化學濕式钮刻、電聚 乾式蝕刻、機械剝除、CMP、機械研磨、熱烘、雷射掃扩 或濕式剝離加以移除。在載體移除之後,封裝冑188提: 結構上的支承予半導體晶粒180。隨著載體和介面層之移 除導電層172和半導體晶粒i 8〇之接墊i 84被暴露出來。 該結構被倒置而一絕緣層19〇形成於封裝劑188、導電 層172及主動表面186之上由於保護黏著層之垂直偏移, 絕緣層190在主動區域! 86上比在封裝劑i 88及導電層! u 上更厚。一部分絕緣層19〇被一圖案化及蝕刻製程移除以 暴露出導電層172及接墊184» 一底側增層互連結構192形成於絕緣層19〇上。底側 增層互連結構192包含導電層194、絕緣或鈍化層ι96以及 UBM 198。 封裝劑1 88接受研磨或電漿蝕刻進行表面平面化以利 頂部增層互連結構之形成。該研磨動作暴露出導電柱狀結 構178之頂部表面以及’選擇性地,半導體晶粒18〇之背 25 201104770 側表面’如圖5所述。-選擇性製程載體可以駭至純化 層196和導電層198以在研磨動作期間增加結構支承。 該結構被倒置而一頂部增層互連結構2〇〇形成於封艘 劑188及導電柱狀結構178之上。增層互連結構2〇〇包含 一或多個IPD。一絕緣或鈍化層2〇2利用旋轉塗佈、pvD、 C VD印刷燒結或熱氧化形成於封裝劑188和導電柱狀 結構178之上。鈍化層202可以是一或多層由Si〇2、Si3N4、Body, its system is used as a locust to soften | temperature «Β. ί L,, stop layer. An electrically conductive layer 丨72 is formed on the carrier by patterning with PVD, CVD, etch, 贱 plating, electrolytic plating, electroless plating, or other suitable metal deposition process. 1 1 A stack of materials such as tin, nickel, gold, silver, tungsten, polycrystalline germanium or other suitable electrical conductors. The conductive layer 172 comprises a wet cell joint to facilitate the formation of a subsequent conductive columnar structure. A plurality of conductive pillar structures or rod structures 178 are formed on the wettable pads of the conductive layer 172. In one embodiment, the conductive columnar structure 78 is formed by depositing one or more layers of photoresist on the carrier and the interface layer. The photoresist portion on conductive layer 172 is exposed and removed via an etch developing process. The conductive material is deposited on the removed portion of the photoresist layer using a selective electroplating process. The photoresist layer is stripped leaving a separate conductive pillar structure 178. The electrically conductive columnar structure 178 can be copper, aluminum, tungsten, gold, solder or other suitable electrically conductive material. The electrically conductive columnar structure 178 has a height range of 2_12 〇 M . In another embodiment, the conductive pillar structure 78 may be formed as a stud bump or a stacked bump. A plurality of semiconductor dies or components 18 〇 are fixed to the interface layer in a flip chip configuration via a protective adhesion layer, and the pads 184 and the active surface 186 are oriented downwardly on the interface layer and the carrier. The protective adhesive layer can be one or more layers of curable and heat stable adhesive tape. The protective adhesive layer creates a vertical offset between the active surface 186 and the conductive layer 172. The semiconductor die 18 〇 includes an active surface 186 including an analog or digital circuit implemented as an active device, a passive component, a conductive layer, and a dielectric layer, and is formed within the die according to electrical design and function of the die Electrically interconnected with each other. For example, the continuation circuit can include one or more transistors, diodes, and other circuit components formed in the active surface 186 to implement a base frequency analog circuit or digital circuit, such as a DSP, ASIC, memory, or other signal processing circuit. . Semiconductor die 180 may also include an IPD, such as inductors, capacitors, and resistors for RF signal processing. In another embodiment, a separate semiconductor component can be bonded to the interface layer or carrier. Encapsulant or molding material outer bucket 18 transfer molding, liquid sealing (4) (four) sealing 'mechanism deposition on semiconductor 曰 vacuum lamination or other suitable coating 1QQ conductor day granule 180 and conductive column structure 178. The enchantment agent 188 may be a material of the armor of the person, such as an epoxy synthetic tree sapphire with a filler, a ruthenium-filled ruthenium, a oxyacrylate of a filler, or an appropriate filling. The polymer of the backing 1. The encapsulant is electrically conductive and can protect the environment from external influences and contamination. The tantalum carrier and the protective adhesive layer are removed by chemical wet button etching, electroless dry etching, mechanical stripping, CMP, mechanical grinding, thermal baking, laser sweeping or wet stripping. After the carrier is removed, the package 188 provides: structural support to the semiconductor die 180. The pad i 84 of the conductive layer 172 and the semiconductor die i 8 is removed as the carrier and the interface layer are removed. The structure is inverted and an insulating layer 19 is formed over the encapsulant 188, the conductive layer 172 and the active surface 186. Due to the vertical offset of the protective adhesive layer, the insulating layer 190 is in the active region! 86 on the encapsulant i 88 and conductive layer! u is thicker. A portion of the insulating layer 19 is removed by a patterning and etching process to expose the conductive layer 172 and the pads 184». A bottom side build-up interconnect structure 192 is formed over the insulating layer 19A. The bottom side buildup interconnect structure 192 includes a conductive layer 194, an insulating or passivation layer ι96, and a UBM 198. The encapsulant 188 is subjected to grinding or plasma etching for surface planarization to facilitate the formation of a top build-up interconnect structure. The polishing action exposes the top surface of the conductive pillar structure 178 and 'selectively, the backside of the semiconductor die 18 2011 25 201104770 side surface as illustrated in FIG. - A selective process carrier can be applied to the purification layer 196 and the conductive layer 198 to increase structural support during the polishing action. The structure is inverted and a top build-up interconnect structure 2 is formed over the encapsulant 188 and the conductive pillar structure 178. The build-up interconnect structure 2〇〇 contains one or more IPDs. An insulating or passivation layer 2〇2 is formed over encapsulant 188 and conductive pillar structure 178 by spin coating, pvD, C VD printing sintering or thermal oxidation. The passivation layer 202 may be one or more layers of Si〇2, Si3N4,

SiON、Ta2〇5、Abo:)或其他具有適當絕緣特性之材料構成 之疊層。一部分鈍化層202被移除以暴露出導電柱狀結構 178 ° 一電性傳導層204利用圖案化配合PVD、CVD、濺鍍' 電解式電鍍'無電式電鍍製程或其他適當之金屬沉積製程 形成於絕緣層202之上,以形成個別之部份或區塊。導電 層204之個別部分可以是彼此電性相通或電性絕緣,取決 於個別半導體晶粒之連接。導電層204可以是一或多層由 鋁、銅、錫、鎳、金、銀或其他適當之電性傳導物質構成 之叠層。一部分導電層204電性連接至導電柱狀結構1 78。 其他部分之導電層204可以是彼此電性相通或電性絕緣, 取決於該半導體元件之設計及功能。 一電阻層206a-206b利用PVD或CVD分別圖案化及沉 積於導電層2〇4和絕緣層2〇2之上。電阻層2〇6係矽化鈕 (tantalum silicide ; TaxSiy)或其他金屬矽化物、氮化鈕 (TaN)、錄路(nickel chromium ; NiCr)、氮化欽(TiN)或掺入 雜邊之夕阳石夕’其電阻率介於5和loo 〇hm/sq之間。一絕 26 201104770 緣層208利用PVD、CVD、印刷、燒結或熱氧化形成於電 阻層206a之上。絕緣層208可以是一或多層由si3N4、 Si02、SiON、Ta205、ZnO、Zr02、Al2〇3、聚醯亞胺 (polyimide)、BCB、PBO或其他適當介電材質構成之疊層。 電阻層206和絕緣層208可以以同一光罩形成並同時進行 #刻。或者’電阻層206和絕緣層208可以以不同光罩進 行圖案化及飯刻。 一絕緣或鈍化層210利用旋轉塗佈、p vd、CVD、印刷、 燒結或熱氧化形成於鈍化層202、導電層204、電阻層206 和絕緣層208之上。鈍化層210可以是一或多層由Si〇2、 Si3% ' SiON、TaW5、AhO3或其他具有適當絕緣特性之材 料構成之疊層。一部分鈍化層21〇被移除以暴露出導電層 204、電阻層206和絕緣層208。 一電性傳導層212被圖案化並利用PVD、CVD、濺鍍、 電解式電鍍、&電式電鍍製程或其他適當之金屬沉積製程 沉積於純化層21〇、導電層綱、電阻層讓及絕緣層_ 之上,以%成個另,j之部份或區段並得到進一步的互連性。 導電層212之個別部分可以是彼此電性相通或電性絕緣, 取决於個別半導體晶粒之連接性。導電層2 ^ 2可以是—或 多層由銘、銅、錫、鎳、金、銀或其他適當之電性傳導物 質構成之疊層。 辱物A laminate of SiON, Ta2〇5, Abo:) or other material having suitable insulating properties. A portion of the passivation layer 202 is removed to expose the conductive pillar structure 178 °. An electrically conductive layer 204 is formed by patterning a PVD, CVD, sputtering 'electrolytic plating' electroless plating process, or other suitable metal deposition process. Above the insulating layer 202 to form individual portions or blocks. Individual portions of conductive layer 204 may be electrically or electrically insulated from one another, depending on the connection of individual semiconductor dies. Conductive layer 204 can be a laminate of one or more layers of aluminum, copper, tin, nickel, gold, silver, or other suitable electrically conductive material. A portion of the conductive layer 204 is electrically connected to the conductive pillar structure 1 78. Other portions of conductive layer 204 may be electrically or electrically insulated from one another, depending on the design and function of the semiconductor component. A resistive layer 206a-206b is separately patterned and deposited on the conductive layer 2〇4 and the insulating layer 2〇2 by PVD or CVD. Resistance layer 2〇6 is a tantalum silicide; TaxSiy or other metal telluride, nitride button (TaN), nickel chromium (NiCr), nitrided (TiN) or sunset stone mixed with impurities Xi's resistivity is between 5 and loo 〇hm/sq. A rim 26 201104770 The edge layer 208 is formed over the resistive layer 206a by PVD, CVD, printing, sintering or thermal oxidation. The insulating layer 208 may be one or more layers of Si3N4, SiO2, SiON, Ta205, ZnO, ZrO2, Al2〇3, polyimide, BCB, PBO or other suitable dielectric materials. The resistive layer 206 and the insulating layer 208 may be formed in the same mask and simultaneously engraved. Alternatively, the resistive layer 206 and the insulating layer 208 can be patterned and etched with different masks. An insulating or passivation layer 210 is formed over the passivation layer 202, the conductive layer 204, the resistive layer 206, and the insulating layer 208 by spin coating, pvd, CVD, printing, sintering, or thermal oxidation. The passivation layer 210 may be one or more layers of Si 2 , Si 3% ' SiON, TaW 5 , AhO 3 or other materials having suitable insulating properties. A portion of the passivation layer 21 is removed to expose the conductive layer 204, the resistive layer 206, and the insulating layer 208. An electrically conductive layer 212 is patterned and deposited on the purification layer 21, the conductive layer, and the resistive layer by PVD, CVD, sputtering, electrolytic plating, & electroplating, or other suitable metal deposition process. Above the insulating layer _, in %, a part or section of j and further interconnectivity. Individual portions of conductive layer 212 may be electrically or electrically insulated from one another, depending on the connectivity of the individual semiconductor dies. The conductive layer 2^2 may be - or a plurality of layers of laminates of indium, copper, tin, nickel, gold, silver or other suitable electrically conductive material. Insult

一絕緣或鈍化層214利用旋轉塗佈、P V D、C V D、印刷 燒結或熱氧化形成於導電層212和鈍 U 層-可以是-或多層由叫Si3N4、議、Ta2〇5、A= 27 201104770 或其他具有適當絕緣特性之材料構成之疊層。一部分純化 層214被移除以暴露出導電層212。 電丨生傳導層216被圖案化並利用p VD、c 、滅鍵、 電解式電鍍、無電式電鐘製程或其他適當之金屬沉積製程 沉積於鈍化層214和導電層212之上。導電層216可以是 一或多層由鋁、銅、錫、鎳、金、銀或其他適當之電性傳 導物質構成之疊層。導電層216係一與導電層212和2〇4 以及導電柱狀結構178電性接觸之UBM。 描述於增層互連結構2〇〇中之結構構成一或多個被動 式電路構件或IPD。在一實施例中,導電層2〇4、電阻層 206a、絕緣層208以及導電層212係一金屬絕緣體_金屬 (metal-insulator-metal ; MIM)式電容《電阻層 206b 係該被 動式電路中之一電阻構件。導電層2 1 2之個別區段可以在 平面上被纏繞或捲成線圈以產生或展現一電感器應有之性 質。 上述之IPD架構提供諸如諧振器(res〇nat〇r)、高通濾波 器(high-pass filter)、低通遽波器(i〇w-pass filter)、帶通滤 波器(band-pass filter)、對稱 Hi-Q 諧振變壓器(symmetric Hi-Q resonant transformer)、匹配網路(matching network)以 及調諧電容器(tuning capacitor)等高頻應用所需之電氣特 性。該等IPD可以充當前端無線RF組件,可以置於天線 (antenna)和收發器(transceiver)之間。電感可以是一 hi-Q貝 楞(balun ;即平衡-不平衡轉換器)' 變壓器或線圈,運作頻 率上達100GHz(Gigahertz ;十億兆赫)。在一些應用之中, 28 201104770 夕個貝楞形成於同一基板之上,使其可以進行多頻帶運 作。例如,二或多個貝楞使用於行動電話或其他全球行動 系統(global system f0r mobile ; GSM)通信中負責四頻帶, 每一貝楞專用於該四頻帶裝置中一個頻帶之運作。一典塑 RF系統在一或多個半導體封裝中需要多個lpD以及其他高 頻電路以執行所需的電氣功能。 δ亥等IPD可以形成於頂側增層連結架構和底側增層互 連結構中之一或二者。 鈍化層196和UBM 198上的選擇性載體和黏著層被以 化學濕式蝕刻、電漿乾式蝕刻、機械剝除、CMp、機械研 磨、熱供、雷射掃描或濕式剝離加以移除。一導電凸塊材 料利用蒸鍍、電解式電鍍、無電式電鍍、錫球投入、或網 印製程沉積於UBM 198之上。凸塊材料可以是鋁、錫、鎳、 金、銀、鈀、鉍、銅、焊錫以及前述項目之組合,外加一 選擇性之助熔劑。舉例而言,凸塊材料可以是共熔錫/鈀、 尚鉛焊錫或無鉛焊錫。凸塊材料利用一適當之黏附或接合 氣程黏接至UBM 198。在一實施例中,凸塊材料藉由將該 材料加熱至其溶點以上以形成球狀的錫球或凸塊218。在一 二應用之中,凸塊2 1 8被第二次回流以增進與ubm 198之 電性接觸。凸塊亦可以被壓接至UBM 198。凸塊218代表 —種可以形成於UBM 198上的互連結構◊該互連結構亦可 以使用接線、導電膠、凸柱凸塊、微凸塊或其他電性連接。 導電柱狀結構178提供頂部增層互連層2〇〇和底部増 層互連層192間的垂直z方向互連。導電層2〇4和2丨2經由 29 201104770 導電柱狀結構178電性連接至導電層172及半導體晶粒18〇 之接墊184。 配置於主動表面186上的厚保護性絕緣層190降低了 由半導體晶粒180和底側增層互連結構192間#。则四 配所產生的應力。絕緣| i 9G所提供的應力緩衝減少導電 柱狀結構178的接合故障率以及半導體晶粒18〇和增層互 連結構192間的疊層分離。 雖然本發明之一或多個實施例詳細例示如上,但習於 斯,藝者應理解該等實施例可以在未脫離本發明以下申請專 利範圍所界定之範疇下進行修改及調整。 【圖式簡單說明】 . 圖1例示- PCB,具有不同型態之封裝固定至其表面. 圖2a-2c例巾固定至上㉛pCB之代表性半導體之 進一步細節; 孜 圖3a-3m例示利用介於晶粒和增層互連結構間之導電 柱狀結構及應力減輕層形成一垂直互連結構之製程. 圖4例示與該導電柱狀結構電性互連之 Μ . 且a式+導體 體晶 圖5例示與該導電柱狀結構之一表面共面之半 粒之一背側表面;以及 元件 圖6例示具有IPD形成於一頂側互連結構中 之半導體 【主要元件符號說明 50 電子裝置 30 201104770 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 88 90 92 94 96 98An insulating or passivation layer 214 is formed on the conductive layer 212 and the blunt U layer by spin coating, PVD, CVD, print sintering or thermal oxidation - which may be - or multilayered by Si3N4, T2, U2, A = 27 201104770 or A laminate of other materials having suitable insulating properties. A portion of the purification layer 214 is removed to expose the conductive layer 212. Electrogenerated twin conductive layer 216 is patterned and deposited over passivation layer 214 and conductive layer 212 using pVD, c, bond, electrolytic plating, electroless clock process, or other suitable metal deposition process. Conductive layer 216 can be one or more layers of aluminum, copper, tin, nickel, gold, silver or other suitable electrically conductive material. The conductive layer 216 is a UBM that is in electrical contact with the conductive layers 212 and 2〇4 and the conductive pillar structure 178. The structures described in the build-up interconnect structure 2 constitute one or more passive circuit components or IPDs. In one embodiment, the conductive layer 2〇4, the resistive layer 206a, the insulating layer 208, and the conductive layer 212 are a metal-insulator-metal (MIM) capacitor. The resistive layer 206b is in the passive circuit. A resistance member. Individual sections of conductive layer 2 1 2 may be wound or wound into a coil on a plane to create or exhibit the properties of an inductor. The above IPD architecture provides such as a resonator (res〇nat〇r), a high-pass filter, an i〇w-pass filter, and a band-pass filter. Electrical characteristics required for high frequency applications such as symmetric Hi-Q resonant transformers, matching networks, and tuning capacitors. These IPDs can act as front-end wireless RF components that can be placed between an antenna and a transceiver. The inductor can be a hi-Q bal (balun; balun) 'transformer or coil, operating at up to 100 GHz (Gigahertz; 1 billion megahertz). In some applications, 28 201104770 夕 楞 楞 is formed on the same substrate, making it possible to operate in multiple bands. For example, two or more Bessie are used in a mobile phone or other global system (GSM) communication to be responsible for the four bands, each dedicated to the operation of one of the four band devices. A typical RF system requires multiple lpDs and other high frequency circuits in one or more semiconductor packages to perform the required electrical functions. The IPD such as δHai may be formed in one or both of the top side buildup bonding structure and the bottom side buildup interconnect structure. The selective carrier and adhesion layers on passivation layer 196 and UBM 198 are removed by chemical wet etching, plasma dry etching, mechanical stripping, CMp, mechanical grinding, heat supply, laser scanning or wet stripping. A conductive bump material is deposited on the UBM 198 by evaporation, electrolytic plating, electroless plating, solder ball implantation, or a screen printing process. The bump material can be aluminum, tin, nickel, gold, silver, palladium, rhodium, copper, solder, and combinations of the foregoing, plus a selective flux. For example, the bump material can be eutectic tin/palladium, lead solder or lead-free solder. The bump material is bonded to the UBM 198 using a suitable adhesive or bonding gas path. In one embodiment, the bump material is heated to above its melting point to form a spherical tin ball or bump 218. In one or two applications, the bumps 2 18 are reflowed a second time to enhance electrical contact with the ubm 198. The bumps can also be crimped to the UBM 198. Bumps 218 represent an interconnect structure that can be formed on UBM 198. The interconnect structure can also utilize wiring, conductive paste, stud bumps, microbumps, or other electrical connections. The conductive pillar structure 178 provides a vertical z-direction interconnect between the top build-up interconnect layer 2 and the bottom germanium interconnect layer 192. The conductive layers 2〇4 and 2丨2 are electrically connected to the conductive layer 172 and the pads 184 of the semiconductor die 18〇 via the 29 201104770 conductive pillar structure 178. The thick protective insulating layer 190 disposed on the active surface 186 is reduced by the semiconductor die 180 and the bottom side build-up interconnect structure 192. Then the four stresses are generated. Insulation | The stress buffer provided by i 9G reduces the junction failure rate of the conductive pillar structure 178 and the lamination separation between the semiconductor die 18 〇 and the build-up interconnect structure 192. Although one or more embodiments of the invention are described in detail above, it is to be understood that the embodiments may be modified and modified without departing from the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 illustrates a PCB with a different type of package secured to its surface. Figure 2a-2c shows further details of a representative semiconductor attached to the upper 31pCB; Figure 3a-3m illustrates the use of The process of forming a vertical interconnect structure between the conductive pillar structure and the stress mitigation layer between the die and the build-up interconnect structure. Figure 4 illustrates the electrical interconnection with the conductive pillar structure. 5 illustrates a back side surface of a half grain coplanar with one surface of the conductive columnar structure; and an element FIG. 6 illustrates a semiconductor having an IPD formed in a top side interconnect structure. [Main Component Symbol Description 50 Electronic Device 30 201104770 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 88 90 92 94 96 98

PCB 走線 打線接合封裝 覆晶 球柵陣列 凸塊晶片載體 雙排型封裝 基板柵格陣列 多晶片模組 四側無引腳扁平封裝 四面扁平封裝 半導體晶粒 接墊 中介載體 導體引線 打線接合 封裝劑 半導體晶粒 載體 底部填充或環氧合成樹脂黏著材料 打線接合 接墊 接墊 模封材料或封裝劑 31 100 201104770 102 接墊 104 凸塊 106 載體 108 主動區域 110 焊錫Λ塊或錫球 112 焊錫凸塊或錫球 114 信號線 116 模封材料或封裝劑 120 載體 122 介面層 124 導電層 128 導電柱狀結構 130 半導體晶粒或組件 132 保護性黏著層 134 接墊 136 主動表面 138 封裝劑或模封材料 140 絕緣層 142 底側增層互連結構 144 導電層 145 導電層之部分 146 絕緣或鈍化層 148 導電層 150 載體 32 201104770 152 黏著層 154 頂側增層互連結構 156 絕緣或鈍化層 158 導電層 159 導電層之部分 160 絕緣或鈍化層 162 導電層 164 凸塊 168 半導體元件 170 半導體元件 172 導電層 178 導電柱狀結構 180 半導體晶粒或組件 184 接墊 186 主動表面 188 封裝劑或模封材料 190 絕緣層 192 底側增層互連結構 194 導電層 196 絕緣或鈍化層 198 UBM 200 頂側增層互連結構 202 絕緣或鈍化層 204 導電層 33 201104770 206a 、 b 電阻層 208 絕緣層 210 絕緣或鈍化層 212 導電層 214 絕緣或鈍化層 216 導電層 34PCB trace wire bond package flip chip ball grid array bump wafer carrier double row package substrate grid array multi-chip module four-sided leadless flat package four-sided flat package semiconductor die pad interposer carrier conductor wire bonding encapsulant Semiconductor die carrier underfill or epoxy synthetic resin adhesive material wire bond pad gasket molding material or encapsulant 31 100 201104770 102 pad 104 bump 106 carrier 108 active region 110 solder bump or solder ball 112 solder bump Or solder ball 114 signal line 116 molding material or encapsulant 120 carrier 122 interface layer 124 conductive layer 128 conductive pillar structure 130 semiconductor die or component 132 protective adhesive layer 134 pad 136 active surface 138 encapsulant or molding material 140 insulating layer 142 bottom side build-up interconnect structure 144 conductive layer 145 portion of conductive layer 146 insulating or passivation layer 148 conductive layer 150 carrier 32 201104770 152 adhesive layer 154 top side build-up interconnect structure 156 insulating or passivation layer 158 conductive layer 159 part of the conductive layer 160 insulation or passivation layer 162 conductive 164 bump 168 semiconductor component 170 semiconductor component 172 conductive layer 178 conductive pillar structure 180 semiconductor die or component 184 pad 186 active surface 188 encapsulant or molding material 190 insulating layer 192 bottom side build-up interconnect structure 194 conductive layer 196 Insulation or passivation layer 198 UBM 200 Top side buildup interconnect structure 202 Insulation or passivation layer 204 Conductive layer 33 201104770 206a, b Resistive layer 208 Insulation layer 210 Insulation or passivation layer 212 Conductive layer 214 Insulation or passivation layer 216 Conductive layer 34

Claims (1)

201104770 七、申請專利範圍: 1. 一種製造半導體元件的方法,包含: 提供一暫時性載體; 形成-第一導電層於該暫時性載體上; 形成一導電柱狀結構於該第一導電層上; :+導體日日粒之-主動表面經由—黏著層固定至該 :性載體,該半導體晶粒藉由該黏著層垂直偏移自該第 -—ZM-, a . 守电增, 沉積一封裝劑於該半導體晶粒上及該導電枉狀結構周 圍; 移除該暫時性載體及該黏著層; 形成一應力減輕絕緣層於該半導體晶粒之該主動表面 及δ亥封裝齋J,一 _主, 弟一表面上,該應力減輕絕緣層在該半導 體晶粒上具有一第一 ig rip 第厗度,且在該封裝劑上具有一小於該 第一厚度之第二厚度; '第互連結構於該應力減輕絕緣層上;以及 一形成一第二互連結構於該第一互連結構對側之封裝劑 之第—表面上,該第一及第二互連結構透過該導電柱狀 結構彼此電性連接。 . 士申明專利範圍第1項所述之方法,其_該第二互 連結構包含—輕·人4;.木& 登S式被動元件電性連接至該導電柱狀社 構。 *八3· Λ如申請專利範圍帛1項所述之方法,更包含移除— X封裝劑以為該第一互連結構形成一平整表面。 35 201104770 4. 如申請專利範圍第3項所述之方法,其中在該半導 體晶粒之該主動表面對側之該半導體晶粒之一背側表面與 該導電柱狀結構之一表面共平面。 5. 如申請專利範圍第1項所述之方法,更包含: 堆疊複數個該半導體元件;以及 經由該導電柱狀結構電性連接該複數個半導體元件。 6. —種製造半導體元件的方法,包含: 提供一第一載體; 形成一導電柱狀結構於該第一載體上; 將一半導體組件固定至該第一載體; 沉積一封裝劑於該半導體組件上及該導電柱狀結構周 圍; 移除該第一載體; 形成一應力減輕絕緣層於該半導體組件及該封裝劑之 一第一表面上,該應力減輕絕緣層在該半導體組件上具有 一第一厚度’且在該封裝劑上具有一小於該第一厚度之第 二厚度; 形成一第一互連結構於該應力減輕絕緣層上;以及 形成一第二互連結構於該第一互連結構對側之封裝劑 之一第二表面上,該第一及第二互連結構透過該導電柱狀 結構彼此電性連接。 7. 如申請專利範圍第6項所述之方法,其中該第二互 連結構包含一整合式被動元件電性連接至該導電杈狀結 構0 36 201104770 8.如申請專利範圍第6項所述之方法,更包含移除一 4刀之4封裝劑以為該第一互連結構形成—平整表面。 9·如申請專利範圍第6項所述之方法,更包含在形成 °亥第一互連結構之前將一第二載體固定至該第一互連結 構。 10,如申請專利範圍第6項所述之方法,更包含: 堆疊複數個該半導體元件;以及 經由該導電柱狀結構電性連接該複數個半導體元件。 11 ·如申請專利範圍第6項所述之方法其中形成該第 一互連結構包含: 形成一第一導電層於該應力減輕絕緣層上,該第一導 電層電性連接至該導電柱狀結構; 形成一第一絕緣層於該應力減輕絕緣層及該第一導電 層上;以及 形成一第二導電層於該第一導電層上,該第二導電層 電性連接至該導電枉狀結構。 12. —種製造半導體元件的方法,包含: 提供一第一載體; 形烕一導電柱狀結構於該第 將一半導體組件固定至該第一載體; 圍 沉積一封裝劑於該半導體組件上及該導電枉狀結構周 移除該第一載體; 形成一應力減輕絕緣層於該半導體組件及該封裝劑之 37 201104770 一第一表面上;以及 形成一第一互連結構於該應力減輕絕緣層上,該第一 互連結構電性連接至該導電柱狀結構。 1 3.如申請專利範圍第12項所述之方法,更包含形成 第一互連結構於該第一互連結構對侧之封裝劑之一第二 表面上’該第一及第二互連結構透過該導電柱狀結構彼此 電性連接。 14. 如申請專利範圍第13項所述之方法,其中該第二 互連結構包含一整合式被動元件電性連接至該導電柱狀結 構。 15. 如申凊專利範圍第12項所述之方法,其中該半導 體組件垂直偏移自該第一導電層。 1 6.如申凊專利範圍第丨2項所述之方法,其中該應力 減輕絕緣層在該半導體組件上具有一第一厚度,且在該封 裝劑上具有—小於該第一厚度之第二厚度。 17. 如申請專利範圍第12項所述之方法,更包含移除 一部分之該封裝劑以為該第一互連結構形成一平整表面。 18. 如申請專利範圍第12項所述之方法,更包含在形 成遠第—互連結構之前將一第^載體固定至該第一互 構。 、、’〇 19·如申請專利範圍第12項所述之方法,更包含: 堆疊複數個該半導體元件;以及 里由該導電柱狀結構電性連接該複數個半導體元件。 2〇·如申請專利範圍帛12項所述之方法,其中形成該 38 201104770 第一互連結構包含: 形成一第一導電層於該應力減輕絕緣層上,該第一導 電層電性連接至該導電柱狀結構; 形成一第一絕緣層於該應力減輕絕緣層及該第一導電 層上;以及 形成一第二導電層於該第一導電層上,該第二導電層 電性連接至該導電柱狀結構。 21· —種半導體元件,包含: 一半導體組件; 一導電柱狀結構,形成於該半導體組件周圍; 一封裝劑’沉積於該半導體組件上及該導電柱狀結構 周圍, 一應力減輕絕緣層,形成於該半導體組件及該封裝劑 之一第一表面上; 一第一互連結構,形成於該應力減輕絕緣層上;以及 一第一互連結構,形成於該第一互連結構對側之封裝 劑之一第二表面上,該第一及第二互連結構透過該導電柱 狀結構彼此電性連接。 22. 如申請專利範圍第21項所述之半導體元件,其中 該應力減輕絕緣層在該半導體組件上具有一第一厚度且 在該封裝劑上具有一小於該第一厚度之第二厚度。 23. 如申請專利範圍帛21項所述之半導體元件,其中 該第二互連結豸包含_整合式被動元件電性連接至該導電 柱狀結構。 39 201104770 24. 如申請專利範圍第2 1項所述之半導體元件,更包 含複數個該半導體元件經由該導電柱狀結構彼此電性連 接。 25. 如申請專利範圍第η項所述之半導體元件,其中 該第一互連結構包含: 一第一導電層,形成於該應力減輕絕緣層上,該第一 導電層電性連接至該導電柱狀結構; 一第一絕緣層,形成於該應力減輕絕緣層及該 電層上;以及 乂 一第二導電層,形成於該第一導電層上,該第二導電 層電性連接至該導電柱狀結構。 八、圖式: (如次頁)201104770 VII. Patent application scope: 1. A method for manufacturing a semiconductor component, comprising: providing a temporary carrier; forming a first conductive layer on the temporary carrier; forming a conductive columnar structure on the first conductive layer ; : + conductor day - the active surface is fixed to the: carrier by an adhesive layer, the semiconductor die is vertically offset from the first -ZM-, a. Encapsulating agent on the semiconductor die and around the conductive germanium structure; removing the temporary carrier and the adhesive layer; forming a stress mitigating insulating layer on the active surface of the semiconductor die and On the surface of the master, the stress relief insulating layer has a first ig rip degree on the semiconductor die and a second thickness on the encapsulant that is smaller than the first thickness; Connecting the structure to the stress mitigation insulating layer; and forming a second interconnect structure on the first surface of the encapsulant opposite the first interconnect structure, the first and second interconnect structures passing through the conductive pillar shape Configuration is electrically connected to each other. The method of claim 1, wherein the second interconnection structure comprises - a light human 4; a wood & S-type passive component is electrically connected to the conductive columnar structure. *8 3. The method of claim 1, wherein the method further comprises removing - X encapsulant to form a flat surface for the first interconnect structure. The method of claim 3, wherein the back side surface of one of the semiconductor grains on the opposite side of the active surface of the semiconductor die is coplanar with a surface of the conductive pillar structure. 5. The method of claim 1, further comprising: stacking the plurality of semiconductor components; and electrically connecting the plurality of semiconductor components via the conductive pillar structure. 6. A method of fabricating a semiconductor device, comprising: providing a first carrier; forming a conductive pillar structure on the first carrier; securing a semiconductor component to the first carrier; depositing an encapsulant on the semiconductor component And surrounding the conductive pillar structure; removing the first carrier; forming a stress mitigating insulating layer on the first surface of the semiconductor component and the encapsulant, the stress mitigating insulating layer has a first portion on the semiconductor component a thickness 'and a second thickness on the encapsulant that is less than the first thickness; forming a first interconnect structure on the stress mitigation insulating layer; and forming a second interconnect structure on the first interconnect On one of the second surfaces of the encapsulant opposite the structure, the first and second interconnect structures are electrically connected to each other through the conductive pillar structure. 7. The method of claim 6, wherein the second interconnect structure comprises an integrated passive component electrically connected to the conductive braid structure 0 36 201104770 8. As described in claim 6 The method further includes removing a 4 knives of encapsulant to form a flat surface for the first interconnect structure. 9. The method of claim 6, further comprising securing a second carrier to the first interconnect structure prior to forming the first interconnect structure. 10. The method of claim 6, further comprising: stacking the plurality of semiconductor components; and electrically connecting the plurality of semiconductor components via the conductive pillar structure. The method of claim 6, wherein the forming the first interconnect structure comprises: forming a first conductive layer on the stress mitigation insulating layer, the first conductive layer being electrically connected to the conductive column Forming a first insulating layer on the stress mitigation insulating layer and the first conductive layer; and forming a second conductive layer on the first conductive layer, the second conductive layer being electrically connected to the conductive ridge structure. 12. A method of fabricating a semiconductor device, comprising: providing a first carrier; forming a conductive pillar structure to fix the first semiconductor component to the first carrier; depositing an encapsulant on the semiconductor component; The conductive germanium structure circumferentially removes the first carrier; forming a stress mitigating insulating layer on the first surface of the semiconductor component and the encapsulant 37 201104770; and forming a first interconnect structure on the stress mitigating insulating layer The first interconnect structure is electrically connected to the conductive pillar structure. 1. The method of claim 12, further comprising forming a first interconnect structure on the second surface of one of the encapsulants on the opposite side of the first interconnect structure, the first and second interconnects The structures are electrically connected to each other through the conductive columnar structure. 14. The method of claim 13 wherein the second interconnect structure comprises an integrated passive component electrically coupled to the conductive pillar structure. 15. The method of claim 12, wherein the semiconductor component is vertically offset from the first conductive layer. The method of claim 2, wherein the stress mitigation insulating layer has a first thickness on the semiconductor component and has a second less than the first thickness on the encapsulant thickness. 17. The method of claim 12, further comprising removing a portion of the encapsulant to form a planar surface for the first interconnect structure. 18. The method of claim 12, further comprising securing a carrier to the first structure prior to forming the distal-interconnect structure. The method of claim 12, further comprising: stacking a plurality of the semiconductor elements; and electrically connecting the plurality of semiconductor elements by the conductive columnar structure. The method of claim 12, wherein the forming the 38 201104770 first interconnect structure comprises: forming a first conductive layer on the stress mitigation insulating layer, the first conductive layer being electrically connected to a conductive columnar structure; forming a first insulating layer on the stress mitigating insulating layer and the first conductive layer; and forming a second conductive layer on the first conductive layer, the second conductive layer is electrically connected to The conductive columnar structure. A semiconductor device comprising: a semiconductor component; a conductive pillar structure formed around the semiconductor component; an encapsulant 'deposited on the semiconductor component and around the conductive pillar structure, a stress mitigating insulating layer, Formed on the first surface of the semiconductor component and the encapsulant; a first interconnect structure formed on the stress mitigation insulating layer; and a first interconnect structure formed on the opposite side of the first interconnect structure On one of the second surfaces of the encapsulant, the first and second interconnect structures are electrically connected to each other through the conductive pillar structure. 22. The semiconductor device of claim 21, wherein the stress mitigation insulating layer has a first thickness on the semiconductor component and a second thickness on the encapsulant that is less than the first thickness. 23. The semiconductor component of claim 21, wherein the second interconnected junction comprises an integrated passive component electrically coupled to the electrically conductive pillar structure. 39 201104770 24. The semiconductor device of claim 21, further comprising a plurality of the semiconductor elements electrically connected to each other via the conductive columnar structure. 25. The semiconductor device of claim n, wherein the first interconnect structure comprises: a first conductive layer formed on the stress mitigation insulating layer, the first conductive layer being electrically connected to the conductive a columnar structure; a first insulating layer formed on the stress mitigating insulating layer and the electric layer; and a second conductive layer formed on the first conductive layer, the second conductive layer electrically connected to the Conductive columnar structure. Eight, schema: (such as the next page)
TW099115255A 2009-06-09 2010-05-13 Semiconductor device and method of forming stress relief layer between die and interconnect structure TWI570820B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/481,404 US8039303B2 (en) 2008-06-11 2009-06-09 Method of forming stress relief layer between die and interconnect structure

Publications (2)

Publication Number Publication Date
TW201104770A true TW201104770A (en) 2011-02-01
TWI570820B TWI570820B (en) 2017-02-11

Family

ID=44816965

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099115255A TWI570820B (en) 2009-06-09 2010-05-13 Semiconductor device and method of forming stress relief layer between die and interconnect structure

Country Status (1)

Country Link
TW (1) TWI570820B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103107099A (en) * 2011-11-14 2013-05-15 联合科技(股份有限)公司 Semiconductor packages and methods of packaging semiconductor devices
CN104332456A (en) * 2014-09-04 2015-02-04 华进半导体封装先导技术研发中心有限公司 Wafer-level fan-out stacked packaging structure and manufacturing process thereof
CN104835781A (en) * 2014-02-10 2015-08-12 格罗方德半导体公司 Structure and method of cancelling TSV-induced substrate stress
US9293401B2 (en) 2008-12-12 2016-03-22 Stats Chippac, Ltd. Semiconductor device and method for forming a low profile embedded wafer level ball grid array molded laser package (EWLP-MLP)
US9401331B2 (en) 2008-12-12 2016-07-26 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming a vertical interconnect structure for 3-D FO-WLCSP
CN105810669A (en) * 2015-01-20 2016-07-27 台湾积体电路制造股份有限公司 Vertical metal insulator and metal capacitor
TWI585919B (en) * 2014-08-12 2017-06-01 碁鼎科技秦皇島有限公司 Chip package substrate ,chip packaging structure and manufacturing method of same
US9768155B2 (en) 2008-12-12 2017-09-19 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming a vertical interconnect structure for 3-D FO-WLCSP
US9773749B2 (en) 2012-11-14 2017-09-26 Taiwan Semiconductor Manufacturing Company, Ltd. Warpage control of semiconductor die package
US9847324B2 (en) 2008-12-12 2017-12-19 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming a vertical interconnect structure for 3-D FO-WLCSP
US9941195B2 (en) 2009-11-10 2018-04-10 Taiwan Semiconductor Manufacturing Co., Ltd. Vertical metal insulator metal capacitor
TWI627694B (en) * 2015-10-07 2018-06-21 力成科技股份有限公司 Panel assembly of molded interconnect substrates (mis) and the method for manufacturing the same
US10283443B2 (en) 2009-11-10 2019-05-07 Taiwan Semiconductor Manufacturing Co., Ltd. Chip package having integrated capacitor
TWI678766B (en) * 2018-04-26 2019-12-01 沅顧科技有限公司 A method for making a system on an active-controllable substrate
TWI804411B (en) * 2022-08-09 2023-06-01 矽品精密工業股份有限公司 Electronic package and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108461487A (en) * 2017-02-17 2018-08-28 联发科技股份有限公司 Semiconductor device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812552B2 (en) * 2002-04-29 2004-11-02 Advanced Interconnect Technologies Limited Partially patterned lead frames and methods of making and using the same in semiconductor packaging
US20040080025A1 (en) * 2002-09-17 2004-04-29 Shinko Electric Industries Co., Ltd. Lead frame, method of manufacturing the same, and semiconductor device manufactured with the same
KR100495921B1 (en) * 2002-12-30 2005-06-17 주식회사 하이닉스반도체 Method of fabrication semiconductor device for remove stress
SG137651A1 (en) * 2003-03-14 2007-12-28 Micron Technology Inc Microelectronic devices and methods for packaging microelectronic devices
TWI244167B (en) * 2003-11-10 2005-11-21 Siliconware Precision Industries Co Ltd Semiconductor package and method thereof
US7368379B2 (en) * 2005-08-04 2008-05-06 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-layer interconnect structure for semiconductor devices
TWI302732B (en) * 2006-08-03 2008-11-01 Unimicron Technology Corp Embedded chip package process and circuit board with embedded chip

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9847324B2 (en) 2008-12-12 2017-12-19 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming a vertical interconnect structure for 3-D FO-WLCSP
US9768155B2 (en) 2008-12-12 2017-09-19 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming a vertical interconnect structure for 3-D FO-WLCSP
US10622293B2 (en) 2008-12-12 2020-04-14 Jcet Semiconductor (Shaoxing) Co., Ltd. Semiconductor device and method for forming a low profile embedded wafer level ball grid array molded laser package (EWLB-MLP)
US10475779B2 (en) 2008-12-12 2019-11-12 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming a vertical interconnect structure for 3-D FO-WLCSP
US9293401B2 (en) 2008-12-12 2016-03-22 Stats Chippac, Ltd. Semiconductor device and method for forming a low profile embedded wafer level ball grid array molded laser package (EWLP-MLP)
US9401331B2 (en) 2008-12-12 2016-07-26 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming a vertical interconnect structure for 3-D FO-WLCSP
US10283443B2 (en) 2009-11-10 2019-05-07 Taiwan Semiconductor Manufacturing Co., Ltd. Chip package having integrated capacitor
US10269691B2 (en) 2009-11-10 2019-04-23 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming semiconductor structure
US9941195B2 (en) 2009-11-10 2018-04-10 Taiwan Semiconductor Manufacturing Co., Ltd. Vertical metal insulator metal capacitor
CN103107099A (en) * 2011-11-14 2013-05-15 联合科技(股份有限)公司 Semiconductor packages and methods of packaging semiconductor devices
CN103107099B (en) * 2011-11-14 2015-10-14 联合科技(股份有限)公司 The method of semiconductor packages and encapsulated semiconductor device
US9773749B2 (en) 2012-11-14 2017-09-26 Taiwan Semiconductor Manufacturing Company, Ltd. Warpage control of semiconductor die package
US10134706B2 (en) 2012-11-14 2018-11-20 Taiwan Semiconductor Manufacturing Company, Ltd. Warpage control of semiconductor die package
CN104835781A (en) * 2014-02-10 2015-08-12 格罗方德半导体公司 Structure and method of cancelling TSV-induced substrate stress
TWI585919B (en) * 2014-08-12 2017-06-01 碁鼎科技秦皇島有限公司 Chip package substrate ,chip packaging structure and manufacturing method of same
CN104332456A (en) * 2014-09-04 2015-02-04 华进半导体封装先导技术研发中心有限公司 Wafer-level fan-out stacked packaging structure and manufacturing process thereof
CN105810669B (en) * 2015-01-20 2018-08-31 台湾积体电路制造股份有限公司 Vertical metal insulator metal capacitor
CN105810669A (en) * 2015-01-20 2016-07-27 台湾积体电路制造股份有限公司 Vertical metal insulator and metal capacitor
TWI627694B (en) * 2015-10-07 2018-06-21 力成科技股份有限公司 Panel assembly of molded interconnect substrates (mis) and the method for manufacturing the same
TWI678766B (en) * 2018-04-26 2019-12-01 沅顧科技有限公司 A method for making a system on an active-controllable substrate
TWI804411B (en) * 2022-08-09 2023-06-01 矽品精密工業股份有限公司 Electronic package and manufacturing method thereof

Also Published As

Publication number Publication date
TWI570820B (en) 2017-02-11

Similar Documents

Publication Publication Date Title
US10083916B2 (en) Semiconductor device and method of forming stress relief layer between die and interconnect structure
TW201104770A (en) Semiconductor device and method of forming stress relief layer between die and interconnect structure
US8072059B2 (en) Semiconductor device and method of forming UBM fixed relative to interconnect structure for alignment of semiconductor die
US9524955B2 (en) Semiconductor device and method of forming no-flow underfill material around vertical interconnect structure
US9263361B2 (en) Semiconductor device having a vertical interconnect structure using stud bumps
US7741148B1 (en) Semiconductor device and method of forming an interconnect structure for 3-D devices using encapsulant for structural support
TWI567866B (en) Semiconductor device and method of forming an interconnect structure with tsv using encapsulant for structural support
US9184103B2 (en) Semiconductor device having embedded integrated passive devices electrically interconnected using conductive pillars
TWI531011B (en) Semiconductor device and method of forming tmv and tsv in wlcsp using same carrier
US9343396B2 (en) Semiconductor device and method of forming IPD in fan-out wafer level chip scale package
US9685495B2 (en) Semiconductor device and method of forming IPD on molded substrate
US9548347B2 (en) Semiconductor device and method of forming an inductor on polymer matrix composite substrate
TW201216390A (en) Semiconductor device and method of forming Fo-WLCSP having conductive layers and conductive vias separated by polymer layers
TWI524439B (en) Semiconductor device and method of forming vertical interconnect structure using stud bumps