TW201037507A - Low power consumption in standby mode - Google Patents

Low power consumption in standby mode Download PDF

Info

Publication number
TW201037507A
TW201037507A TW099101511A TW99101511A TW201037507A TW 201037507 A TW201037507 A TW 201037507A TW 099101511 A TW099101511 A TW 099101511A TW 99101511 A TW99101511 A TW 99101511A TW 201037507 A TW201037507 A TW 201037507A
Authority
TW
Taiwan
Prior art keywords
circuit
current
switch
power
voltage
Prior art date
Application number
TW099101511A
Other languages
Chinese (zh)
Inventor
Carsten Deppe
Georg Sauerlaender
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW201037507A publication Critical patent/TW201037507A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • H02J9/007Detection of the absence of a load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Abstract

A disconnecting circuit (SW1, RS, COM, CO) for a power converter (1) supplies power to a load device (LO; 2). The disconnecting circuit (SW1, RS, COM, CO) comprises a switch (SW1) arranged in series with the power converter (1) to disconnect a supply of power to the load device (LO, 2). A sense circuit (RS) supplies a sensed value indicating an operation mode of the load device (LO, 2). A controller (CO, COM) receives the sensed value to control the switch (SW1) to disconnect the supply of the power from the load device (LO, 2) when the sensed value drops below a reference level indicating a standby mode of the load device (LO, 2).

Description

201037507 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種用於一電力榦拖 轉換盗之切斷電路,一種 包括此一切斷電路之電力轉換器, 種包括該電力轉換 咨及包括-可再充電電池之一負載裝置的系統。 【先前技術】 EP⑵则揭^具有—待機模式之—電力供應系統,盆 中電力消耗係封低的。找待機模式㈣,—機械問鎖 繼電器將電力供應系統之電力轉換器從主電源切斷。當在 信號輸入偵測到應開始正常模式時,儲存於一超級電:器 中之能量藉由一接通電路加以使用,而啟動該繼電器以; 電力轉換器連接至主電源。 雖然此方法在待機期間導致非常低的電力消耗,但是電 路之重新開始可能無法在所有條件下運行。—些所需組件 (諸如該繼電器及該超級電容器)之尺寸以及成本係額外缺 點。 【發明内容】 本發明之一目標係提供一種切斷電路,其在待機模式期 間使該電力供應與該負載切斷並且當須回復正常模式時具 有一可靠接通行為。 本發明之一第一態樣提供技術方案丨之一切斷電路。本 發明之一第二態樣提供供應技術方案13之一電力轉換器。 本發明之一第三態樣提供包括技術方案丨4之該電力轉換器 之一系統。優勢實施例都定義於附屬技術方案中。 H5639.doc 201037507 該開關模式電力轉換器將該AC主電源電壓轉移成適於— 負載裝置之—Dc電壓以將電力供應至該負载裝置。此一 開關模式電力轉換器(進-步亦稱為電力轉換器)在技術中 係眾所周知的且包括一電感及一定期斷開與閉合之開關, 用以將该AC主電源電壓轉換成該適宜低dc電壓。通常, 該電感器係一主電源隔離之變換器。該負載裝置可能包括 一可再充電電池。201037507 VI. Description of the Invention: [Technical Field] The present invention relates to a cut-off circuit for a power dry-to-drag conversion, a power converter including the cut-off circuit, and the power conversion protocol And a system comprising a load device of one of the rechargeable batteries. [Prior Art] EP (2) discloses a power supply system having a standby mode, and the power consumption in the basin is low. Find standby mode (4), mechanical lock The relay cuts the power converter of the power supply system from the main power supply. When the signal input detects that the normal mode should be started, the energy stored in a super-electric device is activated by a turn-on circuit to activate the relay; the power converter is connected to the main power source. Although this method results in very low power consumption during standby, the restart of the circuit may not operate under all conditions. The size and cost of some of the required components, such as the relay and the supercapacitor, are additional disadvantages. SUMMARY OF THE INVENTION One object of the present invention is to provide a cut-off circuit that shuts off the power supply and the load during the standby mode and has a reliable turn-on behavior when it is necessary to return to the normal mode. A first aspect of the present invention provides a cutting circuit for one of the technical solutions. A second aspect of the present invention provides a power converter of one of the technical solutions 13. A third aspect of the present invention provides a system of the power converter including the technical solution 丨4. Advantageous embodiments are all defined in the subsidiary technical solution. H5639.doc 201037507 The switch mode power converter transfers the AC mains voltage to a DC voltage suitable for the load device to supply power to the load device. The switch mode power converter (also known as power converter) is well known in the art and includes an inductor and a periodic open and close switch for converting the AC mains voltage to the appropriate one. Low dc voltage. Typically, the inductor is a mains isolated converter. The load device may include a rechargeable battery.

該切斷電路包括經配置用於待機模式期間將該電力供應 與該負載裝置切斷之一可控制開關。例如,在待機模式期 間’該切斷電路將該電力轉換器從該主電源切斷或將贫負 =裝置從該電力轉換H切斷。此導致在待機模式期間:非 常低的電力消耗。一感測電路感測該負載裝置之操作模式 且供應指㈣操作模式Μ為-待機模叙—經感測值: 例如’該感測電路可能為感測由電力轉換器供應至該負載 裝置之-電流並供應指示此電流之該經感測值之—電流 測電路。或者,可能刹 __ 纟了⑼待機模式之任何其他信 二:如该電力轉換器之穩定迴路中之錯誤信號可指示 “糟由電力轉換H供應之電力降到—特定位準之下。一# ==測值且當該經感測值例如藉由降低至低: 以將μ力^ ㈣置之—待機模式時控制該開關 以將该電力供應與該負載裝 期斷開與閉合之開關。 〜 該切斷電路可靠地決定是 否進入該待機模式 其中對負 145639.doc 201037507 載之電力供應須Α +771 & 機模式的資訊。、例如,如r因為f使用在該負載裝置之待 係低於該參考位準 ^由°亥負載裝置所及取之電流 岸將今電力“载裝置係待機模式下且該開關 應將δ亥電力供應與該負載裝置切斷。 力:::::中’該開關經配置在介於該負載裝置及該電 力轉換态的輪出夕pq & 从士人 B 輸出供應電流至該負載裝置。 在此貫施例中,者俏, 兮W h、 該待機模式時⑽如因為由 番抵” “ 考位準以下P該負載裝 置係伙該電力轉換器拆離的。該在電力轉換器中之電力散 :將因無需供應在該待機模式下由該負載裝置沒取之低電 抓而進-步降低。再次’代替感測供應至該負載農置之電 流’可能利用任何其他指示該待機模式之信號以控制將該 負載裝置從該電力轉換器切斷。 在一實施例中,該電流感測電路包括經配置介於該輸出 及該負載裝置之間之一電阻器以感測至該負載裝 流。 在-實施例中,該控制器定期閉合該開關以檢查該經感 測值是否依然低於或高於該參考位準。如果該經感測值係 高於該參考位準’則該控制器保持該開關閉合;或如果該 經感測值係低於該參考位準’則斷開該開關。 在一實施例中,一進一步開關係配置於該電力轉換器之 該輸入與主電源之間。當偵測到供應至該負栽裝置之電流 降至低於一進一步參考位準且橫跨在該電 處之一電容器之電壓係高於對電力電路而 力轉換器之輪出 吕足夠高的一特 145639.doc 201037507 定電壓位準時該控制器斷開該進_步開關,如果偵測到由 該2載所請求之電流係高於該參考位準或當檢查該經感測 值是否高於該參考位準時之時間週期期間,該等電力電路 必須閉合該第—上述開關。當該特定電壓位準降得太多 時,該進一步開關必須閉合以使在該電力轉換器之輸出之 電容器再充電。藉由進一步從該主電源切斷該電力轉換器 而盡可能地最小化該電力散耗。該進一步參考位準可能等 ^ 於該參考位準。 在一實施例中,該控制器當偵測到該感測值升至高於該 進步參考位準或當橫跨該電容器之電壓降至低於較該特 定電壓位準更低之一進一步特定電壓位準時控制該進一步 開關閉合。只要橫跨該電容器之電壓足夠高,可能定期閉 δ »亥第上述開關且感測由該負载裝置所汲取之電流量。 /在-實施例中,用於將該電力供應與該負載切斷之開關 係配置於β亥電力轉換盗之輸入處以將該電力轉換器從主電 〇 源切斷。現在從主電源之該電力消耗將可能為最低的。 在實她例中,该電力轉換器具有一主電源隔離之變換 器。亥邊換器將該電力轉換器分為一主級端及一副級端。 切斷該電力供應與該負載之開關係配置^該主級端且該 電机感測電路係配置於該副級端,該切斷電路須包括一主 電源隔離電路以將訊息傳送至該主級端。如果分析電力轉 換益疋否需要操作之電路之該控制器係位於該主級端,主 電源隔離電路需將該經感測值傳送至該主級端。如果該控 制器係在該副級端,主電源隔離電路需傳送控制該開關Ζ 145639.doc 201037507 一控制信號至該主級端。 士片.ί Γ知例中,用於感測該待機模式之電路(例如該電 、-編路)係配置於該副級端且該控制器係配置於該電力 轉換盗之主級端。該切斷電路進—步包括一脈衝產 用以將該經感測值轉換為一脈衝信號。在該脈衝信號令之 名脈衝之存在指示該經感測之電流係低於該參考位準且亦 2示該副級端係操作的。如果沒有脈衝存在則該感測之 電〜係局於該參考位準或在該副級端之電壓係太低的。在 此兩種情況下,該開關應該閉合以將該電力轉換器連接至 §亥^電源。若在該副級端處之該脈衝產生器因橫跨在該轉 換器之輸出處之電容考夕雪厥分^ 电谷态之電壓減低至一太低位準而停止操 作,則不會產生脈衝且在該主級端處之開關將閉合。因 此、’在該轉換器之輸出處之電容器之充電係自動處理。主 電源離電路現在传两ρ番m 兄隹你配置用於傳送此脈衝信號至該主級 端。藉由使用一脈衝信號,在主電源隔離電路中之該電力 消耗係最小化的。如果該主電源隔離為一光麵合器,此尤 其係真。雖然在脈衝期間通過該光搞合器之該光二極體之 電流係相對較高’但該平均電流相對於通過該光二極體用 以從該光茅馬合器之光電晶體可靠地決定該經感測電流所需 要之一連續電流可能相對較低。 在-實施例中,若偵測到在該電力轉換器之輸出處之一 電壓降至低於-特定電堡位準,該控制器閉合用於將該電 ^共應與該負載切斷之開關。因此,在橫跨於該電力轉換 器之輸出處之-電容器之電壓降至不足以操作於該副級端 145639.d〇, 201037507 之電路之-位準之前,該電力轉換器將此電容器再充電。 =法允許開關儘可能長久斷開而不會引起其中如果需要 將無法閉合該開關之一情形。 馮,王心,此係一可選特徵, 因為如較早所聞明,當在該轉換器之輸出處之電壓降至一 太低值且不可產生脈衝時, 將電力供應與該負载切 斷之開關將自動閉合。在另一 di ^ ^ ™ , b方法具有可在該輸 出處隨意璉擇該最低位準電壓之優勢。 Ο Ο ^實施例中,該電流感測電路包括感測之電流所流過 了變電阻器。一控制雷技且古— 變電阻器之-電輪人㈣職跨該可 .. ,、心控制k號至該可變電阻器以控 :::變電阻器之-電阻,因此橫跨該可變電阻器之電厂堅 之—值無關而保持恆定。該控制電路從該控制信 的範tr測值。此方法具有可以—低散耗於一非常大 =圍上感測電流之優勢。無需擁有报多電阻器及開關, 路=—過多散耗或具有一可感測非常小電壓之昂貴電 之實際值Γ選擇正確電阻器組合以適於所感測之該電流 ::明之此等及其他態樣從下文中描述之該等 顯可知且將參考其。 【貫施方式】 同=,在不同圖式中具有相同元件符號之項目具有相 特:及相同功能,或者為相同信號。在已解釋此— 重複之解釋。 #之^下’於實施方式中不需要其 145639.doc 201037507 圖1示意性展示在待機模式下具有非常低的電力消耗之 一電力供應系統之一基本方塊圖。 一整流電路REC接收該主電源電壓vm以供應一經整流主 電源電壓VR。該整流電路REC可能具有任何合適構造。例 如,如所示可能利用一單一二極體D1。或者,例如可利用 一整流電橋。 一 DC至DC轉換器CON接收該經整流主電源電壓VR且供 應一輸出電壓VO至一負載LO。該DC至DC轉換器CON進一 步亦稱為該電力轉換器CON或為該轉換器CON,其具有主 電源隔離且藉此將該系統分為一非主電源隔離之主級端PR 及一主電源隔離之副級端SE。一平滑電容器Ci係耦合於該 轉換器CON之輸入端之間以使該經整流主電源電壓VR變得 平滑。一可控制開關SW1係配置於該主級端PR之輸入電路 中以將該轉換器CON之輸入從該主電源連接或切斷。如圖 1中所示,該開關SW1可配置於整流器REC之一輸出及該 轉換器CON之一輸入之間。 一電流感測電路RS感測由該轉換器CON供應至該負載 L0之該輸出電流1〇。如果一平滑電容器係配置成與該負 載並聯’該電流感測電路RS感測通過現在認為係該負載之 此並聯配置之該電流。該電流感測電路RS可能係一電阻 器、一電流變換器或任何其他適於感測一電流之電路。該 比較電路c〇m將該經感測電流與一臨限值ref進行比較以 獲得一比較器輸出信號cs,該信號經由一主電源隔離電路 MI傳送至該系統之該主級端PR。例如’如果該比較器輸出 145639.doc -10- 201037507 信號係一脈衝信號,則主電源隔離電路MI可能為一光耦合 器或一變換器。 該控制器CO接收主電源隔離電路MI之輸出信號cs,且控 - 制該開關SW1之該斷開/閉合狀態。該開關SW1在斷開狀態 ^ 下具有一高阻抗(係不傳導的)且在閉合狀態下具有一低阻 抗(係傳導的)。如所示,該控制器co可能配置於該主級 編。或者,該控制器CO可能配置於該副級端以經由主電源 0 隔離電路MI而切換該開關s W1。 或者圖1中所示,該開關SW1可能配置在介於該主電源及 該整流器REC之間、介於該電容器〇及該轉換器c〇N2 間、介於s亥轉換器CON及該電流感測電路rs之間、或介於 »亥轉換益CON及§亥負載LO之間。如果利用一可控制整流 元件,則該開關SW1可能為該整流器rEc之一開關,或者 可能為在該轉換器CON内之一開關.例如,如果該轉換器 C ON具有作為pfc(電力因數校正器)之一第一階段且該第 〇 一階段係通常電力轉換器,該開關可能係用於該pFc中之 開關或可能配置在介於該PFC及該通常電力轉換器之間。 .重要的係該開關SW1斷開從主電源至該負載[〇之電力迴 路。雖然展示一單一開關,但其可能以同時連接於該整流 器REC及該轉換器C0N之間或同時連接於該主電源及該整 流态REC之間之一開關’將該轉換器CON從該主電源切 斷。此外,在其他提及之位置,該開關SW1可能為一雙開 關。該開關SW1可能為任何適合之半導體開關,舉例而 言,諸如一 MOSFET、一雙極性電晶體 '一閘流體或一個 145639.doc 201037507 二端雙向可控石夕元件。 …在一第-實施例中,在該待機㈣,其中該負載⑺不 肖耗電力或僅僅,肖耗_低電力量,該轉換器⑺N係僅僅在 相對較短的時間週期作用。如果在此一亦稱為測試週期之 短時間週期期間’該經感測輸出電流10大於-特定臨限 值則口亥開關SW1將為閉合的。如果在該測試週期期間該 輸出電流小於一進一步臨限值(其可能等於或小於該特定 臨限值),則該開關SW1係斷開的。在該轉換器c〇N係不 作用之時間㈣,由該比較電路COM及該控制器co所没 取之该相對較小的電力係由與該轉換器c〇N之輸出並聯連 接之-儲存電容器而供應的。當橫跨該儲存電容器之電壓 降至低於一臨限值時,該開關SW1亦係閉合的,以使該儲 存電容器充電。言亥帛-實施例係相對於圖2進一步詳述。 在第一實知例中,只要偵測到該輸出電流10係高於該 ^限值REF,則該開關SW1係閉合的。當偵測到該輸出電 冰ίο降至低於該臨限值REF,則該開關swi係斷開的。因 此,如果該負载LO未連接至該轉換器c〇N或與該轉換器 CON切斷,或如果由該負載[〇所消耗之電力降至低於一 特疋值,則該轉換器C0N係從該主電源切斷的且因此該系 統之電力消耗將為非常低。當該輸出電流增加至高於該臨 限值REF或該等副級電路沒有傳遞該電流低於該臨限之資 訊之足夠能量時,該控制器CO需從該主電源電壓VM接收 供應電壓VS,或可閉合該開關sw丨之該經整流主電源電 壓VR。該等副級電路從該轉換器c〇N之副級端接收其等之 145639.doc •12- 201037507 電力。如前文所論述,可能利用一單一臨限值ref。或 者’可藉由使用不同臨限值而引入一遲滯行為:當該輪出 電流10降至低於一第一臨限值時斷開該開關,且當該輪出 電流升至高於大於該第一臨限值之一第二臨限值時閉合該 開關。該第二實施例係相對於圖3及圖4詳細論述。 相對於圖5及圖6論述同時適於該第一及該第二實施例之 一電流感測電路之一實施例。此電流感測電路之使用係不 ΟThe shut-off circuit includes a controllable switch configured to disconnect the power supply from the load device during standby mode. For example, during the standby mode, the shut-off circuit shuts off the power converter from the main power source or cuts the lean-down device from the power conversion H. This results in a very low power consumption during standby mode. A sensing circuit senses an operating mode of the load device and the supply finger (four) operating mode is a - standby mode - a sensed value: eg, the sensing circuit may be sensing the power converter to supply the load device a current and a current measuring circuit that supplies the sensed value indicative of the current. Or, it may be __ 纟 (9) any other letter 2 of the standby mode: if the error signal in the stable loop of the power converter may indicate that the power supplied by the power conversion H falls below the specific level. == Measured and when the sensed value is lowered, for example by lowering: to set the force (4) to the standby mode, the switch is controlled to open and close the power supply with the load. ~ The cut-off circuit reliably determines whether to enter the standby mode where the power supply for the negative 145639.doc 201037507 is required to be +771 & mode information. For example, if r is used in the load device It is lower than the reference level. The current is in the standby mode of the power supply device and the switch should cut off the power supply and the load device. Force::::: Medium The switch is configured to supply current from the slave B to the load device at a time interval between the load device and the power conversion state. In this embodiment, the power converter is detached from the power device in the standby mode (10), as it is due to the "acceptance". The power dissipation in the power converter will be further reduced by the need to supply low power that is not taken by the load device in the standby mode. Again, instead of sensing the current supplied to the load, it may utilize any other signal indicative of the standby mode to control the disconnection of the load device from the power converter. In one embodiment, the current sensing circuit includes a resistor disposed between the output and the load device to sense the load current. In an embodiment, the controller periodically closes the switch to check if the sensed value is still below or above the reference level. The controller keeps the switch closed if the sensed value is above the reference level' or the switch if the sensed value is below the reference level'. In one embodiment, a further open relationship is disposed between the input of the power converter and the main power source. When it is detected that the current supplied to the load device falls below a further reference level and the voltage across one of the capacitors is higher than the power converter and the force converter is sufficiently high A special 145639.doc 201037507 The controller disconnects the _step switch when the voltage level is determined. If it is detected that the current requested by the 2 load is higher than the reference level or when the detected value is high, During the time period of the reference level, the power circuits must close the first switch. When the particular voltage level drops too much, the further switch must be closed to recharge the capacitor at the output of the power converter. This power dissipation is minimized as much as possible by further cutting off the power converter from the main power source. This further reference level may be equal to the reference level. In one embodiment, the controller detects that the sensed value rises above the progressive reference level or when the voltage across the capacitor falls below a certain lower voltage than the particular voltage level. The level control controls the further switch to close. As long as the voltage across the capacitor is sufficiently high, it is possible to periodically turn off the above switches and sense the amount of current drawn by the load device. In the embodiment, the switch for disconnecting the power supply from the load is placed at the input of the beta power conversion thief to disconnect the power converter from the main power source. This power consumption from the main power source will now be the lowest. In the example, the power converter has a main power isolation converter. The edge converter divides the power converter into a primary terminal and a secondary terminal. Disconnecting the power supply from the load and configuring the main stage and the motor sensing circuit is disposed at the secondary stage, the cutting circuit must include a main power isolation circuit to transmit a message to the Main level. If the controller that analyzes the power conversion benefit circuit that requires operation is located at the primary stage, the primary power isolation circuit needs to transmit the sensed value to the primary stage. If the controller is at the secondary stage, the main power isolation circuit needs to transmit a control signal to the main stage. In the example, the circuit for sensing the standby mode (e.g., the electric, the - routing) is disposed at the sub-stage and the controller is disposed at the main stage of the power conversion. The shut-off circuit further includes a pulse generating to convert the sensed value into a pulse signal. The presence of the pulse of the pulse signal indicates that the sensed current is below the reference level and also indicates that the secondary stage is operating. If no pulse is present, the sensed voltage is either at the reference level or the voltage at the secondary stage is too low. In both cases, the switch should be closed to connect the power converter to the power supply. If the pulse generator at the sub-stage ends stops operating due to the voltage across the capacitor at the output of the converter being reduced to a too low level, no pulse is generated. And the switch at the main stage end will close. Therefore, the charging of the capacitor at the output of the converter is automatically processed. The main power supply is now two steps away from the circuit. You are configured to transmit this pulse signal to the main stage. This power consumption in the main power isolation circuit is minimized by using a pulse signal. This is especially true if the main power supply is isolated as a glossy finisher. Although the current of the photodiode passing through the light combiner is relatively high during the pulse, the average current is reliably determined relative to the photodiode used by the photodiode from the photo-matrix. One of the continuous currents required to sense the current may be relatively low. In an embodiment, if it is detected that one of the voltages at the output of the power converter drops below a specific electric bunker level, the controller is closed for disconnecting the electric power from the load switch. Therefore, the power converter divides the capacitor at a voltage across the output of the power converter to a level that is insufficient to operate at the level of the sub-stage 145639.d〇, 201037507. Charging. The = method allows the switch to be disconnected as long as possible without causing a situation in which the switch cannot be closed if needed. Feng, Wang Xin, an optional feature of this system, because as soon as it is known, when the voltage at the output of the converter drops to a value that is too low and pulses are not generated, the power supply is cut off from the load. The switch will automatically close. In another di ^ ^ TM , the b method has the advantage that the lowest level voltage can be randomly selected at the output. In the embodiment, the current sensing circuit includes a sensed current flowing through the variable resistor. A control of the thunder and the ancient - variable resistor - the electric wheel person (four) job spans the .. , , the heart control k number to the variable resistor to control ::: variable resistor - resistance, so across the The power plant of the variable resistor remains constant regardless of the value. The control circuit measures the value of the norm from the control signal. This method has the advantage of being able to - dissipate a very large = surrounding sense current. There is no need to have multiple resistors and switches, road = too much dissipation or an actual value of expensive electricity that can sense very small voltages Γ select the correct combination of resistors to suit the sensed current:: Other aspects are apparent from the description below and will be referred to. [Comprehensive mode] Same as =, items with the same component symbol in different drawings have the same function: the same function, or the same signal. This has been explained - a repetitive explanation. It is not required in the embodiment. 145639.doc 201037507 FIG. 1 schematically shows a basic block diagram of a power supply system having very low power consumption in the standby mode. A rectifying circuit REC receives the main power supply voltage vm to supply a rectified main power supply voltage VR. The rectifier circuit REC may have any suitable configuration. For example, a single diode D1 may be utilized as shown. Alternatively, for example, a rectifying bridge can be utilized. A DC to DC converter CON receives the rectified main supply voltage VR and supplies an output voltage VO to a load LO. The DC to DC converter CON is further referred to as the power converter CON or the converter CON, which has main power isolation and thereby divides the system into a main stage terminal PR and a main power source that are not isolated from the main power source. The secondary side SE of the isolation. A smoothing capacitor Ci is coupled between the inputs of the converter CON to smooth the rectified mains voltage VR. A controllable switch SW1 is disposed in the input circuit of the main stage PR to connect or disconnect the input of the converter CON from the main power source. As shown in Figure 1, the switch SW1 can be placed between one of the outputs of the rectifier REC and one of the inputs of the converter CON. A current sensing circuit RS senses the output current 1 供应 supplied by the converter CON to the load L0. If a smoothing capacitor is configured in parallel with the load, the current sensing circuit RS senses the current through the parallel configuration now considered to be the load. The current sensing circuit RS may be a resistor, a current transformer or any other circuit suitable for sensing a current. The comparison circuit c〇m compares the sensed current with a threshold value ref to obtain a comparator output signal cs that is transmitted to the main stage terminal PR of the system via a main power isolation circuit MI. For example, if the comparator output 145639.doc -10- 201037507 signal is a pulse signal, the main power isolation circuit MI may be an optical coupler or a converter. The controller CO receives the output signal cs of the main power isolation circuit MI and controls the open/closed state of the switch SW1. The switch SW1 has a high impedance (which is non-conducting) in the off state ^ and a low impedance (conducted) in the closed state. As shown, the controller co may be configured in the main level. Alternatively, the controller CO may be disposed at the secondary stage to switch the switch s W1 via the primary power supply 0 isolation circuit MI. Or as shown in FIG. 1, the switch SW1 may be disposed between the main power source and the rectifier REC, between the capacitor 〇 and the converter c〇N2, between the s-converter CON and the current sense Between the test circuits rs, or between the »H conversion benefit CON and the §Hide load LO. If a controllable rectifying element is utilized, the switch SW1 may be a switch of one of the rectifiers rEc or may be a switch within the converter CON. For example, if the converter CND has as pfc (power factor corrector) One of the first stages and the first stage is a normal power converter that may be used for the switch in the pFc or may be disposed between the PFC and the normal power converter. It is important that the switch SW1 is disconnected from the main power source to the load [〇 power circuit. Although a single switch is shown, it may be connected to both the rectifier REC and the converter C0N or simultaneously connected to the switch between the main power supply and the rectified state REC. Cut off. Furthermore, at other mentioned locations, the switch SW1 may be a double switch. The switch SW1 may be any suitable semiconductor switch, such as, for example, a MOSFET, a bipolar transistor 'a thyristor' or a 145639.doc 201037507 two-terminal bidirectionally controllable element. In a first embodiment, in the standby (four), wherein the load (7) does not consume power or only consumes _ low power, the converter (7) N acts only for a relatively short period of time. If the sensed output current 10 is greater than the -specific threshold value during a short period of time, also referred to as the test period, the switch SW1 will be closed. The switch SW1 is open if the output current is less than a further threshold (which may be equal to or less than the particular threshold) during the test period. At a time when the converter c〇N is inactive (4), the relatively small power that is not taken by the comparison circuit COM and the controller co is connected in parallel with the output of the converter c〇N. Capacitor supply. When the voltage across the storage capacitor drops below a threshold, the switch SW1 is also closed to charge the storage capacitor. The 帛 帛 - embodiment is further detailed with respect to Figure 2. In the first practical example, the switch SW1 is closed as long as the output current 10 is detected to be higher than the ^ limit REF. When it is detected that the output electric ice ίο falls below the threshold REF, the switch swi is disconnected. Therefore, if the load LO is not connected to the converter c〇N or is disconnected from the converter CON, or if the power consumed by the load [〇 falls below a value, the converter is a The power consumption from the main power supply and therefore the system will be very low. The controller CO needs to receive the supply voltage VS from the main power voltage VM when the output current increases above the threshold REF or the secondary circuit does not transmit sufficient energy that the current is below the threshold information. Alternatively, the rectified main power voltage VR of the switch sw can be closed. The secondary circuits receive their 145639.doc •12-201037507 power from the secondary stage of the converter c〇N. As discussed above, it is possible to utilize a single threshold ref. Or 'can introduce a hysteresis behavior by using different thresholds: when the round current 10 falls below a first threshold, the switch is turned off, and when the round current rises above the first The switch is closed when one of the thresholds is at the second threshold. This second embodiment is discussed in detail with respect to Figures 3 and 4. One embodiment of a current sensing circuit that is suitable for both the first and second embodiments is discussed with respect to Figures 5 and 6. The use of this current sensing circuit is not

限於D亥第一及第一貫施例,且可用於任何其中一電流須被 感測之應用中。 圖2示意性展示一電力供應系統之一實施例之一電路 圖。當連接時,該電力供應系統丨在介於其輸出終端之間 產生一供應電壓VU以使一行動裝置2之一電池(或任何其他 可再充電裝置)充電。 該電力供應系統1包括經由開關SW2與該主電源連接以接 收該主電源電壓VM之該DC至DC轉換器CON。該開關SW2 係用於將該完整電路從該主電源切斷且在待機模式下實現 小於1讀之一電力消&。該開關請2可能為一雙穩態繼 電器或-「正常導通」科體開關。代替介於該主電源及 / 1机電路之間(圖2中設想為於該轉換器⑶N之中),該開 關^可m所示執行於該整流電路咖及該轉換器 c〇N之間。該轉換器C0N之輸出電塵v〇藉由作為一電荷 =子緩衝區之該電容㈣而變得平滑。該電容器ci將在 待機期間電路操作所必須的能量進行緩衝且例如可能包括 一電解電容器或一所謂的栌 所明的超級電容器。該電流感測電阻器 145639.doc •13· 201037507 1^及該’_1之-串聯g己置係配置在介於該電容器^之 接地電極與該電力供應系統丨之輸出終端之一者之間。該 電力供應系統!之輸出終端之另一者係連接至該電容器ci 之正電極。或者,該電流感測電阻器Rs及該開關SW1可能 配置於介於該電容器CI之正終端及該電力供應系統i之輸 出終端之另-者之間。該比較電路c〇M包括該運算放大器 (進一步亦稱為運算放大)m及該等電阻器R3、以與…且 可感測在該電流感測電阻器RS上之一小電壓藉此允許該電 流感測電阻器RS之一低阻抗且因此最小化其中的損耗。 該控制器CO從該運算放大m之輸出接收表示通過該感 測電阻器RS之經感測電流之—信號且經由主電源隔離之電 路MI而供應一第一切換信號FS1至該開關sw2及一第二切 換k號FS2至該開關S W1。在該待機模式下,該控制器 從該電容器C1接收其電力。只要通過該電流感測電阻器 RS之電流係高於一第一特定值(例如1〇 mA),則該控制器 CO控制該開關SW1閉合(傳導的)。此模式稱為正常模式。 該控制器CO控制該開關SW1導通及非導通,其中若通過電 流感測電阻器RS之該電流降至低於一第二特定位準(其等 於或低於該第一特定位準),該導通時間相對於非導通時 間較短。在一實施例中,該第二位準可能為丨mA。此模式 稱為脈衝模式。在一貫施例中,該脈衝具有丨毫秒的一導 通時間及5秒的一非導通時間。如果在該脈衝期間或其結 束通過電流感測電阻器RS之該電流達到該第一特定值,該 控制器co離開§玄脈衝模式且改變成開關SW1經控制持續導 145639.doc •14· 201037507 通之正常模式,直至該經感測電流降至低於該第二特定值 且再次進入脈衝模式。 因此,在偵測到供應至該負載2之電流係低於該第二特 定值後,該負載2在多數時間係從該電容器ci切斷的。在 . 該脈衝模式期間,當開關SW1將該電力供應系統i連接至 該負載2時,檢查被該負載2所請求之電流是否高於該第一 特疋值如果不疋,该電力供應系統1停留於該脈衝模 ❹ 式如果疋,該電力供應系統1改變成該正常模式。如果 由該負載2所汲取的電流降至低於該第二特定值,藉由從 忒轉換器CON切斷該負載2,該電容器以係由該負載2最小 地放電且因此可最大地用於供電該控制器CO及該比較電 路COM。此導致由該轉換器c〇N而供應之一最小電力。作 為以該電流感測電阻器RS進行該直流感測之一替代,可能 偵測由一電流而導致的一電壓波動。例如,可能利用用於 調節該輪出電壓V0之該轉換器c〇N之一控制器中之一錯 〇 誤信號(圖中未展示)。 由該轉換器CON所汲取之該電力可藉由斷開該開關SW2 或藉由電子停用該轉換器CON而被進一步最小化。在該正 常操作模式期間,該控制器CO控制該開關SW2閉合。在該 • 待機模式期間,當橫跨該電容器C1之輪出電壓V〇達到一 最大位準,該開關SW2斷開。該控制器c〇及該比較電路 之電力現在係由该電容器C1而供應。當該電壓v〇達 到—最小值,該開關SW2閉合且該電容器C〗被充電至該最 位準^该最小值係藉由該電壓係通過該控制器C〇之運 145639.doc -15- 201037507 作所需電£而確疋的’因此該開關sw2可閉合。在一實施 例中,該最小值可能為該電麗¥〇之正常值的三分之一。 當^該脈衝模式期間_到通過該感測電阻HRS之電流升 至间於6亥第一特定位準時,該控制器c〇可能直接地接通 該開關SW2以最小化在該電容器C1上的電壓漣波。 舉q而α如果同時利用該等開關s w i及該可選開關 SW2’在該脈衝模式之脈衝期間沒取之電流為1心,且該 等脈衝之導通及非導通之負载循環係大於·,在該待機 模式期間從該電容⑽所絲之平均電流係低於丨_。如 果該電壓VO係於2.7 乂及55 ν之間變化且該電容器⑴系 〇.別’該轉換器c〇N需藉由近似地每25個小時一次閉合 該開關SW2而接诵。. m 因此’如果該開關SW2為一繼電器, 其:需每天接通一次且因此由產生之喀喱聲而引起的擾動 ΐ有限在此應用中,以1〇 〇〇〇⑼之一電容器^獲得 該轉換器CON —幼盔—加,+ ,力為—個小時的循環時間。代替一繼電 益,可能使用一適宜固態切換元件。 /仃動裝置2可能具有包括_個二極體⑴。、一電容器 ⑽、-充電管理器CM、一可再充電電池ba及由該可再 充電電池BA供電的應用功能从之—熟知構造。該保護二 極體⑽保護該行動裝置2不接收具有錯誤極性之—電壓。 /電奋器C10過濾經由該二極體Di〇而供應之電壓以獲得 ”亥充電官理态CM之一經過濾輸入電壓。該充電管理器CM 控制該可再充電電池BA之充電。 根據本發明’該電阻器们〇及該等MOSFET M2及M3已 145639.doc 201037507 被添加至該行動裝置2。MOSFET M2具有配置於介於該二 極體D10及該電容器C10之間之一主電流路徑及連接至該 節點N1之一控制輸入。該電阻器R20係配置於介於該節點 N1及該行動裝置2從該電力供應系統1接收其電力供應電壓 之一終端之間。該MOSFET M3具有一配置於介於該節點 N1及該行動裝置2接收其電力供應電壓之另一終端之間之 一主電流路徑且具有從該充電管理器CM接收一控制信號 〇 之一控制輸入。只要該可再充電電池BA沒有完全充電, 該MOSFET M2經由該電阻器R2〇而啟動以將該充電管理器 CM之輸入連接至該電力供應系統1。如果該可再充電電池 B A係完全充電,該充電管理器cm啟動該MOSFET M3且該 MOSFET M2停用。現在’至該行動裝置2中之殘餘電流係 僅由該電阻器R20確定且被迫低於該電力供應系統1偵測到 需進入待機模式之該第一特定值。 圖3示意性展示一電力供應系統之一實施例之另一電路 〇 圖。圖1之該整流電路REC現在包括作為一整流電橋以整 流該主電源電壓VM之該等二極體D1至D4。該整流電橋係 經由限制該湧入電流之該電阻器R1而連接至該主電源。橫 跨該主電源而連接之該電容器C1限制高頻率擾動不進入該 •主電源中。由該整流電橋供應之該經整流電壓乂尺經由該電 容器C2而變得平滑。該電容器ci在該轉換器c〇N之輸入作 為該平滑電容器。該經整流電壓乂尺係經由該電感器L1及 經由該開關swi分別供應至該轉換器C0N之該等兩個輸 入。該轉換器CON之該等輸出係連接至由該等電容器c4、 145639.doc -17- 201037507 C5及該電感器L2而形成的平滑電路以供應該輸出電壓 VO。該電流感測電阻器RS係配置於介於該等電容器以及 C5之間以感測由該轉換器CON所供應之電流。只要該電流 感測電阻RS作為產生指示由該轉換器c〇N而供應的一電流 或由該負載LO(見圖1)所汲取的一電流時,該電流感測電 阻器RS可能具有圖1中實際展示之一以外之另一位置。 該比較電路COM(亦見圖1)包括該等電阻器R5至Ri〇、該 等放大器U4及U5 ’及該齊納二極體D6。主電源隔離電路 MI為包括一發光二極體及一光敏電晶體之一光耗合器。該 控制器CO包括該AND A1、該等放大器U2及U3、該等電阻 器R3、R11至R14、該齊納二極體D5及該電容器C7。 該電阻器R2及該電容器C8及該等二極體D7及D8之串聯 配置將一經整流主電源電壓作為該電力供應電壓VS而供應 至該控制器CO。該電阻器R2防止由主電源尖波而引起的 電流峰值。該電阻器R2之阻抗應如D7及D8所允許之峰值 電流能力般低,通常1 〇〇 mA的二極體為1至1 〇 kQ。為限制 所引起的電力損失’由C 8獲得所需之高阻抗,例如少於 1 nF。該電容器C6充電至由該齊納二極體d5及橫跨該電阻 器R3之該電壓降所定義之一電壓位準。橫跨該電阻器 之電壓降觸發由該放大器U3而形成之比較器。該電容器 C7經由該電阻器R11而充電且設定由放大器u2而形成之比 較器。一旦兩個比較器仍及U3都設定,該開關swi經由 該AND A1而閉合。該構造防止在該電壓vs足夠完全切換 該S W1前而閉合該開關s w 1。 145639.doc • 18- 201037507 該比較電路COM之該放大器U5使橫跨該電阻器R5之電 壓放大。該放大器U4將該放大器U5之輸出電壓與由該電 阻器R8及R1 0而決定的一參考位準進行比較。如果通過該 電流感測電阻器RS的電流降至低於此參考位準,該放大器 U4經由該齊納二極體D6及該電阻器R9而使該光耦合器MI 之發光二極體啟動。該光耦合器二極體之啟動導致該電容 器C7之一短路且經由該比較器U2及該AND A1使該開關 SW1切斷。現在,該轉換器CON從該主電源切斷且該電力 消耗非常低。只要該輸出電壓VO足夠高,此非導通模式 被保持,因此一足夠高電流流經該齊納二極體D6及該光耦 合器二極體之該串聯配置以保持該電容器C7藉由該光耦合 器電晶體而放電。如果選擇使該電容器C5最小地放電之 R9及Rl 1之電阻器值,該轉換器CON將盡可能長時間地處 於非導通狀態。 只要該輸出電壓VO降至低於適於藉由該光耦合器電晶 體而保持該電容器C7放電的一位準,該電容器C7立即經 由該電阻器Rl 1而放電且該開關SW1係接通。該轉換器 CON開始操作且使該等電容器C4及C5充電。只要橫跨電 容器C5之該電壓係足夠高且通過該電流感測電阻器RS之 電流足夠低,該光耦合器二極體將立即啟動且回復該非導 通模式。通過該電流感測電阻器RS之電流係由該電容器 C5充電的電流及由該負載LO汲取的電流而決定的。因此 該非導通模式僅僅可在使該電容器C5足夠充電且該負載汲 取一小電流或無電流後而回復。例如,如果在該副級端之 145639.doc -19· 201037507 該無負载電流為7 壓之該漣波為3 v 輪出電容為删好,且輸出電 該主電源切斷達約換器⑽將藉由該開MSW1而從 刀在里。在此週期之後,該開關SW1需 的以使,二。期的期間内閉合’其中該轉換器c⑽係作用 電容再充電。因此,在大多數時間,該轉換 Ή D亥主電源切斷的且因此,由該轉換器CON而導 致的電力消耗係最小的。 守 /㈣㈣出時,如果使用者觸及該電力供應 系統之该主電源插頭的該電氣接頭,用以防止使用者受到 —電擊之需要引起從主電源所汲取之該電力消耗之減少之 一潛在限制。因此, 该專電容器C1及C8需在一秒内放 —。子匕門題之第—解決方案係設計該電路使得該等電 令器C1及C8之值如此小以至於該放電的能量無害。另一 4擇係透過„亥轉換器c〇N而使得該等電容器c 1及以放 電。 如果而要一穩定之輪出電壓VO ,該轉換器C〇N應包括 回饋電路以感測該輸出電壓V〇且控制在該轉換器c〇N 中之一切換元件而使得該輸出電壓V〇穩定。該轉換器 CON中所需之該切換元件及電感都未展示。此電路之一實 例展不於該方塊CON内。該等電阻器R15及R16產生輸出 電壓VO之一分接以控制該電壓參考U7(例如,一 TL431)。 只要在控制電極上之電壓達到一參考值(通常丨.2 ν),介於 %極及陰極間之電流立即開始流動,因此使該光麵合器U 6 之LED啟動。 145639.doc •20· 201037507 此回饋電路之一缺點在於其在待機模式期間汲取約為^ 至10 mA的電流。此缺點可藉由將電壓參考u7之節點及該 電阻器R15與該比較器U4之輸出(而非接地)進行連接而迴 . 避。只要該轉換器C〇N係作用的且電流係從其輸出而沒取 # °玄比車又器U4之輸出係在接地位準且該回饋電路如圖4 中所不而#作。在待機模式下,該比較器U4之輪出改變至 高位準以使光耦合器m之該光耦合器二極體啟動。通過回 〇 冑電路之該電流現在係最小化的,此不是一個問題,因為 在待機模式下當該負載汲取無電流或一最小電流,該變換 器係切斷且該輸出電壓v〇的穩定性不是一個問題。 應注意,本發明並非限定於圖3中所示之該特定實施 例。該整流電路REC可能為一單一邊之整流器,該等電感 态L1及L2係可選。可能使用一單一電容器來代替該二個電 容器C4及C5。該低阻抗電阻器似及該電容器。係可選, 或者可能需其他組件以履行標準或額外要求。此開關swi 〇 T 置於主級電路中之任何地方,只要其發揮將該主電源 與该整流電路REC連接或切斷或使該經整流電壓與該轉換 器CON之輸入連接或切斷的功能。 圖4示意性展示此一電力供應系統之另一實施例之一方 塊圖。將僅僅論述相對於圖3的差異。該開關SW1從該主電 源接收電力以致使能夠在沒有能量從該電力供應系統之該 田1J級端轉移下將開關SW1接通。如圖3中所示之經由該電容 盗C8之該電容性電力供應容易地經設計以限制該控制器 CO及該開關SW1之電力消耗至低於0 5 mW。或者,如圖4 I45639.doc •21- 201037507 中所不,可能使用包括該等電阻器R2丨及R3之一電阻分壓 益,以向該控制器CO及該p㈣SW1供應電力。用於該電容 性電力供應所需之該等組件現在是多餘的。然而,該電力 消耗現在可此升至約為i 0 mw。如較早所述之兩項實施例 中,該開關SW!之該非導通命令係藉由監視該輸出電流及 該輸出電壓且藉由該副級邏輯而產生。 介於该電力供應系統之該副級端及該主級端之間之通信 係藉由使用該光搞合器而實現的。在圖3之實施例中,該 光輕合器係用於-線性模式下。關於敏感光搞合器之實驗〇 已,展現信號可使用通過該光麵合器二極體的一 5 pA電流 而可罪地傳送。例如可能使用該威世(Vishay)光耦合器 如果該光耗合器係用於一脈衝模式下,此電力消耗 可甚至降低。例如一具有非常短丨9〇 脈衝之1:1 〇〇〇負載 循環(導通··非導通)導致與5 μΑ的一連續電流相同的信號雜 訊比:而該平均電流降至G.19_。然而,使用先= 術《玄脈衝產生斋添力〇小於i p A的一些額外電力消耗。在 遠脈衝Μ式下,可能利用—脈衝變換器而非該光輕合器。❹ 6玄脈衝產生器包括該等電阻器R15至R19、該電容ρ :9、該二極體D9、該比較器U6。該脈衝產生器同樣係很. 著名且其操作不詳細描述。 圖5不意性展示用於在一大範圍電流之一電力有效電流 測里之電路之一方塊圖。通常電流感測器包括—電阻 ~通過s亥電阻器之一電流引起被感測之一電壓。此電阻 為需一相對較高的電阻值以獲得橫跨該電阻器之一足夠高 145639.doc -22- 201037507 的電壓,因為一非常小電流流過該電阻器。然而,如果利 用同樣的電阻器感測到一相對較高的電流,則引起一非常 高的散耗。US6,150,797揭示兩個電流感測電阻器之一串 聯配置。一切換元件係與該等電阻器之一者並聯連接以在 高電流使此電阻器短路。 圖5之該電流感測電路具有控制一可變電阻器SR之一分 流控制電路SC,因此因該負載電流IL而導致的橫跨該可變 0 電阻器SR之電壓是恒定的。該分流控制電路SC供應與該 可變電阻器SR之一值相關或與控制此值之一信號相關之一 輸出信號SO且因此指示該負載電流IL之位準。該電壓源 VB為該分流控制電路SC及該負載IL提供該供應電壓。因 此,根據本發明,使用使橫跨該可變電阻器SR之電壓於一 大範圍之負載電流IL保持恆定之一回饋迴路。該可變電阻 器SR對於相對較小電流具有一高阻抗,且對於相對較大電 流具有一低阻抗,且因此致使能夠精確地感測一大範圍上 ❹ 之電流而無過多散耗。 圖6示意性展示於一大範圍上精確地感測電流之此一電 路之一實施例之一電路圖。該可變電阻器SR藉由一電晶體 Ml之該主電流路徑而產生,該電晶體藉由實例展示為一 • M0SFET,該主電流路徑係經配置與一固定電阻器R40及 一肖特基(schottky)二極體D40並聯。在快速電流暫態期 間,該可選肖特基二極體D40限制峰值電壓。該可選電阻 益R 4 0決定該最大分流電阻。 該放大器U40具有經由該電阻器R41而在該可變電阻器 145639.doc •23· 201037507 SR接收電壓的一輸入、接收由該等電阻器R42、R43及R44 而決定之一第一參考電壓的一輸入,及經由一電阻器R45 而控制該電晶體Μ1的一輸出。如果橫跨該可變電阻器SR 之電壓降超過該第一參考電壓(在此實例中約為23 my), 5亥放大器U40增加該電晶體Ml之該控制電壓,且因此降低 該可’欠電阻器S R之該阻抗。該放大器u 41偵測在該電晶體 Ml之該控制電極(閘極)上的電壓且供應一偵測信號s〇以 才曰示3亥經感測電流IL是高於還是低於一特定臨限值。在圖 6中所示之實施例中,該放大器U41比較在該電晶體河丨之 閘極之電t與—0 · 5 V的參考電壓,其梢低於⑷之該間極 ^氐限電麼。因此,只要任何電流流過該電晶體Μ ^, 該偵測信號SO立即改變至一高位準。 孩電谷器C40作為高頻率組件之電流的過濾器。 圖6中所不之該等值應解釋為僅僅一執行之一實例且因 此對於:他執行可能不同。在該所示實例中,t亥第一參考 Z壓設定為23 mV。對於放大器U40及U41利以進技術低 八士二置電路之總電力消耗僅為2 。假定一標準電流 十’例如’如果該峰值電流為1A且橫跨該電流感測 電壓為〇·25 v ’則該電力消耗多於根據本發明之 路之電力消耗之倍。在另-方面,如果此先 ^測電路需感測G.l mA,則將需高精度運算 万又穴器以伯、:目,|叱 # θ ^ 侍之25 μν電壓降。此高精度運算放大器 係叩貝且消耗大量能量。 應注意,卜、+、^ 貫施例說明而不限制本發明,且熟知此項 145639.doc 201037507 技藝者將能在不脫 替代性實施例。 甲叫專利轨圍之範圍下設計很多 在申請專利範圍中 釋為請求項之PPM ,壬可置於括弧内之參考符號不應解 不排除不同於二:動詞「包含」及其變化形式之使用並 元件前之不定冠;m::元件或步驟之存在。在-元件之存在。」或「一個」並不排除複數個所述 Ο Ο 式及以—經適宜程式化電同兀件之硬體的方 件之《置請求項: 式而執行。在列舉若干構 0 0 右干此等構件可能藉由同-項目的硬 方法:事實:::互不:的申請專利範圍附屬項中陳述某些 【圖式簡單說明】丁不1有利地使用此等方法之—組合。 圖1不意性展示在待機模式下具有非常极& + 4 1 一 ^ 八负非爷低的電力消耗之 力供應系統之一基本方塊圖; 此一電 圖2不意性展示具有作為一充電器之額外電路 力供應系統之一實施例之一電路圖; 圖3示意性展示此一電力供應系統之_實施例 路圖; 圖4示意性展示此-電力供應系統之另—實施例之一方 塊圖; 電力有效電流 圖5示意性展示用於在一大範圍電流之— 測量之一電路之一方塊圖;及 圖6示意性展示於一大範圍上精確地感測 〜4电流之此一電 路之一實施例之一電路圖。 145639.doc -25· 201037507 【主要元件符號說明】 Φ 接地 A1 AND構件 AF 應用功能 BA 可再充電電池 Ci 平滑電容器 CM 充電管理器 CO 控制器 COM 比較電路 CON 電力轉換器 CS 輸出信號 CS' 輸出信號 Cl 電容器 C4 電容器 C5 電容器 C6 電容器 C7 電容器 C8 電容器 C9 電容器 CIO 電容器 C40 電容器 D1 二極體 D2 二極體 D3 二極體 145639.doc -26- 201037507It is limited to the first and first embodiments of D Hai and can be used in any application where one of the currents must be sensed. Fig. 2 schematically shows a circuit diagram of one embodiment of a power supply system. When connected, the power supply system generates a supply voltage VU between its output terminals to charge a battery (or any other rechargeable device) of a mobile device 2. The power supply system 1 includes the DC to DC converter CON connected to the main power supply via a switch SW2 to receive the main power supply voltage VM. The switch SW2 is used to disconnect the complete circuit from the main power source and achieve a power consumption of less than one read in the standby mode. The switch 2 may be a bi-stable relay or a "normal conduction" body switch. Instead of being between the main power supply and the /1 machine circuit (considered in the converter (3) N in FIG. 2), the switch can be executed between the rectifier circuit and the converter c〇N. . The output of the converter C0N is smoothed by the capacitance (4) as a charge = sub-buffer. The capacitor ci buffers the energy necessary for the operation of the circuit during standby and may, for example, comprise an electrolytic capacitor or a so-called supercapacitor. The current sensing resistor 145639.doc •13·201037507 1^ and the '_1-series-g-configuration are disposed between the ground electrode of the capacitor and one of the output terminals of the power supply system . The power supply system! The other of the output terminals is connected to the positive electrode of the capacitor ci. Alternatively, the current sensing resistor Rs and the switch SW1 may be disposed between the positive terminal of the capacitor CI and the other terminal of the power supply system i. The comparison circuit c〇M includes the operational amplifier (further also referred to as operational amplification) m and the resistors R3, and can sense a small voltage on the current sensing resistor RS thereby allowing the One of the current sensing resistors RS is low impedance and thus minimizes losses therein. The controller CO receives a signal indicating the sensed current through the sensing resistor RS from the output of the operational amplifier m and supplies a first switching signal FS1 to the switch sw2 and a circuit via the main power supply isolation circuit MI. The second switch k number FS2 to the switch S W1. In this standby mode, the controller receives its power from the capacitor C1. The controller CO controls the switch SW1 to be closed (conducted) as long as the current through the current sensing resistor RS is above a first specific value (e.g., 1 mA). This mode is called normal mode. The controller CO controls the switch SW1 to be turned on and off, wherein if the current through the current sensing resistor RS falls below a second specific level (which is equal to or lower than the first specific level), The on time is shorter than the non-conduction time. In an embodiment, the second level may be 丨 mA. This mode is called pulse mode. In a consistent embodiment, the pulse has an on-time of 丨 milliseconds and a non-conduction time of 5 seconds. If the current through the current sensing resistor RS reaches the first specific value during or at the end of the pulse, the controller co leaves the 玄 脉冲 pulse mode and changes to the switch SW1 controlled to continue to conduct 145639.doc •14· 201037507 The normal mode is passed until the sensed current drops below the second specific value and enters the pulse mode again. Therefore, after detecting that the current supplied to the load 2 is lower than the second specific value, the load 2 is cut off from the capacitor ci most of the time. During the pulse mode, when the switch SW1 connects the power supply system i to the load 2, it is checked whether the current requested by the load 2 is higher than the first characteristic value. If not, the power supply system 1 Staying in the pulse mode, if 疋, the power supply system 1 changes to the normal mode. If the current drawn by the load 2 falls below the second specific value, the load 2 is switched off from the 忒 converter CON, which is discharged by the load 2 and thus can be used to the maximum The controller CO and the comparison circuit COM are supplied. This results in a minimum of power supplied by the converter c〇N. As an alternative to the DC sensing with the current sensing resistor RS, it is possible to detect a voltage fluctuation caused by a current. For example, it is possible to utilize one of the controllers of the converter c〇N for adjusting the turn-off voltage V0 (not shown). The power drawn by the converter CON can be further minimized by turning off the switch SW2 or by electronically deactivating the converter CON. During this normal mode of operation, the controller CO controls the switch SW2 to close. During the standby mode, when the voltage V 横跨 across the capacitor C1 reaches a maximum level, the switch SW2 is turned off. The power of the controller c and the comparison circuit is now supplied by the capacitor C1. When the voltage v〇 reaches a minimum value, the switch SW2 is closed and the capacitor C is charged to the most accurate level. The minimum value is passed through the controller C through the voltage system 145639.doc -15- 201037507 Make the required electricity and make sure 'so the switch sw2 can be closed. In one embodiment, the minimum may be one-third of the normal value of the battery. When the current through the sense resistor HRS rises to a first specific level between 6 Hz, the controller c 〇 may directly turn on the switch SW2 to minimize the capacitor C1 Voltage chopping. If q and α are simultaneously utilized by the switch swi and the optional switch SW2', the current that is not taken during the pulse mode pulse is 1 center, and the on and non-conducting load cycles of the pulses are greater than ·, The average current drawn from the capacitor (10) during this standby mode is lower than 丨_. If the voltage VO varies between 2.7 乂 and 55 ν and the capacitor (1) is 〇. the converter c〇N needs to be closed by closing the switch SW2 approximately once every 25 hours. m Therefore 'If the switch SW2 is a relay, it is required to be switched on once a day and therefore the disturbance caused by the generated jam sound ΐ is limited in this application, obtained by one of the capacitors of 1〇〇〇〇(9) The converter CON - young helmet - plus, +, force - hour cycle time. Instead of a relay, it is possible to use a suitable solid state switching element. The /ripping device 2 may have _ diodes (1). A capacitor (10), a charge manager CM, a rechargeable battery ba, and application functions powered by the rechargeable battery BA are known from the prior art. The protective diode (10) protects the mobile device 2 from receiving voltages of the wrong polarity. / The electric device C10 filters the voltage supplied via the diode Di〇 to obtain a filtered input voltage of one of the "charging states". The charging manager CM controls the charging of the rechargeable battery BA. According to the present invention 'The resistors are added to the mobile device 2 with the MOSFETs M2 and M3 145639.doc 201037507. The MOSFET M2 has a main current path disposed between the diode D10 and the capacitor C10 and Connected to one of the control inputs of the node N1. The resistor R20 is disposed between the node N1 and a terminal of the mobile device 2 receiving its power supply voltage from the power supply system 1. The MOSFET M3 has a configuration a main current path between the node N1 and another terminal of the mobile device 2 receiving its power supply voltage and having a control signal received from the charging manager CM. As long as the rechargeable input The battery BA is not fully charged, and the MOSFET M2 is activated via the resistor R2〇 to connect the input of the charge manager CM to the power supply system 1. If the rechargeable battery BA is fully charged The charge manager cm activates the MOSFET M3 and the MOSFET M2 is deactivated. Now the residual current into the mobile device 2 is determined only by the resistor R20 and forced to be lower than the power supply system 1 detects Entering the first specific value of the standby mode. Figure 3 is a schematic diagram showing another circuit of an embodiment of a power supply system. The rectifier circuit REC of Figure 1 now includes as a rectifier bridge to rectify the main power supply voltage. The diodes D1 to D4 of the VM are connected to the main power source via the resistor R1 that limits the inrush current. The capacitor C1 connected across the main power source limits high frequency disturbances. Entering the main power source, the rectified voltage step supplied by the rectifying bridge is smoothed via the capacitor C2. The capacitor ci is input to the converter c〇N as the smoothing capacitor. The scales are respectively supplied to the two inputs of the converter C0 via the inductor L1 and via the switch swi. The outputs of the converter CON are connected to the capacitors c4, 145639.doc -17- 201037507 C And a smoothing circuit formed by the inductor L2 to supply the output voltage VO. The current sensing resistor RS is disposed between the capacitors and C5 to sense the current supplied by the converter CON. The current sensing resistor RS may have FIG. 1 as long as the current sensing resistor RS generates a current indicating that the current is supplied by the converter c〇N or is drawn by the load LO (see FIG. 1). Another location other than one of the actual displays. The comparison circuit COM (see also FIG. 1) includes the resistors R5 to Ri, the amplifiers U4 and U5', and the Zener diode D6. The main power isolation circuit MI is a light absorbing device including a light emitting diode and a photosensitive transistor. The controller CO includes the AND A1, the amplifiers U2 and U3, the resistors R3, R11 to R14, the Zener diode D5, and the capacitor C7. The resistor R2 and the capacitor C8 and the series arrangement of the diodes D7 and D8 supply a rectified main power supply voltage to the controller CO as the power supply voltage VS. This resistor R2 prevents current peaks caused by the main power supply spike. The impedance of this resistor R2 should be as low as the peak current capability allowed by D7 and D8, typically 1 to 1 〇 kQ for a 1 〇〇 mA diode. To limit the resulting power loss, the desired high impedance is obtained by C8, for example less than 1 nF. The capacitor C6 is charged to a voltage level defined by the Zener diode d5 and the voltage drop across the resistor R3. The voltage drop across the resistor triggers the comparator formed by the amplifier U3. The capacitor C7 is charged via the resistor R11 and a comparator formed by the amplifier u2 is set. Once both comparators are still set to U3, the switch swi is closed via the AND A1. This configuration prevents the switch s w 1 from being closed before the voltage vs is sufficiently sufficient to completely switch the S W1 . 145639.doc • 18- 201037507 The amplifier U5 of the comparison circuit COM amplifies the voltage across the resistor R5. The amplifier U4 compares the output voltage of the amplifier U5 with a reference level determined by the resistors R8 and R10. If the current through the current sensing resistor RS falls below this reference level, the amplifier U4 activates the light emitting diode of the optical coupler MI via the Zener diode D6 and the resistor R9. Activation of the optocoupler diode causes a short circuit in one of the capacitors C7 and the switch SW1 is turned off via the comparator U2 and the AND A1. The converter CON is now switched off from the mains and the power consumption is very low. As long as the output voltage VO is sufficiently high, the non-conduction mode is maintained, so a sufficiently high current flows through the Zener diode D6 and the series arrangement of the optocoupler diodes to maintain the capacitor C7 by the light. The coupler transistor is discharged. If the resistor values of R9 and R11 which minimize the discharge of the capacitor C5 are selected, the converter CON will be in a non-conducting state for as long as possible. As long as the output voltage VO falls below a level suitable for sustaining discharge of the capacitor C7 by the optocoupler electro-optic, the capacitor C7 is immediately discharged via the resistor R11 and the switch SW1 is turned "on". The converter CON begins to operate and charges the capacitors C4 and C5. As long as the voltage across capacitor C5 is sufficiently high and the current through the current sense resistor RS is sufficiently low, the optocoupler diode will immediately start and return to the non-conducting mode. The current through the current sensing resistor RS is determined by the current charged by the capacitor C5 and the current drawn by the load LO. Therefore, the non-conduction mode can only be recovered after the capacitor C5 is sufficiently charged and the load draws a small current or no current. For example, if the no-load current is 7 voltage at the sub-level end of the 145639.doc -19· 201037507, the chopping wave is 3 v. The round-out capacitor is deleted, and the output power is cut off by the main power supply (10). It will be taken from the knife by the MSW1. After this period, the switch SW1 is required to make two. During the period of the period, the converter c(10) acts as a capacitor to recharge. Therefore, most of the time, the conversion Ή D main power supply is cut off and, therefore, the power consumption caused by the converter CON is minimal. Shou/(4)(d), if the user touches the electrical connector of the main power plug of the power supply system to prevent the user from being subjected to a shock, one of the potential limitations of the power consumption drawn from the main power source is limited. . Therefore, the capacitors C1 and C8 need to be placed in one second. The first solution to the problem is to design the circuit so that the values of the drivers C1 and C8 are so small that the energy of the discharge is harmless. The other four selects the capacitor c 1 and discharges through the hai converter c 〇 N. If a stable wheel VO is required, the converter C 〇 N should include a feedback circuit to sense the output. Voltage V〇 and controlling one of the switching elements in the converter c〇N to stabilize the output voltage V〇. The switching elements and inductors required in the converter CON are not shown. In the block CON, the resistors R15 and R16 generate one of the output voltages VO to control the voltage reference U7 (for example, a TL431) as long as the voltage on the control electrode reaches a reference value (usually 丨.2 ν), the current between the % pole and the cathode begins to flow immediately, thus causing the LED of the optical combiner U 6 to start. 145639.doc •20· 201037507 One of the disadvantages of this feedback circuit is that it draws during standby mode. The current is from ^ to 10 mA. This disadvantage can be avoided by connecting the node of the voltage reference u7 and the output of the resistor R15 to the comparator U4 (not the ground) as long as the converter C〇N Actuated and the current is output from it without taking # ° The output of the vehicle U4 is at the grounding level and the feedback circuit is not as shown in Fig. 4. In the standby mode, the rotation of the comparator U4 is changed to a high level to make the optical coupler m The optocoupler diode is activated. The current through the return circuit is now minimized, which is not a problem because in the standby mode when the load draws no current or a minimum current, the converter is switched off and The stability of the output voltage v〇 is not a problem. It should be noted that the present invention is not limited to the particular embodiment shown in Figure 3. The rectifier circuit REC may be a single-sided rectifier, the inductive states L1 and L2 Optional. It is possible to use a single capacitor instead of the two capacitors C4 and C5. The low impedance resistor seems to be the capacitor. It is optional or other components may be required to fulfill the standard or additional requirements. This switch swi 〇T It is placed anywhere in the main stage circuit as long as it functions to connect or disconnect the main power supply to the rectifying circuit REC or to connect or disconnect the rectified voltage to the input of the converter CON. A block diagram showing another embodiment of this power supply system. Only the differences with respect to Figure 3 will be discussed. The switch SW1 receives power from the main power source to enable the field in the absence of energy from the power supply system. The switch SW1 is turned on under the 1J stage transition. The capacitive power supply via the capacitor thief C8 as shown in FIG. 3 is easily designed to limit the power consumption of the controller CO and the switch SW1 to below zero. 5 mW. Alternatively, as shown in Figure 4 I45639.doc • 21- 201037507, it is possible to use a resistor divider including one of the resistors R2丨 and R3 to supply power to the controller CO and the p(four)SW1. The components required for this capacitive power supply are now redundant. However, this power consumption can now rise to about i 0 mw. In the two embodiments described earlier, the non-conduction command of the switch SW! is generated by monitoring the output current and the output voltage and by the sub-level logic. Communication between the sub-stage of the power supply system and the main stage is achieved by using the optical combiner. In the embodiment of Figure 3, the light combiner is used in a linear mode. Experiments on sensitive light combiners The display signal can be transmitted sinfully using a 5 pA current through the optocoupler diode. For example, it is possible to use the Vishay optocoupler. If the light consumable is used in a pulse mode, this power consumption can be even reduced. For example, a 1:1 〇〇〇 load cycle (conducting · non-conducting) with a very short 丨9〇 pulse results in the same signal-to-noise ratio as a continuous current of 5 μΑ: and the average current drops to G.19_. However, using the first = "snapshot" produces some additional power consumption that is less than i p A. In the far pulse mode, it is possible to use a pulse converter instead of the light combiner. The 玄 6 脉冲 pulse generator includes the resistors R15 to R19, the capacitance ρ: 9, the diode D9, and the comparator U6. The pulse generator is also very well known and its operation is not described in detail. Figure 5 is a block diagram showing one of the circuits used for power effective current measurement in one of a wide range of currents. Typically, the current sensor includes a resistor that causes a voltage to be sensed by one of the current resistors. This resistor requires a relatively high resistance value to obtain a voltage high enough across one of the resistors 145639.doc -22- 201037507 because a very small current flows through the resistor. However, if a relatively high current is sensed with the same resistor, a very high dissipation is caused. US 6,150,797 discloses a one-by-one configuration of two current sensing resistors. A switching element is connected in parallel with one of the resistors to short the resistor at high current. The current sensing circuit of Fig. 5 has a shunt control circuit SC for controlling a variable resistor SR, so that the voltage across the variable 0 resistor SR due to the load current IL is constant. The shunt control circuit SC supplies an output signal SO associated with one of the variable resistors SR or associated with one of the signals controlling the value and thus indicating the level of the load current IL. The voltage source VB supplies the supply voltage to the shunt control circuit SC and the load IL. Therefore, according to the present invention, a feedback loop that keeps the voltage across the variable resistor SR constant over a wide range of load currents IL is used. The variable resistor SR has a high impedance for relatively small currents and a low impedance for relatively large currents, and thus enables accurate sensing of a large range of currents without excessive dissipation. Figure 6 is a schematic illustration of one circuit diagram of one embodiment of such a circuit for accurately sensing current over a wide range. The variable resistor SR is generated by the main current path of a transistor M1, which is shown by way of example as a MOSFET, and the main current path is configured with a fixed resistor R40 and a Schottky. (schottky) diode D40 in parallel. The optional Schottky diode D40 limits the peak voltage during fast current transients. The optional resistor R 4 0 determines the maximum shunt resistance. The amplifier U40 has an input for receiving a voltage at the variable resistor 145639.doc • 23· 201037507 SR via the resistor R41, and receiving a first reference voltage determined by the resistors R42, R43 and R44. An input, and an output of the transistor Μ1 is controlled via a resistor R45. If the voltage drop across the variable resistor SR exceeds the first reference voltage (about 23 my in this example), the 5 amp amplifier U40 increases the control voltage of the transistor M1, and thus reduces the owable This impedance of the resistor SR. The amplifier u 41 detects the voltage on the control electrode (gate) of the transistor M1 and supplies a detection signal s to indicate whether the 3H sense current IL is higher or lower than a specific Limit. In the embodiment shown in FIG. 6, the amplifier U41 compares the electrical voltage t of the gate of the transistor and the reference voltage of -0 · 5 V, and the tip is lower than the limit of (4). What? Therefore, as long as any current flows through the transistor , ^, the detection signal SO immediately changes to a high level. Child Electric Valley C40 acts as a filter for the current of high frequency components. The equivalent value in Figure 6 should be interpreted as merely performing one instance and therefore for: his execution may be different. In the illustrated example, the first reference Z voltage is set to 23 mV. For amplifiers U40 and U41, the total power consumption of the eight-second two-circuit circuit is only 2. It is assumed that a standard current of ten 'e.g., if the peak current is 1 A and the current sensing voltage is 〇 25 v ' across the current, the power consumption is more than twice the power consumption of the road according to the present invention. On the other hand, if this pre-measurement circuit needs to sense G.l mA, then it will require high-precision operation. The U-channel device will have a voltage drop of 25 μν, ie, 目, |叱 # θ ^. This high precision op amp is a mussel and consumes a lot of energy. It should be noted that the description of the present invention is not intended to be limiting, and that the skilled artisan will be able to devise alternative embodiments. A number of patents in the scope of patents is designed to be interpreted as a PPM in the scope of the patent application. The reference symbols that can be placed in parentheses should not be excluded. The use of the verb "including" and its variants is not excluded. And the indefinite crown before the component; m:: the existence of the component or step. In the presence of - components. Or "a" does not exclude a plurality of the recited and exemplified by the "claims" formula of the hardware of the appropriate stylized electrical components. In the enumeration of several constructs 0 0 right-handed these components may be hard-method by the same-project: Fact::: Mutual: The patent application scope sub-items stated in the [Simplified description of the schema] Ding not 1 advantageously used The combination of these methods. Figure 1 is a schematic block diagram showing one of the power supply systems with very pole & + 4 1 - ^ eight negative non-low power consumption in standby mode; this electrogram 2 is not intended to be displayed as a charger A circuit diagram of one of the embodiments of the additional circuit power supply system; FIG. 3 is a schematic diagram showing an embodiment of the power supply system; FIG. 4 is a block diagram showing another embodiment of the power supply system. Power Effective Current Figure 5 is a block diagram showing one of the circuits used for measuring current over a wide range of currents; and Figure 6 is a schematic illustration of such a circuit that accurately senses ~4 current over a wide range. A circuit diagram of an embodiment. 145639.doc -25· 201037507 [Description of main component symbols] Φ Ground A1 AND component AF Application function BA Rechargeable battery Ci Smoothing capacitor CM Charge manager CO controller COM Comparison circuit CON Power converter CS Output signal CS' Output signal Cl capacitor C4 capacitor C5 capacitor C6 capacitor C7 capacitor C8 capacitor C9 capacitor CIO capacitor C40 capacitor D1 diode D2 diode D3 diode 145639.doc -26- 201037507

D4 二極體 D5 二極體 D6 二極體 D7 二極體 D8 二極體 DIO 二極體 D40 二極體 D41 二極體 FS1 第一切換信號 FS2 第二切換信號 10 輸出電流 IL 負載(LO ; 2)之電流 LO 負載 LI 電感器 L2 電感器 MI 主電源隔離之電路 M2 MOSFET M3 MOSFET M40 MOSFET N1 節點 PR 主級端 REC 整流電路 REF 臨限值 RS 感測電阻器 145639.doc -27- 201037507 R1 電 阻 器 R2 電 阻 器 R3 電 阻 器 R5 電 阻 器 R6 電 阻 器 R7 電 阻 器 R8 電 阻 器 R9 電 阻 器 RIO 電 阻 器 Rll 電 阻 器 R12 電 阻 器 R13 電 阻 器 R14 電 阻 器 R15 電 阻 器 R16 電 阻 器 R17 電 阻 器 R18 電 阻 器 R19 電 阻 器 R21 電 阻 器 R40 電 阻 器 R41 電 阻 器 R42 電 阻 器 R43 電 阻 器 R44 電 阻 器 145639.doc -28 201037507 R45 電阻器 SC 控制器 SE 副級端 SO 輸出信號 SR 可變電阻器 SW1 開關 SW2 開關 〇 U1 U1 運算放大器(運算放大) 運算放大器(運算放大) U2 運算放大器(運算放大) U3 運算放大器(運算放大) U4 運算放大器(運算放大) U5 運算放大器(運算放大) U6 運算放大器(運算放大) U7 運算放大器(運算放大) 〇 U40 運算放大器(運算放大) U41 運算放大器(運算放大) VB 電壓源 ' VM 主電源電壓 VR 經整流主電源電壓 VS 供應電壓 VO 輸出電壓 VU 供應電壓 VI 電壓 145639.doc -29-D4 diode D5 diode D6 diode D7 diode D8 diode DIO diode D40 diode D41 diode FS1 first switching signal FS2 second switching signal 10 output current IL load (LO; 2) Current LO Load LI Inductor L2 Inductor MI Main Power Isolation Circuit M2 MOSFET M3 MOSFET M40 MOSFET N1 Node PR Main Stage REC Rectifier Circuit REF Pro Limit RS Sensing Resistor 145639.doc -27- 201037507 R1 Resistor R2 Resistor R3 Resistor R5 Resistor R6 Resistor R7 Resistor R8 Resistor R9 Resistor RIO Resistor Rll Resistor R12 Resistor R13 Resistor R14 Resistor R15 Resistor R16 Resistor R17 Resistor R18 Resistor R19 resistor R21 resistor R40 resistor R41 resistor R42 resistor R43 resistor R44 resistor 145639.doc -28 201037507 R45 resistor SC controller SE secondary terminal SO output signal SR variable resistor SW1 switch SW2 switch 〇 U1 U1 Operational Amplifier (Operational Amplification) U2 Operational Amplifier (Operational Amplification) U3 Operational Amplifier (Operational Amplification) U4 Operational Amplifier (Operational Amplification) U5 Operational Amplifier (Operational Amplification) U6 Operational Amplifier (Operational Amplification) U7 Operational Amplifier (Operational Amplification) 〇U40 Operation Amplifier (Operational Amplification) U41 Operational Amplifier (Operational Amplification) VB Voltage Source 'VM Mains Voltage VR Rectified Mains Voltage VS Supply Voltage VO Output Voltage VU Supply Voltage VI Voltage 145639.doc -29-

Claims (1)

201037507 七、申請專利範圍: 1. 一種用於一切換模式電力轉換器(1)之切斷電路(SWi、 RS、COM、CO),該切換模式電力轉換器包括用於接收 一主電源電壓之一輸入及用於供應電力至一負載裝置 (L0 ; 2)之一輸出,該切斷電路(Swi、rs、COM、CC〇 ’包括: 一開關(SW1),其與該切換模式電力轉換器(1)串聯配 ^ 置以將至該負載裝置(L0,2)之電力之該供應切斷, 一感測電路(RS),其用於供應指示該負載裝置(L〇, 2 )之一操作模式之一經感測值,及 一控制器(C0,C0M) ’該控制器用於接收該經感測值 以當該經感測值降至低於指示該負載裝置(L〇,2)之一 待機模式的一參考位準時控制該開關(SW1)將至該負載 裝置(L〇,2)之該電力之該供應切斷。 2_如凊求項i之切斷電路,其中該感測電路(Rs)包括一電流 〇 感測電路(RS),該電流感測電路用於供應指示供應至該 負載裝置(LO,2)之一電流的該經感測值。 3. 如明求項2之切斷電路,其中該電流感測電路(Rs)包括配 置在介於該電力轉換器(1)之該輸出及該負載襄置(L〇, . 2)之間之一電阻器。 201037507 或者低於„亥參考位準,如果該經感測值係高於該參考位 準,則保持該開關(SW1)閉合,或者如果該經感測值係 低於該參考位準則斷 6·如請求項4之切斷電路,其包括配置於該電力轉換器⑴ 以輸入及„亥主電源之間之—進—步開關(謂2),其中 工器(CO COM)經建構以當憤測到該經感測值降至 低=-進—步參考位準且橫跨在該輸出處之—電容器之 該電Μ係高於—特定電屋位準時控制該進一步開關 (SW2)斷開。 7· 2請求項6之切斷電路’其中該控制器(⑶、c〇⑷係進 一步經建構以:當偵測到該經感測值升至高於該進一步 參考位準時或當橫跨該電容器之該電壓降至低於比該特 疋电壓位準更低之一進一步特$電麼位準#,控制該進 一步開關(SW2)閉合。 8. 如1求項1之切斷電路,其中該開關係配置於該電 力轉換益(1)之該輪入處以將該電力轉換器⑴從該主電源 切斷。 9. 如請求項8之切斷電路,其進一步包括一主電源隔離電路 (MI),其中該電力轉換器(1)具有介於一主級端(pR)與— 田1J級柒(SE)之間之—主電源隔離,該開關(SW1)配置於該 主級端(PR)處,該電流感測電路(RS)配置於該副級端處, 且該主電源隔離電路(MI)經配置用以:如果該控制器 (CO ' COM)係於該主級端(PR)處,則傳送該經感測值至 忒控制器(C〇、COM);或如果該控制器(c〇、COM)係於 145639.doc 201037507 該副級端(SE)處,則傳送該開關(SW1)之一控制信號。 10.如請求項9之切斷電路,其中該電流感測電路係配置於 該副級端(SE)處且該控制器(c〇、c〇M)係配置於該主級端 (PR)處’該切斷電路進—步包括—脈衝產生電路,該脈 衝產生電路用於將該經❹m轉換為—脈衝信號,該脈 衝信號之存在指示該經感測電流係低於該參考位準,該 主電源隔離電路⑽)經配置以傳送該脈衝信號至該主級端201037507 VII. Patent application scope: 1. A cut-off circuit (SWi, RS, COM, CO) for a switching mode power converter (1), the switching mode power converter comprising a receiving main power supply voltage One input and one for supplying power to one of the load devices (L0; 2), the cut-off circuit (Swi, rs, COM, CC〇' includes: a switch (SW1), which is electrically connected to the switching mode The converter (1) is arranged in series to cut off the supply of power to the load device (L0, 2), a sensing circuit (RS) for supplying the indication of the load device (L〇, 2) One of the operational modes is a sensed value, and a controller (C0, C0M) 'the controller is configured to receive the sensed value to reduce the sensed value below the indicated load device (L〇, 2 a reference bit of one of the standby modes controls the switch (SW1) to cut off the supply of the power to the load device (L〇, 2). 2_such as the cut-off circuit of the item i, wherein The sensing circuit (Rs) includes a current sense sensing circuit (RS) for supplying an indication The sensed value of the current to one of the load devices (LO, 2). 3. The cutoff circuit of claim 2, wherein the current sense circuit (Rs) comprises a configuration between the power conversion a resistor between the output of the device (1) and the load device (L〇, .2). 201037507 or lower than the reference level, if the sensed value is higher than the reference level, Then, the switch (SW1) is kept closed, or if the sensed value is lower than the reference bit criterion, and the cutoff circuit of claim 4 is included, the power converter (1) is configured to input and a -to-step switch (referred to as 2) between the main power sources, wherein the tool (CO COM) is constructed to instigate that the sensed value falls to a low = - step reference level and spans The output is - the capacitor of the capacitor is higher than - the specific electric house is on time to control the further switch (SW2) to open. 7. 2 The disconnection circuit of claim 6 'where the controller ((3), c〇 (4) Further configured to: detect when the sensed value rises above the further reference level or when the current across the capacitor The voltage drops below one level lower than the characteristic voltage level, and further controls the further switch (SW2) to close. 8. The circuit of claim 1 is cut off, wherein the circuit is turned off. The relationship is disposed at the turn of the power conversion benefit (1) to disconnect the power converter (1) from the main power source. 9. The cut-off circuit of claim 8, further comprising a main power isolation circuit (MI) ), wherein the power converter (1) has a main power isolation between a main stage (pR) and a field 1J class (SE), and the switch (SW1) is disposed at the main stage (PR) Wherein the current sensing circuit (RS) is disposed at the secondary terminal, and the primary power isolation circuit (MI) is configured to: if the controller (CO 'COM) is tied to the primary terminal (PR) Transfer the sensed value to the controller (C〇, COM); or if the controller (c〇, COM) is at the secondary end (SE) of 145639.doc 201037507, transmit the One of the switches (SW1) controls the signal. 10. The cut-off circuit of claim 9, wherein the current sensing circuit is disposed at the secondary terminal (SE) and the controller (c〇, c〇M) is disposed at the primary terminal (PR) The 'cut-off circuit further includes a pulse generating circuit for converting the ❹m into a pulse signal, the presence of the pulse signal indicating that the sensed current system is lower than the reference bit The main power isolation circuit (10) is configured to transmit the pulse signal to the main stage 11 ·如請求項9之切斷電 r孩徑制器(C0、com)铿楚 構用以:如㈣測到在該電力轉換器⑴之該輸出處之一 :壓降至低於一特定電壓位帛,則將該開閉 合。 12.如請求項1之切斷電路, 一可變電阻器(SR), 置(LO,2)之該電流(IL) 其中該電流感測電路(RS)包括: 其經配置以感測供應至該負載裝 ,及 〇 一控制電路,盆且古·、 /SRx ' .於感測橫跨該可變電阻器 之一電麼的_於 用歸藤^ 輸入,—控制器(SC),該控制器(sc) 用於供應一控制 <古+ 電阻器 〜"可變電阻器(SR)以控制該可變 电阻益(SR)之一電阻 電堡與供應至該負㈣置二跨該可變電阻器_之該 關而保持怪定,及用^ )之該電流叫的一值無 測值。 ;回應於該控制信號而供應該經感 13· 一種電力轉換器 電路。 匕括如4述請求項中任一項之切斷 I45639.doc 201037507 14. 種系統,其包括:如請求項13之電力轉換器 可再充電電池之一負載裝置。 ;及包括 145639.doc -4-11 · If the cut-off electric machine (C0, com) of claim 9 is used: as (4) one of the outputs at the power converter (1) is measured: the pressure drops below a specific When the voltage is at 帛, it will be closed. 12. The cut-off circuit of claim 1, a variable resistor (SR), the current (IL) of (LO, 2), wherein the current sense circuit (RS) comprises: configured to sense Supply to the load device, and the first control circuit, the basin and the /, SRx '. in the sensing of one of the variable resistors _ used with the returning ^ ^ input, - controller (SC) The controller (sc) is used to supply a control < ancient + resistor ~ " variable resistor (SR) to control the variable resistor (SR) one of the resistors and the supply to the negative (four) The second span of the variable resistor _ is kept ambiguous, and the value of the current called ^) is not measured. Supplying the sense of response in response to the control signal. 13. A power converter circuit. A cut-off according to any of the above claims, I45639.doc 201037507 14. A system comprising: one of the power converter rechargeable batteries of claim 13. ; and include 145639.doc -4-
TW099101511A 2009-01-23 2010-01-20 Low power consumption in standby mode TW201037507A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09151188 2009-01-23

Publications (1)

Publication Number Publication Date
TW201037507A true TW201037507A (en) 2010-10-16

Family

ID=42115494

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099101511A TW201037507A (en) 2009-01-23 2010-01-20 Low power consumption in standby mode

Country Status (2)

Country Link
TW (1) TW201037507A (en)
WO (1) WO2010084444A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2515439A1 (en) 2011-04-18 2012-10-24 Philips Intellectual Property & Standards GmbH Semiconductor switch with reliable blackout behavior and low control power
EP2654385B1 (en) * 2012-04-17 2017-11-08 Helvar Oy Ab An apparatus, a method, an arrangement and a computer program for controlling operation of a power supply circuit
CN202995349U (en) * 2012-12-26 2013-06-12 黄冠雄 Micro-power-consumption standby system and thick film hybrid integrated circuit module
US10476377B2 (en) 2013-03-28 2019-11-12 Hewlett Packard Enterprise Development Lp Converters to provide light load output
CN105340151B (en) 2013-06-28 2018-11-27 慧与发展有限责任合伙企业 The interruption of output power and auxiliary power
US11571534B2 (en) 2016-05-11 2023-02-07 ResMed Pty Ltd Power supply for respiratory therapy device
US11163346B2 (en) * 2018-08-31 2021-11-02 Nxp B.V. Recycling capacitance energy from active mode to low power mode
KR102216130B1 (en) 2019-04-08 2021-02-17 삼성전자주식회사 Electronic device and operating method for controlling an external device
US11658571B2 (en) 2020-04-01 2023-05-23 Analog Devices International Unlimited Company Low power regulator circuit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414475A (en) * 1993-08-11 1995-05-09 Zenith Electronics Corp. Method of operating a low standby power system for a television receiver
JP3157127B2 (en) 1997-08-07 2001-04-16 セイコーインスツルメンツ株式会社 Charge / discharge control circuit with charge / discharge current detection function and rechargeable power supply
US6339314B1 (en) * 2000-12-27 2002-01-15 Philips Electronics North America Corporation Battery charger circuit with low standby power dissipation
DE10106132A1 (en) * 2001-02-10 2002-08-14 Philips Corp Intellectual Pty Wake-up circuit for an electrical device
JP2004187355A (en) * 2002-11-29 2004-07-02 Fujitsu Ltd Power supply control method, current/voltage conversion circuit, and electronic device
GB0706401D0 (en) * 2007-04-04 2007-05-09 Universal Concepts Ltd Power saving means
US7852645B2 (en) * 2007-12-12 2010-12-14 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Circuit and associated method for reducing power consumption in a power transformer

Also Published As

Publication number Publication date
WO2010084444A3 (en) 2010-10-07
WO2010084444A2 (en) 2010-07-29

Similar Documents

Publication Publication Date Title
TW201037507A (en) Low power consumption in standby mode
CA3008730C (en) Emergency lighting system
US6366053B1 (en) DC pump control system
US9496795B2 (en) Switching power supply apparatus
US9667094B1 (en) Battery backup system for uninterrupted power supply
JP2016136839A (en) Method and device that realize input terminal voltage discharge circuit for power converter
CN102624044A (en) Battery charger for use with low voltage energy harvesting device
CN101447666A (en) Power supply system and power overvoltage safety protection control method
US6765317B2 (en) Power supply module for electrical power tools
TW201547154A (en) Battery charge system with transition control that protects adapter components when transitioning from battery mode to adapter mode
EP2312736B1 (en) Self-Excited Switching Power Supply Circuit
US9979218B2 (en) LPS architecture for UPS systems
US7804194B2 (en) Device, system and method for charger switch adaptor
CN112510985A (en) Soft start circuit and power supply circuit
US9954431B2 (en) Starting circuit of power management chip, and power management chip
EP3790152A1 (en) Dc uninterruptible power supply apparatus with bidirectional protection function
EP3591801B1 (en) Adaptive charger
CA2892030C (en) Low power detection and alarm
CN212343641U (en) Switch power supply starting circuit
CN104037932A (en) Emergency power supply control circuit and emergency power supply control device
CN110311465B (en) Uninterrupted power supply system and network attached storage equipment
CN215580523U (en) Medical equipment and power supply management system thereof
TWI491143B (en) Renewable energy supply system and power supply device with rechargeable battery protection function and controlling method thereof
CN214900648U (en) Power management chip and switching power supply management system
CN116667678B (en) Power supply circuit, power supply adapter and charging system