TWI481181B - Dc to ac power conversion apparatus and method thereof - Google Patents
Dc to ac power conversion apparatus and method thereof Download PDFInfo
- Publication number
- TWI481181B TWI481181B TW101150917A TW101150917A TWI481181B TW I481181 B TWI481181 B TW I481181B TW 101150917 A TW101150917 A TW 101150917A TW 101150917 A TW101150917 A TW 101150917A TW I481181 B TWI481181 B TW I481181B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- switching
- power conversion
- voltage
- switching signal
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/4807—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having a high frequency intermediate AC stage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
- H02M1/0058—Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/0077—Plural converter units whose outputs are connected in series
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33592—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/4815—Resonant converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/497—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode sinusoidal output voltages being obtained by combination of several voltages being out of phase
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Description
本揭露係關於一種電力轉換裝置之技術領域,特別是有關於一種直流轉交流電力轉換裝置及方法。The present disclosure relates to the technical field of a power conversion device, and more particularly to a DC-to-AC power conversion device and method.
傳統的直流轉交流電力轉換器會先將直流電源(DC source)經過一組直流對直流轉換器(DC/DC converter)轉換及調節後,再由橋式開關所組成之直流轉交流逆變器(DC/AC inverter)產生正負交替之交流電源,最後由電感電容濾波器(LC filter)濾除該交流電源之高頻訊號後輸出。The traditional DC-to-AC power converter converts and regulates the DC source through a set of DC/DC converters, and then converts the DC-to-DC converter into a DC-to-AC inverter. (DC/AC inverter) generates positive and negative alternating AC power, and finally filters the high frequency signal of the AC power supply by LC filter to output.
換言之,傳統的直流轉交流電力轉換器在輸出該交流電源之濾波前,需再經過一組橋式開關所組成之直流轉交流逆變器,以產生正負交替之交流電源。該橋式開關通常為複數個開關元件,對於該直流轉交流電力轉換器之成本無疑是一大負擔。再者,該橋式開關在切換及導通時皆成造成能量的損耗,將會影響該直流轉交流電力轉換器之轉換效率。同時,為使該橋式開關正常運作,需再增加控制器及驅動電路,使得控制電路之複雜度大為增加,以致提高電路設計之困難度。In other words, the conventional DC-to-AC power converter needs to pass through a group of bridge switches to form a DC-to-AC inverter to generate positive and negative alternating AC power before filtering the AC power. The bridge switch is usually a plurality of switching elements, which is a great burden for the cost of the DC-to-AC power converter. Moreover, the bridge switch causes energy loss during switching and conduction, which will affect the conversion efficiency of the DC-to-AC power converter. At the same time, in order to make the bridge switch operate normally, the controller and the driving circuit need to be added, so that the complexity of the control circuit is greatly increased, so that the difficulty of circuit design is improved.
因此,如何解決上述習知技術的缺失,以提高直流轉交流電力轉換器之轉換效率,並降低電路設計之複雜度,遂成為本領域技術人員的重要課題。Therefore, how to solve the above-mentioned lack of the prior art to improve the conversion efficiency of the DC-to-AC power converter and reduce the complexity of the circuit design has become an important issue for those skilled in the art.
本揭露係提供一種直流轉交流電力轉換裝置及其方法,藉由電力轉換模組之一次側為零電壓及二次側為零電流之開關動作,同時利用開關控制策略控制各個開關元件之導通、截止或高頻切換,以減少各個開關元件之開關損耗,並降低開關動作所造成之電磁干擾,進而提高該直流轉交流電力轉換裝置之轉換效率。The present disclosure provides a DC-to-AC power conversion device and a method thereof, wherein a switching operation is used to control the conduction of each switching element by using a switching control strategy to control the zero-voltage of the primary side of the power conversion module and zero-current switching of the secondary side. Cut-off or high-frequency switching to reduce the switching loss of each switching element and reduce the electromagnetic interference caused by the switching action, thereby improving the conversion efficiency of the DC-to-AC power conversion device.
本揭露係提出一種直流轉交流電力轉換裝置,其包括第一電力轉換模組、第二電力轉換模組以及控制模組。該第一電力轉換模組係具有第一變壓器、第一開關元件與第二開關元件,該第一變壓器之一次側線圈兩端係分別電性連接直流輸入端及該第一開關元件,該第一變壓器之二次側線圈兩端係分別電性連接該第二開關元件及交流輸出端。該第二電力轉換模組係具有第二變壓器、第三開關元件與第四開關元件,該第二變壓器之一次側線圈兩端係分別電性連接該直流輸入端及該第三開關元件,該第二變壓器之二次側線圈兩端係分別電性連接該第四開關元件及該交流輸出端。該控制模組係具有電壓谷底偵測器,該電壓谷底偵測器偵測或預測共振電壓之谷底電壓以產生導通訊號,該控制模組依據該導通訊號產生第一、第二、第三與第四開關訊號,並藉由該第一、第二、第三與第四開關訊號分別控制該第一、第二、第三與第四開關元件,使該第一電力轉換模組與該第二電力轉換模組將該直流輸入端之輸入電流轉換為該交流輸出端之輸出電流。The present disclosure provides a DC-to-AC power conversion device including a first power conversion module, a second power conversion module, and a control module. The first power conversion module has a first transformer, a first switching element and a second switching element, and the two ends of the primary side of the first transformer are electrically connected to the DC input end and the first switching element, respectively. The two ends of the secondary side coil of a transformer are electrically connected to the second switching element and the AC output end, respectively. The second power conversion module has a second transformer, a third switching element and a fourth switching element, and the two ends of the primary side coil of the second transformer are electrically connected to the DC input end and the third switching element respectively. The two ends of the secondary side coil of the second transformer are electrically connected to the fourth switching element and the AC output end, respectively. The control module has a voltage valley detector, the voltage valley detector detects or predicts the valley voltage of the resonance voltage to generate a conduction number, and the control module generates the first, second, third and third according to the communication number. a fourth switching signal, wherein the first, second, third, and fourth switching elements are respectively controlled by the first, second, third, and fourth switching signals, so that the first power conversion module and the first The second power conversion module converts the input current of the DC input terminal into an output current of the AC output terminal.
本揭露亦提出一種直流轉交流電力轉換方法,其包括:產生交流參考訊號及交流交越零點偵測訊號;依據該交流參考訊號及交流輸出端之輸出電流或輸出電壓產生誤差訊號;依據該誤差訊號及直流輸入端之輸入電流產生截止訊號;偵測或預測共振電壓之谷底電壓以產生導通訊號;依據該交流交越零點偵測訊號、該截止訊號及該導通訊號產生第一、第二、第三與第四開關訊號;以及令該第一、第二、第三與第四開關訊號分別控制第一電力轉換模組及第二電力轉換模組之第一、第二、第三與第四開關元件,使該第一電力轉換模組與該第二電力轉換模組轉換該直流輸入端之輸入電流為該交流輸出端之輸出電流。The present disclosure also provides a DC-to-AC power conversion method, including: generating an AC reference signal and an AC crossover zero detection signal; generating an error signal according to the AC reference signal and an output current or an output voltage of the AC output; The input current of the signal and the DC input generates a cutoff signal; detecting or predicting the bottom voltage of the resonant voltage to generate a pilot number; generating the first and second according to the AC crossover zero detection signal, the cutoff signal, and the pilot number Third and fourth switching signals; and causing the first, second, third, and fourth switching signals to control the first, second, third, and third of the first power conversion module and the second power conversion module, respectively The four-switching component causes the first power conversion module and the second power conversion module to convert an input current of the DC input terminal to an output current of the AC output terminal.
本揭露能省去習知直流轉交流逆變器之橋式開關,故可降低該直流轉交流電力轉換裝置之製造成本,並縮小該電力轉換模組之體積,使該電力轉換模組及控制模組之電路設計更加簡單。The disclosure can eliminate the bridge switch of the conventional DC-to-AC inverter, thereby reducing the manufacturing cost of the DC-to-AC power conversion device, and reducing the volume of the power conversion module, so that the power conversion module and the control The circuit design of the module is much simpler.
以下藉由特定的具體實施形態說明本揭露之實施方式,熟悉此技術之人士可由本說明書所揭示之內容輕易地了解本揭露之其他優點與功效,亦可藉由其他不同的具體實施形態加以施行或應用。The embodiments of the present disclosure are described in the following specific embodiments, and those skilled in the art can easily understand other advantages and functions of the disclosure by the contents disclosed in the specification, and can also be implemented by other different embodiments. Or application.
第1A圖與第1B圖係分別繪示本揭露之直流轉交流電力轉換裝置中,第一種電力轉換模組及控制模組的電路示意圖。如圖所示,直流轉交流電力轉換裝置100係操作於市電並聯(grid connected)模式,並包括第一電力轉換模 組110、第二電力轉換模組111以及控制模組130。1A and 1B are circuit diagrams showing a first type of power conversion module and a control module in the DC-to-AC power conversion device of the present disclosure. As shown, the DC-to-AC power conversion device 100 operates in a grid connected mode and includes a first power conversion mode. The group 110, the second power conversion module 111, and the control module 130.
該第一電力轉換模組110係具有第一變壓器T1 、第一開關元件S1 、第二開關元件S2 與第一電容C1 。該第一變壓器T1 可為隔離變壓器,該第一開關元件S1 或該第二開關元件S2 可為金氧半場效電晶體(MOSFET)或絕緣閘雙極電晶體(IGBT)。The first power conversion module 110 has a first transformer T 1 , a first switching element S 1 , a second switching element S 2 , and a first capacitor C 1 . The first transformer T 1 may be an isolation transformer, and the first switching element S 1 or the second switching element S 2 may be a gold oxide half field effect transistor (MOSFET) or an insulated gate bipolar transistor (IGBT).
該第一變壓器T1 之一次側線圈N1 兩端係分別電性連接直流輸入端DCin 及該第一開關元件S1 ,該第一變壓器T1 之二次側線圈N2 兩端係分別電性連接該第二開關元件S2 及交流輸出端ACout ,該第一電容C1 係並聯於該二次側線圈N2 及該第二開關元件S2 。The first side coil N 1 of the first transformer T 1 is electrically connected to the DC input terminal DC in and the first switching element S 1 , respectively, and the two ends of the second transformer N 2 of the first transformer T 1 are respectively electrically connected to the second switching element S 2 and AC output AC out, the first capacitor C 1 connected in parallel to the line of the secondary side coil N 2 and the second switching element S 2.
該第二電力轉換模組111係具有第二變壓器T2 、第三開關元件S3 、第四開關元件S4 與第二電容C2 。該第二變壓器T2 可為隔離變壓器,該第三開關元件S3 或該第四開關元件S4 可為金氧半場效電晶體(MOSFET)或絕緣閘雙極電晶體(IGBT)。The second power conversion module 111 has a second transformer T 2 , a third switching element S 3 , a fourth switching element S 4 , and a second capacitor C 2 . The second transformer T 2 may be an isolation transformer, and the third switching element S 3 or the fourth switching element S 4 may be a gold oxide half field effect transistor (MOSFET) or an insulated gate bipolar transistor (IGBT).
該第二變壓器T2 之一次側線圈N3 兩端係分別電性連接該直流輸入端DCin 及該第三開關元件S3 ,該第二變壓器T2 之二次側線圈N4 兩端係分別電性連接該第四開關元件S4 及該交流輸出端ACout ,該第二電容C2 係並聯於該二次側線圈N4 及該第四開關元件S4 。The second transformer T 2 of the primary side coil N 3 on the two ends are electrically connected to the DC in and DC input terminal of the third switching element S 3, T 2 of the second transformer secondary winding N 4 two ends are electrically connected to the fourth switching element S 4, and the AC output AC out, the second capacitor C 2 connected in parallel based on the secondary winding N 4 and the fourth switching element S 4.
上述之第一電力轉換模組110係用以產生輸出電流Iout 或輸出電壓Vout 之正半週。於該正半週時,該第一開關訊號Vg1 為高頻切換(快速切換ON/OFF)、該第二開關訊號 Vg2 為截止(OFF)、該第三開關訊號Vg3 為截止(OFF)、該第四開關訊號Vg4 為導通(ON)。The first power conversion module 110 described above is configured to generate a positive half cycle of the output current I out or the output voltage V out . During the positive half cycle, the first switching signal V g1 is high frequency switching (fast switching ON/OFF), the second switching signal V g2 is off (OFF), and the third switching signal V g3 is off (OFF) The fourth switching signal V g4 is ON.
當該第一開關訊號Vg1 為ON時,該直流輸入端DCin 之輸入電流Iin (一次側電流IP1 )會流經第一開關元件S1 ,並由該第一變壓器T1 之一次側線圈N1 的磁化電感儲存該輸入電流Iin 之能量;而當該第一開關訊號Vg1 為OFF時,該能量會經由該第一變壓器T1 之二次側線圈N2 及該第二開關元件S2 內部之本體二極體(body diode)輸出至該交流輸出端ACout 。When the first switching signal V g1 is ON, the input current I in (the primary side current I P1 ) of the DC input terminal DC in flows through the first switching element S 1 and is once by the first transformer T 1 The magnetizing inductance of the side coil N 1 stores the energy of the input current I in ; and when the first switching signal V g1 is OFF, the energy passes through the secondary side coil N 2 of the first transformer T 1 and the second A body diode inside the switching element S 2 is output to the AC output terminal AC out .
同理,該第二電力轉換模組111係用以產生該輸出電流Iout 或輸出電壓Vout 之負半週。於該負半週時,該第一開關訊號Vg1 為截止(OFF)、該第二開關訊號Vg2 為導通(ON)、該第三開關訊號Vg3 為高頻切換(快速切換ON/OFF)、該第四開關訊號Vg4 為截止(OFF)。Similarly, the second power conversion module 111 is configured to generate the negative half cycle of the output current I out or the output voltage V out . During the negative half cycle, the first switching signal V g1 is OFF (OFF), the second switching signal V g2 is ON (ON), and the third switching signal V g3 is high frequency switching (fast switching ON/OFF) The fourth switching signal V g4 is OFF.
當該第三開關訊號Vg3 為ON時,該直流輸入端DCin 之輸入電流Iin (一次側電流IP2 )會流經第三開關元件S3 ,並由該第二變壓器T2 之一次側線圈N3 的磁化電感儲存該輸入電流Iin 之能量;而當該第三開關訊號Vg3 為OFF時,該能量會經由該第二變壓器T2 之二次側線圈N4 及該第四開關元件S4 內部之本體二極體(body diode)輸出至該交流輸出端ACout 。When the third switching signal V g3 is ON, the input current I in (the primary side current I P2 ) of the DC input terminal DC in flows through the third switching element S 3 and is once by the second transformer T 2 The magnetizing inductance of the side coil N 3 stores the energy of the input current I in ; and when the third switching signal V g3 is OFF, the energy passes through the secondary side coil N 4 of the second transformer T 2 and the fourth A body diode inside the switching element S 4 is output to the AC output terminal AC out .
該控制模組130係具有電壓谷底偵測器131、交流波形產生器132、回授網路133、脈波寬度調變(PWM)比較器134以及開關訊號產生器135。The control module 130 has a voltage valley detector 131, an AC waveform generator 132, a feedback network 133, a pulse width modulation (PWM) comparator 134, and a switching signal generator 135.
該電壓谷底偵測器131係用以偵測或預測共振電壓之谷底電壓以產生導通訊號TON ,並電性連接該第一變壓器T1 之第一輔助線圈Na1 與該第二變壓器T2 之第二輔助線圈Na2 ,且該第一輔助線圈Na1 與該第二輔助線圈Na2 係分別設於該第一變壓器T1 及該第二變壓器T2 之一次側。The voltage valley detector 131 is configured to detect or predict a valley voltage of the resonant voltage to generate a conduction signal T ON , and electrically connect the first auxiliary coil N a1 of the first transformer T 1 and the second transformer T 2 . The second auxiliary coil N a2 , and the first auxiliary coil N a1 and the second auxiliary coil Na 2 are respectively disposed on the primary side of the first transformer T 1 and the second transformer T 2 .
當該第一變壓器T1 之二次側電流Is1 或該第二變壓器T2 之二次側電流Is2 輸出至該交流輸出端ACout 而下降至零電流時,該第一輔助線圈Na1 之第一電壓訊號Va1 或該第二輔助線圈Na2 之第二電壓訊號Va2 會產生該共振電壓,且該共振電壓之谷底電壓低於該零電壓。When the secondary side current I s1 of the first transformer T 1 or the secondary side current I s2 of the second transformer T 2 is output to the AC output terminal AC out and drops to zero current, the first auxiliary winding N a1 The resonant voltage is generated by the first voltage signal V a1 or the second voltage signal V a2 of the second auxiliary winding Na 2 , and the valley voltage of the resonant voltage is lower than the zero voltage.
再者,當該第一電壓訊號Va1 或該第二電壓訊號Va2 下降至該零電壓時,該電壓谷底偵測器131會偵測到該零電壓,以於該零電壓(含)以下時產生該導通訊號TON ,並依據該導通訊號TON 之下降緣導通該第一開關訊號Vg1 、該第二開關訊號Vg2 、該第三開關訊號Vg3 或該第四開關訊號Vg4 。Moreover, when the first voltage signal V a1 or the second voltage signal V a2 drops to the zero voltage, the voltage valley detector 131 detects the zero voltage to be below the zero voltage (inclusive) The conduction signal number T ON is generated, and the first switching signal V g1 , the second switching signal V g2 , the third switching signal V g3 or the fourth switching signal V g4 is turned on according to the falling edge of the guiding communication number T ON .
該交流波形產生器132係操作於市電並聯模式,用以依據市電電壓Vgrid 產生交流參考訊號ACref 及交流交越零點偵測訊號ACZCD 。The AC waveform generator 132 is operated in a commercial parallel mode for generating an AC reference signal AC ref and an AC crossover zero detection signal AC ZCD according to the mains voltage V grid .
該回授網路133係電性連接該交流波形產生器132與該交流輸出端ACout ,並依據該交流參考訊號ACref 及該交流輸出端ACout 之輸出電流Iout 產生誤差訊號Error。The feedback network 133 is electrically connected to the AC waveform generator 132 and the AC output terminal AC out , and generates an error signal Error according to the AC reference signal AC ref and the output current I out of the AC output terminal AC out .
該脈波寬度調變比較器134係電性連接該回授網路133與該直流輸入端DCin ,以依據該誤差訊號Error及該 輸入電流Iin 產生截止訊號TOFF ,並依據該截止訊號TOFF 之上升緣截止該第一開關訊號Vg1 、該第二開關訊號Vg2 、該第三開關訊號Vg3 或該第四開關訊號Vg4 。The pulse width modulation comparator 134 is electrically connected to the feedback network 133 and the DC input terminal DC in to generate a cutoff signal T OFF according to the error signal Error and the input current I in , and according to the cutoff signal The rising edge of T OFF is turned off by the first switching signal V g1 , the second switching signal V g2 , the third switching signal V g3 or the fourth switching signal V g4 .
該開關訊號產生器135係電性連接該交流波形產生器132、該脈波寬度調變比較器134與該電壓谷底偵測器131,並依據該交流交越零點偵測訊號ACZCD 、該截止訊號TOFF 及該導通訊號TON 產生該第一開關訊號Vg1 、該第二開關訊號Vg2 、該第三開關訊號Vg3 與該第四開關訊號Vg4 ,以分別控制該第一開關元件S1 、該第二開關元件S2 、該第三開關元件S3 與該第四開關元件S4 ,使該第一電力轉換模組110與該第二電力轉換模組111轉換該直流輸入端DCin 之輸入電流Iin 為該交流輸出端ACout 之輸出電流Iout 。The switching signal generator 135 is electrically connected to the AC waveform generator 132, the pulse width modulation comparator 134 and the voltage valley detector 131, and according to the AC crossover zero detection signal AC ZCD , the cutoff The signal T OFF and the communication signal T ON generate the first switching signal V g1 , the second switching signal V g2 , the third switching signal V g3 and the fourth switching signal V g4 to respectively control the first switching element S 1, the second switching element S 2, S 3 of the third switching element and the fourth switching element S 4, such that the first power conversion module 110 and the second power conversion module 111 converts the DC input terminal DC in the input current I in for the AC output AC out of the output current I out.
此外,上述之直流轉交流電力轉換裝置100亦可包括濾波器120。該濾波器120之一端係電性連接該第一電力轉換模組110及該第二電力轉換模組111,另一端係電性連接該交流輸出端ACout ,且該濾波器120係用以濾除該二次側電流IS1 或該二次側電流IS2 之高頻訊號。Further, the above-described DC-to-AC power conversion device 100 may further include a filter 120. One end of the filter 120 is electrically connected to the first power conversion module 110 and the second power conversion module 111, and the other end is electrically connected to the AC output terminal AC out , and the filter 120 is used for filtering The high frequency signal of the secondary side current I S1 or the secondary side current I S2 .
第2A圖與第2B圖係分別繪示本揭露之直流轉交流電力轉換裝置中,第二種電力轉換模組及控制模組的電路示意圖。第二種與上述第1A圖與第1B圖之第一種電力轉換模組及控制模組大致相同,故相同之處不再重覆贅述,其主要差異如下:在第2A圖與第2B圖中,直流轉交流電力轉換裝置100改操作於獨立(stand-alone)模式,第1A圖之市電電壓 Vgrid 改為負載121。交流波形產生器132亦改操作於獨立模式,並自行產生交流參考訊號ACref 及交流交越零點偵測訊號ACZCD 。回授網路133則改依據該交流參考訊號ACref 及該交流輸出端ACout 之輸出電壓Vout 產生誤差訊號Error。2A and 2B are circuit diagrams showing a second power conversion module and a control module in the DC-to-AC power conversion device of the present disclosure. The second type is substantially the same as the first type of power conversion module and control module of the above 1A and 1B, so the details are not repeated here. The main differences are as follows: in Figures 2A and 2B The DC-to-AC power conversion device 100 is operated in a stand-alone mode, and the commercial power voltage V grid of FIG. 1A is changed to the load 121. The AC waveform generator 132 also operates in an independent mode and generates an AC reference signal AC ref and an AC cross-point detection signal AC ZCD . The feedback network 133 generates an error signal Error according to the AC reference signal AC ref and the output voltage V out of the AC output terminal AC out .
第3圖係繪示本揭露之直流轉交流電力轉換裝置中,第三種電力轉換模組的電路示意圖。第三種與上述第2A圖之第二種電力轉換模組大致相同,故相同之處不再重覆贅述,其主要差異如下:在第3圖中,第一電力轉換模組110係具有並聯於第二開關元件S2 之第一二極體D1 ,藉以強化第二開關元件S2 內部之本體二極體的功能,使二次側電流IS1 易於流經該第二開關元件S2 之本體二極體及該第一二極體D1 而輸出至交流輸出端ACout 。FIG. 3 is a schematic circuit diagram of a third power conversion module in the DC-to-AC power conversion device of the present disclosure. The third type is substantially the same as the second power conversion module of FIG. 2A above, so the details are not repeated again. The main differences are as follows: In FIG. 3, the first power conversion module 110 has parallel connections. a second switching element S 2 of the two first diode D 1, so as to strengthen the function of the second switching element S 2 of the internal body diode of the secondary-side current I S1 easily flow through the second switching element S 2 The body diode and the first diode D 1 are output to the AC output terminal AC out .
同樣地,第二電力轉換模組111亦具有並聯於第四開關元件S4 之第二二極體D2 ,藉以強化第四開關元件S4 內部之本體二極體的功能,使二次側電流IS2 易於流經該第四開關元件S4 之本體二極體及該第二二極體D2 而輸出至該交流輸出端ACout 。Similarly, the second power conversion module 111 also has a second diode D 2 connected in parallel to the fourth switching element S 4 , thereby strengthening the function of the body diode inside the fourth switching element S 4 , so that the secondary side The current I S2 is apt to flow through the body diode of the fourth switching element S 4 and the second diode D 2 to be output to the AC output terminal AC out .
第4圖係繪示本揭露之直流轉交流電力轉換裝置中,第四種電力轉換模組的電路示意圖。第四種與上述第2A圖之第二種電力轉換模組大致相同,故相同之處不再重覆贅述,其主要差異如下:在第4圖中,直流轉交流電力轉換裝置100係包括前 端直流轉直流轉換器(front end DC/DC converter)140。該前端直流轉直流轉換器140可為升壓型、降壓型或任何型式之轉換器,且其一端係電性連接直流輸入端DCin ,另一端係電性連接第一電力轉換模組110及第二電力轉換模組111。4 is a circuit diagram showing a fourth power conversion module in the DC-to-AC power conversion device of the present disclosure. The fourth type is substantially the same as the second type of power conversion module of FIG. 2A above, so the details are not repeated again. The main differences are as follows: In FIG. 4, the DC-to-AC power conversion device 100 includes a front end. Front end DC/DC converter 140. The front-end DC-to-DC converter 140 can be a step-up, step-down or any type of converter, and one end thereof is electrically connected to the DC input terminal DC in , and the other end is electrically connected to the first power conversion module 110 . And a second power conversion module 111.
該直流輸入端DCin 之輸入電流Iin 會先經由該前端直流轉直流轉換器140作電壓調節,並輸入至第一電力轉換模組110及第二電力轉換模組111後,再轉換為交流輸出端ACout 之輸出電流Iout ,故可使該輸入電流Iin 之使用範圍更加寬廣,並增加該第一電力轉換模組110及該第二電力轉換模組111之發電效益。同時,該前端直流轉直流轉換器140亦具有消除該輸入電流Iin 之漣波的效果,可減少輸入濾波電容之容量。The input current I in of the DC input terminal DC in is firstly regulated by the front-end DC-to-DC converter 140, and input to the first power conversion module 110 and the second power conversion module 111, and then converted into an AC. The output current I out of the output terminal AC out can make the use range of the input current I in wider, and increase the power generation benefit of the first power conversion module 110 and the second power conversion module 111. Meanwhile, the front end DC to DC converter 140 also has the input current I in eliminating the effect of the ripple can be reduced input capacitance of the filter capacitor.
第5圖係繪示本揭露之直流轉交流電力轉換裝置中,第三種控制模組的電路示意圖。第三種與上述第1B圖之第一種控制模組大致相同,故相同之處不再重覆贅述,其主要差異如下:在第5圖中,具同步整流功能(synchronous rectifier function)之開關訊號產生器136係用以使第一開關訊號Vg1 及該第二開關訊號Vg2 同步產生相對應之高頻切換,當如第1A圖之第一開關元件S1 截止,且第一變壓器T1 所儲存之能量經由該第一變壓器T1 之二次側線圈N2 、該第二開關元件S2 內部之本體二極體(Body diode)或相並聯之第一二極體D1 (如第3圖)而輸出至交流輸出端ACout 時,該 第二開關訊號Vg2 可同步導通該第二開關元件S2 ,以達到同步整流之功能,並達到提高效率之效果。FIG. 5 is a schematic circuit diagram of a third control module in the DC-to-AC power conversion device of the present disclosure. The third type is substantially the same as the first type of control module of Figure 1B above, so the similarities are not repeated. The main differences are as follows: In Figure 5, the switch with synchronous rectification function (synchronous rectifier function) The signal generator 136 is configured to synchronize the first switching signal V g1 and the second switching signal V g2 to generate a corresponding high frequency switching. When the first switching element S 1 is cut off as shown in FIG. 1A, and the first transformer T 1 stored energy is passed through the secondary side coil N 2 of the first transformer T 1 , the body diode inside the second switching element S 2 or the first diode D 1 connected in parallel (eg When the output is to the AC output terminal AC out , the second switching signal V g2 can synchronously turn on the second switching element S 2 to achieve the synchronous rectification function and achieve the effect of improving efficiency.
同理,具同步整流功能之開關訊號產生器136亦用以使第三開關訊號Vg3 及該第四開關訊號Vg4 同步產生相對應之高頻切換,當如第1A圖之第三開關元件S3 截止,且第二壓變器T2 所儲存之能量經由該第二變壓器T2 之二次側線圈N4 、該第四開關元件S4 內部之本體二極體(Body diode)或相並聯之第二二極體D2 (如第3圖)而輸出至交流輸出端ACout 時,該第四開關訊號Vg4 可同步導通第四開關元件S4 ,以達到同步整流之功能,並達到提高效率之效果。Similarly, the switching signal generator 136 with synchronous rectification function is also used to synchronize the third switching signal V g3 and the fourth switching signal V g4 to generate a corresponding high frequency switching, as in the third switching element as shown in FIG. 1A. S 3 is off, and the energy stored in the second pressure transformer T 2 is via the secondary side coil N 4 of the second transformer T 2 , the body diode or phase inside the fourth switching element S 4 When the second diode D 2 is connected in parallel (as shown in FIG. 3 ) and outputted to the AC output terminal AC out , the fourth switching signal V g4 can synchronously turn on the fourth switching element S 4 to achieve synchronous rectification function, and Achieve the effect of improving efficiency.
第6圖係繪示本揭露之電壓谷底偵測功能之運作原理中,關於二次側電流、輔助線圈之電壓訊號及導通訊號的波形示意圖。FIG. 6 is a schematic diagram showing the waveforms of the secondary side current, the voltage signal of the auxiliary coil, and the conduction number in the operation principle of the voltage valley detecting function of the present disclosure.
如第6圖及第1A圖~第1B圖所示,當第一開關元件S1 或第三開關元件S3 被截止(OFF)時,第一變壓器T1 或第二變壓器T2 所儲存之能量會經由二次側線圈N2 或二次側線圈N4 輸出至交流輸出端ACout ,使得該第一變壓器T1 之二次側電流IS1 或該第二變壓器T2 之二次側電流IS2 隨著該能量之輸出而減少。As shown in FIG. 6 and FIGS. 1A to 1B, when the first switching element S 1 or the third switching element S 3 is turned off (OFF), the first transformer T 1 or the second transformer T 2 is stored. The energy is output to the AC output terminal AC out via the secondary side coil N 2 or the secondary side coil N 4 such that the secondary side current I S1 of the first transformer T 1 or the secondary side current of the second transformer T 2 I S2 decreases as the energy is output.
當該二次側電流IS1 或該二次側電流IS2 輸出至該交流輸出端ACout 而下降至零電流I0 時,該第一變壓器T1 之磁化電感與電路中之總合電容(包括第一變壓器T1 之雜散電容及第一開關元件S1 之輸出電容)會產生共振,使該第一 開關元件S1 之汲極對源極電壓VDS1 及該第一輔助線圈Na1 之第一電壓訊號Va1 產生共振電壓Vr ;或者,該第二變壓器T2之磁化電感與電路中之總合電容(包括第二變壓器T2 之雜散電容及第三開關元件S3 之輸出電容)會產生共振,使該第三開關元件S3 之汲極對源極電壓VDS3 及該第二輔助線圈Na2 之第二電壓訊號Va2 產生共振電壓Vr 。When the secondary side current I S1 or the secondary side current I S2 is output to the AC output terminal AC out and drops to the zero current I 0 , the magnetizing inductance of the first transformer T 1 and the total combined capacitance in the circuit ( the transformer T includes a first stray capacitance and a first switching element S 1 of the output capacitance) resonates, so that the first switching element S 1 of the drain electrode to the source voltage V DS1 and the first auxiliary winding N a1 The first voltage signal V a1 generates a resonance voltage V r ; or the magnetizing inductance of the second transformer T2 and the total capacitance in the circuit (including the stray capacitance of the second transformer T 2 and the output of the third switching element S 3 ) capacitance) resonates, so that the drain of the third switching element S 3 to the extreme resonance voltage V r V DS3 source voltage and the second voltage signal V a2 of the second auxiliary winding N a2.
當該第一電壓訊號Va1 或該第二電壓訊號Va2 通過零電壓V0 時,即可得知共振電壓Vr 的產生,透過適當的延遲即可測得每一次共振電壓Vr 之谷底電壓Vb 。同時,當該第一電壓訊號Va1 或該第二電壓訊號Va2 下降至該零電壓V0 時,該電壓谷底偵測器131會偵測到該零電壓V0 ,以於該零電壓V0 (含)以下產生導通訊號TON ,並依據該導通訊號TON 之下降緣導通該第一開關訊號Vg1 、該第二開關訊號Vg2 、該第三開關訊號Vg3 或該第四開關訊號Vg4 。When the first voltage signal V a1 or the second voltage signal V a2 passes through the zero voltage V 0 , the generation of the resonance voltage V r can be known, and the bottom of each resonance voltage V r can be measured through an appropriate delay. Voltage V b . At the same time, when the first voltage signal V a1 or the second voltage signal V a2 falls to the zero voltage V 0 , the voltage valley detector 131 detects the zero voltage V 0 , so that the zero voltage V 0 (inclusive) generates a pilot communication number T ON , and turns on the first switching signal V g1 , the second switching signal V g2 , the third switching signal V g3 or the fourth switch according to the falling edge of the guiding communication number T ON Signal V g4 .
藉此,透過適當的設計,即可使該汲極對源極電壓VDS1 或VDS3 之共振電壓Vr 之谷底電壓Vb 低於或等於該零電壓V0 ,若此時將該第一開關元件S1 或該第三開關元件S3 導通,即可達到零電壓之開關動作。Thereby, the valley voltage V b of the resonance voltage V r of the drain-to-source voltage V DS1 or V DS3 can be made lower than or equal to the zero voltage V 0 by an appropriate design , if the first The switching element S 1 or the third switching element S 3 is turned on to achieve a zero voltage switching action.
因此,由於第一電力轉換模組110及第二電力轉換模組111之一次側為零電壓之開關動作,而二次側為零電流之開關動作,故可減少該第一開關元件S1 、該第二開關元件S2 、該第三開關元件S3 與該第四開關元件S4 之開關損耗,並降低開關動作所造成之電磁干擾,進而提高第一電力轉換模組110及第二電力轉換模組111之轉換效率及效 能。Therefore, since the primary side of the first power conversion module 110 and the second power conversion module 111 has a zero voltage switching operation and the secondary side has a zero current switching operation, the first switching element S 1 can be reduced. The switching loss of the second switching element S 2 , the third switching element S 3 and the fourth switching element S 4 reduces the electromagnetic interference caused by the switching operation, thereby improving the first power conversion module 110 and the second power Conversion efficiency and performance of the conversion module 111.
以上所提之谷底電壓偵測功能僅為一種可能的實施方式,但非用以限制本揭露,其他的實施方式亦可能達到上述之功能。The above-mentioned bottom voltage detection function is only one possible implementation manner, but it is not intended to limit the disclosure, and other embodiments may also achieve the above functions.
第7圖係繪示本揭露之控制模組中,運用電壓谷底偵測功能及截止訊號產生開關訊號的波形示意圖。FIG. 7 is a schematic diagram showing waveforms of a switching signal generated by using a voltage valley detecting function and a cutoff signal in the control module of the present disclosure.
在上述第6圖及其說明內容中,已詳述電壓谷底偵測功能之運作原理,故關於第7圖之二次側電流IS1 或二次側電流IS2 、第一電壓訊號Va1 或第二電壓訊號Va2 、汲極對源極電壓VDS1 或汲極對源極電壓VDS3 、導通訊號TON 等,不再重覆詳細贅述。In the above FIG. 6 and the description thereof, the operation principle of the voltage valley detecting function has been described in detail, so the secondary side current I S1 or the secondary side current I S2 of the seventh figure, the first voltage signal V a1 or The second voltage signal V a2 , the drain-to-source voltage V DS1 or the drain-to-source voltage V DS3 , the conduction signal number T ON , etc., will not be repeated in detail.
如第7圖及第1A圖~第1B圖所示,當該二次側電流IS1 或該二次側電流IS2 輸出至交流輸出端ACout 而下降至零電流I0 時,該汲極對源極電壓VDS1 及該第一電壓訊號Va1 會產生共振電壓Vr ,或者該汲極對源極電壓VDS3 及該第二電壓訊號Va2 會產生該共振電壓Vr 。As shown in FIG. 7 and FIG. 1A to FIG. 1B, when the secondary current I S1 or the secondary current I S2 is output to the AC output terminal AC out and drops to the zero current I 0 , the drain source voltage V DS1 and the first voltage signal generated resonance voltage V a1 V r, the drain or source voltage V DS3 signal and the second voltage V a2 generate the resonance voltage V r.
當該第一電壓訊號Va1 或該第二電壓訊號Va2 通過零電壓V0 時,即可得知該共振電壓Vr 的產生,透過適當的延遲即可測得每一次共振電壓Vr 之谷底電壓Vb 。同時,當該第一電壓訊號Va1 或該第二電壓訊號Va2 下降至該零電壓V0 時,該電壓谷底偵測器131會偵測到該零電壓V0 ,以於該零電壓V0 (含)以下產生導通訊號TON ,並依據該導通訊號TON 之下降緣導通該第一開關訊號Vg1 、該第二開關訊號Vg2 、該第三開關訊號Vg3 或該第四開關訊號Vg4 , 使一次側電流IP1 透過第一變壓器T1 儲存能量,或使一次側電流IP2 透過第二變壓器T2 儲存能量。When the first voltage signal V a1 or the second voltage signal V a2 passes through the zero voltage V 0 , the generation of the resonant voltage V r can be known, and each resonant voltage V r can be measured through an appropriate delay. Valley voltage V b . At the same time, when the first voltage signal V a1 or the second voltage signal V a2 falls to the zero voltage V 0 , the voltage valley detector 131 detects the zero voltage V 0 , so that the zero voltage V 0 (inclusive) generates a pilot communication number T ON , and turns on the first switching signal V g1 , the second switching signal V g2 , the third switching signal V g3 or the fourth switch according to the falling edge of the guiding communication number T ON The signal V g4 causes the primary side current I P1 to store energy through the first transformer T 1 or the primary side current I P2 to pass through the second transformer T 2 to store energy.
接著,脈波寬度調變比較器134會產生截止訊號TOFF ,並依據該截止訊號TOFF 之上升緣截止該第一開關訊號Vg1 、該第二開關訊號Vg2 、該第三開關訊號Vg3 或該第四開關訊號Vg4 ,使該二次側電流IS1 或該二次側電流IS2 再次輸出至該交流輸出端ACout 而下降至該零電流I0 。Then, the pulse width modulation comparator 134 generates the cutoff signal T OFF , and turns off the first switching signal V g1 , the second switching signal V g2 , and the third switching signal V according to the rising edge of the cutoff signal T OFF . G3 or the fourth switching signal V g4 causes the secondary side current I S1 or the secondary side current I S2 to be output again to the AC output terminal AC out to drop to the zero current I 0 .
第8圖係繪示本揭露之直流轉交流電力轉換裝置所採取之第一種開關控制策略,用以產生交流輸出端之輸出電流的波形示意圖。FIG. 8 is a schematic diagram showing a waveform of an output current of an AC output terminal, which is a first switching control strategy adopted by the DC-to-AC power conversion device of the present disclosure.
如第8圖及第1A圖~第1B圖所示,交流波形產生器132會產生交流參考訊號ACref 及交流交越零點偵測訊號ACZCD 。As shown in FIG. 8 and FIG. 1A to FIG. 1B, the AC waveform generator 132 generates an AC reference signal AC ref and an AC crossover zero detection signal AC ZCD .
當該交流參考訊號ACref 為正半週時,該交流交越零點偵測訊號ACZCD 為高電位。開關控制策略包括:第一開關訊號Vg1 為高頻切換、第二開關訊號Vg2 為截止、第三開關訊號Vg3 為截止、第四開關訊號Vg4 為導通。藉此,使一次側電流IP1 與二次側電流IS1 依據該交流參考訊號ACref 及該第一開關訊號Vg1 形成複數個不同大小的三角波,且該些三角波之端部所形成之輪廓類似正弦波,俾使第一電力轉換模組110產生輸出電流Iout 或輸出電壓Vout 之正半週。When the AC reference signal AC ref is a positive half cycle, the AC crossover zero detection signal AC ZCD is at a high potential. The switch control strategy includes: the first switching signal V g1 is high frequency switching, the second switching signal V g2 is off, the third switching signal V g3 is off, and the fourth switching signal V g4 is conducting. Thereby, the primary side current I P1 and the secondary side current I S1 form a plurality of triangular waves of different sizes according to the AC reference signal AC ref and the first switching signal V g1 , and the contour formed by the ends of the triangular waves Similar to the sine wave, the first power conversion module 110 generates a positive half cycle of the output current I out or the output voltage V out .
同理,當該交流參考訊號ACref 為負半週時,該交流交越零點偵測訊號ACZCD 為低電位或零電位。該開關控制 策略包括:該第一開關訊號Vg1 為截止、該第二開關訊號Vg2 為導通、該第三開關訊號Vg3 為高頻切換、該第四開關訊號Vg4 為截止。藉此,使一次側電流IP2 與二次側電流IS2 依據該交流參考訊號ACref 及該第三開關訊號Vg3 形成複數個不同大小的三角波,且該些三角波之端部所形成之輪廓類似正弦波,俾使第二電力轉換模組111產生輸出電流Iout 或輸出電壓Vout 之負半週。Similarly, when the AC reference signal AC ref is a negative half cycle, the AC cross-zero detection signal AC ZCD is low or zero potential. The switch control strategy includes: the first switch signal V g1 is off, the second switch signal V g2 is on, the third switch signal V g3 is high frequency switching, and the fourth switching signal V g4 is off. Thereby, the primary side current I P2 and the secondary side current I S2 form a plurality of triangular waves of different sizes according to the AC reference signal AC ref and the third switching signal V g3 , and the contour formed by the ends of the triangular waves Similar to the sine wave, the second power conversion module 111 generates a negative half cycle of the output current I out or the output voltage V out .
第9圖係繪示本揭露之直流轉交流電力轉換裝置所採取之第二種開關控制策略,用以產生交流輸出端之輸出電流的波形示意圖。FIG. 9 is a schematic diagram showing a waveform of an output current of an AC output terminal according to a second switching control strategy adopted by the DC-to-AC power conversion device of the present disclosure.
第二種與上述第8圖之第一種開關控制策略及波形示意圖大致相同,故相同之處不再重覆贅述,其主要差異如下:如第9圖及第5圖所示,具同步整流功能之開關訊號產生器136係用以使該第一開關訊號Vg1 及該第二開關訊號Vg2 同步產生相對應之高頻切換,或用以使該第三開關訊號Vg3 及該第四開關訊號Vg4 同步產生相對應之高頻切換,以達到同步整流之效果,並降低如第3圖中該第二開關元件S2 之本體二極體、第四開關元件S4 之本體二極體、第一二極體D1 或第二二極體D2 被導通時的導通損耗。The second type is the same as the first switch control strategy and waveform diagram of Figure 8 above, so the similarities are not repeated. The main differences are as follows: as shown in Figure 9 and Figure 5, with synchronous rectification The function switching signal generator 136 is configured to synchronize the first switching signal V g1 and the second switching signal V g2 to generate a corresponding high frequency switching, or to enable the third switching signal V g3 and the fourth The switching signal V g4 synchronously generates a corresponding high frequency switching to achieve the effect of synchronous rectification, and reduces the body diode of the second switching element S 2 and the body diode of the fourth switching element S 4 as shown in FIG. The conduction loss when the body, the first diode D 1 or the second diode D 2 is turned on.
第10圖係繪示本揭露之直流轉交流電力轉換方法的步驟流程圖。FIG. 10 is a flow chart showing the steps of the DC-to-AC power conversion method of the present disclosure.
如圖所示,直流轉交流電力轉換方法可包括下列步驟:As shown in the figure, the DC-to-AC power conversion method may include the following steps:
於步驟S201中,先判斷交流波形產生器是否於市電並聯模式?若是,則進至步驟S202。若否,表示該交流波形產生器於獨立模式,則進至步驟S204。In step S201, it is first determined whether the AC waveform generator is in the commercial parallel mode. If yes, go to step S202. If not, indicating that the AC waveform generator is in the independent mode, the process proceeds to step S204.
於步驟S202中,令該交流波形產生器依據市電電壓產生交流參考訊號及交流交越零點偵測訊號。接著進至步驟S203。In step S202, the AC waveform generator is configured to generate an AC reference signal and an AC crossover zero detection signal according to the mains voltage. Then it proceeds to step S203.
於步驟S203中,令回授電路依據該交流參考訊號及交流輸出端之輸出電流產生誤差訊號。接著進至步驟S206。In step S203, the feedback circuit generates an error signal according to the AC reference signal and the output current of the AC output terminal. Then it proceeds to step S206.
於步驟S204中,令該交流波形產生器自行產生該交流參考訊號及該交流交越零點偵測訊號。接著進至步驟S205。In step S204, the AC waveform generator generates the AC reference signal and the AC cross-point detection signal. Then it proceeds to step S205.
於步驟S205中,令該回授電路依據該交流參考訊號及該交流輸出端之輸出電壓產生該誤差訊號。接著進至步驟S206。In step S205, the feedback circuit generates the error signal according to the AC reference signal and the output voltage of the AC output terminal. Then it proceeds to step S206.
於步驟S206中,令脈波寬度調變比較器依據該誤差訊號及直流輸入端之輸入電流產生截止訊號。接著進至步驟S207。In step S206, the pulse width modulation comparator generates a cutoff signal according to the error signal and the input current of the DC input terminal. Then it proceeds to step S207.
於步驟S207中,令電壓谷底偵測器偵測或預測共振電壓之谷底電壓以產生導通訊號。該導通訊號係產生於第一輔助線圈之第一電壓訊號或第二輔助線圈之第二電壓訊號下降至該零電壓(含)以下時。接著進至步驟S208。In step S207, the voltage valley detector is caused to detect or predict the valley voltage of the resonance voltage to generate a pilot number. The communication number is generated when the first voltage signal of the first auxiliary coil or the second voltage signal of the second auxiliary coil falls below the zero voltage (inclusive). Then it proceeds to step S208.
於步驟S208中,令開關訊號產生器依據該交流交越零點偵測訊號、該截止訊號及該導通訊號產生第一開關訊 號、第二開關訊號、第三開關訊號與第四開關訊號。接著進至步驟S209或步驟S210。In step S208, the switching signal generator generates a first switching signal according to the AC crossover zero detection signal, the cutoff signal and the pilot signal number. No., second switching signal, third switching signal and fourth switching signal. Then, the process proceeds to step S209 or step S210.
於步驟S209中,當該交流交越零點偵測訊號為高電位時,令該第一開關訊號為高頻切換、該第二開關訊號為截止、該第三開關訊號為截止、該第四開關訊號為導通。接著進至步驟S211。In step S209, when the AC cross-zero detection signal is high, the first switching signal is high frequency switching, the second switching signal is off, the third switching signal is off, and the fourth switch is The signal is conductive. Then it proceeds to step S211.
於步驟S210中,當該交流交越零點偵測訊號為低電位時,令該第一開關訊號為截止、該第二開關訊號為導通、該第三開關訊號為高頻切換、該第四開關訊號為截止。接著進至步驟S211。In step S210, when the AC cross-zero detection signal is low, the first switching signal is turned off, the second switching signal is turned on, the third switching signal is high frequency switching, and the fourth switch is turned on. The signal is cut off. Then it proceeds to step S211.
於步驟S211中,令該第一、第二、第三與第四開關訊號分別控制第一電力轉換模組及第二電力轉換模組之第一、第二、第三與第四開關元件,使該第一電力轉換模組與該第二電力轉換模組轉換該直流輸入端之輸入電流為該交流輸出端之輸出電流。In step S211, the first, second, third, and fourth switching signals are respectively controlled to control the first, second, third, and fourth switching elements of the first power conversion module and the second power conversion module, The first power conversion module and the second power conversion module convert the input current of the DC input terminal to an output current of the AC output terminal.
上述實施形態僅例示性說明本揭露之原理、特點及其功效,並非用以限制本揭露之可實施範疇,任何熟習此項技藝之人士均可在不違背本揭露之精神及範疇下,對上述實施形態進行修飾與改變。任何運用本揭露所揭示內容而完成之等效改變及修飾,均仍應為下述之申請專利範圍所涵蓋。因此,本揭露之權利保護範圍,應如後述之申請專利範圍所列。The above-described embodiments are merely illustrative of the principles, features, and functions of the present disclosure, and are not intended to limit the scope of the present disclosure. Any person skilled in the art can practice the above without departing from the spirit and scope of the disclosure. The embodiment is modified and changed. Any equivalent changes and modifications made by the disclosure of the present disclosure should still be covered by the following claims. Therefore, the scope of protection of the present disclosure should be as set forth in the scope of the patent application described later.
100‧‧‧直流轉交流電力轉換裝置100‧‧‧DC to AC power conversion device
110‧‧‧第一電力轉換模組110‧‧‧First Power Conversion Module
111‧‧‧第二電力轉換模組111‧‧‧Second power conversion module
120‧‧‧濾波器120‧‧‧ filter
121‧‧‧負載121‧‧‧load
130‧‧‧控制模組130‧‧‧Control Module
131‧‧‧電壓谷底偵測器131‧‧‧Voltage Valley Detector
132‧‧‧交流波形產生器132‧‧‧AC waveform generator
133‧‧‧回授網路133‧‧‧Return to the network
134‧‧‧脈波寬度調變比較器134‧‧‧ Pulse width modulation comparator
135‧‧‧開關訊號產生器135‧‧‧Switch signal generator
136‧‧‧具同步整流功能之開關訊號產生器136‧‧‧Switching signal generator with synchronous rectification
140‧‧‧前端直流轉直流轉換器140‧‧‧ front-end DC to DC converter
ACout ‧‧‧交流輸出端AC out ‧‧‧AC output
ACref ‧‧‧交流參考訊號AC ref ‧‧‧ AC reference signal
ACZCD ‧‧‧交流交越零點偵測訊號AC ZCD ‧‧‧AC crossover zero detection signal
C1 ‧‧‧第一電容C 1 ‧‧‧first capacitor
C2 ‧‧‧第二電容C 2 ‧‧‧second capacitor
D1 ‧‧‧第一二極體D 1 ‧‧‧First Diode
D2 ‧‧‧第二二極體D 2 ‧‧‧Secondary
DCin ‧‧‧直流輸入端DC in ‧‧‧DC input
Error‧‧‧誤差訊號Error‧‧‧Error signal
Io ‧‧‧零電流I o ‧‧‧zero current
Iin ‧‧‧輸入電流I in ‧‧‧Input current
Iout ‧‧‧輸出電流I out ‧‧‧Output current
IP1 、IP2 ‧‧‧一次側電流I P1 , I P2 ‧‧‧ primary current
IS1 、IS2 ‧‧‧二次側電流I S1 , I S2 ‧‧‧ secondary current
N1 、N3 ‧‧‧一次側線圈N 1 , N 3 ‧‧‧ primary side coil
N2 、N4 ‧‧‧二次側線圈N 2 , N 4 ‧‧‧ secondary coil
Na1 ‧‧‧第一輔助線圈N a1 ‧‧‧First auxiliary coil
Na2 ‧‧‧第二輔助線圈N a2 ‧‧‧second auxiliary coil
S1 ‧‧‧第一開關元件S 1 ‧‧‧first switching element
S2 ‧‧‧第二開關元件S 2 ‧‧‧Second switching element
S3 ‧‧‧第三開關元件S 3 ‧‧‧third switching element
S4 ‧‧‧第四開關元件S 4 ‧‧‧fourth switching element
T1 ‧‧‧第一變壓器T 1 ‧‧‧First Transformer
T2 ‧‧‧第二變壓器T 2 ‧‧‧second transformer
TOFF ‧‧‧截止訊號T OFF ‧‧‧ cut-off signal
TON ‧‧‧導通訊號T ON ‧‧‧Direction number
V0 ‧‧‧零電壓V 0 ‧‧‧zero voltage
Va1 ‧‧‧第一電壓訊號V a1 ‧‧‧First voltage signal
Va2 ‧‧‧第二電壓訊號V a2 ‧‧‧second voltage signal
Vb ‧‧‧谷底電壓V b ‧‧‧ valley voltage
VDS1 、VDS3 ‧‧‧汲極對源極電壓V DS1 , V DS3 ‧‧‧ bungee to source voltage
Vg1 ‧‧‧第一開關訊號V g1 ‧‧‧first switch signal
Vg2 ‧‧‧第二開關訊號V g2 ‧‧‧second switch signal
Vg3 ‧‧‧第三開關訊號V g3 ‧‧‧third switch signal
Vg4 ‧‧‧第四開關訊號V g4 ‧‧‧fourth switch signal
Vgrid ‧‧‧市電電壓V grid ‧‧‧mains voltage
Vout ‧‧‧輸出電壓V out ‧‧‧output voltage
Vr ‧‧‧共振電壓V r ‧‧‧ Resonance voltage
S201~S211‧‧‧步驟S201~S211‧‧‧Steps
第1A圖係繪示本揭露之直流轉交流電力轉換裝置 中,第一種電力轉換模組的電路示意圖。FIG. 1A is a diagram showing the DC-to-AC power conversion device of the present disclosure The circuit diagram of the first type of power conversion module.
第1B圖係繪示本揭露之直流轉交流電力轉換裝置中,第一種控制模組的電路示意圖。FIG. 1B is a schematic circuit diagram of a first type of control module in the DC-to-AC power conversion device of the present disclosure.
第2A圖係繪示本揭露之直流轉交流電力轉換裝置中,第二種電力轉換模組的電路示意圖。FIG. 2A is a schematic circuit diagram of a second power conversion module in the DC-to-AC power conversion device of the present disclosure.
第2B圖係繪示本揭露之直流轉交流電力轉換裝置中,第二種控制模組的電路示意圖。FIG. 2B is a schematic circuit diagram of a second control module in the DC-to-AC power conversion device of the present disclosure.
第3圖係繪示本揭露之直流轉交流電力轉換裝置中,第三種電力轉換模組的電路示意圖。FIG. 3 is a schematic circuit diagram of a third power conversion module in the DC-to-AC power conversion device of the present disclosure.
第4圖係繪示本揭露之直流轉交流電力轉換裝置中,第四種電力轉換模組的電路示意圖。4 is a circuit diagram showing a fourth power conversion module in the DC-to-AC power conversion device of the present disclosure.
第5圖係繪示本揭露之直流轉交流電力轉換裝置中,第三種控制模組的電路示意圖。FIG. 5 is a schematic circuit diagram of a third control module in the DC-to-AC power conversion device of the present disclosure.
第6圖係繪示本揭露之電壓谷底偵測功能之運作原理中,關於二次側電流、輔助線圈之電壓訊號及導通訊號的波形示意圖。FIG. 6 is a schematic diagram showing the waveforms of the secondary side current, the voltage signal of the auxiliary coil, and the conduction number in the operation principle of the voltage valley detecting function of the present disclosure.
第7圖係繪示本揭露之控制模組中,運用電壓谷底偵測功能及截止訊號產生開關訊號的波形示意圖。FIG. 7 is a schematic diagram showing waveforms of a switching signal generated by using a voltage valley detecting function and a cutoff signal in the control module of the present disclosure.
第8圖係繪示本揭露之直流轉交流電力轉換裝置所採取之第一種開關控制策略,用以產生交流輸出端之輸出電流的波形示意圖。FIG. 8 is a schematic diagram showing a waveform of an output current of an AC output terminal, which is a first switching control strategy adopted by the DC-to-AC power conversion device of the present disclosure.
第9圖係繪示本揭露之直流轉交流電力轉換裝置所採取之第二種開關控制策略,用以產生交流輸出端之輸出電流的波形示意圖。FIG. 9 is a schematic diagram showing a waveform of an output current of an AC output terminal according to a second switching control strategy adopted by the DC-to-AC power conversion device of the present disclosure.
第10圖係繪示本揭露之直流轉交流電力轉換方法的步驟流程圖。FIG. 10 is a flow chart showing the steps of the DC-to-AC power conversion method of the present disclosure.
S201~S211‧‧‧步驟S201~S211‧‧‧Steps
Claims (17)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101150917A TWI481181B (en) | 2012-12-28 | 2012-12-28 | Dc to ac power conversion apparatus and method thereof |
US13/939,916 US9184672B2 (en) | 2012-12-28 | 2013-07-11 | DC to AC power conversion with resonance valley detection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101150917A TWI481181B (en) | 2012-12-28 | 2012-12-28 | Dc to ac power conversion apparatus and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201427263A TW201427263A (en) | 2014-07-01 |
TWI481181B true TWI481181B (en) | 2015-04-11 |
Family
ID=51017029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101150917A TWI481181B (en) | 2012-12-28 | 2012-12-28 | Dc to ac power conversion apparatus and method thereof |
Country Status (2)
Country | Link |
---|---|
US (1) | US9184672B2 (en) |
TW (1) | TWI481181B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014121123A (en) * | 2012-12-13 | 2014-06-30 | Fujitsu Ltd | Power supply device |
US9793883B2 (en) * | 2015-09-28 | 2017-10-17 | Cypress Semiconductor Corporation | Valley detection circuit and drive circuit |
TWI563773B (en) * | 2015-12-01 | 2016-12-21 | Asian Power Devices Inc | Automatically switching auxiliary winding power supply apparatus |
US10742129B2 (en) * | 2016-06-20 | 2020-08-11 | Rompower Technology Holdings, Llc | Very high efficiency soft switching converter AKA the adjud converter |
AT519188B1 (en) * | 2016-09-26 | 2023-03-15 | Lunatone Ind Elektronik Gmbh | flyback converter arrangement |
TWI656722B (en) * | 2017-04-28 | 2019-04-11 | 偉詮電子股份有限公司 | High voltage charging control method, power controller, and power supply |
US10224827B1 (en) * | 2018-02-15 | 2019-03-05 | Futurewei Technologies, Inc. | Power converter with wide DC voltage range |
CN109001523B (en) * | 2018-08-02 | 2020-11-20 | 西安鼎芯微电子有限公司 | Wave trough detection device of alternating current-direct current converter |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080089103A1 (en) * | 2005-06-13 | 2008-04-17 | Cheng-Chia Hsu | High efficiency dc to ac power converter |
CN100448153C (en) * | 2004-09-24 | 2008-12-31 | 南京航空航天大学 | Back exciting converter main circuit topology |
CN201430532Y (en) * | 2009-06-15 | 2010-03-24 | 浙江大学 | Zero voltage switch flyback type DC-DC power supply conversion device |
TW201101691A (en) * | 2009-06-16 | 2011-01-01 | Grenergy Opto Inc | Method and device to detect the voltage of quasi-resonant wave trough |
TW201113531A (en) * | 2009-10-09 | 2011-04-16 | Richpower Microelectronics | Apparatus and method for output current sense at primary side in a flyback converter |
CN102185482A (en) * | 2011-04-12 | 2011-09-14 | 聚辰半导体(上海)有限公司 | Switch power controller and valley bottom switching method thereof |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1244799B (en) | 1990-10-19 | 1994-09-05 | Italtel Spa | DC-AC CONVERTER |
AUPS143902A0 (en) | 2002-03-28 | 2002-05-09 | Curtin University Of Technology | Power conversion system and method of converting power |
JP2004015900A (en) | 2002-06-05 | 2004-01-15 | Omron Corp | Electric power conversion system of push-pull circuit |
GB2454389B (en) | 2006-01-13 | 2009-08-26 | Enecsys Ltd | Power conditioning unit |
AU2007229854B2 (en) | 2006-03-23 | 2011-02-03 | Enphase Energy, Inc. | Method and apparatus for converting direct current to alternating current |
JP5208374B2 (en) | 2006-04-18 | 2013-06-12 | シャープ株式会社 | Grid interconnection power conditioner and grid interconnection power system |
US8537572B2 (en) | 2007-09-28 | 2013-09-17 | Enphase Energy, Inc. | Method and apparatus for providing power conversion using an interleaved flyback converter with automatic balancing |
US7916505B2 (en) | 2008-03-06 | 2011-03-29 | Enphase Energy, Inc. | Method and apparatus for a leakage energy recovery circuit |
BR112012021083A2 (en) | 2010-02-22 | 2018-04-03 | Petra Solar Inc | method and system for controlling resonant converters used in solar inverters |
CN102201699A (en) * | 2010-03-23 | 2011-09-28 | 百富(澳门离岸商业服务)有限公司 | Distributed power supply system with digital power supply manager for providing digital closed loop power control |
JP5488274B2 (en) * | 2010-07-08 | 2014-05-14 | 富士電機株式会社 | Semiconductor integrated circuit and switching power supply device |
TWI422136B (en) | 2010-10-08 | 2014-01-01 | Ind Tech Res Inst | Circuit module for dc-ac converter adapted solar power ac units |
-
2012
- 2012-12-28 TW TW101150917A patent/TWI481181B/en active
-
2013
- 2013-07-11 US US13/939,916 patent/US9184672B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100448153C (en) * | 2004-09-24 | 2008-12-31 | 南京航空航天大学 | Back exciting converter main circuit topology |
US20080089103A1 (en) * | 2005-06-13 | 2008-04-17 | Cheng-Chia Hsu | High efficiency dc to ac power converter |
CN201430532Y (en) * | 2009-06-15 | 2010-03-24 | 浙江大学 | Zero voltage switch flyback type DC-DC power supply conversion device |
TW201101691A (en) * | 2009-06-16 | 2011-01-01 | Grenergy Opto Inc | Method and device to detect the voltage of quasi-resonant wave trough |
TW201113531A (en) * | 2009-10-09 | 2011-04-16 | Richpower Microelectronics | Apparatus and method for output current sense at primary side in a flyback converter |
CN102185482A (en) * | 2011-04-12 | 2011-09-14 | 聚辰半导体(上海)有限公司 | Switch power controller and valley bottom switching method thereof |
Also Published As
Publication number | Publication date |
---|---|
US9184672B2 (en) | 2015-11-10 |
TW201427263A (en) | 2014-07-01 |
US20140185341A1 (en) | 2014-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI481181B (en) | Dc to ac power conversion apparatus and method thereof | |
EP3058648B1 (en) | Gate drive apparatus for resonant converters | |
Hillers et al. | Design of a highly efficient bidirectional isolated LLC resonant converter | |
Gui et al. | A high voltage-gain LLC micro-converter with high efficiency in wide input range for PV applications | |
CN202167993U (en) | Phase-shifted full-bridge switching power supply converter with lossless snubber circuit | |
Ryu et al. | Interleaved active clamp flyback inverter using a synchronous rectifier for a photovoltaic AC module system | |
JP2011526478A (en) | Resonant power converter | |
CN101312330A (en) | High voltage power source of resonant transformer | |
JP2016103970A (en) | Power converter | |
CN112003467B (en) | Three-switching tube bridgeless Cuk power factor correction converter | |
US9531299B2 (en) | Resonant single stage DC-AC converter with capacitors forming a half-bridge | |
CN102882381A (en) | Resonant converter | |
Shin et al. | Analysis of LLC resonant converter with current-doubler rectification circuit | |
CN201199674Y (en) | High-voltage power supply apparatus for resonant converter | |
Prasanna et al. | Analysis and design of zero-voltage-switching current-fed isolated full-bridge Dc/Dc converter | |
CN113676057B (en) | LLC synchronous rectification circuit based on secondary current simulation | |
JP5658922B2 (en) | Grid-connected power converter and control method for grid-connected power conversion | |
Lim et al. | Capacitively-aided switching technique for high-frequency isolated bus converters | |
Xie et al. | A novel high power density dual-buck inverter with coupled filter inductors | |
TW201103243A (en) | Resonant power converter | |
KR20140063923A (en) | Soft switching device of dab converter at light load | |
Ashrafinia et al. | Development of bi-directional isolated DC-DC converter for battery test equipment | |
Hirao et al. | An isolated bi-directional soft switching DC-DC converter for energy storage system and its voltage stress suppression approach | |
JP2012253968A (en) | Power conversion device | |
Zhu et al. | Analysis of the startup method for building up DC voltage via body diode rectifying in Dual Active Bridge converter |