201101501 六、發明說明: 【發明所屬之技術領域】 士 a本發明是有關於—種電池的製作方法,特別是指一種 太陽能電池的製作方法。 行引疋私種 【先前技術】 - 太陽能電池大概可分為晶體與薄膜太陪-h _,曰a 士 ιθ 寻膜太%能電池兩大 - 别市琢上’晶體太陽能電池的材料大致可分為矽曰 Ο能電、·也的1化合物半導體構成之太陽 :電t:t()是目前最高的效率,但因生產成本昂 、、也,由:::在)數如航太等用途’而秒晶體太陽能電 太陽=理和過程都和半導體相當接近,且石夕晶體 電池具有轉換效率佳(最佳約為27%)、設備成本低、 快、良率又高的優勢,因此為目前生產太陽能電 參閱圖卜一般晶體太陽能電池的結構,包含一底電極 〇 二—頂電極17,及—夾設於該底、頂電極16、17之間、 • ^ V體材料構成並具有p_n結構的作動膜當光線進 ^作動臈18日夺’該作動膜18可以光伏特效應將光能轉 成電月b ϋ藉由该底、頂電極! 6、丄7的配合將電能 輸出。 、 >閱圖2,上述之梦晶體太陽能電池的製造方式包含_ $ V驟11、一切片步驟12、一#刻及拋光步驟13、一擴 散步驟14與一電極製作步驟15。 °亥準備步驟11是利用晶種在拉晶爐中成長出一圓柱形 201101501 的單晶矽碇,並將單晶矽碇修角成四角柱形,便於後續的 整齊排列設置。 該切片步驟12是用切片機將該單晶矽碇切成一具有一 - 疋厚度的晶圓’此時,每一晶圓會因切割而產生至少一應 力層。 該敍刻及拋光步驟13是先钮刻去除該單晶石夕碳在切片 過私中所造成的應力層後’再抛光表面以降低微粒(particle) 附著在晶圓上的可能性,而製得一基板。 該擴散步驟14是利用高溫熱擴散使基板形成一層極薄❹ 且電性與其他基板區域相反的半導體層;更詳細地說,例 如原本在敍刻及拋光步驟製得是P型基板,接著擴散步驟 則在p型基板上形成一層極薄的η形半導體層,製得一作 動晶圓。 該電極製作步驟丨5是將製作完成的作動晶圓,用銀膠 印刷或疋用热錢的方法,在作動晶圓上形成可導電的電 極’完成晶體太陽電池的製作。 然而,上述之晶體太陽能電池是以晶碇直接進行切割◎ 成晶圓後再進行後續製程步驟而製得,若是以圓盤鋸進行 切割,由於物理性質的限制,切割後的矽晶圓厚度最少也_ 要200陶,因此,在製造大面積發電模組時對石夕原料的用 量也相對龐大;而若改以較先進之線鋸進行切晶圓切割, 則可將石夕晶圓厚度降至大約12〇,,如此雖然可以大幅降 低石夕晶材料的使用及耗損,但是,相關設備及研發^的 投入也同時增加了製造的另—項成本。 、 4 201101501 另外,不論是以圓盤録或是線鑛進行切割,於晶石定切 割的過程中晶圓的晶格都容易會受到應力的破壞而出現厚 度不-的應力I’進而必須以#刻及抛光步驟去除晶 到應力破壞的應力層’而由於此等應力層的厚度並不相 同,過度钱刻造成成本的浪費,而姓刻去除不足,則會造 成後續製成之太陽能電池的效率不佳,及 題。 _ Ο201101501 VI. Description of the invention: [Technical field to which the invention pertains] A The present invention relates to a method for fabricating a battery, and more particularly to a method for fabricating a solar cell.引疋私疋 [Prior Art] - Solar cells can be roughly divided into crystals and films too accompanying -h _, 曰a 士θ 寻 太 太 % % % % % % % % % % % % ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' It is divided into a solar compound composed of a compound semiconductor and a compound semiconductor: electric t:t() is the highest efficiency at present, but because of the high production cost, also by::: in) number such as aerospace, etc. Use 'and the second crystal solar power sun = the process and the process are quite close to the semiconductor, and the Shi Xi crystal cell has the advantages of good conversion efficiency (optimally about 27%), low equipment cost, fast, high yield, so For the current production of solar energy, reference is made to the structure of a general crystal solar cell, which comprises a bottom electrode 〇-top electrode 17, and is sandwiched between the bottom and top electrodes 16, 17 and • V body material and has The p_n structure of the actuating film when the light enters the action for 18 days, the actuating film 18 can convert the light energy into electricity moon b by the photovoltaic effect ϋ by the bottom and top electrodes! 6. The cooperation of 丄7 outputs the electric energy. Referring to Fig. 2, the above-described manufacturing method of the dream crystal solar cell includes _V V11, a slicing step 12, an engraving and polishing step 13, a diffusion step 14 and an electrode fabrication step 15. The preparation step 11 is to use a seed crystal to grow a cylindrical single crystal 2011 201101501 in a crystal pulling furnace, and to trim the single crystal 成 into a quadrangular prism shape, so as to facilitate subsequent alignment. The slicing step 12 is to slice the single crystal crucible into a wafer having a thickness of a crucible by a microtome. At this time, each wafer may be subjected to at least one stressor layer by cutting. The sculpt and polishing step 13 is to first remove the stress layer caused by the single crystal of the single crystal, and then polish the surface to reduce the possibility of particles adhering to the wafer. Get a substrate. The diffusion step 14 is to form a semiconductor layer which is extremely thin and electrically opposite to other substrate regions by high temperature thermal diffusion; more specifically, for example, a P-type substrate is prepared in the etching and polishing steps, and then The diffusion step forms an extremely thin n-type semiconductor layer on the p-type substrate to produce an active wafer. The electrode fabrication step 丨5 is to complete the fabrication of the crystal solar cell by forming a completed active wafer, using silver paste printing or using hot money to form a conductive electrode on the active wafer. However, the above-mentioned crystalline solar cell is produced by directly cutting the wafer by crystallization, and then performing subsequent processing steps after wafer formation. If cutting by a circular saw, the thickness of the ruthenium wafer after dicing is minimal due to physical properties. Also _ to 200 pottery, therefore, the amount of raw material used for the production of large-area power generation modules is relatively large; and if the wafer cutting is performed by a more advanced wire saw, the thickness of the stone wafer can be reduced. Up to about 12 〇, although this can greatly reduce the use and wear of Shi Xijing materials, but the investment in related equipment and research and development also increases the cost of manufacturing. 4 201101501 In addition, whether it is cutting with disc or wire ore, the crystal lattice of the wafer is easily damaged by stress during the cutting process of the spar, and the stress I' of thickness is not necessary. #刻 and polishing steps to remove the crystal to stress-damaged stress layer' and because the thickness of these stress layers is not the same, excessive money is a waste of cost, and the surname is insufficiently removed, which will result in the subsequent fabrication of solar cells. Inefficient, and the problem. _ Ο
旦因此,广夕晶成本高漲的今曰,如何減低石夕晶基材的 用里並同%兼顧太陽能電池的效率,開發同時具有高效 率、㈣格及製程簡單的太陽能電池-直是學界及業界i 斷持續努力的目標。 【發明内容】 口此本^明之目的’即在提供-種低晶圓耗用率的 太陽能電池之製作方法。 於是,本發明一種太陽能電池之製作方法,包含一準 備步驟、、一離子植入步驟、一本質半導體層形成步驟、一 第-半導體層形成步驟、—第—導電基板形成步驟、一分 離步驟,及一第—電極形成步驟。 該準備步驟’是準備一具有相反之—第一面及一第二 面的基材。 該離子植入步驟 材預疋深度範圍中, 成且臨靠近該第—面 入層的基底層。 ,是將第一離子自該第一面植入該基 使該基材具有一由該第一離子植入形 的植入層,及一連接該第二面與該植 5 201101501 體 :本質半導體層形成步驟,是自該第一面形成一 組織屬於非晶結構及/或微晶結構的本質半導❹。 ::第-半導體層形成步驟,是於該本質半導體層相反 =入層的一面形成—電子特性與該基材相反的 導體層。 τ 疋在該第一半導體層上形 琢弟一導電基板形成步 成一可導電且透明的第一導電基板。 該分離步驟,是沿該植人層中第—離子濃度最高的地 方’將該植人層與該基底層分離,令該植人層裸露出。 、該第-電極形成步驟,是形成—可導電並與該植入層 聲接的第一電極。 利用離子植入方式進行基材的分 本發明之功效在於 割,不僅可精確控制石夕晶基材植入層的厚度,且經分離後 之基底層可再重複使用,而可有效降低⑦晶基材的耗用 量’並可利用形成不同結晶結構的半導體層,以利吸收不 同波#又區域的光譜,提升太陽能電池的轉換效率。 【實施方式】 ' 有關本發明之前述及其他技術内容、特點與功效,在 以下配5參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 在本發明被詳細描述之前,要注意的是,在以下的說 明内容中,類似的元件是以相同的編號來表示。 參閱圖3、圖4,.本發明一種太陽能電池的製作方法的 一較佳實施例,是製作如圖4所示的太陽能電池。 201101501 3 ' -第 電極5間 參閱圖4,該太陽能電池包含一第一導電基板 一電極5,及一夾設於該第一導電基板3及該第— 的作動膜4。 該第-導電基板3包括-由玻璃構成的透明底材μ及 一由透明金屬氧化物(例如氧化銦錫,IT〇)為材料,並形成 於該透明底材31表面的透明導電膜32。 乂 ❹Therefore, in the future, the future cost of Guang Xijing is so high, how to reduce the efficiency of the solar cell and the solar cell efficiency, and to develop solar cells with high efficiency, (four) and simple process - straightforward academics and The industry is constantly striving for the goal. SUMMARY OF THE INVENTION The purpose of the present invention is to provide a method for fabricating a solar cell having a low wafer utilization rate. Thus, a method of fabricating a solar cell of the present invention comprises a preparation step, an ion implantation step, an intrinsic semiconductor layer formation step, a first semiconductor layer formation step, a first conductive substrate formation step, and a separation step, And a first electrode forming step. The preparation step ' is to prepare a substrate having the opposite - the first side and the second side. The ion implantation step is in the pre-deployment depth range and is adjacent to the basal layer of the first-into-layer. Implanting the first ion from the first surface into the substrate such that the substrate has an implant layer formed by the first ion implantation, and connecting the second surface to the implant 5 201101501 body: an intrinsic semiconductor The layer forming step is to form an intrinsic semiconducting enthalpy from which the microstructure belongs to an amorphous structure and/or a microcrystalline structure. The :first-semiconductor layer forming step is to form a conductor layer having an opposite electronic property to the substrate on the opposite side of the intrinsic semiconductor layer. τ 形 forming a conductive substrate on the first semiconductor layer to form a conductive and transparent first conductive substrate. In the separating step, the implanted layer is separated from the base layer along the place where the concentration of the first ion in the implanted layer is the highest, and the implanted layer is exposed. The first electrode forming step is to form a first electrode that is electrically conductive and acoustically coupled to the implant layer. Substrate separation by ion implantation The effect of the invention lies in cutting, which not only can precisely control the thickness of the implantation layer of the Shi Xijing substrate, and the separated substrate layer can be reused, thereby effectively reducing the 7 crystal The consumption of the substrate can be utilized to form a semiconductor layer with different crystal structures to absorb the spectrum of different wavelengths and to improve the conversion efficiency of the solar cell. [Embodiment] The foregoing and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiment of FIG. Before the present invention is described in detail, it is noted that in the following description, similar elements are denoted by the same reference numerals. Referring to Figures 3 and 4, a preferred embodiment of a method of fabricating a solar cell of the present invention is to fabricate a solar cell as shown in Figure 4. 201101501 3 ' - First electrode 5 Referring to FIG. 4, the solar cell comprises a first conductive substrate, an electrode 5, and a first conductive substrate 3 and the first movable film 4. The first conductive substrate 3 includes a transparent substrate μ made of glass and a transparent conductive film 32 made of a transparent metal oxide (e.g., indium tin oxide, IT〇) and formed on the surface of the transparent substrate 31.乂 ❹
、該作動膜4可在吸收光能時以光伏特效應將光能轉換 成電能;於本實施例中該作動膜4包括由該透明導電膜Μ 表面依序向遠離該第-導電基板3方向形成的—由ρ型非 晶石夕(p_a_Si:H)為材料構成的一第一半導體層Μ、—由非晶 矽(i-a-S1:H)為材料構成之本質半導體層42、一由n型單晶 石夕為材料構成的植人層43,及—由η型非晶啊Η,為: 料構成的第二半導體層44。 該第電極5由鋁為材料構成,形成在該作動膜4頂 可…亥透明導電膜32相互配合,將該作動膜4產生的 電流向外輸出。 田光照射該太陽能電 '池時,錢由該作動膜4以光伏 特六應將光月b轉換成電能,轉換的電能由第一電極5與透 明V電膜32配合向外輪出。 參閱圖3,卜:;+、μ丄β 工建的太%能電池在配合以下本發明的太陽 能電池的t 、法的較佳實施例的說明後,當可更加清楚 明白。 本發明太陽能 電池的製作方法的較佳實施例包含一準 備步驟21、 —氯離子植入步驟 22、一本質半導體層形成步 7 201101501 驟23、~說 t 步驟25、—::牛導體層形成步驟第 分離步驟26、—笛_ , * 一第1_❹驟28 導體層形成步 導電基板形成 27,及 及-:=Γ:Γ,準備-具有相反之-第-面 晶半導體材料i成’型單晶半導體,或p型單 —導二::實施〜是…單_ 接著進行該離子植入步 該第—面植入兮其^ ^ ,此步驟是將第一離子自 該第-離子植入形成且臨靠、斤二圍中使§亥基材具有一由 連接該第二面料植人>4亥第一面的植入層43,及一 卸興該植入層43的基底層。 材第於例中是在2〇°Kev的預定能量下,於距離該基 材弟一面約5〇〇〇A的深声虛 〜度處植入浪度為5Xl〇i6Cnr2的氨離 于少亥八有植入層43及該基底層的基材。 」後進行j本$半導體層形成步驟η,以電聚增強化 學氣相沉積方式’在該植人層43反向於該基底層的一面形 成一非晶結構或微晶結構的本質半導體層42,該本質半導 體層42為光伏特效應的主要產生區域,可以矽、碳化矽、 鍺化石夕等半導體材料構成;於本實施例中該本質半導體層 42為以非晶石夕為材料構成,且厚度約為3000〜5000Α。 繼續進行該第一半導體層形成步驟24 ,於該本質半導 體層42相反於該植入層43的一面形成一電子特性與該基 底層相反的第一半導體層41 ;於本實施例中,是以電漿增 強化學氣相沉積方式於該本質半導體層42相反於該植入層 201101501 的面形成厚度約為150〜200 Α的第一半導體層41。 再進行s亥第一導電基板形成步驟25,在該第一半導體 層上41形成一可導電且透明的第一導電基板3 ;更詳細地 說疋先在该第一半導體^ 41上,濺鍍-層由金屬氧化物 構成的相導電膜32後,再將—透明之基材η以谬貼合 連接該導電臈,並在45代條件下加熱3G分鐘固化,形成 該第一導電基板3。 Ο ο 接著進行該分離步驟26,沿該植入層中氫離子濃度最 高的地方將該植人層43與該基底層分離,令該植入層Μ 裸露出’由於氫離子所造成的破壞多半集中在它們停止之 =(即氫離子濃度最高之處)’因此在基材内部會產生一層相 當跪弱的平面’所以在高溫處理下即可沿該氣離子濃^最 向之處=造成之脆弱面將該植人層43與該基底層分離。 值得-提的是,由於離子植入後對基材的晶格破壞均 。中在匕們停止之處,而離子植入的深度範圍可經由製程 條件精確的控制,因此藉韓子植人將基材進行分割所得 的厚度極薄’例如’於本實施例中藉由控制植入離子深产 為·〇A,因此經分離後即可得到一由單晶石夕構成,且厚= ,5000 A的植入層43’不僅可改善習知以物理方法進行切 副之限制(單㈣至少12G_),減财晶材材料的耗用 ;分離後之基底層可再重複使用,而可有效的再利用石夕曰 基材,另外,該經分離後之植人層43表面為—粗链面,= 同時用以降低人射光於接觸該植人層43表面時的全 率,而增加太陽能電池的收光效率。 、機 9 201101501 繼續進行該第二半導體層形成步驟27,在該植入層43 裸露出的一面,以電漿增強化學氣相沉積方式形成與該第 一半導體層41的電子特性相反的第二半導體層料;於本實 施例中,是以電漿增強化學氣相沉積方式於該植入層43 ^ 露出的一面,形成由n型非晶矽(^_81:11)為材料構成且厚 度約為150〜200A的第二半導體層44。 最後進行該第一電極形成步驟28,形成可導電並與該 第二半導體層44連接的第一電極5,本實施例中該第一電 極5形成步驟,是經由熱蒸鍍方式透過金屬遮罩鍍上一層 由金屬鋁構成的第一電極5後,即可製得如圖4所示之^ 面吸光太陽能電池。 ^又值彳寸一提的是,當該第一電極5是以透明的金屬 氧化物為材料構成時,則可製得如圖5所示,可雙面吸光 的太陽能電池’而得以進一步提升太陽能電池的收光面 積。 綜上所述,本發明該太陽能電池的製作方法是運用以 離子植人方式來精確的控㈣晶基材的厚度,不僅可有效 解决目刖白知因以物理切割矽晶圓之極限厚度、或因切割 後之研磨製成造成的⑦晶基材浪費的問題,且可在單晶石夕 的表面製作不同的微晶結構或非晶結構的混合薄膜,以利 吸收不同區的光譜,提升轉換效率,並可用以製作雙面吸 ί的太陽能電池’同時提升太陽能電池的吸光面積,故禮 貫可達到本發明之目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 10 201101501 — 能以此限定本發明實施之範圍,即大凡依本發明申請專利 • 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是'~~不意圖’§兄明習知晶體太陽能電池的結構, 圖2是一流程圖,說明習知晶體太陽能電池的製造流 程; 圖3是一流程圖,說明本發明太陽能電池的製作方法 〇 的較佳實施例; 圖4是一示意圖,說明以本發明該較佳實施例製作而 得的太陽能電池,及 圖5是一示意圖,說明以本發明該較佳實施例製作而 得之太陽能電池的另一態樣。 ❹ 11 201101501 【主要元件符號說明】 21 準備步驟 28 第一電極形成步驟 22 氫離子植入步驟 3 第一導電基板 23 本質半導體層形成 31 透明底材 步驟 32 透明導電膜 24 第一半導體層形成 4 作動膜 步驟 41 第一半導體層 25 第一導電基板形成 42 本質半導體層 步驟 43 植入層 26 分離步驟 44 第二半導體層 27 第二半導體層形成 5 第一電極 步驟 12The actuating film 4 converts the light energy into electrical energy by the photovoltaic effect when absorbing the light energy; in the embodiment, the actuating film 4 comprises the surface of the transparent conductive film 依 in the direction away from the first conductive substrate 3 Formed—a first semiconductor layer composed of a p-type amorphous stone (p_a_Si:H) material, an intrinsic semiconductor layer 42 composed of an amorphous germanium (ia-S1:H) material, and a n The single crystal stone is made of a material, and the second semiconductor layer 44 is made of n-type amorphous material. The first electrode 5 is made of aluminum as a material, and is formed on the top of the movable film 4, and the transparent conductive film 32 is fitted to each other to output the current generated by the movable film 4 to the outside. When Tianguang illuminates the solar cell, the money is converted into electric energy by the photovoltaic film 4, and the converted electric energy is rotated outward by the first electrode 5 and the transparent V electric film 32. Referring to Fig. 3, the following can be more clearly understood from the following description of the preferred embodiment of the solar cell of the present invention. A preferred embodiment of the method for fabricating a solar cell of the present invention comprises a preparation step 21, a chloride ion implantation step 22, an intrinsic semiconductor layer formation step 7 201101501, a step 23, a t step 25, a:: formation of a bovine conductor layer Step separation step 26, - flute _, * a first step 28 28 conductor layer forming step conductive substrate formation 27, and -: = Γ: Γ, prepared - has the opposite - first - face crystal semiconductor material i into 'type Single crystal semiconductor, or p-type single-conductor two:: implementation ~ is ... single _ followed by the ion implantation step of the first surface implant 兮 ^ ^, this step is to the first ion from the first ion implant Into the formation and the front, the two sides of the package, the § hai substrate has an implant layer 43 connected to the first side of the second fabric implant, and a substrate layer for unloading the implant layer 43 . In the example, in the case of a predetermined energy of 2〇°Kev, the ammonia with a wave of 5×l〇i6Cnr2 is implanted at a depth of about 5〇〇〇A from the side of the substrate. Eight have an implant layer 43 and a substrate of the base layer. Thereafter, the semiconductor layer forming step η is performed, and an intrinsic semiconductor layer 42 having an amorphous structure or a microcrystalline structure is formed on the side of the implanted layer 43 opposite to the underlying layer by electropolymerization enhanced chemical vapor deposition. The intrinsic semiconductor layer 42 is a main generating region of the photovoltaic special effect, and can be composed of a semiconductor material such as tantalum, niobium carbide or tantalum fossil; in the embodiment, the intrinsic semiconductor layer 42 is made of amorphous alum, and The thickness is about 3000~5000Α. The first semiconductor layer forming step 24 is continued, and the first semiconductor layer 41 having an electronic property opposite to the base layer is formed on the opposite side of the implantation layer 43 from the intrinsic semiconductor layer 42. In this embodiment, The plasma enhanced chemical vapor deposition method forms a first semiconductor layer 41 having a thickness of about 150 to 200 Å on the surface of the intrinsic semiconductor layer 42 opposite to the implant layer 201101501. And performing a first conductive substrate forming step 25 on the first semiconductor layer 41 to form a conductive and transparent first conductive substrate 3; more specifically, first sputtering on the first semiconductor 41 After the phase conductive film 32 made of a metal oxide is layered, the transparent substrate η is bonded to the conductive ruthenium by a ruthenium, and is cured by heating for 3 minutes in a 45-generation condition to form the first conductive substrate 3. ο ο Next, the separation step 26 is performed to separate the implant layer 43 from the substrate layer along the place where the hydrogen ion concentration is highest in the implant layer, so that the implant layer is exposed, and the damage caused by hydrogen ions is mostly Concentrate on the = where they stop (ie, where the hydrogen ion concentration is highest) 'so there will be a rather weak plane inside the substrate' so that it can be concentrated along the gas ion at the high temperature. The fragile surface separates the implant layer 43 from the substrate layer. It is worth mentioning that the lattice damage to the substrate after ion implantation is sufficient. Where we stop, and the depth range of ion implantation can be precisely controlled by the process conditions, so the thickness obtained by Hanzi implanted the substrate is extremely thin 'for example' in this embodiment by controlling implantation The deep ion production is 〇A, so after separation, an implant layer 43' composed of single crystal slabs and thickness = 5000 A can not only improve the physical limitation of cutting. (4) At least 12G_), the consumption of the material for the reduction of the crystal material; the separated base layer can be reused, and the Shi Xiyu substrate can be effectively reused, and the surface of the separated implanted layer 43 is - The thick chain surface, = at the same time is used to reduce the full rate of human light when contacting the surface of the implant layer 43, and increase the light collection efficiency of the solar cell. , the machine 9 201101501 continues the second semiconductor layer forming step 27, forming a second opposite to the electronic characteristic of the first semiconductor layer 41 by plasma enhanced chemical vapor deposition on the exposed side of the implant layer 43 In the present embodiment, the surface of the implant layer 43 is exposed by plasma enhanced chemical vapor deposition, and is formed of an n-type amorphous germanium (^_81:11) and has a thickness of about The second semiconductor layer 44 is 150 to 200A. Finally, the first electrode forming step 28 is performed to form a first electrode 5 electrically conductive and connected to the second semiconductor layer 44. In this embodiment, the first electrode 5 is formed by a thermal evaporation method through the metal mask. After plating a first electrode 5 made of metal aluminum, a surface-absorbing solar cell as shown in Fig. 4 can be obtained. ^ It is also worth mentioning that when the first electrode 5 is made of a transparent metal oxide, a solar cell which can be double-sidedly absorbed as shown in FIG. 5 can be obtained and further improved. The light-receiving area of a solar cell. In summary, the solar cell manufacturing method of the present invention uses the ion implantation method to precisely control the thickness of the (tetra) crystal substrate, which can effectively solve the limit thickness of the physical cutting silicon wafer. Or the problem of waste of the 7-crystal substrate caused by the grinding after cutting, and a mixed film of different microcrystalline structure or amorphous structure can be formed on the surface of the single crystal stone to absorb the spectrum of different regions and enhance The conversion efficiency can be used to make a double-sided solar cell' while simultaneously increasing the light absorption area of the solar cell, so that the purpose of the present invention can be achieved. However, the above is only a preferred embodiment of the present invention, and is not limited to the scope of the present invention, that is, the simple scope of the invention and the scope of the invention. Both effect changes and modifications are still within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a conventional solar cell of a known solar cell; FIG. 2 is a flow chart of FIG. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 4 is a schematic view showing a solar cell fabricated by the preferred embodiment of the present invention, and FIG. 5 is a schematic view showing the comparison of the present invention. Another aspect of a solar cell made by the preferred embodiment. ❹ 11 201101501 [Description of main component symbols] 21 Preparation step 28 First electrode formation step 22 Hydrogen ion implantation step 3 First conductive substrate 23 Intrinsic semiconductor layer formation 31 Transparent substrate step 32 Transparent conductive film 24 First semiconductor layer formation 4 Actuation film step 41 First semiconductor layer 25 First conductive substrate formation 42 Intrinsic semiconductor layer Step 43 Implant layer 26 Separation step 44 Second semiconductor layer 27 Second semiconductor layer formation 5 First electrode Step 12