TW201039917A - Magnetic catalyst and method for manufacturing the same - Google Patents

Magnetic catalyst and method for manufacturing the same Download PDF

Info

Publication number
TW201039917A
TW201039917A TW098115299A TW98115299A TW201039917A TW 201039917 A TW201039917 A TW 201039917A TW 098115299 A TW098115299 A TW 098115299A TW 98115299 A TW98115299 A TW 98115299A TW 201039917 A TW201039917 A TW 201039917A
Authority
TW
Taiwan
Prior art keywords
metal
carrier
magnetic
catalyst
magnetic catalyst
Prior art date
Application number
TW098115299A
Other languages
English (en)
Other versions
TWI357830B (en
Inventor
Chan-Li Hsueh
Cheng-Hong Liu
Jie-Ren Ku
Ya-Yi Hsu
Cheng-Yen Chen
Reiko Ohara
Shing-Fen Tsai
Chien-Chang Hung
Ming-Shan Jeng
Fang-Hei Tsau
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW098115299A priority Critical patent/TWI357830B/zh
Priority to US12/502,603 priority patent/US20100285376A1/en
Publication of TW201039917A publication Critical patent/TW201039917A/zh
Priority to US13/107,701 priority patent/US20110217456A1/en
Application granted granted Critical
Publication of TWI357830B publication Critical patent/TWI357830B/zh
Priority to US13/489,100 priority patent/US20120244065A1/en
Priority to US13/572,089 priority patent/US20120309612A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Description

201039917 六、發明說明: 【發明所屬之技術領域】 更特別關於具有磁性之放氫 本發明係關於放氫觸媒 觸媒,其製備方式與應用。 【先前技術】
Ο ^綠色=的發展過程中,化學氫化物放氫為主要的 二所使用的觸媒,大致上可分為貴金屬系 1.二 鈀(Pd)、綱等,以及非貴金屬系列, 因二太鐵(Fe)、鈷(Co)、鎳(Ni)等。就貴金屬而言, =又“成本⑽财此較q達到大量製造的目 的,如果可以利用特有的方法,將使用過之觸媒統一方便 =收’便可以重新利用而降低操作成本。目前市面上並益 商,化之氫化物放氫觸媒’雖然在學術發表已經有不少製 備貝,屬觸媒的方法’甚至可搭配燃料電池應用在小型電 子產品。但若要應用至市場’觸媒的高成本及不易回收 是主要瓶頸。 在美國專利公開號us2006/0292067中,使用鎳作為 觸媒載體,並將多種金屬成長於賴上,製備出多金屬複 合型觸媒。使用的金屬包括鈷、釕、鋅、銦、錳、鈦、錫、 鉻等。在具體製備方法上,採用燒結過之錄粉以及麗縮過 =錄纖維(比例為50:50)之複合材料(5〇克),剪裁成〇 25 央吋X 0.25英忖的正方片。配置溶有6·31克的c〇ci2 . 6H2〇^以及1.431克的RuC13 . H2〇之水溶液約3〇毫升。 將裁另過後之鎳正方片浸入上述金屬鹽溶液,加熱至7〇。 C後充分混合。過程中水分會逐漸蒸發逸散,待水分完全 3 201039917 蒸乾時,鎳載體上已沉積了不同比例之Cock · 以 f RuC!3 ·私0。將上述表面沉積有金屬鹽之鎳载』 尚溫爐中進行24(TC的鍛燒,同時在常壓下通2〇 f鐘的氫氣持續三小時以還原金屬離子,便成功製備 ^.2二t/〇釕金屬以及3 wi%鈷金屬之複合觸媒,並可應 ,氫化鈉水溶液的放氫反應。由觸媒活性測試可知, 利用高溫鍛燒製備出之雙金屬複合觸媒,在3〇沱' =3 wt%氯氧化納之2〇 wt%删氯化鋼 ο 約!7毫升/分.克。若將複合金屬觸媒以固S 产疋將200 ¾升之20wi%硼氫化鈉溶液(内含3对% 流速通過_床進行放氫反應: Γ9二rig的壓力下持續六或八個小時,其轉化率可 ^ 由#間變化對於溫度改變的趨勢可以發現,壓 = = = :統f動的時間,此複合金屬觸媒對於爛 的還原所需的言、、.' 的優點。然而锻燒進行金屬 磁性'。、n、、主要缺點’且其製備之話觸媒不具傷 Ο 過促華,利公告號:〇79936,名稱為『經 進行的程序』。此應肖卩及在其存在時所 濃度= t 含浸法,將塗佈有重量百分 為10〜1000心-/ ,者銘金屬氧化物的载體,内表面積 水)溶液各m如活性氧化铭含浸於三氯偏了(含結晶 的高严田,中亚將該種觸媒中間體乾燥,於200〜30(rc 需求^牛氣將自化舒還原成㈣金屬,然後依照 屬,使用^脫中將錄/銘的氧化物還原成為錄/銘金 、1 α或氫化反應當中。除了有前案需要高 4 201039917 溫之缺點,使用之氧化鋁載體在高鹼性下也會有易崩解的 缺點。 本案發明人為改善習知技術中高溫鍛燒的缺點,於曰 前申請台灣專利申請號第96150963。在該申請案中,已 利用離子交換技術於室温下將奈米級釕金屬放氫觸媒成 長於高分子載體之表面上。不過此案之釕金屬觸媒仍不具 備磁性。 綜上所述,目前亟需製備新穎之放氫觸媒以改善回收 不易的問題。 〇 【發明内容】 本發明提供一種磁性觸媒,包括載體;以及第一金屬 奈米殼層,包覆載體之表面;其中第一金屬奈米殼層係 鐵、姑、或鎳。 本發明提供一種磁性觸媒,包括載體;第一金屬奈米 殼層,包覆載體之表面;以及第二金屬奈米殼層,包覆第 一金屬奈米殼層之表面;其中第一與第二金屬奈米殼層之 Q 組成不同,且兩者中至少一者係鐵、銘、或鎖:。 本發明提供一種磁性觸媒之形成方法,包括提供載 體;以及形成第一金屬奈米殼層包覆載體之表面;其中第 一金屬奈米殼層係鐵、钻、或鎳。 本發明提供一種磁性觸媒之形成方法,包括提供載 體;形成第一金屬奈米殼層包覆載體之表面;以及形成第 二金屬奈米殼層包覆第一金屬奈米殼層之表面;其中第一 與第二金屬奈米殼層之組成不同,且兩者中至少一者係 鐵、钻、或鎳。 5 201039917 f實施方式】 =採用化學還原法及/或無電鍍法形成 声 或夕s不米金屬殼層之磁性觸媒。首先, 二 換樹脂作為載體,其表面 _除離子父 ⑽只之官能基。在本發明: = 严或弱酸型如 為月球狀,其粒㈣介於跑 交換樹脂可為市售之氫型樹= ο 議=°; Γ:νβΓ™^ 一實施例中,)。在本發明另 沖、七甘ο 換树脂可為其他構形如柱狀、板 狀)广、@見之觸媒態樣(比如内部充滿孔洞之沸石 ❹ 離子交換樹脂加入金屬鹽溶液,攪拌 τ宫能基將螯合金屬離子。金屬鹽含有 ㈣了入:録:金屬離子,其特徵為還原後之原子態具有 之-到i:立鹽:液之濃度視樹酯添加克數,為理論螯合量 ^⑴口’低於上述範圍則會有離子聲合量不足之現 螯合之1屬㈣合有金屬離子之樹脂,去除未 散性子。此步驟可提高金屬離子於樹脂表面之分 將上述清洗後之樹脂置入還 態之金屬。如此-V,將形成鐵= 表面,完成本發明所謂的磁 化钾、二甲胺基甲戦劑包括石朋氯化納、職 酸鹽、—:以檸::鈉甲"酸, 6 201039917 除了上述陽離子交換樹脂外,本發明還可應用金屬如 不錄鋼網、鎳網、或黃銅片,或具有活化表面之非金屬如 二氧化矽、奈米碳管、或高分子作為磁性觸媒之載體。可 利用SnCl2及PdCl2等溶液活化非金屬之表面,亦可採用 電漿活化的方式。金屬與非金屬之形狀與尺寸的考量同前 述之陽離子交換樹脂。接著配置無電鍍液如下。首先將 鐵、鈷、或鎳等金屬鹽類、檸檬酸鈉、及馬來酸溶解後, 以氫氧化鈉將上述溶液之pH值調至9.5後加熱至80°C。 最後加入少量前述之還原劑即完成無電鍍液。將金屬或具 〇 有活化表面之非金屬載體加入上述之無電鍍液反應後即 可形成單層之磁性觸媒,其奈米金屬殼層之厚度可由反應 時間長短控制。 除了上述單層結構之磁性觸媒,本發明可進一步應用 無電鍍法形成雙層甚至是多層之磁性觸媒。 首先,提供前述之陽離子交換樹脂、金屬、或非金屬 作為載體。接著以前述之化學還原法或無電鍍法形成銅、 鐵、钻、錄、釘、纪、或翻之奈米金屬殼層包覆載體表面。 Q 之後配置無電鍍液如下。首先將金屬鹽如銅、鐵、銘、 鎳、釕、鈀、或鉑等金屬離子、檸檬酸鈉、及馬來酸溶解 後,以氫氧化納將上述溶液之pH值調至9.5後加熱至 80°C。最後加入少量聯胺溶液作為還原劑即完成無電鐘 液。 將表面包覆奈米金屬殼層之載體加入上述無電鍍 液,反應後將形成另一奈米金屬殼層包覆原有之奈米金屬 殼層。將上述磁性觸媒取出,清洗表面殘留溶劑並於室温 下乾燥即完成具有雙層奈米金屬殼層之磁性觸媒。在這必 201039917 需說明的是,為了使具有雙層之奈米金屬殼層之觸媒具有 磁性,内層及外層之奈米金屬殼層兩者中必有一者為鐵、 钻、或錄等磁性金屬。雙層奈米金屬殼層可同時兼具兩種 金屬觸媒的好處。舉例來說,舒金屬是目前已知最有效的 放氫觸媒,但是不具有磁性。另一方面,鐵、鈷、及鎳金 屬具有磁性,但其放氫速率緩慢。若採用本發明的方法, 形成奈米録金屬内殼層及奈米釕金屬外殼層之磁性觸 媒,則可兼具快速放氫及磁性的雙重優點。在本發明另一 實施例中,磁性觸媒具有奈米舒金屬内殼層及奈米錄金屬 ❹ 外殼層,且外殼層之鎳金屬僅部份包覆而非完全包覆内殼 層之釕金屬以避免降低釕金屬之催化效率。 除了上述之雙層奈米金屬殼層之磁性觸媒外,本發明 可進一步重複上述之無電鑛反應以形成三層(如釕-鎳-釕)、四層、或更多層奈米金屬殼層之磁性觸媒。雖然在 實驗上是可行的,但在内層金屬殼層被外層金屬殼層覆蓋 的部份即失去催化活性的情況下,層數較佳小於五層。 上述磁性觸媒可應用於供氫裝置。供氫裝置含有穩定 ❹ 之驗性氫化物水溶液,在加入本發明之磁性觸媒後將產生 氫氣。本發明之氫化物水溶液包含LiAlH4、NaAlH4、 Mg(AlH4)2、Ca(AlH4)2、LiBH4、NaBH4、KBH4、Be(BH4)2、 Mg(BH4)2、Ca(BH4)2、LiH、NaH、MgH2、或 CaH2。在本 發明一實施例中,氫化物為NaBH4、KBH4、或NH3BH3 等較溫合之氫化物。至於其他反應較劇烈之氫化物係用以 辅助增加初期之放氫速率,並非用以長期穩定放氫之用。 上述供氫裝置可進一步連結至燃料電池或其他需要 氫氣之裝置。在使用後,可採用磁鐵將磁性觸媒回收。在 8 201039917 簡單的清洗磁性觸媒表面沉積之鹽類(來自氫化物)後,即 可再次使用。 為了讓本發明之上述和其他目的、特徵、和優點能更 明顯易懂,下文特舉數實施例配合所附圖示,作詳細說明 如下: 【實施例】 實施例1 取30 g之陽離子交換樹脂(購自Supelco Chemical Co 之 IR-120)置入 0.25 L 之氯化鈷(CoC12.6H20,8.992 g/dL) 〇 溶液,於室溫下以60rpm攪拌溶液使樹脂表面之酸性官能 基螯合鈷離子。接著以去離子水洗去樹脂表面殘留之未螯 合離子,再將樹脂置入NaBH4(ac0還原螯合之銘離子以形 成奈米鈷金屬殼層於樹脂表面。將樹脂取出後以去離子水 清洗並於室溫下自然乾燥,由SEM及XPS可証明本發明 之磁性觸媒具有單層之奈罘鈷金屬殼層結構。 上述磁性觸媒之磁性測試如第1圖所示,証明其具有 磁性。而由第2圖可得知觸媒表面之钻金屬螯合量約為 ❹ 30%。將上述磁性觸媒置於1.32 N之NaBH4(ac〇中會進行 放氫反應,於不同溫度下的放氫速率如第3圖所示。在不 對系統進行溫度控制時,其放氫速率與時間之關係圖如第 4圖所示。
待放氫反應完成後,可用磁鐵回收磁性觸媒。以去離 子水清洗磁性觸媒後,可重複上述放氫反應。如第5A-5D 圖所示,第一次放氫反應(第5A圖)、經一次回收後的第 二次放氳反應(第5B圖)、經兩次回收後的第三次放氫反 應(第5C圖)、及經三次回收後的第四次放氫反應(第5D 9 201039917 圖)中,均具有類似之放氳速率。如第6A-6D圖所示,第 一次放氫反應(第6A圖)、經一次回收後的第二次放氫反 應(第6B圖)、經兩次回收後的第三次放氫反應(第6C 圖)、及經三次回收後的第四次放氳反應(第6D圖)中,在 2000秒前均可達到接近100%之放氫量。 實施例2 取25g之陽離子交換樹脂(購自Dow Chemicals之 50WX8)置入 0.25L 之氯化釕(RuC13*xH20,2g/dL)溶液, 於室溫下以60rpm授拌溶液使樹脂表面之酸性官能基螯 〇 合釕離子。接著以去離子水洗去樹脂表面殘留之未螯合離 子,再將樹脂置入NaBH4(aq)還原螯合之舒離子以形成奈 米釕金屬殼層於樹脂表面。將樹脂取出後以去離子水清洗 並於室溫下自然乾燥,由SEM及XPS可証明本發明之磁 性觸媒具有單層之奈米舒金屬殼層結構。 接著秤取2.62g/dL之氯化鎳(NiCl2.H20)、4g/dL之檸 檬酸鈉(Na3C6H507,2H20)作為錯合劑、及0.8g/dL之馬來 酸(Maleic acid)作為保護劑,於室溫下加水溶解形成0.1 L ❹ 之溶液。接著以NaOH(叫或整上述溶液之pH值 至8.5-9.5,加熱至80°C後加入2.5mL/dL之聯胺(Ν2Η4· Η20)作為還原劑,即完成所謂的無電鍍液。 將具有單層奈米舒金屬殼層之磁性觸媒加入上述之 無電鍍液反應60分鐘,即形成奈米錄金屬殼層於釕金屬 殼層上。將樹脂取出後以去離子水清洗並於室溫下自然乾 燥,由SEM及XPS可証明本發明之磁性觸媒具有雙層之 奈米钉-鎳金屬殼層結構。 接著秤取2.62g/dL之氯化釕(RuC13 ·Η20)、4g/dL之檸 檬酸鈉(Na3C6H507.2H20)作為錯合劑、及0.8g/dL之馬來 10 201039917 酸(Maleic acid)作為保護劑,於室溫下加水溶解形成l 之/谷液。接著以NaOH^o或NH3(aq)調整上述溶液之pH值 至8.5〜9.5,加熱至80。(:後加入2.511117此之聯胺(]^2114· 氏0)作為還原劑’即完成所謂的無電鑛液。 將具有雙層奈米釕-鎳金屬殼層之磁性觸媒加入上述 之無電鍍液反應60分鐘,即形成奈米釕金屬殼層於鎳金 屬,層上。將樹脂取出後以去離子水清洗並於室溫下自然 乾餘,由SEM及XPS可証明本發明之磁性觸媒具有三戶 之奈米釕-鎳-釕金屬殼層結構。 〇 、上述磁性觸媒之磁性測試如第7圖所示’証明其具有 磁性。將上述磁性觸媒置於^伙至25加%之 中均會進行穩定的放氫反應,如第8圖所示。 待放氫反應完成後,可用磁鐵回收磁性觸媒。以去離 子水清洗磁性觸媒後,可重複上述放氫反應◦如第9a_9d Θ所示,第一次放氫反應(第9 A圖)、經一次回收後的第 一放氫反應(第9B圖)、經兩次回收後的第三次放氫反 應(第9C目)、及經三次回收後的第四次放氯反應(第阳 〇 f)中,均具有類似之放氫速率。如第10A-10D圖所示, 第放氫反應(第10 A圖)、經—次回收後的第二次放氫 反應(第1_0B圖)、經兩次回收後的第三次放氫反應(第^ 圖)及經二次回收後的第四次放氳反應(第丨〇D圖)中, 在2000秒前均可達到接近ι〇〇%之放氫量。 雖然本發明已以數個較佳實施例揭露如上,然其並非 f以限定本發明’任何熟習此技藝者,在不脫離本發明之 精,=範圍内,當可作任意之更動與潤飾,因此本發明之 保遽範圍當視後附之申請專利範圍所界定者為準。 11 201039917 【圖式簡單說明】 第1圖係本發明一實施例中,磁性觸媒之磁性測試; 第2圖係本發明一實施例中,磁性觸媒表面表示鈷金 屬螯合量之熱重分析圖; 第3圖係本發明一實施例中,磁性觸媒於NaBH4(邮之 放氫速率與溫度之關係圖; 第4圖係本發明一實施例中,磁性觸媒於NaBH4(ac〇之 放氫速率與放氫時間之關係圖;
第5A-5D圖係本發明一實施例中,多次回收之磁性觸 媒於NaBH4(aq)2放氫速率與時間之關係圖; 第6A-6D圖係本發明一實施例中,多次回收之磁性觸 媒於NaBH4⑽之放氳量與時間之關係圖; 第7圖係本發明一實施例中,磁性觸媒之磁性測試; 第8圖係本發明一實施例中,磁性觸媒於不同濃度之 NaBH4(ac〇的放氫速率與時間之關係圖; 第9A-9D圖係本發明一實施例中,多次回收之磁性觸 媒於NaBH4(aq)之放氫速率與時間之關係圖;以及 第10A-10D圖係本發明一實施例中,多次回收之磁性 觸媒於NaBH4(ac〇之放氫量與時間之關係圖。 【主要元件符號說明】 益〇 12

Claims (1)

  1. 201039917 七'申請專利範圍: 1. 一種磁性觸媒,包括: 一载體;以及 -第-金屬奈米殼層,包覆該載體之表面. 其令該第-金屬奈米殼層係鐵、#、或, 2·如申請專利範圍第!項所述之磁性拔。 體包括強酸型或弱酸剞之陪離工丄μ f媒’其中該載 活化之非金^ _子乂換樹腊、金屬、或表面 Ο Ο 3.如申請專利範圍第丨項 -供氫襞置。 《難觸媒’係應用於 4^+請補_第3韻叙雜 , 氫裝置連接至一燃料電池。 、,、中忒L 5.—種磁性觸媒,包括: 一载體; -金屬奈末殼層,包覆該载體之表面 罘二金屬奈米殼層,包覆該第一 其中兮笛 u性 ., /蜀不木%又層, 苐二奈米金屬殼層之組成不同,且rh去 中至少一者係鐵、鈷、或鎳。 J且兩者 〜6括H請專利範圍第5項所述之磁性觸媒,盆中今載 胆匕括強酉夂型或弱酸型之陽離子交換樹脂、金屬% ^载 活化之非金屬。 孟屬、或表面 7蒙如申J旁專利範圍第5項所述之磁性 广二金屬奈米殼層包括銅、鐵mU 一供第5項所述之磁性觸媒,係應用於 9.如申請專利範圍第8項所述之磁性觸媒,其中該供 13 201039917 氳裝置連接至一燃料電池。 10.—種磁性觸媒之形成方法,包括: 提供一载體;以及 形成一第一金屬奈米殼層包覆該載體之表面; 其中該第一金屬奈米殼層係鐵、鈷、或鎳。 冰,1^申料利範圍第1G項所述之魏觸媒之形成方 '/、忒载體包括強酸型或弱酸型之陽離子、 金屬、或表面活化之非金屬。 ^又讀月曰 Ο 〇 =口申請專利範圍第u項所述之磁性觸媒之形成方 ',、中該載體係該強酸型或弱酸型之陽離子交, 且形成該第-金屬奈米殼層於該載體之表面一 化學還原法。 *即町步驟係一 * 如中請專利範圍第u項所述之磁性觸媒之形成方 二=該载體係金屬或表面活化之非金屬,且形成該第 至蜀不米殼層於該載體之表面的步驟係一無電鍍法。 14.—種磁性觸媒之形成方法,包括: 一 提供一載體; ^成:第一金屬奈米殼層包覆該載體之表面;以及 之表^成—第二金屬奈米殼層包覆該第—金屬奈米殼層 中至:中i第一與第二金屬奈米殼層之組成不同,且兩者 者係鐵、鈷、或鎳。 法,i5巾如申+請專利範圍第14項所述之磁性觸媒之形成方 弟一及第二金屬奈米殼層包括銅、鐵、鈷、鋅、 釕、鈀、或翻。 ^ 16石 1 ,σ申請專利範圍第14項所述之磁性觸媒之形成方 14 201039917 法,其中該载體包括強酸型或弱酸型之陽離子交換 金屬、或表面活化之非金屬。 、曰、 17.如中請專利範圍第16項所述之磁性觸媒之 法,/、中該载體係該強酸型或弱酸乂 且形成該第-金屬奈米殼層於該換樹脂, 化學還原法。 戰版之表面的步驟係一 、18.如申請專利範圍第16項所 〇 法 法’其中該载體係金屬或表面活化之”生觸媒之形成方 一金屬奈米殼層於該載體之表面的屬’且形成該第 19.如申請專利範圍第14項所诚备' —無電鍍法。 之=:形成-第二金屬奈米殼層:5:性觸媒之形成方 表面的步驟係一無電鍍法。、'弟一金屬奈米殼層 ❹ 15
TW098115299A 2009-05-08 2009-05-08 Magnetic catalyst and method for manufacturing the TWI357830B (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW098115299A TWI357830B (en) 2009-05-08 2009-05-08 Magnetic catalyst and method for manufacturing the
US12/502,603 US20100285376A1 (en) 2009-05-08 2009-07-14 Magnetic catalyst and method for manufacturing the same
US13/107,701 US20110217456A1 (en) 2009-05-08 2011-05-13 Magnetic catalyst and method for manufacturing the same
US13/489,100 US20120244065A1 (en) 2009-05-08 2012-06-05 Magnetic catalyst and method for manufacturing the same
US13/572,089 US20120309612A1 (en) 2009-05-08 2012-08-10 Magnetic catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098115299A TWI357830B (en) 2009-05-08 2009-05-08 Magnetic catalyst and method for manufacturing the

Publications (2)

Publication Number Publication Date
TW201039917A true TW201039917A (en) 2010-11-16
TWI357830B TWI357830B (en) 2012-02-11

Family

ID=43062523

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098115299A TWI357830B (en) 2009-05-08 2009-05-08 Magnetic catalyst and method for manufacturing the

Country Status (2)

Country Link
US (4) US20100285376A1 (zh)
TW (1) TWI357830B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012122437A2 (en) 2011-03-10 2012-09-13 Cornell University Mesoporous catalysts of magnetic nanoparticles and free-radical-producing enzymes, and methods of use
US10881102B2 (en) 2015-05-18 2021-01-05 Zymtronix, Llc Magnetically immobilized microbiocidal enzymes
JP2018519838A (ja) 2015-07-15 2018-07-26 ザイムトロニクス エルエルシーZymtronix, Llc 自動バイオナノ触媒製造
CA3031802A1 (en) 2016-08-13 2018-02-22 Zymtronix Catalytic Systems, Inc. Magnetically immobilized biocidal enzymes and biocidal chemicals
CN112397737B (zh) * 2021-01-20 2021-04-13 北京科技大学 一种铂基磁场调控燃料电池的电堆装置及其制造方法
CN113042107B (zh) * 2021-03-09 2022-06-24 中国原子能科学研究院 一种阳离子树脂为载体的贵金属催化剂及其制备和应用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4380679A (en) * 1982-04-12 1983-04-19 Uop Inc. Hydrogenation of saccharides
DE4443701C1 (de) * 1994-12-08 1996-08-29 Degussa Schalenkatalysator, Verfahren zu seiner Herstellung und seine Verwendung
US5580838A (en) * 1995-06-05 1996-12-03 Patterson; James A. Uniformly plated microsphere catalyst
US6964826B2 (en) * 1999-04-12 2005-11-15 Ovonic Battery Company, Inc. Coated catalytic material with a metal phase in contact with a grain boundary oxide
US6534033B1 (en) * 2000-01-07 2003-03-18 Millennium Cell, Inc. System for hydrogen generation
DE10008904A1 (de) * 2000-02-25 2001-09-06 Degussa Verfahren zur Rückgewinnung von Katalysator-Übergangsmetallen aus salzhaltigen Reaktionsgemischen
US6932847B2 (en) * 2001-07-06 2005-08-23 Millennium Cell, Inc. Portable hydrogen generator
WO2004052547A2 (en) * 2002-12-05 2004-06-24 Surfect Technologies, Inc. Coated and magnetic particles and applications thereof
JP2005138024A (ja) * 2003-11-06 2005-06-02 Sekisui Chem Co Ltd 水素化芳香族化合物からの脱水素反応用触媒とその触媒を利用した水素製造方法
US20060292067A1 (en) * 2005-06-28 2006-12-28 Qinglin Zhang Hydrogen generation catalysts and methods for hydrogen generation
KR100749497B1 (ko) * 2006-03-09 2007-08-14 삼성에스디아이 주식회사 연료 전지용 애노드 촉매 및 이를 포함하는 연료 전지용막-전극 어셈블리
EP2059360B1 (en) * 2006-08-30 2019-04-17 Umicore AG & Co. KG Core/shell-type catalyst particles and methods for their preparation
TWI413549B (zh) * 2009-03-13 2013-11-01 Ind Tech Res Inst 用於催化放氫反應之觸媒之製造方法

Also Published As

Publication number Publication date
US20120244065A1 (en) 2012-09-27
TWI357830B (en) 2012-02-11
US20120309612A1 (en) 2012-12-06
US20110217456A1 (en) 2011-09-08
US20100285376A1 (en) 2010-11-11

Similar Documents

Publication Publication Date Title
Zhang et al. Remarkable synergistic catalysis of Ni-doped ultrafine TiO2 on hydrogen sorption kinetics of MgH2
Ma et al. Facile synthesis of carbon supported nano-Ni particles with superior catalytic effect on hydrogen storage kinetics of MgH2
TW201039917A (en) Magnetic catalyst and method for manufacturing the same
Shi et al. Graphene modified Co–B catalysts for rapid hydrogen production from NaBH4 hydrolysis
Demirci et al. Sodium borohydride hydrolysis as hydrogen generator: issues, state of the art and applicability upstream from a fuel cell
WO2001053550A1 (fr) Materiau mixte de stockage d'hydrogene constituant un nanotube d'alliage/carbone et son procede de fabrication
Demirci et al. Ru-based bimetallic alloys for hydrogen generation by hydrolysis of sodium tetrahydroborate
Lu et al. Synthesis and hydrogen storage properties of core–shell structured binary Mg@ Ti and ternary Mg@ Ti@ Ni composites
Alasmar et al. Hydrogen generation from Nd-Ni-Mg system by hydrolysis reaction
Musamali et al. Decomposition of methane to carbon and hydrogen: a catalytic perspective
Li et al. Effect of Ni/tubular g-C3N4 on hydrogen storage properties of MgH2
Ren et al. An improved hydrogen storage performance of MgH2 enabled by core-shell structure Ni/Fe3O4@ MIL
CN108057446A (zh) 氨硼烷水解制氢Co-Mo-B纳米催化剂及制备方法
Luo et al. Highly-dispersed nano-TiB2 derived from the two-dimensional Ti3CN MXene for tailoring the kinetics and reversibility of the Li-Mg-BH hydrogen storage material
Özkar Magnetically separable transition metal nanoparticles as catalysts in hydrogen generation from the hydrolysis of ammonia borane
Poon et al. Synergistic effect of Co catalysts with atomically dispersed CoN x active sites on ammonia borane hydrolysis for hydrogen generation
Gao et al. Enhanced hydrogen storage performance of magnesium hydride with incompletely etched Ti3C2Tx: The nonnegligible role of Al
JPWO2005072865A1 (ja) メタノール改質用の金属間化合物Ni3Al触媒とこれを用いたメタノール改質方法
JP2003212501A (ja) 水素発生方法
Beheshti et al. Cobalt nanoparticle synthesis through the mechanochemical and chemical reduction method as a highly active and reusable catalyst for H2 production via sodium borohydride hydrolysis process
Lv et al. Enhanced catalytic reduction of Cr (VI) with formic acid over spherical bimetallic Ni-Co nanoalloy catalysts at room temperature
CN110327936A (zh) 一种EG-SnO2@Mg-Ni纳米复合催化水解产氢材料及其制备方法
TW201032896A (en) Method for manufacturing catalyst for hydrogen generation
Liu et al. Structure and stability of nanoscale bimetallic clusters
Huo et al. Oriented external electric fields act as a “switch” of Pt-M/BC3N2 diatomic catalysts activate pristine ammonia borane dehydrogenation: A DFT study