TW201043976A - Coupled-line structure of the high-frequency capacitance tester and its test method - Google Patents
Coupled-line structure of the high-frequency capacitance tester and its test method Download PDFInfo
- Publication number
- TW201043976A TW201043976A TW98118536A TW98118536A TW201043976A TW 201043976 A TW201043976 A TW 201043976A TW 98118536 A TW98118536 A TW 98118536A TW 98118536 A TW98118536 A TW 98118536A TW 201043976 A TW201043976 A TW 201043976A
- Authority
- TW
- Taiwan
- Prior art keywords
- line
- coupling
- signal input
- frequency capacitance
- coupled
- Prior art date
Links
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Abstract
Description
201043976 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種耦合線結構之高頻電容測試器及其測試方法, 尤指一種於基板上覆設一耦合線組以供待測電容器電性搭接俾能以 量測裝置來量測出高頻電容測試器的一散射參數,進而得到與散射參 數相應的待測電容值者。 【先前技術】 〇 按’一般所知的電容器基本結構係由兩片金屬平板,中間隔以絕 緣介質組合而成,其中電容量的大小取決於金屬片的面積、兩板間的 間距以及介於兩板間材㈣介f常數。歷社第—個有留下記錄的電 容器是克拉斯特主教(Ewald Georg von Kleist)於1745年1〇月所發 明的’其結構是-個内外層均鍍有金屬膜的玻璃瓶,玻璃瓶内有一金 屬桿,一端和内層的金屬膜連結,另一端則連結一金屬球體。在1746 年1月時’-個丹麥物理學家馬森布魯克也獨立發明了構造非常類似 〇 =電容H,當時克拉斯躲__尚未廣為人知。由於馬森布魯克 當時在萊頓大學任教,因此將其命名為萊頓甑如參考文獻⑴。 '隨著現代通訊系統的快速發展’電容器被廣泛運用於高頻旁路、交 連電容與直流阻隔(DC block)如參考文獻[2-3]等,若與電感器組合, 則可叹3十為濾。皮器如參考文獻[4—6],或調譜電路如參考文獻⑺。在 電容器的廣泛運用下,量測電容的技術日趨重要。 、、目刖電容測試器具體作法有:使用LCR Meter量測,其原理為發 、、、已去振巾田及頻率的交流k號給待測電容,電容之電流經儀器内部 處理計算後即可量測出待測電容器的電容值。m.此舰⑶如&加 3 201043976 等提出基於傳制Schering橋式電路上增加類比轉數位(㈣呢仂 Digitai,胤)電路,數位轉類比(Digital t〇Anal〇g,Mc)電路, 整合電路以及個人電腦的自動電容量測方法[8]。p, Ar〇nMme等提出 三種架構’分別為使用基本的RC串聯電路,加上二極體以及開關,且 透過電容充放電時間,推算出電容量如參考文獻⑼。M. A.紅細触 等提出在未知的制元件上,加上電觀魏麵,計算出元件上的 電壓或電流以及其她差’即可量測it{未知的制元件為電感或電容 〇如參考文獻[10]。本文提出利用平面電路結構與網路分析儀達到量測 高頻電容值之新方法。 參考文獻 [1] http://wikipedia.tw/ [2] D. Lacombe, J. Cohen, Octave-Band Microstrip DC Blocks (Short Papers),M IEEE Trans. Microwave Theory and Tech., Vol. 20, no. 8, pp. 555-556, Aug. 1972.201043976 VI. Description of the Invention: [Technical Field] The present invention relates to a high-frequency capacitance tester for a coupled line structure and a test method thereof, and more particularly to a method of coating a coupled line group on a substrate for electrical power to be tested The splicing device can measure a scattering parameter of the high-frequency capacitance tester by using a measuring device, and then obtain a capacitance value to be measured corresponding to the scattering parameter. [Prior Art] 基本 According to the 'Generally Known Capacitor', the basic structure is composed of two metal plates, and the middle interval is made up of insulating media. The size of the capacitance depends on the area of the metal piece, the spacing between the two plates, and The two plates (four) are f constants. The first capacitor with a record was invented by Ewald Georg von Kleist in 1745. The structure is a glass bottle with a metal film on the inner and outer layers. There is a metal rod inside, one end is connected with the inner metal film, and the other end is connected with a metal sphere. In January 1746, a Danish physicist, Masonbrook, also independently invented the structure very similar to 〇 = capacitance H, which was not widely known at the time. Since Masenbruck taught at Leiden University at the time, he was named Leiden, as in the reference (1). 'With the rapid development of modern communication systems' capacitors are widely used in high-frequency bypass, cross-connected capacitors and DC blocking (DC block) such as reference [2-3], etc., if combined with inductors, can sigh 30 For filtration. Leather goods such as references [4-6], or modulation circuits such as reference (7). In the widespread use of capacitors, the technology of measuring capacitance is becoming increasingly important. The specific method of witnessing the capacitance tester is as follows: using the LCR meter measurement, the principle is that the AC, the detonated towel field and the frequency of the exchange k number are given to the capacitor to be tested, and the current of the capacitor is calculated by the internal processing of the instrument. The capacitance value of the capacitor to be tested can be measured. m. This ship (3), such as & Plus 3 201043976, etc. proposed to increase the analog-to-digital number ((D), Digitai, 胤) circuit based on the transmission Schering bridge circuit, digital to analog (Digital t〇Anal〇g, Mc) circuit, Integrated circuit and automatic capacitance measurement method for personal computer [8]. p, Ar〇nMme et al. proposed three architectures' to use a basic RC series circuit, plus a diode and a switch, and to calculate the capacitance through the charge and discharge time of the capacitor, as described in reference (9). MA red fine touch is proposed on the unknown component, plus the electric view of the Wei surface, calculate the voltage or current on the component and the other difference 'can measure it'. The unknown component is an inductor or capacitor. Literature [10]. This paper proposes a new method for measuring high-frequency capacitance values using planar circuit structures and network analyzers. References [1] http://wikipedia.tw/ [2] D. Lacombe, J. Cohen, Octave-Band Microstrip DC Blocks (Short Papers), M IEEE Trans. Microwave Theory and Tech., Vol. 20, no 8, pp. 555-556, Aug. 1972.
[3] C.Y. Ho, “Analysis of DC Blocks Using Coupled Lines (Letters)," IEEE Trans. Microwave Theory and Techniques, Yol. 〇 23,no. 9, pp. 773-774, Sep. 1975.[3] C.Y. Ho, “Analysis of DC Blocks Using Coupled Lines (Letters), " IEEE Trans. Microwave Theory and Techniques, Yol. 〇 23, no. 9, pp. 773-774, Sep. 1975.
[4] G. L. Matthaei, L. Young and E. Μ. T. Jones, Microwave Fi 1 ters, Impedanc-Matching Network, and Coupl ing Structures, Artech House, Debham, Mass., 1980.[4] G. L. Matthaei, L. Young and E. T. T. Jones, Microwave Fi 1 ters, Impedanc-Matching Network, and Coupl ing Structures, Artech House, Debham, Mass., 1980.
[5] R. E. Collin, Foundations for Microwave Engineering, Second Edition, McGraw-Hill, N. Y., 1992.[5] R. E. Collin, Foundations for Microwave Engineering, Second Edition, McGraw-Hill, N. Y., 1992.
[6] J. S. Hong, M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, N.Y., 2001.[6] J. S. Hong, M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, N.Y., 2001.
[7] S. Sabaroff, “Impulse Excitation of a Cascade of Series Tuned Circuits,M Proceedings of the IRE, Vol. 32, no. 12, pp. 758-760, Dec. 1944. 4 201043976 -[8] M. Fonseca da Silva, A. Cruz Serra, “Capacitance measurement method, M IEEE AFRICON 4th AFRICON, Vol. 1, pp. 247-250, Sept. 1996.[7] S. Sabaroff, “Impulse Excitation of a Cascade of Series Tuned Circuits, M Proceedings of the IRE, Vol. 32, no. 12, pp. 758-760, Dec. 1944. 4 201043976 -[8] M. Fonseca da Silva, A. Cruz Serra, "Capacitance measurement method, M IEEE AFRICON 4th AFRICON, Vol. 1, pp. 247-250, Sept. 1996.
[9] P. Aronhime, G. Cecil, “A new method of capacitance measurement, ** Proceedings of the 35th Midwest Symposium on Circuits and Systems, Vol. 1, pp. 718-721, Aug. 1992.[9] P. Aronhime, G. Cecil, “A new method of capacitance measurement, ** Proceedings of the 35th Midwest Symposium on Circuits and Systems, Vol. 1, pp. 718-721, Aug. 1992.
[10] M. A. Atmanand, V. J. Kumar, V. G. K. Murti, “A novel method of measurement of L and C,” IEEE Transactions on Instrumentation and Measurement, Yol. 44, no. 4, pp. 898-903, Aug. 1995. 〇 [11] E. Μ. T. Jones, “Coupled-Strip-Transmission-Line Filters and Directional Couplers,” IEEE Trans. Microwave Theory and Tech., vol. 4, pp. 75-81, Apr. 1956.[10] MA Atmanand, VJ Kumar, VGK Murti, “A novel method of measurement of L and C,” IEEE Transactions on Instrumentation and Measurement, Yol. 44, no. 4, pp. 898-903, Aug. 1995. [11] E. Μ. T. Jones, “Coupled-Strip-Transmission-Line Filters and Directional Couplers,” IEEE Trans. Microwave Theory and Tech., vol. 4, pp. 75-81, Apr. 1956.
[12] G. I. Zysman and A. K. Johnson, “Coupled Transmission Line Networks in an Inhomogeneous Dielectric Medium, ” IEEE Trans. Microwave Theory and Tech., vol. 17, pp. 753-759, Oct. 1969.[12] G. I. Zysman and A. K. Johnson, “Coupled Transmission Line Networks in an Inhomogeneous Dielectric Medium,” IEEE Trans. Microwave Theory and Tech., vol. 17, pp. 753-759, Oct. 1969.
[13] Pozar, D. M., Microwave Engineering, Second Edition, New York: Wiley, 1998. 〇 【發明内容】 本發明之主要目的在於提供一種搞合線結構之高頻電容測試器及 其測試方法,主要係利用平面電路結構與網路分析儀進行高頻電容值 的量測,經過實際電路量測與模擬結果顯示,模擬值與量測值相當吻 合,故可供產業充分大量應用於生產線上,因而具備結構簡單、方便 設計、量測快速方便以及製作容易以大幅降低生產成本等特點。 為達成上述功效,本發明所採用之技術手段於一基板上覆設一耦 合線組,耦合線組由一直線延伸的第一耦合線及二位在基板且在同一 201043976 直線上的第二耦合線所構成, 入端’其第二端為一u號輪;之第-端第-端為-訊號輪 隙,俾能以-量測裝置來量測出高頻電二=接= 由計算後得到與散射參數相應的待測電容值者。 ,俾此 【實施方式】 赏·本發明之技術概念 〇 請參看圖五及附件二所千,士口丄立^ m # '、本&月主要係應用在高頻電容值測定 、$ _平面電_構油路分析儀達到高頻電容值 的_業’並可透過由_合線所串接組成_合線組⑽以供待 射谷HC紐搭接,至於電賴_可透_蝴如參考文獻 [11-12]_)及奇賴分析法進行分析(如參敎獻⑽),因而具備 結構簡單、方便設計與製作等特點,而且經過實際電路量測與模擬結 果顯示,觀值與制_當吻合,故可供麵充分狀量應用。 〇 貳·本發明之具艘實施 2.1本發明之基本特徵 請參看圖五及附件二所示,本發明之基本技術特徵係於一基板(J 〇 ) 上覆設一耦合線組(20),且耦合線組(2〇)係由一直線延伸的第一耦合 線(21)及二位在基板(1〇)且在同一直線上的第二搞合線(22)所構成, 以供一待測電容器C電性搭接。 藉一量測裝置螺接於訊號輸入端(210)及訊號輸出端(211)末所設 具外螺牙的導電性螺柱(216)(217),以量測出散射參數,便可依據該 6 201043976 散射參數計算出相應的該待測電容器c之電容值。 為便於審查委員更具體了解本發明,兹Γ字各組成元件等分別詳述 如后。 2.2基板 ’本發明基板(10)主要係供耦合線組 請參看圖五及附件二所·示 ⑽續設其上’政成高_容測試器之本發明,於—種具體實施例 中,輕合線組(20)係以印刷或_的方式成型於基板(⑻上 ’而基板[13] Pozar, DM, Microwave Engineering, Second Edition, New York: Wiley, 1998. 〇 [Summary of the Invention] The main object of the present invention is to provide a high frequency capacitance tester for a wire structure and a test method thereof, mainly Using the planar circuit structure and the network analyzer to measure the high-frequency capacitance value, the actual circuit measurement and simulation results show that the analog value and the measured value are quite consistent, so the industry can be fully applied to the production line, thus having The structure is simple, convenient to design, quick and convenient to measure, and easy to manufacture to greatly reduce production costs. In order to achieve the above-mentioned effects, the technical means adopted by the present invention applies a coupling line group on a substrate, the first coupling line of the coupling line group extending from the straight line and the second coupling line of the two positions on the substrate and on the same 201043976 line. The second end of the input end is a u-wheel; the first end of the first end is a signal truncation, and the measuring device can measure the high-frequency electric two = connection = after calculation The value of the capacitance to be measured corresponding to the scattering parameter is obtained.俾 【 【 【 · · 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本The plane electric_structured oil path analyzer reaches the high-frequency capacitance value _ industry' and can be connected by the _---------------------------------------------------------------------------------------------------- The butterfly is analyzed according to the reference [11-12]_) and the Qilai analysis method (such as the reference (10)), so it has the characteristics of simple structure, convenient design and production, and the actual circuit measurement and simulation results show that The value is consistent with the system, so it can be applied to the surface.实施 · The present invention 2.1 implementation of the basic features of the present invention, as shown in Figure 5 and Annex II, the basic technical features of the present invention is a substrate (J 〇) is covered with a coupling line set (20), And the coupling line group (2〇) is composed of a first coupling line (21) extending in a straight line and a second matching line (22) on the same line (2) on the same line, for waiting The capacitor C is electrically connected. A measuring stud is connected to the conductive studs (216) (217) provided with external threads at the signal input end (210) and the signal output end (211) to measure the scattering parameters. The 6 201043976 scattering parameter calculates the corresponding capacitance value of the capacitor c to be tested. In order to facilitate the review of the present invention, the components of each of the components are detailed as follows. 2.2 Substrate 'The substrate (10) of the present invention is mainly used for the coupling line group. Referring to Figure 5 and Annex 2, (10), the invention of the 'Jiangcheng Gao_Jun Tester is continued. In a specific embodiment, The light wire group (20) is formed on the substrate ((8) on the substrate by printing or _)
(10)所使用的板材為fr-4覆鋼雙面板,基板⑽厚度為丨.6mm,相對介 電常數為4. 3,基板⑽尺寸為5.施被她m。 2· 3耦合線組 請參看圖五及附件二所示,本發明輕合線組(2〇)包含呈直線延伸 的-條苐-輕合線(21)及二條第二搞合線(22),第一搞合線(21)與第 -輕合線(22)分別具有第-端與第二端,其中第—轉合線⑵)之第一 端為-訊號輸入端(210) ’其第二端為—訊號輸出端⑵丨)^此外,二 〇條第一耦合線(22)係位於基板(1〇)的同一直線上,並與第一耦合線(21) 保持平行且能產生耦合作用的位置上,每一第二耦合線(22)之第一端 分別接地’且於二條第二耦合線(22)之第二端相對並具一空隙(22〇), 此空隙(220)可供-待測之電容器c放置,並以此二條第二搞合線(22) 之第二端分別供電容器(^之二端做電性搭接之用,俾能以一量測裝置來 量剩出尚頻電容測試器的一散射參數,依據散射參數經由計算後即可 得到與散射參數相應的待測電容值。 請參看圖五所示’為標準化耦合線組(2〇)尺寸以縮小基板(1〇)尺 201043976 寸’並使搞合線組(20)之偶模阻抗為100歐姆’奇模阻抗為5〇歐姆,再 使訊號輸入端(210)與訊號輸出端(211)的特性阻抗皆為5〇歐姆之目 的,以提升量測精確度。 再者,本發明的實驗例中,耦合線組(2〇)之第一耦合線及第二耦 合線的線寬度為1. 36ram,該第一耦合線(21)與第二耦合線(22)的間距 為0.43mm,該第一耦合線(21)與該第二耦合線(22)的長度分別為 21.42mm ’第一搞合線(22)之第二端的間距為imm。而且,第一耦合線 ❹(21)之第一端及第二端分別具有一向外擴大的梯形段(212)(2ι3),並 於擴大的末端分別具有一矩形段(214)(215),其一矩形段(214)做為該 讯號輸入端(210),另一矩形段(215)做為該訊號輸出端(211)。其中, 母一梯开>段(212) (213)的長度分別為2mm,每一矩形段(214)(215)的長 度分別為5mm,且每一矩形段(214)(215)的線寬各為3.1mm。 2.4量測裝置 本發明量測裝置之具體實施例係為一向量網路分析儀,由於量測 ❹裝置之向量網路分析儀係為非常普遍用來量測胙射頻及微波散射參數 的量測工具,因此於本圖示例中未進一步的具體揭露。且本發明採用 之向量網路分析儀包含一與訊號輸入端(210)插接訊號連通的輸出 埠,及一與訊號輸出端(211)插接訊號連通的接收埠,向量網路分析儀 由輸出埠輸出一量測之訊號經第一耦合線(21)而耦合至第二耦合線 (22)中’並由接收埠接收訊號以量測出散射參數。 並於向量網路分析儀係嵌入一電磁模擬軟體IE3D内含之 LlneGauge將耗合線組(20)各項阻抗及電氣長度(Θ)進行微帶線結構尺 201043976 寸計算。並以電磁模擬軟體IE3D進行電路模擬,電路模擬設定2GHz為 中心頻率’並以最高測試頻率的四分之一波長來計算該耦合線組(2〇) 的電氣長度(Θ),且電氣長度(Θ)為90度。 量測裝置係以該耦合線組(20)之阻抗矩陣與奇、偶模分析法來求 取散射參數,耦合線組(2〇)之線寬與線距由偶模阻抗(z〇e)、奇模阻抗 (Zoo)、該電路基板(1〇)相對介電係數決定,並可影響該訊號輸出端 (211)的反射係數與該訊號輸入端(21〇)的訊號強度。 〇 參·電路結構之電氣特性分析 清參看圖一(a)、圖五所示,本發明之高頻電容測試器具有左右對 稱特性,將電路直切即可進行奇、偶模分析,如圖-⑹、(c)所示。(10) The plate used is a fr-4 steel double-sided panel, the substrate (10) has a thickness of 丨.6 mm, a relative dielectric constant of 4.3, and a substrate (10) size of 5. 2·3 Coupling line group, as shown in Figure 5 and Annex II, the light-weight wire group (2〇) of the present invention comprises a straight line-strand-light line (21) and two second stitching lines (22) The first engagement line (21) and the first-light connection line (22) have a first end and a second end, respectively, wherein the first end of the first-to-conversion line (2) is a signal input end (210)' The second end is - signal output end (2) 丨) ^ In addition, the second yoke first coupling line (22) is located on the same line of the substrate (1 〇), and is parallel with the first coupling line (21) and can In the position where the coupling is generated, the first end of each of the second coupling lines (22) is grounded respectively, and the second ends of the two second coupling lines (22) are opposite each other and have a gap (22〇), the gap ( 220) The capacitor c to be tested is placed, and the second end of the two second engagement wires (22) respectively supply the containers (the two ends of the two are used for electrical bonding, and can be measured by one measurement) The device takes a scattering parameter of the still-frequency capacitance tester, and according to the scattering parameter, the capacitance value to be measured corresponding to the scattering parameter can be obtained by calculation. Please refer to FIG. 5 for the standardized coupling group (2〇). In order to reduce the substrate (1〇) ruler 201043976 inch and make the even mode impedance of the wire group (20) 100 ohms, the odd mode impedance is 5 ohms, and then the signal input end (210) and the signal output end ( The characteristic impedance of 211) is 5 ohms for the purpose of improving the measurement accuracy. Furthermore, in the experimental example of the present invention, the line widths of the first coupling line and the second coupling line of the coupling line group (2〇) The distance between the first coupling line (21) and the second coupling line (22) is 0.43 mm, and the lengths of the first coupling line (21) and the second coupling line (22) are respectively 21.42 mm. The spacing of the second end of the first engagement line (22) is imm. Moreover, the first end and the second end of the first coupling line 21 (21) respectively have an outwardly enlarged trapezoidal section (212) (2ι3), And at the enlarged end, there is a rectangular section (214) (215), a rectangular section (214) is used as the signal input end (210), and another rectangular section (215) is used as the signal output end (211). The length of each of the rectangular segments (214) (215) is 2 mm, and each rectangular segment (214) (215) Line width 3.1mm. 2.4 Measuring device The specific embodiment of the measuring device of the present invention is a vector network analyzer. The vector network analyzer for measuring the germanium device is very commonly used to measure the radio frequency and microwave scattering parameters. The measurement tool is not further disclosed in the example of the figure. The vector network analyzer used in the present invention comprises an output port connected to the signal input terminal (210), and a signal output. The terminal (211) is connected to the receiving end of the signal connection, and the vector network analyzer outputs a measured signal from the output port to the second coupling line (22) via the first coupling line (21) and receives the signal. Receive signals to measure the scattering parameters. And the vector network analyzer is embedded in an electromagnetic simulation software IE3D. The LlneGauge will calculate the impedance and electrical length (Θ) of the line group (20) for the microstrip line structure 201043976 inch calculation. The circuit simulation is performed with the electromagnetic simulation software IE3D. The circuit simulation sets the 2GHz as the center frequency' and calculates the electrical length (Θ) of the coupling line group (2〇) with the quarter wavelength of the highest test frequency, and the electrical length ( Θ) is 90 degrees. The measuring device uses the impedance matrix of the coupled line group (20) and the odd and even mode analysis method to obtain the scattering parameter, and the line width and the line spacing of the coupled line group (2〇) are the even mode impedance (z〇e). The odd-mode impedance (Zoo), the relative dielectric constant of the circuit substrate (1〇), and the reflection coefficient of the signal output end (211) and the signal strength of the signal input end (21〇). According to Figure 1 (a) and Figure 5, the high-frequency capacitance tester of the present invention has left-right symmetry characteristics, and the circuit can be directly cut to perform odd and even mode analysis, as shown in the figure. - (6), (c).
Zw、Z〇e為輕合線組(20)的奇模及偶模特性阻抗(Z〇e=l/YQe,Zoo=l/Y小 0為耦合線組(20)電氣長度,c為待測之電容器。 >Γ 2丨1 A 213 ζ丨/ X 一 ^21 Ζ22 223 224 h ^31 ^32 233 Ζ34 h 几 -ζ4! Ζ42 243 244_ Λ. 首先分析偶模電路,如圖一⑹所示,利_合線阻抗矩陣,如式 ⑴所示’進行電路分析,可觀察出邊界條件為lH4=(mVl=0 〇 Γτ/Ί 「7 π _ ^ (1) (2) ht路’㈣_(⑽合鄉)導納矩 路分析[11_13]’可觀察出邊界條件為 9. (3) 201043976 Ί: Yn Υη Υη Ά,' X h ^ Υ22 ^3 Υ24 h Γ3» ^32 ^33 ^ η Λ_ /4. υ42 υ43 r44 Ά. 帶入邊界條件經整理後,可得整體的奇模電路輸人阻抗· &⑷所示 >2C + K44 (4) 计算出奇模及賴電雜抗後,可相導料偶模之反祕數Γ。及 re如下所示 ❹ jcolC + Y44Zw, Z〇e are the odd-mode and even-mode impedance of the light-bonded wire group (20) (Z〇e=l/YQe, Zoo=l/Y is smaller than the electrical length of the coupled wire group (20), and c is to be Measured capacitor. >Γ 2丨1 A 213 ζ丨/ X 一^21 Ζ22 223 224 h ^31 ^32 233 Ζ34 h ζ-ζ4! Ζ42 243 244_ Λ. First analyze the even mode circuit, as shown in Figure 1 (6) Show, the _ _ line impedance matrix, as shown in equation (1) 'for circuit analysis, you can observe the boundary condition is lH4 = (mVl = 0 〇Γ τ / 「 "7 π _ ^ (1) (2) ht road ' (four) _ ((10) Hexiang) Admittance moment analysis [11_13]' Observable boundary condition is 9. (3) 201043976 Ί: Yn Υη Υη Ά, ' X h ^ Υ22 ^3 Υ24 h Γ3» ^32 ^33 ^ η Λ_ /4. υ42 υ43 r44 Ά. After the boundary conditions are sorted, the overall odd-mode circuit input impedance can be obtained. &(4)>2C + K44 (4) After calculating the odd-mode and the damaging reactance , the anti-secret number of the phase-coupled mode, and re as shown below ❹ jcolC + Y44
Kzl±= r22〇^2c+rJ~r24r42~z〇 Z:n+ZQ j^2C + Y44 — Y^ic+YA4)-Y^+z〇 zKzl±= r22〇^2c+rJ~r24r42~z〇 Z:n+ZQ j^2C + Y44 — Y^ic+YA4)-Y^+z〇 z
GG
A 一 Z0 ^22 —Ζί2Ζ2〗 I : 22 再經過整理,可㈣賴之反㈣訂。及Fe如式⑸、式⑹所示(5) r _ i1 - Z〇Y22 )〇a2C + YM)+ Zny,,yr (ι+z0y22 Xj02c+y44) - zqy24y42A 一 Z0 ^22 —Ζί2Ζ2〗 I : 22 After finishing, you can (4) Lai Zhi (4). And Fe are as shown in formula (5) and formula (6) (5) r _ i1 - Z〇Y22 ) 〇 a2C + YM) + Zny,, yr (ι+z0y22 Xj02c+y44) - zqy24y42
r - ZuZ^ ~^n^2\ ~ΖηΖΛ ZUZ22 ~Zl2Z2l -bZuZ0 由於反射係數轉換散射參數公式[13]如式(7)及式(8) 丨\丨 l=I(re + ro) 1¾ 丨=玉(〔-Γ〇) 可得散射參數|Sn|與1S21|表示式分別如式⑼、式⑽所示队 4(M22 II21 藥 2^zuz22 z12z21+zuz0 {uzj^c^yzj^J (6) ⑺⑻ (9) (10) 201043976 丨知丨: 2 ^^-Ζ12Ζ21 -ZnZQ {l-Z0Y2Jja2C+Yu)+Z0Y24Y42 ^uz22~z12z2l+zuz0 (1+z0r22X/-6>2C+r44)-z0r24r42. 其中阻抗矩陣的z與導納矩陣Y公式如式(11)-(18)所示 Zu = = Z22 : =Z44 = cote+ Z00 cote) (11) z,2: = z21 : = z34 = Z43 = ~^(Zoe COt^-Z^COt^) (12) z]3: =z3 丨: = Z24 = z42 = -^ZoeC^-^〇〇CSCe) (13) zI4 : =241 = = z23 =(4 CSC0 + Z。。csc<9) (14) zY21 = ^33 = :^44 ~ + Y〇〇C〇X0) (15) = }21 = ^34 = :,43 = -j(YoecotO-Y00cote) (16) ^,3 = = r3l = = -^42 = z^{Y〇e^&-Y〇〇CSC0) (17) Yu- :^23 = =¾ = kY0e^e + Yoo^G) (18) 肆·電路特性模擬分析 請參看如圖二(a)、(b)所示,首先以高頻模擬軟體Microwave Office進行模擬,設定電路中心頻率為2GHz,耦合線組(20)氣長度 〇 Θ為90° ’隨意給定電容值 <:為6.8成,改變不同的奇、偶模特性阻 仏Zoo、Zoe ’觀察其變化情形,結果如圖二⑷、⑹所示。、 Z〇e=l〇〇(菱形標誌 Ο 角形標誌),Ζ〇〇=50Ω、Z〇e=200(交又標誌),並由圖中可觀察出,若终 疋的奇模特性阻抗Zoo愈小,其丨丨諧振頻率會往高頻移動;而終定的 偶模特性阻抗Zoe愈大,其|S2,|諧振頻率會往低頻移動。結果顯示更改 奇偶模特性阻抗Zoo、Zoe並不會對電路特性產生大幅的影響,故選A 雕刻機較易實現之奇難性阻抗Ζ^5()Ω、偶婦性阻抗z叫00 ^ 201043976 由模擬結果可知此結構具有帶拒特性,故丨^丨需為 可知,維I為_re需等於Γ。,且以。可推導訂/式⑻ 《cot’A-c。略 2ZAc。吟 s2 + i)+c〇tfc+z^ 令輕合線電氣長度,帶入上式後經整理可得待測電容 ls21|諧振頻率點關係式’如式⑽所示。其中^為傳播常數 、 (Μτγ/α,Λ為波長)’ f為耦合線組(2〇)實際長度,义與/分別為 ❹路中心頻率與丨心丨諧振頻率點,ffl為比率值。 cosf^ c= (VY-xl°3 ipF) riQs 27fsm-l(Z〇e+Z〇〇) (19)r - ZuZ^ ~^n^2\ ~ΖηΖΛ ZUZ22 ~Zl2Z2l -bZuZ0 The scattering parameter formula for reflection coefficient conversion [13] is as shown in equation (7) and equation (8) 丨\丨l=I(re + ro) 13⁄4 丨= jade ([-Γ〇) available scattering parameters | Sn | and 1S21 | expressions as shown in formula (9), formula (10), respectively, team 4 (M22 II21 medicine 2^zuz22 z12z21 +zuz0 {uzj^c^yzj^J ( 6) (7)(8) (9) (10) 201043976 丨知丨: 2 ^^-Ζ12Ζ21 -ZnZQ {l-Z0Y2Jja2C+Yu)+Z0Y24Y42 ^uz22~z12z2l+zuz0 (1+z0r22X/-6>2C+r44)-z0r24r42 Where z of the impedance matrix and the admittance matrix Y formula are as shown in equations (11)-(18) Zu = = Z22 : =Z44 = cote+ Z00 cote) (11) z, 2: = z21 : = z34 = Z43 = ~^(Zoe COt^-Z^COt^) (12) z]3: =z3 丨: = Z24 = z42 = -^ZoeC^-^〇〇CSCe) (13) zI4 : =241 = = z23 =( 4 CSC0 + Z.csc<9) (14) zY21 = ^33 = :^44 ~ + Y〇〇C〇X0) (15) = }21 = ^34 = :,43 = -j(YoecotO-Y00cote ) (16) ^,3 = = r3l = = -^42 = z^{Y〇e^&-Y〇〇CSC0) (17) Yu- :^23 = =3⁄4 = kY0e^e + Yoo^G (18) 肆· Circuit characteristics simulation analysis, as shown in Figure 2 (a), (b), first with high frequency simulation software Microwave Offi Ce simulation, set the circuit center frequency to 2GHz, the coupling line group (20) gas length 〇Θ is 90 ° 'freely given capacitance value <: 6.8, change the different odd and even model resistance Zoo, Zoe 'Observation of the changes, the results are shown in Figure 2 (4), (6). , Z〇e=l〇〇 (diamond mark Ο angle mark), Ζ〇〇=50Ω, Z〇e=200 (cross mark and mark), and can be observed from the figure, if the ultimate odd model impedance Zoo The smaller the 丨丨 resonance frequency will move to the high frequency; the larger the ultimate model impedance Zoe, the higher the |S2,| resonance frequency will move to the low frequency. The results show that changing the odd-even model impedances Zoo and Zoe does not have a significant impact on the circuit characteristics. Therefore, it is easier to achieve the odd-hard impedance of the A engraving machine Ζ^5()Ω, the couple impedance z is called 00 ^ 201043976 It can be seen from the simulation results that the structure has a rejection characteristic, so it is necessary to know that the dimension I is _re needs to be equal to Γ. And to. Can be deduced / (8) "cot'A-c. Slightly 2ZAc.吟 s2 + i)+c〇tfc+z^ Let the electrical length of the light-weighted wire be brought into the upper formula and then sorted to obtain the capacitance to be tested. ls21|Resonant frequency point relationship' is shown in equation (10). Where ^ is the propagation constant, (Μτγ/α, Λ is the wavelength)' f is the actual length of the coupled line group (2〇), and the meaning and / are respectively the center frequency of the bridge and the resonance frequency point of the heart, and fff is the ratio value. Cosf^ c= (VY-xl°3 ipF) riQs 27fsm-l(Z〇e+Z〇〇) (19)
Wo 7 請參看圖三所示所示,設定電路中心頻率為2GHz,奇、偶模特性 阻抗ZM=5GD、Z〇e=lG(m及齡線組⑽)電氣長度<9 $ 9〇。後,帶入 上述推導之公式(19)後,運用數值分析軟體Matiab進行計算與缘圖, 〇可繪出待測電容值與IS”|諧振頻率點之關係圖,如。當待測電容值〇pF 時’ IS” |諧振頻率點為2GHz。頻率在1至2GHz時,呈較線性的變化; 當頻率小於1GHz時,呈指數曲線變化,也就是當待測電容值大到一定 程度後,對|&|譜振頻率點的變化影響也較小。並可觀察出當待測電 谷器c大’則iSni諧振頻率點愈往低頻移動;反之,待測電容器c小, 則1知|諧振頻率點愈往高頻移動。 伍·模擬與實作結果 請參看圖四(a)、(b)所示,本發明電路模擬係使用電磁模擬軟體 12 201043976 IE3D進行,給定中心頻率為2GHz’奇、偶模特性阻抗Ζοο=5〇Ω、z〇e=1 〇〇 Ω 及耦合線電氣長度0為90°,接著分別模擬不同待測電容值c為 0· 3pF(菱形標諸)、0. 7pF(方形標諸)、1. 5pF(2角標諸)、3pF(交又標 誌)與6.8pF(星形標誌)五個電容值,其變化情形如圖四(a)、(…所 示。可觀察出當電容值C為0. 3、0. 7、1. 5、3及6.8pF時,其丨s21| 諧振頻率分別為 1. 513、1· 169、0. 868、0. 637 及 0.431GHz。 請參看圖五及附件二所示,電路實作使用之基板(1〇)材料為FR 4 〇雙面板,基板(10)厚度為1. 6im ’相對介電常數為4. 3。將上述數值帶 入電磁模擬軟體IE3D内含之Line Gauge ’進行微帶線結構尺寸計算’ 可得.3. lmm、W2=l. 36inni、W3=0. 43咖、LWinm、L2=2醜、L3=21. 42晒、 ,輸入與輪出埠(31)之特性阻抗為5〇歐姆,線寬為Wi=3.丨咖, 任意給定長度L=5咖1以方便製作。電路結構如圖五所示,實際電路如 附件二所示,電路尺寸為5是被搬⑽,並以向量網路分析儀 Anritsu-37269D 進行量測。 〇 請參看圖六(a)與⑹所示,其中圖六(a)(b)分別為電路之散射參 數丨Sl1丨與丨&1丨實際量測結果,分別量測不同待測電容值C為〇 3pF(菱 形標諸)、,0.7PF(方形㈣、咖(三角標諸)、祕(交又標諸)與 6. 8pF(星形標諸)五個電容值。可觀察出當電容值c為〇 3 m 5、 3及6· 8pF時’其丨知丨諧振頻率分別為1. 388、1. 086、〇· 833、0 621 及 0.416GHz。 ^ * 請參看圖七所示,為改變不同電容值實際量測與_模擬比較 圖’可齡tH顯與實測結果具有相當高的—致性。其數值味如表 13 201043976 一所示,當待測電容為〇· 3pF時,理論計算、IE3D模擬、實際量測的 諧振頻率點分別為1.49卜1. 513、1. 388GHz,模擬與實測、理論與實 測的電容誤差分別為G.153、G._)K誤差百分比分別為〇.51%、 〇· 326%)。當待測電容為〇. 7pF時,理論計算、IE3D模擬、實際量測 的諧振頻率點分別為1.165、1· 169、1. 086GHz,模擬與實測、理論與 實測的電容誤差相為0.194、G· 153pK誤差百分tb分齡〇. 277%、 〇. 218%)。當待測電容為1· 5pF時,理論計算、IE3D模擬、實際量測 〇的諧振頻率點分別為〇. 87、〇. 868、〇. 833GHz,模擬與實測、理論與 實測的電容誤差分別為0.277、0.161pK誤差百分比分別為〇. 185%、 0.107%)。當待測電容為3pF時,理論計算、IE3D模擬、實際量測的 諧振頻率點分別為〇. 641、〇· 637、〇· 621GHz,模擬與實測、理論與實 測的電容誤差分別為〇·2〇8、0.221pF(誤差百分比分別為〇._%、 〇. 074%)。當待測電容為6· 8pF時,理論計算、IE3D模擬、實際量測 的諧振頻率點分別為〇. 437、0.43卜0· 416GHz,模擬與實測、理論與 〇實測的電容誤差分別為〇· 725、0. 726pF(誤差百分比分別為〇. 1瞧、 0.107%) 〇 陸.結論 藉由上述技術特徵的建置’本發明確實可以利用平面電路結構與 網路分析儀進行高頻電容值的量測,經過實際電路量測與模擬結果顯 不’模擬值與量測值相當吻合,故可供產業充分大量應用於生產線上, 因而具備結構簡單、方便設計、量測快速方便以及製作容易以大幅降 低生產成本等特點。 201043976 專利範圍,凡兴依Γ 可行實施例,並非用以限定本發明之 而為之其他虞下列申4專利範圍所述之内容、特徵以及其精神 明所具麻財施,雜包含於本㈣之專·_。本發 已符合發明專利要件,爰依法具文提出申請,謹請均 局依法核予專利,轉縣申請人合法之權益。 【圖式簡單說明】 〇圖-(a)係本發明電容職料效電路示意圖。 圖一 (b)係本發明偶模電路示意圖。 圖一(c)係本發明奇模電路示意圖 圖,係本發明不同奇(Z。。)、偶(4)模阻抗,娜0模擬之散射參數 ISu|關係圖。 圖一(b)係本發明不同奇(z。。)、偶(z〇e)模阻抗,mw〇模擬之散射 關係圖。 ❹圖三電容值與丨S2il譜振頻率點(0.5至2GHZ)之關細。 圖印⑻係本發明不同電容值之;(励模擬散射參數丨%丨關係圖。 圖四(b)係本發明不同電容值之ffi3D模擬散射參數丨知丨關係圖。 圖五高頻電容測試器之電路結構示意圓。 圖’、(a)係本發明不同電容值實際量測散射參數丨關係圖。 圖/、(b)係本發明不同電容值實際量測散射參數丨丨關係圖。 圖七係本發明不同電容值實際量測與压3〇模擬比較示意圖。 附件一電容差值與|S〗i |諧振頻率點關係對照表。 15 201043976 附件二高頻電容測試器之實作照片。 【主要元件符號說明】 (C)電容器 (10)基板 (20)耦合線組 (21)第一耦合線 (210)訊號輸入端 (211)訊號輸出端 (212X213)梯形段 (214)(215)矩形段 〇 (216X217)螺柱 (22)第二耦合線 (220)空隙 ❹ 16Wo 7 Please refer to Figure 3 to set the circuit center frequency to 2GHz, odd and even model impedance ZM=5GD, Z〇e=lG (m and age line group (10)) electrical length <9 $ 9〇. After introducing the formula (19) of the above derivation, the numerical analysis software Matiab is used to calculate and calculate the edge map, and the relationship between the capacitance value to be measured and the IS"|resonant frequency point can be plotted, for example, when the capacitance value to be measured is 〇pF when 'IS' | resonance frequency point is 2GHz. When the frequency is 1 to 2 GHz, it changes linearly. When the frequency is less than 1 GHz, it changes exponentially. That is, when the value of the capacitor to be measured is large enough, the influence of the frequency of the |&| Smaller. It can be observed that when the voltage to be measured is large, the iSni resonance frequency point moves to the low frequency; on the contrary, if the capacitor c to be tested is small, the resonance frequency point moves to the high frequency. For the simulation and implementation results, please refer to Figure 4 (a), (b), the circuit simulation of the present invention is carried out using the electromagnetic simulation software 12 201043976 IE3D, given a center frequency of 2GHz 'odd, even model impedance Ζοο= 5〇Ω, z〇e=1 〇〇Ω, and the electrical length of the coupled line is 0°, and then simulate different capacitance values c to be 0·3pF (diamonds), 0.7pF (squares), 1. 5pF (2 angle mark), 3pF (cross mark and mark) and 6.8pF (star mark) five capacitance values, the change situation is shown in Figure 4 (a), (... can be observed when the capacitance value When C is 0.3, 0.7, 1.5, 3, and 6.8 pF, the 丨s21| resonance frequencies are 1. 513, 1·169, 0. 868, 0. 637, and 0.431 GHz, respectively. 5。 The substrate (1〇) material used for the circuit is FR 4 〇 double-sided, the thickness of the substrate (10) is 1. 6im 'relative dielectric constant is 4.3. Bring the above values into the electromagnetic Line Gauge 'includes the microstrip line structure size calculation in the simulation software IE3D'. Available in .3. lmm, W2=l. 36inni, W3=0. 43 coffee, LWinm, L2=2 ugly, L3=21. 42 , , input and rotation (31) The impedance is 5〇 ohm, the line width is Wi=3. 丨, any given length L=5 coffee 1 is convenient to make. The circuit structure is shown in Figure 5, the actual circuit is shown in Appendix 2, the circuit size is 5 It was moved (10) and measured with the vector network analyzer Anritsu-37269D. Please refer to Figure 6(a) and (6), where Figure 6(a)(b) shows the scattering parameters of the circuit 丨Sl1丨丨&1丨 actual measurement results, respectively measure the different capacitance values C to be 〇3pF (diamond type), 0.7PF (square (four), coffee (triangle), secret (cross and standard) and 6. 8.8, 1. 086, respectively, when the capacitance value c is 〇3 m 5, 3, and 6.8 pF, respectively. 〇· 833, 0 621 and 0.416 GHz. ^ * Please refer to Figure 7. The actual measurement and the _simulation comparison chart for changing the different capacitance values are quite high. The value is quite high. As shown in Table 13 201043976, when the capacitance to be measured is 〇·3pF, the resonance frequency points of the theoretical calculation, IE3D simulation, and actual measurement are 1.49, respectively, 1. 513, 1. 388 GHz. The capacitance errors of simulation and actual measurement, theory and actual measurement are respectively G.153, G._)K error percentages are 〇.51%, 〇·326%). When the capacitance to be measured is 〇. 7pF, the resonant frequency points of theoretical calculation, IE3D simulation, and actual measurement are 1.165, 1.169, 1.086 GHz, respectively. The simulated and measured, theoretical and measured capacitance errors are 0.194, G. · 153pK error percentage tb age 〇. 277%, 〇. 218%). When the capacitance to be measured is 1·5pF, the resonance frequency points of theoretical calculation, IE3D simulation and actual measurement 〇 are respectively 87. 87, 〇. 868, 〇. 833GHz, and the capacitance errors of simulation and actual measurement, theory and actual measurement are respectively The percentage error of 0.277 and 0.161pK is 〇. 185%, 0.107%). When the capacitance to be measured is 3pF, the resonance frequency points of theoretical calculation, IE3D simulation and actual measurement are 〇. 641, 〇·637, 〇·621GHz, respectively. The capacitance errors of simulation and actual measurement, theory and actual measurement are respectively 〇·2 〇 8, 0.221 pF (error percentages are 〇._%, 〇. 074%). When the capacitance to be measured is 6.8 pF, the resonance frequency points of theoretical calculation, IE3D simulation and actual measurement are respectively 〇. 437, 0.43 Bu 0· 416 GHz, and the capacitance errors of simulation and actual measurement, theory and 〇 measurement are respectively 725, 0. 726pF (the error percentages are 〇.1瞧, 0.107% respectively) 〇陆. Conclusion By the above technical features of the construction 'the invention can indeed use the planar circuit structure and the network analyzer for high-frequency capacitance values Measurement, after the actual circuit measurement and simulation results are not 'simulated value and measured value is quite consistent, so the industry can be fully applied to the production line, so it has a simple structure, convenient design, quick and convenient measurement and easy to make Significantly reduce production costs and other characteristics. The scope of the patents, the scope of the patents, and the versatile embodiments of the present invention are not intended to limit the invention, but other contents, characteristics and spirits of the following claims are included in this (4) Special ··. This issue has been in compliance with the requirements of the invention patent, and has filed an application in accordance with the law. I would like to ask the respective bureaus to approve the patents according to law and transfer the legal rights of the applicants. [Simple diagram of the diagram] Figure-(a) is a schematic diagram of the capacitor effect material circuit of the present invention. Figure 1 (b) is a schematic diagram of an even mode circuit of the present invention. Figure 1 (c) is a schematic diagram of the odd-mode circuit of the present invention, which is a graph of the difference between the odd (Z.), the even (4) mode impedance, and the Na'0 simulation scattering parameter ISu|. Fig. 1(b) is a diagram showing the scattering relationship of the odd (z..), even (z〇e) mode impedance, and mw〇 simulations of the present invention. The capacitance value of Figure 3 is close to the frequency of the 丨S2il spectral frequency (0.5 to 2 GHz). Figure (8) is a different capacitance value of the present invention; (excitation analog scattering parameter 丨% 丨 relationship diagram. Figure 4 (b) is a ffi3D simulated scattering parameter 不同 knowledge relationship diagram of different capacitance values of the present invention. Figure 5 high frequency capacitance test The circuit structure of the device is shown as a circle. Figure ', (a) is a relationship diagram of the actual measurement of the different capacitance values of the present invention. Figure /, (b) is the relationship between the actual measurement of the different capacitance values of the present invention. Figure 7 is a schematic diagram comparing the actual capacitance measurement and pressure 3〇 simulation of the present invention. Annex 1 capacitance difference and |S〗 i | Resonance frequency point relationship table. 15 201043976 Attachment 2 High-frequency capacitance tester [Main component symbol description] (C) Capacitor (10) Substrate (20) Coupling line group (21) First coupling line (210) Signal input terminal (211) Signal output terminal (212X213) Trapezoidal segment (214) (215 ) Rectangular section 216 (216X217) stud (22) Second coupling line (220) ❹ 16
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98118536A TWI391677B (en) | 2009-06-04 | 2009-06-04 | Coupled-line structure hf capacitance tester and its test method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98118536A TWI391677B (en) | 2009-06-04 | 2009-06-04 | Coupled-line structure hf capacitance tester and its test method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201043976A true TW201043976A (en) | 2010-12-16 |
TWI391677B TWI391677B (en) | 2013-04-01 |
Family
ID=45001163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98118536A TWI391677B (en) | 2009-06-04 | 2009-06-04 | Coupled-line structure hf capacitance tester and its test method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI391677B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI595242B (en) * | 2012-03-28 | 2017-08-11 | Rosenberger Hochfrequenztechnik Gmbh & Co Kg | Time-distance measurement with bandwidth correction |
CN111398693A (en) * | 2020-04-28 | 2020-07-10 | 江苏神州半导体科技有限公司 | Method for measuring ESR (equivalent series resistance) and Q (Q) value of vacuum capacitor based on S-parameter network analyzer |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6630833B2 (en) * | 1994-07-26 | 2003-10-07 | Phase Dynamics, Inc. | Measurement by concentration of a material within a structure |
KR100348409B1 (en) * | 2000-12-29 | 2002-08-10 | 삼성전자 주식회사 | Test coupon having multiple pattern layers and method for measuring dielectric constant of a memory module board |
JP5027984B2 (en) * | 2003-03-28 | 2012-09-19 | キヤノン株式会社 | Potential measuring apparatus using oscillator, potential measuring method, and image forming apparatus |
US7119545B2 (en) * | 2004-09-29 | 2006-10-10 | International Business Machines Corporation | Capacitive monitors for detecting metal extrusion during electromigration |
-
2009
- 2009-06-04 TW TW98118536A patent/TWI391677B/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI595242B (en) * | 2012-03-28 | 2017-08-11 | Rosenberger Hochfrequenztechnik Gmbh & Co Kg | Time-distance measurement with bandwidth correction |
CN111398693A (en) * | 2020-04-28 | 2020-07-10 | 江苏神州半导体科技有限公司 | Method for measuring ESR (equivalent series resistance) and Q (Q) value of vacuum capacitor based on S-parameter network analyzer |
Also Published As
Publication number | Publication date |
---|---|
TWI391677B (en) | 2013-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106556748B (en) | The measuring device and method of thin-film material complex dielectric permittivity based on transmission bounce technique | |
Endean et al. | Quantitative analysis of the giant magnetoresistance effect at microwave frequencies | |
Ozbey et al. | An equivalent circuit model for nested split-ring resonators | |
CN102004121B (en) | Device and method for measuring ceramic contractibility rate and dielectric constant | |
Wu et al. | A new dual-frequency Wilkinson power divider | |
Rautio et al. | Measurement of planar substrate uniaxial anisotropy | |
JP2010060367A (en) | Permeability measurement device of magnetic substance and permeability measurement method of magnetic substance | |
US9568568B2 (en) | Apparatus and method of measuring permeability of a sample across which a DC voltage is being applied | |
TW201043976A (en) | Coupled-line structure of the high-frequency capacitance tester and its test method | |
Yang et al. | Balance-compensated asymmetric Marchand baluns on silicon for MMICs | |
Zhang et al. | A W-band balun integrated probe with common mode matching network | |
TWI390216B (en) | Bridge type high frequency capacitance tester and its test method | |
Wei et al. | Measuring acoustic mode resonance alone as a sensitive technique to extract antiferromagnetic coupling strength | |
Contopanagos et al. | RF characterization and isolation properties of mesoporous Si by on-chip coplanar waveguide measurements | |
Zacharatos et al. | Optimized porous Si microplate technology for on-chip local RF isolation | |
TWI412755B (en) | Branch Coupling Capacitance Tester and Its Method | |
Arz et al. | Broadband dielectric material characterization: A comparison of on-wafer and split-cylinder resonator measurements | |
Lee et al. | Amplitude-only measurements of a dual open ended coaxial sensor system for determination of complex permittivity of materials | |
CN202101949U (en) | Device for measuring shrinkage rate and permittivity of low temperature co-fired ceramics (LTCC) | |
Letavin et al. | Determination of the electrodynamic properties of the material and their subsequent use for the realization of a miniature microstrip coupler device | |
Sklyuyev et al. | Measurement of complex permeability of ferromagnetic nanowires using cavity perturbation techniques | |
Ziadé et al. | Uncertainty evaluation of balanced S-parameter measurements | |
Chen et al. | Extraction of frequency dependent RLCG parameters of the packaging interconnects on low-loss substrates from frequency domain measurements | |
CN102721708B (en) | Low-temperature co-sintering ceramic measuring device | |
Awan et al. | Resonance frequency of four-terminal-pair air-dielectric capacitance standards and closing the metrological impedance triangle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |