TW201103243A - Resonant power converter - Google Patents

Resonant power converter Download PDF

Info

Publication number
TW201103243A
TW201103243A TW98122197A TW98122197A TW201103243A TW 201103243 A TW201103243 A TW 201103243A TW 98122197 A TW98122197 A TW 98122197A TW 98122197 A TW98122197 A TW 98122197A TW 201103243 A TW201103243 A TW 201103243A
Authority
TW
Taiwan
Prior art keywords
resonant
circuit
power converter
converter
voltage
Prior art date
Application number
TW98122197A
Other languages
Chinese (zh)
Inventor
Denis John Cody
Peter Alan Langford
Yalcin Haksoz
Original Assignee
Setec Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Setec Pty Ltd filed Critical Setec Pty Ltd
Priority to TW98122197A priority Critical patent/TW201103243A/en
Publication of TW201103243A publication Critical patent/TW201103243A/en

Links

Classifications

    • Y02B70/1433
    • Y02B70/1491

Abstract

A resonant power converter including synchronous rectifiers adapted to operate with an overlapping conduction phase and a fixed frequency.

Description

201103243 六、發明說明: 【發明所屬之技術領域】 本發明是關於一種用於直流(DC)電力的譜振電力轉換 器。 【先前技術】 諧振電力轉換器係運用於DC至DC電力轉換,因為該 等可展現低電力損失、減少電磁電流發射並且能夠進行变 電壓切換(ZVS)操作。然而現有的諧振電力轉換器在其電力 效率性方面,無論是對於高負載或低負載情況,仍有所侷 限,會展現出非所樂見的輸出電力特徵,同時需要昂責的 製造成本。 irj別 ’八貝執艰派轉損 益在70全負載下可具有高度的槽電流,且因此需要大型及 或昂貴的電子元件’當負載輕微時具有顯著的電性損失, 而在當無電性負載時則會在輸出二極體上產生高度的電壓 應1。一種並聯負載之電感器_電容器·電容器(lcc)譜振轉 換器具有經改良之效能,然通常會對於低電壓輸出而在其 輸出電谷^上產生-高電壓應力(因高輸出連波之故),這可 能需要進行相位偵測以防止低於諧振的 因輸一出二:體内的多重谐振之故而產生非所樂見的損失? -將藉振電力轉換器的效率應儘可能地高,而同時又 -將複雜度和昂責元件的使用度降至最低。 字又 據此’需要為解決上述課題,或者至少提供一種可用 201103243201103243 VI. Description of the Invention: [Technical Field] The present invention relates to a spectral power converter for direct current (DC) power. [Prior Art] Resonant power converters are used for DC to DC power conversion because they can exhibit low power loss, reduce electromagnetic current emissions, and enable variable voltage switching (ZVS) operation. However, existing resonant power converters have limitations in terms of their power efficiency, whether for high load or low load conditions, exhibiting undesired output power characteristics and requiring high manufacturing costs. Irj don't have a high slot current at 70 full load, and therefore require large and expensive electronic components 'have significant electrical losses when the load is light, and when there is no electrical load At this time, a high voltage should be generated on the output diode. A parallel-loaded inductor_capacitor-capacitor (lcc) spectral converter has improved performance, but typically produces a high-voltage stress on its output voltage for low-voltage output (due to high-output continuous wave) Therefore, this may require phase detection to prevent undesired losses due to multiple resonances in the body due to the loss of resonance. - The efficiency of the power converter should be as high as possible while at the same time - minimizing the complexity and use of the components. The word is based on this need to solve the above problems, or at least provide one available 201103243

V 的替代方案。 【發明内容】 根據本發明,茲提供一種諧振電力轉換器,其中含有 门步正益,而此整流益係經調適以運作於一重疊導電相 位0 本發明亦提供一種諧振電力轉換器,該轉換器運作於 一固定頻率處,其中包含: 一譜振電路,其中在一隔離單元的初級側上具有一在 該固定頻率下的諧振電壓;以及 一輪出電路,此者位在該隔離單元的次級側上而由該 隔離單元耦接至該諧振電路,該輸出電路含有在個別重疊 導電相位期間用以導電的切換器,並且用以在該轉換器之 一輸出處產生一 DC電壓。 本發明亦提供一種控制單元,此單元係用於一且有在 -固定頻率下運作之同步整流㈣諧振電力轉換器,、 包含: 八 一感測器電路, 進行感測;以及 此者可對該諧振電力轉換器内的電力 控制電路, 同步整流器, °亥等電路可根據所感測的電力以控制該等 其中 位。 該等同步整流器係經控 制以具有一重疊導電相 本發明亦提供一種操作 固定頻率諧振電力轉換器的方 201103243 法/玄轉換态具有輪出同步整流器,*中包含控制該等整 流器以運作於重疊導電相位。 【實施方式】 後文中將僅藉由範例 圖式 並參照於未依比例繪製之隨附 ,以說明本發明的多項較佳具體實施例。 一種按一固定頻率電感器·電容器(LC)諧振轉換器(或 FFLC」)1GG之形式的重疊導電相位電力轉換器,即 1所示者,含有一初級側1〇2,此者具有一可連接至一 是「 如圖 輸入電力供應(未予圖示)的譜振電路,以及一次級側咖, 此者具有—可連接至—電性負載(未予圖示)的輸出電路,而 該等初級及次級側則是由一電性變壓器1〇6所接合,並由 一控制單元1 〇 8加以控制。 該輸入供應可透過一電力因數校正(pFC)單元ιι〇連接 至該初級侧102以供校正該輸入電力供應的電力因數藉 以提供一按DC®流排之形式(Vbus)的加輸入供應。該 DC輸入供應可為藉由各種技術所導得,像是電力因數校正 (以該PFC單元110) ’或是利用一橋式整流器及電容濾波 器,或者直接地自一 DC電力來源以提供該Dc匯流排。 該FFLC 100在該初級側1〇2上利用由初級側m〇sfet (金氧半場效電晶體)F4、F5所產生的固定諧振頻率,心, 而該等MOSFET則是按此固定頻率fr所驅動。該等初級侧 FET(場效電晶體)F4、F5係跨於該DC匯流排所串接。該 等初級側FETF4、F5係由該控制單元1〇8利用一初級控制 201103243 變壓器112在該固定頻率fr下驅動,而該初級控制變壓器 的次級繞線係經連接於該等初級側FET F4、F5的閘極,即 如圖1所示者。該等初級側FET F4、F5在其輸出電路節點 Va處產生一固定頻率波形,即如一似方波或一似正弦波, 即如圖3A中以Va-波形所示者。在電路節點、處的諧振電 壓透過一諧振槽電路產生一諧振「槽」電流,即如圖3B中 以It-波形所示者’此槽電路含有一阻擋電容器cb、一諧振 電感器Lr及一諧振電容器cr ’而這些元件係經串接於該初 級侧FET F5的源極和汲極之間。 該控制電路108可為設置於該初級側或該次級側上(即 如圖1及4至8中所示者)。而該控制電路1〇8是藉由隔離 裝置(像是該變壓器112,即如圖1及4至8中所示者)以耗 接於另一側上。 該次級側104是由該變壓器1〇6而並聯於該諧振電容 器Cr,同時藉由次級側m〇SF]Bt FI、F2動態地控制該次級 側104的阻抗,並由該控制單元ι〇8以電性控制該等feT。 該等次級側MOSFET F 1、F2係於開啟及關閉狀態間切換, 即如圖3D及3E中所示者’故而可在四種狀態下循環,即 如圖2中所示者。該等次級側M〇SFET FI、F2分別地串接 於個別分接至正性和負性電壓之變壓器丨〇6的次級繞線。 多個二極體分別地並聯於該等次級側MOSFET F1、F2,而 它們的陽極則是連接至該等次級側MOSFET F卜F2的没極。 該諸振頻率fr是由該等諧振元件1^及Cr所設定。該控 制單元108可確保該轉換器具有50%的工作循環,並且是 201103243 在1¾於該「槽 雷 倌」電路的自然諧振頻率處 如圖3B所千沾y、,τ ^ η 藉此產生即 '' .似正弦槽電流it。該轉換薄後一 作藉以在該運作笳图μ去 換盗係尚於諧振而運 工作循環以利: 電壓切換’同時選定的 計時係經安排二=從而’該等初級側FETF4、F5的 該槽電路=L:f槽電路内的中央電… 決定該槽電、抵零時會進行切換,如此 電流It的頻率,即如圖3B中所示者。 該譜振電容器c是由續辨雷、 期性雷一。 槽電"t所充電以供產生-週An alternative to V. SUMMARY OF THE INVENTION In accordance with the present invention, a resonant power converter is provided that includes a gated gain that is adapted to operate in an overlapping conductive phase. The present invention also provides a resonant power converter that provides a resonant power converter. Operating at a fixed frequency, comprising: a spectral circuit, wherein a resonant voltage at the fixed frequency is on a primary side of an isolation unit; and a round-out circuit, the second of which is located in the isolation unit The leveling side is coupled to the resonant circuit by the isolation unit, the output circuit including a switch for conducting electricity during the respective overlapping conductive phases, and for generating a DC voltage at an output of the converter. The present invention also provides a control unit for a synchronous rectification (four) resonant power converter operating at a fixed frequency, comprising: an Bayi sensor circuit for sensing; and The power control circuit, the synchronous rectifier, the circuit, etc. within the resonant power converter can control the local bits according to the sensed power. The synchronous rectifiers are controlled to have an overlapping conductive phase. The invention also provides a method for operating a fixed frequency resonant power converter. The 201103243 method has a wheel-synchronous rectifier, and the control includes the rectifiers for operating in overlapping conduction. Phase. [Embodiment] A plurality of preferred embodiments of the present invention will be described by way of example only and with reference to the accompanying drawings. An overlapping conductive phase power converter in the form of a fixed frequency inductor/capacitor (LC) resonant converter (or FFLC) 1GG, as shown in FIG. 1, having a primary side 1〇2, which has a Connected to one is "a spectral circuit as shown in the input power supply (not shown), and a primary side party, which has an output circuit connectable to an electrical load (not shown), and The primary and secondary sides are joined by an electrical transformer 1〇6 and controlled by a control unit 1 〇 8. The input supply can be connected to the primary side via a power factor correction (pFC) unit ιι〇 102 for correcting the power factor of the input power supply to provide an input supply in the form of a DC® stream (Vbus). The DC input supply can be derived by various techniques, such as power factor correction ( The PFC unit 110) 'either utilizes a bridge rectifier and a capacitive filter, or directly from a DC power source to provide the DC bus. The FFLC 100 is utilized on the primary side 1〇2 by the primary side m〇sfet (Gold oxygen half-field effect crystal The fixed resonant frequency generated by F4 and F5, the core, and the MOSFETs are driven at the fixed frequency fr. The primary side FETs (field effect transistors) F4 and F5 are strung across the DC bus bar. The primary side FETs F4, F5 are driven by the control unit 1〇8 using a primary control 201103243 transformer 112 at the fixed frequency fr, and the secondary winding of the primary control transformer is connected to the primary side. The gates of FETs F4, F5, as shown in Figure 1. The primary side FETs F4, F5 produce a fixed frequency waveform at their output circuit node Va, i.e., like a square wave or a sine wave, ie Figure 3A shows the Va- waveform. The resonant voltage at the circuit node, through a resonant tank circuit, produces a resonant "slot" current, as shown by the It-waveform in Figure 3B. The blocking capacitor cb, a resonant inductor Lr and a resonant capacitor cr' are connected in series between the source and the drain of the primary side FET F5. The control circuit 108 can be disposed on the primary side or the secondary side (i.e., as shown in Figures 1 and 4-8). The control circuit 1 8 is consuming on the other side by means of an isolating device (such as the transformer 112, i.e. as shown in Figures 1 and 4 to 8). The secondary side 104 is connected in parallel to the resonant capacitor Cr by the transformer 1〇6, while the impedance of the secondary side 104 is dynamically controlled by the secondary side m〇SF]Bt FI, F2, and is controlled by the control unit 〇8 electrically controls these feTs. The secondary side MOSFETs F1, F2 are switched between the on and off states, i.e., as shown in Figs. 3D and 3E, so that they can be cycled in four states, i.e., as shown in FIG. The secondary side M 〇 SFETs FI, F2 are respectively connected in series to the secondary windings of the transformer 丨〇 6 which are individually tapped to the positive and negative voltages. A plurality of diodes are respectively connected in parallel to the secondary side MOSFETs F1, F2, and their anodes are connected to the terminals of the secondary side MOSFETs Fb and F2. The vibration frequencies fr are set by the resonant elements 1 and Cr. The control unit 108 can ensure that the converter has a 50% duty cycle, and is 201103243 at the natural resonant frequency of the "slot Thunder" circuit as shown in FIG. 3B, and τ^ η ''. Like sinusoidal slot current it. After the conversion thin film is used, the operation cycle is performed in order to facilitate the switching of the pirate system to the resonance cycle: the voltage switching 'the selected timing is arranged two = thus the slots of the primary side FETs F4, F5 Circuit = L: The central power in the f-slot circuit... The slot is determined to be switched when it is zero, so the frequency of the current It is as shown in Figure 3B. The spectral capacitor c is determined by the continuation of the thunder and the periodic Ray 1. Slot electricity "t is charged for generation - week

夺益電壓vc’即如圖3C中所-去 F1、μ总门 r所不者。该#次級側FET 電壓Λ:於該電容器電壓、而切換,使得當該電容器 。為料進行㈣;這稱為「零電壓切 同時可有利地讓該等次級側FET F1、F2 $ &右# t Μ + # η曰士, 1 ^^旎夠有效率地切換 且具有低度的電壓應力。 在該控制單元108之控制下的該等次級侧FET FI、F2 =一轉換器程序_中切換,該程序含有—重覆性的四 =式循環’即如圖2中所示者。在一第一模式下(步驟2〇2), Λ槽電"IL Ιι所驅動之諧振電容器電壓Vc觸抵零時會切 換開啟該FET F卜亦P〇 * ® 上 t即在圖3C令的點3〇2處。在該第一模 乂 FET F2亦為開啟,並因此這兩個次級側fet f工、 F2在其導電相位下為重疊;然而,當與在該等兩個次級側 FET FI、F2上之電壓成正比的諧振電容器電壓、等於零The gain voltage vc' is as shown in Fig. 3C - F1, μ total gate r. The # secondary side FET voltage Λ: at the capacitor voltage, is switched so that when the capacitor. For the material (4); this is called "zero voltage cut and can advantageously make the secondary side FET F1, F2 $ & right #t Μ + # η gentleman, 1 ^ ^ 旎 efficient switching and Low voltage stress. The secondary side FETs FI, F2 = a converter program _ under the control of the control unit 108, the program contains - a repetitive four = type loop 'that is shown in Figure 2 In the first mode (step 2〇2), the resonant capacitor voltage Vc driven by the 电 电 IL IL IL 会 会 会 会 会 会 会 会 会 会 会 会 会 FET FET FET FET FET FET FET That is, at point 3〇2 of Figure 3C. The first mode FET F2 is also turned on, and thus the two secondary sides fet f, F2 overlap in their conductive phase; however, when The resonant capacitor voltage proportional to the voltage across the two secondary side FETs FI, F2, equal to zero

寺如此》亥。白振電谷II Cr為「短路」,且因而該槽電流L 在此相位下為線性地增加。該f皆振電感器^的數值係經 k疋使得該槽電流it對於損失而為最小化。$ fflc i 〇〇 201103243 會維持在該第-模式下—段時 電路所設定,即如Tl具有整私疋由該控制 段長度。 1具有整體時&之〇%至聰間範圍的時 在-由該控制單元108所啟動並且後隨於該第 的第二模式下(步驟^ ϋΤΛ_ $ # ^ ,該贿F2被關,藉以跨㈣ ° r上能夠出現-電壓,並因而該諧振電容器電 塵vc是按-譜振方式所運作,亦即後隨一約似半波正弦, P圖3C中於,點3〇4與3〇6之間所示者。回應於該初級側 上的错振電容器電壓V。,該變壓器106跨於該等FETF1、 F2一上產生一次級側電壓,藉此產生一輸出電壓、£和一輸 出—極體負載電流Id ’即如圖3F中於點3〇8與㈣之間所 丁者(對應於vc的點304與3〇6)。此第二模式會維持下去, 直:該諧振電容器電壓vc因該槽電流It負性相位(亦即該槽 電流It在圖3B中於點處312與314間落降而低於零”斤進 仃的請振電容器Cr負性充電而回返到零為止。 _接在該第二模式之後,即由該控制.單A 1G8啟動—第 二模式(步驟2G6),其中該FETF2在點316再度地開啟(如 圖3D中所示並且對應於點鳩及31〇),且因而跨於該請振 電容器上的電壓再度地短路至零。該第三模式是類似於該 =杈式,除該諧振電容器是由按一相反方向流入的槽電 极It所充電以外。該第三模式會由該控制單元⑽維持一 勺似等於T的時段τ3 (即如於該整體時段的至肩。 之間)。 在該第三模式之後,該控制單元108即啟動一第四模 201103243 式(步驟208),其中該FET F2切換關閉而該FET F1維持開 啟。此第四模式類似於該第二模式,除該諧振電容器電壓The temple is so "Hai." The white vibrating valley II Cr is a "short circuit", and thus the cell current L increases linearly at this phase. The value of the f-vibration inductor ^ is k疋 such that the slot current it is minimized for losses. $ fflc i 〇〇 201103243 will remain in the first mode - the segment is set by the circuit, that is, if Tl has the entire private length of the control segment. 1 having the total time & % to the range between the Cong - is initiated by the control unit 108 and is followed by the second mode (step ^ ϋΤΛ _ $ # ^, the bribe F2 is closed, thereby A voltage can occur across (four) ° r, and thus the resonant capacitor vc is operated in a -spectral mode, that is, followed by a similar half-wave sine, P in Figure 3C, at points 3〇4 and 3. Between the 〇6. In response to the snubber capacitor voltage V on the primary side, the transformer 106 generates a primary side voltage across the FETs F1, F2, thereby generating an output voltage, £ and The output-pole load current Id' is the one between points 3〇8 and (4) in Figure 3F (corresponding to points 304 and 3〇6 of vc). This second mode will be maintained, straight: the resonance The capacitor voltage vc is negatively charged due to the negative phase of the tank current It (that is, the tank current It falls below zero at the point 312 and 314 in FIG. 3B). Zero. _ after the second mode, that is, by the control. Single A 1G8 - the second mode (step 2G6), wherein the FETF2 is at point 316 Turned on (as shown in Figure 3D and corresponding to point 〇 and 31 〇), and thus the voltage across the resonant capacitor is again shorted to zero. The third mode is similar to the = ,, except The resonant capacitor is charged by a slot electrode It flowing in an opposite direction. The third mode is maintained by the control unit (10) for a period τ3 which is equal to T (i.e., as to the shoulder of the overall period). After the third mode, the control unit 108 activates a fourth mode 201103243 (step 208), wherein the FET F2 switches off and the FET F1 remains on. This fourth mode is similar to the second mode. In addition to the resonant capacitor voltage

Vc為反轉以外’並因而該變壓器1 〇6的次級側會透過該fet F2 ’而非該FET F1,連接至該負載,藉此在與該第二模式 過程中所產生之負載電流^相同的方向上產生一第二負載 電流Id脈衝(圖3F未予圖示),亦即產生用於該負載的dc 電力。 在5玄第四模式之後’即由該控制單元108再度地啟動 該第一模式》 名FFLC 1 〇〇的輸出電流id是按如一系列的脈衝所產 生,該等脈衝會在該第二模式及該第四模式過程中出現, 並且正性脈衝的時段長度是透過該控制單元1〇8而藉由控 制該第二模式及該第四模式的時段長度所控制。對應於該 等第二及第四模式的輸出電流L電流脈衝是由一對應於該 等第-及第三模式之零負載電流的時段,亦即在該等次級 側FETF1、F2之重疊導電相位的過程,,所區隔。因此, :亥控制單元108可藉由控制該等第-、第二、第三及第四 模式之時段長度來控制該輸出電流的長期平均* ;此一長 期十均電壓控制方法是類似於藉由脈衝寬度調變(PWM)以 進行輸出電力控制者。Vc is outside the reversal' and thus the secondary side of the transformer 1 〇6 will be connected to the load through the fet F2' instead of the FET F1, thereby generating a load current during the second mode. A second load current Id pulse is generated in the same direction (not shown in Figure 3F), i.e., dc power is generated for the load. After the 5th fourth mode, that is, the first mode is activated by the control unit 108, the output current id of the name FFLC 1 是 is generated by a series of pulses, and the pulses are in the second mode and The fourth mode occurs during the process, and the length of the period of the positive pulse is controlled by the control unit 1〇8 by controlling the length of the second mode and the fourth mode. Output current L current pulses corresponding to the second and fourth modes are periods of zero load current corresponding to the first and third modes, that is, overlapping conduction between the secondary side FETs F1, F2 The process of phase, is divided. Therefore, the control unit 108 can control the long-term average of the output current by controlling the lengths of the periods of the first, second, third, and fourth modes; this long-term ten-average voltage control method is similar to borrowing Pulse width modulation (PWM) for output power control.

第—=制單TC— 1G8產生簡單的週期性控制信號以在該等 F 第一和第四模式之間循環運作該等次級側FET :二並:切換該等初級側咖,以產生用於該譜 θ」電路的週期性電屋信號。該控制單A刚自該 10 201103243 次級輸出節點114接收一輸出電壓信號(這代表輸出電壓 Vout)。該控制單元1〇8可利用—電流變壓器TCIA_B藉由感 測經過Cr的電流,即如圖7中所示者,或是利用一電壓感 測電路802及一電子放大器/濾波器電路8〇4藉由感测跨於 該等次級側FET F2、F1上的電壓,即如圖8中所示者,以 接收一諧振電壓信號(這代表該槽電流It)。該電壓感測電路 802在各個次級侧FET F2、F丨上含有一諧振箝位(ciampi% ) 電容器,以及一將各個次級側FET F丨、F2之一終端連接至 該放大器/濾波器電路804的電阻器。該諧振電壓信號是由 該控制單元108所使用以預測該等次級側FET F1、F2的零 電壓切換(ZVS)時間。 在該第二模式的過程中,經儲存在一次級繞線溢漏「雜 散」電感内之任何過度能量都會透過箝位電路4〇2而路由 傳送至該FFLC 100的輸出’即如圖4中所示者。該箝位電 路402含有箝位二極體m、D2及一箝位m〇sfetf3 (此者 可為P或N通道)’並且提供一「主動箝位」:經儲存在該 雜散電感内的能量會就在該等次級側FET f丨、F2為關閉之 刖’亦V就在該第—模 < 結束之前並且就在該第三模式結 束之前,先藉由開啟該箝位FETF3而獲箝位至該輸出處, 如此防止在關閉相對應之次級側FET,亦即fi或f2,時其 内的屯壓暫癌。④主動箝位持可供較低電$ 元件能夠 運用於該等次級侧FETF1、F2,這些的損失會比較少,並 且獲致較小料電損失4另者,任何經儲存在該次級繞 線溢漏「雜散」電感内之過度能量皆可為由-如圖5中所 201103243 示的諧振箝位電路所控制。此電路含有額外的箝位電容器 502A、502B,該等係跨於該等次級側FET F 1、μ各者上° 配置’並且構成整體諧振電容Cr的一部份。 在重疊導電相位期間’亦即在該第一模式及該第三模 式的過程中’該諧振槽電流It在該等第一、第二、第:、 第四模式的過程中僅為該FFLC 100之整體輸出電流的 小百分比。如此可在該FFLC丨00内有利地提供高度的電力 效率性。 該控制單元108含有一數位信號處理器,此者係經預 先設計以控制該FFLC 100。用於該等初級和次級側 F4、F5、FI、F2的調變命令是由該控制單元1〇8根據經儲 存在該DSP上的數位控制程式所產生。該數位控制程式可 供電子元件數值之略微變異性的電路校準,即如可供以進 行一致性的FFLC 100操作,而無論元件數值,像是諧振電 感器Lr及諧振電阻器rc,距於經選定之所欲數值的略微變 異性為如何皆然。 當該FFLC 100是按該固定,或所設定,的頻率g運作 時,§亥等包含諧振電感器Lr及該諧振電容器g在内的磁性 元件僅需要由實體裝置提供,而該等實體裝置可為最佳化 以在該特定頻率fr處運作,並因此可比起對較為廣泛之操 作頻率範圍所最佳化的元件更加強固及/或較為價廉。該特 疋操作頻率係根據該FFLC 1 00的最終應用項目以及整體 電力系統環境所選定。一般說來,該諧振頻率是在 至700kHz的範圍内所最佳化。該諧振頻率fr可為提高至一 12 201103243 該變壓器106之溢漏電感能夠取代該系列諧振電感器Lr的 頻率處;此一高頻FFLC 100係經納入在先進磁性最佳化封 裝内。在這種情況下’該頻率通常是在1 MHz至2MHz的範 圍内所最佳化。 6玄FFLC 100内的譜振轉換提供多項優點’包含零電壓 切換(zvs)在内,這可獲致低度的產生電磁干擾(EMI),並 因而較簡易地達到電磁相容性(EMC)要求,可供進行高頻操 作,而同時精簡的磁性設計且連同高度電力效率性以及高 電力密度。 該FFLC 100可運用於具有位在5〇瓦至5千瓦之電力 範圍要求的應用項目。 該FFLC 100可為由該控制單元1〇8控制以在一「突波 (bum)」模式下運作,藉此當電性負載微小時,亦即當負載 汲取低量電流時’能夠減少該FFLC1GG内的電力損失。該 控制單S108在該「突波」模式下控制初級側FETF4、F5, 其中在該初級價"02上的脈衝根據輸出電力而落降,從而 漏失如圖3所示之波形中的循璟 町倨衣並且按一較高效率性產 生較低的輸出電力。此「突玻 犬波」杈式,或其他脈衝薄化技 術,可對於電性負載中的低電流 作。 ·^戰徒供較兩效率性的操 成哥二又縱側 在一替#古·+、、 ’、 ~中央分接組態所排置 排置,即如圖9中所示。 了為按-全橋組態鼠 該FFLC 1〇〇具有一並聯負裁次 級谢,亦即該次級侧色 201103243 輸出電路負載係並聯於該諧振電容器cr。在一替代性fflc 裡’該次級側可為串聯於該諧振槽電路所負載,亦即該變 壓器106為串接於該等諳振元件Lr及cf。 該FFLC 1 〇〇内的元件能夠承受低電壓應力。該次級二 極體電流Id並無多重諧振。該次級二極體電流Id因該電感 輸出,亦即由該輸出電感器L〇ut所提供,而為低度。該主 動箝位電路可對高電流尖峰加以限制。在輕度或無負載時 該初級側槽電流為完全負載者的80%,而如此可比起用於 此一負載條件的傳統電路獲致較低的電力損失。 該電容性元件「C〇ut」係用於「整體」輸出電容,並且 對於回饋迴圈穩定性和漣波電壓降減而言確為必要。 相較於非固定頻率電力轉換器來說,這會需要一較小 的電感器’即如該電感器大小可為具有一非固定,或可變、 諧振頻率之並聯負載可變頻率電力轉換器的Μ%。 該重疊導電相位,亦即在該第一模式以及該第三模式 下,可容允出現有微小的計時誤差,即如閃動等等而不 致大幅地改動輸出二極體電流Id的特徵。 該等次級側同步整流器F1及F2的交跨導電, 1〇〇之輸出電力進行連續可The first == TC-1G8 generates a simple periodic control signal to cyclically operate the secondary side FETs between the F first and fourth modes: two: switching the primary side coffee to generate The periodic electricity house signal of the spectrum θ" circuit. The control unit A has just received an output voltage signal from the 10 201103243 secondary output node 114 (this represents the output voltage Vout). The control unit 〇8 can utilize the current transformer TCIA_B to sense the current through the Cr, that is, as shown in FIG. 7, or utilize a voltage sensing circuit 802 and an electronic amplifier/filter circuit 8〇4. The resonant voltage signal (which represents the tank current It) is sensed by sensing the voltage across the secondary side FETs F2, F1, as shown in FIG. The voltage sensing circuit 802 includes a resonant clamp (ciampi%) capacitor on each of the secondary side FETs F2, F2, and a terminal of each of the secondary side FETs F?, F2 is connected to the amplifier/filter The resistor of circuit 804. The resonant voltage signal is used by the control unit 108 to predict the zero voltage switching (ZVS) time of the secondary side FETs F1, F2. During the second mode, any excess energy stored in a secondary winding overflow "stray" inductance is routed through the clamping circuit 4〇2 to the output of the FFLC 100. Shown in it. The clamping circuit 402 includes clamped diodes m, D2 and a clamp m〇sfetf3 (which may be a P or N channel)' and provides an "active clamp": stored in the stray inductance The energy will be on the secondary side FETs f 丨, F2 is off 亦 'also V before the end of the modulo < and just before the end of the third mode, first by turning on the clamp FETF3 Clamping to the output, thus preventing the collapse of the corresponding secondary side FET, i.e., fi or f2, temporarily. 4 active clamp holding for lower electricity $ components can be applied to the secondary side FETF1, F2, these losses will be less, and resulting in less material loss 4 other, any stored in the secondary winding Excessive energy in the line-sink "stray" inductance can be controlled by a resonant clamp circuit as shown in Figure 10, 201103243. This circuit contains additional clamp capacitors 502A, 502B that span the configuration of each of the secondary side FETs F1, μ and form part of the overall resonant capacitor Cr. During the overlapping conductive phase 'that is, during the first mode and the third mode', the resonant tank current It is only the FFLC 100 during the first, second, fourth, and fourth modes. A small percentage of the overall output current. This advantageously provides a high degree of power efficiency within the FFLC 丨00. The control unit 108 includes a digital signal processor that is pre-designed to control the FFLC 100. The modulation commands for the primary and secondary sides F4, F5, FI, F2 are generated by the control unit 〇8 based on a digital control program stored on the DSP. The digital control program provides circuit calibration for slight variability in the value of electronic components, such as FFLC 100 operation for consistency, regardless of component values, such as resonant inductor Lr and resonant resistor rc. The slight variability of the chosen value is how it is. When the FFLC 100 is operated at the fixed or set frequency g, the magnetic elements including the resonant inductor Lr and the resonant capacitor g need only be provided by a physical device, and the physical devices can be Optimized to operate at this particular frequency fr, and thus more robust and/or less expensive than components optimized for a wider range of operating frequencies. The operating frequency is selected based on the final application of the FFLC 100 and the overall power system environment. In general, the resonant frequency is optimized over a range of up to 700 kHz. The resonant frequency fr can be increased to a 12 201103243. The leakage inductance of the transformer 106 can replace the frequency of the series of resonant inductors Lr; this high frequency FFLC 100 is incorporated into an advanced magnetically optimized package. In this case 'this frequency is usually optimized from 1 MHz to 2 MHz. The spectral conversion in the 6 FFLC 100 offers several advantages, including zero voltage switching (zvs), which results in low levels of electromagnetic interference (EMI) and thus easy electromagnetic compatibility (EMC) requirements. For high frequency operation, while at the same time streamlined magnetic design combined with high power efficiency and high power density. The FFLC 100 can be used in applications with power requirements ranging from 5 watts to 5 kW. The FFLC 100 can be controlled by the control unit 1 8 to operate in a "bum" mode, whereby the FFLC1GG can be reduced when the electrical load is small, that is, when the load draws a low amount of current. Power loss within. The control unit S108 controls the primary side FETs F4, F5 in the "surge" mode, wherein the pulse at the primary price "02 falls according to the output power, thereby missing the loop in the waveform shown in FIG. The town has a lower output and produces a lower output power. This "sudden dog wave" type, or other pulse thinning technique, can be used for low currents in electrical loads. · ^ 战者 for the more efficient operation of the brother and the vertical side in a replacement of the #古·+,, ’, ~ central distribution configuration, as shown in Figure 9. The mouse is configured for the press-full bridge. The FFLC 1〇〇 has a parallel negative cut, that is, the secondary side color 201103243 output circuit load is connected in parallel to the resonant capacitor cr. In an alternative fflc, the secondary side can be loaded in series with the resonant tank circuit, i.e., the transformer 106 is coupled in series with the resonant elements Lr and cf. The components in the FFLC 1 can withstand low voltage stresses. The secondary diode current Id has no multiple resonances. The secondary diode current Id is output by the inductor, that is, provided by the output inductor L〇ut, and is low. This active clamp circuit limits high current spikes. The primary side tank current is 80% of full load with little or no load, and this results in lower power losses than conventional circuits used for this load condition. The capacitive component "C〇ut" is used for the "overall" output capacitor and is necessary for feedback loop stability and chopping voltage reduction. This would require a smaller inductor than a non-fixed-frequency power converter—that is, the inductor can be a parallel-load variable-frequency power converter with a non-fixed, or variable, resonant frequency. Μ%. The overlapping conductive phase, i.e., in the first mode and the third mode, can accommodate a slight timing error, i.e., flashing, etc., without significantly altering the characteristics of the output diode current Id. The intersections of the secondary side synchronous rectifiers F1 and F2 are electrically conductive, and the output power of one turn is continuous.

導電相位亦可供以對該FFLc 1 〇〇之輸出 且彈性的控制。各個循環( 分比’其中存在有對其的重疊導電相位, 第二模式的總和,可在約〇%至約4〇0/〇之R 來自該FFLC 100的輸出電力。然若需要 控制’則該重疊可一直延展至1 〇〇0/〇。 201103243 熟諳本項技藝之人士將能 ,^ 夕項修改,而不致桂Μ 如本文中參照於隨附圖式所敘述的本發明範圍。障離 【圖式簡單說明】 圖1係-重疊導電相位電力轉換器的電路圖; 圖2係一由該重疊導電相位電力轉換器所執行之切拖 程序的流程圖; 換 圖3係-在該重疊導電相位電力轉換器裡於時 電壓及電流波形圖表; 圖4係一含有一主動箝位之轉換器的電路圖; 圖5係一含有一諧振箝位電路之轉換器的電路圖; 圖6係一具有整流器而按一全橋組態之轉換器的電路 圖; 圖7係一具有一感測該槽電流之電流變壓器的轉換器 之電路圖; 圖8係一在該次級側上具有一電壓感測電路以供感測 該槽電流之轉換器的電路圖;以及 圖9係一具有同步整流器而按一全橋組態之轉換器的 電路圖^ 【主要元件符號說明】 100 固定頻率電感器-電容器(LC)諧振轉換器(FFLC) 102 初級側 104 次級側 15 201103243 106 變壓器 108 控制電路 110 電力因數校正(PFC)單元 112 初級控制變壓器 114 次級輸出節點 200 轉換器處理程序流程圖 202〜206 轉換器處理程序的多項步驟 302〜316 點 402 箝位電路 502A ' 502B 箝位電容器 800 全橋組態 802 電壓感測電路 804 放大器/濾波器電路 cb 阻擋電容器 C〇Ut 輸出電容器 cr 諧振電容器 D1、D2 箱·位二極體The conductive phase is also available for control of the output and flexibility of the FFLc 1 。. Each cycle (the ratio 'in which there is an overlapping conductive phase to it, the sum of the second mode, can be from about 〇% to about 4〇0/〇R from the output power of the FFLC 100. If control is needed' then The overlap can be extended to 1 〇〇 0 / 〇. 201103243 Those skilled in the art will be able to modify the present invention without the use of the present invention as described herein with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of an overlapping conductive phase power converter; FIG. 2 is a flow chart of a cutting program executed by the overlapping conductive phase power converter; Figure 4 is a circuit diagram of a converter with an active clamp; Figure 5 is a circuit diagram of a converter with a resonant clamp circuit; Figure 6 is a circuit diagram with a rectifier Figure 7 is a circuit diagram of a converter having a full-bridge configuration; Figure 7 is a circuit diagram of a converter having a current transformer for sensing the current of the slot; Figure 8 is a circuit having a voltage sensing circuit on the secondary side For sensing the slot Circuit diagram of the current converter; and Figure 9 is a circuit diagram of a converter with a synchronous rectifier and a full bridge configuration. [Main component symbol description] 100 Fixed frequency inductor-capacitor (LC) resonant converter (FFLC) 102 Primary side 104 Secondary side 15 201103243 106 Transformer 108 Control circuit 110 Power factor correction (PFC) unit 112 Primary control transformer 114 Secondary output node 200 Converter processing program flow chart 202~206 Multiple steps 302~ of converter processing program 316 point 402 clamp circuit 502A ' 502B clamp capacitor 800 full bridge configuration 802 voltage sensing circuit 804 amplifier / filter circuit cb blocking capacitor C 〇 Ut output capacitor cr resonant capacitor D1, D2 box · bit diode

Id 負載電流Id load current

It 槽電流 L〇ut 輸出電感器 L r 諸振電感器 TCIA、TCIB 電流變壓器 va 中央電壓 ^ bus DC匯流排的DC輸入供應 16 201103243It Slot current L〇ut Output inductor L r Vibration inductor TCIA, TCIB Current transformer va Central voltage ^ Bus DC bus supply DC input 16 201103243

Vc 電容器電壓 V〇ut 輸出電壓 FI、F2 次級側FET F3 箝位FET F4、F5 初級側F E T 17Vc capacitor voltage V〇ut output voltage FI, F2 secondary side FET F3 clamp FET F4, F5 primary side F E T 17

Claims (1)

201103243 七、申請專利範圍: 1.—種諧振電力轉換器,該轉換器運作於一固定頻率 處,其中包含: 一譜振電路,其中在-隔離單元的初級側上具有一在 該固定頻率下的諧振電壓;以及 3 :輸出電路’此者位在該隔離單元的次級側上而由該 隔離單疋耗接至該證振電路,該輸出電路含有在個別重疊 導電相位期間用以導電的切換器,並且用以在該轉換器: 一輸出處產生一 DC電壓。 2·如申請專利範圍第i項所述之譜振電力轉換器,立中 切換該等切換器係同步於該諧振電壓,並且在當跨於該等 切換器上之一電壓大致為零時進行切換。 3·如申請專利範圍第!項所述之譜振電力轉換器,其中 包合一用於控制該等切換器的控制單元。 ,4如Λ w專利範圍第3項所述之譜振電力轉換器,其中 早疋係在3“離早兀的次級側上,並且藉由 隔離裝置以耦接於該初級側。 二 5·如申請專利範圍第3項所述之諧振 該控制單元係在該 ^ 隔鮮番减側上,並謂由一控制 隔離裝置以耦接於該次級側。 專利範圍第4或5項所述之諧振電力轉換器, 〃中.該控制隔離裝置係一控制變壓器。 7·如申請專利範圍第3至6項任 換器,其中哕捡在丨从 $叮砍之》白振電力轉 "1早凡接收一表示該轉換器之輸出電壓的 18 201103243 輸出電壓信號,藉以調整該等導電相位的重疊性。 8.如申請專利範圍第3至7項任一項所述:諧振電力轉 換器,其令該控制單元接收-表示該諸振電㈣諸振電虔 信號,藉以同步於該諧振電壓來控制該等切換器。 9.如申請專利範圍帛8項戶斤述之諧振電力轉換考,其中 該控制單元藉由感測在該譜振電路内的電流以接收該證振 電壓信號。 1〇·如申請專利範圍第9項所述之諧振電力轉換器,皇 = 此者係經串接於該諧振電路 該電流。 ^如中請專利範圍第8項所述之㈣電力轉換器,其 中:二電塵感測器,此者係用於藉由感測跨於該等切換 .上的電壓以將該譜振„信號發送至該控制單元。 _ °月。專利範圍第11項所述之諧振電力轉換器,其 中邊電壓感測器包含用於每 、 一放大ΙΙΛ慮波器。母刀換裔的一電麼感測電路及 如申請專利範圍第3至 轉換器,其項所述之4振電力 該轉換器。 j早…-數位信號處理器以供控制 14.如申請專利範圍第U 13項任 韓換努,立項所述之S白振電力 二由出電路係並聯於該譜振電路。 .如“專利範圍第U 13項 轉換器,其中該輪屮 項所述之5自振電力 由心*出電路係串接於該諧振電路。 1 6.如申s月專利鈴 第丨至15項任一項所述之諧振電力 19 201103243 轉換器,其中該等切換器係按一中央分接組態所排置。 17·如申請專利範圍第丨至15項 一 $任項所述之諧振電力 轉換器,其中該等切換器係按—全橋組態所排置。 18·如申請專㈣_述各項任—項所述之諧振電力轉 換器,其中該諧振電路包含—諧振電感器及—諧振電容号。 19·如申請專利職第18項所述之错振電力轉換器,其 中該諧振電感器及諧振電容器為並聯。 2〇.如申請專利範圍第18項所述之譜振電力轉換器,其 中该諧振電感器及諧振電容器為串接。 21.如申請專利範圍第μ至2〇瑁 U項任一項所述之諧振電 力轉換益,其中該譜振雷咸 白撖虿砍态疋由該隔離單元的溢 所提供。 4 .如申β專利fc圍刖述各項任—項所述之諧振電力轉 換器,其中該諧振電路包含—阻擋電容器。 23·如申請專利範圍前述各項任一項所述之請振電力轉 換器,其中包含-箝位電路,此者係用於將該隔離單元之 次級側的一雜散電威内 α内之所存肊量放電至該轉換器的輪 出。 24.如申請專利範圍第23項所述之猎振電力轉換器,复 中該箝位電路係一 Φ叙饬a 、 f主動柑位,此者含有多個箝位二極體, 各者係透過一箝位切拖51 |V、由 刀換器以連接至各個切換器的一終端;5 該輸出。 、%及 25.如申請專利錢第23項所述之諧振電力轉換器发 中該箝位電路係一姑叙诰a ^ 被動柑位,此者含有一跨於各個切換器 20 201103243 的箝位電容器。 /6.如以專利範圍前述各項任1所述之職 換益,其中該等切換器含有與二極體並聯的可切 27.如申請專利範圍前述各項任—項所述之魏電力轉 換二Γ該隔離單元係一變壓器,而在該初級侧上有-初級,,堯線並且在該次級側上有-次級繞線。 換二::專利範圍前述各項任—項所述之諧振電力轉 、:、"4導電相位重疊該諧振頻率之各時段的零到 百分之四十。 令到 29·如申請專利範圍前过 】述各項任-項所述之諧振電力轉 換态,/、中該DC輸出為可變。 30.種4振電力轉換,其中含有同步整流器,該等係 經調適以運作於—重疊導電相位及1定頻率。 、 31·-種控制單元’此單㈣、用於—具有在—固定頻率 下運作之同步整流器的諧振電力 、"-感測器電路,此者可對該譜一=的電力 進行感測;以及 控制電路’言玄等電路可根據所感測的電力以控制該等 同v正机窃’其中該等同步整流器係經控制以具有一重疊 導電相位。 32.—種操作固定頻率諧振電力轉換器的方法,該轉換 器具有輸出同步整流器’其中包含控制該等整流器以運作 於重疊導電相位。 21201103243 VII. Patent application scope: 1. A resonant power converter, the converter operates at a fixed frequency, comprising: a spectral oscillator circuit, wherein the primary side of the isolation unit has a fixed frequency Resonant voltage; and 3: an output circuit 'which is located on the secondary side of the isolation unit and is consumed by the isolation unit to the snubber circuit, the output circuit containing conductive during the individual overlapping conductive phases a switch and for generating a DC voltage at an output of the converter. 2. The spectral power converter of claim i, wherein switching the switches is synchronized to the resonant voltage and when the voltage across one of the switches is substantially zero Switch. 3. If you apply for a patent scope! The spectral power converter of the item, comprising a control unit for controlling the switches. 4. The spectral power converter of claim 3, wherein the early twist is on the secondary side of the early turn and is coupled to the primary side by an isolation device. The resonance unit as described in claim 3 of the patent application is attached to the secondary side, and is controlled by a control isolation device to be coupled to the secondary side. Patent No. 4 or 5 Representing the resonant power converter, 〃中. The control isolating device is a control transformer. 7·If you apply for the scope of the patent range 3 to 6, the 哕捡 哕捡 丨 叮 》 》 》 》 》 》 》 》 》 》 》 1) Receive an 18 201103243 output voltage signal indicating the output voltage of the converter to adjust the overlap of the conductive phases. 8. As described in any of claims 3 to 7: resonant power conversion And causing the control unit to receive-representing the vibrating (four) vibrating signals, thereby controlling the switches in synchronization with the resonant voltage. 9. Resolving the resonant power conversion according to the patent application scope Test, wherein the control unit is sensed in the spectrum The current in the oscillating circuit is received to receive the stimuli voltage signal. 1 〇 · The resonant power converter according to claim 9 of the patent application, the emperor = the current is connected in series to the resonant circuit. The power converter of claim 4, wherein: the second dust sensor is configured to transmit the spectrum signal to the signal by sensing a voltage across the switches. control unit. _ ° month. The resonant power converter of claim 11 wherein the middle side voltage sensor comprises a booster filter for each. The sensor circuit of the mother knife is replaced by a sensor circuit and the converter of the third embodiment of the invention, as described in the fourth section of the converter. j early...-digital signal processor for control 14. For example, the U-term of the U.S. patent application scope, the white-magnet power of the project is connected in parallel with the spectroscopic circuit. For example, the patent range U 13 converter, wherein the 5 self-vibrating power described in the rim item is connected in series to the resonant circuit by the heart*. The circuit is as follows: A resonant power 19 201103243 converter according to any of the preceding claims, wherein the switches are arranged in a central tap configuration. 17· Resonance as described in the scope of claims -15 to 15 A power converter, wherein the switches are arranged in a full-bridge configuration. 18) The resonant power converter of the invention, wherein the resonant circuit comprises a resonant inductor And - the resonant capacitor number. 19. The damper power converter according to claim 18, wherein the resonant inductor and the resonant capacitor are connected in parallel. 2〇. The spectral vibration described in claim 18 A power converter, wherein the resonant inductor and the resonant capacitor are connected in series. 21. The resonant power conversion benefit according to any one of claims 1 to 2, wherein the spectral stimuli The cut state is provided by the overflow of the isolation unit. The resonant power converter of any of the above-mentioned items, wherein the resonant circuit comprises a blocking capacitor. The magnetic power converter according to any one of the preceding claims, The method includes a clamp circuit for discharging the stored amount in a stray electric current α of the secondary side of the isolation unit to the round of the converter. 24. The hunting vibration power converter described in the item, the clamp circuit is a Φ 饬 a, f active citrus position, which contains a plurality of clamp diodes, each of which is cut by a clamp 51 | V, a terminal connected to each switch by a knife changer; 5 the output. %, and 25. The resonant power converter according to claim 23, wherein the clamp circuit is a nucleus a ^ Passive citrus, which contains a clamp capacitor across each switch 20 201103243. /6. For the benefit of the above mentioned in the patent range, the switches contain two poles The parallel connection of the body can be cut as described in the above-mentioned items. The Wei power conversion is the transformer, and on the primary side there is - primary, 尧 line and there is - secondary winding on the secondary side. Change 2: Patent scope - The resonant power transfer, -, "4 conductive phase overlaps the period of the resonant frequency from zero to forty percent. 至29· As before the patent application scope] In the resonant power conversion state, the DC output is variable. 30. A four-vibration power conversion, which includes a synchronous rectifier, which is adapted to operate in an overlapping conductive phase and a fixed frequency. a control unit 'this single (four), for - a resonant power with a synchronous rectifier operating at a fixed frequency, "-sensor circuit, which can sense the power of the spectrum ==; and control A circuit such as a circuit can control the equivalent v-stolen according to the sensed power, wherein the synchronous rectifiers are controlled to have an overlapping conductive phase. 32. A method of operating a fixed frequency resonant power converter having an output synchronous rectifier' comprising controlling the rectifiers to operate in an overlapping conductive phase. twenty one
TW98122197A 2009-07-01 2009-07-01 Resonant power converter TW201103243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98122197A TW201103243A (en) 2009-07-01 2009-07-01 Resonant power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98122197A TW201103243A (en) 2009-07-01 2009-07-01 Resonant power converter

Publications (1)

Publication Number Publication Date
TW201103243A true TW201103243A (en) 2011-01-16

Family

ID=44837799

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98122197A TW201103243A (en) 2009-07-01 2009-07-01 Resonant power converter

Country Status (1)

Country Link
TW (1) TW201103243A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107276413A (en) * 2013-02-26 2017-10-20 通嘉科技股份有限公司 The controller of the power supply changeover device of adjustable jitter amplitude and its method for correlation
CN109937612A (en) * 2016-11-11 2019-06-25 赤多尼科两合股份有限公司 For operating flyback converter, associated method and the operating device of one or more lighting apparatus
TWI806352B (en) * 2022-01-11 2023-06-21 盛群半導體股份有限公司 Full-bridge inverter phase detection circuit
TWI815719B (en) * 2022-01-04 2023-09-11 立錡科技股份有限公司 Synchronous full-bridge rectifier circuit and rectifier switch controller thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107276413A (en) * 2013-02-26 2017-10-20 通嘉科技股份有限公司 The controller of the power supply changeover device of adjustable jitter amplitude and its method for correlation
CN107276413B (en) * 2013-02-26 2019-10-18 通嘉科技股份有限公司 The controller of the power adapter of adjustable jitter amplitude and its relevant method
CN109937612A (en) * 2016-11-11 2019-06-25 赤多尼科两合股份有限公司 For operating flyback converter, associated method and the operating device of one or more lighting apparatus
CN109937612B (en) * 2016-11-11 2021-10-22 赤多尼科两合股份有限公司 Flyback converter for operating one or more lighting appliances, associated method and operating device
TWI815719B (en) * 2022-01-04 2023-09-11 立錡科技股份有限公司 Synchronous full-bridge rectifier circuit and rectifier switch controller thereof
TWI806352B (en) * 2022-01-11 2023-06-21 盛群半導體股份有限公司 Full-bridge inverter phase detection circuit

Similar Documents

Publication Publication Date Title
Lei et al. Nonisolated high step-up soft-switching DC–DC converter with interleaving and Dickson switched-capacitor techniques
US9660520B2 (en) Method and apparatus to provide power conversion with high power factor
US10008858B2 (en) Solar photovoltaic power conditioning units
TWI393337B (en) Two stage switching power conversion circuit
EP2779393B1 (en) Bridgeless interleaved power factor correction circuit using a PFC inductor with quad-winding on a single core
US8102678B2 (en) High power factor isolated buck-type power factor correction converter
Gui et al. A high voltage-gain LLC micro-converter with high efficiency in wide input range for PV applications
Kim et al. Analysis and design of a multioutput converter using asymmetrical PWM half-bridge flyback converter employing a parallel–series transformer
JP2011526478A (en) Resonant power converter
US20070064451A1 (en) Series resonant DC-DC converter
US20120044722A1 (en) Isolated switching converter
Kasper et al. PV panel-integrated high step-up high efficiency isolated GaN DC-DC boost converter
CN109478852A (en) Multiphase LLC converter in parallel and serial
TWI481181B (en) Dc to ac power conversion apparatus and method thereof
JPWO2009011091A1 (en) Switching power supply
KR102009351B1 (en) High Efficiency LLC Resonant Converter with Balanced Secondary Currents using the Two Transformer Structure
TW201103243A (en) Resonant power converter
RU2379743C1 (en) Power factor corrector
KR100966966B1 (en) Dc/dc converter with multi-output
Huang et al. Application of piezoelectric-transformer-based resonant circuits for AC LED lighting-driven systems with frequency-tracking techniques
WO2014030104A1 (en) Rectifying circuit and method for an unbalanced two phase dc grid
JP6393962B2 (en) Switching power supply
TWI586092B (en) Single-stage ac-to-dc converter
JP7389642B2 (en) switching power supply
Lin et al. Analysis and implementation of a zero‐voltage switching asymmetric pulse‐width modulation converter for high load current application