TW201042600A - Method for driving fluorescent display tube and fluorescent display tube - Google Patents

Method for driving fluorescent display tube and fluorescent display tube Download PDF

Info

Publication number
TW201042600A
TW201042600A TW098145496A TW98145496A TW201042600A TW 201042600 A TW201042600 A TW 201042600A TW 098145496 A TW098145496 A TW 098145496A TW 98145496 A TW98145496 A TW 98145496A TW 201042600 A TW201042600 A TW 201042600A
Authority
TW
Taiwan
Prior art keywords
phosphor
driving
display tube
fluorescent display
brightness
Prior art date
Application number
TW098145496A
Other languages
Chinese (zh)
Other versions
TWI444949B (en
Inventor
Shigeki Kikuta
Kenji Nakanishi
Noboru Murata
Motohisa Isaka
Original Assignee
Noritake Itron Corp
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009020275A external-priority patent/JP5191411B2/en
Priority claimed from JP2009023293A external-priority patent/JP5208789B2/en
Application filed by Noritake Itron Corp, Noritake Co Ltd filed Critical Noritake Itron Corp
Publication of TW201042600A publication Critical patent/TW201042600A/en
Application granted granted Critical
Publication of TWI444949B publication Critical patent/TWI444949B/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/04Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Luminescent Compositions (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

This invention provides a method for driving a fluorescent display tube and a fluorescent display tube, by which the luminance life time of a fluorescent display tube driven by a dynamic drive style and using a fluorophor having significant luminance saturation can be increased. The method for driving a fluorescent display tube comprises dynamic driving of a fluorophor layer formed on an anode electrode, while excited by a low-velocity electron beam. The fluorophor included in the fluorophor layer increases the luminance with a shorter pulse width under the condition of the same Due in dynamic driving, and after the luminance of the fluorophor is saturated by applying a voltage to the anode electrode followed by stopping the application of the voltage, the time period until the luminance decreases down to 10% luminance of the saturation luminance is 200 μ sec or longer. The dynamic driving, while increasing the repeating cycle of the pulse or pulse width in the driving period, is variable at the initial luminance direction maintained by the fluorophor.

Description

201042600 六、發明說明: 【發明所屬之技術領域】 本發明是關於螢光顯示管的驅動方法和使用了該驅動 方法的螢光顯示管。 【先前技術】 作爲螢光顯示管等的低速電子束激勵用螢光體,除了 〇 表現出優良的發光特性的ZnO : Zn (綠色)以外,在 SrTi03 : ρΓ (紅色)、CaTi03 : Pr (紅色)、Gd2〇2S : Eu (紅色)、Y2〇2S : Eu (紅色)、La202S : Eu (紅色)、 Sn02 : Eu (橙色)、ZnS : Μη (橙色)、ZnGa204 (藍色 、 )、ZnGa204 : Μη (綠色)等中添加了 Ιη203等的導電性 物質得到的螢光體也被大量硏究、開發。 但是,作爲低速電子束激勵用螢光體被開發的螢光體 ’除了發綠色的ZnO : Zn以外,螢光體的壽命一般較短 〇 。 另一方面,作爲螢光顯示管的驅動方法已知動態驅動 方法。在該動態驅動中,如果任務循環(duty cycle,以 下簡稱Du ) —定,則藉由改變脈衝寬度tp有時亮度大致 相同,有時亮度降低。在此,Du用脈衝寬度tp與脈衝的 重複周期T的比(tp/T )表示。回應速度快的螢光體的亮 度大致相同,回應速度慢的螢光體的亮度降低。回應速度 用從向陽極施加電壓時到螢光體達到飽和亮度的時間表示 。另外,回應速度慢的螢光體,因爲在電壓施加過程中達 -5- 201042600 不到飽和亮度’所以亮度降低。於是’爲了獲得必需的亮 度,使用回應速度慢的螢光體的動態驅動是不利的(曰本 特開2000-250454號公報)。 因此,在使用回應速度慢的螢光體時,避免把脈衝的 重複周期T過分縮短(即’縮短脈衝寬度)’使重複周期 T 爲 8〜20msec。例如,在 Du=l/10〜1/50、T=10msec 時, 以200~1 000psec的較長脈衝寬度作爲脈衝寬度tp進行驅 動。 另外,爲了防止顯示畫面的閃爍,尤其在螢光顯示管 振動時,希望重複周期T爲10msec以下(岸野隆雄編著 ,《螢光顯示管》,第155頁,產業圖書株式會社發行) 〇 但是,在上述的動態驅動中,如果延長脈衝寬度,則 存在產生顯示畫面閃爍、亮度不均等、顯示品質降低的可 能。 在曰本特開2003 - 1 95 8 1 8號公報中記載了提高動態驅 動中的鱼光體的売度命的方法。該方法的目的在於,防 止在尤其是具有肋栅電極(rib_grid electrode)的螢光顯 不管中隨者使用時間增加而產生與陰極並行的明暗亮度不 均勻。它是與從陰極到其陽極的距離相關地調節在陽極和 柵極中的至少一個上施加的驅動脈衝的脈衝寬度和電壓中 的至少個’以及如果累積工作時間延長則增大與到陰極 的距離有關的脈衝寬度和電壓的調節量等的方法。 另外’還已知這樣的螢光顯示管驅動裝置,其特徵在 -6 - 201042600 於包括:被供給驅動螢光顯示管所需的驅動電壓 動電壓動態驅動上述營光顯示管的驅動手段;檢 手段的工作環境溫度的溫度檢測手段;以及能夠 度檢測手段的溫度檢測結果,把上述驅動電壓中 螢光顯示管的陽極電極供給的陽極電壓變成所需 値的電壓可變手段(日本特開平1 1 -9571 2號公報 但是,作爲低速電子束激勵用螢光體開發了 0 體,使用了這些螢光體的螢光顯示管已實用化。 顯示管中使用的螢光體,除了發綠色光的ΖηΟ: 體以外,即使實施上述改善方法,多數螢光體還 、壽命短。因此,要求螢光顯示管的亮度更高、 【發明內容】 (發明要解決的問題) 〇 本發明是爲了解決上述問題而提出的,其目 供一種以動態驅動方式驅動,使用了達到了飽和 度顯著持續的螢光體的、能夠提高螢光顯示管的 和亮度壽命的驅動方法和用該驅動方法驅動的螢 (用來解決問題的手段) 本發明的驅動方法,是藉由對在低速電子束 陽極電極上形成的螢光體層進行動態驅動而顯示 、用該驅 測該驅動 根據該溫 的對上述 要的電壓 )。 各種螢光 這些螢光 Ζιι營光 是亮度低 壽命更長 的在於提 狀態的亮 發光效率 光顯示管 激勵下在 的螢光顯 201042600 示管的驅動方法,其特徵爲: 上述螢光體層中包含的螢光體,是在上述動態驅動中 在將Du設爲相同的條件下如果縮短脈衝寬度則亮度提高 的螢光體’且是向上述陽極電極上施加電壓,在螢光體的 亮度飽和後’降低到該電壓施加停止後的上述飽和亮度値 的10%亮度値的時間爲200psec以上的螢光體; 上述動態驅動是,固定陽極電壓、柵極電壓和任務循 環,利用脈衝寬度或脈衝的重複周期的値控制亮度來進行 驅動。 其特徵爲:對於上述脈衝寬度或脈衝的重複周期的値 ,在驅動時間增加的同時,使該脈衝寬度或該脈衝的重複 周期在維持上述螢光體的亮度的方向上,尤其是在維持初 始亮度的方向上可變化。另外,其特徵爲:上述陽極電壓 、柵極電壓和任務循環維持驅動開始時的値。 另一動態驅動的特徵爲:是在上述脈衝的重複周期爲 7.5msec以下且脈衝寬度爲150psec以下進行驅動的。 其特徵爲:本發明的驅動方法中使用的螢光體的母體 是 Cai.xSrxTi〇3 ( 〇Sx<l) 、L112O2S ( Ln 表不 Y、La、Gd 或 Lu) 、Ln203 (Ln 表示 Y、La、Gd 或 Lu) 、ZnGa2〇4 、Zn2Si04、Zn2Ge04、Sn〇2、ZnS 或 CaS。另外’其特徵 爲:螢光體是具有局部型發光中心的螢光體。 另外,其特徵爲:上述螢光體是具有過渡金屬離子發 光中心和稀土類離子發光中心中的至少一種發光中心的螢 光體。尤其是,上述發光中心是Μη離子、Pr離子、Eu離 -8 - 201042600 子或Tb離子。 另外,其特徵爲:上述螢光體 ZnGa204 : Mn,SrTi03 : pr,CaTi〇3 : Y2O2S : Eu,ZnGa2〇4、Gd202S : Tb,, :Eu,Sn02 : Eu,Zn2Si04 : Mn,CaS : 、A1中選擇的至少一種螢光體。 本發明的螢光顯示管,是向在真空 ¢) 上形成的螢光體層噴射低速電子束,藉 該螢光體層發光的螢光顯示管。 (發明的效果) 、 本發明的動態驅動方法,在使用了 的條件下如果縮短脈衝寬度則亮度提高 度値的10%亮度値的時間爲20(^sec以 驅動中’固定陽極電壓、柵電壓和任務 〇 度或脈衝的重複周期的値進行驅動,所 亮度的下降,延長螢光顯示管的壽命。 尤其是,藉由使脈衝的重複周期爲 脈衝寬度爲150psec以下,即使不改賴 ’也能夠大幅度提高發光效率(亮度) 在驅動時間增加的同時進行增大陽 Du中的任一個的操作也可以提高亮度 的操作導致衝撞螢光體的電子的能量的 加’所以螢光體的劣化加速,結果不能 是從 ZnS : Μη, Pr,Gd2〇2S · Eu, f2〇3 : Eu,La2〇2S Mn,和 ZnS: Au 容器內的陽極電極 由上述動態驅動使 在將Du設爲相同 、且降低到飽和亮 上的螢光體的動態 循環,利用脈衝寬 以可以大幅度抑制 7.5msec以下,且 I Du,即耗電相同 〇 極電壓、柵電壓和 。但是,由於這樣 增加、電子數的增 修正亮度。另外, -9 - 201042600 還導致耗電增加。而本發明的驅動方法’由於不改變上述 操作條件就能夠提高亮度,所以不會加速螢光體的劣化’ 螢光顯示管的耗電也不會增加。 【實施方式】 本發明的驅動方法是關於螢光顯示管的動態驅動方法 。第1圖是螢光顯示管的剖面圖。 螢光顯示管1在陽極基板7的顯示面中具有在多個陽 極5上分別形成的螢光體層6。它是這樣的顯示管,即, 在真空空間中,從位於該螢光體層6上方的陰極9產生的 電子被在蛋光體層6與陰極9之間設置的多個柵電極8控 制,使這些多個螢光體層6選擇性地發光。 另外,在第1圖中,2是玻璃基板,3是在該玻璃基 板上形成的配線層,4是絕緣層,4a是把配線層3與陽極 電極5電氣連接的通孔。另外,1〇是前面玻璃,11是隔 離玻璃。 用第2圖說明動態驅動方法。第2圖是動態驅動方法 中的時序圖。 動態驅動方法,是在上述多個柵電極依 次施加比陰極9的電位高的加速電壓作爲數位信號(柵極 掃描)的脈衝電壓並進行掃描。與該掃描的定時同步地, 根據顯示種類向預定的陽極5選擇性施加比該陰極9的電 位高的點亮電壓,作爲Ο N (正)或〇 F F (負)的段信號 的脈衝電壓。第2圖用a〜g的段表示運算數字。依據這樣 -10- 201042600 的動態驅動方法,針對每個預定的發光 割設置栅電極8。另外,多個陽極5中 單位預先確定的預定位置的陽極5分別 連接,柵電極8是用作位數選擇電極, 擇電極。 第2圖中,T是以爲周期的 衝寬度,U是消隱時間(blanking time 〇 與Τ的比(tp/T)。 在上述的動態驅動方法中,因低速 體的種類不同,對Du的依賴性顯著不丨 是表示ZnO : Zn螢光體中的發光效率對 、 4圖是表示ZnS: Μη螢光體中的發光效[Technical Field] The present invention relates to a method of driving a fluorescent display tube and a fluorescent display tube using the same. [Prior Art] As a low-speed electron beam excitation phosphor such as a fluorescent display tube, in addition to ZnO: Zn (green) which exhibits excellent luminescent properties, SrTi03 : ρ Γ (red), CaTi03 : Pr (red) ), Gd2〇2S: Eu (red), Y2〇2S: Eu (red), La202S: Eu (red), Sn02: Eu (orange), ZnS: Μη (orange), ZnGa204 (blue, ), ZnGa204: Phosphors obtained by adding a conductive material such as Ιη203 to Μn (green) or the like have also been extensively researched and developed. However, the phosphor which has been developed as a low-speed electron beam excitation phosphor has a shorter lifetime than the green ZnO: Zn. On the other hand, a dynamic driving method is known as a driving method of a fluorescent display tube. In this dynamic driving, if the duty cycle (hereinafter referred to as Du) is set, the luminance may be substantially the same by changing the pulse width tp, and the luminance may be lowered. Here, Du is expressed by a ratio (tp/T) of the pulse width tp to the repetition period T of the pulse. The brightness of the fast-responding phosphor is about the same, and the brightness of the slow-responding phosphor is reduced. The response speed is expressed as the time from when the voltage is applied to the anode to when the phosphor reaches saturation brightness. In addition, in response to a slow-speed phosphor, the brightness is lowered because the -5 - 201042600 is less than the saturation brightness during voltage application. Thus, in order to obtain the necessary brightness, it is disadvantageous to use the dynamic driving of the phosphor having a slow response speed (Japanese Patent Laid-Open Publication No. 2000-250454). Therefore, when a phosphor having a slow response speed is used, it is avoided that the repetition period T of the pulse is excessively shortened (i.e., the pulse width is shortened) so that the repetition period T is 8 to 20 msec. For example, when Du = 1/10 to 1/50 and T = 10 msec, the longer pulse width of 200 to 1 000 psec is used as the pulse width tp. In addition, in order to prevent flickering of the display screen, it is desirable that the repetition period T is 10 msec or less, in the case of the vibration of the fluorescent display tube. (Edited by Kishi Noki, "Fluorescent Display Tube", p. 155, issued by Industrial Book Co., Ltd.) In the dynamic driving described above, if the pulse width is lengthened, there is a possibility that display flickering, uneven brightness, and the like may occur, and display quality may be degraded. A method for improving the fat burning life of a fish-light body in dynamic driving is described in Japanese Patent Laid-Open Publication No. 2003-95-81. The purpose of this method is to prevent uneven brightness and brightness in parallel with the cathode in the fluorescence display, especially with rib_grid electrodes. It adjusts at least one of a pulse width and a voltage of a driving pulse applied on at least one of the anode and the gate in relation to a distance from the cathode to the anode thereof and increases to the cathode if the cumulative working time is extended Distance method related to pulse width and voltage adjustment amount. In addition, a fluorescent display tube driving device is also known, which is characterized in that: -6 - 201042600 includes: driving means for dynamically driving the camp light display tube to be driven by a driving voltage required to drive the fluorescent display tube; The temperature detecting means of the working environment temperature of the means; and the temperature detecting result of the capable detecting means, the voltage of the anode supplied to the anode electrode of the fluorescent display tube in the driving voltage becomes a voltage variable means of the desired enthalpy (Japanese Patent Laid-Open No. 1) In the case of the low-speed electron beam excitation phosphor, the fluorescent display tube using these phosphors has been put into practical use. In addition to the green light, the phosphor used in the display tube has been put into practical use. ΖηΟ: In addition to the body, even if the above-described improvement method is carried out, most of the phosphors have a short life. Therefore, the brightness of the fluorescent display tube is required to be higher, and the present invention is to solve the problem. The above-mentioned problem is proposed to be driven by a dynamic driving method, and it is possible to use a phosphor that achieves a remarkable saturation. Driving method of fluorescent display tube and brightness lifetime and firefly driven by the driving method (means for solving the problem) The driving method of the present invention is carried out by performing a phosphor layer formed on a low-speed electron beam anode electrode Dynamically driving and displaying, using the drive, the drive is based on the temperature to the desired voltage). Various kinds of fluorescent light Ζ ι 营 营 营 是 是 营 营 营 营 营 营 营 营 营 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 The phosphor is a phosphor that increases brightness when the pulse width is shortened under the condition that Du is the same under the above-described dynamic driving, and applies a voltage to the anode electrode, and after the luminance of the phosphor is saturated. 'The phosphor that has been reduced to 10% of the saturation brightness 値 after the voltage application is stopped is 200 psec or more; the dynamic drive is a fixed anode voltage, a gate voltage, and a duty cycle, using pulse width or pulse The repetition period of 値 controls the brightness to drive. The method is characterized in that, for the pulse width or the repetition period of the pulse period, the pulse width or the repetition period of the pulse is maintained in the direction of maintaining the brightness of the phosphor, especially during the initial period, while the driving time is increased. The direction of the brightness can vary. Further, it is characterized in that the anode voltage, the gate voltage, and the duty cycle maintain the enthalpy at the start of driving. Another dynamic driving feature is that the pulse is repeated with a repetition period of 7.5 msec or less and a pulse width of 150 psec or less. It is characterized in that the precursor of the phosphor used in the driving method of the present invention is Cai.xSrxTi〇3 (〇Sx<l), L112O2S (Ln represents Y, La, Gd or Lu), and Ln203 (Ln represents Y, La, Gd or Lu), ZnGa2〇4, Zn2Si04, Zn2Ge04, Sn〇2, ZnS or CaS. Further, it is characterized in that the phosphor is a phosphor having a localized luminescent center. Further, the phosphor is a phosphor having at least one of a transition metal ion emitting center and a rare earth ion emitting center. In particular, the above-mentioned luminescent center is Μη ion, Pr ion, Eu -8 - 201042600 or Tb ion. Further, the above-mentioned phosphor ZnGa204: Mn, SrTiO3: pr, CaTi〇3: Y2O2S: Eu, ZnGa2〇4, Gd202S: Tb,, :Eu, Sn02: Eu, Zn2Si04: Mn, CaS: , A1 At least one phosphor selected in the middle. The fluorescent display tube of the present invention is a fluorescent display tube that ejects a low-speed electron beam onto a phosphor layer formed on a vacuum layer and emits light through the phosphor layer. (Effects of the Invention) According to the dynamic driving method of the present invention, when the pulse width is shortened under the use conditions, the brightness enhancement degree 10 10% of the luminance 値 time is 20 (^sec to drive the 'fixed anode voltage, gate voltage It is driven by the 〇 of the duty cycle or the repetition period of the pulse, and the brightness is lowered to extend the life of the fluorescent display tube. In particular, by making the pulse repetition period a pulse width of 150 psec or less, even if it does not change It is possible to greatly improve the luminous efficiency (brightness). When the driving time is increased, the operation of increasing either of the positives Du can also increase the brightness, and the energy of the electrons colliding with the phosphor increases. Acceleration, the result cannot be from ZnS: Μη, Pr, Gd2〇2S · Eu, f2〇3 : Eu, La2〇2S Mn, and the anode electrode in the ZnS: Au container is driven by the above dynamics so that Du is set to be the same, And the dynamic cycle of the phosphor which is reduced to the saturation light can be greatly suppressed by 7.5 msec or less by using the pulse width, and I Du, that is, the same drain voltage and gate voltage as the power consumption. In addition, the brightness is increased by the increase in the number of electrons. In addition, -9 - 201042600 also causes an increase in power consumption. However, the driving method of the present invention can increase the brightness without changing the above operating conditions, so that the phosphor is not accelerated. The deterioration of the fluorescent display tube does not increase. [Embodiment] The driving method of the present invention relates to a dynamic driving method of a fluorescent display tube. Fig. 1 is a cross-sectional view of the fluorescent display tube. The tube 1 has a phosphor layer 6 formed on each of the plurality of anodes 5 in the display surface of the anode substrate 7. It is a display tube, that is, a cathode 9 located above the phosphor layer 6 in a vacuum space. The generated electrons are controlled by a plurality of gate electrodes 8 provided between the egg light layer 6 and the cathode 9, and the plurality of phosphor layers 6 are selectively illuminated. In addition, in Fig. 1, 2 is a glass substrate, 3 It is a wiring layer formed on the glass substrate, 4 is an insulating layer, and 4a is a through hole electrically connecting the wiring layer 3 and the anode electrode 5. Further, 1 is a front glass, and 11 is a barrier glass. Dynamic driver Fig. 2 is a timing chart in the dynamic driving method. The dynamic driving method is to sequentially apply an acceleration voltage higher than the potential of the cathode 9 to the plurality of gate electrodes as a pulse voltage of a digital signal (gate scan) and perform scanning. In synchronization with the timing of the scanning, a lighting voltage higher than the potential of the cathode 9 is selectively applied to the predetermined anode 5 in accordance with the display type, and is a pulse voltage of a segment signal of Ο N (positive) or 〇 FF (negative). Fig. 2 shows the arithmetic number by the segments a to g. According to the dynamic driving method of -10-201042600, the gate electrode 8 is provided for each predetermined illuminating cut. In addition, a predetermined predetermined position of the plurality of anodes 5 is determined. The anodes 5 are respectively connected, and the gate electrode 8 is used as a number of selection electrodes and electrodes. In Fig. 2, T is the impulse width of the period, and U is the blanking time (blanking time 〇 to Τ ratio (tp/T). In the above dynamic driving method, due to the type of low-speed body, for Du Significant dependence is indicative of the luminous efficiency of the ZnO: Zn phosphor, and 4 is the luminous efficacy of the ZnS: Μn phosphor.

。對於ZnO : Zn螢光體,即使Du變化 體入射的電流增大或減小,發光效率也 不同,對於ZnS : Μη螢光體,如果Du Ο 光體入射的電流增大,則發光效率大大I. For the ZnO : Zn phosphor, even if the current incident on the Du change increases or decreases, the luminous efficiency is different. For the ZnS : Μ 萤 phosphor, if the current incident on the Du Ο is increased, the luminous efficiency is greatly improved.

ZnS : Μη螢光體是因爲回應速度慢 態驅動中,像能夠發光的上升那樣,以 較長的脈衝寬度驅動。 但是,本發明人發現,對於ZnS : 定螢光體,即使在Du相同的情況下, tP,亮度(發光效率)也會大幅度上升 認識相反。 對於ZnS : Μη螢光體等,在預定的 單位(發光群)分 的針對每個該發光 與共用的陽極配線 陽極5是用作段選 重複周期,tp是脈 1 ) ’ Du定義爲tp 電子束激勵用螢光 司。例如,第3圖 Du的依賴性,第 率對Du的依賴性 ,艮P,即使對螢光 幾乎不變化。與此 增大,即如果向螢 泽低。 ,所以在現有的動 200〜lOOOpsec 的 Μη螢光體等的特 如果縮短脈衝寬度 ,這與迄今爲止的 [Du條件下,如果 -11 - 201042600 縮短脈衝寬度,則能夠大幅度提高亮度。另外,藉由在驅 動時間增加的同時改變脈衝寬度,能夠維持初始亮度。因 此,由於在獲得相同亮度的情況下能夠降低驅動電壓,所 以可以增加螢光顯示管的壽命。本發明正是基於這樣的認 識而提出的。 第5圖至第16圖表示發光效率對脈衝寬度的依賴性 的測定結果。第5圖至第1 2圖是如果縮短脈衝寬度tp則 發光效率上升的螢光體的例子。第13圖至第16圖是即使 改變脈衝寬度tp發光效率也不變的螢光體的例子。 上述測定是藉由以下的方法進行。在螢光顯示管的碳 陽極上塗敷各種低速電子束用螢光體後,用公知的螢光顯 示管製造工序加工成管球。在除ZnO : Ζιι以外的螢光體 中,爲了防止充電而混合了導電性高的Ιη203,混合的 Ιη203相對於螢光體與Ιη203的合計量爲約10重量%。對 絲狀陰極通電,在加熱到約650°C的狀態下使陽極/柵電 極(ebc)爲50VPP,改變Du和脈衝寬度tp,測定了發光 效率特性。 另外,測定亮度,以脈衝寬度tp爲250pSeC的亮度値 爲100,用其相對値表示發光效率。 如第5圖至第12圖所示地,螢光體爲SrTi03: Pr( 第 5 圖)、Gd202S : Eu (第 6 圖)、CaTi03 : Pr (第 7 圖 )、ZnS : Μη (第 8 圖)、ZnGa204 : Μη (第 9 圖)、 ZnGa204 (第 10 圖)、Y202 S : Eu (第 11 圖)時,如果 縮短脈衝寬度,發光效率會大幅度上升。另外,第12圖 -12- 201042600 表示作爲陽極/柵電極(ebc )爲35 Vpp時的一例的ZnS : Μπ的例子。即使在陽極/柵電極(ebc )爲比5〇Vpp低的 3 5 Vpp時也是,如果縮短脈衝寬度,發光效率會大幅度上 升。 另一方面’如第13圖至第16圖所示地,螢光體爲 ZnO : Zn (第 13 圖)、ZnS : Ζη (第 14 圖)、ZnS : Cu、 A1 (第15圖)、乙11〇(13:入§(〇(13、70重量%)(第16 〇 圖)時’即使脈衝寬度縮短發光效率也不提高,看不到對 脈衝寬度的依賴性。該傾向在陽極/柵電極(ebc )爲 35VPP時也是同樣的。 在上述第5圖至第16圖所示的測定中,雖然脈衝寬 、 度(周期)變化,但陽極/柵電極(ebc )和Du相同。因 此,流入螢光體的電流(陽極電流)大致一定。因此,發 光效率的依賴性與亮度的依賴性相同。第1 7圖表示ZnO :Zn螢光體中的陽極電流對脈衝寬度的依賴性,第1 8圖 〇 表示ZnS : Μη螢光體中的陽極電流對脈衝寬度的依賴性 ,但二者中的陽極電流都不依賴於脈衝寬度。 在動態驅動中,比較如果縮短脈衝寬度tp則發光效率 上升的螢光體和未表現出脈衝寬度依賴性的螢光體。可以 看出,前者主要是具有以過渡金屬離子發光中心和稀土類 離子發光中心中的至少一種發光中心的、具有局部型發光 中心的螢光體,後者是具有非局部型發光中心的螢光體。 另外,向上述兩螢光體上施加第19圖所示的輸入波 形的脈衝電壓,螢光體的亮度飽和後’調查該電壓施加停 -13- 201042600 止後的飽和亮度値的降低傾向,其結果表示於表1和表2 〇 第19圖是表示向螢光顯示管的陽極上施加脈衝電壓 時’螢光體的發光的上升時間tr和電壓施加停止後的降落 時間tf的圖。輸入波形爲陽極/柵電極(ebc)爲5〇Vpp, 脈衝寬度tp爲lmsec ’測定了降低到飽和亮度値的1〇%的 時間作爲“降落時間tf” 。 [表1] 蛋光體 ZnS: Μη SrTi〇3 :Pr —— CaTi03:Pr Gd707S: Eu Y707S:Eu ZnG3^〇4 ZnGa7〇4:Mn 降落時間(㈣C) 1690 480 360 1100 1200 290 5000 [表2] II 螢光體 ZnO:Zn ZnS:Zn 2nS:Cut Al ZnCdS:Ag I降落時間(#sec) 20 100 100 80 如表2所示地’未表現出脈衝寬度依賴性的螢光體群 的降落時間爲1 0 0 μ s e c以下,相對於此,如表1所示,如 果縮短脈衝寬度tp則發光效率上升的螢光體組的降落時間 最低也是290psec。 能夠使用於本發明的螢光體,是在動態驅動的同一 Du下如果縮短脈衝寬度則亮度提高的螢光體,且是降落 時間超過lOOpsec的螢光體,較佳是降落時間爲200psec 以上的螢光體,更佳是降落時間爲290 psec以上的螢光體 。另外,表現出這樣的特性的螢光體,主要是具有過渡金 屬離子發光中心和稀土類離子發光中心中的至少一種發光 -14- 201042600 中心的、具有局部型發光中心的螢光體。作爲發光中心, 優選地,是Μη離子、Pr離子、Eu離子或Tb離子。 作爲螢光體的母體,是 Cai_xSrxTi03 ( O^xSl )、 L112O2S ( Ln 表示 Y、La、Gd 或 Lu) 、L112O3 ( Ln 表不 Y 、La、Gd 或 Lu ) 、ZnGa2〇4、Z112 S iO4、Z112GeO4、Sn02 、ZnS 或 CaS 。 作爲螢光體的具體例,能夠舉出ZnS : Μη螢光體( 0 橙)、ZnGa204 : Μη (綠)、SrTi03 : Pr (紅)、CaTi03 :Pr (紅)、Gd202S : Eu (紅)、Y2〇2S : Eu (紅)、 Y203 : Eu (紅)、ZnGa204 (藍)、La202 S : Eu (紅)、 Sn02 : Eu (橙)、Zn2Si04 : Μη (綠)' Gd202S : Tb (綠 )、CaS : Μη (橙)、ZnS : Au、Α1 (綠)等》 能夠使用於本發明的螢光體,由於電子束激勵區域內 的發光中心數目少、從激勵狀態向基礎狀態遷移的槪率低 ,所以在脈衝寬度tp長的情況下激勵/發光過程成爲飽和 Ο 傾向,亮度(發光效率)降低。相反,如果脈衝寬度tp短 ,則認爲亮度(發光效率)相對地提高。 本發明的動態驅動是使用在DU相同的條件下如果縮 短脈衝寬度tp則亮度提高的上述螢光體群。由於如果縮短 脈衝寬度則亮度提高,所以用這樣的螢光體,在驅動時間 增加的同時使脈衝寬度.tp和脈衝的重複周期T在維持初始 亮度的方向上可變化。 由於多數情況下在驅動時間增加的同時螢光體的亮度 降低,所以具體地說,在驅動時間增加的同時,使脈衝寬 -15- 201042600 度tp和脈衝的重複周期T比驅動開始時的tp和T短。 一邊維持Du的相同性一邊進行tp和Τ的縮短。另外 ,把陽極電壓和柵電壓維持驅動開始時的兩電壓不變地進 行。 爲了在驅動時間增加的同時縮短tp和T,能夠用例如 以下的公知方法設定,即,在螢光顯示管的驅動電路內設 置的非易失性記憶體中累加並保持驅動累積時間,考慮螢 光體的種類和點亮比例等,在經過預定的時間後用控制器 改變脈衝寬度和周期。 藉由成爲這樣的條件,本發明的動態驅動,是能夠不 導致衝撞螢光體的電子的能量的增加、電子數的增加和耗 電的增加地朝著維持初始亮度的方向修正亮度。而且,由 於不導致電子的能量的增加、電子數的增加,所以不會加 速螢光體的劣化,提高了螢光顯示管的壽命。另外,耗電 也不會增加。 另外’在使用上述具有局部型發光中心的螢光體的動 態驅動中,把第5圖至第1 2圖中陽極/柵電極(ebc )爲 50Vpp ' Du爲(1/50 )時的發光效率(亮度)的對脈衝寬 度的依賴性的結果匯總表示於表3和表4。表3是如果縮 短脈衝寬度tp則亮度提高的、主要具有局部型發光中心的 螢光體的匯總,表4是未表現出脈衝寬度依賴性的、具有 非局部型發光中心的螢光體的匯總。 -16- 201042600 [表3] 亮度對脈衝寬度的依賴性-1 (ebc = 50VPP、DU = 1/50) 脈衝寬度 (U sec) 周期 (msec) SrTi03:Pr,AI Gd2〇2S:Eu CaTi03:Pr ZnS:Mn ZnGaz04:Mn ZnGa2〇4 ZnS:Au , Al 250 12.5 100 100 100 100 100 100 100 200 10 105 107 108 101 108 104 101 150 7.5 115 116 120 115 119 109 102 100 5 132 132 141 142 130 119 105 80 4 140 141 152 157 134 124 106 60 3 154 152 173 183 140 131 110 40 2 173 165 195 208 147 43 114 20 1 198 182 230 247 149 161 124 10 0.5 203 192 244 266 150 179 131 5 0.25 198 190 236 261 145 186 135 [表4] 亮度對脈衝寬度的依賴性-2 (ebc = 50VPP、Du二彳/50) 脈衝寬度 (// sec) 周期 (msec) ZnO:Zn 2nCdS:Ag (CdS70wt%) ZnS:Zn ZnS;Cu , Al 250 12.5 100 100 100 100 200 10 99 102 99 101 150 7.5 99 102 101 102 100 5 100 102 102 102 80 4 101 103 102 105 60 3 100 104 103 105 40 2 101 106 104 107 20 1 102 108 106 108 10 0.5 106 109 107 109 5 0.25 107 108 107 108The ZnS: Μη phosphor is driven by a long pulse width in response to a slow-speed drive, like a rise in luminescence. However, the inventors have found that for ZnS: fixed phosphors, even in the case of Du, the luminance (luminous efficiency) of tP is greatly increased. For ZnS: Μn phosphor or the like, the anode 5 for each of the illuminating and sharing anodes in a predetermined unit (light-emitting group) is used as a segmentation repetition period, tp is a pulse 1) 'Du is defined as tp electron The beam is excited by the fluorescent division. For example, the dependency of Figure 3 Du, the dependence of the rate on Du, 艮P, hardly changes even for fluorescence. This increases, that is, if the fluorescence is low. Therefore, in the case of the existing 200-lOOOOpsec Μn phosphor, etc., if the pulse width is shortened, this can be greatly improved by the shortening of the pulse width in the case of [Du condition] -11 - 201042600. In addition, the initial luminance can be maintained by changing the pulse width while the driving time is increased. Therefore, since the driving voltage can be lowered while obtaining the same brightness, the life of the fluorescent display tube can be increased. The present invention has been made based on such an understanding. Fig. 5 to Fig. 16 show the results of measurement of the dependence of the luminous efficiency on the pulse width. Figs. 5 to 12 are examples of phosphors in which the luminous efficiency is increased if the pulse width tp is shortened. Figs. 13 to 16 are diagrams showing examples of the phosphor which does not change the luminous efficiency even if the pulse width tp is changed. The above measurement was carried out by the following method. After coating various low-speed electron beam phosphors on the carbon anode of the fluorescent display tube, the tubes are processed into a tube ball by a known fluorescent tube manufacturing process. In the phosphor other than ZnO: Ζι, in order to prevent charging, Ιη203 having high conductivity is mixed, and the total amount of Ιη203 mixed with respect to the phosphor and Ιη203 is about 10% by weight. The filament cathode was energized, and the anode/gate electrode (ebc) was changed to 50 VPP while heating to about 650 ° C, and Du and the pulse width tp were changed, and the luminous efficiency characteristics were measured. Further, the luminance was measured, and the luminance 値 of the pulse width tp of 250 pSeC was taken as 100, and the relative enthalpy was used to indicate the luminous efficiency. As shown in Fig. 5 to Fig. 12, the phosphor is SrTi03: Pr (Fig. 5), Gd202S: Eu (Fig. 6), CaTi03: Pr (Fig. 7), and ZnS: Μη (Fig. 8) ), ZnGa204 : Μη (Fig. 9), ZnGa204 (Fig. 10), and Y202 S: Eu (Fig. 11), if the pulse width is shortened, the luminous efficiency is greatly increased. In addition, Fig. 12 -12 - 201042600 shows an example of ZnS : Μ π as an example when the anode/gate electrode (ebc ) is 35 Vpp. Even when the anode/gate electrode (ebc) is 35 Vpp lower than 5 〇 Vpp, if the pulse width is shortened, the luminous efficiency is greatly increased. On the other hand, as shown in Fig. 13 to Fig. 16, the phosphor is ZnO: Zn (Fig. 13), ZnS: Ζη (Fig. 14), ZnS: Cu, A1 (Fig. 15), B. 11〇(13: When §(〇(13,70重量%) (16th 〇图)) Even if the pulse width is shortened, the luminous efficiency does not increase, and the dependence on the pulse width is not seen. The tendency is at the anode/gate The same applies to the case where the electrode (ebc) is 35 VPP. In the measurement shown in Figs. 5 to 16 described above, although the pulse width and degree (period) are changed, the anode/gate electrode (ebc) is the same as Du. The current (anode current) flowing into the phosphor is substantially constant. Therefore, the dependence of the luminous efficiency is the same as the dependence of the luminance. Fig. 7 shows the dependence of the anode current on the pulse width in the ZnO:Zn phosphor. 1 8 Figure 〇 shows the dependence of the anode current on the pulse width in ZnS: Μη phosphor, but the anode current in both does not depend on the pulse width. In dynamic driving, compare the luminous efficiency if the pulse width tp is shortened. Rising phosphors and phosphors that do not exhibit pulse width dependence. It is seen that the former is mainly a phosphor having a localized luminescent center having at least one luminescent center of a transition metal ion luminescent center and a rare earth ion illuminating center, and the latter is a phosphor having a non-local illuminating center. Further, a pulse voltage of the input waveform shown in FIG. 19 is applied to the two phosphors, and after the luminance of the phosphor is saturated, the tendency of the saturation luminance 値 after the voltage application stops-13-201042600 is investigated. The results are shown in Tables 1 and 2, and FIG. 19 is a diagram showing the rise time tr of the light emission of the phosphor and the fall time tf after the voltage application is stopped when the pulse voltage is applied to the anode of the fluorescent display tube. For the anode/gate electrode (ebc) of 5 〇Vpp and the pulse width tp of lmsec ', the time to decrease to 1饱和% of the saturation brightness 测定 was measured as the "falling time tf". [Table 1] Egg light body ZnS: Μη SrTi 〇3 :Pr —— CaTi03:Pr Gd707S: Eu Y707S:Eu ZnG3^〇4 ZnGa7〇4:Mn Fall time ((4)C) 1690 480 360 1100 1200 290 5000 [Table 2] II Fluorescent ZnO: Zn ZnS: Zn 2nS: Cut Al ZnCdS: When Ag I landed (#sec) 20 100 100 80 As shown in Table 2, the drop time of the phosphor group which does not exhibit pulse width dependence is 100 μsec or less, as shown in Table 1, When the pulse width tp is shortened, the fall time of the phosphor group in which the luminous efficiency is increased is also 290 psec. The phosphor which can be used in the present invention is a phosphor which has a high luminance when the pulse width is shortened under the same dynamic driving, and is a phosphor having a falling time of more than 100 psec, and preferably has a landing time of 200 psec or more. The phosphor is more preferably a phosphor having a landing time of 290 psec or more. Further, a phosphor exhibiting such characteristics is mainly a phosphor having a localized luminescent center having at least one of a transition metal ion luminescence center and a rare earth ion luminescence center at the center of illuminating -14 - 201042600. As the luminescent center, preferably, it is a Μn ion, a Pr ion, an Eu ion or a Tb ion. As the precursor of the phosphor, it is Cai_xSrxTi03 ( O^xSl ), L112O2S (Ln means Y, La, Gd or Lu), L112O3 (Ln represents Y, La, Gd or Lu), ZnGa2〇4, Z112 S iO4, Z112GeO4, Sn02, ZnS or CaS. Specific examples of the phosphor include ZnS: Μn phosphor (0 orange), ZnGa204: Μη (green), SrTi03: Pr (red), CaTi03: Pr (red), and Gd202S: Eu (red). Y2〇2S : Eu (red), Y203 : Eu (red), ZnGa204 (blue), La202 S : Eu (red), Sn02 : Eu (orange), Zn2Si04 : Μη (green) ' Gd202S : Tb (green), CaS : Μη (orange), ZnS: Au, Α1 (green), etc. The phosphor which can be used in the present invention has a low number of luminescent centers in the excitation region of the electron beam and a low rate of migration from the excited state to the basal state. Therefore, in the case where the pulse width tp is long, the excitation/emission process becomes saturated, and the luminance (luminous efficiency) is lowered. On the contrary, if the pulse width tp is short, the luminance (light-emitting efficiency) is considered to be relatively increased. The dynamic driving of the present invention is to use the above-described phosphor group in which the luminance is increased by shortening the pulse width tp under the same conditions of the DU. Since the brightness is increased if the pulse width is shortened, with such a phosphor, the pulse width .tp and the pulse repetition period T can be varied in the direction in which the initial luminance is maintained while the driving time is increased. Since the brightness of the phosphor is lowered in most cases while the driving time is increased, specifically, while the driving time is increased, the pulse width -15 - 201042600 degrees tp and the repetition period T of the pulse are compared with the tp at the start of driving. And T is short. The shortening of tp and Τ is performed while maintaining the identity of Du. Further, the anode voltage and the gate voltage are maintained while the two voltages at the start of driving are maintained. In order to shorten the tp and T while increasing the driving time, it is possible to set, for example, the following in a known method in which the driving accumulation time is accumulated and maintained in the nonvolatile memory provided in the driving circuit of the fluorescent display tube. The type of the light body, the lighting ratio, and the like, the pulse width and period are changed by the controller after a predetermined time has elapsed. By such a condition, the dynamic driving of the present invention can correct the brightness in the direction of maintaining the initial luminance without increasing the energy of electrons colliding with the phosphor, increasing the number of electrons, and increasing the power consumption. Further, since the energy of the electrons is not increased and the number of electrons is increased, the deterioration of the phosphor is not accelerated, and the life of the fluorescent display tube is improved. In addition, power consumption will not increase. In addition, in the dynamic driving using the above-described phosphor having a local type illuminating center, the luminous efficiency when the anode/gate electrode (ebc) in FIG. 5 to FIG. 2 is 50 Vpp 'Du is (1/50) The results of the dependence on the pulse width (brightness) are summarized in Tables 3 and 4. Table 3 is a summary of phosphors having a localized luminescence center whose luminance is improved by shortening the pulse width tp, and Table 4 is a summary of phosphors having non-local luminescence centers which exhibit no pulse width dependency. . -16- 201042600 [Table 3] Dependence of brightness on pulse width -1 (ebc = 50VPP, DU = 1/50) Pulse width (U sec) Period (msec) SrTi03: Pr, AI Gd2 〇 2S: Eu CaTi03: Pr ZnS:Mn ZnGaz04:Mn ZnGa2〇4 ZnS:Au, Al 250 12.5 100 100 100 100 100 100 100 200 10 105 107 108 101 108 104 101 150 7.5 115 116 120 115 119 109 102 100 5 132 132 141 142 130 119 105 80 4 140 141 152 157 134 124 106 60 3 154 152 173 183 140 131 110 40 2 173 165 195 208 147 43 114 20 1 198 182 230 247 149 161 124 10 0.5 203 192 244 266 150 179 131 5 0.25 198 190 236 261 145 186 135 [Table 4] Dependence of brightness on pulse width-2 (ebc = 50VPP, Du 彳 / 50) Pulse width (/ / sec) Period (msec) ZnO: Zn 2nCdS: Ag (CdS70wt%) ZnS: Zn ZnS; Cu, Al 250 12.5 100 100 100 100 200 10 99 102 99 101 150 7.5 99 102 101 102 100 5 100 102 102 102 80 4 101 103 102 105 60 3 100 104 103 105 40 2 101 106 104 107 20 1 102 108 106 108 10 0.5 106 109 107 109 5 0.25 107 108 107 108

從表3看出,本發明的動態驅動方法,是在使用主要 具有上述局部型發光中心的螢光體的螢光顯示管中,以脈 衝的重複周期T爲7.5msec以下、較佳爲7.0〜0.5msec, 且脈衝寬度tp爲150Msec以下、較佳爲10〜15(^Sec的方 式驅動。如果脈衝的重複周期T超過7.5msec,且脈衝寬 度tp超過150psec,則不能期待提高亮度。 -17- 201042600 實施例 (實施例1和比較例1 ) 在螢光顯示管的碳陽極上塗敷在ZnS : Μη (橙)中添 加了 10重量%的Ιη203得到的螢光體後,用公知的螢光顯 示管製造工序加工成管球形。用得到的螢光顯示管在陽極 /柵電極(ebc)爲50VPP、Du爲1/60的條件下點亮,測定 了亮度維持率。結果示於第20圖。 比較例1是現有的驅動方法,把脈衝寬度tp固定在 250μ3'把重複周期τ固定在15msec,測定了螢光顯示管 的亮度維持率。 在實施例1中,雖然點亮開始時的脈衝寬度tp爲 250 '重複周期τ爲15msec,但在點亮時間增加的同時 ’維持Du爲1/60的條件,分別縮短了 tp和T。表5表示 在經過了各時間之後改變的tp和T的値。 如第20圖所示,比較例1的初始亮度大幅度降低, 與其相比,實施例1維持了初始亮度。 另外,從點亮開始經過1 70小時後,亮度維持率從比 較例1的87%改善到實施例1的97% ;經過530小時後, 亮度維持率從比較例1的79%改善到實施例1的1 02% ; 經過1 0 〇 〇小時後,亮度維持率從比較例Ϊ的7 5 %改善到 實施例1的9 5 %。 (實施例2和比較例2 ) 在螢光顯示管的碳陽極上塗敷在CaTi03 : pr (紅)中 -18- 201042600 添加了 1 〇重量%的In203得到的螢光體後,用公知的螢光 顯示管製造工序加工成管球形。用得到的螢光顯示管在陽 極/柵電極(ebc)爲50VPP' Du爲1/60的條件下點亮,測 定了亮度維持率。結果表示於第21圖。 比較例2是現有的驅動方法,把脈衝寬度tp固定在 250ps、把重複周期T固定在Hmsec,測定了螢光顯示管 的亮度維持率。 〇 在實施例2中,雖然點亮開始時的脈衝寬度tp爲 250ps、重複周期T爲15msec’但在點亮時間增加的同時 ’維持D u爲1 / 6 0的條件,分別縮短了 t p和T。表5表示 各時間增加之後的tp和T的値。 . 如第2 1圖所示地,比較例2的初始亮度大幅度降低 ’與其相比,實施例2的初始亮度的降低較少。 另外’從點売開始經過48小時後,亮度維持率從比 較例2的7 5 %改善到實施例2的9 1 % ;經過1 7 0小時後, 〇 亮度維持率從比較例2的6 0 %改善到實施例2的8 4 % ;經 過5 3 0小時後,亮度維持率從比較例2的5 2 %改善到實施 例2的80% ;經過1 000小時後,亮度維持率從比較例2 的46 %改善到實施例2的80%。 (實施例3和比較例3 ) 在螢光顯示管的碳陽極上塗敷在Gd202S : Eu (紅) 中添加了 14重量%的In2〇3得到的螢光體後,用公知的螢 光顯示管製造工序加工成管球形。 -19- 201042600 用得到的螢光顯示管在陽極/柵電極(ebc )爲50Vpi 、Du爲1/60的條件下點亮,測定了亮度維持率。結果表 示於第22圖。 比較例3是現有的驅動方法,把脈衝寬度tp固定在 25〇ps、把重複周期T固定在15msec’測定了螢光顯示管 的壳度維持率。 在實施例3中’雖然點亮開始時的脈衝寬度tp爲 250ps、重複周期T爲1 5msec ’但在點亮時間增加的同時 ’維持Du爲1/60的條件,分別縮短了 tp和T。表5表示 各時間增加之後的tp和T的値。 如第2 2圖所示地,比較例3從初始亮度大幅度降低 ,與其相比,實施例3維持了初始亮度。 另外’從點亮開始經過48小時後,亮度維持率從比 較例3的9 2 %改善到實施例3的1 0 0 % ;從點亮開始經過 1 70小時後,亮度維持率從比較例3的8 0%改善到實施例 3的96% ;經過5 3 0小時後,亮度維持率從比較例3的 6 9 %改善到實施例3的9 6 % ;經過1 0 0 〇小時後,亮度維持 率從比較例3的57%改善到實施例3的94%。 (實施例4和比較例4 ) 在營光顯示管的碳陽極上塗敷在SrTi03: Pr (紅)中 添加了 1 〇重量%的Ιη203得到的螢光體後,用公知的螢光 顯示管製造工序加工成管球形。As is apparent from Table 3, in the dynamic display method of the present invention, in the fluorescent display tube using the phosphor mainly having the local-type light-emitting center, the pulse repetition period T is 7.5 msec or less, preferably 7.0~. 0.5 msec, and the pulse width tp is 150 Msec or less, preferably 10 to 15 (^Sec mode is driven. If the pulse repetition period T exceeds 7.5 msec, and the pulse width tp exceeds 150 psec, improvement in brightness cannot be expected. 201042600 Example (Example 1 and Comparative Example 1) A phosphor obtained by adding 10% by weight of Ιη203 to ZnS: Μη (orange) was applied to a carbon anode of a fluorescent display tube, and then displayed by a known fluorescent display. The tube manufacturing process was processed into a tube-shaped ball. The obtained fluorescent display tube was lit under the conditions of an anode/gate electrode (ebc) of 50 VPP and a Du of 1/60, and the brightness retention ratio was measured. The results are shown in Fig. 20. Comparative Example 1 is a conventional driving method in which the pulse width tp is fixed at 250 μ3' and the repetition period τ is fixed at 15 msec, and the luminance maintenance ratio of the fluorescent display tube is measured. In the first embodiment, the pulse width at the start of lighting is measured. Tp is 250 'repeated week The period τ is 15 msec, but while the lighting time is increased, 'the condition that Du is 1/60 is maintained, and tp and T are respectively shortened. Table 5 shows the t of tp and T which change after each time has elapsed. As shown in the figure, the initial luminance of Comparative Example 1 was largely lowered, and the initial luminance was maintained in Example 1. In addition, the luminance maintenance ratio was improved from 87% of Comparative Example 1 after 117 hours from the start of lighting. 97% of Example 1; after 530 hours, the brightness maintenance rate improved from 79% of Comparative Example 1 to 102% of Example 1; after 10 hours, the brightness maintenance rate was from the comparative example 7 5 % improved to 95% of Example 1. (Example 2 and Comparative Example 2) Coating on a carbon anode of a fluorescent display tube in CaTi03: pr (red) -18- 201042600 Added 1 〇% by weight of In203 The obtained phosphor is processed into a tube spherical shape by a known fluorescent display tube manufacturing process, and the obtained fluorescent display tube is lit with an anode/gate electrode (ebc) of 50 VPP' Du of 1/60. The brightness maintenance ratio was measured. The results are shown in Fig. 21. Comparative Example 2 is a conventional driving method, and the pulse width is set. The tp was fixed at 250 ps, the repetition period T was fixed at Hmsec, and the luminance maintenance ratio of the fluorescent display tube was measured. In the second embodiment, the pulse width tp at the start of lighting was 250 ps, and the repetition period T was 15 msec'. The conditions of maintaining D u of 1 / 60 while the lighting time is increased are shortened by tp and T, respectively. Table 5 shows the t of tp and T after the increase of each time. As shown in Fig. 2, the initial luminance of Comparative Example 2 was greatly lowered, and the decrease in the initial luminance of Example 2 was smaller than that. In addition, the brightness maintenance rate improved from 75 % of Comparative Example 2 to 91% of Example 2 after 48 hours from the point ;; after 170 hours, the 〇 brightness maintenance rate was 60 0 of Comparative Example 2. % improved to 84% of Example 2; after 530 hours, the brightness maintenance rate improved from 52% of Comparative Example 2 to 80% of Example 2; after 1 000 hours, the brightness maintenance rate was changed from Comparative Example 46% of 2 improved to 80% of Example 2. (Example 3 and Comparative Example 3) A phosphor obtained by adding 14 wt% of In2〇3 to Gd202S: Eu (red) was applied to a carbon anode of a fluorescent display tube, and a known fluorescent display tube was used. The manufacturing process is processed into a tube sphere. -19- 201042600 The obtained fluorescent display tube was lit under the conditions of an anode/gate electrode (ebc) of 50 Vpi and a Du of 1/60, and the luminance maintenance ratio was measured. The results are shown in Fig. 22. Comparative Example 3 is a conventional driving method in which the capillary width maintenance ratio of the fluorescent display tube was measured by fixing the pulse width tp to 25 〇ps and fixing the repetition period T to 15 msec. In the third embodiment, the pulse width tp at the start of lighting is 250 ps, and the repetition period T is 15 msec', but while the lighting time is increased, the condition of maintaining Du at 1/60 is shortened by tp and T, respectively. Table 5 shows the enthalpy of tp and T after each time increase. As shown in Fig. 2, Comparative Example 3 was greatly reduced from the initial luminance, and Example 3 maintained the initial luminance as compared with Example 3. In addition, the brightness maintenance rate was improved from 92% of Comparative Example 3 to 100% of Example 3 after 48 hours from the start of lighting; after 1 70 hours from the start of lighting, the brightness maintenance ratio was changed from Comparative Example 3 80% improved to 96% of Example 3; after 530 hours, the brightness maintenance rate improved from 69% of Comparative Example 3 to 96% of Example 3; after 100 hours, brightness The maintenance rate improved from 57% of Comparative Example 3 to 94% of Example 3. (Example 4 and Comparative Example 4) A phosphor obtained by adding 1 〇% by weight of Ιη203 to SrTiO03: Pr (red) was applied to a carbon anode of a camping display tube, and then produced by a known fluorescent display tube. The process is processed into a tube sphere.

用得到的螢光顯示管在陽極/栅電極(ebc )爲50VPP -20- 201042600 、DU爲1 /60的條件下點亮,測定了亮度維持率。結果表 示於第23圖。 比較例4是現有的驅動方法,把脈衝寬度tp固定在 25 0μ8、把重複周期τ固定在15msec,測定了螢光顯示管 的亮度維持率。 在實施例4中’雖然點亮開始時的脈衝寬度tp爲 2 5 Ops、重複周期T爲15msec,但在點亮時間增加的同時 〇 ,維持Du爲1/6〇的條件’分別縮短了 tp和T。表5表示 各時間增加之後的tp和T的値。 如第2 3圖所示地,比較例4的初始亮度大幅度降低 ’與其相比,實施例4的初始亮度降低較少。 . 另外,從點亮開始經過48小時後,亮度維持率從比 較例4的77 %改善到實施例4的104% ;經過170小時後 ’亮度維持率從比較例4的5 2 %改善到實施例4的8 3 % ; 經過5 3 0小時後’亮度維持率從比較例4的3 9 %改善到實 Ο 施例4的70% ;經過1 〇〇〇小時後,亮度維持率從比較例4 的32%改善到實施例4的63%。 (實施例5和比較例5) 在營光顯示管的碳陽極上塗敷在ZnGa2〇4: Μη (綠) 中添加了 1 0重量%的Ιη203得到的螢光體後,用公知的螢 光顯示管製造工序加工成管球形。 用得到的螢光顯示管在陽極/柵電極(ebc)爲50VPP 、Du爲1/60的條件下點亮,測定了亮度維持率。結果表 -21 - 201042600 示於第24圖。 比較例5是現有的驅動方法,把脈衝寬度tp固定在 250 、把重複周期T固定在15msec,測定了螢光顯示管 的亮度維持率。 在實施例5中,雖然點亮開始時的脈衝寬度tp爲 250ps、重複周期T爲15msec,但在點亮時間增加的同時 ,維持Du爲1/60的條件,分別縮短了 tp和T。表5表示 各時間增加之後的tp和T的値。 如第24圖所示地,比較例5的初始亮度大幅度降低 ,與其相比,實施例5維持了初始亮度。 另外,從點亮開始經過4 8小時後,亮度維持率從比 較例5的8 8 %改善到實施例5的9 6 % ;從點亮開始經過 1 7 0小時後,亮度維持率從比較例5的8 5 %改善到實施例 5的1 0 2 % ;經過1 0 0 0小時後,亮度維持率從比較例5的 72%改善到實施例5的97%。 [表5]The obtained fluorescent display tube was lit under the conditions of an anode/gate electrode (ebc) of 50 VPP -20-201042600 and a DU of 1/60, and the luminance maintenance ratio was measured. The results are shown in Fig. 23. Comparative Example 4 is a conventional driving method in which the pulse width tp is fixed at 25 0 μ8, the repetition period τ is fixed at 15 msec, and the luminance maintenance ratio of the fluorescent display tube is measured. In the fourth embodiment, the pulse width tp at the start of lighting is 25 Ops, and the repetition period T is 15 msec. However, while the lighting time is increased, the condition of maintaining Du at 1/6 ' is shortened by tp. And T. Table 5 shows the enthalpy of tp and T after each time increase. As shown in Fig. 2, the initial luminance of Comparative Example 4 was greatly lowered. The initial luminance reduction of Example 4 was smaller than that of Comparative Example 4. Further, after 48 hours from the start of lighting, the brightness maintenance ratio was improved from 77% of Comparative Example 4 to 104% of Example 4; after 170 hours, the brightness retention rate was improved from 5.2% of Comparative Example 4 to implementation. 8 3 % of Example 4; After 530 hours, the brightness retention rate improved from 39% of Comparative Example 4 to 70% of Example 4; after 1 hour, the brightness retention rate was compared from the comparative example. 32% of 4 improved to 63% of Example 4. (Example 5 and Comparative Example 5) A phosphor obtained by adding 10% by weight of Ιη203 to ZnGa2〇4: Μη (green) was applied to a carbon anode of a camping display tube, and then displayed by a known fluorescent display. The tube manufacturing process is processed into a tube sphere. The obtained fluorescent display tube was lit under the conditions of an anode/gate electrode (ebc) of 50 VPP and a Du of 1/60, and the luminance maintenance ratio was measured. Results Table -21 - 201042600 is shown in Figure 24. Comparative Example 5 is a conventional driving method in which the pulse width tp is fixed at 250 and the repetition period T is fixed at 15 msec, and the luminance maintenance ratio of the fluorescent display tube is measured. In the fifth embodiment, the pulse width tp at the start of lighting is 250 ps and the repetition period T is 15 msec. However, while the lighting time is increased, the condition that Du is 1/60 is maintained, and tp and T are shortened, respectively. Table 5 shows the enthalpy of tp and T after each time increase. As shown in Fig. 24, the initial luminance of Comparative Example 5 was largely lowered, and Example 5 maintained the initial luminance as compared with FIG. Further, after 48 hours from the start of lighting, the luminance maintenance ratio was improved from 88% in Comparative Example 5 to 96% in Example 5; after 170 hours from the start of lighting, the luminance maintenance ratio was changed from the comparative example. 85% of 5 improved to 10% by weight of Example 5; after 1000 hours, the brightness maintenance rate improved from 72% of Comparative Example 5 to 97% of Example 5. [table 5]

— 一 初始値 48小時後 170小時後 530小時後 1000小時後 tp(//sec) T(msec) tp(/isec) T(msec) tp(^sec) T(msec) tp(// sec) T(msec) tp(^sec) T(msec) *施例1 250 15 250 15 200 12 150 9 150 9 實施例2 150 9 100 6 80 4.8 60 3.6 *施例3 200 12 150 9 100 6 40 2.4 實施例4 100 6 60 3.6 40 2.4 20 1.2 實施例5 200 12 150 9 150 9 100 6 比較例卜5 250 15 250 15 250 15 250 15 250 丨5 I (實施例6和比較例6 ) 在螢光顯示管的碳陽極上塗敷混合了約10重量%的 -22- 201042600 ϊη2〇3的SrTi〇3: pr螢光體後,用公知的螢光顯示管製造 工序加工成管球形。 用動態驅動方法點亮得到的螢光顯示管。條件是,在 Du爲(1 /6 0 )時,以亮度成爲相同的條件a和條件B點 亮。條件A是作爲現有例的比較例6,陽極/柵電極(ebc )爲5〇Vpp、脈衝寬度tp爲25(^s、脈衝的重複周期T爲 1 5msec。與此相對,條件Β是根據本發明的驅動方法的實 〇 施例6,陽極/柵電極(ebc )爲40Vpp、脈衝寬度tp爲 80ps、脈衝的重複周期τ爲4.8msec。 以條件A和條件B點亮時的亮度壽命表示於第2 5圖 〇 . 在根據本發明方法的條件B的情況下,由於陽極電壓 、陽極電流都能夠降低,所以與現有的驅動條件A相比, 提高了亮度維持率、提高了螢光顯示管的壽命。 Ο (實施例7和比較例7 ) 在螢光顯示管的碳陽極上塗敷混合了約10重量%的 In2〇3的CaTi〇3 : Pr螢光體後’用公知的螢光顯示管製造 工序加工成管球形。 用動態驅動方法點亮得到的螢光顯示管。條件是,在 Du爲(1 /60 )時’以亮度成爲相同的條件c和條件d點 亮。條件C是作爲現有例的比較例7,陽極/栅電極(eb c )爲50Vpp、脈衝寬度tp爲25〇μ8、脈衝的重複周期τ爲 15msec。與此相對,條件D是根據本發明的驅動方法的實 -23- 201042600 施例7 ’陽極/柵電極(ebc )爲35Vpp、脈衝寬度tp爲 40ps、脈衝的重複周期T爲2.4msec。 以條件C和條件D點亮時的亮度壽命表示於第2 6圖 〇 在根據本發明方法的條件D的情況下,由於陽極電壓 、陽極電流都能夠降低’所以與條件C相比,提高了亮度 維持率、提闻了螢光顯不管的壽命。 產業上的可利用性 本發明的驅動方法能夠獲得高亮度的螢光顯示管,且 夠降低其耗電和延長壽命,所以能夠適用於使用了亮度 飽和顯著的螢光體的螢光顯示管。 【圖式簡單說明】 第1圖是螢光顯示管的剖面圖。 第2圖是動態驅動方法中的時序圖。 第3圖是表示Zn.O : Zn螢光體中的發光效率對Du的 依賴性的圖。 第4圖是表示ZnS : Μη螢光體中的發光效率對Du的 依賴性的圖。 第5圖是表示SrTi03 : Pr螢光體的發光效率對脈衝 寬度的依賴性的圖。 第6圖是表示Gd202 S : Eu螢光體的發光效率對脈衝 寬度的依賴性的圖。 -24- 201042600 第7圖是表示CaTi03 : Pr螢光體的發光效率對脈衝 寬度的依賴性的圖。 第8圖是表示ZnS : Μη螢光體的發光效率對脈衝寬 度的依賴性的圖。 第9圖是表示ZnGa204: Μη螢光體的發光效率對脈 衝寬度的依賴性的圖。 第1〇圖是表示ZnGa204螢光體的發光效率對脈衝寬 0 度的依賴性的圖。 第1 1圖是表示Y202s : Eu螢光體的發光效率對脈衝 寬度的依賴性的圖。 第12圖是表示ZnS: Μη螢光體的發光效率對脈衝寬 度的依賴性的圖。 第13圖是表示ZnO : Ζη螢光體的發光效率對脈衝寬 度的依賴性的圖。 第14圖是表示ZnS: Ζη螢光體的發光效率對脈衝寬 〇 度的依賴性的圖。 第15圖是表示ZnS : Cu、Α1螢光體的發光效率對脈 衝寬度的依賴性的圖。 第1 6圖是表示ZnCdS : Ag螢光體的發光效率對脈衝 寬度的依賴性的圖。 第1 7圖是表示ZnO : Zn螢光體中的陽極電流對脈衝 寬度的依賴性的圖。 第圖是表示ZnS: Μη螢光體中的陽極電流對脈衝 寬度的依賴性的圖。 . -25- 201042600 第19圖是表示螢光體的發光的上升時間tr、降落# 間tf的圖。 第20圖是表示ZnS: Μη螢光體的亮度壽命的圖。 第21圖是表示CaTi03: Pr螢光體的亮度壽命的®1 ° 第22圖是表示Gd202S : Eu螢光體的亮度壽命的圖° 第23圖是表示SrTi03 : Pr螢光體的亮度壽命的圖。 第24圖是表示ZnGa204 : Μη螢光體的亮度壽命的圖。 第25圖是表示提高了初始亮度的SrTi03 : Pr螢光體 的亮度壽命的圖。 第26圖是表示提高了初始亮度的CaTi〇3 : Pr螢光體 的亮度壽命的圖。 【主要元件符號說明】 1 :蛋光顯示管 2:玻璃基板 3 :配線層 4 :絕緣層 5 :陽極電極 6 :螢光體層 7 :陽極基板 8 :柵極 9 :陰極 1 〇 :前面玻璃 1 1 :隔離玻璃 -26-- an initial 値 48 hours after 170 hours, 530 hours after 1000 hours, after 1000 hours tp (/ / sec) T (msec) tp (/isec) T (msec) tp (^sec) T (msec) tp (/ / sec) T(msec) tp(^sec) T(msec) *Example 1 250 15 250 15 200 12 150 9 150 9 Example 2 150 9 100 6 80 4.8 60 3.6 *Example 3 200 12 150 9 100 6 40 2.4 Example 4 100 6 60 3.6 40 2.4 20 1.2 Example 5 200 12 150 9 150 9 100 6 Comparative Example 5 250 15 250 15 250 15 250 15 250 丨 5 I (Example 6 and Comparative Example 6) The carbon anode of the display tube was coated with about 10% by weight of SrTi〇3:pr phosphor of -22-201042600 ϊη〇3, and then processed into a tube spherical shape by a known fluorescent display tube manufacturing process. The obtained fluorescent display tube is illuminated by a dynamic driving method. The condition is that when Du is (1 / 60), the condition a and the condition B which are the same brightness are bright. The condition A is Comparative Example 6 as a conventional example, in which the anode/gate electrode (ebc) is 5 〇 Vpp and the pulse width tp is 25 (^s, and the repetition period T of the pulse is 15 msec. In contrast, the condition Β is based on In the driving method of the invention, the anode/gate electrode (ebc) is 40 Vpp, the pulse width tp is 80 ps, and the pulse repetition period τ is 4.8 msec. The luminance lifetime when the condition A and the condition B are lit is expressed in In the case of the condition B of the method according to the present invention, since both the anode voltage and the anode current can be lowered, the brightness maintenance ratio is improved and the fluorescent display tube is improved as compared with the conventional driving condition A.寿命 (Example 7 and Comparative Example 7) After coating a CaTi〇3: Pr phosphor of about 10% by weight of In2〇3 on a carbon anode of a fluorescent display tube, 'using a known fluorescent display The tube manufacturing process is processed into a tube shape. The obtained fluorescent display tube is illuminated by a dynamic driving method, provided that when Du is (1 / 60 ), the condition c and the condition d are lit with the same brightness. As Comparative Example 7 of the prior art, the anode/gate electrode (eb c ) was 50 Vpp. The pulse width tp is 25 〇μ8, and the repetition period τ of the pulse is 15 msec. On the other hand, the condition D is the driving method according to the present invention. -23-201042600 Example 7 'The anode/gate electrode (ebc) is 35 Vpp, The pulse width tp is 40 ps, and the repetition period T of the pulse is 2.4 msec. The luminance lifetime when the condition C and the condition D are lit is shown in Fig. 26 in the case of the condition D according to the method of the present invention, due to the anode voltage, Since the anode current can be lowered, the brightness maintenance rate is improved and the lifetime of the fluorescence is improved as compared with the condition C. INDUSTRIAL APPLICABILITY The driving method of the present invention can obtain a fluorescent display tube of high brightness. Since it is possible to reduce the power consumption and extend the life, it can be applied to a fluorescent display tube using a phosphor having a remarkable brightness saturation. [Simplified Schematic] Fig. 1 is a cross-sectional view of a fluorescent display tube. It is a timing chart in the dynamic driving method. Fig. 3 is a graph showing the dependence of the luminous efficiency on Du in the Zn.O:Zn phosphor. Fig. 4 is a graph showing the luminous efficiency in the ZnS:Μη phosphor. Diagram of Du's dependence. 5 is a graph showing the dependence of the luminous efficiency of the SrTiO 3 : Pr phosphor on the pulse width. Fig. 6 is a graph showing the dependence of the luminous efficiency of the Gd202 S : Eu phosphor on the pulse width. -24- 201042600 Fig. 7 is a graph showing the dependence of the luminous efficiency of the CaTi03 : Pr phosphor on the pulse width. Fig. 8 is a graph showing the dependence of the luminous efficiency of the ZnS : Μn phosphor on the pulse width. A graph showing the dependence of the luminescence efficiency of ZnGa204: Μn phosphor on the pulse width. Fig. 1 is a graph showing the dependence of the luminous efficiency of the ZnGa204 phosphor on the pulse width of 0 degree. Fig. 1 is a graph showing the dependence of the luminous efficiency of the Y202s : Eu phosphor on the pulse width. Fig. 12 is a graph showing the dependence of the luminous efficiency of the ZnS: Μn phosphor on the pulse width. Fig. 13 is a graph showing the dependence of the luminous efficiency of the ZnO : Ζn phosphor on the pulse width. Fig. 14 is a graph showing the dependence of the luminous efficiency of the ZnS: Ζn phosphor on the pulse width. Fig. 15 is a graph showing the dependence of the luminous efficiency of the ZnS:Cu and Α1 phosphors on the pulse width. Fig. 16 is a graph showing the dependence of the luminous efficiency of the ZnCdS : Ag phosphor on the pulse width. Fig. 17 is a graph showing the dependence of the anode current on the pulse width in the ZnO : Zn phosphor. The figure is a graph showing the dependence of the anode current on the pulse width in the ZnS: Μn phosphor. -25- 201042600 Fig. 19 is a view showing the rise time tr and the fall # between the phosphors of the phosphor. Figure 20 is a graph showing the luminance lifetime of a ZnS: Μn phosphor. Fig. 21 is a graph showing the luminance lifetime of the CaTi03: Pr phosphor. Fig. 22 is a graph showing the luminance lifetime of the Gd202S: Eu phosphor. Fig. 23 is a graph showing the luminance lifetime of the SrTi03: Pr phosphor. Figure. Fig. 24 is a graph showing the luminance lifetime of a ZnGa204 : Μn phosphor. Fig. 25 is a graph showing the luminance lifetime of the SrTiO 3 : Pr phosphor having an initial luminance. Fig. 26 is a graph showing the luminance lifetime of a CaTi〇3 : Pr phosphor having an initial luminance. [Description of main component symbols] 1 : Egg light display tube 2: Glass substrate 3 : Wiring layer 4 : Insulation layer 5 : Anode electrode 6 : Phosphor layer 7 : Anode substrate 8 : Gate 9 : Cathode 1 〇: Front glass 1 1 : Isolation glass-26-

Claims (1)

201042600 七、申請專利範面: 1. 一種螢光顯示管的驅動方法,藉由對在低速電子束 激勵下在陽極電極上形成的螢光體層進行動態驅動而顯示 ,其特徵爲: 上述螢光體層中包含的螢光體是在上述動態驅動中在 將任務循環設爲相同的條件下如果縮短脈衝寬度則亮度提 高的螢光體,且是在上述陽極電極上施加電壓,在螢光體 0 的亮度飽和後,降低到該電壓施加停止後的上述飽和亮度 値的10%亮度値的時間爲200pSec以上的螢光體; 上述動態驅動是固定陽極電壓、柵極電壓和任務循環 ’利用脈衝寬度或脈衝的重複周期的値控制亮度而進行驅 動。 2·如申請專利範圍第1項所述的螢光顯示管的驅動方 法,其中, 對於上述脈衝寬度或脈衝的重複周期的値,使該脈衝 〇 寬度或該脈衝的重複周期在驅動時間增加的同時在維持上 述螢光體的亮度的方向上可變化。 3 .如申請專利範圍第2項所述的螢光顯示管的驅動方 法,其中, 上述螢光體的亮度是初始亮度。 4.如申請專利範圍第1項所述的螢光顯示管的驅動方 法,其中, 上述陽極電壓、柵極電壓和任務循環是維持驅動開始 時的値。 -27- 201042600 5. 如申請專利範圍第1項所述的螢光顯示管的驅動方 法,其中, 對於上述脈衝寬度或脈衝的重複周期的値,是以脈衝 的重複周期爲7.5msec以下且脈衝寬度爲15〇Hsec以下進 行驅動。 6. 如申請專利範圍第1項所述的螢光顯示管的驅動方 法,其中, 上述螢光體的母體是Cai-xSrxTi03,OSxSl ; Ln202S, Ln 表示 Y、La、Gd 或 Lu; Ln2〇3,Ln 表不 Y、La、Gd 或 Lu ; ZnGa2〇4 ; Zn2 SiO4 ; ZnjGeOA '> Sn02 ; ZnS 或 CaS。 7 ·如申請專利範圍第1項所述的螢光顯示管的驅動方 法,其中, 上述螢光體是具有局部型發光中心的螢光體。 8. 如申請專利範圍第1項所述的螢光顯示管的驅動方 法,其中, 上述螢光體是具有過渡金屬離子發光中心和稀土類離 ί 子發光中心中的至少一種發光中心的營光體。 9. 如申請專利範圍第8項所述的螢光顯示管的驅動方 法,其中, 上述發光中心是Μη離子、Pr離子、Eu離子或Tb離 子。 1 0.如申請專利範圍第1項所述的螢光顯示管的驅動 方法,其中’ 上述螢光體是從 ZnS: Mn’ ZnGa204: Mn’ SrTi03: -28 - 201042600 Pr,CaTi03 : Pr,Gd2〇2S : Eu,Y2〇2: Gd2〇2S : Tb ’ Y2O3 : Eu ’ La202S : Zn2Si〇4 : Mn ’ CaS : Mn,和 ZnS : Au 一種螢光體。 11. 一種螢光顯示管,向在真空容 形成的螢光體層噴射低速電子束,藉由 體層發光,其特徵爲: 〇 上述螢光體層中包含的螢光體是在 將任務循環設爲相同的條件下如果縮短 高的螢光體,且是在上述陽極電極上施 的亮度飽和後,降低到該電壓施加停止 値的10%亮度値的時間爲200卜86(:以上| 上述動態驅動是如申請專利範圍第 法。 1 2 ·如申請專利範圍第1 1項所述的 ❹ 上述螢光體是從ZnS : Mn,ZnGa Pr ’ CaTi03 : pr ’ Gd202S : Eu , Y2〇2 Gd202S : Tb,γ2〇3 : Eu,La202S : Zn2Si04: Mn,CaS : Mn,和 ZnS: Au 一種螢光體。 3 : Eu,ZnGa2〇4、 Eu,Sη〇2 : Eu, 、A1中選擇的至少 器內的陽極電極上 動態驅動使該螢光 上述動態驅動中在 脈衝寬度則亮度提 加電壓,在螢光體 後的上述飽和亮度 的螢光體; 1項所述的驅動方 螢光顯示管,其中 〇4 : Mn,SrTi〇3 : » · Eu,ZnGa2〇4、 Eu ’ Sn〇2 : Eu 5 、A1中選擇的至少 -29201042600 VII. Patent application: 1. A method for driving a fluorescent display tube, which is displayed by dynamically driving a phosphor layer formed on an anode electrode under low-speed electron beam excitation, and is characterized by: The phosphor included in the bulk layer is a phosphor having a higher luminance when the pulse width is shortened under the condition that the task cycle is the same under the dynamic driving, and a voltage is applied to the anode electrode in the phosphor 0. After the brightness is saturated, the phosphor having a 10% brightness 値 of the saturation brightness 値 after the voltage application is stopped is 200 pSec or more; the dynamic driving is a fixed anode voltage, a gate voltage, and a task cycle 'utilizing the pulse width Or the 重复 of the repetition period of the pulse controls the brightness to drive. 2. The method of driving a fluorescent display tube according to claim 1, wherein the pulse width or the repetition period of the pulse is increased in driving time for the pulse width or the repetition period of the pulse. At the same time, it can be changed in the direction in which the brightness of the above phosphor is maintained. 3. The method of driving a fluorescent display tube according to claim 2, wherein the brightness of the phosphor is an initial brightness. 4. The method of driving a fluorescent display tube according to claim 1, wherein the anode voltage, the gate voltage, and the duty cycle are 値 at the start of driving. The method for driving a fluorescent display tube according to the first aspect of the invention, wherein the pulse width or the repetition period of the pulse is 7.5 msec or less and the pulse is repeated. Drive with a width of 15 〇 Hsec or less. 6. The method of driving a fluorescent display tube according to claim 1, wherein the precursor of the phosphor is Cai-xSrxTi03, OSxSl; Ln202S, and Ln represents Y, La, Gd or Lu; Ln2〇3 Ln represents Y, La, Gd or Lu; ZnGa2〇4; Zn2 SiO4; ZnjGeOA '>Sn02; ZnS or CaS. The method of driving a fluorescent display tube according to claim 1, wherein the phosphor is a phosphor having a localized luminescent center. 8. The method of driving a fluorescent display tube according to claim 1, wherein the phosphor is a camping light having at least one of a transition metal ion luminescence center and a rare earth luminescence center. body. 9. The method of driving a fluorescent display tube according to claim 8, wherein the luminescent center is Μn ions, Pr ions, Eu ions or Tb ions. The method for driving a fluorescent display tube according to the first aspect of the invention, wherein the phosphor is from ZnS: Mn' ZnGa204: Mn' SrTi03: -28 - 201042600 Pr, CaTi03 : Pr, Gd2 〇2S : Eu, Y2〇2: Gd2〇2S : Tb ' Y2O3 : Eu ' La202S : Zn2Si〇4 : Mn ' CaS : Mn, and ZnS : Au A phosphor. 11. A fluorescent display tube that ejects a low-speed electron beam to a phosphor layer formed in a vacuum volume, and emits light by a bulk layer, wherein: the phosphor contained in the phosphor layer is set to have the same task cycle Under the condition that if the high phosphor is shortened and the brightness applied to the anode electrode is saturated, the time to decrease the 10% brightness 该 to the voltage application stop 为 is 200 卜 86 (: Above | The above dynamic drive is For example, the patent application scope method is as follows: 1 2 · The 萤 described in the scope of claim 1 is ZnS: Mn, ZnGa Pr ' CaTi03 : pr ' Gd202S : Eu , Y2 〇 2 Gd202S : Tb, Γ2〇3 : Eu, La202S : Zn2Si04: Mn, CaS: Mn, and ZnS: Au A phosphor. 3 : Eu, ZnGa2〇4, Eu, Sη〇2: Eu, A1, at least selected in the device Dynamically driving the anode electrode to illuminate the phosphor in the above-mentioned dynamic driving, wherein the brightness is increased by the pulse width, and the phosphor of the saturated brightness after the phosphor; the driving side fluorescent display tube of the item 1, wherein 〇4: Mn,SrTi〇3 : » · Eu,ZnGa2〇4 Eu 'Sn〇2: Eu 5, A1 selected from at least -29
TW098145496A 2009-01-30 2009-12-29 A fluorescent display tube driving method and a fluorescent display tube TWI444949B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009020275A JP5191411B2 (en) 2009-01-30 2009-01-30 Driving method of fluorescent display tube
JP2009023293A JP5208789B2 (en) 2009-02-04 2009-02-04 Method for driving fluorescent display tube and fluorescent display tube

Publications (2)

Publication Number Publication Date
TW201042600A true TW201042600A (en) 2010-12-01
TWI444949B TWI444949B (en) 2014-07-11

Family

ID=42397313

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098145496A TWI444949B (en) 2009-01-30 2009-12-29 A fluorescent display tube driving method and a fluorescent display tube

Country Status (3)

Country Link
US (1) US8378929B2 (en)
CN (1) CN101794544B (en)
TW (1) TWI444949B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5599287B2 (en) * 2010-11-08 2014-10-01 ノリタケ伊勢電子株式会社 Fluorescent display device
CN102352250B (en) * 2011-07-22 2013-10-09 彩虹集团电子股份有限公司 Method for preparing green gadolinium terbium oxysulfide phosphor
EP2767982B1 (en) * 2011-10-03 2019-11-13 Kabushiki Kaisha Toshiba Intensifying screen for x-ray detector, x-ray detector, and x-ray inspection device
JP6020140B2 (en) * 2012-12-20 2016-11-02 日本精機株式会社 Driving device and driving method for fluorescent display tube
CN111724721B (en) * 2020-07-14 2023-01-06 浙江虬晟光电技术有限公司 Fluorescent display screen device driven by integrated IC (integrated circuit) and control method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968917A (en) * 1988-10-05 1990-11-06 Ford Motor Company Electronic dimmer control for vacuum fluorescent display devices
JP3803844B2 (en) 1997-09-22 2006-08-02 双葉電子工業株式会社 Fluorescent display tube driving apparatus and driving method thereof
US6005538A (en) * 1997-12-11 1999-12-21 Donnelly Corporation Vacuum fluorescent display driver
JP2000250454A (en) 1999-02-26 2000-09-14 Matsushita Electric Ind Co Ltd Driving circuit of fluorescent display device
JP2001176434A (en) * 1999-11-10 2001-06-29 Samsung Sdi Co Ltd Dynamic-drive fluorescent display tube
JP2002170694A (en) * 2000-11-30 2002-06-14 Nagano Japan Radio Co Control method of fluorescent tube lighting device
JP4975224B2 (en) 2001-07-04 2012-07-11 東洋鋼鈑株式会社 Ironing method, ironing die and drawn iron can
TWI291840B (en) * 2003-03-26 2007-12-21 Sanyo Electric Co Fluorescent display tube driving circuit
US7071609B2 (en) * 2003-05-12 2006-07-04 Noritake Itron Corporation Red phosphor for low-voltage electron beam
TWI354980B (en) * 2007-03-14 2011-12-21 Princeton Technology Corp Display control circuit

Also Published As

Publication number Publication date
CN101794544A (en) 2010-08-04
US8378929B2 (en) 2013-02-19
US20100194788A1 (en) 2010-08-05
CN101794544B (en) 2013-04-10
TWI444949B (en) 2014-07-11

Similar Documents

Publication Publication Date Title
TW201042600A (en) Method for driving fluorescent display tube and fluorescent display tube
JP5627839B2 (en) Light source with improved dimming behavior
JPH0885788A (en) Phosphor
Bender et al. Zn2GeO4: Mn alternating-current thin-film electroluminescent devices
JP4566663B2 (en) Luminescent material and manufacturing method thereof
CN102369603A (en) Method for generating white light and lihgting device
CN105989792A (en) Current-controlled display panel driving method and display panel
JP5208789B2 (en) Method for driving fluorescent display tube and fluorescent display tube
US20010013592A1 (en) Red phosphor having effective emission at low voltages and method for preparing the same using conductive luminescent material
CN109410843A (en) Driving method and device, the el light emitting device of electroluminescent device
JPS5933153B2 (en) Luminescent composition and slow electron beam excitation fluorescent display tube
JP5191411B2 (en) Driving method of fluorescent display tube
JP2000017258A (en) Phosphor
JP2000319651A (en) White phosphor for use at low voltage
CN107527593B (en) High-light-efficiency TFT-LCD backlight display driving method
JP2006307083A (en) Blue-exciting yellow phosphor and white light-emitting element
JP4711588B2 (en) Thin film electroluminescence emitter
JP2001303044A (en) SrTiO3:PR, Al FLUORESCENT SUBSTANCE FOR LOW-VOLTAGE DRIVE
JP2006219641A (en) Light-emitting material and light-emitting element
JP3783543B2 (en) Fluorescent display tube
JP5276360B2 (en) Display element
JPH09255953A (en) Phosphor and preparation thereof
CN101894729B (en) Method and device for emitting white light by field emission
JPH0747733B2 (en) Blue light emitting phosphor
JP2005272798A (en) Method of producing phosphor particle

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees