TW201039466A - Light source device and fabricating method thereof - Google Patents

Light source device and fabricating method thereof Download PDF

Info

Publication number
TW201039466A
TW201039466A TW98112814A TW98112814A TW201039466A TW 201039466 A TW201039466 A TW 201039466A TW 98112814 A TW98112814 A TW 98112814A TW 98112814 A TW98112814 A TW 98112814A TW 201039466 A TW201039466 A TW 201039466A
Authority
TW
Taiwan
Prior art keywords
light
substrate
source device
light source
nano
Prior art date
Application number
TW98112814A
Other languages
Chinese (zh)
Other versions
TWI388073B (en
Inventor
Pei-Kuen Wei
Yeong-Der Yao
da-hua Wei
Shen-Yu Hsu
Ming-Der Chou
Tzu-Pin Lin
Chi-Neng Mo
Original Assignee
Chunghwa Picture Tubes Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chunghwa Picture Tubes Ltd filed Critical Chunghwa Picture Tubes Ltd
Priority to TW98112814A priority Critical patent/TWI388073B/en
Publication of TW201039466A publication Critical patent/TW201039466A/en
Application granted granted Critical
Publication of TWI388073B publication Critical patent/TWI388073B/en

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Led Devices (AREA)

Abstract

A light source device fabricating method is provided. First, a substrate having a peripheral region and a lighting device region surrounded by the peripheral region is provided. Next, a nano-island patterned layer is formed on the substrate. After that, a lighting device is formed on the lighting device region of the substrate. The lighting device emits a light beam, and part of the light beam is transmitted inside the substrate. Specifically, the nano-island patterned layer can conduct the light beam transmitted inside the substrate outward the substrate. The light source device fabricating method can manufacture a light source device with high luminance and large lighting area, and has the following advantages such as low cost and simple fabricating process.

Description

201039466 08 / I/3U \V 30332twf.doc/n 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種光源裝置(Light source device)與 其製作方法’且特別是有關於一種具有高光汲取效率(high light extraction efficiency )的光源裝置與其製作方法。 【先前技術】 〇 隨著綠色科技的蓬勃發展,具有省電、體積小、低電 壓驅動以及不含汞等優點的電致發光二極體 (Electro-luminance light emitting diode,EL-LED),已被 廣泛地應用在平面顯示器的背光模組與一般照明等領域。 然而,電致發光二極體仍面臨一些問題,主要是電能-光能 之間的轉換效率低,以及電致發光二極體所放射的大部分 光線會被侷限於組件的基板中。 在心的電致發光一極體中,其外部效率(^以)可由 内部里子效率(Wn)與光汲取效率(rjext)等兩個因子來表 ^ 示,亦即: ^ex =ηΐη·ηεχί 中量子效率(ηίη)與電流注人效率有關,而 電/’il庄入效率與電致發光二極體的發光層、電極層等使用 的材料有關。一般電致發光二極體的内部量子效^ (η」 已可達70%以上,進一步改善的空間較小。 m 另外,光汲取效率(ηεχί)的高低,乃是取決於電致發 3 201039466 087175ITW 30332twf.doc/n 光二極體所放射的光線是否能有效地出射到電致發光二極 體的外部。受限於全反射原理(total internal reflection), 習知的電致發光二極體所放射出的光線會被侷限在電致發 光二極體的基板與導光層之内。也就是說,由電致發光二 極體的發光層放射出的光線必須小於基板與導光層的臨界 角(critical angle) ’才可能離開電致發光二極體而進入空氣 中。一般而言,習知的電致發光二極體的光汲取效率(η邮) 只有百分之十幾左右(約10%〜18%)。因此,光汲取效 率(Tlext)可以改善的空間相當地大,許多研究者均對此投 入許多心力進行相關的研究。 已知的提高光汲取效率(llext)的方法,主要是在電致 發光二極體的基板與導光層之間製作微型結構 (micro-structure),藉由破壞光線的全反射機制而使被侷 限於基板内的光線散射到空氣中。相關的研究中有採用鋸 齒狀紋理結構(sawt00th texture structure )、微透鏡 (microlens),或金字塔型(micr〇_pyrimid)等微型結構。 另外’亦有在電致發光二極||的表面製作週期性的次 波長結構(sub-wavelength structure )(即光子曰曰體) 關的研究中有採用三角型晶格,或方形晶格j 體’以將高折射率材料中的導光模態(guidedm = 為出光模態(airmode)。 祸5 最近也有一些作法為利用奈米金屬結構。由於太 屬結構具有高光學散射效率的雜,所以能破壞全=换 制,使被謂在電致發光二極體板或導光 =201039466 08 / I/3U \V 30332twf.doc/n VI. Description of the Invention: [Technical Field] The present invention relates to a light source device and a method of fabricating the same, and particularly relates to a light having a high light A light source device for high light extraction efficiency and a method of fabricating the same. [Prior Art] With the rapid development of green technology, Electro-luminance light emitting diode (EL-LED), which has the advantages of power saving, small size, low voltage driving, and no mercury, has been It is widely used in the field of backlight modules for flat panel displays and general lighting. However, electroluminescent diodes still face some problems, mainly due to the low conversion efficiency between electric energy and light energy, and most of the light emitted by the electroluminescent diode is confined to the substrate of the module. In the electroluminescent body of the heart, the external efficiency (^) can be expressed by two factors: internal neutron efficiency (Wn) and optical extraction efficiency (rjext), namely: ^ex =ηΐη·ηεχί The quantum efficiency (ηίη) is related to the current injection efficiency, and the electric/'il encapsulation efficiency is related to the materials used for the light-emitting layer and the electrode layer of the electroluminescent diode. Generally, the internal quantum effect (η) of electroluminescent diodes has reached more than 70%, and the space for further improvement is small. m In addition, the efficiency of light extraction efficiency (ηεχί) depends on electroluminescence 3 201039466 087175ITW 30332twf.doc/n Whether the light emitted by the photodiode can be effectively emitted to the outside of the electroluminescent diode is limited by the total internal reflection, the conventional electroluminescent diode The emitted light is confined within the substrate and the light guiding layer of the electroluminescent diode. That is, the light emitted by the emitting layer of the electroluminescent diode must be smaller than the critical value of the substrate and the light guiding layer. The critical angle 'is likely to leave the electroluminescent diode and enter the air. In general, the light extraction efficiency (η 邮) of the conventional electroluminescent diode is only about 10% (about 10%~18%). Therefore, the space for improving the optical extraction efficiency (Tlext) is quite large, and many researchers have invested a lot of research into this research. Known methods for improving the efficiency of light extraction (llext), Mainly in A micro-structure is formed between the substrate of the electroluminescent diode and the light guiding layer, and the light confined in the substrate is scattered into the air by destroying the total reflection mechanism of the light. It adopts a micro structure such as a sawt00th texture structure, a microlens, or a pyramid type (micr〇_pyrimid). In addition, a periodic sub-wavelength is also formed on the surface of the electroluminescent diode|| In the study of sub-wavelength structure (photon 曰曰 )), a triangular lattice or a square lattice j body is used to guide the light guiding mode in the high refractive index material (guidedm = is the light mode) State (airmode). 5 There have been some recent attempts to utilize nano-metal structures. Because of the high optical scattering efficiency of the structure, it can destroy the full = replacement system, so that it is said to be in the electroluminescent diode plate or Light guide =

201039466 U8/i V3U 30332twf.doc/n 散射到线巾。相關的研究巾雜用在電致發光二極體的 基板上製作奈米金屬線的做法;或者是,在美國專利公開 號 US 2006/0273327 A卜 US 2007/0120136 等中所提到的 在電致發光二極體内製作奈米金屬光栅的做法。 ,由於奈米金屬結構的尺寸相當小(數十〜數百奈 米),所以奈米金屬結構相對於先前的透明微型結構,可 以更均勻地將光線從電致發光二極體的基板或導光層中没 取出來,而,在上述製作奈求金屬結構(奈求金屬線、 奈求金屬光栅)的綠中,必須採用昂貴的電 術及精密度高的乾絲刻機,以將電子束製作的圖案轉^ ^電致發光二極體的基板上。此魏法不但成本高、速度 十艾,且不適用於大面積的製造以及量產。 【發明内容】 有鑑於此,本發明提供一種光源裝置的製造方法,具 Ϊ低成本1作簡單、可大面積均勻製造奈米金屬結構的 ’點’以製造出具有高歧取效率(lw)的光源裝置。 本發明還提供-種光源裝置,利用上述的光源裝置的 1法’可製造出具有高紋取效率(η⑶)的光源裝置。 1於上述’本發明提出一種光源裝置的製造方法。首 周圍,其具有一發光元件區及位於發光元件區 層U二繼之:於基板上方形成一奈米島狀圖案 二 以板的發光70件區形成-發光it件,其中, X 一7〇彳放㈣—紐,且部分光線於基板巾進行傳輸, 5 201039466 087175ITW 30332twf.doc/n 而奈米島狀圖案層使在基板中傳輸的光線向基板的外部出 射。 在本發明的一實施例中,上述形成奈米島狀圖案層的 方法包括下列步驟。首先,於基板上形成一奈来材料^。 接著,加熱奈米材料層,以使奈米材料層產生去^潤 (dewetting)作用,而形成非週期性地排列的多數個奈 狀物。 ’丁、/、旬 在本發明的-實施例中,上述加熱奈米 是10分鐘〜60分鐘。 J吁间 在本發明的-實施例中,上述加熱奈 是20(TC〜400。(:。 7寸層的/皿度 在本發明的-實施例中,上述於基板上 層的方法包括濺鍍法。 /圾一丁、水材枓 在本發明的-實施例中,上述奈 奈米〜20奈米。 1 7寸增的厗度為1 在本發明的一實施例中,上诚為 層之前,更包括於基板上先形成發光“形成奈米材料 在本發明的一實施例中,上 i t電極層。 基板的發光元件區。 τ馬狀圖案層形成於 在本發明的一貫施例中,上述太 基板的周邊區。 过不未島狀圖案層形成於 在本發明的一實施例中,上太 包括金屬,上述金屬是選自於金、狀圖案層的材質 本發明再提出—種光 署 '七鎳、鐵及其組合。 種先轉置,包括騎、奈㈣狀圖 201039466 υδ/ι/jii 30332twf.doc/n 案層以及發光元件。基板具有一發光元件區以及位於發光 元件區周圍的一周邊區。奈米島狀圖案層配置於基板上 方。發光元件設置於發光元件區,其中,發光元件放射出 一光線,且部分光線於基板中進行傳輸,而奈米島狀圖案 層使在基板中傳輸的光線向基板的外部出射。 在本發明的一實施例中,上述奈米島狀圖案層包括非 週期性地排列的多數個奈米島狀物。 在本發明的一實施例中,上述奈米島狀圖案層設置於 u 基板的發光元件區。 在本發明的一實施例中,上述奈米島狀圖案層設置於 基板的周邊區。 在本發明的一實施例中,上述奈米島狀圖案層的材質 包括金屬。上述金屬是選自於金、銀、鎳、鐵及其組合。 日在本發明的一實施例中,上述奈米島狀圖案層的厚度 是介於1奈米〜20奈米之間。 在本發明的一實施例中,上述發光元件包括第一電 ❹ 極、發光層以及第二電極。第-電極配置於基板上。發光 層配置於第—電極的上方。第二電極配置於發光層的上方。 产在本發明的一實施例中,上述第一電極的材質包括銦 錫氧化物或銦鋅氧化物。 在本發明的一實施例中,上述第二電極的材質包括金 屬。 、 在本發明的一實施例中,更包括一電洞傳輸層,設置 於第一電極與發光層之間。此電洞傳輸層的材質包括Ν,Ν,- 7 201039466 087175ITW 30332twf.doc/n 兩(1-萘基)_N,N’兩-(苯基對二氨基聯苯(NP]B)。 在本發明的一實施例中,更包括一電子傳輸層,設置 於發光層與第二電極之間。此電子傳輸層的材質包括三(8_ 經基01琳)鋁(A1Q3)。 一在本發明的一實施例中,上述發光層的材質包括經摻 雜二(8-羥基喹啉)鋁(aiqs)的混合發光材質。 本發明的光源裝置的製造方法,因利用加熱奈米材料 層時,奈米材料層會產生去顧作用而自動形成奈米島狀 圖案層的方法’藉此可簡單、快速且大面積均自製造用於 提高光汲取效率的奈米島狀圖案層。具有此奈米島狀圖案 層的光源裝置,可良好地耗合出在光職置的基板内部傳 輸的光線。相對於習知的電致發光二極體,本發明的 裝置的整體發光效率可提昇約7〇%左右。 為讓本發明之上述特徵和優點能更明顯易僅,下文特 舉實施例,並配合所附圖式作詳細說明如下。 【實施方式】 光源裝置的製造方法 圖1A〜圖1D為本發明較佳實施 =的製作流程示意圖。首先,請參照圖 2 此基板則具有1光元件區咖 發先兀件區ll〇a周圍的一周迖 爾、 a ^ 鬥邊區110b。此基板110的材 貝了=玻璃、石夬或任何可耐高溫的透明 接考,請同時參照圖他與圖lc,於基板削上方形 201039466 087175ITW 30332twf.doc/n 成一奈米島狀圖案層120。如圖IB所示,在基板110上形 成奈米島狀圖案層120之前,可以於基板110上先形成後 續的發光元件130(繪示於圖1D中)的第一電極層130a。 在形成第一電極層130a之後,再繼續於此第一電極層130a 上形成奈米島狀圖案層120,如圖1C所示。形成此第一電201039466 U8/i V3U 30332twf.doc/n Scattered to the wire towel. A related study towel is used to make a nanowire on a substrate of an electroluminescent diode; or, in the case of U.S. Patent Publication No. US 2006/0273327 A, US 2007/0120136, etc. The practice of making nano metal gratings in a photoluminescent diode. Since the size of the nano metal structure is quite small (tens to hundreds of nanometers), the nano metal structure can more uniformly direct light from the substrate or guide of the electroluminescent diode than the previous transparent microstructure. The optical layer is not taken out, but in the green of the above-mentioned metal structure (for metal wire, metal grating), expensive electrosurgery and high precision dry wire engraving machine must be used to The pattern produced by the beam is transferred to the substrate of the electroluminescent diode. This Weifa is not only costly and speedy, but also not suitable for large-scale manufacturing and mass production. SUMMARY OF THE INVENTION In view of the above, the present invention provides a method for fabricating a light source device, which has a low cost and is simple, and can produce a 'point' of a nano metal structure in a large area to produce a high disproportion efficiency (lw). Light source device. The present invention also provides a light source device capable of producing a light source device having a high picking efficiency (η(3)) by the above-described method of the light source device. 1 In the above, the present invention proposes a method of manufacturing a light source device. The first periphery has a light-emitting element area and is located in the light-emitting element area layer U: a nano-island-like pattern is formed on the substrate, and a 70-element light-emitting area is formed by the light-emitting element, wherein X-7〇彳Place (four)-new, and part of the light is transmitted on the substrate towel, 5 201039466 087175ITW 30332twf.doc/n and the nano-pattern layer causes the light transmitted in the substrate to be emitted to the outside of the substrate. In an embodiment of the invention, the above method of forming a nano-island pattern layer comprises the following steps. First, a nanomaterial ^ is formed on the substrate. Next, the layer of nanomaterial is heated to cause dewetting of the layer of nanomaterial to form a plurality of nebulities that are non-periodically aligned. In the embodiment of the present invention, the above-mentioned heated nano is 10 minutes to 60 minutes. In the embodiment of the present invention, the above heating is 20 (TC to 400. (: 7 inch layer/dishness in the embodiment of the invention, the above method for the upper layer of the substrate includes sputtering) In the embodiment of the present invention, the above-mentioned nanometer ~ 20 nm. The increase of 1 7 inch is 1 in an embodiment of the present invention, before the layer is Further, forming a light-emitting "formation of a nano-material in the embodiment of the present invention, the upper electrode layer. The light-emitting element region of the substrate. The τ horse-like pattern layer is formed in the consistent embodiment of the present invention, The peripheral region of the above-mentioned sub-substrate. The non-island-like pattern layer is formed in an embodiment of the present invention, the upper portion includes a metal, and the metal is a material selected from the group of gold and patterned layers. Department of 'seven nickel, iron and their combination. The species is transposed first, including riding, nai (four) graph 201039466 υδ / ι / jii 30332twf.doc / n layer and light-emitting elements. The substrate has a light-emitting element area and located in the light-emitting element area a surrounding area around the island. The nano-patterned layer is disposed on the substrate. The light emitting element is disposed in the light emitting element region, wherein the light emitting element emits a light, and part of the light is transmitted in the substrate, and the nano island pattern layer causes the light transmitted in the substrate to be emitted to the outside of the substrate. In one embodiment, the nano island-shaped pattern layer includes a plurality of nano islands arranged non-periodically. In an embodiment of the invention, the nano island pattern layer is disposed in a light emitting element region of the u substrate. In an embodiment of the invention, the nano island-shaped pattern layer is disposed in a peripheral region of the substrate. In an embodiment of the invention, the material of the nano-island-shaped pattern layer comprises a metal. The metal is selected from the group consisting of gold, Silver, nickel, iron, and combinations thereof. In an embodiment of the invention, the thickness of the nano island-shaped pattern layer is between 1 nm and 20 nm. In an embodiment of the invention, the above The light-emitting element includes a first electrode, a light-emitting layer, and a second electrode. The first electrode is disposed on the substrate, and the light-emitting layer is disposed above the first electrode, and the second electrode is disposed on the light-emitting layer. In an embodiment of the invention, the material of the first electrode comprises indium tin oxide or indium zinc oxide. In an embodiment of the invention, the material of the second electrode comprises a metal. In one embodiment, a hole transport layer is further disposed between the first electrode and the light emitting layer. The material of the hole transport layer includes Ν, Ν, - 7 201039466 087175ITW 30332twf.doc/n two (1 Naphthyl)-N,N'-di-(phenyl-p-diaminobiphenyl (NP)B). In an embodiment of the invention, an electron transport layer is further disposed between the light-emitting layer and the second electrode. The material of the electron transport layer comprises three (8_base 01 Lin) aluminum (A1Q3). In an embodiment of the invention, the material of the light-emitting layer comprises doped bis(8-hydroxyquinoline) aluminum (aiqs) ) A hybrid illuminating material. In the method for manufacturing a light source device according to the present invention, when a layer of a nano-material is used, a method in which a nano-material layer is used to automatically form a nano-island-like pattern layer can be produced, thereby making it simple, fast, and large-area self-manufacturing. A nano island-like pattern layer for improving light extraction efficiency. The light source device having this nano island-like pattern layer can well absorb the light transmitted inside the substrate where the optical device is placed. The overall luminous efficiency of the device of the present invention can be increased by about 7% relative to conventional electroluminescent diodes. The above described features and advantages of the present invention will become more apparent and obvious. [Embodiment] Method of Manufacturing Light Source Device FIG. 1A to FIG. 1D are schematic diagrams showing a manufacturing process of a preferred embodiment of the present invention. First, referring to Fig. 2, the substrate has a one-week area around the first element area ll〇a, and a side area 110b. The material of the substrate 110 = glass, stone enamel or any transparent high temperature resistant test, please refer to the figure and lc at the same time, and cut the square on the substrate 201039466 087175ITW 30332twf.doc / n into a nanometer pattern layer 120 . As shown in FIG. 1B, before the nano island-like pattern layer 120 is formed on the substrate 110, the first electrode layer 130a of the subsequent light-emitting element 130 (shown in FIG. 1D) may be formed on the substrate 110. After the first electrode layer 130a is formed, the nano island pattern layer 120 is formed on the first electrode layer 130a, as shown in FIG. 1C. Forming this first electricity

Ο 極層130a的方法例如是濺鍍法,且第一電極13〇a的材質 包括銦錫氧化物或銦鋅氧化物。當然,奈米島狀圖案層120 也可直接形成於基板110上,本發明並不限定奈米島狀圖 案層120 —定要形成於第一電極層130a上。 請繼續參照圖1C’奈米島狀圖案層120可形成於基板 110的周邊區110b。當然,奈米島狀圖案層12〇也可形成 於基板110的發光元件區ll〇a (繪示於圖4中),或是同 時形成於基板110的發光元件區ll〇a與周邊區11〇b (未 繪示)。另外’奈米島狀圖案層120的材質包括金屬。當使 用金屬作為奈米島狀圖案層120的材質時,金屬可選自於 金、銀、鎳、鐵及其組合。 以下將詳細說明本發明的奈米島狀圖案層12〇的製作 流程。圖2A〜圖2B為本發明較佳實施例的一種奈米島狀 圖案層的製作流程示意圖。在此實施例巾,是以直接於基 板110上製作奈米島狀圖案層120來進行說明,當然,也 可以於上述的第-電極層130a上進行類似的製程:、、 首先,請參照圖2A,於基板110上形成一太乎 120a。於基板11G上形成奈米材料層12 ’包減^ 法。可經由控制魏法的製程時間來控制奈米材; 9 201039466 087175ITW 30332twf.d〇c/n 的厚度,奈米材料層120a的厚度較佳為}奈米〜2〇奈米。 值得注意的是,可視需求於基板11〇上形成大面積的奈米 材料層120a,以利於後續的加熱製程中形成大面積的奈米 島狀圖案層120。 μ 接著,請參照圖2Β,加熱奈米材料層12〇a,以使奈 米材料層120a產生去濕潤(dewetting)作用,而形成非週期 性地排列的多數個奈米島狀物12〇b。由這些奈米島狀物 120b即構成上述的奈米島狀圖案層12〇。上述加熱奈米材 料層120a的時間較佳為10分鐘〜6〇分鐘。並且,加熱奈 米材料層120a的溫度較佳為2〇{rc〜4〇〇〇c。 丁 值得注意的是’奈米材料層·的厚度控制相當重 要,在對奈米材料層12〇a加熱時,具有適當厚度(即上述 1奈米〜20奈米)的奈米材料層12〇a可以順利地進行去濕 潤作用,而形成多數個奈米島狀物120b。 ' 圖3A〜圖3D為本發明較佳實施例的奈米島狀圖案層 在加熱過程中’於不同時間下的電子顯微照像圖。請先參 照圖3A〜3B ’在加熱過程巾,使得奈米材料層12〇&的原 子的熱能增加。由於奈米材料層12Ga與基板11〇 (緣示於 之間的附著性不足以支撐此擾動熱㊣,在減小表面 能的物理作關制下,會導致奈米材料層伽裂開。到最 後,如圖3C與圖3D所示,奈米材料層120a會裂開,並 凝來成多個非週期性排列且外型不規則的奈米島狀物 1通此即利用去濕潤(dewetting)作用製作奈米島狀圖案 層120的機制。 ’ 10 201039466 us /1 /DU \V 30332twf.doc/n 由上述可知,本發明的非週期性地排列的多數個奈米 島狀物12%可說是因原子内聚力而自發成形的不規則島 狀物。相對於習知具有週期性且規則圖案的奈米金屬線與 奈米金屬光柵而言,本發明的奈米島狀圖案層12〇無須採 用精检度南的製程與設備來製作特殊型態的奈米金屬結 構,而具有成本低、製程簡單等優點。 睛繼續參照圖1D,於基板110的發光元件區11〇a形 成一發光元件13〇,其中,發光元件130放射出一光線l、 且部分光線L於基板11〇中進行傳輸,而奈米島狀圖案層 120使在基板110中傳輸的光線L向基板11〇的外部出射。 至此’完成光源裝置100的製作。 、特別是,由於本發明可以在基板11〇上形成大面積的 奈米島狀圖案層120,所以相當適合用於製作具有大面積 以及咼亮度的光源裝置1〇〇。更詳細而言,上述的光源裝 置100可以應用在大尺寸平面顯示器的背光模組的製作 中。另外,由於奈米島狀圖案層丨2〇的製作過程相當簡單, ❹ 使得本發明具有較咼的生產效率與成本優勢。以下將繼續 說明光源裝置100的詳細構造。 光源裝置 ,请繼續參照圖1D,此光源裝置1〇〇包括基板11〇、奈 米島狀圖案層120以及發光元件13〇。基板11〇具有一發 光兀件區110a以及位於發光元件區11(^周圍的一周邊區 。奈米島狀圖案層12〇配置於基板11〇上方。發光元 201039466 08717^11 w JUi32tw£doc/n 件130設置於發光元件區11〇a,其中,發光元件⑽放射 出一光線L,且部分光線L於基板11〇巾進行傳輸,而奈 米島狀圖案層120使在基板110中傳輸的光線L向美板ιι〇 的外部出射。 土 請繼續參照圖1D’發光元件130例如是採用電致發光 二極體。發光元件130包括第一電極13〇a、發光層13% 以及第二電極13〇c。第一電極n〇a配置於基板11〇上。 發光層130b配置於第一電極130a的上方。第二電極i3〇c 配置於發光€ 130b的上方。第-電極13〇a的材質包括姻 錫氧化物或銦鋅氧化物。第二電極13〇c的材質包括金屬。 由圖1D可知,第一電極130a與第二電極13〇c分別 連接到正極(+ )與負極(_),所以第一電極13〇a提供電 洞(未繪示),第二電極13〇(;提供電子(未繪示)。電子與 /同在發光層130b結合後,即形成光子(未纟會示)出射到 發光元件130的外部。 另外,發光元件130可更包括一電洞傳輸層13〇d,設 置於第一電極13〇a與發光層i3〇b之間。此電洞傳輪層 130d的材質可以是N,N,-兩(1-萘基)-N,N,兩-(苯基)-對二氨 基聯苯(NPB)。再者,發光元件130也可以更包括—電子 傳輸層13〇e,設置於發光層13〇b與第二電極13〇e之間。 此電子傳輪層130e的材質可以是三(8_羥基喹啉)鋁 (A1Q3)。如此一來,可提昇電子與電洞在發光元件 内的傳輸效率’進一步提昇發光元件13〇的發光效率。 再者,發光層130b的材質可以是經摻雜三羥基喹 12 201039466 υ〇 / i / jj λ iV 30332twf.doc/n 琳)銘(A1Q3)的混合發光材f,亦即,可賦评光声隱 電:傳輸層_的功能’而無需另外製作電子傳輸; 以減少發光元件130整體的厚度。 上述發光元件i30僅以電致發光二極體為例,實際 上,發光兀件13G還可以是採用量子井的發光元件、冷陰 極營光燈或是任何可發光的發光元件。纽並不予以限定 發光元件130的種類。The method of the gate layer 130a is, for example, a sputtering method, and the material of the first electrode 13a includes an indium tin oxide or an indium zinc oxide. Of course, the nano island pattern layer 120 can also be formed directly on the substrate 110. The present invention does not limit the nano island pattern layer 120 to be formed on the first electrode layer 130a. Referring to FIG. 1C', the nano-pattern layer 120 may be formed on the peripheral region 110b of the substrate 110. Of course, the nano-island pattern layer 12 can also be formed on the light-emitting element region 11a (shown in FIG. 4) of the substrate 110, or simultaneously formed on the light-emitting element region 11a and the peripheral region 11 of the substrate 110. b (not shown). Further, the material of the nano island-like pattern layer 120 includes a metal. When a metal is used as the material of the nano island-like pattern layer 120, the metal may be selected from the group consisting of gold, silver, nickel, iron, and combinations thereof. The production flow of the nano island-like pattern layer 12 of the present invention will be described in detail below. 2A to 2B are schematic views showing a manufacturing process of a nano island-shaped pattern layer according to a preferred embodiment of the present invention. In this embodiment, the nano-island pattern layer 120 is formed directly on the substrate 110. Of course, a similar process may be performed on the first electrode layer 130a: First, please refer to FIG. 2A. Approximately 120a is formed on the substrate 110. A nano-material layer 12' package reduction method is formed on the substrate 11G. The nanomaterial can be controlled by controlling the processing time of the Wei method; 9 The thickness of the 201039466 087175ITW 30332twf.d〇c/n, the thickness of the nano material layer 120a is preferably □ nanometer ~ 2 〇 nanometer. It should be noted that a large area of the nano material layer 120a is formed on the substrate 11A as needed to facilitate formation of a large area of the nano-island pattern layer 120 in the subsequent heating process. μ Next, referring to Fig. 2A, the nano material layer 12〇a is heated to cause dewetting of the nano material layer 120a to form a plurality of nano islands 12〇b which are non-periodically arranged. The nano island-like pattern layer 12b constitutes the above-described nano island-like pattern layer 12'. The time for heating the nanomaterial layer 120a is preferably from 10 minutes to 6 minutes. Further, the temperature of the heated nano material layer 120a is preferably 2 〇 {rc 〜 4 〇〇〇 c. It is worth noting that the thickness control of the nano material layer is very important. When the nano material layer 12〇a is heated, the nano material layer 12 with a suitable thickness (ie, 1 nm to 20 nm above) a can be smoothly dehumidified to form a plurality of nano islands 120b. 3A to 3D are electron micrographs of a nano island-like pattern layer in a heating process at different times in a preferred embodiment of the present invention. Referring to Figures 3A to 3B', in the heating process, the thermal energy of the atom of the nanomaterial layer 12〇& Since the nano material layer 12Ga and the substrate 11〇 (the adhesion between the edges is insufficient to support the disturbing heat positive, under the physical control of reducing the surface energy, the nano material layer may be germinated. Finally, as shown in FIG. 3C and FIG. 3D, the nano material layer 120a is cracked and condensed into a plurality of non-periodically arranged and irregularly shaped nano islands 1 by dewetting. The mechanism for producing the nano-island-like pattern layer 120. ' 10 201039466 us /1 /DU \V 30332twf.doc/n As can be seen from the above, 12% of the non-periodically arranged plurality of nano islands of the present invention can be said to be Irregular islands spontaneously formed by atomic cohesion. Compared to conventional nanowires and nanometal gratings having a periodic and regular pattern, the nano island pattern layer 12 of the present invention does not need to be inspected. The process and equipment of the south of the country to produce a special type of nano metal structure, and has the advantages of low cost, simple process, etc. Further, referring to FIG. 1D, a light-emitting element 13 is formed on the light-emitting element region 11A of the substrate 110, Wherein, the light emitting element 130 emits a light l, and part of the light L is transmitted in the substrate 11A, and the nano-island pattern layer 120 causes the light L transmitted in the substrate 110 to be emitted to the outside of the substrate 11. Thus, the fabrication of the light source device 100 is completed. Since the present invention can form a large-area nano-island-like pattern layer 120 on the substrate 11A, it is quite suitable for producing a light source device 1 having a large area and a brightness. In more detail, the above-described light source device 100 It can be applied to the fabrication of backlight modules for large-size flat panel displays. In addition, since the fabrication process of the nano-island-like pattern layer 丨2〇 is relatively simple, the present invention has a relatively high production efficiency and cost advantage. The light source device 100 is further configured with reference to FIG. Located in a peripheral region around the light-emitting device region 11 (the peripheral island-shaped pattern layer 12 is disposed above the substrate 11A. The light-emitting element 201039466 08717^11 w JUi32 The tw£doc/n piece 130 is disposed in the light emitting element region 11A, wherein the light emitting element (10) emits a light L, and part of the light L is transmitted on the substrate 11 wipe, and the nano island pattern layer 120 is made on the substrate 110. The light L transmitted in the middle is emitted to the outside of the board. Please continue to refer to FIG. 1D. The light-emitting element 130 is, for example, an electroluminescent diode. The light-emitting element 130 includes a first electrode 13a, a light-emitting layer 13%, and The second electrode 13〇c is disposed on the substrate 11A. The light-emitting layer 130b is disposed above the first electrode 130a. The second electrode i3〇c is disposed above the illumination €130b. The material of the first electrode 13A includes a tin oxide or an indium zinc oxide. The material of the second electrode 13〇c includes a metal. As shown in FIG. 1D, the first electrode 130a and the second electrode 13〇c are respectively connected to the positive electrode (+) and the negative electrode (_), so the first electrode 13〇a provides a hole (not shown), and the second electrode 13〇 (Electrical (not shown) is provided. After the electrons are combined with the light-emitting layer 130b, photons (not shown) are emitted to the outside of the light-emitting element 130. In addition, the light-emitting element 130 may further include a hole transmission. The layer 13〇d is disposed between the first electrode 13〇a and the light-emitting layer i3〇b. The material of the hole-passing layer 130d may be N, N, -2 (1-naphthyl)-N,N. Bis-(phenyl)-p-diaminobiphenyl (NPB). Further, the light-emitting element 130 may further include an electron transport layer 13〇e disposed between the light-emitting layer 13〇b and the second electrode 13〇e The material of the electron transport layer 130e may be tris(8-hydroxyquinoline) aluminum (A1Q3). In this way, the transmission efficiency of electrons and holes in the light-emitting element can be improved, and the light-emitting element 13 can be further improved. Further, the material of the light-emitting layer 130b may be doped trihydroxyquine 12 201039466 υ〇 / i / jj λ iV 30332twf.doc/n Lin) Ming (A The mixed luminescent material f of 1Q3), i.e., the function of the photoacoustic hidden light: transport layer _ can be evaluated without additionally making electron transport; to reduce the thickness of the entire light-emitting element 130. The above-mentioned light-emitting element i30 is exemplified by only an electroluminescent diode. Actually, the light-emitting element 13G may be a light-emitting element using a quantum well, a cold cathode lamp or any light-emitting element that can emit light. The type of the light-emitting element 130 is not limited.

值得注思的疋,請同時參照圖2B與圖,奈米島狀 圖案層120包括非週期性地排列的多數個 120b。由於這些奈米島狀物12〇b是隨機地排列所以可進 一步提昇對於發光元件130所發出的光線L進行散射的效 率再者,製作這些奈米島狀物120b的方法相當簡單,已 陳述於圖2A〜圖2B、圖3A〜圖3D的相關内容,因此, 此光源裝置100相當容易量產。 還可配合光源裝置100的光學需求,進行奈米島狀圖 案層120的設置位置的變換。圖4為本發明較佳實施例另 種光源裝置的示意圖。請參照圖4,此光源裝置1〇〇a與 如圖1D所示的光源裝置100類似,二者主要的差異在於: 如圖4所示的奈米島狀圖案層12〇是設置於基板11〇的發 光元件區110a;而如圖id所示的奈米島狀圖案層12〇是 設置於基板110的周邊區ll〇b。當然,也可同時於基板11〇 的發光元件區ll〇a與周邊區11〇b形成奈米島狀圖案層12〇 (未繪示)。另外’奈米島狀圖案層120也不侷限於設置在 發光元件130的結構内,也可設置在發光元件13〇的表面 13 201039466 0871751TW 30332twf.doc/n (未緣示)。 ^此奈米島狀圖案層12G具有相當高的光散射能力,能 破壞光線L在基板no内所進行的全反射現象,而減少被 束缚在基板110内的光線L的比例。圖5為圖4的光源裝 置在不同位置的正向發光強度的曲、_。剌時參考圖* 與圖5 ’很明顯地,在光源裝置1〇〇a的發光元件區ιι〇&, 光線L的發光強度提昇相當多。再者,在發光元件區 與周邊區110b的交界處(位置為1〜1 75mm左右;以及 位置為3,25〜4.0mm左右)也有部分的奈米島狀圖案層12〇 的分佈,所以此處亦會產生額外的發光強度。 在一般沒有設置奈米島狀圖案層12〇的光源裝置(未 繪不)中,光線(未繪示)會受限於全反射,而有較低的 發光強度·,但利用在發光元件區110a上設置奈米島狀圖案 層120,可以有效地將束缚在基板11〇内的光線匕取出。 換S之,此奈米島狀圖案層120可提高光源裝置1〇〇、1〇〇a 的光汲取效率(r!ext),以增加被導出基板11〇的光線L 的出光量。 、上述奈米島狀圖案層120的材質選擇相當重要。圖6 為不同材質的奈米顆粒的光散射效率的曲線圖。若以奈米 ,為例,光散射效率可由下述散射戴面積Csca((〇)的公式 來進行評估: C^(c>) = 4^3x—,T4i4l 3 UJ m[4(的+ 2〜]2+〇) 14 201039466 uo/i/Jii W3〇332twf.doc/n 其中’ r為奈米球的半徑、λ為入射光的波長、為空 氣的介電係數(二1)、ερ為奈米球的介電係數、ε,ρ為奈米 球的介電係數ερ的實部(realpart)、ε,,ρ為奈米球的介電 係數ερ的虛部(imaginaiypart),①為]#,為光的頻率。 ερ的值與入射光的波長、奈米球的大小與形狀等相 關。圖6是以金奈米球(Au nano-particle)與二氧化石夕奈 米球(Si〇2 nano_partide )為例,利用上述散射截面積公式, 在入射光的波長為550nm時,分別計算金奈米球與二氧化 〇 矽奈米球在不同尺寸下的散射截面積。 由圖6可知,金奈米球(au nano_partjcie)的光散射 效率比一氧化砍奈米球(Si〇2 nan〇 particle )的光散射效率 大100〜1,000倍。由此可知,金奈米球是一種很強的光散 射結構,可以更均勻地將光線L從基板丨1〇中汲取出來。 亦即,當選用金屬作為奈米島狀圖案層12〇的材質時,可 更有效地提昇光散射效率。奈米島狀圖案層12〇的材質較 佳是金屬。金屬可以是選自於金、銀、錄、鐵及其組合。 ❹ 7為奈米島狀W絲在不同厚度下的發光強度的示 意圖。凊參照圖7,採用了金、銀等兩種材質進行奈米島 狀圖案層12G的製作’其中,橫座標代表奈米島狀圖案層 120的厚度’縱座標代表光源裝置·、⑽&的發光強度。 由圖7可以看出,當奈米島狀圖案層12G的較佳厚度介於 1奈米〜20奈米之間’光源裝置100、100a可具有較佳的 發光強度。 凊繼續參照圖7,當奈米島狀圖案層12G的厚度為〇, 15 201039466 0871751TW 3〇332twf.doc/n 也就是不具有奈米島狀圖案層120的時候,此時的光、原 置(未緣示)的發光強度約為0.05。以此一數值作為^數 (即0.05),比較具有+同厚度的奈米島狀圖朗^ 光源裝置100、100a的發光強度相對於此基數(即〇 〇 提昇了多少發光強度,即可計算發光效率的增加百分比。 更詳細而言,將具有不同厚度的奈米島狀圖案層m 的光源裝置100、100a的發光強度減去〇 〇5,再除以_ 並乘上100後,即發光效率的增加百分比。例如;、· 金材質製作的奈米島狀圖案層120且厚度為2奈^,豆 發光強度約為可計算其魏效率的增加百分了 (0.09-0.05) ^ 〇.〇5 X 1〇〇〇/0 = 80〇/〇 0 ^圖7可知’相較沒有設置奈米島狀圖案層12〇的光 ^說’具有奈米島狀圖案層120的光源 j H)0、施的發光效率增加了約7()%左右,此 光子晶體結構、奈米金屬線與奈米 在ί = 術相當’但是本發明的奈米島狀圖案層12〇 杜構上與製程上都來_對料且方便許多。 優點综上所述,本發㈣辆裝置及其製造方法具有以下 光源裝置具有奈米島狀圖案層 中的全反射機制⑽錢減Μ破料線在基板 光汲取效率血高4 基板外部出射’故具有較高的 簡單、4二;:制;米島狀圖案層的製作相當 性排列的多個夺米島^的^作。另外’所形成的非週期 不卡島狀物遇可提昇光線散射效率。特別 201039466 U8/i/Dii\V30332twf.doc/n ΐ日:本!:!!光源裝置的製造方法,在製作奈来島狀圖案 =制φ貴的電子束微影技術,亦無須配合精密 大刚:ίΐ以!電子束製作的圖案轉換到基板上,故能 箱Ρ’、成本,簡化製程以提升競爭力。 太恭Γ、、本發明已以實施·露如上,然其並非用以限定 術領域中具有通常知識者,在不_ 發圍内,當可作些許之更動與潤飾,故本 ’、濩範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 警造:^圖1D為本發明較佳實施例的—種光源裝置的 方法的製作流程示意圖。 牵岸〜圖2β為本發明較佳實施綱—種奈米島狀圖 案層的製作流程示意圖。 口 Ο 在加f3D為本發明較佳實施觸奈米島狀圖案層 二過程中’於不㈣間下的電子顯微照像圖。 =4為本發明較佳實施例另—種光源裝置的示意圖。 曲線^ 7為圖4的光源裝置在不同位置的正向發光強度的 ^ 6為不同材質的奈米顆粒的光散射效率的曲線圖。 意圖17為奈米島狀圖案層在不同厚度下的發光強度的示 201039466 087175ITW 30332twf.doc/n 【主要元件符號說明】 100、100a :光源裝置 110 :基板 ll〇a :發光元件區 110b :周邊區 120 :奈米島狀圖案層 120a :奈米材料層 120b :奈米島狀物 130 :發光元件 130a :第一電極 130b :發光層 130c :第二電極 130d :電洞傳輸層 130e :電子傳輸層 L :光線 18Noteworthy, please refer to Fig. 2B and Fig. 2, the nano island pattern layer 120 includes a plurality of non-periodically arranged 120b. Since these nano islands 12〇b are randomly arranged, the efficiency of scattering the light L emitted from the light-emitting element 130 can be further improved. The method of fabricating these nano islands 120b is relatively simple, and has been described in FIG. 2A. 2B and 3A to 3D, the light source device 100 is relatively easy to mass-produce. The arrangement position of the nano island pattern layer 120 can also be changed in accordance with the optical requirements of the light source device 100. Figure 4 is a schematic illustration of another light source apparatus in accordance with a preferred embodiment of the present invention. Referring to FIG. 4, the light source device 1A is similar to the light source device 100 shown in FIG. 1D. The main difference between the two is that the nano island pattern layer 12 is disposed on the substrate 11 as shown in FIG. The light-emitting element region 110a; and the nano-island-like pattern layer 12A shown in FIG. id is disposed in the peripheral region 11b of the substrate 110. Of course, a nano island-like pattern layer 12 (not shown) may be formed simultaneously on the light-emitting element region 11a of the substrate 11A and the peripheral region 11b. Further, the 'nano island-like pattern layer 120 is not limited to being disposed in the structure of the light-emitting element 130, and may be provided on the surface 13 of the light-emitting element 13A 201039466 0871751TW 30332twf.doc/n (not shown). This nano island-like pattern layer 12G has a relatively high light-scattering ability, and can destroy the total reflection phenomenon of the light L in the substrate no, and reduce the proportion of the light L bound in the substrate 110. Fig. 5 is a graph showing the forward luminous intensity of the light source device of Fig. 4 at different positions. Referring to Fig. 4 and Fig. 5', it is apparent that the luminous intensity of the light L is considerably increased in the light-emitting element area of the light source device 1A. Further, at the boundary between the light-emitting element region and the peripheral region 110b (the position is about 1 to 1 75 mm; and the position is about 3, 25 to 4.0 mm), there is also a distribution of a part of the nano-island-like pattern layer 12, so here It also produces additional luminous intensity. In a light source device (not shown) in which the nano island-like pattern layer 12 is not generally provided, light (not shown) is limited to total reflection, and has a low luminous intensity, but is utilized in the light-emitting element region 110a. The nano island-like pattern layer 120 is provided thereon, and the light trapped in the substrate 11 can be effectively taken out. In other words, the nano island-like pattern layer 120 can increase the light extraction efficiency (r!ext) of the light source devices 1A, 1A to increase the amount of light emitted by the light L of the substrate 11 to be led out. The material selection of the above-mentioned nano island-shaped pattern layer 120 is quite important. Figure 6 is a graph showing the light scattering efficiency of nanoparticles of different materials. In the case of nanometers, for example, the light scattering efficiency can be evaluated by the following formula for the scattering wearing area Csca((〇): C^(c>) = 4^3x—, T4i4l 3 UJ m[4 (+ 2 ~]2+〇) 14 201039466 uo/i/Jii W3〇332twf.doc/n where 'r is the radius of the nanosphere, λ is the wavelength of the incident light, the dielectric constant of the air (two 1), ερ is The dielectric coefficient, ε, ρ of the nanosphere is the real part of the dielectric coefficient ερ of the nanosphere, ε, and ρ is the imaginary part of the dielectric coefficient ερ of the nanosphere, 1 is] #, is the frequency of light. The value of ερ is related to the wavelength of incident light, the size and shape of the nanosphere. Figure 6 is the Au nano-particle and the SiO2 〇 2 nano_partide ), for example, using the above-described scattering cross-sectional area formula, the scattering cross-sectional areas of the gold nanospheres and the cerium dioxide nanospheres at different sizes are calculated at the wavelength of the incident light of 550 nm. The light scattering efficiency of the nautical nanosphere (au nano_partjcie) is 100 to 1,000 times greater than that of the oxidized nanosphere (Si〇2 nan〇particle). It can be seen that the gold nanosphere is a strong light scattering structure, which can more uniformly extract the light L from the substrate 。1 。. That is, when metal is selected as the material of the nano island pattern layer 12 ,, The light scattering efficiency is more effectively improved. The material of the nano island pattern layer 12 is preferably a metal. The metal may be selected from the group consisting of gold, silver, nickel, and the like. ❹ 7 is a nano island-shaped W wire at different thicknesses. Schematic diagram of the lower luminous intensity. Referring to Fig. 7, the nano island-like pattern layer 12G is produced by using two materials, such as gold and silver. [In which the abscissa represents the thickness of the nano-island-like pattern layer 120, the ordinate represents a light source device. Light intensity of (10) & It can be seen from Fig. 7 that when the preferred thickness of the nano island pattern layer 12G is between 1 nm and 20 nm, the light source devices 100, 100a can have better luminous intensity.凊Continuously referring to FIG. 7, when the thickness of the nano-island-like pattern layer 12G is 〇, 15 201039466 0871751 TW 3〇332 twf.doc/n, that is, when there is no nano-island-like pattern layer 120, the light at this time, the original ( Strong light It is about 0.05. Using this value as the number (ie, 0.05), the luminous intensity of the light source device 100, 100a having the same thickness is compared with the base number (ie, how much the luminous intensity is increased by 〇〇, The percentage increase of the luminous efficiency can be calculated. In more detail, the luminous intensity of the light source device 100, 100a having the nano-island pattern layer m having different thicknesses is subtracted by 〇〇5, divided by _ and multiplied by 100, That is, the percentage increase in luminous efficiency. For example, the nano-island pattern layer 120 made of gold material has a thickness of 2 nanometers, and the luminous intensity of the bean is about the percentage increase of the Wei efficiency (0.09-0.05) ^ 〇.〇5 X 1〇〇 〇/0 = 80〇/〇0 ^ Figure 7 shows that 'the light source j H with the nano island-like pattern layer 120 is smaller than the light source j ) with no nano island pattern layer 12 is set. About 7 ()% or so, the photonic crystal structure, the nano metal wire and the nanometer are equivalent to each other. However, the nano island-like pattern layer 12 of the present invention is both embossed and convenient in many processes. . Advantages As described above, the present invention has a light source device having a total reflection mechanism in a nano-island pattern layer (10) a money reduction and a broken line in the substrate light extraction efficiency blood height 4 outside the substrate ' It has a relatively simple, four-two;: system; the production of the rice island-shaped pattern layer is quite a series of multiple rice islands. In addition, the formed non-periodic non-calorie material can enhance the light scattering efficiency. Special 201039466 U8/i/Dii\V30332twf.doc/n Next day: Ben! :!! The manufacturing method of the light source device, in the production of the Nei Lai pattern = the φ expensive electron beam lithography technology, there is no need to cooperate with the precision Dagang: ΐ ΐ! The pattern produced by the electron beam is converted onto the substrate, so that the cost can be reduced and the process can be simplified to enhance competitiveness. Too much respect, the present invention has been implemented and exposed as above, but it is not intended to limit the general knowledge in the field of surgery, and in the absence of the hairline, when some changes and retouching can be made, the scope of this ', 濩This is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS: FIG. 1D is a schematic diagram showing a manufacturing process of a method of a light source device according to a preferred embodiment of the present invention. Fig. 2β is a schematic diagram of the production process of a preferred embodiment of the invention.口 Ο f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f = 4 is a schematic view of another light source device according to a preferred embodiment of the present invention. The curve ^ 7 is a graph of the light-emission efficiency of the nano-particles of different materials at a positive light-emission intensity of the light source device of Fig. 4 at different positions. Intention 17 is an indication of the luminous intensity of the nano island-shaped pattern layer at different thicknesses. 201039466 087175ITW 30332twf.doc/n [Main element symbol description] 100, 100a: Light source device 110: Substrate 11A: Light-emitting element region 110b: Peripheral region 120: nano island-like pattern layer 120a: nano material layer 120b: nano island 130: light-emitting element 130a: first electrode 130b: light-emitting layer 130c: second electrode 130d: hole transport layer 130e: electron transport layer L: Light 18

Claims (1)

201039466 _. . — W 〇0332twf.doc/n 七、申請專利範圍: I一種光源裝置的製造方法,包括·· 、及位於該發 提供一基板,該基板具有一發光元件區 光元件區周圍的一周邊區; 於該基板上方形成一奈米島狀圖案層;以及 於該基板的該發光元件區形成一發光元件;201039466 _. . — W 〇0332twf.doc/n VII. Patent application scope: I. A method for manufacturing a light source device, comprising: providing a substrate on the substrate, the substrate having a light-emitting element region around the optical element region a peripheral region; forming a nano island-like pattern layer over the substrate; and forming a light-emitting element in the light-emitting element region of the substrate; ❹ 其中,該發光元件放射出一光線、且部分該光線於該 基板中進行傳輸,而該奈米島狀圖案層使在該基板中傳g 的光線向該基板的外部出射。 2.如申請專利範圍第丨項所述的光源裝置的製造方 法,其中形成該奈米島狀圖案層的方法包括: 於該基板上形成一奈米材料層;以及 加熱該奈米材料層,以使該奈米材料層產生去濕潤 (dewetting)作用,而形成非週期性地排列的多數個奈米島 狀物。 3.如申請專利範圍第2項所选的光源裝置的製造方 法,其中加熱該奈米材料層的時間是分鐘〜60分鐘。 4·如申請專利範圍第2項所述的光源裝置的製造方 法,其中加熱該奈米材料層的温度是2〇〇°C〜40(TC。 5. 如申請專利範圍第2項所述的光源裝置的製造方 法,其中於該基板上形成該奈米材料層的方法包括濺鍍法。 6. 如申請專利範圍第2項所述的光源裝置的製造方 法,其中,該奈米材料層的厚度為1奈米〜20奈米。 7. 如申請專利範圍第2項所述的光源裝置的製造方 19 201039466 0«7l/Miw^i32twf.d〇c/n 法’其中,在該基板上形成該奈米材料層之前,更包括於 該基板上先形成該發光元件的一第一電極層。 8. 如申請專利範圍第1項所述的光源裝置的製造方 法,其中該奈米島狀圖案層形成於該基板的該發光元件區。 9. 如申請專利範圍第1項所述的光源裝置的製造方 法’其中該奈米島狀圖案層形成於該基板的該周邊區。 10. 如申請專利範圍第1項所述的光源裝置的製造方 法’其中該奈米島狀圖案層的材質包括金屬。 11. 如申請專利範圍第10項所述的光源裝置的製造方 法’其中該金屬是選自於金、銀、鎳、鐵及其組合。 12· —種光源裝置,包括: 一基板,具有一發光元件區、及位於該發光元件區廟 圍的一周邊區; 一奈米島狀圖案層,配置於該基板上方;以及 一發光元件,設置於該發光元件區; 其中,該發光元件放射出一光線、且部分該光線於该 基板中進行傳輸,而該奈米島狀圖案層使在該基板中傳輸 的光線向該基板的外部出射。 太,13.如申請專利範圍第12項所述的光源裝置,其中该 不米島狀圖案層包括非週期性地排列的多數個奈米島狀 物。 ’、 太止I4·如中請專利範11第12項所賴光源裝置,其中该 不米島狀_層設置於縣_該發光元件區。 15.如申請專利範圍第12項所述的光縣置,其中该 20 201039466w 30332twfdoc/n 奈米島狀圖案層設置於該基板的該周邊區。 16. 如申請專利範圍第12項所述的光源裝置,其中該 奈米島狀圖案層的材質包括金屬。 17. 如申請專利範圍第16項所述的光源裝置,其中該 金屬是選自於金、銀、鎳、鐵及其組合。 18. 如申請專利範圍第12項所述的光源裝置,其中該 奈米島狀圖案層的厚度是介於1奈米〜2〇奈米之間。 19·如申請專利範圍第12項所述的光源裝置’其中該 〇 發光元件包括: 一第一電極,配置於該基板上; 一發光層,配置於該第一電極的上方;以及 一第二電極,配置於該發光層的上方。 20.如申請專利範圍第19項所述的光源裝置,其中該 第一電極的材質包括銦錫氧化物或銦鋅氧化物。 21·如申請專利範圍第19項所述的光源裝置,其中該 第二電極的材質包括金屬。 ❹ 22.如申睛專利範圍第19項所述的光源裝置,更包括 一電洞傳輸層,設置於該第一電極與該發光層之間。 23. 如申請專利範圍第22項所述的光源裝置,該電洞 傳輸層的材質包括N,N,-兩(1-萘基)-N,N,兩-(苯基)-對二氨 基聯苯(NPB)。 24. 如申請專利範圍第19項所述的光源裝置,更包括 一電子傳輸層’設置於該發光層與該第二電極之間。 25. 如申請專利範圍第24項所述的光源裝置,該電子 21 201039466 v332twf.doc/n 傳輸層的材質包括三(8-羥基喹啉)鋁(A1Q3)。 26.如申請專利範圍第19項所述的光源裝置,其中該 發光層的材質包括經掺雜三(8-經基嗟啦)铭(A1Q3)的混 合發光材質。 22Wherein the light-emitting element emits a light and a portion of the light is transmitted in the substrate, and the nano-island-like pattern layer causes the light transmitted in the substrate to be emitted to the outside of the substrate. 2. The method of fabricating a light source device according to claim 2, wherein the method of forming the nano island pattern layer comprises: forming a nano material layer on the substrate; and heating the nano material layer to The nanomaterial layer is dewetting to form a plurality of nano islands arranged non-periodically. 3. The method of manufacturing a light source device selected in the second aspect of the patent application, wherein the time for heating the layer of nano material is from minute to 60 minutes. 4. The method of manufacturing a light source device according to claim 2, wherein the temperature at which the layer of the nano material is heated is 2 〇〇 ° C to 40 (TC. 5. As described in claim 2 A method of manufacturing a light source device, wherein the method of forming the nano material layer on the substrate comprises a sputtering method. 6. The method of manufacturing a light source device according to claim 2, wherein the nano material layer The thickness of the substrate is from 1 nm to 20 nm. 7. The manufacturer of the light source device according to claim 2 of the claim 2 201039466 0 «7l/Miw^i32twf.d〇c/n method, wherein on the substrate And forming a first electrode layer of the light-emitting element on the substrate. The method of manufacturing the light source device according to the first aspect of the invention, wherein the nano-island pattern The layer is formed in the light-emitting element region of the substrate. 9. The method of manufacturing a light source device according to claim 1, wherein the nano-island pattern layer is formed in the peripheral region of the substrate. The light source device of the first aspect The method of manufacturing the light source device according to claim 10, wherein the metal is selected from the group consisting of gold, silver, nickel, iron, and combinations thereof. 12. A light source device comprising: a substrate having a light-emitting element region and a peripheral region located in the periphery of the light-emitting device region; a nano island-like pattern layer disposed above the substrate; and a light-emitting element disposed In the light-emitting device region, wherein the light-emitting device emits a light, and part of the light is transmitted in the substrate, and the nano-island-like pattern layer causes light transmitted in the substrate to be emitted to the outside of the substrate. 13. The light source device of claim 12, wherein the non-meter-like pattern layer comprises a plurality of nano islands arranged non-periodically. ', too only I4 · as in the case of patent No. 11 A 12-inch light source device, wherein the non-island-like layer is disposed in a county-light-emitting element region. 15. The optical county device according to claim 12, wherein the 20 201039466w 30 The 332 twfdoc/n nano-patterned layer is disposed in the peripheral region of the substrate. The light source device of claim 12, wherein the material of the nano-island pattern layer comprises a metal. The light source device of claim 16, wherein the metal is selected from the group consisting of gold, silver, nickel, iron, and the like, and the light source device of claim 12, wherein the nano island-like pattern layer The light source device of the invention of claim 12, wherein the illuminating device comprises: a first electrode disposed on the substrate; a layer disposed above the first electrode; and a second electrode disposed above the light emitting layer. 20. The light source device of claim 19, wherein the material of the first electrode comprises indium tin oxide or indium zinc oxide. The light source device of claim 19, wherein the material of the second electrode comprises a metal. The light source device of claim 19, further comprising a hole transport layer disposed between the first electrode and the light emitting layer. 23. The light source device of claim 22, wherein the material of the hole transport layer comprises N, N, -2 (1-naphthyl)-N, N, bis-(phenyl)-p-diamino. Biphenyl (NPB). 24. The light source device of claim 19, further comprising an electron transport layer disposed between the light emitting layer and the second electrode. 25. The light source device of claim 24, wherein the material of the electron transport layer comprises tris(8-hydroxyquinoline)aluminum (A1Q3). 26. The light source device of claim 19, wherein the material of the light-emitting layer comprises a mixed luminescent material doped with three (8-based) (A1Q3). twenty two
TW98112814A 2009-04-17 2009-04-17 Light source device and fabricating method thereof TWI388073B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98112814A TWI388073B (en) 2009-04-17 2009-04-17 Light source device and fabricating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98112814A TWI388073B (en) 2009-04-17 2009-04-17 Light source device and fabricating method thereof

Publications (2)

Publication Number Publication Date
TW201039466A true TW201039466A (en) 2010-11-01
TWI388073B TWI388073B (en) 2013-03-01

Family

ID=44995511

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98112814A TWI388073B (en) 2009-04-17 2009-04-17 Light source device and fabricating method thereof

Country Status (1)

Country Link
TW (1) TWI388073B (en)

Also Published As

Publication number Publication date
TWI388073B (en) 2013-03-01

Similar Documents

Publication Publication Date Title
Saxena et al. A review on the light extraction techniques in organic electroluminescent devices
TW527848B (en) Light-emitting element and display device and lighting device utilizing thereof
TWI602292B (en) Organic light emitting diode and method for producing the same, image display device and lighting device
CN105027671B (en) Light-emitting device
KR101339440B1 (en) Organic electroluminescent device and method for menufacturing thereof
KR20130084848A (en) Organic electroluminescent device and method for manufacturing thereof
US8921841B2 (en) Porous glass substrate for displays and method of manufacturing the same
US20110266577A1 (en) Organic electroluminescence device and method of manufacturing same
US8586963B2 (en) Semiconductor light-emitting devices having concave microstructures providing improved light extraction efficiency and method for producing same
TWI605618B (en) Electroluminescent device
CN105163871B (en) Coated article and with include refractive index matching layers light outcoupling layer stack device and preparation method thereof
CN103597623B (en) There is the organic light emitting apparatus of the light extraction of improvement
Zhou et al. Ideal microlens array based on polystyrene microspheres for light extraction in organic light-emitting diodes
TWI481084B (en) Optical device and method for manufacturing the same
US9293659B2 (en) Method for fabricating microstructure to generate surface plasmon waves
Yang et al. High color rendering index and directional emission of white OLEDs using nanorod waveguide channels
TWI692896B (en) Method of manufacturing organic light-emitting diode and organic light-emitting diode
TW201039466A (en) Light source device and fabricating method thereof
CN101562224B (en) Light source device and manufacturing method thereof
KR101428790B1 (en) Out-Coupling Enhanced Organic Light Emitting Devices by the Wet-Etching of Transparent Conducting Layer and method of the OLED
KR20130116559A (en) Organic light emitting device with enhanced out-coupling efficiency and method of preparing the device
CN102610729B (en) Luminescent device embedded with self-assembly photonic crystal thin film and preparation method for luminescent device
Peng et al. Improving Light Extraction of Organic Light‐Emitting Devices by Attaching Nanostructures with Self‐Assembled Photonic Crystal Patterns
TWI296861B (en)
He et al. Island-like random scattering layer for light extraction in organic light-emitting diodes with enhanced luminous efficiencies and angular spectral stability

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees