TW201039390A - Method of fabricating substrate where patterns are formed - Google Patents

Method of fabricating substrate where patterns are formed Download PDF

Info

Publication number
TW201039390A
TW201039390A TW98113680A TW98113680A TW201039390A TW 201039390 A TW201039390 A TW 201039390A TW 98113680 A TW98113680 A TW 98113680A TW 98113680 A TW98113680 A TW 98113680A TW 201039390 A TW201039390 A TW 201039390A
Authority
TW
Taiwan
Prior art keywords
substrate
oxide
adhesive
pattern
beads
Prior art date
Application number
TW98113680A
Other languages
Chinese (zh)
Other versions
TWI387004B (en
Inventor
Eui-Joon Yoon
Sung-Hoon Kwon
Original Assignee
Snu R&Db Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snu R&Db Foundation filed Critical Snu R&Db Foundation
Priority to TW98113680A priority Critical patent/TWI387004B/en
Publication of TW201039390A publication Critical patent/TW201039390A/en
Application granted granted Critical
Publication of TWI387004B publication Critical patent/TWI387004B/en

Links

Landscapes

  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Provided is a method of fabricating a substrate where patterns are formed, the method including: forming first bonding agent patterns having selective cohesion in a position in which oxide bead patterns are to be formed on a substrate; coating a second bonding agent having larger cohesion with the first bonding agent than cohesion with the substrate, on a plurality of oxide beads, applying the oxide beads, on which the second bonding agent is coated, to the substrate and forming the oxide beads, on which the second bonding agent is coated, on the first bonding agent patterns; and thermally processing the substrate. A plurality of low-priced oxide beads can be patterned on a substrate to have a desired shape so that damages can be prevented from occurring in the substrate during dry etching, and an etching process is not performed so that a yield of a device is not reduced and mass production of the device increases.

Description

201039390 六、發明說明: 【發明所屬之技術領域】 本發明疋有關於一種半導體裝置之基板(substrate)及 其製造方法,且特別是有關於—種形成有多個圖案 (patterns)以便用以製造高功率發光二極體(Hght emitting diode,LED)之基板,及其製造方法。 【先前技術】 發光一極體(LED)市場已經因例如行動電話、小型家 電的袖珍鍵盤(keypad)、或液晶顯示器(liquid crystai dispiay, LCD)的背光模組(backlight unit)之可攜式通訊裝置所使用 的低功率發光一極體(LEDs)而成長。最近,對於室内照明、 戶外照明、車輛的内部及外部空間、以及大型液晶顯示器 (LCD)的背光模組所使用的高功率及高效率光源之需求增 加,所以發光二極體(LED)市場已經把高功率產品當作目 標。 發光二極體(LEDs)的最大問題是低發光效率。一般而 言,發光效率藉由產生光的效率(内部量子效率((11^价11111 efficiency))、光放射到裝置的外部空間的效率(外部光萃取 效率)、以及磷光體(phosphor)轉換光的效率予以測定。考 慮到内部量子效率而改善主動層⑽ve ―)的特性,以便 生產高功率發光二極體(LEDs)是重要的。_,增加實際 上產生的光的外部光萃取效率更是非常重要的。 當光放射贿光二極體(LED)的外料間時所發生的 最大障礙紐光二鋪料叙_折料帕 201039390 indexes)差異,導致内部全反射(total reflection)。由於發光 二極體(LED)的各層之間的折射率差異,因此所產生的光 的大約20%被放射到發光二極體(LED)的各層之間的介面 的一外部空間。並且,未放射到發光二極體(LED)的各層 之間的介面的所述外部空間之光,在發光二極體(LED)内 移動且變成熱。結果,發光效率偏低且裝置所產生的熱量 增加’因而降低發光二極體(LED)的壽命。201039390 VI. Description of the Invention: [Technical Field] The present invention relates to a substrate of a semiconductor device and a method of fabricating the same, and in particular to a plurality of patterns formed for use in manufacturing A substrate of a high power light emitting diode (LED), and a method of manufacturing the same. [Prior Art] The LED market has been portable due to, for example, mobile phones, keypads for small appliances, or backlight units for liquid crystai dispiay (LCD). The low power light emitting diodes (LEDs) used in the device grow. Recently, there has been an increase in demand for high-power and high-efficiency light sources for indoor lighting, outdoor lighting, interior and exterior spaces of vehicles, and backlight modules for large liquid crystal displays (LCDs), so the market for light-emitting diodes (LEDs) has Target high-power products. The biggest problem with light-emitting diodes (LEDs) is low luminous efficiency. In general, the luminous efficiency is obtained by the efficiency of light generation (internal quantum efficiency (1111 price 11111)), the efficiency of light emission into the external space of the device (external light extraction efficiency), and phosphor converted light. The efficiency is measured. It is important to improve the characteristics of the active layer (10)ve-) in view of internal quantum efficiency in order to produce high-power light-emitting diodes (LEDs). _, it is very important to increase the external light extraction efficiency of the actual generated light. The biggest obstacle that occurs when the light radiates the bridging diode (LED). The difference is the internal reflection. Due to the difference in refractive index between the layers of the light-emitting diode (LED), about 20% of the generated light is radiated to an external space of the interface between the layers of the light-emitting diode (LED). Further, the light of the external space which is not radiated to the interface between the layers of the light-emitting diode (LED) moves in the light-emitting diode (LED) and becomes heat. As a result, the luminous efficiency is low and the heat generated by the device is increased, thus reducing the life of the light-emitting diode (LED).

為了改善外部光萃取效率,已經有人提出一種增加p 型氮化鎵(p-GaN)表面或N型氮化鎵(n_GaN)表面的粗糙程 度之方法、一種使作為裴置底部的基板表面變粗糙之方 法、或一種形成彎曲的圖案之方法。 圖1疋在形成有圖案12之基板1〇上所形成的發光二 極體(LED)14的橫截面圖,而圖2則是形成有圖案12之基 板ίο的示意圖。尤其,當利用例如藍寶石基板(sapphire substrate)之不同基板在發光二極體(LED)14的基板ι〇上形 成圖案12時,將改善外部光萃取效率。 在藍冑;5基板絲面上卿成的目錄算出將增加 外部光萃取效率達1_或更多。韓國專利申請案第 2004-0021801號及帛2004德9329號揭露在㈣石基板 的表面上所形成的圖案的形狀或此圖案。一種利用蝕刻 (滅ing)來形成_之方法已經鮮遍㈣。在利用钱刻 ,形成圖案之方法中,為了在藍寶石基板上形成半球狀圖 案’因此將_化具有幾十微米厚度的厚層抗糊,然後 藉由乾式烟(dry etehing)同時地㈣餘顺藍寶石基 5 201039390 板。 在利用姓刻來形成圖案之方法中,圖案的高度受到抗 姓劑與基板之間的餘刻選擇性限制,且由於圖案化厚層抗 蝕劑的製程與乾式蝕刻製程之低度一致性,因此最後形成 的圖案的一致性偏低。首先,發生於乾式蝕刻之污染是最 大的問題。由於在蝕刻期間局部產生的熱,使得抗蝕劑與 用於蝕刻之氣體的反應物將留在藍寶石基板的表面上,/因 而即使進行清洗處理也未必完全予以移除。此外,由於用 於蝕刻之高能氣體粒子,使得損害可能發生於基板的表面 (Silicon processing for the VLSI ear,第 1 卷,process technology,第574頁至第582頁)。當此種污染發生時, 若進行作為下一個製程之氮化鎵(GaN)磊晶成長(epitaxiai growth) ’則由於污染使得缺陷可能發生於氮化物磊晶層。 由於以上的缺點,因此當藉由利用蝕刻製程來圖案化的藍 寶石基板製造裝置時’非常低的良率(yield)是可預期的。 在上述乾式蝕刻製程中,為了放射在強制蝕刻藍寳石 =所產生的過量的熱,應該使用具有冷卻功能的高價韻刻 叹備。為了改善光萃取效率,應該進行縮減例如步進 機(stepper)之高價照相設#來麵刻的圖案的大小之製程。 因此,备進订上述乾式钱刻製程時成本將增加。此外 2例如步進機之照相設叙製程中,將因製程複雜而不 易增加生產量。 【發明内容】 本發明提供-種形成有圖案之基板的製造方法,當利 Ο Ο 201039390 用勉亥來圖案化基板時,藉此方法可使損害不發生於 基板的晶體或裝置特性不因殘留物而變差且圖案的一致性 可大為增加。 '本發明提供-種形成有圖案之基板的製造方法,此方 b括在基板上要形成氣化物珠圖案beadpattems) 之位置中形成具有選擇性㈣力_esiQn)之第—黏合劑 圖案(bonding agent patterns);將與第一黏合劑的内聚力大 於與基板的内聚力之第二黏合劑塗佈在多個氧化物珠 (cmde beads)上;將塗佈第二黏合劑之氧化物珠輔到基板且 在第-黏合劑圖案上形成塗佈第二黏合劑之氧化物珠;以 及熱處理基板。 本發明再提供一種形成有圖案之基板的製造方法,此 方^包括:在基板上要形成氧化物珠圖案之位置以外的區 域中形成具有選擇性内聚力之第―黏合細案;將一 黏合劑的内聚力小於與基板的内聚力之第二黏塗 將塗佈第二黏合劑之氧化物珠鋪到= 且在暴硌基板表面的區域中形成塗佈第二黏合 珠;以及熱處理基板。 化物 ,於上述’本發明可在基板上圖案化多個 物珠來獲得的雜,以财料侧_能夠== 害發生於基板,並且不進行侧製程以不 ^車 設備,使基板㈣造方法合乎經濟且達成在短 造大篁的基板之南生產力。 7 201039390 【實施方式】 現在將參考附圖更完整地說明本發明,其中繪示本發 明的實施例。然而,本發明可能以許多不同的形式來實施, 因此不應視為侷限於在此所述之實施例;相反地,提供這 些實施例將使本發明的揭露更完全,且將更完整地傳達: 發明的觀念給任何所屬技術領域中具有通常知識者。 本發明提供一種基板的製造方法以便製造半導體裝 置,藉此方法可利用選擇性内聚力在基板上形成氧化物珠 圖案。 圖3是依照本發明之一實施例之一種利用選擇性内聚 力來形成有圖案之基板的製造方法的流程圖,而圖4至圖 6則是圖3所示之形成有随之基板的製造方法的橫截面 圖。 參照圖3至圖6,首先,如圖4所示,在基板31〇上 要形成氧化物珠圖案340之位置形成具有選擇性内聚力之 第一黏合劑圖案320(S210)。所述基板31〇可由藍寶石、鋁 酸鋰(LiAl〇2)以及氧化鎮(Mg〇)其中之一構成。每一個氧化 物珠330的折射率是12至2 〇,並且每一個氧化物珠33〇 疋選自由二氧化石夕(Si〇2)、三氧化二鋁(Al2〇3)、二氧化鈦 (Ti02)、一氧化錯(zr〇2)、三氧化二纪一二氧化錯 (Y20rZr02)、氧化銅(Cu0)、氧化亞銅(Cu2〇)、五氧化二 鈕(Ta205)、鍅鈦酸鉛(PZT(Pb(Zr,Ti)〇3))、五氧化二鈮 (Nb205)、四氧化三鐵(Fe3〇4)、三氧化二鐵的2〇3)以及二氧 化鍺(Ge〇2)組成的群組中的至少—種所構成的。所述氧化 201039390 物珠330可以疋球狀’並且每一個氧化物珠330的直徑是 0.1微米(μπι)至10微米。每一個第一黏合劑圖案320的密 度及大小可利用模擬,予以調整成最大化光輸出(light output)之數值。形成第一黏合劑圖案320之方法可利用微 影製程(photolithography process)或奈米壓印製程 (nano-imprint process)來進行。 一種利用微影製程來進行形成第一黏合劑圖案32〇之 方法予以說明如下。首先,在基板310上形成第一黏合劑 及抗蝕劑層(resist layer)。然後,利用儲存與形成氧化物珠 圖案340有關妁資訊之光罩(photomask)來對第一黏合劑及 抗姓劑層曝光及顯影。最後,藉由钱刻製程形成第—黏合 劑圖案320。 ° 一種利用奈米壓印製程來進行形成第—黏合劑圖案 320之方法則予以說明如下。在要形成氧化物珠圖案3初 之位置中製造奈米壓印光罩(nano_imprint mask)之後,把第 一黏合劑敷在奈米壓印光罩。在基板31〇上印刷已敷有第 G 一黏合劑之奈米壓印光罩,藉以形成第一黏合劑圖案320。 接著,將與第一黏合劑的内聚力大於與基板310的内 聚力之第二黏合劑塗佈在氧化物珠33〇上巧22〇)。將塗怖 第二預示劑之氧化物珠330鋪到基板310(S230)。塗佈第二 塗佈劑之氧化物珠330可利用例如旋轉塗佈法(spin coating meth〇d)之方法予以鋪到基板31〇。在氧化物珠33〇 上塗佈與第一黏合劑的内聚力大於與基板31〇的内聚力之 第二預示劑是將氧化物珠330只放置於第一黏合劑圖案 9 201039390 320上’如圖5所示。右柃括味 異變大,因舲筮-愁人3情況下’為了使内聚力的差 齡的Ϊ劑與基板310之間的内聚力可以是 =亚;劑與第一黏合劑之間的内聚力可以 !到暴露基板310的表面的部分之氧化物 =所形成的第一黏合劑圖請的一化; 珠330 ’由於塗佈在氧化物珠33〇 的内聚力,而未與第-黏合_案^ =, 並且留在第一黏合劑圖案32〇上。 物1塗佈第二黏合劑之氧化物珠33G與第一黏合劑圖案 的側面黏合時’氧化物珠33〇將形成於基板31〇的暴 路/面的。p刀’亦即不想要的部分。因此,氧化物珠挪 必須避免與第-黏合劑圖案320的側面黏合。因此,第一 勒合劑圖t 320距離基板310的高度可小於每一個球狀氧 化物珠330的半徑,以便第一黏合劑圖案32〇關面不會 與每-個氧化物珠33〇互相黏合。為了使第一黏合劑圖案 ^距離基板31〇的高度小於每一個球狀氧化物珠33〇的 半仏’因此降低了氧化物珠330與第一黏合劑圖案32〇的 側面黏合之可能性。 然後熱處理基板310,藉以黏合氧化物珠33〇與基板 310(S240)。在50(TC與1400。〇之間熱處理基板31〇,並且 可在800C與1200°c之間熱處理。若以這種方式熱處理基 板310,則將移除形成於基板31〇上的第一黏合劑圖案32〇 10 201039390 與塗佈在氧化物珠330上的第二黏合劑。因此,如圖6所 示,氧化物珠330將與基板310黏合,藉以製造形成圖案 化氧化物珠340之基板310。 若利用圖3所示之方法來製造基板310,則可製造具 有良好的光萃取效率之基板310。 圖7是依照本發明之另一實施例之利用選擇性内聚力 來形成有圖案之基板的製造方法的流程圖,而圖8至圖1〇 則是圖7所示之形成有圖案之基板的製造方法的橫載面 圖。與圖3之基板的製造方法相反,圖7是一種將與基板 的内聚力大且與第一黏合劑的内聚力小之第二黏合劑塗佈 在多個氧化物珠上之基板的製造方法,氧化物珠將鋪在第 一黏合劑圖案之間且形成圖案化氧化物珠。 參照圖7至圖1〇,首先,在基板510上要形成氧化物 珠圖案540之位置以外的區域中形成第一黏合劑圖案52〇 (S410)。如同圖3所示之基板的製造方法,基板51〇可由 藍寶石、鋁酸鋰(LiAl〇2)以及氧化鎂(Mg〇)其中之一所構 成。每一個氧化物珠530的折射率是12至2 〇,並且每一 個氧化物珠530是選自由二氧化矽(Si〇2)、三氧化二鋁 (Α1^〇3)、二氧化鈦(Ti〇2)、二氧化錘(Zr〇2)、三氧化二釔— 二氧化錘(Y203-Zr02)、氧化銅(Cu〇)、氧化亞銅(Cu2〇)、 五氧化二鈕(Ta205)、鍅鈦酸鉛(PZT(pb(z τ ) 二擊你、四氧化三鐵(Fe3〇4)、三氧化二上匕 二氧化錯(Geo推成的群組中的至少—種所構成的。氧化 物珠53〇可以疋球狀,並且每一個氧化物珠mo的直徑是 11 201039390 0.1微米至10微米。每一個第—黏合劑圖案520的密度及 大小可利賴擬輕成最大化光輸出之數值。形成 第一黏合劑圖案520之方法可利用微影製程或奈米壓印製 程來進行。微影製程或奈米壓印製程之進行方式如同圖3 所示之基板的製造方法。 其次,將與第一黏合劑的内聚力小於與基板510的内 聚力之第二黏合劑塗佈在氧化物珠530上(S420)。將塗佈 第二黏合劑之氧化物珠530鋪到基板51〇(S430)。若將與第 一黏合劑的内聚力小於與基板510的内聚力之第二黏合劑 塗佈在氧化物珠530上且塗佈在基板51〇上,與圖3所示 之基板的製造方法相反,則鋪到第一黏合劑圖案52〇的氧 化物珠530將易於與氧化物珠圖案540分離。另一方面, 鋪到基板510的氧化物珠530則不與氧化物珠圖案540分 離而留在基板510上,如圖9所示。 然後熱處理基板510 ’藉以黏合氧化物珠530與基板 510(S440)。在500。(:與1400X:之間熱處理基板510,並且 可在800°C與1200t:之間熱處理。若以這種方式熱處理基 板310’則將移除形成於基板51〇上的第一黏合劑圖案52〇 與塗佈在氧化物珠530上的第二黏合劑。因此,如圖10 所示,氧化物珠530將與基板510黏合,藉以製造形成圖 案化氧化物珠540之基板510。 若利用圖7所示之方法來製造基板510,如同圖3所 示之方法’則可製造具有良好的光萃取效率(light extracting efficiency)之基板 510。 ΟIn order to improve the external light extraction efficiency, a method of increasing the roughness of a p-type gallium nitride (p-GaN) surface or an N-type gallium nitride (n-GaN) surface has been proposed, and a surface of a substrate as a bottom portion of the crucible is roughened. A method, or a method of forming a curved pattern. 1 is a cross-sectional view of a light emitting diode (LED) 14 formed on a substrate 1 on which a pattern 12 is formed, and FIG. 2 is a schematic view of a substrate ίο on which a pattern 12 is formed. In particular, when a pattern 12 is formed on a substrate ι of a light-emitting diode (LED) 14 using a different substrate such as a sapphire substrate, external light extraction efficiency is improved. In the blue enamel; 5 substrate filament surface calculations will increase the external light extraction efficiency by 1_ or more. The shape or pattern of the pattern formed on the surface of the (iv) stone substrate is disclosed in Korean Patent Application Nos. 2004-0021801 and 帛2004-No. 9329. A method of forming _ using etching (de-ing) has been ubiquitous (4). In the method of forming a pattern by using money, in order to form a hemispherical pattern on a sapphire substrate, a thick layer of anti-paste having a thickness of several tens of micrometers is formed, and then dried (dry etehing) simultaneously (four) Sapphire base 5 201039390 board. In the method of forming a pattern by using a surname, the height of the pattern is selectively limited by the residual between the anti-surname agent and the substrate, and since the process of patterning the thick resist is inferior to the dry etching process, Therefore, the consistency of the finally formed pattern is low. First, contamination that occurs in dry etching is the biggest problem. Due to the heat locally generated during the etching, the reactant of the resist and the gas for etching will remain on the surface of the sapphire substrate, and thus it may not be completely removed even if the cleaning treatment is performed. In addition, damage may occur on the surface of the substrate due to the high energy gas particles used for etching (Silicon processing for the VLSI ear, Vol. 1, process technology, pages 574 to 582). When such contamination occurs, if the epitaxial growth of gallium nitride (GaN) is performed as the next process, defects may occur in the nitride epitaxial layer due to contamination. Due to the above disadvantages, a very low yield is expected when the device is fabricated by a sapphire substrate patterned by an etching process. In the above dry etching process, in order to emit excessive heat generated by forced etching of sapphire =, a high-priced rhyme with a cooling function should be used. In order to improve the light extraction efficiency, a process of reducing the size of a pattern such as a stepper may be performed to reduce the size of the pattern. Therefore, the cost will increase when the above-mentioned dry money engraving process is prepared. In addition, in the photographic setup process of the stepper, for example, the throughput will be complicated and the throughput will not be increased. SUMMARY OF THE INVENTION The present invention provides a method for fabricating a patterned substrate. When the substrate is patterned by using 勉 Ο 201039390, the method can prevent damage to crystals or device characteristics that do not occur on the substrate. The object is deteriorated and the consistency of the pattern can be greatly increased. The present invention provides a method for producing a substrate on which a pattern is formed, which is formed in a position on the substrate where a vaporized bead pattern is to be formed, and a bond pattern having a selective (four) force _esiQn) is formed (bonding) Agent patterns); coating a second binder having a cohesive force with the first binder greater than the cohesive force of the substrate on the plurality of oxide beads; and coating the oxide beads coated with the second binder to the substrate And forming an oxide bead coated with a second binder on the first binder pattern; and heat treating the substrate. The present invention further provides a method of fabricating a patterned substrate, the method comprising: forming a first-bonding film having selective cohesive force in a region other than a position at which an oxide bead pattern is to be formed on the substrate; The second adhesive coating having a cohesive force less than the cohesive force of the substrate applies the oxide beads coated with the second adhesive to the = and forms the coated second adhesive beads in the region of the surface of the turbulent substrate; and heat-treating the substrate. In the above, the invention can be obtained by patterning a plurality of beads on a substrate, and the material side can be generated on the substrate, and the side process is not performed to make the substrate (four) The method is economical and achieves productivity in the south of substrates that are short-lived. 7 201039390 [Embodiment] The present invention will now be described more fully hereinafter with reference to the accompanying drawings in which FIG. However, the present invention may be embodied in many different forms and should not be construed as being limited to the embodiments described herein. : The concept of invention is given to anyone of ordinary skill in the art. The present invention provides a method of fabricating a substrate for fabricating a semiconductor device whereby a method can be used to form an oxide bead pattern on a substrate using selective cohesion. 3 is a flow chart showing a method of manufacturing a patterned substrate by selective cohesive force according to an embodiment of the present invention, and FIGS. 4 to 6 are manufacturing methods of forming a substrate as shown in FIG. Cross-sectional view. Referring to Figs. 3 through 6, first, as shown in Fig. 4, a first adhesive pattern 320 having a selective cohesive force is formed at a position on the substrate 31 to form an oxide bead pattern 340 (S210). The substrate 31 may be composed of one of sapphire, lithium aluminate (LiAl 2 ), and oxidized town (Mg 〇). Each of the oxide beads 330 has a refractive index of 12 to 2 Å, and each of the oxide beads 33 is selected from the group consisting of samarium oxide (Si〇2), aluminum oxide (Al2〇3), and titanium dioxide (Ti02). , Oxidation error (zr〇2), Er2O2O2 (Y20rZr02), Copper oxide (Cu0), Cuprous oxide (Cu2〇), Niobium pentoxide (Ta205), Lead bismuth titanate (PZT) (Pb(Zr,Ti)〇3)), bismuth pentoxide (Nb205), ferroferric oxide (Fe3〇4), bismuth trioxide (2〇3), and cerium oxide (Ge〇2) At least one of the groups is composed of. The oxidation 201039390 bead 330 may be spherically shaped and each oxide bead 330 may have a diameter of 0.1 micron (μm) to 10 micrometers. The density and size of each of the first adhesive patterns 320 can be adjusted to maximize the value of the light output using simulation. The method of forming the first adhesive pattern 320 can be carried out using a photolithography process or a nano-imprint process. A method of forming the first adhesive pattern 32 by using a lithography process will be described below. First, a first adhesive and a resist layer are formed on the substrate 310. The first adhesive and anti-surname layer are then exposed and developed using a photomask that stores information about the oxide bead pattern 340. Finally, the first adhesive pattern 320 is formed by the ink engraving process. ° A method of forming the first adhesive pattern 320 using a nanoimprint process is described below. After the nano_imprint mask is fabricated in the initial position where the oxide bead pattern 3 is to be formed, the first adhesive is applied to the nanoimprint mask. A nanoimprint reticle to which a G-adhesive has been applied is printed on the substrate 31 to form a first adhesive pattern 320. Next, a second adhesive having a cohesive force with the first adhesive greater than the cohesive force of the substrate 310 is coated on the oxide beads 33〇). The oxide beads 330 coated with the second predictor are applied to the substrate 310 (S230). The oxide beads 330 coated with the second coating agent can be applied to the substrate 31 by, for example, a spin coating method. The second predictor coated on the oxide bead 33〇 with the cohesive force of the first adhesive greater than the cohesive force with the substrate 31〇 is to place the oxide bead 330 on the first adhesive pattern 9 201039390 320 as shown in FIG. 5 . Shown. The right 柃 柃 味 味 , , , , 愁 愁 愁 愁 愁 愁 愁 愁 愁 愁 愁 愁 愁 愁 愁 愁 愁 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了The oxide to the portion of the surface on which the substrate 310 is exposed = the formation of the first adhesive pattern formed; the bead 330' is not cohesive with the first bond due to the cohesive force applied to the oxide bead 33〇 =, and remains on the first adhesive pattern 32〇. When the oxide beads 33G coated with the second adhesive are adhered to the side faces of the first adhesive pattern, the oxide beads 33 are formed on the storm/face of the substrate 31. The p-knife 'is also the unwanted part. Therefore, the oxide bead must be prevented from adhering to the side of the first-adhesive pattern 320. Therefore, the height of the first sizing agent pattern t 320 from the substrate 310 can be smaller than the radius of each of the spherical oxide beads 330, so that the first adhesive pattern 32 is not bonded to each of the oxide beads 33 〇. . In order to make the height of the first adhesive pattern ^ from the substrate 31 小于 smaller than the half 仏 of each of the spherical oxide beads 33 因此, the possibility that the oxide beads 330 are bonded to the sides of the first adhesive pattern 32 降低 is reduced. The substrate 310 is then heat treated to bond the oxide beads 33 to the substrate 310 (S240). The substrate 31 is heat treated between 50 (TC and 1400.), and may be heat treated between 800 C and 1200 ° C. If the substrate 310 is heat treated in this manner, the first bond formed on the substrate 31 will be removed. The pattern 32 〇 10 201039390 and the second adhesive coated on the oxide beads 330. Therefore, as shown in FIG. 6, the oxide beads 330 will be bonded to the substrate 310, thereby fabricating a substrate on which the patterned oxide beads 340 are formed. 310. If the substrate 310 is manufactured by the method shown in FIG. 3, the substrate 310 having good light extraction efficiency can be manufactured. FIG. 7 is a substrate in which a pattern is formed by selective cohesive force according to another embodiment of the present invention. FIG. 8 to FIG. 1A are cross-sectional views of the manufacturing method of the substrate on which the pattern is formed shown in FIG. 7. Contrary to the manufacturing method of the substrate of FIG. 3, FIG. 7 is a a method of manufacturing a substrate having a large cohesive force of a substrate and a second adhesive having a small cohesive force with the first adhesive coated on the plurality of oxide beads, the oxide beads being laid between the first adhesive patterns and patterned Oxide beads. See Figure 7 1 to FIG. 1 , first, a first adhesive pattern 52 形成 is formed in a region other than the position at which the oxide bead pattern 540 is to be formed on the substrate 510. As in the method of manufacturing the substrate shown in FIG. 3 , the substrate 51 〇 It may be composed of one of sapphire, lithium aluminate (LiAl〇2) and magnesium oxide (Mg〇). Each of the oxide beads 530 has a refractive index of 12 to 2 Å, and each oxide bead 530 is selected from two Cerium oxide (Si〇2), aluminum oxide (Α1^〇3), titanium dioxide (Ti〇2), dioxide hammer (Zr〇2), antimony trioxide—manganese dioxide (Y203-Zr02), oxidation Copper (Cu〇), cuprous oxide (Cu2〇), pentoxide pentoxide (Ta205), lead bismuth titanate (PZT (pb(z τ ) double strikes, ferroferric oxide (Fe3〇4), trioxide Two erbium dioxins (at least one of the groups derived from Geo.) The oxide beads 53 疋 can be spherical, and each oxide bead mo has a diameter of 11 201039390 0.1 μm to 10 μm. The density and size of each of the first adhesive pattern 520 can be approximated by the value of the light output to maximize the light output. The method of forming the first adhesive pattern 520 can utilize lithography. The process of the lithography process or the nanoimprint process is carried out in the same manner as the substrate manufacturing method shown in Fig. 3. Secondly, the cohesive force with the first adhesive is less than the cohesion with the substrate 510. The second adhesive is coated on the oxide beads 530 (S420). The oxide beads 530 coated with the second adhesive are applied to the substrate 51 (S430). If the cohesive force with the first adhesive is less than the substrate 510 The second adhesive of the cohesive force is coated on the oxide beads 530 and coated on the substrate 51, and opposite to the manufacturing method of the substrate shown in FIG. 3, the oxide beads coated on the first adhesive pattern 52〇 530 will readily separate from the oxide bead pattern 540. On the other hand, the oxide beads 530 deposited on the substrate 510 are not separated from the oxide bead pattern 540 and remain on the substrate 510 as shown in FIG. The substrate 510' is then heat treated to bond the oxide beads 530 to the substrate 510 (S440). At 500. (: The substrate 510 is heat-treated between 1400X: and may be heat-treated between 800 ° C and 1200 t:. If the substrate 310' is heat-treated in this manner, the first adhesive pattern 52 formed on the substrate 51 is removed. And a second adhesive coated on the oxide beads 530. Therefore, as shown in FIG. 10, the oxide beads 530 will be bonded to the substrate 510, thereby fabricating the substrate 510 forming the patterned oxide beads 540. The method of 7 is to fabricate the substrate 510, and as in the method of FIG. 3, a substrate 510 having good light extracting efficiency can be fabricated.

201039390 綜上所述,本發明之基板的製造方法可在基板上圖案 化夕個低&的氧化物珠來獲得想要的形狀,以便在乾式餘 刻期間能_免損害發生於基板,並且不進行#刻製程, 以便不降低裝置的良率又增進裝置的大量生產。此外,因 不需要乾式㈣之高價設備而使基板的製造方法合乎經 濟,且達成在短時間内製造大量的基板之高生產力。 雖,、、、:本發明已以貫施例揭露如上,然其並非用以限定 本發明,任何所屬技術領域中具有通常知識者,在不脫離 =發明之精神和範圍内’當可作些許之更動細飾,故本 ,明之保護範®當視後社申料補_界定者 【圖式簡單說明】 圖1疋在形成有圖案之基板上所形成的發光二極體 (LED)的橫截面圖。 圖2是形成有圖案之基板的示意圖。 圖3是依照本發明之一實施例之一種利用選擇性内聚 Λ形成有圖案之基板的製造方法的流程圖。 圖4至圖6是圖3所示之形成有圖案之基板的製造方 法的横截面圖。 圖7是依照本發明之另一實施例之利用選擇性内聚力 形成有圖案之基板的製造方法的流程圖。 圖8至圖1G是圖7所示之形成有圖案之基板的製造 方法的横截面圖。 【主要元件符號說明】 10、310、510 :基板 201039390 12 :圖案 14 :發光二極體(LED) 320、520 :第一黏合劑圖案 330、530 :氧化物珠 340、540 :氧化物珠圖案 S210、S220、S230、S240、S410、S420、S430、S440 : 步驟201039390 In summary, the method of fabricating the substrate of the present invention can pattern a low & oxide bead on a substrate to obtain a desired shape so as to prevent damage from occurring on the substrate during dry remnants, and The process is not carried out so that the mass production of the device is increased without lowering the yield of the device. Further, the manufacturing method of the substrate is economical because the high-priced equipment of the dry type (4) is not required, and high productivity in manufacturing a large number of substrates in a short time is achieved. The present invention has been disclosed in the above embodiments, but it is not intended to limit the present invention, and any person having ordinary knowledge in the art can be made a little in the spirit and scope of the invention. The change of the fine decoration, so this, the protection of the Fan 当 视 视 视 社 社 申 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Sectional view. 2 is a schematic view of a substrate on which a pattern is formed. 3 is a flow chart of a method of fabricating a patterned substrate using selective coherent enthalpy in accordance with an embodiment of the present invention. 4 to 6 are cross-sectional views showing a method of manufacturing the patterned substrate shown in Fig. 3. Figure 7 is a flow diagram of a method of fabricating a patterned substrate using selective cohesion in accordance with another embodiment of the present invention. 8 to 1G are cross-sectional views showing a method of manufacturing the patterned substrate shown in Fig. 7. [Main component symbol description] 10, 310, 510: substrate 201039390 12: pattern 14: light emitting diode (LED) 320, 520: first adhesive pattern 330, 530: oxide beads 340, 540: oxide bead pattern S210, S220, S230, S240, S410, S420, S430, S440: Steps

1414

Claims (1)

201039390 七、申請專利範圍: 1. 一種形成有圖案之基板的製造方法,所述方法包括: 在一基板上要形成多個氧化物珠圖案之一位置中形 成具有選擇性内聚力之多個第-黏合劑圖案; ^將與所述弟一黏合劑的内聚力大於與所述基板的内 聚力之一第二黏合劑塗佈在多個氧化物珠上; 將塗佈所述第二黏合劑之所述氧化物珠鋪到所述基 〇 板上’且在所述第一黏合劑圖案上形成塗佈所述第二黏合 劑之所述氧化物珠;以及 熱處理所述基板。 2. —種形成有圖案之基板的製造方法,所述方法包括: 在一基板上要形成多個氧化物珠圖案之一位置以外 的一區域中形成具有選擇性内聚力之多個第-黏合劑圖 案; 將與所述第一黏合劑的内聚力小於與所述基板的内 聚力之一第二黏合劑塗佈在多個氧化物珠上; D 將塗佈所述第二黏合劑之所述氧化物珠鋪到所述基 ,上,且在暴露所述基板的表面的一區域中形成塗佈所述 第二黏合劑之所述氧化物珠;以及 熱處理所述基板。 3. 如申請專利範圍第1項或第2項所述之形成有圖案 之基板的製造方法,其中所述基板是由藍寶石、鋁酸鋰 (LiAl〇2)以及氧化鎮(Mg〇)之一所構成的。 4. 如申請專利範圍第1項或第2項所述之形成有圖案 15 201039390 之基板的製造方法,其中每一個所述氧化物珠的折射率是 1·2 至 2.0 。 5. 如申請專利範圍第1項或第2項所述之形成有圖案 之基板的製造方法,其中每一個所述氧化物珠是選自由二 氧化矽(Si〇2)、二氧化二鋁(αι2〇3)、二氧化鈦(Ti〇2)、二氧 化錐(Zr〇2)、三氧化二釔一二氧化鍅(Υ2〇3·Ζγ〇2)、氧化銅 (CuO)、氧化亞銅(0^0)、五氧化二鈕(Ta2〇s)、錘鈦酸鉛 (PZT(Pb(Zr,Ti)03))、五氧化二銳(_2〇5)、四氧化三鐵 (FesO4)、三氧化二鐵(FeW3)以及二氧化鍺(Ge〇2)所組成的 群組中的至少一種所構成的。 6. 如申請專利範圍第1項或第2項所述之形成有圖案 之基板的製造方法,其中所述氧化物珠是球狀。 7. 如申請專利範圍第6項所述之形成有圖案之基板的 製造方法,其中每-個所述氧化物珠的直徑是Q1微米(㈣ 至10微米。 8. 如申請專利範圍第1項或第2項所述之形成有圖案 之基板的製造方法,其中所述基板的所述熱處理步驟是在 500°C至1400°C之間進行的。 ’ 9. 如申请專利範圍第1項或第2項所述之形成有圖案 之基板的製造方法,其中所述第一黏合劑圖案的所述形成 步驟是利用微影製程與奈米壓印製程其中之一來進行的。 10. 如申請專利範圍第丨項所述之形成有圖案之基板 的製造方法,其中所述氧化物珠是球狀,以及其中所述第 一黏合劑圖案距離所述基板的高度小於每一個所述氧化物 201039390 珠的半徑。201039390 VII. Patent Application Range: 1. A method for fabricating a patterned substrate, the method comprising: forming a plurality of first portions having selective cohesive force in a position on a substrate on which a plurality of oxide bead patterns are to be formed - a binder pattern; coating a second binder with the cohesive force of the substrate greater than one of the cohesive forces of the substrate on the plurality of oxide beads; applying the second binder An oxide bead is deposited on the base plate and forming the oxide bead coating the second adhesive on the first adhesive pattern; and heat treating the substrate. 2. A method of fabricating a patterned substrate, the method comprising: forming a plurality of first-bonding agents having selective cohesive force in a region other than a position of a plurality of oxide bead patterns to be formed on a substrate Patterning; coating a second adhesive having a cohesive force with the first adhesive less than one of the cohesive forces of the substrate on the plurality of oxide beads; D coating the oxide of the second adhesive Beading onto the substrate, and forming the oxide beads coated with the second adhesive in a region exposing the surface of the substrate; and heat treating the substrate. 3. The method of manufacturing a patterned substrate according to claim 1 or 2, wherein the substrate is one of sapphire, lithium aluminate (LiAl〇2), and oxidized town (Mg〇). Constructed. 4. The method of manufacturing a substrate having the pattern 15 201039390 as described in claim 1 or 2, wherein the refractive index of each of the oxide beads is from 1.2 to 2.0. 5. The method of producing a patterned substrate according to claim 1 or 2, wherein each of said oxide beads is selected from the group consisting of cerium oxide (Si〇2) and aluminum oxide (a). Ιι2〇3), Titanium Dioxide (Ti〇2), Dioxide Cone (Zr〇2), Antimony Oxide-Oxide Dioxide (Υ2〇3·Ζγ〇2), Copper Oxide (CuO), Cuprous Oxide (0 ^0), bismuth oxide (Ta2〇s), lead magnesium titanate (PZT(Pb(Zr,Ti)03)), bismuth pentoxide (_2〇5), ferric oxide (FesO4), three It is composed of at least one of a group consisting of ferric oxide (FeW3) and cerium oxide (Ge〇2). 6. The method of producing a patterned substrate according to claim 1 or 2, wherein the oxide beads are spherical. 7. The method of manufacturing a patterned substrate according to claim 6, wherein the diameter of each of the oxide beads is Q1 micrometers ((4) to 10 micrometers. 8. As claimed in claim 1 Or the method for producing a patterned substrate according to item 2, wherein the heat treatment step of the substrate is performed between 500 ° C and 1400 ° C. ' 9. As claimed in claim 1 or The method for manufacturing a patterned substrate according to Item 2, wherein the forming step of the first adhesive pattern is performed by using one of a lithography process and a nanoimprint process. The method for manufacturing a patterned substrate according to the above aspect, wherein the oxide beads are spherical, and wherein a height of the first adhesive pattern from the substrate is less than each of the oxides 201039390 The radius of the bead. 1717
TW98113680A 2009-04-24 2009-04-24 Method of fabricating substrate where patterns are formed TWI387004B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98113680A TWI387004B (en) 2009-04-24 2009-04-24 Method of fabricating substrate where patterns are formed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98113680A TWI387004B (en) 2009-04-24 2009-04-24 Method of fabricating substrate where patterns are formed

Publications (2)

Publication Number Publication Date
TW201039390A true TW201039390A (en) 2010-11-01
TWI387004B TWI387004B (en) 2013-02-21

Family

ID=44995473

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98113680A TWI387004B (en) 2009-04-24 2009-04-24 Method of fabricating substrate where patterns are formed

Country Status (1)

Country Link
TW (1) TWI387004B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100714639B1 (en) * 2003-10-21 2007-05-07 삼성전기주식회사 light emitting device
KR20070063731A (en) * 2005-12-15 2007-06-20 엘지전자 주식회사 Method of fabricating substrate with nano pattern and light emitting device using the substrate
EP2064364B1 (en) * 2006-09-21 2014-02-12 Fujirebio Inc. Method and apparatus for producing small structures
TW200847470A (en) * 2007-05-24 2008-12-01 Genesis Photonics Inc A manufacturing method for patterned substrate
KR100966367B1 (en) * 2007-06-15 2010-06-28 삼성엘이디 주식회사 Light emitting device and manufacturing method for the same

Also Published As

Publication number Publication date
TWI387004B (en) 2013-02-21

Similar Documents

Publication Publication Date Title
KR101863714B1 (en) Light-emitting device having patterned interface and the manufacturing method thereof
JP2007168066A (en) Manufacturing method of substrate with nanostructure formed thereon, light emitting element, and its manufacturing method
KR100955319B1 (en) Method of fabricating light emitting diode and light emitting diode fabricated by the same
TW201405866A (en) Method for fabricating nano patterned substrate for high efficiency nitride based light emitting diode
TWI357886B (en) Stamp having nanometer scale structure and applica
JP5632081B2 (en) Light emitting diode manufacturing method using nanoimprint mold, and light emitting diode manufactured by this method
JP2013532908A (en) Manufacturing method of nanoimprint mold, manufacturing method of light emitting diode using nanoimprint mold manufactured by this method, and light emitting diode manufactured by this method
Cho et al. Fabrication of oxide-based nano-patterned sapphire substrate to improve the efficiency of GaN-based of LED
TW201703291A (en) Substrate and method for manufacturing same, light-emitting element and method for manufacturing same, and device having said substrate or said light-emitting element
JP2012524997A (en) Method for manufacturing a substrate on which a pattern is formed
KR20160092635A (en) Nano imprint mold manufacturing method, light emitting diode manufacturing method and light emitting diode using the nano imprint mold manufactured by the method
JP5245006B2 (en) Method for manufacturing a substrate on which a pattern is formed
TW201513394A (en) Substrate and method for manufacturing same, light-emitting element and method for manufacturing same, and device having substrate or light-emitting element
TW201039390A (en) Method of fabricating substrate where patterns are formed
TW202107535A (en) Method of preparing high-brightness patterned composite substrate
TW201408584A (en) Nano-meshed substrate and method for forming the same
KR100915337B1 (en) Method of fabricating substrate where patterns are formed
CN102290513A (en) Large-power high-brightness light-emitting diode (LED) chip and production method thereof
CN113488569B (en) Light-emitting diode chip with flip-chip structure and preparation method thereof
CN112201734B (en) Composite pattern substrate and manufacturing method thereof, and LED structure and manufacturing method thereof
TW201436284A (en) Sapphire substrate structure suitable for pattern etching and pattern sapphire substrate generation method thereof
TWI387003B (en) Method of fabricating substrate where patterns are formed
CN114864774B (en) Preparation method of patterned substrate and LED epitaxial structure with air gap
KR20140073622A (en) Light emitting diode having multi-layered photonic crystal layers
KR20090042211A (en) Method of fabricating substrate where patterns are formed