TW201042773A - Solar cell and method for fabricating the same - Google Patents

Solar cell and method for fabricating the same Download PDF

Info

Publication number
TW201042773A
TW201042773A TW099112008A TW99112008A TW201042773A TW 201042773 A TW201042773 A TW 201042773A TW 099112008 A TW099112008 A TW 099112008A TW 99112008 A TW99112008 A TW 99112008A TW 201042773 A TW201042773 A TW 201042773A
Authority
TW
Taiwan
Prior art keywords
layer
solar cell
metal
lower electrode
forming
Prior art date
Application number
TW099112008A
Other languages
Chinese (zh)
Inventor
Byung-Il Lee
Yoo-Jin Lee
Dong-Jee Kim
Original Assignee
Tg Solar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090035457A external-priority patent/KR20100116833A/en
Priority claimed from KR1020090047502A external-priority patent/KR20100128852A/en
Application filed by Tg Solar Corp filed Critical Tg Solar Corp
Publication of TW201042773A publication Critical patent/TW201042773A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

Provided are a solar cell and a method for fabricating same. A solar cell according to the present invention comprises: a substrate having a plurality of unit cell regions; a lower electrode formed on one of the unit cell regions of the substrate; a connection layer formed on the lower electrode; a photoelectric element formed on the connection layer; and an upper electrode formed on the photoelectric element. The upper electrode is electrically connected to the connection layer disposed on the lower electrode formed on another of the unit cell regions adjacent to said one of the unit cell regions.

Description

201042773 六、發明說明: 【發明所屬之技術領域】 技術領域 洋而 本發明係有關於-種太陽能電池及其製造方法, 言之’有關於在下部電極與光電元件(半導體層)之間 能電 有連接層(金屬矽化物層及金屬層之至少一層)之太陽/ 池及其製造方法。 C先前技冬好;3201042773 VI. Description of the Invention: [Technical Fields of the Invention] The present invention relates to a solar cell and a method of manufacturing the same, which is described as being related to the electrical energy between the lower electrode and the photovoltaic element (semiconductor layer). A solar/cell having a tie layer (at least one layer of a metal telluride layer and a metal layer) and a method of manufacturing the same. C previous skill winter good; 3

背景技術 在基板上形成光吸收層(半導體層)之薄膜型太陽能電 池中’為了提高光電轉換效率’主要是使用多結晶半^體 層。例如’半導體層為石夕層時,使用多結晶石夕層時比非晶 質矽層更可提高太陽能電池之光電轉換效率。 通常’該多結晶⑪太陽能電池可在先形成非晶質石夕層 後,藉以尚溫處理非晶質矽層,將其結晶化成為多結晶矽 層來製造。 但是,為了製造該多結晶矽太陽能電池,有如下之問 題。 首先,將非晶質矽層結晶化時,於下部電極形成非晶 質矽層後,進行長時間之高溫熱處理以結晶化,因此有包 含於下部電極之預定不純物擴散至光電元件,即,矽層之 問題。 又’兩溫熱處理引起不必要之化學反應,使下部電極 與石夕層之界面特性劣化’有矽層由下部電極剝離或太陽能 201042773 電池之單位電池間之導電度降低之問題。 此外,使矽層圖案化以形成太陽能電池之單位電池 時,有位於矽層下部之下部電極損傷之問題。 結果,此種多結晶矽太陽能電池製造時會發生之問題 會成為使太陽能電池之光電轉換效率降低之重要原因。 【發明内容3 發明概要 發明欲解決之問題 在此,本發明係為了解決上述先前技術之種種問題所 作成者,且目的是提供在下部電極與半導體層(矽層)之間 形成有連接層(金屬石夕化物層及金屬層之至少一層)之太陽 能電池及其製造方法。 用以解決問題之手段 為了達成上述目的,本發明之太陽能電池之特徵在於 包含:包含多數單位電池區域之基板;形成於前述基板之 單位電池區域上之下部電極;形成於前述下部電極上,包 含預定金屬之連接層;形成於前述連接層上之光電元件; 及形成於前述光電元件上之上部電極,前述上部電極電性 連接於形成在鄰接前述單位電池區域之其他單位電池區域 上之下部電極上的連接層。 前述連接層可包含金屬層及金屬石夕化物層之至少一 層。 前述連接層可包含Ni、Pd、Ti、Ag、Au、A1、Sn、Sb、 Cu、Co、Mo、Tr、Ru、Rh、Cd及 Pt 中之至少一個。 201042773 前述光電元件可包含多結晶矽層。 前述連接層可為更包含障壁層之多層膜構造。 、·前述障壁層可為道層’前述連接層可為具有TiN/TiSix 或Ti/TiN/TiSix之至少—個之構造的多層膜。 又,為了達成上述目的,本發明之太陽能電池之製造 方法之特徵在於包含:(a)提供包含多數單位電池區域之基 板的步驟;(b)於前述基板之單位電池區域上形成下部電極 的步驟·,(C)於前述下部電極上形成金屬f的㈣;⑷於 別述金屬層上形成積層多數非晶質⑪層之光電元件的步 驟;及(e)於前述光電凡件上形成上部電極的步驟。 此外,可更包含在前述⑷步驟後,熱處理前述金屬層 及前述非晶質矽層的步驟。 再者,可更包含在前逃⑷步驟後,將前述非日曰日質㈣ 結晶化的步驟。 又,前述(c)步驟可包含於前述下部電極上依序形成金Background Art In a thin film type solar cell in which a light absorbing layer (semiconductor layer) is formed on a substrate, a polycrystalline half layer is mainly used in order to improve photoelectric conversion efficiency. For example, when the semiconductor layer is a layer, the photoelectric conversion efficiency of the solar cell can be improved more than when the polycrystalline layer is used. In general, the polycrystalline 11 solar cell can be produced by first forming an amorphous layer and then crystallizing the amorphous layer to form a polycrystalline layer. However, in order to manufacture the polycrystalline germanium solar cell, there are the following problems. First, when the amorphous germanium layer is crystallized, an amorphous germanium layer is formed on the lower electrode, and then subjected to high-temperature heat treatment for a long time to be crystallized. Therefore, predetermined impurities included in the lower electrode are diffused to the photovoltaic element, that is, germanium. Layer problem. Further, the two-temperature heat treatment causes an unnecessary chemical reaction to deteriorate the interface characteristics between the lower electrode and the stone layer. The tantalum layer is peeled off from the lower electrode or the solar cell 201042773 has a problem of lowering the conductivity between the unit cells. Further, when the tantalum layer is patterned to form a unit cell of a solar cell, there is a problem that the electrode is located below the lower portion of the tantalum layer. As a result, problems which occur in the manufacture of such polycrystalline germanium solar cells are an important cause of lowering the photoelectric conversion efficiency of solar cells. SUMMARY OF THE INVENTION PROBLEMS TO BE SOLVED BY THE INVENTION The present invention has been made in order to solve various problems of the prior art described above, and an object is to provide a connection layer formed between a lower electrode and a semiconductor layer (矽 layer) ( A solar cell of at least one layer of a metallization layer and a metal layer and a method of manufacturing the same. Means for Solving the Problem In order to achieve the above object, a solar cell of the present invention is characterized by comprising: a substrate including a plurality of unit cell regions; a lower electrode formed on a unit cell region of the substrate; and being formed on the lower electrode, including a connection layer of a predetermined metal; a photovoltaic element formed on the connection layer; and an upper electrode formed on the photovoltaic element, wherein the upper electrode is electrically connected to a lower electrode formed on another unit cell region adjacent to the unit cell region The connection layer on the top. The connection layer may include at least one of a metal layer and a metal lithium layer. The connection layer may include at least one of Ni, Pd, Ti, Ag, Au, A1, Sn, Sb, Cu, Co, Mo, Tr, Ru, Rh, Cd, and Pt. 201042773 The aforementioned photovoltaic element may comprise a polycrystalline germanium layer. The aforementioned connecting layer may be a multilayer film structure further including a barrier layer. The barrier layer may be a channel layer. The foregoing connection layer may be a multilayer film having a structure of at least one of TiN/TiSix or Ti/TiN/TiSix. Further, in order to achieve the above object, a method of manufacturing a solar cell of the present invention is characterized by comprising: (a) a step of providing a substrate including a plurality of unit cell regions; and (b) a step of forming a lower electrode on a unit cell region of the substrate. (C) forming a metal f on the lower electrode; (4) forming a photovoltaic element of a plurality of amorphous 11 layers on a metal layer; and (e) forming an upper electrode on the photovoltaic device A step of. Further, the step of heat-treating the metal layer and the amorphous ruthenium layer after the step (4) may be further included. Furthermore, the step of crystallizing the non-daily day (4) may be further included after the step (4). Moreover, the step (c) may include sequentially forming gold on the lower electrode.

屬層與緩衝層的步驟,或可包含於前述下部電極上依抑 成緩衝層與金屬層的步驟,或可句人 ^ 成第i緩衝層的步驟、〜上形 称、及於前述金屬層上形成第2緩衝層的步樹。的步 前述(d)步驟後,熱 另外’可更包含在前述(C)步驟或 處理前述金屬層及前述緩衝層的步馬 又,可更包含在前迷 晶化的步驟〇 將則迷非晶質石夕層結 前述緩衝層可為矽層 5 201042773 前述金屬層可包含Ni、Pd、Ti、Ag、Au、A1、Sn、Sb、 Cu、Co、Mo、Tr、Ru、Rh、Cd及 Pt 中之至少一個。 發明效果 依據本發明,藉於下部電極與半導體層(矽層)之間設 置連接層(金屬矽化物層及金屬層之至少一層),可防止下 部電極之不純物擴散至半導體層。 又,依據本發明,藉於下部電極與半導體層(矽層)之 間設置連接層(金屬矽化物層),可提高下部電極與矽層之 界面特性(附著力)。 此外,依據本發明,藉透過連接層(金屬矽化物層及金 屬層之至少一層)電性連接太陽能電池之任意單位電池及 與其鄰接之其他單位電池,可防止下部電極損傷,提高單 位電池間之導電度。 圖式簡單說明 第1圖是顯示本發明第1實施形態之具有連接層之太陽 能電池的製造程序的圖。 第2圖是顯示本發明第1實施形態之具有連接層之太陽 能電池的製造程序的圖。 第3圖是顯示本發明第1實施形態之具有連接層之太陽 能電池的製造程序的圖。 第4圖是顯示本發明第1實施形態之具有連接層之太陽 能電池的製造程序的圖。 第5圖是顯示本發明第1實施形態之具有連接層之太陽 能電池的製造程序的圖。 201042773 第6圖是顯示本發明第2實施形態之具有連接層之太陽 能電池的製造程序的圖。 第7圖是顯示本發明第3實施形態之具有連接層之太陽 能電池的製造程序的圖。 第8圖是顯示本發明第2實施形態及第3實施形態之具 有連接層之太陽能電池的圖。 第9圖是顯示本發明第1實施形態之具有連接層之太陽 能電池之矽層的製造過程的圖。 〇 第ίο圖是顯示本發明第1實施形態之具有連接層之太 陽能電池之矽層的製造過程的圖。 I:實施方式3 用以實施發明之形態 有關於本發明之上述目的及技術構造及由其產生之作 用效果,參照顯示本發明較佳實施形態之圖面詳細說明。 在本說明書中,單位電池區域a意指在太陽能電池中, 藉光電元件(矽層)位於電極間(下部電極與上部電極間), ^ 實質地進行光電轉換之區域。以下,為方便說明,依據製 造太陽能電池中一部份之截面的步驟,進行圖示及說明。 第1實施形態 第1圖〜第5圖是顯示本發明第1實施形態之具有連接層 之太陽能電池的製造程序的圖。 首先,如第1圖所示,可提供包含於上部形成單位電池 之多數單位電池區域a的基板100。基板100之材質,依據光 之受光方向,可為透明材質,亦可為不透明材質。例如, 201042773 基板100之材料可為玻璃、塑膠、矽、及金屬(例如,SUS(不 鏽鋼)),但本發明不限於此。 其次’可於基板1〇〇進行粗化製程(texturing)。在本發 明中’粗化製程是指用以藉反射射入太陽能電池之基板表 面之光產生光學性損失,防止其特性劣化者。即,所謂使 基板之表面變粗,於基板之表面形成凹凸圖案(圖未示)。 例如’藉粗化製程使基板之表面粗化時,由於在表面一次 反射之光可於太陽能電池之方向再反射,因此可減少光之 損失。換言之,光電元件(半導體層)中之光捕獲量增加, 可提尚太陽能電池之光電轉換效率。 接著’可於基板100上形成導電性材質之下部電極 110 °基板100之材料可使用接觸電阻低且具有透明性質之 透明電極TCO(透明導電氧化物),例如,可為AZ〇(Zn〇 : Al)、ITO(銦-錫-氧化物)、Gz〇(ZnO : Ga)、BZO(ZnO : B) 及FTO(Sn〇2 : F)中之任一者,但不一定限定於此,可無限 制地使用一般的導電性材料。該下部電極11〇之形成方法可 包含熱蒸鍍法、電子束蒸鍍法、濺鍍法等物理蒸氣沈積法 (以下稱為「PVD法」);及低壓電漿化學蒸氣沈積法 (LPCVD)、電漿化學蒸氣沈積法(pECVD :電漿加強化學蒸 氣沈積法)、金屬有機化學蒸氣沈積法(MOCVD)等化學蒸氣 沈積法(以下稱為「CVD法」)等。 然後,可於下部電極11 〇上形成連接層131 (參照第3 圖)。在本實施形態中,為了形成該連接層131,可於下部 電極110上形成金屬層13〇。金層層130可包含Ni、pd、Ti、 201042773The step of the genus layer and the buffer layer, or the step of suppressing the buffer layer and the metal layer on the lower electrode, or the step of forming the ith buffer layer, the upper surface, and the metal layer A step tree on which the second buffer layer is formed. After the step (d), the heat may be further included in the step (C) or the step of treating the metal layer and the buffer layer, and the step of further crystallization may be included. The crystal buffer layer may be a buffer layer 5 201042773. The metal layer may include Ni, Pd, Ti, Ag, Au, A1, Sn, Sb, Cu, Co, Mo, Tr, Ru, Rh, Cd and At least one of the Pt. EFFECT OF THE INVENTION According to the present invention, by providing a connection layer (at least one of a metal telluride layer and a metal layer) between the lower electrode and the semiconductor layer (the germanium layer), it is possible to prevent the impurity of the lower electrode from diffusing to the semiconductor layer. Further, according to the present invention, by providing a connection layer (metal hydride layer) between the lower electrode and the semiconductor layer (germanium layer), the interface characteristics (adhesion) between the lower electrode and the ruthenium layer can be improved. In addition, according to the present invention, by electrically connecting any unit cell of the solar cell and other unit cells adjacent thereto through the connection layer (at least one layer of the metal telluride layer and the metal layer), the damage of the lower electrode can be prevented, and the unit cell can be improved. Conductivity. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a manufacturing procedure of a solar cell having a connection layer according to a first embodiment of the present invention. Fig. 2 is a view showing a manufacturing procedure of a solar cell having a connection layer according to the first embodiment of the present invention. Fig. 3 is a view showing a manufacturing procedure of a solar cell having a connection layer according to the first embodiment of the present invention. Fig. 4 is a view showing a manufacturing procedure of a solar cell having a connection layer according to the first embodiment of the present invention. Fig. 5 is a view showing a manufacturing procedure of a solar cell having a connection layer according to the first embodiment of the present invention. 201042773 Fig. 6 is a view showing a manufacturing procedure of a solar cell having a connection layer according to a second embodiment of the present invention. Fig. 7 is a view showing a manufacturing procedure of a solar cell having a connection layer according to a third embodiment of the present invention. Fig. 8 is a view showing a solar cell having a connection layer according to the second embodiment and the third embodiment of the present invention. Fig. 9 is a view showing a manufacturing process of a tantalum layer of a solar cell having a connection layer according to the first embodiment of the present invention. The figure is a view showing a manufacturing process of the tantalum layer of the solar cell having the connection layer according to the first embodiment of the present invention. The embodiment of the present invention and the technical effects of the present invention will be described in detail with reference to the preferred embodiments of the present invention. In the present specification, the unit cell area a means a region in which a photoelectric element (tantalum layer) is located between the electrodes (between the lower electrode and the upper electrode), and the photoelectric conversion is substantially performed in the solar cell. Hereinafter, for convenience of explanation, the steps of manufacturing a cross section of a part of the solar cell are illustrated and described. (First Embodiment) Fig. 1 to Fig. 5 are views showing a manufacturing procedure of a solar cell having a connection layer according to a first embodiment of the present invention. First, as shown in Fig. 1, a substrate 100 including a plurality of unit cell regions a forming a unit cell in the upper portion can be provided. The material of the substrate 100 may be a transparent material or an opaque material depending on the light receiving direction of the light. For example, the material of the substrate 100 of 201042773 may be glass, plastic, tantalum, and metal (for example, SUS (stainless steel)), but the present invention is not limited thereto. Next, the texturing can be performed on the substrate 1 . In the present invention, the "roughening process" refers to an optical loss caused by reflection of light incident on the surface of a substrate of a solar cell to prevent deterioration of its characteristics. That is, the surface of the substrate is made thicker, and a concave-convex pattern (not shown) is formed on the surface of the substrate. For example, when the surface of the substrate is roughened by the roughening process, since the light reflected once on the surface can be reflected again in the direction of the solar cell, the loss of light can be reduced. In other words, the amount of light trapping in the photovoltaic element (semiconductor layer) is increased, and the photoelectric conversion efficiency of the solar cell can be improved. Then, a material which can form a conductive material lower electrode 110° on the substrate 100 can use a transparent electrode TCO (transparent conductive oxide) having a low contact resistance and having a transparent property, for example, AZ〇(Zn〇: Al), ITO (indium-tin-oxide), Gz〇 (ZnO: Ga), BZO (ZnO: B), and FTO (Sn〇2: F), but are not necessarily limited thereto. A general conductive material is used without limitation. The method for forming the lower electrode 11 can include physical vapor deposition methods such as thermal evaporation, electron beam evaporation, and sputtering (hereinafter referred to as "PVD method"); and low pressure plasma chemical vapor deposition (LPCVD). ), chemical vapor deposition (pECVD: plasma enhanced chemical vapor deposition), metal organic chemical vapor deposition (MOCVD) and other chemical vapor deposition methods (hereinafter referred to as "CVD method"). Then, a connection layer 131 can be formed on the lower electrode 11 (see Fig. 3). In the present embodiment, in order to form the connection layer 131, a metal layer 13A can be formed on the lower electrode 110. The gold layer 130 may include Ni, pd, Ti, 201042773

Ag、Au、a卜 Sn、Sb、Cu、Co、Mo、Tr、ru、 、Rh、Cd 及Pt中之至少一個,但以可使用鎳(Ni)為佳。形成兮金屬層 130之方法可包含PVD法。金屬層13〇藉後來之種序盥曰 反應,可變化成作為連接層131之金屬矽化物屛。、一 a U下,有 關於此將更詳細地說明。 然後,如第2圖所示,使單位電池區域a間之下部電極 110及金屬層130之一部份圖案化。該圖案化之方法。人 使用雷射光源之蚀刻方法的雷射切割法。 ΟAt least one of Ag, Au, a, Sn, Sb, Cu, Co, Mo, Tr, ru, Rh, Cd, and Pt is preferable, and nickel (Ni) may be used. The method of forming the base metal layer 130 may include a PVD method. The metal layer 13 can be changed into a metal halide quinone as the connection layer 131 by a subsequent reaction of the hydrazine. One a U, there will be more details on this. Then, as shown in Fig. 2, one of the lower electrode 110 and the metal layer 130 between the unit cell regions a is patterned. The method of patterning. A laser cutting method using an etching method of a laser light source. Ο

其次,如第3圖所*,可於基板1〇〇上形成石夕層_。在 本實施形態巾’假想說型、i型、㈣切層之石夕層 200。這些㈣2〇〇(即,半導體層2⑼)之形成方法可包含二 PECVD或LPCVD之CVD法’碎層200藉後來之程序,可具有可 受光產生電力之光電元件的機能。 八 接著’再參照第3圖,可低溫熱處理金屬層130,使直 與石夕層200反應,變化成金屬耗物層131(即,連接層 131)。具體而言,騎行低溫熱處理(此狀低溫熱處理意 指以低於非之結晶化祕理溫度低之溫度進行的熱 處理)’包含於金屬層13Q之金屬成分與碎層_之石夕反麻, 可形成由金屬魏物構成之連接層131。例如,以3啊左 右之溫度減理金屬層之鎳層咖與半導體層⑭層·, 錄與教應,可形成作為連接層之_化物層⑽ix)。 接著,如第4圖所示,可使單位電池區域a間之石夕層200 之-部份圖案化。該圖案化方法可包含使用雷射光源之蚀 刻方法之雷射切割法,此時,連接層i3i因具有㈣阻止膜 9 201042773 之機能,在石夕層200之圖案化過程中,丨會對下部電極ιι〇 造成損傷’可輕易地僅蝕刻矽層2〇〇。 其次’如第5圖所示,可於基板⑽上形成上部電極 300,然後,使單位電池區域a之矽層2〇〇及上部電極3⑽之 -部份圖案化。上部電極編可為作為透明導電性材料之 ITO、ZnO、IZO、AZO(Zn〇 : A1)、FT〇(Sn〇2 : 0 中之任一 者,但不限於此,可無限制地使用一般的導電性材料。該 上部電極300之形成方法可包含如濺鍍之pvD法及如 LPCVD、PECVD、M0CVD之CVD法等。該圖案化法可包含使用 雷射光源之姓刻方法的雷射切割法。 再參照第5圖,在多數單位電池區域&中,藉將形成於 任意單位電池區域a之上部電極300電性連接於形成在鄰接 其他單位電池區域a之下部電極110上的連接層131,可實現 串聯方式之太陽能電池。因此,本發明之太陽能電池可藉 於下部電極110與矽層200間設置金屬矽化物層作為連接層 131,可防止下部電極110之不純物擴散至矽層2〇〇,可提高 下部電極110與矽層200之界面特性(附著力),且可防止下 部電極110在單位電池圖案化時損傷。又,在本發明中,連 接層131之金屬矽化物層電阻值低,可提高串聯連接之單位 電池間的導電度。 第2實施形態 本發明第2實施形態之太陽能電池除了連接層131以 外,其構造與顯示於第1圖〜第5圖之第1實施形態之太陽能 電池相同。因此,在以下之實施形態令,為了避免重複說 201042773 明’形成連接層131之程序以外的詳細說明省略。 第6圖是顯示本發明第2實施形態之具有連接層之太陽 能電池的製造程序的圖。 如第6圖所示,可於基板100上之下部電極11〇上形成連 接層131(參照第8圖)。為了形成該連接層131,在本實施形 態中,可於下部電極丨^)上形成金屬層13〇。金屬層13〇之材 質及形成方法與第1實施形態相同。 其-人,可於金屬層130上形成緩衝層140,該緩衝層第2 緩衝層140可為具有p型、i型、n型之任一種導電型的非晶 質矽層。緩衝層140之形成方法可包含如pECVD或LpcvD之 CVD 法。 接著,可低溫熱處理金屬層130,使其與非晶質石夕層14〇 反應,變化成金屬矽化物層13卜藉低溫熱處理形成金屬矽 化物層作為連接層131之程序與第1實施形態相同。如此, 本實施形態在於金屬層130上形成另外的非晶質矽層(緩衝 層140),低溫熱處理該另外的非晶質矽層(緩衝層14〇)而形 成連接層131方面,與如低溫熱處理金屬層130及構成光電 元件之矽層200而形成連接層131之第1實施形態是不同 的,另一方面,在本實施形態中,雖然說明於金屬層13〇上 形成緩衝層140時,但是當然,其相反之情形,即,於下部 電極110上依序積層緩衝層140與金屬層130之情形亦屬於 本發明。 第3實施形態 本發明第3實施形態之太陽能電池除了連接層131以 11 201042773 外’其構造與顯示於第1圖〜第5圖之第1實施形態之太陽能 電池相同。因此’在以下之實施形態中,為了避免重複說 明’形成連接層131之程序以外的詳細說明省略。 第7圖是顯示本發明第3實施形態之具有連接層之太陽 能電池的製造程序的圖。 如第7圖所示,可於基板1〇〇上之下部電極11〇上形成連 ,層131(參照第8圖)。為了形成該連接層131,在本實施形 恶中’可於下部電極110上依序形成第i緩衝層12〇、金屬層 130、及第2緩衝層140後,低通熱處理金屬層13〇,使其與 緩衝層12G、14G反應’變化成金屬石夕化物層⑶。金屬層13〇 與緩衝層120、140之材質及形成方法,以及藉低溫熱處理 形成金屬料物層作為連接層131之過程與上述實施形態 相同。 如此’本實施形態在於金屬層⑽前後形成另外之非晶 質石夕層(緩衝層120、140) ’低溫熱處理該等另外之非晶質 石夕層(缓衝層12G、14G)而形成連接層131方面,與如低溫熱 處理金屬層130及構成光電元件之矽層2〇〇而形成連接層 131之第1實施形態是不同的。 第4實施形態 上述本發明之實施形態巾,制以連接層丨3丨作為金屬 矽化物層,但是本發明不一定限定於此。例如,本發明之 第4實施形態之連接層(圖未示)可由包含障壁層(圖未示) 與金屬矽化物層(圖未不)之多層膜構成。此時,障壁層可 具有防止不純物由下部電極丨1〇擴散至矽層2〇〇之效果。 12 201042773 為了形成該連接層,在本實施形態中,首先,可於下 部電極110上形成障壁層。該障壁層可為已知在半導體領域 中具有擴散防止膜之機能者之TiN層或A1N層中之任一者, 但只要具有擴散防止膜之機能者即可,不一定限定於此。 形成該障壁層之方法可包含如濺鍍之PVD法、及如lpcvd、 PECVD、M0CVD之CVD法等。 其次,可低溫熱處理障壁層,使其與矽層200反應。在 此’障壁層為TiN層時,TiN層之Ti與矽層200之^反應,於 ΤιΝ層與矽層之界面形成金屬矽化物層之(TiSix)層,此 時,連接層可為具有TiN/TiSL構造之多層膜。 另一方面’在本實施形態中,為了提高配置於下部電 極110與石夕層200間之障壁層之接著力,可於障壁層之下 側、上側、上下側兩者再形成金屬層(圖未示)。即,障壁 層為TiN層時,障壁層可形成於下部電極丨1〇與矽層2⑼之 間,作成具有Ti/TiN、TiN/Ti、Ti/TiN/Ti中任一個之構造 之多層膜。此時,藉障壁層與矽層200之低溫熱處理,連接 層可成為具有Ti/TiN/TiSix或TiN/TiSix中任一個之構造之 多層膜。另一方面,障壁層為TiN層時,金屬層之材料不一 定限定於Ti,可包含與矽反應,可形成金屬矽化物層之Ni、Next, as shown in Fig. 3, a stone layer _ can be formed on the substrate 1〇〇. In the present embodiment, the imaginary type, the i-type, and the (four) dicing layer are 200. The method of forming the (4) 2 Å (i.e., the semiconductor layer 2 (9)) may include a CVD method of two PECVD or LPCVD, and the subsequent process may have a function of a photovoltaic element that can generate electricity by light. VIII Next, referring to Fig. 3, the metal layer 130 may be heat-treated at a low temperature to react with the sap layer 200 to change into the metal consuming layer 131 (i.e., the connecting layer 131). Specifically, riding a low-temperature heat treatment (this type of low-temperature heat treatment means heat treatment at a temperature lower than a non-crystallization crystallization temperature), and the metal component and the fracture layer contained in the metal layer 13Q are swayed. A connection layer 131 composed of a metal material can be formed. For example, the nickel layer of the metal layer and the layer of the semiconductor layer 14 are reduced by a temperature of about 3 Å, and the layer (10) ix) as a connection layer can be formed. Next, as shown in Fig. 4, a portion of the slab layer 200 between the unit cell regions a can be patterned. The patterning method may include a laser cutting method using an etching method of a laser light source. At this time, the connection layer i3i has a function of the (4) blocking film 9 201042773, and during the patterning process of the stone layer 200, the lower layer is formed. The electrode ιι〇 causes damage 'can easily etch only the ruthenium layer 2 〇〇. Next, as shown in Fig. 5, the upper electrode 300 can be formed on the substrate (10), and then the portion 2 of the unit cell region a and the portion of the upper electrode 3 (10) can be patterned. The upper electrode may be any of ITO, ZnO, IZO, AZO (Zn〇: A1), and FT〇 (Sn〇2: 0) as a transparent conductive material, but is not limited thereto, and can be used without limitation. The conductive material may include a pvD method such as sputtering and a CVD method such as LPCVD, PECVD, M0CVD, etc. The patterning method may include laser cutting using a laser source method. Referring to FIG. 5, in the plurality of unit cell regions &, the upper electrode 300 formed on the arbitrary unit cell region a is electrically connected to the connection layer formed on the lower electrode 110 adjacent to the other unit cell region a. The solar cell of the tandem type can be realized. Therefore, the solar cell of the present invention can be provided with a metal telluride layer as the connection layer 131 between the lower electrode 110 and the ruthenium layer 200, thereby preventing the impurity of the lower electrode 110 from diffusing to the ruthenium layer 2 That is, the interface characteristics (adhesion) between the lower electrode 110 and the ruthenium layer 200 can be improved, and the lower electrode 110 can be prevented from being damaged when the unit cell is patterned. Further, in the present invention, the metal bismuth of the connection layer 131 is formed. The layer resistance is low, and the conductivity between the unit cells connected in series can be improved. In the second embodiment, the solar cell according to the second embodiment of the present invention has a structure and a structure shown in Figs. 1 to 5 except for the connection layer 131. The solar cell of the first embodiment is the same. Therefore, in the following embodiments, detailed descriptions other than the procedure for forming the connection layer 131 are omitted in the following description. Fig. 6 is a view showing the connection according to the second embodiment of the present invention. A diagram of a manufacturing procedure of a solar cell of a layer. As shown in Fig. 6, a connection layer 131 can be formed on the lower electrode 11 of the substrate 100 (see Fig. 8). In order to form the connection layer 131, this embodiment is The metal layer 13〇 can be formed on the lower electrode 丨^). The material and formation method of the metal layer 13 are the same as in the first embodiment. A buffer layer 140 may be formed on the metal layer 130. The buffer layer second buffer layer 140 may be an amorphous germanium layer having any one of p-type, i-type, and n-type conductivity types. The method of forming the buffer layer 140 may include a CVD method such as pECVD or LpcvD. Next, the metal layer 130 can be heat-treated at a low temperature to react with the amorphous slab layer 14 ,, and the metal bismuth layer 13 is changed to form a metal bismuth layer as a connection layer 131 by a low-temperature heat treatment. The procedure is the same as in the first embodiment. . As described above, in the present embodiment, another amorphous germanium layer (buffer layer 140) is formed on the metal layer 130, and the other amorphous germanium layer (buffer layer 14) is thermally treated at a low temperature to form the connection layer 131, such as low temperature. The first embodiment in which the heat treatment metal layer 130 and the tantalum layer 200 constituting the photovoltaic element are formed to form the connection layer 131 is different. On the other hand, in the present embodiment, when the buffer layer 140 is formed on the metal layer 13A, However, of course, the reverse case, that is, the case where the buffer layer 140 and the metal layer 130 are sequentially laminated on the lower electrode 110 is also the present invention. (THIRD EMBODIMENT) The solar cell according to the third embodiment of the present invention is the same as the solar cell of the first embodiment shown in Figs. 1 to 5 except that the connection layer 131 is 11 201042773. Therefore, in the following embodiments, detailed descriptions other than the procedure for forming the connection layer 131 in order to avoid redundancy will be omitted. Fig. 7 is a view showing a manufacturing procedure of a solar cell having a connection layer according to a third embodiment of the present invention. As shown in Fig. 7, a layer 131 can be formed on the lower surface electrode 11 of the substrate 1 (see Fig. 8). In order to form the connection layer 131, in the present embodiment, the ith buffer layer 12, the metal layer 130, and the second buffer layer 140 may be sequentially formed on the lower electrode 110, and then the metal layer 13 is low-pass heat-treated. It is caused to react with the buffer layers 12G and 14G to change into the metal lithium layer (3). The metal layer 13A and the material and formation method of the buffer layers 120 and 140, and the process of forming the metal material layer as the connection layer 131 by low-temperature heat treatment are the same as those of the above embodiment. Thus, in the present embodiment, another amorphous layer (buffer layer 120, 140) is formed before and after the metal layer (10). The other amorphous layer (buffer layer 12G, 14G) is formed by low-temperature heat treatment to form a connection. The layer 131 is different from the first embodiment in which the metal layer 130 is thermally treated at a low temperature and the tantalum layer 2 constituting the photovoltaic element is formed to form the connection layer 131. Fourth Embodiment In the above-described embodiment of the present invention, the connection layer 3丨 is used as the metal halide layer, but the present invention is not necessarily limited thereto. For example, the connection layer (not shown) of the fourth embodiment of the present invention may be composed of a multilayer film including a barrier layer (not shown) and a metal halide layer (not shown). At this time, the barrier layer may have an effect of preventing the diffusion of impurities from the lower electrode 丨1〇 to the 矽 layer 2〇〇. 12 201042773 In order to form the connection layer, in the present embodiment, first, a barrier layer can be formed on the lower electrode 110. The barrier layer may be any one of a TiN layer or an A1N layer which is known to have a function of a diffusion preventing film in the semiconductor field. However, it is not limited thereto as long as it has a function of a diffusion preventing film. The method of forming the barrier layer may include a PVD method such as sputtering, a CVD method such as lpcvd, PECVD, M0CVD, or the like. Secondly, the barrier layer can be thermally treated at a low temperature to react with the ruthenium layer 200. When the barrier layer is a TiN layer, Ti of the TiN layer reacts with the ruthenium layer 200 to form a (TiSix) layer of a metal ruthenium layer at the interface between the Τι layer and the ruthenium layer. At this time, the connection layer may have TiN. Multilayer film of /TiSL construction. On the other hand, in the present embodiment, in order to increase the adhesion of the barrier layer disposed between the lower electrode 110 and the slab layer 200, a metal layer may be formed on the lower side, the upper side, and the upper and lower sides of the barrier layer (Fig. Not shown). That is, when the barrier layer is a TiN layer, the barrier layer may be formed between the lower electrode 丨1〇 and the ruthenium layer 2(9) to form a multilayer film having a structure of any one of Ti/TiN, TiN/Ti, Ti/TiN/Ti. At this time, by the low-temperature heat treatment of the barrier layer and the tantalum layer 200, the connection layer can be a multilayer film having a structure of any one of Ti/TiN/TiSix or TiN/TiSix. On the other hand, when the barrier layer is a TiN layer, the material of the metal layer is not necessarily limited to Ti, and may include reacting with ruthenium to form Ni of the metal telluride layer,

Pd、Ti、Ag、Au、Al、Sn、Sb、Cu、Co、Mo、Tr、Ru、Pd, Ti, Ag, Au, Al, Sn, Sb, Cu, Co, Mo, Tr, Ru,

Rh、Cd及Pt中之至少一個。 另一方面,如上所述,在本發明之實施形態中,連接 層131亦可藉另外的低溫熱處理程序形成,但依情形不同, 亦可省略低溫熱處理程序,藉以下之第9圖及第1〇圖所示之 13 201042773 矽層200之結晶化熱處理程序形成。 以下’雖然為求方便’舉本發明之第1實施形態為例說 明矽層200之結晶化,但是在本發明之其他實施形態中,可 同樣地適用矽層200之結晶化過程。 第9圖及第1〇圖是顯示本發明第1實施形態之具有連接 層131之太陽能電池之矽層200的製造過程的圖。 首先,如第9圖所示,於基板1〇〇上依序形成下部電極 110及金屬層130後,例如,可形成3層之非晶質碎層21〇、 220 、 230 。 具體而言,於金屬層130上形成第1非晶質矽層210,於 第1非晶質矽層210上形成第2非晶質矽層220,且於第2非晶 貝石夕層220上形成第3非晶質石夕層230,藉此,可構成1個光 電元件(矽層)2〇〇。此時,第1非晶質矽層21〇、第2非晶質 矽層220、第3非晶質矽層230之形成方法可使用如pECVD或 LPCVD 之 CVD 法。 其次,如第10圖所示,可進行高溫熱處理(此時之高溫 熱處理意指以比上述形成連接層131之低溫熱處理高之溫 度進行之熱處理)第1非晶質矽層210、第2非晶質矽層22〇、 第3非晶質矽層230而使其結晶化之過程。即,分別地,第) 非晶質妙層210可結晶成第1多結晶秒層川,第2非晶質石夕 層220可結晶成第2多結晶碎層221,且第3非晶質秒層23〇可 結晶成第3多結晶㈣231。在該高溫熱處理過程中,金屬 層130可與第1非晶質石夕層21Q反應,最後形成作為連接層 131之金屬矽化物層。 201042773 亦即,在本實施形態中,連接層131上形成由第丨多結 晶矽層2 U、第2多結晶矽層2 2卜第3多結晶矽層2 3丨構成: 光電元件200。該光電元件為積層多結晶矽層之構造,可為 以藉光之受光產生之光電動勢,可產生電力之依序積層 型、1型、η型之多結晶矽層之p-i-n二極體的構造。在此, i型意指未摻雜不純物之本質(intrinsic)。n型或p型之摻雜以 在非晶質矽層形成時以現場方式摻雜不純物為佳。一般來 說,Ρ型摻雜時使用硼(Β)作為不純物,η型摻雜時使用磷β) 或砷(As)作為不純物,但不限於此,可無限制地使用習知 之技術。 另一方面,第i非晶質矽層21〇、第2非晶質矽層22〇、 第3非晶質矽層23〇之結晶化方法可利用spc(固相結晶 化)、ELA(準分子雷射退火)、SLS(順序橫向固化)、Mic(金 屬誘導結晶化)、MICL(金屬誘導橫向結晶化)中之任一種方 法。由於如此之非晶質矽之結晶化方法是習知之技術,所 以有關於此之詳細說明在本說明書中省略。 又,雖然在上述者中說明的是全部形成第1非晶質矽層 21〇、第2非晶質矽層22〇、第3多結晶矽層231後,將這些層 同N·地結晶化,但是不一定限定於此。例如,可於每一非 曰曰質矽層分別進行結晶化程序,又,亦可對2個非晶質矽層 同寺地進行、纟α曰曰化程序,另外對剩餘之一非晶質石夕層進行 結晶化程序。 此外,第1多結晶矽層2U、第2多結晶矽層22卜第3多 結晶石夕層231可追加進行缺陷去除程序,以提高電氣之種種 15 201042773 特性。在本發明中,可藉高溫熱處理多結晶矽層,或氫電 漿處理,去除存在多結晶矽層内之缺陷(例如,不純物及懸 鍵等)。 又,雖然由多結晶矽層構成之光電元件上再形成其他 光電元件,可實現串列(tandem)構造之太陽能電池,但是 前述其他光電元件可為積層非晶質矽層之構造。此外,以 上所述之光電元件可積層兩層以上,又,亦可使用p-i-n型, 使用p-n型。 雖然本發明,如上所述地,舉較佳實施形態圖示及說 明,但是不限於上述實施形態,在不脫離本發明之精神的 範圍内,藉發明所屬技術領域中具有通常知識者可進行多 種變形及變更。如此之變形例及變更例應被視為屬於本發 明與以下申請專利範圍之範圍。 I:圖式簡單說明3 第1圖是顯示本發明第1實施形態之具有連接層之太陽 能電池的製造程序的圖。 第2圖是顯示本發明第1實施形態之具有連接層之太陽 能電池的製造程序的圖。 第3圖是顯示本發明第1實施形態之具有連接層之太陽 能電池的製造程序的圖。 第4圖是顯示本發明第1實施形態之具有連接層之太陽 能電池的製造程序的圖。 第5圖是顯示本發明第1實施形態之具有連接層之太陽 能電池的製造程序的圖。 16 201042773 第6圖是顯示本發明第2實施形態之具有連接層之太陽 能電池的製造程序的圖。 第7圖是顯示本發明第3實施形態之具有連接層之太陽 能電池的製造程序的圖。 第8圖是顯示本發明第2實施形態及第3實施形態之具 有連接層之太陽能電池的圖。 第9圖是顯示本發明第1實施形態之具有連接層之太陽 能電池之矽層的製造過程的圖。 Ο ❹ 第10圖是顯示本發明第1實施形態之具有連接層之太 陽能電池之矽層的製造過程的圖。 【主要元件符號說明】 件 210···第1非晶質矽層 211…第1多結晶矽層 220.. .第2非晶質矽層 221…第2多結晶矽層 230.. .第3非晶質矽層 231…第3多結晶矽層 300···上部電極 a··*單位電池區域 100…基板 110···下部電極 120…缓衝層;第1缓衝層 130···金屬層 131···連接層(金屬石夕化物層) 140···第2緩衝層(非晶質矽層) 200…矽層(半導體層);光電元 17At least one of Rh, Cd, and Pt. On the other hand, as described above, in the embodiment of the present invention, the connection layer 131 may be formed by another low-temperature heat treatment process, but the low-temperature heat treatment process may be omitted depending on the case, and the following FIG. 9 and the first The crystallization heat treatment process of 13 201042773 矽 layer 200 is shown in the figure. In the following, the crystallization of the ruthenium layer 200 is exemplified as the first embodiment of the present invention. However, in another embodiment of the present invention, the crystallization process of the ruthenium layer 200 can be similarly applied. Fig. 9 and Fig. 1 are views showing a manufacturing process of the ruthenium layer 200 of the solar cell having the connection layer 131 according to the first embodiment of the present invention. First, as shown in Fig. 9, after the lower electrode 110 and the metal layer 130 are sequentially formed on the substrate 1, for example, three layers of amorphous fracture layers 21, 220, and 230 can be formed. Specifically, the first amorphous tantalum layer 210 is formed on the metal layer 130, the second amorphous tantalum layer 220 is formed on the first amorphous tantalum layer 210, and the second amorphous shell layer 220 is formed on the second amorphous shell layer 220. The third amorphous slab layer 230 is formed thereon, whereby one photovoltaic element (tantalum layer) 2 可 can be formed. In this case, a method of forming the first amorphous germanium layer 21, the second amorphous germanium layer 220, and the third amorphous germanium layer 230 may be a CVD method such as pECVD or LPCVD. Next, as shown in Fig. 10, a high-temperature heat treatment (at this time, the high-temperature heat treatment means heat treatment at a temperature higher than the low-temperature heat treatment for forming the joint layer 131), the first amorphous tantalum layer 210, and the second non- The crystal ruthenium layer 22 〇 and the third amorphous ruthenium layer 230 are crystallized. In other words, the first amorphous layer 210 can be crystallized into the first polycrystalline layer, and the second amorphous layer 220 can be crystallized into the second polycrystalline layer 221, and the third amorphous layer The second layer 23 〇 can be crystallized into a third polycrystal (tetra) 231. In the high-temperature heat treatment, the metal layer 130 can be reacted with the first amorphous layer 21Q, and finally a metal halide layer as the connection layer 131 is formed. In other words, in the present embodiment, the connection layer 131 is formed of a second polycrystalline germanium layer 2 U, a second polycrystalline germanium layer 2 2 and a third polycrystalline germanium layer 23 3 : a photovoltaic element 200. The photovoltaic element is a structure in which a polycrystalline germanium layer is laminated, and may be a structure of a pin diode of a polycrystalline germanium layer which is capable of generating electric power, a sequential laminated type, a type 1 and an n type, which are generated by light receiving light. . Here, the i-type means the intrinsic nature of the undoped impurities. The n-type or p-type doping is preferably performed by doping the impurity in a field manner when the amorphous germanium layer is formed. In general, boron (germanium) is used as the impurity in the doping type, and phosphorus β) or arsenic (As) is used as the impurity in the n-type doping, but it is not limited thereto, and the conventional technique can be used without limitation. On the other hand, the crystallization method of the i-th amorphous germanium layer 21, the second amorphous germanium layer 22, and the third amorphous germanium layer 23 can be performed by spc (solid phase crystallization) or ELA (standard) Any of the methods of molecular laser annealing, SLS (sequential lateral solidification), Mic (metal induced crystallization), and MICL (metal induced lateral crystallization). Since the crystallization method of such amorphous ruthenium is a well-known technique, the detailed description about this is omitted in the present specification. Further, in the above description, all of the first amorphous germanium layer 21, the second amorphous germanium layer 22, and the third polycrystalline germanium layer 231 are formed, and these layers are crystallized in the same manner as N·. However, it is not necessarily limited to this. For example, the crystallization process can be carried out separately for each non-ruthenium layer, and the two amorphous ruthenium layers can be subjected to the crystallization process, and the remaining amorphous stone can be used. The crystallization process is performed on the eve layer. Further, the first polycrystalline tantalum layer 2U, the second polycrystalline tantalum layer 22, and the third polycrystalline layer 231 may be additionally subjected to a defect removal procedure to improve the electrical characteristics of the various types of 2010. In the present invention, the polycrystalline ruthenium layer may be treated by a high temperature heat treatment or a hydrogen plasma treatment to remove defects (e.g., impurities and dangling bonds) in the polycrystalline ruthenium layer. Further, although another photovoltaic element is formed on the photovoltaic element composed of the polycrystalline germanium layer, a solar cell having a tandem structure can be realized. However, the other photovoltaic element may have a structure in which an amorphous germanium layer is laminated. Further, the photovoltaic element described above may be laminated in two or more layers, and a p-i-n type may be used, and a p-n type may be used. The present invention has been described and illustrated with reference to the preferred embodiments of the present invention. However, the present invention is not limited to the embodiments described above, and various modifications may be made by those skilled in the art without departing from the scope of the invention. Deformation and change. Such modifications and variations are considered to be within the scope of the present invention and the scope of the following claims. I. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a manufacturing procedure of a solar cell having a connection layer according to the first embodiment of the present invention. Fig. 2 is a view showing a manufacturing procedure of a solar cell having a connection layer according to the first embodiment of the present invention. Fig. 3 is a view showing a manufacturing procedure of a solar cell having a connection layer according to the first embodiment of the present invention. Fig. 4 is a view showing a manufacturing procedure of a solar cell having a connection layer according to the first embodiment of the present invention. Fig. 5 is a view showing a manufacturing procedure of a solar cell having a connection layer according to the first embodiment of the present invention. 16 201042773 Fig. 6 is a view showing a manufacturing procedure of a solar cell having a connection layer according to a second embodiment of the present invention. Fig. 7 is a view showing a manufacturing procedure of a solar cell having a connection layer according to a third embodiment of the present invention. Fig. 8 is a view showing a solar cell having a connection layer according to the second embodiment and the third embodiment of the present invention. Fig. 9 is a view showing a manufacturing process of a tantalum layer of a solar cell having a connection layer according to the first embodiment of the present invention. ❹ ❹ Fig. 10 is a view showing a manufacturing process of a tantalum layer of a solar cell having a connection layer according to the first embodiment of the present invention. [Description of main component symbols] 210: First amorphous germanium layer 211... first polycrystalline germanium layer 220.. second amorphous germanium layer 221... second polycrystalline germanium layer 230.. 3 amorphous germanium layer 231... third polycrystalline germanium layer 300··· upper electrode a··* unit cell region 100...substrate 110··lower electrode 120...buffer layer; first buffer layer 130·· Metal layer 131··· connection layer (metal lithium layer) 140···2nd buffer layer (amorphous germanium layer) 200... germanium layer (semiconductor layer); photocell 17

Claims (1)

201042773 七、申請專利範圍: 1. 一種太陽能電池,其特徵在於包含·· 包含多數單位電池區域之基板; 形成於前述基板之單位電池區域上之下部電極; 形成於前述下部電極上,包含預定金屬之連接層; 形成於前述連接層上之光電元件;及 形成於前述光電元件上之上部電極, 前述上部電極電性連接於形成在鄰接前述單位電 池區域之其他單位電池區域上之下部電極上的連接層。 2. 如申請專利範圍第1項之太陽能電池,其中前述連接層 包含金屬層及金屬矽化物層中之至少任一層。 3. 如申請專利範圍第2項之太陽能電池,其中前述連接層 包含Ni、Pd、Ti、Ag、Au、Al、Sn、Sb、Cu、Co、Mo、 Tr、Ru、Rh、Cd及Pt中之至少一種。 4. 如申請專利範圍第1項之太陽能電池,其中前述光電元 件包含多結晶矽層。 5. 如申請專利範圍第2項之太陽能電池,其中前述連接層 係更包含障壁層之多層膜構造。 6. 如申請專利範圍第5項之太陽能電池,其中前述障壁層 係TiN層,前述連接層係具有TiN/TiSix或Ti/TiN/TiSi^ 任一種之構造的多層膜。 7. —種太陽能電池之製造方法,其特徵在於包含: (a) 提供包含多數單位電池區域之基板的步驟; (b) 於前述基板之單位電池區域上形成下部電極的 18 201042773 步驟; (C)於前述下部電極上形成金屬層的步驟; (d) 於前述金屬層上形成多數非晶質石夕層積層而成 之光電元件的步驟;.及 (e) 於前述光電元件上形成上部電極的步驟。 8. 如申請專利範圍第7項之太陽能電池之製造方法,更包 含在前述(d)步驟後,熱處理前述金屬層及前述非晶質 石夕層的步驟。 9. 如申請專利範圍第7項之太陽能電池之製造方法,更包 含在前述(d)步驟後,將前述非晶質矽層結晶化的步驟。 10. 如申請專利範圍第7項之太陽能電池之製造方法,其中 前述(c)步驟包含:於前述下部電極上依序形成金屬層 與缓衝層的步驟,或於前述下部電極上依序形成緩衝層 與金屬層的步驟;或包含:於前述下部電極上形成第1 緩衝層的步驟、於前述第1緩衝層上形成金屬層的步 驟、及於前述金屬層上形成第2緩衝層的步驟。 11. 如申請專利範圍第10項之太陽能電池之製造方法,更包 含在前述(c)步驟或前述(d)步驟後,熱處理前述金屬層 及前述緩衝層的步驟。 12. 如申請專利範圍第10項之太陽能電池之製造方法,更包 含在前述(d)步驟後,將前述非晶質矽層結晶化的步驟。 13. 如申請專利範圍第10項之太陽能電池之製造方法,其中 前述緩衝層為5夕層。 14. 如申請專利範圍第7項之太陽能電池之製造方法,其中 19 201042773 前述金屬層包含Ni、Pd、Ti、Ag、Au、A1、Sn、Sb、 Cu、Co、Mo、Tr、Ru、Rh、Cd及Pt 中之至少一種。 20201042773 VII. Patent application scope: 1. A solar cell characterized by comprising: a substrate comprising a plurality of unit cell regions; a lower electrode formed on a unit cell region of the substrate; formed on the lower electrode, comprising a predetermined metal a connecting layer; a photovoltaic element formed on the connecting layer; and an upper electrode formed on the photovoltaic element, wherein the upper electrode is electrically connected to an upper electrode formed on another unit cell region adjacent to the unit cell region Connection layer. 2. The solar cell of claim 1, wherein the connecting layer comprises at least one of a metal layer and a metal telluride layer. 3. The solar cell of claim 2, wherein the connecting layer comprises Ni, Pd, Ti, Ag, Au, Al, Sn, Sb, Cu, Co, Mo, Tr, Ru, Rh, Cd and Pt At least one of them. 4. The solar cell of claim 1, wherein the aforementioned photovoltaic element comprises a polycrystalline germanium layer. 5. The solar cell of claim 2, wherein the connecting layer further comprises a multilayer film structure of the barrier layer. 6. The solar cell of claim 5, wherein the barrier layer is a TiN layer, and the connection layer is a multilayer film having a structure of any one of TiN/TiSix or Ti/TiN/TiSi^. 7. A method of manufacturing a solar cell, comprising: (a) providing a substrate comprising a plurality of unit cell regions; (b) forming a lower electrode on a unit cell region of said substrate; 201042773 step; a step of forming a metal layer on the lower electrode; (d) a step of forming a plurality of amorphous photovoltaic layers on the metal layer; and (e) forming an upper electrode on the photovoltaic element A step of. 8. The method for producing a solar cell according to claim 7, further comprising the step of heat-treating the metal layer and the amorphous layer after the step (d). 9. The method for producing a solar cell according to the seventh aspect of the invention, further comprising the step of crystallizing the amorphous ruthenium layer after the step (d). 10. The method of manufacturing a solar cell according to claim 7, wherein the step (c) comprises: sequentially forming a metal layer and a buffer layer on the lower electrode, or sequentially forming the lower electrode; a step of forming a buffer layer and a metal layer; or a step of forming a first buffer layer on the lower electrode, a step of forming a metal layer on the first buffer layer, and a step of forming a second buffer layer on the metal layer . 11. The method of manufacturing a solar cell according to claim 10, further comprising the step of heat-treating the metal layer and the buffer layer after the step (c) or the step (d). 12. The method for producing a solar cell according to claim 10, further comprising the step of crystallizing the amorphous germanium layer after the step (d). 13. The method of manufacturing a solar cell according to claim 10, wherein the buffer layer is a 5-layer layer. 14. The method of manufacturing a solar cell according to claim 7 wherein 19 201042773 said metal layer comprises Ni, Pd, Ti, Ag, Au, A1, Sn, Sb, Cu, Co, Mo, Tr, Ru, Rh At least one of Cd and Pt. 20
TW099112008A 2009-04-23 2010-04-16 Solar cell and method for fabricating the same TW201042773A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090035457A KR20100116833A (en) 2009-04-23 2009-04-23 Solar cell including metallic silicide layer and method for fabricating the same
KR1020090047502A KR20100128852A (en) 2009-05-29 2009-05-29 Solar cell including barrier layer and method for fabricating of the same

Publications (1)

Publication Number Publication Date
TW201042773A true TW201042773A (en) 2010-12-01

Family

ID=43011622

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099112008A TW201042773A (en) 2009-04-23 2010-04-16 Solar cell and method for fabricating the same

Country Status (2)

Country Link
TW (1) TW201042773A (en)
WO (1) WO2010123292A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI469217B (en) * 2012-11-15 2015-01-11 Univ Chien Hsin Sci & Tech A transparent conductive multilayer film and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3174486B2 (en) * 1995-09-08 2001-06-11 シャープ株式会社 Solar cell and method of manufacturing the same
KR100366351B1 (en) * 2001-01-02 2002-12-31 삼성에스디아이 주식회사 Fabrication method of back side electrode part of solar cell
JP2006237129A (en) * 2005-02-23 2006-09-07 Kanagawa Prefecture Semiconductor element
JP5001722B2 (en) * 2007-06-01 2012-08-15 株式会社カネカ Method for manufacturing thin film solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI469217B (en) * 2012-11-15 2015-01-11 Univ Chien Hsin Sci & Tech A transparent conductive multilayer film and its manufacturing method

Also Published As

Publication number Publication date
WO2010123292A3 (en) 2011-02-03
WO2010123292A2 (en) 2010-10-28

Similar Documents

Publication Publication Date Title
US9666732B2 (en) High-efficiency solar cell structures and methods of manufacture
KR101065752B1 (en) Solar Cell Module and Method For Fabricating The Same
JP5025184B2 (en) Solar cell element, solar cell module using the same, and manufacturing method thereof
TW201203588A (en) Solar cell including sputtered reflective layer and method of manufacture thereof
EP2472592B1 (en) Solar cell and method of fabricating the same
JP2009520369A5 (en)
TW201017900A (en) Solar cell and method for fabricating the same
TWI453932B (en) Photovoltaic module and method of manufacturing a photovoltaic module having an electrode diffusion layer
US20100224238A1 (en) Photovoltaic cell comprising an mis-type tunnel diode
US20100229934A1 (en) Solar cell and method for the same
KR101011222B1 (en) Solar Cell and Method For Fabricating The Same
KR101047170B1 (en) Solar cell and manufacturing method
JP2002261313A (en) Thin-film photoelectric conversion module
TW201042773A (en) Solar cell and method for fabricating the same
KR101039149B1 (en) Solar cell and method for fabricating the same
KR101065749B1 (en) Solar cell and method for fabricating the same
KR20100116833A (en) Solar cell including metallic silicide layer and method for fabricating the same
AU2017265104B2 (en) High-efficiency solar cell structures and methods of manufacture
KR20100128852A (en) Solar cell including barrier layer and method for fabricating of the same
KR101542209B1 (en) Solar cell and method for fabricating the same
KR101114345B1 (en) Solar cell and method for fabricating the same
KR20190046785A (en) Manufacturing method of photoelectric device
KR101039148B1 (en) Solar cell and method for fabricating the same
TW201041166A (en) Flexible substrate and solar cell using the same
KR101505188B1 (en) Solar cell and method for fabricating the same