TW201043880A - Eco-friendly thermal storage oxidation furnace system - Google Patents

Eco-friendly thermal storage oxidation furnace system Download PDF

Info

Publication number
TW201043880A
TW201043880A TW98119312A TW98119312A TW201043880A TW 201043880 A TW201043880 A TW 201043880A TW 98119312 A TW98119312 A TW 98119312A TW 98119312 A TW98119312 A TW 98119312A TW 201043880 A TW201043880 A TW 201043880A
Authority
TW
Taiwan
Prior art keywords
gas
pipeline
thermal storage
environmentally
control valve
Prior art date
Application number
TW98119312A
Other languages
Chinese (zh)
Inventor
Ya-Min Fu
shou-ming Hong
Original Assignee
Desiccant Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Desiccant Technology Corp filed Critical Desiccant Technology Corp
Priority to TW98119312A priority Critical patent/TW201043880A/en
Publication of TW201043880A publication Critical patent/TW201043880A/en

Links

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Incineration Of Waste (AREA)
  • Air Supply (AREA)

Abstract

An eco-friendly thermal storage oxidation furnace system is disclosed, which comprises a first pipeline, a buffer pipeline, and a thermal storage oxidation furnace. A first control valve set is connected between the thermal storage oxidation furnace and the first pipeline. A second control valve set is connected between the buffer pipeline and the first pipeline, so that the first control valve set can control the first gas to enter the thermal storage oxidation furnace for thermal oxidation processing. Also, when the first control valve set switches the control, the second control valve controls the first pipeline to transport the second gas to the thermal storage oxidation furnace, so as to reduce the amount of waste gas in the exhausted gas, thereby preventing the high-concentration contamination generated by switching the control of thermal storage oxidation furnace.

Description

201043880 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種環保蓄熱氧化爐系統,藉由第一控制閥組控制第一 氣體進入蓄熱氧化爐進行熱氧化處理,且與該第一控制閥組切換控制時, 藉由第二控制閥組控制第二氣體進入至該蓄熱氧化爐,以降低排放氣體之 廢氣值,達到穩定利用之功能,適用於包括產生有機廢氣需要減除之行業, 如某些特定工業之生產領域,如半導體業、光電產業,化工業等。 【先前技術】201043880 VI. Description of the Invention: [Technical Field] The present invention relates to an environmentally-friendly thermal storage oxidation furnace system, wherein a first control valve group controls a first gas to enter a thermal storage oxidation furnace for thermal oxidation treatment, and the first control During the valve group switching control, the second control valve group controls the second gas to enter the thermal storage oxidizing furnace to reduce the exhaust gas value of the exhaust gas, thereby achieving the function of stable utilization, and is applicable to industries including the need to reduce the production of organic waste gas. Such as the production areas of certain industries, such as semiconductor industry, optoelectronic industry, chemical industry and so on. [Prior Art]

揮發性有機物質(Volatile Organic Compound,V0C)在產業界廣泛被 使用,亦隨製程而排放至大氣環境,例如,隨半導體與光電業製程排放之 有機廢氣,IPA(Is〇pr〇pyl Alcohol,C3H80)、丙酮、環己_等,易造成 環境污染。各國對於揮發性有機物質皆有嚴格的空污管制標準,以維護環 保以及民Μ健康’·財華民_例,雜署已公告實施半導體製造業空 氣5染官制及賊標準;對於揮發性有機廢錢制要求之職率,以半導 體業為例’至少應大於90%。 有機廢氣的處财法鮮,熱焚化分解是重要的方法之_,而蓄熱焚 化爐是其中-種,特色是熱回效率可以高達9_上。其中蓄熱焚化爐(卿 可為雙塔式硫置有:個#熱綠陳,蓄熱床帽蓄熱 材,使揮發性有機廢氣熱床麵(此時f熱材釋出熱.而後揮發 性有機廢㈣順t ;鱗,她鎌細㈣細峨可提供 熱里及VOCs成刀氧化分解產生的熱量,使燃燒室保持一定的高溫(例如· C)在X丨騎留時間’例如零點八秒,有機廢氣所含的·s成份將被 4 201043880 氧化成H20及C02。 請參閱第1圖所示,係為,般傳統雙塔式蓄熱焚化爐(RTQ)之結構示 意圖’其係包括-流通管線400、以及一與該流通管線侧連接之蓄熱氧化 爐410,該流通管線400設有風機420及煙囪450 ’以藉由該風機抽吸 有機廢氣進入該流通管線400中,而該蓄熱焚化爐410係包括第一蓄熱床 412、第二蓄熱床413、以及速接該第一蓄熱床412、第二蓄熱床413的燃 燒室411,且該第一蓄熱床412係藉由複數第一流向管線430與該流通管線 400連接,該些第一流向管線430分別設有第一流向調節閥431、第二流向 調節閥432 ’而該第二蓄熱床413係藉由複數第一流向官線440與該流通管 線400連接,該些第二流向管線440分別設有第三流向調節閥441、第四流 向調節閥442。 當藉由該風機420有機抽吸廢氣進入該流通管線400中,且該第二流 〇 向調節閥432和第三流向調節閥441為關閉狀態時,有機廢氣經由第一流 向調節閥431進入第一蓄熱床412,以供該有機廢氣經由該第—蓄熱床412 預熱後進氣進入該燃燒室411中進行熱氧化反應,將該有機廢氣絰氧化反 應形成水和二氧化碳等,接著,再將經由熱氧化反應後之有機廢氣流向該 第二蓄熱床413及該第四流向調節閥442後,經由該煙自排出至大氣 中,且該有機廢氣通過該第二蓄熱床413時,將會倾著來自物、燒室411 的高溫氣流而將該第二蓄熱床413加熱。 當藉由該風機420有機抽明由> ^ 钱抽吸廢氣進入該流通管線働巾,且一法 向調卽閥431和第四流向調節門 蝎442為關閉狀態時,有機廢氣麵 向調節閥441進入第二蓄熱朱4lq 田弟一/瓜 3,以供該有機廢氣經由該第二蓄熱床 201043880 預熱後進氣進入該燃燒室411中進行熱氧化反應,接著,再將經由熱氧化 •反應後之有機廢氣流向該第一蓄《 412及該第二流向調節閥微後,經 .由該煙_ 450排出至大氣中,而該有機廢iJt過該第-蓄熱床412時,將 會伴隨著來自該燃燒室411的高溫氣流而將該第一蓄熱床412加熱。 亦即,藉由上述模式切換模式以供定時循環氣流流動方向切換,使第 -蓄熱床412及第二蓄熱床413可輪流蓄熱維持高溫,用以預熱有機廢氣。 然而,由於該蓄熱氧化爐410於切換氣流方向時,將會產生一汗染之切換 〇峰值(如第2圖所示)’且該氧化爐對該有機廢氣的破壞效率可物 以上’亦即於切換氣流方向時有機廢氣會直接排至㈣,以此98%破壞效率 預估’可知此漠度可以達到經該氧化爐彻處理過排氣的5G倍高,其汗染 之缺失使得其於實用場合有其不便與困擾。 、 有鑑於此,本發明期能提供一種環保蓄熱氧化爐系統,可有效去除習 用蓄熱氧化難顧切換氣驗動方㈣致之汙料值的目的,乃潛 心研思、設計組製,為本發明所欲研創之動機者。 〇 【發明内容】 g本發明之主要目的,在提供_種環保蓄缝傾錢,可避免該蓄熱 氧化爐因娜控制而產生高濃度污染之問題。 為達上述目的,本發明係提供一種環保蓄熱氧化爐系統,係包含有第 -管路,係輸送第—氣體(廢氣)及以體(空氣);風車,係與該第一管 路連接,以形成風壓抽韻第路中之第—_;進氣控棚,係設置 上,以控制該第—氣體進人該第-管路;緩衝管路,係與該 第一官路輕,物存錄獨f她㈡路 6 201043880 "亥緩衝管路連接,用以輸送 _ 一 第—損’第三管路,係與該第-管路及該 緩衝管路連接,用以輸送該第一褒 —k' 弟讀及紅《:蓄熱氧赠,係與該第 2路連接,糊觸—管繼之第1 _行_第-控制_, ❹ 該第-管路及該蓄熱氧化爐連接,以供切換控制該第—氣體及第二氣 、出以及第一控制閥組,係與該第一管路及該緩衝管路連接,俾該 —控制閥組切換控制時’以控制該第_管路輸送該第二氣體至該蓄熱氧 匕爐’避免該蓄熱氧化爐_換控繼生高濃度污染。藉此,俾該蓄敎氧 :爐之第-控制閥組切換控制時,以藉由該第二控侧組控制該第一管路 p該第二氣體至該蓄熱氧化爐,避免蹄織化爐因切換控制而產生高 濃度污染之問題,達到去除廢氣汙染者。 【實施方式】 姓清參閱第3圖所示,為本發明之環保蓄熱氧化爐系統之第一實施例之 二構不意圖,該環保蓄熱氧化爐系統係包括第―管路⑽、緩衝管路及 〇蓄熱氧化爐綱,以避免該蓄熱氧化爐·因切換控制而產生高濃度污染之 該第-管路100係用輯送第一氣體(如廢氣)及第二氣體(如空氣), _第-管路⑽連接有風車11〇及進氣控制閥12〇(如二通闕),藉由該進 續制閱120控制該第-氣體進入該第一管路.藉由該風車ιι〇形成 風蜃以抽吸該第一管路100中之第一氣體。 錢衝管路200係與該第一管路100連接,以供儲存及輸送該第一氣 體及第二氣體,且該緩衝管路咖與該第一管路丨⑽間連接有用以控繼 7 201043880 第一氣體及第二氣體進出的第二控制閥組210、以及用以輸送該第一氣體及 . 第二氣體的第三管路140’其中,該第二控制閥組21〇係有複數調節控制閥 211、212,該調節控制閥211、212可為二通閥,於本實施例中,該調節押 制閥211、212為二通闕。另外,該緩衝管路200係連接有第二管路丨3〇, 以供輸送該第二氣體,且該第二管路130設有空氣控制閥131(如二通閥或 逆止閥),以供控制該第二氣體進入。 該蓄熱氧化爐300係與該第一管路1〇〇連接,以供將該第一管路輸送 0 之第一氣體進行處理,且該第一管路100連接有煙自320,以供將經該蓄熱 氧化爐300處理之第一氣體排放出大氣中,而該蓄熱氧化爐3〇〇與該第_ 官路100間連接有第一控制閥組310,以供切換控制該第一氣體及第二氣體 之進出,而該第一控制閥組310係有複數流通控制閥311,而該流通控制閱 311可為二通閥、二通閥或四通閥,於本實施例中,該流通控制閥為二 通閥。該蓄熱氧化爐30(H系包括有設有第一蓄熱床3〇1、第二蓄熱床3〇2、 以及與該第一蓄熱床301及該第二蓄熱床3〇2連接的燃燒室3〇3,該第一蓄 〇 熱床301及第一蓄熱床302填有蓄熱材304(如陶究、金屬、金屬氧化物' 礫石或以上之物質組合所組成者)。 請參閱第4A S 4B圖所示’係為本發明之環保蓄熱氧化爐系統之第一 。實施例之實施狀態不意圖。如圖所示,本發明之環保蓄熱氧化爐系統係藉 -由該進氣控綱120控制並藉由該風車11〇形成風壓抽吸該第一氣體進入 該第一管路100 ’藉以產生複數個流通模式。 如第4A圖所’當該蓄熱氧化爐3〇〇之第一控綱組31〇於切換控制 時,且該第二控制閥組210之調節控制閥叫、212為開啟,該進氣控制鬧 8 201043880 12〇、該空氣控綱⑶為關閉時,藉由該風車11〇形成風壓以抽吸第一氣 .體(廢氣)於該第一管路⑽中,該第-氣體經由該調節控制閥211流向該 •緩衝管路2〇〇(如流通方向A),由於該緩衝管路200於該空氣控鋼131未 關閉前藉由該第二管路13G輸人_滿該第二氣體(空氣),亦即,該第— 氣體經由翻節控侧211流向該緩衝管路肖,將會推擠該緩衝管路 200中的第二氣體’並將該第二氣體經由該調節控制閥212流至該第一控制 閥組⑽,以避免該蓄熱氧化爐_因該第—控糊組⑽祕,而導致切 〇 換產生之汙染物外狀問題’且該緩鮮路細所需之容量係大於或等於 第-控糊組切換雜流糾之第—氣_流量與铺減化爐· 之第-蓄熱床3G1或第二蓄熱床3G2中填充的蓄熱材3Q4間的孔隙體積之 總合。 如第4B圖所示’當該進氣控制閥12〇、該空氣控制間131為開啟,該 調即控制閥21卜212為關閉時,藉由該進氣控制閥12〇控制該第一氣體(廢 氣)進入該第-管路1〇〇’並藉由該風車11〇形成風壓以抦吸該第一管路刚 〇中之’峨賴第-氣體直接輸職至該t熱氧化爐厲如流通 方向B)以進行熱氧化處理後,再將經該蓄熱氧化爐3〇〇處理之第一氣體經 由該煙ϋ 320排放出大氣中,以降低排放氣體之廢氣值,避免廢氣汗染之 .問題。同時’藉由該空氣控制閥131控制第二氣體進入該第二管路⑽,再 -將該第二氣體經由該第二管路⑽流向該緩衝管路細,且該第二氣體經由 該第二管路13G流向該緩衝管路2〇〇時,將會推擠該緩衝管路中的第 —氣體經由該第三管路14Q流至該第—f路戰如流通方向〇。 本發明之環保蓄熱氧化爐祕係包括第—管路、緩衝管路及蓄熱氧化 9 201043880 .爐’且該蓄熱氧化爐與該第一管路間則連接有第-控制闊組,以供切換押 .制該第1體及第二氣體之進出,以齡該蓄熱氧化爐將該第—氣體進行 .熱氧化處理,進而排放出大氣中,以降低排放氣體之廢氣值,避免廢氣、、于 染之問題。同時,該緩衝管路與該第一管路間連接有用以控制第一氣體及 第二«進出的第二控侧組,俾該第—控酬組切換控制時,以控制該 第一管路輸送該第二氣體至該蓄熱氧化爐,避免該蓄熱氧化爐因切換控制 而產生高濃度污染之問題。 ^二實施例 另請參Μ 5圖,縣本發._魏氧域魏之第二實施例之 結__,其中賴化赋及便於瞭解,·與前述實施_同或相似 元件’係以相同編號表示。 本實施例之環保蓄熱氧化爐系統係與上述實施例大致相同,主要差異 在於該第三管路140係設有廢氣控制閥141(如二通間),用以控制該第一氣 體及第二氣體進出。 〇 #該蓄熱氧化爐綱之第一控制閥組310於切換控制時,且該第二控 制閥組210之調節控制閥211、212為開啟,該進氣控制閥12〇、該空氣控 制閥131及該廢氣控制閥141為賴時,藉由該風車⑽形成風塵以抽吸 •第一氣體(廢氣)於該第-管路副巾,該第一氣體經由該調節控綱211 -流向該緩衝管路200以推擠該緩衝管路2〇〇中的第二氣體,並將該第二氣 體經由該調節控制閥212流至該第一控制閥組310。 *該進氣控制閥120、s亥空氣控制閥131及該廢氣控制閥μι為開啟, 該調節控侧21卜212為關閉時,藉_進氣控觸⑽控制該第一氣體 10 201043880 • (廢氣)進入該第一管路100,並藉由該風車110形成風壓以抽吸該第一管路 中之第一氣體,以供將該第一氣體直接輸送該至該蓄熱氧化爐3〇〇以進 行熱氧化處理。同時,藉由該空氣控制閥131控制第二氣體進入該第二管 路130,再將該第二氣體經由該第二管路130流向該緩衝管路200,且該第 一氣體經由該第二管路130流向該緩衝管路2〇〇時,將會推擠該緩衝管路 200中的第一氣體經由該第三管路140流至該第一管路1〇〇。 第三實施例_ q 另請參閱第6圖,係為本發明之環保蓄熱氧化爐系統之第三實施例之 結構示意圖’其中為簡化圖式及便於瞭解,對應與前述實施例相同或相似 元件,係以相同編號表示。 本實施例之環保蓄熱氧化爐系統係與上述實施例大致相同,主要差異 在於該蓄熱氧化爐300設有排氣管路312,且該排氣管路312可同時與第二 管路130之一端及煙囪320連接,亦即,俾於該空氣控制閥131為開啟時, 藉由該第二管路130之空氣控制閥131控制經由蓄熱氧化爐300進行熱氧 q 化處理之第一氣體進入該第二管路130,以供經該蓄熱氧化爐300處理後之 第一氣體除可經由該煙自320排放出大氣中之外,經該蓄熱氧化爐300處 理後之第一氣體(即為經熱氧化處理之廢氣)亦可進入該第二管路130而流 ,向該緩衝管路200,以推擠該緩衝管路200中的第一氣體(廢氣)經由該第三 .管路140流至該第一管路100。 【圖式簡單說明】 第1圖為習知之蓄熱氧化爐之結構示意圖。 第2圖為習知之蓄熱氧化爐之切換峰值示意圖。 201043SS0 第3圖係為冬發明之環保蓄熱軋化爐系統之第一實施例之結構示意圖。 第4λ至4Β圖為本發明之環保蓄熱氡化爐系統之第一實施例之實施狀 態示意圖。 第5圖為本發明之環保蓄熱氧化爐系統之第二實施例之結構示意圖。 第6圖為本發明之環保蓄熱氧化爐系統之第二實施例之結構示意圖。 Ο ❹ 【主要元件符號說明】 100 第一管路 110 風車 120 進氣控制閥 130 第二管路 131 空氣控制閥 140 第三管路 141 廢氣控制閥 200 緩衝管路 210 第二控制閥組 211 '212 調節控制閥 300 蓄熱氧化爐 301 第一蓄熱床 302 第二蓄熱床 303 燃燒室 304 蓄熱材 310 第一控制閥組 12 201043880 311 流通控制閥 312 排氣管路 320 煙囪 400 流通管線 410 蓄熱氧化爐 411 燃燒室 412 第一蓄熱床 Ο 413 第二蓄熱床 420 風機 430 第一流向管線 431 第一流向調節閥 432 第二流向調節閥 440 第二流向管線 441 第三流向調節閥 〇 442 第四流向調節閥 450 煙囪 13Volatile Organic Compound (V0C) is widely used in the industry and is also emitted to the atmosphere along with the process. For example, organic waste gas emitted from semiconductor and photovoltaic processes, IPA (Is〇pr〇pyl Alcohol, C3H80) ), acetone, cyclohexane, etc., easily cause environmental pollution. All countries have strict air pollution control standards for volatile organic substances to protect the environment and the health of the people. · The Department has announced the implementation of the semiconductor manufacturing air 5 dyeing system and thief standards; for volatile organic The rate of demand for the waste money system, for example, in the semiconductor industry, should be at least greater than 90%. Organic waste gas is a fresh method, and thermal incineration is an important method. The regenerative incinerator is one of them, and the heat recovery efficiency can be as high as 9_. Among them, the heat storage incinerator (Qing can be a double tower type sulfur set: a #热绿陈, a heat storage bed cap heat storage material, so that the volatile organic waste gas heat bed surface (at this time f heat material releases heat. Then volatile organic waste (4) Shun t; scales, she 镰 fine (d) fine 峨 can provide heat and VOCs into the oxidative decomposition of the knife to generate heat, so that the combustion chamber maintains a certain high temperature (for example, C) in the X 丨 riding time 'for example, zero eight seconds The composition of the organic exhaust gas will be oxidized to H20 and C02 by 4 201043880. Please refer to Figure 1 for a schematic diagram of the structure of a conventional double-tower regenerative incinerator (RTQ). a pipeline 400, and a thermal storage oxidizer 410 connected to the flow line side, the flow line 400 is provided with a fan 420 and a chimney 450' to suck organic exhaust gas into the circulation line 400 by the fan, and the regenerative incinerator The 410 series includes a first regenerator bed 412, a second regenerator bed 413, and a combustion chamber 411 that is connected to the first regenerator bed 412 and the second regenerator bed 413, and the first regenerator bed 412 is connected to the pipeline by a plurality of first flow lines. 430 is connected to the flow line 400, and the first flow lines 430 The first flow regulating valve 431 and the second flow regulating valve 432 ′ are disposed, and the second thermal storage bed 413 is connected to the circulation line 400 by a plurality of first flow to the official line 440 , and the second flow is respectively provided to the pipeline 440 There is a third flow regulating valve 441 and a fourth flow regulating valve 442. When the exhaust gas is organically sucked into the circulation line 400 by the fan 420, the second flow direction adjusting valve 432 and the third flow regulating valve 441 are In the closed state, the organic exhaust gas enters the first regenerator bed 412 via the first flow regulating valve 431, and the organic exhaust gas is preheated through the first regenerator bed 412, and the intake air enters the combustion chamber 411 for thermal oxidation reaction. The organic waste gas oxidizes to form water, carbon dioxide, or the like, and then the organic waste gas after the thermal oxidation reaction flows to the second heat storage bed 413 and the fourth flow direction regulating valve 442, and then is discharged to the atmosphere through the smoke, and When the organic waste gas passes through the second regenerator bed 413, the second regenerator bed 413 is heated by the high temperature gas flow from the object and the blast chamber 411. When the fan 420 is organically extracted by the > Absorbing exhaust When the circulation line wipes into the circulation line, and the first regulating valve 431 and the fourth flow regulating threshold 442 are in the closed state, the organic waste gas faces the regulating valve 441 and enters the second heat storage Zhu 4lq Tiandi Yi/Gua 3 for The organic exhaust gas is preheated through the second regenerator bed 201043880, and the intake air enters the combustion chamber 411 for thermal oxidation reaction, and then the organic exhaust gas after the thermal oxidation reaction is flowed to the first storage unit 412 and the second After the flow regulating valve is slightly discharged, the smoke _ 450 is discharged to the atmosphere, and when the organic waste iJt passes through the first heat storage bed 412, the first heat storage is accompanied by the high temperature gas flow from the combustion chamber 411. Bed 412 is heated. That is, the mode switching mode is used to switch the flow direction of the circulating airflow, so that the first heat storage bed 412 and the second heat storage bed 413 can alternately store heat to maintain a high temperature for preheating the organic waste gas. However, since the thermal storage oxidizing furnace 410 switches the direction of the gas flow, a switching peak of the dyeing (as shown in FIG. 2) will be generated and the oxidizing furnace can destroy the organic exhaust gas more efficiently than the oxidizing furnace. When the direction of the airflow is switched, the organic exhaust gas will be directly discharged to (4), and the 98% destruction efficiency is estimated. It can be seen that the infiltration can reach 5G times higher than that of the exhaust gas treated by the oxidation furnace, and the lack of sweat dyeing makes it Practical occasions have their inconvenience and trouble. In view of this, the present invention can provide an environmentally-friendly thermal storage oxidizing furnace system, which can effectively remove the purpose of conventional thermal storage oxidation and difficult to switch the gas detection (4), and is the purpose of research and design. The inventor of the invention is motivated. 〇 [Summary of the Invention] g The main object of the present invention is to provide a problem of high concentration pollution caused by the control of the heat storage oxidizer. In order to achieve the above object, the present invention provides an environmentally-friendly thermal storage oxidizing furnace system, which comprises a first pipeline for conveying a first gas (exhaust gas) and a body (air); and a windmill connected to the first pipeline. To form the first part of the wind pressure rhyme road -_; the air intake control shed is set to control the first gas into the first pipeline; the buffer pipeline is lighter than the first official road.物存录独f her (2) Road 6 201043880 " Hai buffer line connection for transporting _ a first - damage 'third line, connected to the first line and the buffer line for transporting The first 褒-k' brother read and red ": heat storage oxygen, is connected with the second road, the paste - the tube followed by the first _ line _ first - control _, ❹ the first pipeline and the thermal oxidation Furnace connection for switching control of the first gas and the second gas, and the first control valve group, is connected to the first pipeline and the buffer pipeline, and is controlled by the control valve group when the control is switched The first pipeline delivers the second gas to the thermal storage oxygen furnace to prevent the thermal storage furnace from undergoing high concentration pollution. Thereby, during the first-control valve group switching control of the oxygen storage: the second control side group controls the second gas to the thermal storage oxidation furnace to prevent the hoof weaving The furnace has a problem of high concentration of pollution due to switching control, and the person who removes the exhaust gas is eliminated. [Embodiment] As shown in Fig. 3, the surname is not shown in the first embodiment of the environmentally-friendly regenerative oxidation furnace system of the present invention. The environmentally-friendly regenerative oxidation furnace system includes a first-line (10) and a buffer line. And the heat storage oxidizing furnace to avoid the heat storage oxidizer, the first pipeline 100 which generates high concentration pollution due to switching control, and the first gas (such as exhaust gas) and the second gas (such as air), _ The first pipe (10) is connected with a windmill 11〇 and an intake control valve 12〇 (such as a two-way port), and the continuous process 120 controls the first gas to enter the first pipe. By the windmill A wind is formed to draw the first gas in the first line 100. The Qianchong pipeline 200 is connected to the first pipeline 100 for storing and transporting the first gas and the second gas, and the connection between the buffer pipeline coffee and the first pipeline raft (10) is useful for controlling 7 201043880 a second control valve group 210 for entering and leaving the first gas and the second gas, and a third pipeline 140' for transporting the first gas and the second gas, wherein the second control valve group 21 is plural The control valve 211, 212 can be a two-way valve. In this embodiment, the regulating valve 211, 212 is a two-way port. In addition, the buffer line 200 is connected to the second line 丨3〇 for transporting the second gas, and the second line 130 is provided with an air control valve 131 (such as a two-way valve or a check valve). For controlling the entry of the second gas. The thermal storage oxidizing furnace 300 is connected to the first pipeline 1 , for processing the first gas that transports the first pipeline 0, and the first pipeline 100 is connected with the smoke 320 for the The first gas processed by the thermal storage oxidation furnace 300 is discharged into the atmosphere, and the first control valve group 310 is connected between the thermal storage oxidation furnace 3 and the first official road 100 for switching and controlling the first gas and The second gas enters and exits, and the first control valve group 310 is coupled with a plurality of flow control valves 311, and the flow control valve 311 can be a two-way valve, a two-way valve or a four-way valve. In the present embodiment, the circulation The control valve is a two-way valve. The thermal storage oxidizing furnace 30 (H system includes a first regenerator bed 3〇1, a second regenerator bed 3〇2, and a combustion chamber 3 connected to the first regenerator bed 301 and the second regenerator bed 3〇2 〇3, the first thermal storage bed 301 and the first thermal storage bed 302 are filled with a heat storage material 304 (such as ceramics, metal, metal oxide 'gravel or a combination of the above substances). Please refer to 4A S 4B The figure is the first of the environmentally-friendly thermal storage oxidation furnace system of the present invention. The implementation state of the embodiment is not intended. As shown, the environmentally-friendly thermal storage oxidation furnace system of the present invention is controlled by the intake control unit 120. And the wind is drawn by the windmill 11 to draw the first gas into the first pipeline 100' to generate a plurality of circulation modes. As shown in FIG. 4A, the first control unit of the thermal storage oxidation furnace The group 31 is in the switching control, and the adjustment control valve of the second control valve group 210 is called 212, the intake control is 8 201043880 12〇, and the air control unit (3) is closed, by the windmill 11 Forming a wind pressure to suck a first gas body (exhaust gas) in the first line (10) through which the first gas passes The throttle control valve 211 flows to the buffer line 2 (such as the flow direction A), because the buffer line 200 is input by the second line 13G before the air control steel 131 is not closed. Gas (air), that is, the first gas flows to the buffer line XI via the traverse side 211, will push the second gas in the buffer line 200 and control the second gas via the adjustment The valve 212 flows to the first control valve group (10) to avoid the problem that the heat storage oxidizer _ due to the first control paste group (10), resulting in the problem of contamination caused by the smashing change The capacity is greater than or equal to the pore volume between the first-control paste group switching miscellaneous flow correction gas-flow rate and the first heat storage bed 3G1 of the reduction furnace or the heat storage material 3Q4 filled in the second heat storage bed 3G2. As shown in FIG. 4B, when the intake control valve 12 is closed and the air control chamber 131 is open, when the control valve 21 is closed, the intake control valve 12 is controlled by the intake control valve 12 The first gas (exhaust gas) enters the first pipe 1' and forms a wind pressure by the windmill 11 to suck the first pipe The first gas that has been treated in the thermal oxidation furnace is subjected to thermal oxidation treatment, and then the first gas treated in the thermal storage oxidation furnace 3 is passed through the soot 320. Emitted out of the atmosphere to reduce the exhaust gas value of the exhaust gas, to avoid the problem of exhaustion of the exhaust. Simultaneously, the second gas enters the second line (10) by the air control valve 131, and then the second gas flows to the buffer line through the second line (10), and the second gas passes through the first When the two pipes 13G flow to the buffer line 2, the first gas in the buffer line is pushed to flow through the third line 14Q to the first f-direction, such as the flow direction. The secret system of the environmentally-friendly thermal storage oxidizing furnace of the present invention comprises a first pipeline, a buffer pipeline and a thermal storage oxidation 9 201043880. The furnace and a first control group are connected between the thermal storage oxidation furnace and the first pipeline for switching The first body and the second gas are introduced and discharged, and the first gas is subjected to thermal oxidation treatment in the thermal storage oxidizing furnace, and then discharged into the atmosphere to reduce the exhaust gas value of the exhaust gas, thereby avoiding exhaust gas and Dyeing problem. At the same time, the buffer pipeline and the first pipeline are connected to control the first gas and the second inlet and outlet second control side group, and the first control group is controlled to switch to control the first pipeline The second gas is sent to the thermal storage oxidizing furnace to avoid the problem that the thermal storage oxidizing furnace generates high concentration pollution due to switching control. ^Second embodiment, please refer to Fig. 5, county Benfa._Wei oxygen domain Wei's second embodiment of the knot __, where Laihua Fu is easy to understand, and the above implementation of the same or similar components The same number is indicated. The environmentally-friendly thermal storage oxidizing furnace system of the present embodiment is substantially the same as the above embodiment, and the main difference is that the third pipeline 140 is provided with an exhaust gas control valve 141 (such as a two-way) for controlling the first gas and the second Gas in and out. 〇# The first control valve group 310 of the thermal oxidation furnace is in switching control, and the regulating control valves 211, 212 of the second control valve group 210 are open, the intake control valve 12, the air control valve 131 And the exhaust gas control valve 141 is configured to generate wind dust by the windmill (10) to suction the first gas (exhaust gas) to the first pipe sub-cloth, and the first gas flows to the buffer via the adjustment control unit 211 The line 200 pushes the second gas in the buffer line 2 and flows the second gas to the first control valve group 310 via the adjustment control valve 212. * The intake control valve 120, the shai air control valve 131 and the exhaust control valve μ are open, and the adjustment control side 21 212 is closed, and the first gas 10 is controlled by the intake control (10) 2010-0480 • The exhaust gas enters the first pipeline 100, and a wind pressure is formed by the windmill 110 to suck the first gas in the first pipeline for directly conveying the first gas to the thermal storage oxidation furnace 3〇 〇 for thermal oxidation treatment. At the same time, the second gas enters the second pipeline 130 by the air control valve 131, and then flows the second gas to the buffer pipeline 200 via the second pipeline 130, and the first gas passes through the second pipeline. When the pipe 130 flows to the buffer line 2, the first gas that pushes the buffer line 200 flows through the third line 140 to the first line 1〇〇. Third Embodiment_q Please also refer to FIG. 6 , which is a schematic structural view of a third embodiment of the environmentally-friendly thermal storage oxidizing furnace system of the present invention, wherein the same or similar components as the foregoing embodiments are used for the sake of simplicity and ease of understanding. , are indicated by the same number. The environmentally-friendly thermal storage oxidizing furnace system of the present embodiment is substantially the same as the above embodiment, and the main difference is that the thermal storage oxidizing furnace 300 is provided with an exhaust line 312, and the exhaust line 312 can be simultaneously connected to one end of the second line 130. And the chimney 320 is connected, that is, when the air control valve 131 is opened, the first gas entering the thermal oxygen oxidation treatment via the thermal storage oxidizing furnace 300 is controlled by the air control valve 131 of the second conduit 130. The second line 130 is configured to pass the first gas after being treated by the thermal storage oxidizing furnace 300, and the first gas processed by the thermal storage oxidizing furnace 300 (ie, the The thermally oxidized exhaust gas may also flow into the second line 130 to the buffer line 200 to push the first gas (exhaust gas) in the buffer line 200 to flow through the third line 140 To the first line 100. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the structure of a conventional thermal storage oxidation furnace. Figure 2 is a schematic diagram showing the switching peaks of a conventional regenerative oxidation furnace. 201043SS0 Fig. 3 is a schematic structural view of a first embodiment of an environmentally-friendly regenerative rolling furnace system invented in winter. 4th to 4th is a schematic view showing the implementation of the first embodiment of the environmentally-friendly regenerative gasification furnace system of the present invention. Figure 5 is a schematic view showing the structure of a second embodiment of the environmentally-friendly thermal storage oxidation furnace system of the present invention. Figure 6 is a schematic view showing the structure of the second embodiment of the environmentally-friendly thermal storage oxidation furnace system of the present invention. Ο ❹ [Main component symbol description] 100 First line 110 Windmill 120 Intake control valve 130 Second line 131 Air control valve 140 Third line 141 Exhaust control valve 200 Buffer line 210 Second control valve group 211 ' 212 Regulating control valve 300 Regenerative oxidation furnace 301 First regenerator bed 302 Second regenerator bed 303 Combustion chamber 304 Heat accumulating material 310 First control valve group 12 201043880 311 Flow control valve 312 Exhaust line 320 Chimney 400 Flow line 410 Thermal storage oxidation furnace 411 combustion chamber 412 first regenerator bed 413 second regenerator bed 420 fan 430 first flow direction line 431 first flow direction adjustment valve 432 second flow direction adjustment valve 440 second flow direction line 441 third flow direction adjustment valve 〇 442 fourth flow direction adjustment Valve 450 chimney 13

Claims (1)

201043880 七、申請專利範圍: 1. 一種環保蓄熱氧化爐系統,係包含: 第一管路,係輸送第一氣體及第二氣體; 風車,係與該第一管路連接,以形成風壓抽吸該第一管路中之第 氣體; 進入該第 進氣控制閥,係設置於該第一管路上,以控制該第一氣體 管路; ❹ 緩衝管路,係與該第一管路連接,用以儲存及輸送該第一 二氣體; 第二管路,係與該緩衝管路連接,用以輸送該第二氣體. 空氣控制閥,係設於該第二管路上,用以控制該第二氣體 二管路中; 氣體及第 進入該第 氣 第三管路,係與該第-管路及該緩衝管路連接,用以輪 體及第二氣體; ^第― ❹ 畜熱氧化爐,係與該第-管路連接,以供將該第一管路輪 氣體進行處理; 1运之第- 第-控制閥組,係與該第—管路及該蓄熱氧化 制該第一氣體及第二氣體之進出;以及 爐連接’以供切換控 第二控制閥組,係與該第—管路及該緩衝管路連接。 2.如申物娜1撕如_減觸統 步稍侧,卿_f減_理導氣體排嫩 14 201043880 3.如申請專利範圍第丨項所述之環保蓄熱氧化爐系統,其中,該蓄熱氧化 . 爐餘括第—蓄齡、第二蓄齡及與該第-蓄熱床及該第二蓄熱床連 接的燃燒室。 4·如申請專利範圍第3項所述之環保蓄熱氧化爐系統,其中,該第一蓄熱 床及第一蓄熱床係有蓄熱材填入。 5·如申請專利範圍第4項所述之環保蓄熱氧化爐系統,其中,該蓄熱材係 由陶瓷、金屬、金屬氧化物、礫石或以上之物質組合所組成。 〇 6.如申請專利範圍第1項所述之環保蓄熱氧化爐系統,其中,該蓄熱氧化 爐係η又有排氣管路,且該排氣管路係與該第二管路之一端連接。 7. 如申請專利範圍第i項所述之環保蓄熱氧化爐系統,其中,該第三管路 係設有廢氣控制閥。 8. 如申凊專利範圍第7項所述之環保蓄熱氧化爐系統,其中’該廢氣控制 閥係為二通間。 9. 申明專利範㈣丨項所述之環保蓄熱氧化爐纽,其巾,該第—控制間 〇 組係有複數流通控制閥。 10. U利祀圍第9項所述之環保蓄熱氧化爐系統,纟中,該流通控制間 係選自二通閥、三通閥及四通閥之其中一者。 11. 如申吻專利範圍第J項所述之環保蓄熱氧化爐系統,其中,該第二控制 .閥組係有複數調節控制閥。 12. 如申請專利範_丨項所述之環保f熱氧化齡統,其中,該調節控 制閥係為二通閥。 13. 如申請專利範圍第」項所述之環保蓄熱氧化爐系統,其中,該進氣控制 15 201043880 . 閥係為二通閥。 14. 如申請專利範圍第1項所述之環保蓄熱氧化爐系統,其中,該空氣控制 閥係選自二通閥及逆止閥之其中一者。 15. 如申請專利範圍第1項所述之環保蓄熱氧化爐系統,其中,該第一氣體 係為廢氣,該第二氣體係為選自空氣及經熱氧化處理之廢氣。201043880 VII. Patent application scope: 1. An environmentally-friendly thermal storage oxidizing furnace system, comprising: a first pipeline for conveying a first gas and a second gas; a windmill connected to the first pipeline to form a wind pressure pumping Suctioning the first gas in the first pipeline; entering the first intake control valve, disposed on the first pipeline to control the first gas pipeline; ❹ buffer pipeline connected to the first pipeline The second pipeline is connected to the buffer pipeline for conveying the second gas. The air control valve is disposed on the second pipeline for controlling the a second gas in the second pipeline; the gas and the third gas entering the third pipeline are connected to the first pipeline and the buffer pipeline for the wheel body and the second gas; ^ ― ❹ livestock thermal oxidation a furnace connected to the first pipeline for processing the first pipeline wheel gas; a first-first control valve group, and the first pipeline and the first heat storage oxidation system Gas and second gas in and out; and furnace connection 'for switching control A second control valve, and the line - of the connecting line and the buffer line. 2. If Shen Shi Na 1 tears as _ minus touches the side of the step, Qing _f minus _ 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 The heat storage oxidation. The furnace includes a first storage age, a second storage age, and a combustion chamber connected to the first heat storage bed and the second heat storage bed. 4. The environmentally-friendly thermal storage oxidizer system according to claim 3, wherein the first regenerator bed and the first regenerator bed are filled with a heat storage material. 5. The environmentally-friendly thermal storage oxidizer system according to claim 4, wherein the heat storage material is composed of ceramic, metal, metal oxide, gravel or a combination of the above. The environmentally-friendly thermal storage oxidizing furnace system according to claim 1, wherein the thermal storage oxidizing furnace η has an exhaust line, and the exhaust line is connected to one end of the second line. . 7. The environmentally-friendly thermal storage oxidizer system of claim i, wherein the third conduit is provided with an exhaust gas control valve. 8. The environmentally-friendly thermal storage oxidizer system of claim 7, wherein the exhaust gas control valve is a two-way room. 9. Affirmation of the environmentally-friendly thermal storage oxidizers mentioned in the patent (4), the towel, the first-control room 〇 group has a plurality of circulation control valves. 10. The environmentally-friendly thermal storage oxidizer system described in item 9 of U.S.A., the circulation control room is selected from one of a two-way valve, a three-way valve and a four-way valve. 11. The environmentally-friendly thermal storage oxidizer system of claim J, wherein the second control valve group is a plurality of regulating control valves. 12. The environmental protection f thermal oxidation age system as described in the patent application specification, wherein the adjustment control valve is a two-way valve. 13. The environmentally-friendly thermal storage oxidizer system of claim 1, wherein the air intake control 15 201043880. The valve system is a two-way valve. 14. The environmentally-friendly thermal storage oxidizer system of claim 1, wherein the air control valve is selected from the group consisting of a two-way valve and a check valve. 15. The environmentally-friendly thermal storage oxidizer system of claim 1, wherein the first gas is an exhaust gas, and the second gas system is an exhaust gas selected from the group consisting of air and thermal oxidation. 1616
TW98119312A 2009-06-10 2009-06-10 Eco-friendly thermal storage oxidation furnace system TW201043880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98119312A TW201043880A (en) 2009-06-10 2009-06-10 Eco-friendly thermal storage oxidation furnace system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98119312A TW201043880A (en) 2009-06-10 2009-06-10 Eco-friendly thermal storage oxidation furnace system

Publications (1)

Publication Number Publication Date
TW201043880A true TW201043880A (en) 2010-12-16

Family

ID=45001108

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98119312A TW201043880A (en) 2009-06-10 2009-06-10 Eco-friendly thermal storage oxidation furnace system

Country Status (1)

Country Link
TW (1) TW201043880A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105546555A (en) * 2016-02-17 2016-05-04 浙江赛铬能源有限公司 System for recycling uncondensed gases of alkylation compressor
CN106352355A (en) * 2016-09-05 2017-01-25 上海理工大学 Volatile-organic-compound-waste-gas thermal storage oxidation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105546555A (en) * 2016-02-17 2016-05-04 浙江赛铬能源有限公司 System for recycling uncondensed gases of alkylation compressor
CN106352355A (en) * 2016-09-05 2017-01-25 上海理工大学 Volatile-organic-compound-waste-gas thermal storage oxidation system

Similar Documents

Publication Publication Date Title
CN104718411B (en) Control acid compound as caused by oxygen combustion process
CN104764027A (en) Two-chamber type regenerative catalytic organic waste gas purification device having back blowing function
TW201617125A (en) Organic exhaust adsorption concentration purification system and method thereof
TWM549655U (en) Volatile organic exhaust gas treatment system with dual treatment structures
CN209985157U (en) Single-runner system with high-temperature desorption function
CN208871641U (en) A kind of adaptive heat accumulating type incineration furnace apparatus of concentration air quantity interlocking
TW201043880A (en) Eco-friendly thermal storage oxidation furnace system
CN205316350U (en) Use double -valve structure's RTO system
CN207576075U (en) Waste gas treatment device combining nitrogen gas circulating desorption and combustion device
CN101561145A (en) External gas removing type heat-storage incinerator
CN206563304U (en) A kind of heat accumulating type incineration device with cleaning function
CN202195706U (en) Heat accumulating type waste heat recovery system
TWI686233B (en) Runner system with high temperature desorption and its method
CN105674300A (en) Gaseous pollutant purification treatment system
CN106352355A (en) Volatile-organic-compound-waste-gas thermal storage oxidation system
CN112344353A (en) Organic waste gas concentration heat-storage combustion backflow system and method thereof
CN211216075U (en) Catalyst backflow high-efficiency organic waste gas treatment system
TWM511372U (en) Peak switching reduction system of twin towers regenerative heat type incinerator
CN103055619A (en) Ferroalloy electric furnace flue gas purifying and dust recovering novel technology and device thereof
CN100571848C (en) Equipment for treating exhaust emission
CN211146511U (en) Organic waste gas concentration heat accumulation combustion reflux system
TWI329728B (en)
TW201038884A (en) Wind speed variable heat storage incinerator and method for controlling the same
CN207378845U (en) A kind of heat accumulating type VOC emission-control equipments
JP2000274643A (en) Exhaust gas treating system