TW201101297A - Systems and methods for hard disk drive data storage including reduced latency loop recovery - Google Patents

Systems and methods for hard disk drive data storage including reduced latency loop recovery Download PDF

Info

Publication number
TW201101297A
TW201101297A TW098128399A TW98128399A TW201101297A TW 201101297 A TW201101297 A TW 201101297A TW 098128399 A TW098128399 A TW 098128399A TW 98128399 A TW98128399 A TW 98128399A TW 201101297 A TW201101297 A TW 201101297A
Authority
TW
Taiwan
Prior art keywords
circuit
output
low frequency
derivative
frequency offset
Prior art date
Application number
TW098128399A
Other languages
Chinese (zh)
Other versions
TWI476765B (en
Inventor
Aravind Nayak Ratnakar
Original Assignee
Lsi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lsi Corp filed Critical Lsi Corp
Publication of TW201101297A publication Critical patent/TW201101297A/en
Application granted granted Critical
Publication of TWI476765B publication Critical patent/TWI476765B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10037A/D conversion, D/A conversion, sampling, slicing and digital quantisation or adjusting parameters thereof
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10046Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10222Improvement or modification of read or write signals clock-related aspects, e.g. phase or frequency adjustment or bit synchronisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B21/00Head arrangements not specific to the method of recording or reproducing
    • G11B21/02Driving or moving of heads
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2508Magnetic discs
    • G11B2220/2516Hard disks

Abstract

Various embodiments of the present invention provide systems and methods for data processing. As an example, a data processing circuit is discussed that includes a summation circuit, a data detector circuit, an error feedback circuit, and an error calculation circuit. The summation circuit subtracts a low frequency offset feedback from an input signal to yield a processing output. The data detector circuit applies a data detection algorithm to a derivative of the processing output and provides an ideal output. The error feedback circuit includes a conditional subtraction circuit that conditionally subtracts an interim low frequency offset correction signal from a delayed version of the derivative of the processing output to yield an interim factor. The error calculation circuit generates an interim low frequency offset correction signal based at least in part on the interim factor and a derivative of the ideal output. In such embodiments, the low frequency offset feedback is derived from the interim low frequency offset correction signal.

Description

201101297 六、發明說明: 【發明所屬之技術領域】 本發明係相關於用以儲存資訊之系統 相關於用以減少儲存裝置中的廻路復原潛 【先前技術】 典型資料處理系統接收使用可變增益201101297 VI. Description of the Invention: [Technical Field] The present invention relates to a system for storing information related to reducing the potential for recovery of a circuit in a storage device. [Prior Art] Typical Data Processing System Receives Variable Gain Using

D 比輸入信號。將放大信號轉換成數位信號 位處理技術的其中之一來處理。將來自數 供回到加總元件,以調整低頻偏移。隨著 已發展越來越快的資料處理。因爲如此, 數目方面的反饋潛時已成長。此潛時對廻 面影響。 回到圖1,圖示包括習知技術低頻偏 Q 料偵測系統1 00。資料偵測系統1 00包括 110,其接收類比輸入信號105,及提供放 大輸出1 1 2被提供到加總元件1 99,其加 1 97與放大輸出1 1 2,以提供加總輸出1 1 ί 197是下面將更完整說明之低頻偏移校 1 1 5是放大輸出1 1 2減去低頻偏移。加總 到產生校正輸出125的抗磁非對稱校正電 續時間濾波器1 3 0過濾校正輸出1 2 5,及 1 3 5被提供到類比至數位轉換器1 40。類 及方法,尤其是 時之系統及方法 放大器放大的類 ,及使用各種數 位處理的反饋提 位元週期減少, 關於位元週期的 路穩定性產生負 移反饋廻路之資 可變增益放大器 :大輸出1 12。放 總類比反饋信號 ;。類比反饋信號 正,及加總輸出 輸出1 1 5被提供 路120。使用連 最後的過濾輸出 比至數位轉換器 201101297 140提供對應於過濾輸出135的一連串數位樣本145。一 連串數位樣本145被提供到數位濾波器150,其提供數位 式過濾輸出1 55。由資料偵測器1 60將資料偵測演算法應 用到數位式過濾輸出155,以復原Yideal輸出165。D is more than the input signal. The amplified signal is converted into one of the digital signal bit processing techniques for processing. The source is supplied back to the summing element to adjust the low frequency offset. As data has been developed faster and faster. Because of this, the feedback on the number of potentials has grown. This latent impact on the face. Returning to Figure 1, the illustration includes a prior art low frequency bias material detection system 100. The data detection system 100 includes 110, which receives the analog input signal 105, and provides an amplified output 1 1 2 that is provided to the summing element 1 99, which adds 1 97 and the amplified output 1 1 2 to provide a summed output 1 1 ί 197 is the low frequency offset 1 1 5 which is more fully explained below is the amplified output 1 1 2 minus the low frequency offset. The diamagnetically asymmetrically corrected electrical time filter 1 3 0 filtered correction output 1 2 5 is generated to produce a corrected output 125, and 1 3 5 is provided to an analog to digital converter 140. Classes and methods, especially the time system and method amplifier amplification class, and the feedback bit cycle reduction using various digital processing, the channel stability of the bit period produces a negative shift feedback loop variable gain amplifier: Large output 1 12. Putting a general analogy feedback signal; The analog feedback signal is positive, and the summed output 1 1 5 is provided by way. Using a final filtered output ratio to digital converter 201101297 140 provides a series of digital samples 145 corresponding to filtered output 135. A series of digital samples 145 are provided to a digital filter 150 which provides a digital filtered output 1 55. The data detection algorithm is applied by the data detector 1 60 to the digital filtering output 155 to restore the Yideal output 165.

Yideal輸出165被提供到局部回應目標濾波器180,其 使Yldeal符合局部回應目標且提供目標輸出185。數位式 過濾輸出1 55被提供到延遲電路1 70,其提供延遲信號 1 75,此延遲信號係對應於以足夠校準其與目標輸出1 85 的時間所延遲之數位化過濾輸出1 55。加總元件1 92從延 遲信號175減去目標輸出185,及提供結果當作誤差信號 189。將誤差信號189儲存到偏移更新暫存器190。使用數 位至類比轉換器1 95將偏移更新暫存器1 90的輸出轉換成 類比反饋信號1 97。如上述,類比反饋信號1 97被提供到 從放大輸出1 1 2減去的加總元件1 99。 在加總元件1 99提供加總輸出1 1 5的時間和當可利用 對應於加總輸出1 1 5的類比反饋信號1 9 7時之間具有大量 的潛時。隨著此潛時成長到幾位元週期,當在類比反饋信 號1 97將校正的條件已靠本身解決之後能夠狀況良好的應 用時,其會導致大量的廻路不穩定。事實上,在一些例子 中,類比反饋信號197,而不是操作成負面反饋,可操作 成正面反饋,使不理想的操作條件更明顯。 因此,就至少上述原因,在技藝中存在有用於減少潛 時資料處理之改良系統及方法的需要。 201101297 【發明內容】 本發明係相關於用以儲存資訊之系統及方法,尤其是 相關於用以減少儲存裝置中的廻路復原潛時之系統及方法 〇 本發明的各種實施例提供儲存裝置,其包括儲存媒體 、讀/寫頭組件、類比處理電路、和數位處理電路。讀/寫 頭組件可操作成存取儲存在儲存媒體上的資訊,與將資訊 _ 傳送到類比處理電路。類比處理電路包括加總電路和類比 至數位轉換器。加總電路從資訊的導數減去低頻偏移反饋 ,以產生處理輸出。類比至數位轉換器將處理輸出的導數 轉換成一連串數位樣本。數位處理電路包括資料偵測器電 路、誤差反饋電路、誤差計算電路、和數位至類比轉換器 。資料偵測器電路將資料偵測演算法應用到處理輸出的導 數,與提供理想輸出。誤差反饋電路包括條件減法電路, 其有條件地從一連串數位樣本的導數之延遲版減去臨時低 Q 頻偏移校正信號,以產生臨時因數。誤差計算電路至少部 分依據臨時因數和理想輸出的導數來產生臨時低頻偏移校 正信號。數位至類比轉換器轉換臨時低頻偏移校正信號的 導數,以產生低頻偏移反饋。 在上述實施例的一些實例中,類比處理電路另外包括 抗磁非對稱校正電路和瀘波器。抗磁非對稱校正電路接收 處理輸出與提供校正輸出,及濾波器接收校正輸出與提供 處理輸出的導數。在上述實施例的各種實例中,數位處理 電路另外包括數位濾波器,其接收一連串數位樣本,與提 201101297 供一連串數位樣本的導數。 在上述實施例的一些實例中,加總電路是第一加總電 路,及條件減法電路包括延遲電路和第二加總電路。延遲 電路提供臨時低頻偏移校正信號的延遲版。第二加總電路 從臨時低頻偏移校正信號減去臨時低頻偏移校正信號的延 遲版,以產生補償因數。在一些例子中,上述延遲電路是 第一延遲電路,及條件減法電路另外包括第二延遲電路和 第三加總電路。第二延遲電路接收一連串數位樣本的導數 ,與提供一連串數位樣本的導數之延遲版。第三加總電路 從臨時低頻偏移校正信號的延遲版減去補償因數,以產生 臨時因數。 在上述實施例的一或多個實例中,加總電路是第一加 總電路,及誤差計算電路包括第二家總電路,其從臨時因 數減去理想輸出的導數,以產生臨時低頻偏移校正信號。 在上述實施例的特別實例中,數位處理電路另外包括乘法 電路,其將臨時低頻偏移校正信號乘以增益因數,以產生 臨時低頻偏移校正信號的導數。在一些例子中,增益因數 產生單位爲一的廻路增益。在上述實施例的特別實例中, 誤差計算電路包括局部回應目標電路,其接收理想輸出與 產生理想輸出的導數。 本發明的其他實施例提供資料處理電路。此種資料處 理電路包括加總電路、資料偵測器電路、誤差反饋電路、 和誤差計算電路。加總電路從輸入信號減去低頻偏移反饋 ,以產生處理輸出。資料偵測器電路將資料偵測演算法應 -8 - 201101297 用到處理輸出的導數,與提供理想輸出。誤差反饋電路包 括條件減法電路’其有條件地從處理輸出的導數之延遲版 減去臨時低頻偏移校正信號,以產生臨時因數。誤差計算 電路至少部分依據臨時因數和理想輸出的導數來產生臨時 低頻偏移校正信號。在此種實施例中,低頻偏移反饋導出 自臨時低頻偏移校正信號。 本發明的其他實施例提供用於減少潛時資料處理的方 法。此種方法包括設置加總電路:從輸入信號減去低頻偏Yideal output 165 is provided to local response target filter 180, which aligns Yldeal with the local response target and provides target output 185. The digital filtered output 1 55 is provided to a delay circuit 1 70 that provides a delayed signal 175 that corresponds to a digitized filtered output 1 55 that is delayed by a time sufficient to calibrate it to the target output 185. The summing element 1 92 subtracts the target output 185 from the delay signal 175 and provides the result as an error signal 189. The error signal 189 is stored to the offset update register 190. The output of the offset update register 1 90 is converted to an analog feedback signal 1 97 using a digital to analog converter 1 95. As described above, the analog feedback signal 1 97 is supplied to the summing element 1 99 subtracted from the amplified output 1 1 2 . There is a significant amount of latency between when the summing element 1 99 provides a summing output 1 1 5 and when an analog feedback signal 197 corresponding to the summed output 1 15 is available. As this latent time grows to a few bit periods, it can cause a large number of loop instability when the analog feedback signal 1 97 can be used in a condition that has been corrected by itself. In fact, in some instances, analog feedback signal 197, rather than operating as negative feedback, can operate as positive feedback, making undesirable operating conditions more apparent. Therefore, for at least the above reasons, there is a need in the art for improved systems and methods for reducing latent data processing. 201101297 [Description of the Invention] The present invention relates to systems and methods for storing information, and more particularly to systems and methods for reducing the latency of a circuit in a storage device. Various embodiments of the present invention provide storage devices, It includes a storage medium, a read/write head assembly, an analog processing circuit, and a digital processing circuit. The read/write head assembly is operable to access information stored on the storage medium and to transfer the information to the analog processing circuitry. The analog processing circuit includes a summing circuit and an analog to digital converter. The summing circuit subtracts the low frequency offset feedback from the derivative of the information to produce a processed output. The analog to digital converter converts the derivative of the processed output into a series of digital samples. The digital processing circuit includes a data detector circuit, an error feedback circuit, an error calculation circuit, and a digital to analog converter. The data detector circuit applies a data detection algorithm to the derivative of the processed output and provides an ideal output. The error feedback circuit includes a conditional subtraction circuit that conditionally subtracts the temporary low Q offset correction signal from a delayed version of the derivative of a series of digital samples to produce a temporary factor. The error calculation circuit generates a temporary low frequency offset correction signal based at least in part on the temporary factor and the derivative of the ideal output. The digital to analog converter converts the derivative of the temporary low frequency offset correction signal to produce low frequency offset feedback. In some examples of the above embodiments, the analog processing circuit additionally includes a diamagnetic asymmetry correction circuit and a chopper. The diamagnetic asymmetry correction circuit receives the processed output and provides a corrected output, and the filter receives the corrected output and provides a derivative of the processed output. In various examples of the above embodiments, the digital processing circuit additionally includes a digital filter that receives a series of digital samples and provides a derivative of a series of digital samples. In some examples of the above embodiments, the summing circuit is a first summing circuit, and the conditional subtracting circuit includes a delay circuit and a second summing circuit. The delay circuit provides a delayed version of the temporary low frequency offset correction signal. The second summing circuit subtracts the delayed version of the temporary low frequency offset correction signal from the temporary low frequency offset correction signal to generate a compensation factor. In some examples, the delay circuit is a first delay circuit, and the conditional subtraction circuit additionally includes a second delay circuit and a third summation circuit. The second delay circuit receives the derivative of a series of digital samples and a delayed version of the derivative providing a series of digital samples. The third summing circuit subtracts the compensation factor from the delayed version of the temporary low frequency offset correction signal to produce a temporary factor. In one or more examples of the above embodiments, the summing circuit is a first summing circuit, and the error calculating circuit includes a second main circuit that subtracts the derivative of the ideal output from the temporary factor to produce a temporary low frequency offset Correct the signal. In a particular example of the above embodiment, the digital processing circuit additionally includes a multiplication circuit that multiplies the temporary low frequency offset correction signal by a gain factor to produce a derivative of the temporary low frequency offset correction signal. In some examples, the gain factor produces a loop gain of one. In a particular example of the above embodiment, the error calculation circuit includes a partial response target circuit that receives the ideal output and a derivative that produces an ideal output. Other embodiments of the present invention provide data processing circuitry. Such data processing circuits include summing circuits, data detector circuits, error feedback circuits, and error calculation circuits. The summing circuit subtracts the low frequency offset feedback from the input signal to produce a processed output. The data detector circuit uses the data detection algorithm -8 - 201101297 to process the derivative of the output and provide the ideal output. The error feedback circuit includes a conditional subtraction circuit 'conditionally subtracting the temporary low frequency offset correction signal from the delayed version of the derivative of the processed output to produce a temporary factor. The error calculation circuit generates a temporary low frequency offset correction signal based at least in part on the temporary factor and the derivative of the ideal output. In such an embodiment, the low frequency offset feedback is derived from a temporary low frequency offset correction signal. Other embodiments of the present invention provide methods for reducing latency data processing. This method includes setting up the summing circuit: subtracting the low frequency offset from the input signal

D 移反饋,以產生處理輸出;將資料偵測演算法應用到處理 輸出的導數’以產生理想輸出;實施條件減法,其中從處 理輸出的導數減去臨時低頻偏移校正信號,以在臨時低頻 偏移校正信號變成可用之後的有限週期期間產生臨時因數 ;及從臨時因數減去理想輸出的導數,以產生臨時低頻偏 移校正信號。低頻偏移反饋是臨時低頻偏移校正信號的導 數。在上述實施例的一些實例中,處理輸出的導數是處理 Q 輸出的第一導數,及方法另外包括將臨時低頻偏移校正信 號乘以增益因數,以產生臨時低頻偏移校正信號的導數; 執行處理輸出的第二導數之類比至數位轉換,以產生處理 輸出的第一導數;及執行臨時低頻偏移校正信號的導數之 數位至類比轉換,以產生低頻偏移反饋。 此摘要僅提供本發明的一些實施例之一般槪要。從下 面詳細說明、附錄的申請專利範圍、以及附圖將能夠更加 完整瞭解本發明的許多其他目標、特徵、優點、和其他實 施例。 -9 - 201101297 【實施方式】 本發明係相關於用以儲存資訊之系統及方法,尤其是 相關於用以減少儲存裝置中的廻路復原潛時之系統及方法 〇 低頻校正反饋廻路的適當功能對確保讀取通道裝置中 的合理性能是重要的。不理想的低頻誤差源自於輸入信號 及/或稍候處理輸入信號所使用之類比處理電路系統。本 發明的各種實施例設置低頻偏移校正電路,其在與現存的 偏移校正電路比較時提供減少潛時。此種實施例有賴於誤 差計算路徑中的加總元件,其能夠早期利用預先校正反饋 信號,以及一旦校正反饋信號已經由廻路傳播則用以抵消 預先校正反饋信號。藉由預先利用校正反饋信號,可在資 料處理系統中校正不理想的低頻偏移,而不需要現存廻路 的潛時。 回到圖2,根據本發明的各種實施例圖示包括減少潛 時低頻偏移校正廻路電路的資料偵測系統2 0 0。資料偵測 系統200包括可變增益放大器2 1 0,其接收類比輸入信號 2 05,及提供可變放大輸出212。可變增益放大器210可以 是任何技藝中已知的放大器,其能夠提供可變放大輸出, 並且放大量係依據反饋信號(未圖示)。依據此處所提供 的揭示,精於本技藝之人士將可識別關於本發明的不同實 施例所使用之各種可變增益放大器。類比輸入信號205可 導出自各種來源。例如,資料偵測系統200被用於處理資 料時則從儲存媒體接收,類比輸入信號2 0 5可導出自與磁 -10- 201101297 性儲存媒體(未圖示)有關地配置之讀/寫頭組件(未圖 示)。依據此處所提供的揭示,精於本技藝之人士將能夠 識別用於類比輸入信號205的各種來源。 可變放大輸出2 1 2被提供到加總元件,其從可變放大 輸出212減去類比反饋信號297,以產生處理輸出215。 如下面進一步揭示一般,類比反饋信號297對應於低頻偏 移校正値。如此,處理輸出2 1 5表示減去低頻偏移的可變 _ 放大輸出2 1 2。處理輸出2 1 5被提供到產生校正輸出225 0 之抗磁非對稱校正電路22 0。抗磁非對稱校正電路220可 以是技藝中已知的任何校正電路,其能夠減輕MR非對稱 的影響。使用連續時間濾波器23 0過濾校正輸出225。在 一些例子中,連續時間濾波器230是技藝中已知的RC濾 波器電路,其被調諧以操作成帶通濾波器、高通濾波器、 或低通濾波器。依據此處所提供的揭示,精於本技藝之人 士將能夠識別可被用於當作連續時間濾波器23 0的各種濾 Q 波器。也應注意,依據電路的特定操作,可與連續時間濾 波器23〇 —起包括其他類比處理電路。依據此處所提供的 揭示,精於本技藝之人士將能夠識別可與資料偵測系統 2〇〇結合之各種類比處理電路系統。 將過濾輸出23 5從連續時間濾波器23 0提供到類比至 數位轉換器240。類比至數位轉換器240可以是技藝中已 知的任何電路,其能夠將類比輸入信號轉換成對應的一連 串數位樣本。類比至數位轉換器240抽樣過濾輸出23 5, 與在各自抽樣點提供對應於過濾輸出2 3 5的大小的一連串 -11 - 201101297 數位樣本2 4 5。數位樣本2 4 5被提供到數位濾波器2 5 0。 數位濾波器2 5 0提供數位化過濾輸出2 5 5。在本發明的一 些實施例中,數位濾波器25〇是技藝中已知的數位有限脈 衝回應濾波器。在本發明的一特定實施例中,數位濾波器 2 5 0是十分接頭有限脈衝回應濾波器。 數位化過濾輸出被提供到資料偵測器電路260。 資料偵測器電路260可以是技藝中已知的任何偵測器/解 碼器。例如,資料偵測器電路2 6 0可結合低密度同位檢查 解碼器。當作另一例子,資料偵測器電路260可以結合 Viterbi (維特比)演算法解碼器。依據此處所提供的揭示 ,精於本技藝之人士將能夠識別可用於本發明的不同實施 例之各種偵測器電路。使用數位化過濾輸出255,資料偵 測器電路260產生Yideal輸出265。Yideal輸出265表示具 有資料偵測處理所施加的各種誤差校正之信號輸入2〇5。 使Yideal輸出265可用於下游處理。 此外,Yldeal輸出26 5被提供到局部回應目標電路280 ,其將輸出符合已知目標。局部回應目標電路2 8 0可以是 技藝中已知的任何目標濾波器。在本發明的一些實施例中 ,局部回應目標電路是技藝中已知的數位有限脈衝回應濾 波器。在本發明的一特定實施例中,局部回應目標電路 28 0是三分接頭數位有限脈衝回應濾波器。 局部回應目標電路2 8 0提供目標輸出2 8 5到加總元件 292。加總元件292從調整輸出279減去目標輸出2 8 5 ’及 結果被提供當作誤差信號2 8 9,儲存在偏移更新暫存器 -12- 201101297 290。如下面討論一般’調整輸出279導出自數位化過濾 輸出255。從偏移更新暫存器290提供預先低頻偏移校正 輸出291。使用乘法器電路29 3將預先低頻偏移校正輸出 291乘以增益因數288,以產生低頻偏移校正輸出294。使 用數位至類比轉換器295將低頻偏移校正輸出294轉換成 類比反饋信號2 9 7。如上述,使用加總元件2 9 9從可變放 大輸出212減去類比反饋信號297,以產生處理輸出215 〇 0 藉由施加臨時校正來減少加總元件299提供處理輸出 2 1 5時和當對應於可變放大輸出2 1 2的類比反饋信號2 9 7 可利用時之間的潛時。可藉由饋送預先低頻偏移校正輸出 2 9 1到誤差信號2 8 9的計算內來達成臨時校正,而不必等 待透過加總元件299的低頻偏移調整以經由廻路傳播回去 。當作槪述,在與目標輸出28 5比較之前,臨時校正從數 位化過濾輸出255有效減去預先低頻偏移校正輸出291, q 以產生誤差信號289。就其本身而論,對應於誤差信號 289的任何低頻偏移校正可快速用於計算誤差信號289的 新値。結果減少處理輸出2 1 5的可利用性和應用自此導出 的信號到誤差信號289 (及因此的預先低頻偏移校正輸出 29 1 )之間的潛時。經由資料偵測系統200,潛時的此種減 少增加廻路穩定性,且能夠減少位元週期和對應的較高頻 寬。 尤其是,預先低頻偏移校正輸出291被提供到延遲電 路2 1 3。來自延遲電路2 1 3的延遲輸出2 1 7被提供到加總 -13- 201101297 元件210,在其中從預先低頻偏移校正輸出291將其減去 ,以產生輸出211。延遲電路213將延遲應用到預先低頻 偏移校正輸出29 1,其說明透過經由加總元件299 (即、 預先低頻偏移校正輸出291到數位至類比轉換器295、抗 磁非對稱校正電路220、連續時間濾波器230 '類比至數 位轉換器240、數位濾波器250、資料偵測器260、局部回 應目標電路280、和加總元件292 )的路徑將反映在誤差 信號2 8 9中之預先低頻偏移校正輸出291所使用的時間。 此廻路在此處意指從屬廻路。延遲輸出2 1 7被提供到加總 元件2 1 0,其從預先低頻偏移校正輸出29 1的目前版減去 預先低頻偏移校正輸出291之延遲版,以產生加總輸出 2 1 1。加總輸出2 1 1被提供到加總元件2W ’在其中從延遲 電路270所提供之數位化過濾輸出25 5的延遲輸出275將 其減去。來自加總元件277的結果被提供當作調整輸出 279。從誤差信號2 8 9經由偏移更新暫存器290、延遲電路 2 1 3、加總元件2 1 0、加總元件2 7 7、和加總元件2 92的廻 路在此處被稱作主廻路。 加總輸出21 1最初反映預先低頻偏移校正輸出291的 値,但是在由延遲電路213施加的延遲週期期滿之後’當 由加總元件2 1 0減掉預先低頻偏移校正輸出29 1時’加總 輸出211是零。下面虛擬碼說明加總輸出211的値:D shifts feedback to produce a processed output; applies a data detection algorithm to the derivative of the processed output to produce an ideal output; implements conditional subtraction, where the temporary low frequency offset correction signal is subtracted from the processed output derivative to be at a temporary low frequency A temporary factor is generated during a finite period after the offset correction signal becomes available; and a derivative of the ideal output is subtracted from the temporary factor to generate a temporary low frequency offset correction signal. The low frequency offset feedback is the derivative of the temporary low frequency offset correction signal. In some examples of the above embodiments, the derivative of the processed output is a first derivative that processes the Q output, and the method additionally includes multiplying the temporary low frequency offset correction signal by a gain factor to generate a derivative of the temporary low frequency offset correction signal; Processing the second derivative of the output analog to digital conversion to produce a first derivative of the processed output; and performing a digital to analog conversion of the derivative of the temporary low frequency offset correction signal to produce low frequency offset feedback. This summary provides only a general summary of some embodiments of the invention. Many other objects, features, advantages and other embodiments of the present invention will become more fully understood from the Detailed Description -9 - 201101297 [Embodiment] The present invention relates to a system and method for storing information, and more particularly to a system and method for reducing the latency of a circuit in a storage device. The function is important to ensure reasonable performance in the read channel device. Undesirable low frequency errors are derived from the input signal and/or analog processing circuitry used to process the input signal later. Various embodiments of the present invention provide a low frequency offset correction circuit that provides reduced latency when compared to existing offset correction circuits. Such an embodiment relies on a summing element in the error calculation path that is capable of utilizing the pre-corrected feedback signal early and counteracting the pre-corrected feedback signal once the corrected feedback signal has been propagated by the crotch. By using the corrected feedback signal in advance, the undesired low frequency offset can be corrected in the data processing system without the need for the potential of the existing ramp. Returning to Figure 2, a data detection system 200 including a reduced latency low frequency offset correction circuit is illustrated in accordance with various embodiments of the present invention. The data detection system 200 includes a variable gain amplifier 210, which receives an analog input signal 205, and provides a variable amplification output 212. The variable gain amplifier 210 can be any amplifier known in the art that is capable of providing a variable amplification output, and the amount of amplification is based on a feedback signal (not shown). In light of the disclosure provided herein, those skilled in the art will be able to identify various variable gain amplifiers for use with different embodiments of the present invention. The analog input signal 205 can be derived from a variety of sources. For example, when the data detection system 200 is used to process data, it is received from the storage medium, and the analog input signal 2 0 5 can be derived from a read/write head configured in relation to the magnetic-10-201101297 storage medium (not shown). Component (not shown). In light of the disclosure provided herein, those skilled in the art will be able to identify various sources for analog input signals 205. The variable amplification output 2 1 2 is provided to a summing element that subtracts the analog feedback signal 297 from the variable amplification output 212 to produce a processed output 215. As is further disclosed below, the analog feedback signal 297 corresponds to a low frequency offset correction 値. Thus, the processing output 2 1 5 represents the variable _ amplification output 2 1 2 minus the low frequency offset. Processing output 2 1 5 is provided to a diamagnetic asymmetry correction circuit 22 0 that produces a corrected output 225 0 . The diamagnetic asymmetry correction circuit 220 can be any correction circuit known in the art that mitigates the effects of MR asymmetry. The corrected output 225 is filtered using a continuous time filter 205. In some examples, continuous time filter 230 is an RC filter circuit known in the art that is tuned to operate as a band pass filter, a high pass filter, or a low pass filter. In light of the disclosure provided herein, those skilled in the art will be able to identify various filter filters that can be used as continuous time filters 230. It should also be noted that other analog processing circuits may be included with the continuous time filter 23 depending on the particular operation of the circuit. In light of the teachings provided herein, those skilled in the art will be able to identify various analog processing circuitry that can be combined with the data detection system. Filter output 23 5 is provided from continuous time filter 23 0 to analog to digital converter 240. The analog to digital converter 240 can be any circuit known in the art that is capable of converting an analog input signal into a corresponding series of digital samples. The analog to digital converter 240 samples the filtered output 23 5 and provides a series of -11 - 201101297 digital samples 2 4 5 corresponding to the size of the filtered output 2 3 5 at the respective sampling points. The digital sample 2 4 5 is supplied to the digital filter 250. The digital filter 250 provides a digitally filtered output 2 5 5 . In some embodiments of the invention, the digital filter 25A is a digital finite impulse response filter as is known in the art. In a particular embodiment of the invention, the digital filter 250 is a very joint finite impulse response filter. The digitally filtered output is provided to data detector circuit 260. Data detector circuit 260 can be any detector/decoder known in the art. For example, data detector circuit 206 can incorporate a low density parity check decoder. As another example, data detector circuit 260 can incorporate a Viterbi algorithm decoder. In light of the disclosure provided herein, those skilled in the art will be able to identify various detector circuits that can be used in different embodiments of the present invention. Using digital filtering output 255, data detector circuit 260 generates a Yideal output 265. Yideal output 265 represents the signal input 2〇5 with various error corrections applied by the data detection process. The Yideal output 265 is made available for downstream processing. In addition, Yldeal output 26 5 is provided to local response target circuit 280 which conforms the output to known targets. The local response target circuit 280 may be any target filter known in the art. In some embodiments of the invention, the local response target circuit is a digital finite impulse response filter as is known in the art. In a particular embodiment of the invention, the partial response target circuit 28 0 is a three-tap digital finite impulse response filter. The partial response target circuit 280 provides a target output 285 to a summing element 292. The summing element 292 subtracts the target output 2 8 5 ' from the adjusted output 279 and the result is provided as an error signal 298, stored in the offset update register -12-201101297 290. As discussed below, the general 'adjustment output 279 is derived from the digitally filtered output 255. A pre-flight offset correction output 291 is provided from the offset update register 290. The pre-flight offset correction output 291 is multiplied by a gain factor 288 using a multiplier circuit 293 to produce a low frequency offset correction output 294. The low frequency offset correction output 294 is converted to an analog feedback signal 2 9 7 using a digital to analog converter 295. As described above, the analog feedback signal 297 is subtracted from the variable amplification output 212 using the summing element 209 to produce a processed output 215 〇0 by applying a temporary correction to reduce the summing element 299 providing the processing output 2 1 5 and when The time between the time when the analog feedback signal 2 9 7 of the variable amplification output 2 1 2 is available is used. The provisional correction can be achieved by feeding the pre-low frequency offset correction output 191 to the calculation of the error signal 288 without having to wait for the low frequency offset adjustment through the summing element 299 to propagate back via the ramp. As a descriptive, the temporary correction subtracts the pre-low frequency offset correction output 291, q from the digitally filtered output 255 to produce an error signal 289 prior to comparison with the target output 28 5 . As such, any low frequency offset correction corresponding to error signal 289 can be quickly used to calculate a new 误差 of error signal 289. The result is a reduction in the latency between the processing output 2 1 5 and the application of the signal derived therefrom to the error signal 289 (and thus the pre-low frequency offset correction output 29 1 ). Via the data detection system 200, such a decrease in latency increases loop stability and can reduce bit periods and corresponding higher bandwidths. In particular, the pre-frequency offset correction output 291 is supplied to the delay circuit 2 1 3 . The delayed output 2 1 7 from the delay circuit 2 1 3 is supplied to the sum -13 - 201101297 element 210, where it is subtracted from the pre-low frequency offset correction output 291 to produce an output 211. The delay circuit 213 applies the delay to the pre-low frequency offset correction output 291, which is illustrated by passing through the summing element 299 (ie, the pre-frequency offset correction output 291 to the digital to analog converter 295, the diamagnetic asymmetry correction circuit 220, The path of the continuous time filter 230 'analog to digital converter 240, digital filter 250, data detector 260, local response target circuit 280, and summing element 292) will be reflected in the pre-frequency of the error signal 289 The time used by the offset correction output 291. This road here means the subordinate road. The delayed output 2 1 7 is supplied to the summing element 2 1 0 which subtracts the delayed version of the pre-low frequency offset correction output 291 from the current version of the pre-low frequency offset correction output 29 1 to produce a summed output 2 1 1 . The summed output 2 1 1 is supplied to the summing element 2W' where it is subtracted from the delayed output 275 of the digitized filtered output 25 5 provided by the delay circuit 270. The result from summing element 277 is provided as an adjusted output 279. The path from the error signal 2 8 9 via the offset update register 290, the delay circuit 2 1 3, the summing element 2 1 0, the summing element 2 7 7 , and the summing element 2 92 is referred to herein. Main road. The summed output 21 1 initially reflects the chirp of the pre-low frequency offset correction output 291, but after the expiration of the delay period applied by the delay circuit 213 'when the pre-low frequency offset correction output 29 1 is subtracted by the summing element 2 1 0 'The total output 211 is zero. The following virtual code illustrates the sum of the total output 211:

If (t < T+delay period of Delay Circuit 213){If (t < T+delay period of Delay Circuit 213){

Summation Output 211 = Preliminary Low Frequency Offset Correction Output 291Summation Output 211 = Preliminary Low Frequency Offset Correction Output 291

Else If (t >= T+delay period of Delay Circuit 213){ Summation Output 211=0 -14- 201101297 在此方式中,由預先低頻偏移校正輸出291所反映的任何 偏移可被快速施加到誤差信號289的產生’當作主廻路的 一部分,但是施加到較慢的從屬廻路之由預先低頻偏移校 正輸出291所反映的偏移當被施加到誤差信號289時可被 取消。此防止雙重計數預先低頻偏移校正輸出291 ’同時 能夠臨時使用預先低頻偏移校正輸出291。事實上’透過 主廻路一段低頻偏移校正仍經由從屬廻路傳播的最初週期 ,將預先低頻偏移校正輸出291加速成誤差信號289,然 0 後在其經由從屬廻路傳播之後,對加總元件299施加預先 低頻偏移校正輸出291的真正影響。 數位化過濾輸出25 5被提供到延遲電路270,其提供 延遲的過濾輸出信號2 75。由延遲電路270所施加之延遲 的週期對應於信號經由資料偵測器260和局部回應目標電 路2 8 0加以傳播所需的時間,減掉經由加總元件2 77傳播 所需的時間量。藉由施加此延遲,調整輸出2 79與目標輸 q 出2 8 5及時校準(即、對應的數位化過濾輸出2 5 5被用於 產生目標輸出2 8 5和調整輸出279二者)。 回到圖3,流程圖3 00圖示根據本發明的一或多個實 施例之減少資料偵測系統中的低頻偏移校正潛時之方法。 隨著流程圖3 00,接收資料輸入(方塊3 05 )。此資料輸 入可以例如是源自於磁性儲存媒體的類比輸入信號。在資 料輸入上執行可變增益放大(方塊3 1 0 )。在一些例子中 ,使用類比可變增益放大器進行可變放大。可變增益放大 提供可變放大輸出。從可變放大輸出減去低頻偏移(方塊 -15- 201101297 3 1 2 ) ’及將類比處理應用到最後的處理輸出(方塊3丨5 ) 。此類比處理可包括如技藝中所知之連續時間過濾處理及 /或抗磁非對稱校正,但是並不偈限於此。然後經由類比 至數位轉換處理將類比處理輸出轉換成一或多個數位樣本 (方塊3 2 0 )。 將最後的數位樣本數位化過濾,以產生Y輸出(方塊 3 2 5 )。在一些例子中,使用技藝中已知的數位有限脈衝 回應濾波器進行數位過濾。在Y輸出上執行資料偵測處理 ,以產生Yideal輸出(方塊3 30 )。可使用技藝中已知的 任何資料偵測器/解碼器來執行資料偵測處理。此外,將 局部回應過濾應用到Yideal輸出,以產生目標輸出(方塊 3 3 5 )。在一些例子中,使用數位有限脈衝回應濾波器進 行局部回應過濾,在其中如技藝中所知一般,將濾波器的 分接頭耦合至目標組。 及時延遲Y輸出,以將其與目標輸出校準(方塊340 )。一旦Y輸出與目標輸出校準(或者將在乘法處理之後 校準)(方塊340 ),其決定目前的低頻偏移校正輸出是 否已經由產生反饋誤差信號而傳播(方塊345 )。若目前 的低頻偏移校正輸出尙未經由反饋誤差信號的產生而傳播 回去(方塊3 45 ),則從Y輸出減去低頻偏移校正輸出, 以產生Y反饋値(方塊350)。另一方面,若目前的低頻 偏移校正輸出已經由產生反饋誤差信號而傳播(方塊345 ),則通過Y輸出當作Y反饋信號(方塊3 5 5 )。在兩例 子中,從Y反饋彳g號減去目標輸出(來自方塊335),以 -16- 201101297 更新低頻偏移校正輸出(方塊3 6 0 )。此低頻偏移校正輸 出(方塊365)乘以增益因數,及將乘積轉換成類比低頻 偏移信號(方塊3 7 0 )。在方塊3 1 2的減法中使用此類比 低頻偏移信號。增益因數被選擇成用於低頻校正廻路之廻 路增益的單位爲一。 回到圖4,根據本發明的各種實施例圖示包括具有低 潛時廻路復原的讀取通道410之儲存系統400。儲存系統 4 0 0可以例如是硬碟機。低潛時廻路復原包括資料偵測器 ,其可以是技藝中已知的任何資料偵測器,包括例如 Viterbi演算資料偵測器。儲存系統400又包括預置放大 器470、介面控制器420、硬碟控制器466、馬達控制器 468、心軸馬達472、磁碟盤47 8、及讀/寫頭476。介面控 制器420控制至/從磁碟盤478之資料的定址和時序。磁 碟盤478上的資料係由幾群磁性信號所組成,當組件被適 當定位在磁碟盤47 8上方時可由讀/寫頭組件476偵測這 些磁性信號。在一實施例中磁碟盤478包括根據縱向或垂 直記錄規劃所記錄的磁性信號。 在典型讀取操作中,藉由馬達控制器468將讀/寫頭 組件476準確地定位在想要的磁碟盤478之資料磁軌上。 馬達控制器46 8相對於磁碟盤478來定位讀/寫頭組件476 ,並且在硬碟控制器466的引導之下’藉由移動讀/寫頭 組件到磁碟盤478上的適當資料磁軌來驅動心軸馬達472 。心軸馬達472以預定的旋轉率(RPM)來旋轉磁碟盤 4 7 8。一旦讀/寫頭組件4 7 6被定位在適當資料磁軌附近’ -17- 201101297 則當以心軸馬達4 7 2轉動磁碟盤4 7 8時’由讀/易頭組件 476感測表示磁碟盤478上的資料之磁性信號。感測的磁 性信號被提供當作表示磁碟盤47 8上的磁性資料之連續、 精密的類比信號。透過預置放大器470將此精密的類比信 號從讀/寫頭組件476傳送到讀取通道模組464。預置放大 器470可操作成放大從磁碟盤478存取之精密的類比信號 。接著,讀取通道模組4 1 0解碼和數位化所接收的類比信 號,以重建原先寫入到磁碟盤478的資訊。將此資料當作 讀取資料403而提供到接收電路。當作解碼接收的資訊之 一部分,讀取通道410依據增益調整反饋電路來執行可變 增益放大。增益調整反饋電路包括主廻路和從屬廻路。在 一些例子中,讀取通道4 1 0包括類似於上面有關圖2的討 論之電路系統。在一些例子中,增益調整處理係根據上面 有關圖3的討論來執行。利用將寫入資料40 1提供到讀取 通道模組4 1 0,寫入操作大體上與先前的讀取操作相反。 然後將此資料編碼和寫入到磁碟盤4 7 8。 總之,本發明設置用以執行資料處理之新的系統、裝 置、方法、及配置。儘管上面已詳細說明本發明的一或多 個實施例’但是在不違背本發明的精神之下,精於本技藝 之人士將知道各種選擇、修正、和同等物。因此,上述說 明不應被視作本發明的範疇之限制,本發明的範疇係由附 錄於後的申請專利範圍所定義。 【圖式簡單說明】 * 18 201101297 參考說明書的其餘部分所說明之圖式將可進一步瞭解 本發明的各種實施例。在圖式中,相同參考號碼用在所有 幾個圖式中,以表示類似組件。在一些實例中,由小寫字 母所組成的副標與參考號碼結合,以表示多個類似組件的 其中之一。當對參考號碼進行參考而未特別指明是現存的 副標時,將表示所有此種多個類似組件。 圖1爲包括習知技術低頻偏移校正廻路的資料偵測系 統圖; Ο 圖2爲根據本發明的一或多個實施例之包括減少潛時 低頻偏移校正廻路電路的資料偵測系統圖; 圖3爲根據本發明的一或多個實施例之用以減少資料 偵測系統中的低頻偏移校正潛時之方法的流程圖;及 圖4爲根據本發明的一些實施例之包括減少潛時低頻 偏移校正廻路電路的儲存系統圖。 Q 【主要元件符號說明】 100 :資料偵測系統 105:類比輸入信號 1 1 0 :可變增益放大器 1 1 2 :放大輸出 Π 5 :加總輸出 1 2 0 :抗磁非對稱校正電路 125 :校正輸出 1 3 0 :連續時間濾波器 -19- 201101297 1 3 5 :過濾輸出 140 :類比至數位轉換器 1 4 5 :數位樣本 1 5 0 :數位濾波器 1 5 5 :數位式過濾輸出 160 :資料偵測器 165 : Yideal 輸出 170 :延遲電路Else If (t >= T+delay period of Delay Circuit 213) { Summation Output 211=0 -14- 201101297 In this manner, any offset reflected by the pre-frequency offset correction output 291 can be quickly applied to The generation of the error signal 289 is taken as part of the main loop, but the offset reflected by the pre-low frequency offset correction output 291 applied to the slower slave loop can be cancelled when applied to the error signal 289. This prevents the double count pre-low frequency offset correction output 291' while temporarily using the pre-low frequency offset correction output 291. In fact, 'the low frequency offset correction through the main loop is still accelerated to the error signal 289 by the initial period of the slave loop propagation, and then 0 is transmitted after it is propagated via the slave loop. The total component 299 applies the true effect of the pre-fLOW offset correction output 291. The digitized filtered output 25 5 is provided to a delay circuit 270 which provides a delayed filtered output signal 2 75. The period of delay applied by delay circuit 270 corresponds to the time required for the signal to propagate via data detector 260 and local response target circuit 280, subtracting the amount of time required to propagate via summing element 2 77. By applying this delay, the adjusted output 2 79 is calibrated in time with the target input 205 (i.e., the corresponding digital filtered output 255 is used to generate both the target output 285 and the adjusted output 279). Referring back to Figure 3, a flow diagram 00 illustrates a method of reducing the low frequency offset correction latency in a data detection system in accordance with one or more embodiments of the present invention. With the flow chart 3 00, the data input is received (block 3 05 ). This data input can be, for example, an analog input signal derived from a magnetic storage medium. Perform variable gain amplification on the data input (block 3 1 0). In some examples, variable amplification is performed using an analog variable gain amplifier. Variable Gain Amplification Provides a variable amplification output. Subtract the low frequency offset from the variable amplification output (box -15- 201101297 3 1 2 ) and apply the analog processing to the final processed output (block 3丨5). Such ratio processing may include continuous time filtering processing and/or diamagnetic asymmetry correction as is known in the art, but is not limited thereto. The analog processing output is then converted to one or more digital samples via an analog to digital conversion process (block 3 2 0 ). The last digit sample is digitally filtered to produce a Y output (block 3 2 5 ). In some examples, digital filtering is performed using a digital finite impulse response filter as is known in the art. Data detection processing is performed on the Y output to produce a Yideal output (block 3 30). Data detection processing can be performed using any data detector/decoder known in the art. In addition, local response filtering is applied to the Yideal output to produce the target output (block 3 3 5 ). In some examples, a partial finite impulse response filter is used for local response filtering, where the tap of the filter is coupled to the target set as is known in the art. The Y output is delayed in time to calibrate it to the target output (block 340). Once the Y output is calibrated to the target output (or will be calibrated after the multiplication process) (block 340), it is determined whether the current low frequency offset correction output has propagated by generating the feedback error signal (block 345). If the current low frequency offset correction output 传播 is not propagated back via the generation of the feedback error signal (block 3 45 ), the low frequency offset correction output is subtracted from the Y output to produce a Y feedback 値 (block 350). On the other hand, if the current low frequency offset correction output has been propagated by generating a feedback error signal (block 345), the Y output is treated as a Y feedback signal (block 3 5 5 ). In both cases, the target output is subtracted from the Y feedback 彳g number (from block 335) and the low frequency offset corrected output is updated with -16-201101297 (block 306). This low frequency offset correction output (block 365) is multiplied by the gain factor and the product is converted to an analog low frequency offset signal (block 370). Such a ratio low frequency offset signal is used in the subtraction of block 3 1 2 . The gain factor is chosen to be one of the unit gains for the low frequency correction loop. Returning to Figure 4, a storage system 400 including a read channel 410 having low latency loop recovery is illustrated in accordance with various embodiments of the present invention. The storage system 400 can be, for example, a hard disk drive. The low latency loop recovery includes a data detector, which can be any data detector known in the art, including, for example, a Viterbi calculus data detector. The storage system 400 in turn includes a preset amplifier 470, an interface controller 420, a hard disk controller 466, a motor controller 468, a spindle motor 472, a disk 47 8 , and a read/write head 476. Interface controller 420 controls the addressing and timing of the data to/from disk 478. The data on disk 478 is comprised of a plurality of sets of magnetic signals that are detectable by read/write head assembly 476 when the components are properly positioned over disk 47 8 . In one embodiment disk 478 includes magnetic signals recorded in accordance with a portrait or vertical recording schedule. In a typical read operation, the read/write head assembly 476 is accurately positioned by the motor controller 468 on the desired data track of the disk 478. The motor controller 46 8 positions the read/write head assembly 476 relative to the disk 478 and, under the guidance of the hard disk controller 466, 'by moving the read/write head assembly to the appropriate data on the disk 478. The rail drives the spindle motor 472. The spindle motor 472 rotates the disk 4 7 8 at a predetermined rotation rate (RPM). Once the read/write head assembly 476 is positioned near the appropriate data track ' -17- 201101297, then when the spindle 4 7 2 is rotated by the spindle motor 4 7 2 'represented by the read/easy head assembly 476 The magnetic signal of the data on disk 478. The sensed magnetic signal is provided as a continuous, precise analog signal representative of the magnetic material on disk 47 8 . This precision analog signal is transmitted from the read/write head assembly 476 to the read channel module 464 via the preset amplifier 470. Preset amplifier 470 is operable to amplify the precision analog signals accessed from disk 478. Next, the read channel module 410 decodes and digitizes the received analog signal to reconstruct the information originally written to the disk 478. This data is supplied to the receiving circuit as read data 403. As part of decoding the received information, the read channel 410 performs variable gain amplification in accordance with the gain adjustment feedback circuit. The gain adjustment feedback circuit includes a main circuit and a slave circuit. In some examples, read channel 410 includes a circuit system similar to that discussed above with respect to FIG. In some examples, the gain adjustment process is performed in accordance with the discussion above with respect to Figure 3. By providing the write data 40 1 to the read channel module 410, the write operation is substantially opposite to the previous read operation. This material is then encoded and written to disk 47.8. In summary, the present invention provides new systems, apparatus, methods, and configurations for performing data processing. Although one or more embodiments of the invention have been described in detail hereinabove, those skilled in the art will be aware of various alternatives, modifications, and equivalents. Therefore, the above description should not be construed as limiting the scope of the invention, which is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS * 18 201101297 Various embodiments of the present invention will be further understood from the following description of the specification. In the drawings, the same reference numerals are used in the drawings in the drawings. In some instances, a subscript consisting of a lowercase letter is combined with a reference number to represent one of a plurality of similar components. When reference is made to a reference number without specifically indicating an existing sub-label, all such multiple similar components will be indicated. 1 is a data detection system diagram including a conventional low frequency offset correction circuit; FIG. 2 is a data detection including a reduced latency low frequency offset correction circuit according to one or more embodiments of the present invention. FIG. 3 is a flow diagram of a method for reducing low frequency offset correction latency in a data detection system in accordance with one or more embodiments of the present invention; and FIG. 4 is a diagram of some embodiments in accordance with the present invention. A storage system diagram including a reduced latency low frequency offset correction circuit. Q [Key component symbol description] 100 : Data detection system 105: Analog input signal 1 1 0 : Variable gain amplifier 1 1 2 : Amplified output Π 5 : Total output 1 2 0 : diamagnetic asymmetry correction circuit 125 : Correction output 1 3 0 : Continuous time filter -19- 201101297 1 3 5 : Filter output 140 : Analog to digital converter 1 4 5 : Digital sample 1 5 0 : Digital filter 1 5 5 : Digital filter output 160 : Data Detector 165: Yideal Output 170: Delay Circuit

I 175 :延遲信號 1 1 8 0 :局部回應目標濾波器 1 8 5 :目標輸出 189 :誤差信號 1 9 0 :偏移更新暫存器 1 9 2 :加總元件 1 9 5 :數位至類比轉換器 1 9 7 :類比反饋信號 ,I 175 : Delay signal 1 1 8 0 : Local response target filter 1 8 5 : Target output 189 : Error signal 1 9 0 : Offset update register 1 9 2 : Total element 1 9 5 : Digital to analog conversion 1 9 7 : analogy feedback signal,

I 1 9 9 :加總元件 200 :資料偵測系統 205 :類比輸入信號 2 1 0 :可變增益放大器 2 11 :加總輸出 212:可變放大輸出 2 1 3 :延遲電路 2 1 5 :處理輸出 -20 - 201101297 217 :延遲輸出 220 :抗磁非對稱校正電路 225 :校正輸出 23 0 :連續時間濾波器 2 3 5 :過濾輸出 240 :類比至數位轉換器 2 4 5 :數位樣本 25 0 :數位濾波器I 1 9 9 : Total component 200 : Data detection system 205 : Analog input signal 2 1 0 : Variable gain amplifier 2 11 : Total output 212 : Variable amplification output 2 1 3 : Delay circuit 2 1 5 : Processing Output -20 - 201101297 217 : Delay output 220 : diamagnetic asymmetry correction circuit 225 : Correction output 23 0 : Continuous time filter 2 3 5 : Filter output 240 : Analog to digital converter 2 4 5 : Digital sample 25 0 : Digital filter

2 5 5 :數位化過濾輸出 260 :資料偵測器電路 265 : Yldeal 輸出 270 :延遲電路 275 :延遲輸出 2 7 7 :加總元件 279 :調整輸出 2 8 0 :局部回應目標電路 2 8 5 :目標輸出 2 8 8 :增益因數 2 8 9 :誤差信號 290 :偏移更新暫存器 291 :預先低頻偏移校正輸出 292 ’·加總元件 2 9 3 :乘法器電路 294 :低頻偏移校正輸出 -21 - 201101297 295 :數位至類比轉換器 297 :類比反饋信號 299 :加總元件 4 0 0 :儲存系統 401 :寫入資料 403 :讀取資料 4 1 0 :讀取通道 4 2 0 :介面控制器 466 :硬碟控制器 468 :馬達控制器 470 :預置放大器 472 :心軸馬達 476 :讀/寫頭組件 47 8 :磁碟盤 -222 5 5 : Digital Filter Output 260 : Data Detector Circuit 265 : Yldeal Output 270 : Delay Circuit 275 : Delay Output 2 7 7 : Total Element 279 : Adjust Output 2 8 0 : Local Response Target Circuit 2 8 5 : Target output 2 8 8 : Gain factor 2 8 9 : Error signal 290 : Offset update register 291 : Pre-low frequency offset correction output 292 '·Total element 2 9 3 : Multiplier circuit 294 : Low frequency offset correction output -21 - 201101297 295: Digital to analog converter 297: analog feedback signal 299: summing element 4 0 0 : storage system 401: write data 403: read data 4 1 0 : read channel 4 2 0 : interface control 466: Hard Disk Controller 468: Motor Controller 470: Preset Amplifier 472: Mandrel Motor 476: Read/Write Head Assembly 47 8 : Disk Plate-22

Claims (1)

201101297 七、申請專利範園: 1·—種儲存裝置,該儲存裝置包含: 一儲存媒體; 一讀/寫頭組件,其中該讀/寫頭組件可操作成存取儲 存在該儲存媒體上的資訊’與將該資訊傳送到一類比處理 電路’及其中該類比處理電路包括: 一加總電路’其中該加總電路從該資訊的一導數 減去一低頻偏移反饋,以產生一處理輸出; Ο 一類比至數位轉換器’其中該類比至數位轉換器 將該處理輸出的一導數轉換成一連串數位樣本;以及 一數位處理電路,其中該數位處理電路包括: 一資料偵測器電路,其中該資料偵測器電路將一 資料偵測演算法應用到該等連串數位樣本的一導數,與提 供一理想輸出; 一誤差反饋電路,其中該誤差反饋電路包括一條 0 件減法電路,其有條件地從該等連串數位樣本的該導數之 一延遲版減去一臨時低頻偏移校正信號,以產生一臨時因 數; 一誤差計算電路,其中該誤差計算電路至少部分 依據該臨時因數和該理想輸出的一導數來產生一臨時低頻 偏移校正信號;及 一數位至類比轉換器,其中該數位至類比轉換器 轉換該臨時低頻偏移校正信號的一導數,以產生該低頻偏 移反饋。 -23- 201101297 2.根據申請專利範圍第1項之儲存裝置,其中該類比 處理電路另外包括一抗磁非對稱校正電路和一濾波器,其 中該抗磁非對稱校正電路接收該處理輸出與提供一校正輸 出,及其中該濾波器接收該校正輸出與提供該處理輸出的 該導數。 3 ·根據申請專利範圍第1項之儲存裝置,其中該數位 處理電路另外包括一數位濾波器,及其中該數位濾波器接 收該等連串數位樣本,與提供該等連串數位樣本的該導數 〇 4 .根據申請專利範圍第1項之儲存裝置,其中該加總 電路是一第一加總電路,及其中該條件減法電路包括: 一延遲電路,其中該延遲電路提供該臨時低頻偏移校 正信號的一延遲版;以及 一第二加總電路,其中該第二加總電路從該臨時低頻 偏移校正信號減去該臨時低頻偏移校正信號的該延遲版, 以產生一補償因數。 5_根據申請專利範圍第4項之儲存裝置,其中該延遲 電路是一第一延遲電路’及其中該條件減法電路另外包括 一第二延遲電路’其中該第二延遲電路接收該等連串 數位樣本的該導數,與提供該等連串數位樣本的該導數之 該延遲版:及 一第三加總電路,其中該第三加總電路從該臨時低頻 偏移校正信號的該延遲版減去該補償因數’以產生該臨時 -24- 201101297 因數。 6. 根據申請專利範圍第1項之儲存裝置,其中該加總 電路是一第一加總電路,其中該誤差計算電路包括: 一第二加總電路,其中該第二加總電路從該臨時因數 減去該理想輸出的該導數,以產生該臨時低頻偏移校正信 號。 7. 根據申請專利範圍第1項之儲存裝置,其中該數位 處理電路另外包括一乘法電路,及其中該乘法電路將該臨 時低頻偏移校正信號乘以增益因數,以產生該臨時低頻偏 移校正信號的該導數。 8. 根據申請專利範圍第7項之儲存裝置,其中該增益 因數產生單位爲一的廻路增益。 9 . 一種資料處理電路,該電路包含: 一加總電路,其中該加總電路從一輸入信號減去一低 頻偏移反饋,以產生一處理輸出; 一資料偵測器電路,其中該資料偵測器電路將一資料 偵測演算法應用到該處理輸出的一導數,與提供一理想輸 出: 一誤差反饋電路’其中該誤差反饋電路包括一條件減 法電路’其有條件地從該處理輸出的該導數之一延遲版減 去一臨時低頻偏移校正信號,以產生一臨時因數; 一誤差計算電路’其中該誤差計算電路至少部分依據 該臨時因數和該理想輸出的一導數來產生一臨時低頻偏移 校正信號;及 -25- 201101297 其中該低頻偏移反饋係導出自該臨時低頻偏移校正信 Dc& 疏。 1 〇.根據申請專利範圍第9項之電路,其中該處理輸 出的該導數是該處理輸出的一第一導數,及其中該電路另 外包含: 一類比至數位轉換器,其中該類比至數位轉換器轉換 該處理輸出的一第二導數,以產生該處理輸出的該第一導 數;以及 一數位至類比轉換器,其中該數位至類比轉換器轉換 該臨時低頻偏移校正信號的一導數,以產生該低頻偏移反 饋。 11.根據申請專利範圍第10項之電路,其中該電路另 外包含: 一乘法電路,及其中該乘法電路將該臨時低頻偏移校 正信號乘以增益因數,以產生該臨時低頻偏移校正信號的 該導數。 1 2 .根據申請專利範圍第1 〇項之電路,其中該電路另 外包含: 一可變增益放大器,其中該可變增益放大器接收導出 自一儲存媒體的資訊,與提供該輸入信號; 一抗磁非對稱校正電路,其中該抗磁非對稱校正電路 接收該處理輸出,與提供一校正輸出;及 一濾波器,其中該濾波器接收該校正輸出,與提供該 處理輸出的該第二導數。 -26- 201101297 1 3 .根據申請專利範圍第9項之電路,其中該處理輸 出的該導數是該處理輸出的一第一導數,及其中該電路另 外包含: 一濾波器,其中該濾波器接收該處理輸出的一第二導 數,與提供該處理輸出的該第一導數。 1 4.根據申請專利範圍第9項之電路,其中該誤差計 算電路包括: & 一局部回應目標電路,其中該局部回應目標電路接收 該理想輸出,與產生該理想輸出的該導數。 15·—種用於減少潛時資料處理之方法,該方法包含 設置一加總電路; 從一輸入信號減去一低頻偏移反饋,以產生一處理輸 出; 將一資料偵測演算法應用到該處理輸出的一導數,以 0 產生一理想輸出; 實施一條件減法,其中從該處理輸出的該導數減去— 臨時低頻偏移校正信號,以在該臨時低頻偏移校正信號變 成可用之後的有限週期期間產生一臨時因數;及 從該臨時因數減去該理想輸出的一導數,以產生該臨 時低頻偏移校正信號,其中該低頻偏移反饋是該臨時低頻 偏移校正信號的一導數。 -27-201101297 VII. Application Patent Park: 1. A storage device comprising: a storage medium; a read/write head assembly, wherein the read/write head assembly is operable to access and store on the storage medium The information 'and the information is transferred to an analog processing circuit' and the analog processing circuit includes: a summing circuit' wherein the summing circuit subtracts a low frequency offset feedback from a derivative of the information to generate a processing output a class analog to digital converter in which the analog to digital converter converts a derivative of the processed output into a series of digital samples; and a digital processing circuit, wherein the digital processing circuit comprises: a data detector circuit, wherein The data detector circuit applies a data detection algorithm to a derivative of the series of digital samples and provides an ideal output; an error feedback circuit, wherein the error feedback circuit includes a 0-subtraction circuit, which has Conditionally subtracting a temporary low frequency offset correction signal from a delayed version of the derivative of the series of digital samples to produce a An error calculation circuit, wherein the error calculation circuit generates a temporary low frequency offset correction signal based at least in part on the temporary factor and a derivative of the ideal output; and a digital to analog converter, wherein the digital to analog conversion The converter converts a derivative of the temporary low frequency offset correction signal to generate the low frequency offset feedback. 2. The storage device of claim 1, wherein the analog processing circuit additionally includes a diamagnetic asymmetric correction circuit and a filter, wherein the diamagnetic asymmetric correction circuit receives the processing output and provides a correction output, and wherein the filter receives the corrected output and the derivative providing the processed output. 3. The storage device of claim 1, wherein the digital processing circuit additionally includes a digital filter, wherein the digital filter receives the series of digital samples, and the guide for providing the series of digital samples 4. The storage device of claim 1, wherein the summing circuit is a first summing circuit, and wherein the conditional subtracting circuit comprises: a delay circuit, wherein the delay circuit provides the temporary low frequency offset a delay version of the correction signal; and a second summing circuit, wherein the second summing circuit subtracts the delayed version of the temporary low frequency offset correction signal from the temporary low frequency offset correction signal to generate a compensation factor. 5) The storage device according to claim 4, wherein the delay circuit is a first delay circuit 'and wherein the conditional subtraction circuit additionally includes a second delay circuit', wherein the second delay circuit receives the series of digits The derivative of the sample, and the delayed version of the derivative providing the series of digital samples: and a third summing circuit, wherein the third summing circuit subtracts the delayed version of the temporary low frequency offset correction signal The compensation factor is 'to generate the temporary -24-01001# factor. 6. The storage device of claim 1, wherein the summing circuit is a first summing circuit, wherein the error calculating circuit comprises: a second summing circuit, wherein the second summing circuit is from the temporary The derivative of the ideal output is subtracted from the factor to produce the temporary low frequency offset correction signal. 7. The storage device of claim 1, wherein the digital processing circuit additionally includes a multiplying circuit, and wherein the multiplying circuit multiplies the temporary low frequency offset correction signal by a gain factor to generate the temporary low frequency offset correction The derivative of the signal. 8. The storage device of claim 7, wherein the gain factor produces a loop gain of one. 9. A data processing circuit, the circuit comprising: a summing circuit, wherein the summing circuit subtracts a low frequency offset feedback from an input signal to generate a processing output; a data detector circuit, wherein the data detector The detector circuit applies a data detection algorithm to a derivative of the processed output and provides an ideal output: an error feedback circuit 'where the error feedback circuit includes a conditional subtraction circuit' that is conditionally output from the process a delay version of the derivative minus a temporary low frequency offset correction signal to generate a temporary factor; an error calculation circuit 'where the error calculation circuit generates a temporary low frequency based at least in part on the temporary factor and a derivative of the ideal output Offset correction signal; and -25- 201101297 wherein the low frequency offset feedback is derived from the temporary low frequency offset correction signal Dc& 1 . The circuit of claim 9 wherein the derivative of the processed output is a first derivative of the processed output, and wherein the circuit additionally comprises: an analog to digital converter, wherein the analog to digital conversion Converting a second derivative of the processed output to produce the first derivative of the processed output; and a digit to analog converter, wherein the digital to analog converter converts a derivative of the temporary low frequency offset correction signal to This low frequency offset feedback is generated. 11. The circuit of claim 10, wherein the circuit further comprises: a multiplying circuit, and wherein the multiplying circuit multiplies the temporary low frequency offset correction signal by a gain factor to generate the temporary low frequency offset correction signal The derivative. The circuit of claim 1, wherein the circuit further comprises: a variable gain amplifier, wherein the variable gain amplifier receives information derived from a storage medium and provides the input signal; An asymmetric correction circuit, wherein the diamagnetic asymmetry correction circuit receives the processed output and provides a corrected output; and a filter, wherein the filter receives the corrected output and provides the second derivative of the processed output. -26-201101297 1 3. The circuit of claim 9, wherein the derivative of the processing output is a first derivative of the processed output, and wherein the circuit further comprises: a filter, wherein the filter receives The processing outputs a second derivative and the first derivative providing the processed output. 1 4. The circuit of claim 9, wherein the error calculation circuit comprises: & a partial response target circuit, wherein the local response target circuit receives the ideal output and the derivative that produces the ideal output. 15 - a method for reducing latency data processing, the method comprising: setting a summing circuit; subtracting a low frequency offset feedback from an input signal to generate a processing output; applying a data detection algorithm to a derivative of the processed output, producing an ideal output at 0; performing a conditional subtraction, wherein the derivative is output from the derivative minus the temporary low frequency offset correction signal after the temporary low frequency offset correction signal becomes available A temporary factor is generated during the finite period; and a derivative of the ideal output is subtracted from the temporary factor to generate the temporary low frequency offset correction signal, wherein the low frequency offset feedback is a derivative of the temporary low frequency offset correction signal. -27-
TW098128399A 2009-06-24 2009-08-24 Systems and methods for hard disk drive data storage including reduced latency loop recovery TWI476765B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/491,179 US8154972B2 (en) 2009-06-24 2009-06-24 Systems and methods for hard disk drive data storage including reduced latency loop recovery

Publications (2)

Publication Number Publication Date
TW201101297A true TW201101297A (en) 2011-01-01
TWI476765B TWI476765B (en) 2015-03-11

Family

ID=42236566

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098128399A TWI476765B (en) 2009-06-24 2009-08-24 Systems and methods for hard disk drive data storage including reduced latency loop recovery

Country Status (6)

Country Link
US (1) US8154972B2 (en)
EP (1) EP2267712A1 (en)
JP (1) JP5444013B2 (en)
KR (1) KR101580330B1 (en)
CN (1) CN101930750B (en)
TW (1) TWI476765B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8565047B2 (en) 2011-04-28 2013-10-22 Lsi Corporation Systems and methods for data write loopback based timing control
US8862972B2 (en) * 2011-06-29 2014-10-14 Lsi Corporation Low latency multi-detector noise cancellation
US8730077B2 (en) * 2011-08-23 2014-05-20 Lsi Corporation Read channel with selective oversampled analog to digital conversion
US8773811B2 (en) 2011-12-12 2014-07-08 Lsi Corporation Systems and methods for zone servo timing gain recovery
US8625216B2 (en) 2012-06-07 2014-01-07 Lsi Corporation Servo zone detector
US8681444B2 (en) 2012-06-07 2014-03-25 Lsi Corporation Multi-zone servo processor
US8564897B1 (en) 2012-06-21 2013-10-22 Lsi Corporation Systems and methods for enhanced sync mark detection
US8711502B1 (en) 2012-10-12 2014-04-29 Lsi Corporation Preamplifier-to-channel communication in a storage device
US9019641B2 (en) 2012-12-13 2015-04-28 Lsi Corporation Systems and methods for adaptive threshold pattern detection
US9053217B2 (en) 2013-02-17 2015-06-09 Lsi Corporation Ratio-adjustable sync mark detection system
US9424876B2 (en) 2013-03-14 2016-08-23 Avago Technologies General Ip (Singapore) Pte. Ltd. Systems and methods for sync mark mis-detection protection
US9275655B2 (en) 2013-06-11 2016-03-01 Avago Technologies General Ip (Singapore) Pte. Ltd. Timing error detector with diversity loop detector decision feedback
US10152999B2 (en) 2013-07-03 2018-12-11 Avago Technologies International Sales Pte. Limited Systems and methods for correlation based data alignment
US9129650B2 (en) 2013-07-25 2015-09-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Array-reader based magnetic recording systems with frequency division multiplexing
US9129646B2 (en) 2013-09-07 2015-09-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Array-reader based magnetic recording systems with mixed synchronization
US9323625B2 (en) 2013-11-12 2016-04-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Systems and methods for lost synchronization data set reprocessing

Family Cites Families (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973182A (en) 1971-08-20 1976-08-03 Agency Of Industrial Science & Technology Method and apparatus for detecting uneven magnetic field by hall effect in semiconductor
US3973183A (en) 1971-08-20 1976-08-03 Agency Of Industrial Science & Technology Method and apparatus for detecting uneven magnetic field by a change in resistance of semiconductor element
US4024571A (en) 1975-08-14 1977-05-17 Rca Corporation Synchronizing system employing burst crossover detection
US4777544A (en) 1986-08-15 1988-10-11 International Business Machine Corporation Method and apparatus for in-situ measurement of head/recording medium clearance
DE3938520A1 (en) 1989-11-21 1991-05-29 Teves Gmbh Alfred METHOD AND SYSTEM FOR MEASURING DATA EVALUATION AND EVALUATION
US5130866A (en) 1990-07-17 1992-07-14 International Business Machines Corporation Method and circuitry for in-situ measurement of transducer/recording medium clearance and transducer magnetic instability
US5278703A (en) 1991-06-21 1994-01-11 Digital Equipment Corp. Embedded servo banded format for magnetic disks for use with a data processing system
US5309357A (en) 1992-01-28 1994-05-03 Independent Scintillation Imaging Systems (Isis) Inc. Scintillation data collecting apparatus and method
US5341249A (en) 1992-08-27 1994-08-23 Quantum Corporation Disk drive using PRML class IV sampling data detection with digital adaptive equalization
US5377058A (en) 1992-12-31 1994-12-27 International Business Machines Corporation Fly height servo control of read/write head suspension
US5400201A (en) 1993-10-25 1995-03-21 Syquest Technology, Inc. Servo burst pattern for removing offset caused by magnetic distortion and method associated therewith
JPH07302938A (en) 1994-04-28 1995-11-14 Sony Corp Piezoelectric ceramic transformer and manufacture thereof
US5798885A (en) 1994-06-06 1998-08-25 Fujitsu Limited Head positioning control for disk apparatus using peak detection, polarity detection and sector mark detection
US5862005A (en) 1994-10-11 1999-01-19 Quantum Corporation Synchronous detection of wide bi-phase coded servo information for disk drive
US5796535A (en) 1995-05-12 1998-08-18 Cirrus Logic, Inc. Sampled amplitude read channel employing a user data frequency synthesizer and a servo data frequency synthesizer
US5696639A (en) 1995-05-12 1997-12-09 Cirrus Logic, Inc. Sampled amplitude read channel employing interpolated timing recovery
US5668679A (en) 1995-12-21 1997-09-16 Quantum Corporation System for self-servowriting a disk drive
US5987562A (en) 1996-03-08 1999-11-16 Texas Instruments Incorporated Waveform sampler and method for sampling a signal from a read channel
US6023383A (en) 1996-03-19 2000-02-08 Texas Instruments Incorporated Error estimation circuit and method for providing a read channel error signal
FR2748571B1 (en) 1996-05-09 1998-08-07 Europ Agence Spatiale RECEIVER DEVICE FOR A NAVIGATION SYSTEM IN PARTICULAR BY SATELLITE
US5848048A (en) * 1996-07-31 1998-12-08 Sony Corporation Optical disc reproducing apparatus, signal processing apparatus and method of the same
US5844920A (en) 1996-11-07 1998-12-01 Cirrus Logic, Inc. Thermal asperity compensation using multiple sync marks for retroactive and split segment data synchronization in a magnetic disk storage system
US5835295A (en) 1996-11-18 1998-11-10 Cirrus Logice, Inc. Zero phase restart interpolated timing recovery in a sampled amplitude read channel
US5901010A (en) 1997-02-07 1999-05-04 Cirrus Logic, Inc. Magnetic disc recording system employing two stage actuators for simultaneous accesses through multiple recording heads
US5781129A (en) 1997-03-03 1998-07-14 Motorola, Inc. Adaptive encoder circuit for multiple data channels and method of encoding
US6081397A (en) 1997-04-08 2000-06-27 International Business Machines Corporation Method and apparatus for SID-to-SID period estimation
US6009549A (en) 1997-05-15 1999-12-28 Cirrus Logic, Inc. Disk storage system employing error detection and correction of channel coded data, interpolated timing recovery, and retroactive/split-segment symbol synchronization
US5986830A (en) 1997-07-30 1999-11-16 Cirrus Logic, Inc. Read/write channel write precompensation system and method using one or more delay clocks
US6493162B1 (en) 1997-12-05 2002-12-10 Seagate Technology Llc Frame synchronization for viterbi detector
US6111712A (en) 1998-03-06 2000-08-29 Cirrus Logic, Inc. Method to improve the jitter of high frequency phase locked loops used in read channels
US6158107A (en) 1998-04-02 2000-12-12 International Business Machines Corporation Inverted merged MR head with plated notched first pole tip and self-aligned second pole tip
JP4087564B2 (en) 1998-06-30 2008-05-21 旭化成エレクトロニクス株式会社 PLL circuit
US6208478B1 (en) 1998-07-07 2001-03-27 Texas Instruments Incorporated Read clock interface for read channel device
US6657802B1 (en) 1999-04-16 2003-12-02 Infineon Technologies Corporation Phase assisted synchronization detector
US6404829B1 (en) 1999-06-29 2002-06-11 Oak Technology, Inc. DC insensitive AGC circuit for optical PRML read channel
US6530060B1 (en) 2000-02-08 2003-03-04 Cirrus Logic, Inc. Sampled amplitude read channel employing a post processor with a boundary error compensator which compensates for boundary error events in a split-field data sector
US6519102B1 (en) 2000-04-27 2003-02-11 International Business Machines Corporation Method and apparatus for implementing an in-situ digital harmonic computation facility for direct access storage device (DASD)
US6775529B1 (en) 2000-07-31 2004-08-10 Marvell International Ltd. Active resistive summer for a transformer hybrid
US6717764B2 (en) 2000-06-02 2004-04-06 Seagate Technology Llc Method and apparatus for head fly height measurement
US6816328B2 (en) 2000-06-20 2004-11-09 Infineon Technologies North America Corp. Pseudo-synchronous interpolated timing recovery for a sampled amplitude read channel
US6400518B1 (en) * 2000-11-01 2002-06-04 International Business Machines Corporation Magneto-resistive asymmetry correction circuit
US6606048B1 (en) 2000-11-16 2003-08-12 Marvell International, Ltd. Method and apparatus for equalizing the digital performance of multiple ADC's
US6490110B2 (en) 2000-12-05 2002-12-03 Cirrus Logic, Inc. Servo data detection with improved phase shift tolerance
JP2002175673A (en) 2000-12-07 2002-06-21 Nec Corp Pll circuit, data detecting circuit and disk device
JP4112809B2 (en) 2001-01-31 2008-07-02 株式会社東芝 Magnetic disk apparatus of perpendicular magnetic recording system and disk manufacturing method
US6603622B1 (en) 2001-02-28 2003-08-05 Western Digital Technologies, Inc. Disk drive employing a sync mark detector comprising a matched filter and a dual polarity correlator
US6963521B2 (en) 2001-03-30 2005-11-08 Sony Corporation Disc drive apparatus
JP2002329329A (en) 2001-04-27 2002-11-15 Sony Corp Optical disk utilizing phase change recording method and optical disk device
WO2002095738A1 (en) 2001-05-22 2002-11-28 Seagate Technology Llc Method and system for measuring fly height
US6633447B2 (en) 2001-05-25 2003-10-14 Infineon Technologies Ag Method and apparatus for compensation of second order distortion
JP4726337B2 (en) 2001-06-27 2011-07-20 ルネサスエレクトロニクス株式会社 One-chip microcomputer
US6856183B2 (en) 2001-10-12 2005-02-15 Agere Systems Inc. Scheme to improve performance of timing recovery systems for read channels in a disk drive
US6813108B2 (en) 2001-10-24 2004-11-02 Agere Systems Inc. Servo data detection in presence of radial incoherence using multiple data detectors
US7082005B2 (en) 2001-10-24 2006-07-25 Agere Systems Inc. Servo data detection in the presence or absence of radial incoherence using digital interpolators
US7126776B1 (en) 2002-04-17 2006-10-24 Western Digital Technologies, Inc. Disk drive having a sector clock that is synchronized to the angular speed of the spindle motor
US7088533B1 (en) 2002-04-23 2006-08-08 Maxtor Corporation Method of self-servo writing in a disk drive using a spiral pattern
TW563318B (en) 2002-05-20 2003-11-21 Via Optical Solution Inc Timing recovery circuit and method
JP2004014090A (en) 2002-06-11 2004-01-15 Fujitsu Ltd Data reproduction system, reproduction method and circuit for performing controlling of reproduction system
JP2004095047A (en) 2002-08-30 2004-03-25 Toshiba Corp Disk storage device and servo address mark detection method for the same
US7180696B2 (en) 2002-12-27 2007-02-20 Matsushita Electric Industrial Co., Ltd. Methods for selective multi-pass servowriting and self-servowriting
US7092462B2 (en) 2003-01-14 2006-08-15 Agere Systems Inc. Asynchronous servo RRO detection employing interpolation
US7136250B1 (en) 2003-03-25 2006-11-14 Marvell International Ltd. Detecting fly height of a head over a storage medium
US7116504B1 (en) * 2003-03-25 2006-10-03 Marvell International Ltd. DC-offset compensation loops for magnetic recording system
US7199961B1 (en) 2003-03-25 2007-04-03 Marvell International Ltd. Detecting fly height of a head over a storage medium
US6912099B2 (en) 2003-05-13 2005-06-28 Agere Systems Inc. Maximum likelihood detection of asynchronous servo data employing interpolation
US7191382B2 (en) 2003-06-02 2007-03-13 Fujitsu Limited Methods and apparatus for correcting data and error detection codes on the fly
US7308057B1 (en) 2003-06-05 2007-12-11 Maxtor Corporation Baseline wander compensation for perpendicular recording
US7038875B2 (en) 2003-07-31 2006-05-02 Seagate Technology Llc Dynamic measurement of head media spacing modulation
US7016131B2 (en) 2003-08-29 2006-03-21 Agency For Science, Technology And Research Method and implementation of in-situ absolute head medium spacing measurement
US7203017B1 (en) 2003-09-23 2007-04-10 Marvell International Ltd. Timing recovery for data storage channels with buffered sectors
US7620101B1 (en) 2003-09-24 2009-11-17 Cypress Semiconductor Corporation Equalizer circuit, communication system, and method that is adaptive to varying launch amplitudes for reducing receiver error
US7002767B2 (en) 2003-09-30 2006-02-21 Agere Systems Inc. Detection of recorded data employing interpolation with gain compensation
SG125102A1 (en) 2004-01-21 2006-09-29 Seagate Technology Llc Head polarity detection algorithm and apparatus
US7154689B1 (en) 2004-02-05 2006-12-26 Maxtor Corporation Apparatus for writing servo bursts on a disk with servo track pitch based on read element width and methods of manufacturing same
US7230789B1 (en) 2004-04-08 2007-06-12 Maxtor Corporation Method and apparatus for performing a self-servo write operation in a disk drive using spiral servo information
US7180693B2 (en) 2004-04-14 2007-02-20 Agere Systems Inc. Method and apparatus for maximum likelihood detection of data employing interpolation with compensation of signal asymmetry
US8405924B2 (en) 2004-04-30 2013-03-26 Agere Systems Llc Method and apparatus for improved address mark detection
JP4427392B2 (en) 2004-06-22 2010-03-03 株式会社東芝 Magnetic recording medium, method for manufacturing the same, and magnetic recording / reproducing apparatus
US7079342B1 (en) 2004-07-26 2006-07-18 Marvell International Ltd. Method and apparatus for asymmetry correction in magnetic recording channels
US7248426B1 (en) 2004-07-30 2007-07-24 Western Digital Technologies, Inc. Servo writing a disk drive from spiral tracks by shifting a demodulation window an integer number of sync mark intervals
US7253984B1 (en) 2004-09-02 2007-08-07 Maxtor Corporation Disk drive that generates a position error signal and a fly height signal from a servo burst pattern
US7193544B1 (en) 2004-09-08 2007-03-20 Northrop Grumman Corporation Parallel, adaptive delta sigma ADC
US7206146B2 (en) 2004-10-27 2007-04-17 Hitachi Global Storage Technologies Netherlands B.V. Biphase magnetic pattern detector using multiple matched filters for hard disk drive
US7167328B2 (en) 2004-12-17 2007-01-23 Agere Systems Inc. Synchronizing an asynchronously detected servo signal to synchronous servo demodulation
US7193798B2 (en) 2005-01-12 2007-03-20 Agere Systems, Inc. Method and apparatus for encoding and decoding a runout correction bit pattern of servo field
JP4641815B2 (en) * 2005-02-04 2011-03-02 パナソニック株式会社 Optical disk playback device
US7362536B1 (en) 2005-07-08 2008-04-22 Maxtor Corporation Disk drive that compensates for phase incoherence between radially adjacent servo tracks and methods thereof
JP2007087537A (en) 2005-09-22 2007-04-05 Rohm Co Ltd Signal processor, signal processing method and storage system
US7693243B2 (en) 2005-09-26 2010-04-06 Via Technologies, Inc. Method and circuit for timing recovery
JP4379814B2 (en) 2006-03-28 2009-12-09 富士通株式会社 Storage device, control method, control device, and program
US7423827B2 (en) 2006-04-20 2008-09-09 Agere Systems Inc. Systems and methods for accessing data from a variable polarity head assembly
US7679850B2 (en) 2006-05-11 2010-03-16 Seagate Technology Llc Position determination using circular shift codes
TWI340971B (en) * 2006-06-05 2011-04-21 Mediatek Inc Apparatus and methods for light spot servo signal detection
TWI337350B (en) * 2006-06-05 2011-02-11 Mediatek Inc Automatic gain controller and method thereof
US7796480B2 (en) * 2006-06-05 2010-09-14 Mediatek Inc. Apparatus and methods for light spot servo signal detection
CN100541620C (en) * 2006-06-05 2009-09-16 联发科技股份有限公司 The method of Wobble signal detection circuit and processing swinging signal
US7411531B2 (en) 2006-06-30 2008-08-12 Agere Systems Inc. Methods and apparatus for asynchronous sampling of a received signal at a downsampled rate
US7499238B2 (en) 2006-09-22 2009-03-03 Agere Systems Inc. Systems and methods for improving disk drive synchronization
US7643235B2 (en) 2006-09-28 2010-01-05 Seagate Technology Llc Synchronization for data communication
US8107573B2 (en) 2006-10-06 2012-01-31 Realtek Semiconductor Corp. Method and apparatus for baseline wander compensation in Ethernet application
US7446690B2 (en) 2006-11-06 2008-11-04 Atmel Corporation Apparatus and method for implementing an analog-to-digital converter in programmable logic devices
US7420498B2 (en) 2006-11-22 2008-09-02 Infineon Technologies Ag Signal converter performing a role
US7768730B2 (en) 2007-04-30 2010-08-03 Broadcom Corporation Base line control electronics architecture
US7602567B2 (en) 2007-06-28 2009-10-13 Lsi Corporation Feed-forward DC restoration in a perpendicular magnetic read channel
WO2009142620A1 (en) * 2008-05-19 2009-11-26 Agere Systems Inc. Systems and methods for mitigating latency in a data detector feedback loop

Also Published As

Publication number Publication date
US8154972B2 (en) 2012-04-10
KR101580330B1 (en) 2015-12-24
KR20100138694A (en) 2010-12-31
EP2267712A1 (en) 2010-12-29
TWI476765B (en) 2015-03-11
JP5444013B2 (en) 2014-03-19
CN101930750A (en) 2010-12-29
JP2011008900A (en) 2011-01-13
CN101930750B (en) 2015-05-13
US20100329096A1 (en) 2010-12-30

Similar Documents

Publication Publication Date Title
TWI476765B (en) Systems and methods for hard disk drive data storage including reduced latency loop recovery
US7957251B2 (en) Systems and methods for reduced latency loop recovery
TWI433141B (en) Systems and methods for adaptive baseline compensation
TWI446340B (en) Systems and methods for adaptive cbd estimation in a storage device
JP4109003B2 (en) Information recording / reproducing apparatus, signal decoding circuit and method
US8237597B2 (en) Systems and methods for semi-independent loop processing
US8325433B2 (en) Systems and methods for reduced format data processing
JP3749889B2 (en) Signal processing device to which PRML detection is applied, disk storage device having the device, and signal processing method for feedback control in the device
JP4812586B2 (en) Asymmetric cancellation component, storage drive
EP2191569B1 (en) Systems and methods for mitigating latency in a data detector feedback loop
US8837068B1 (en) Two dimensional magnetic recording servo system adaptive combination
US8413020B2 (en) Systems and methods for retimed virtual data processing
JP4821264B2 (en) Synchronization device, synchronization method, synchronization program, and data reproduction device
JP5646215B2 (en) System and method for two-tier sampling correction in a data processing circuit
US8862972B2 (en) Low latency multi-detector noise cancellation
US20060256463A1 (en) Gain controller for a gain loop of a read channel and related gain loops, read channels, systems, and methods
US20120124454A1 (en) Systems and Methods for ADC Sample Based Timing Recovery
US8610608B2 (en) Systems and methods for reduced latency loop correction
US8669891B2 (en) Systems and methods for ADC based timing and gain control
US8873180B2 (en) Sampling-phase acquisition based on channel-impulse-response estimation
JPH08212717A (en) Demodulating circuit of magnetic recording/reproducing apparatus
JP2007087531A (en) Signal processor and signal storage system
JP2007019848A (en) Signal processing apparatus and signal processing method
JP2005222649A (en) Pll circuit, and optical disk reproducing apparatus having pll circuit

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees