TW201036082A - Inspection condition data generation method and inspection system of semiconductor wafer appearance inspection apparatus - Google Patents

Inspection condition data generation method and inspection system of semiconductor wafer appearance inspection apparatus Download PDF

Info

Publication number
TW201036082A
TW201036082A TW99100171A TW99100171A TW201036082A TW 201036082 A TW201036082 A TW 201036082A TW 99100171 A TW99100171 A TW 99100171A TW 99100171 A TW99100171 A TW 99100171A TW 201036082 A TW201036082 A TW 201036082A
Authority
TW
Taiwan
Prior art keywords
inspection
wafer
data
condition data
inspection condition
Prior art date
Application number
TW99100171A
Other languages
Chinese (zh)
Other versions
TWI402927B (en
Inventor
Hidekazu Ohmi
Hisashi Yamamoto
Original Assignee
Toray Eng Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Eng Co Ltd filed Critical Toray Eng Co Ltd
Publication of TW201036082A publication Critical patent/TW201036082A/en
Application granted granted Critical
Publication of TWI402927B publication Critical patent/TWI402927B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

A wafer inspection condition generation method for generating inspection condition data for a plurality of inspection apparatuses which inspect the appearance of semiconductor chips formed on wafers (10). The method is provided with the following steps: a step of calculating the individual difference, for each wafer inspection apparatus (A to C), from a design value, then registering individual difference correction data; a step of generating inspection condition data using a wafer (10), at any selected wafer inspection apparatus (A); a step of generating common inspection condition data from the inspection condition data and the individual correction data of the selected wafer inspection apparatus (A); and a step of generating inspection condition data for each wafer inspection apparatus (B to C), from the common inspection condition data and the individual difference correction data of the corresponding wafer inspection apparatus (B to C).

Description

201036082 四、 指定代表囷: (一) 本案指定代表圖為:第( 4 )圖。 (二) 本代表圖之元件符號簡單說明: 五、 本案若有化學式時,請揭示最能顯示發明特 徵的化學式: . 六、發明說明: 【發明所屬之技術領域】 ◎ 本發明是關於進行半導體晶圓(semiconductor wafer) 的外觀檢查的裝置中的檢查條件資料產生方法及檢查系統。 【先前技術】 半導體晶片(semiconductor chip)是在被稱為半導體 晶圓的基板(substrate)上積層形成有幾層電路圖案 (circuit pattern)而被製造。該半導體晶片在製造過程中 被交互進行規定次數電路圖案形成與 出半導體晶片成規定的尺寸而完成。 程中’針對晶圓上的瑕疵或異物、電 陷的有無,進行使用半導體晶圓外觀 在前述半導體晶圓外觀檢查中, 查條件資料而進行檢查:被檢查的半 為定位的基準的標記(mark)的位置資 曰曰曰片的場所或排列、使用的透鏡的倍 置及照明的亮度等的檢查條件的資訊201036082 IV. Designated representative: (1) The representative representative of the case is: (4). (2) A brief description of the symbol of the representative figure: 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: 6. Description of the invention: [Technical field to which the invention pertains] ◎ The present invention relates to conducting a semiconductor An inspection condition data generation method and an inspection system in a device for visual inspection of a wafer (semiconductor wafer). [Prior Art] A semiconductor chip is manufactured by laminating a plurality of circuit patterns on a substrate called a semiconductor wafer. The semiconductor wafer is formed by alternately performing a predetermined number of circuit pattern formation and a predetermined size of the semiconductor wafer during the manufacturing process. In the middle of the process, for the presence or absence of defects or foreign matter on the wafer, the presence of the semiconductor wafer is used to check the condition of the semiconductor wafer in the appearance inspection of the semiconductor wafer: the half of the inspection is the mark of the reference ( Mark) The information of the inspection conditions such as the location or arrangement of the film, the magnification of the lens used, and the brightness of the illumination

檢查’之後由晶圓切 在該電路圖案形成過 路圖案的倒塌等的缺 檢查裝置的檢查。 根據登記有如下的檢 導體晶片的品種及成 訊、成為檢查對象的 率、檢查時的焦點位 群。該檢查條件資料 3 201036082 T當成為檢查對象的晶圓的品種被造加就使用檢查的裝 ^ 才决疋、登§己。然後在實際的檢查過程中,根 該檢查條件資料對照拍攝電路圖案而得的影像與預先登 §己的基準影像’進行該半導體晶片為良品或不良品的判定。 檢查夕數片晶圓的情形,因可在一台的檢查裝置中於 規疋的時間内檢查的晶圓的片數有上限,故複數台的檢查 • 裝置被使用。 依,,、、專利文獻卜揭示有在半導體的檢查方法及裝置 〇使用標準試樣求所要的檢查參數值,估計缺陷部的電阻 值之手段(means)。 [專利文獻1]日本國特開2004-3 1 9721號 【發明内容】 爲知的檢查裝置是根據裝置規格被設計,各部尺寸預 先被田作。又汁值決定’根據該設計值被製作。但是,零件 加工或組裝作業通常是在被稱為一般公差或公差指定的精 〇度的範圍内被進行。因此,在完成的檢查裝置的各部尺寸 若” °又片值比較’則包含有以前述公差為起因的尺寸的 差。而且’若比較複數台檢查裝置彼此,則前述尺寸的差 在裝置間互相也有差,每一裝置的設計值與前述尺寸的差 被稱為機差。 該等機差在裝置外觀上無問題,在使用某一台裝置檢 查同一品種的晶圓的情形下也不被視為有問題。但是,使 用複數台裝置檢查的情形,在使檢查條件資料共同化進行 4 201036082 良品或不良品的判定上,前述應兰认丄,上 J边機差的大小為無法忽視的尺 寸。因此,前述機差在使用複數么驻 吸致〇裝置進行檢查時,成為 使檢查條件資料共同化而使用的阻礙之因素。 由於前述理由,使用斿翁A羽Λ u 用複数台習知的檢查裝置,檢查同 一品種的晶圓的情形,以各自的给志 分曰的仏查裝置個別作成檢查條 - 件資料,登記資料,進行檢查。 . 針對習知的檢查條件資料產哇妒皮 Α β Τ貝Tt座生耘序,—邊顯示於圖, 一邊說明。 圖9是顯示習知的檢杳條杜次 〇 饱宜條件責料產生程序之流程圖。 首先,晶圓外觀檢杳裝詈〗摘她# 一衣置1根據裴置規格被設計,各部尺 寸預先被當作設計值決定(S2〇i)。 然後,裝置A被絮你f ς 9 Π 9、 反表作(S202 ),使用檢查裝置a作成對 品種 #N(N=1,2,3...) _: 乂 <哀置a的檢查條件資料 #Na(N=l,2, 3…)(S203 ) 〇 根據該檢查條件資料㈣a,乂Α 貢抖#Na使用裝置Α進行對品種#Ν 的檢查(S204)。而且缺接 〇 . …、傻,另一台的裝置Β被製作(S2 05 ), Ο使用檢查裝置Β作成對〇接# λτ, λτ 战對00種#町卜1,2, 3…)之裝置Β的檢查 條件資料 #Nb(N=1,2,3..,)(s2()6)。 — 根m查條件資料#Nb,使用裝置b進行對品種#n -的檢查(S2〇7)。然後斜 笑針對裝置C也以同樣的程序製作裝 置,每一裝置作成檢省你生a 惯宜條件資枓’進行檢查(S208〜S210)。After the inspection, the inspection of the missing inspection device such as the collapse of the circuit pattern by the wafer pattern is performed. The following are the types of the conductor wafers to be inspected, the rate of the information to be inspected, and the focus group at the time of inspection. The inspection condition data 3 201036082 T When the type of the wafer to be inspected is added, the inspection is performed, and the inspection is performed. Then, in the actual inspection process, the inspection condition data is compared with the image obtained by taking the circuit pattern and the pre-registered reference image' to make the semiconductor wafer a good or defective product. In the case of checking wafer wafers, since there is an upper limit on the number of wafers that can be inspected in one inspection apparatus, the number of wafers is checked. The patent document discloses a means for estimating the resistance value of a defective portion by using a standard sample to obtain a desired inspection parameter value in a semiconductor inspection method and apparatus. [Patent Document 1] Japanese Laid-Open Patent Publication No. 2004-3 1 9721 SUMMARY OF THE INVENTION The known inspection device is designed according to the device specifications, and the size of each portion is previously made by the field. The juice value decision is made based on the design value. However, part machining or assembly operations are usually performed within a range of precision specified as general tolerances or tolerances. Therefore, if the size of each part of the completed inspection apparatus is "° and the value of the sheet is compared", the difference in size due to the aforementioned tolerance is included. And if the plurality of inspection apparatuses are compared with each other, the difference in the aforementioned dimensions is between the apparatuses. There is also a difference, and the difference between the design value of each device and the aforementioned size is called the machine difference. These machine differences have no problem in the appearance of the device, and are not regarded in the case of using one device to inspect the wafer of the same type. However, in the case of using a plurality of devices to check, in the case of making the inspection condition data common to the 4 201036082 good or defective product, the size of the upper J-side difference is a size that cannot be ignored. Therefore, the above-mentioned machine difference is a factor that hinders the use of the inspection condition data when the inspection is performed using a plurality of sputum suction sputum devices. For the above reasons, it is known to use a plurality of 斿Inspect the device, check the wafers of the same variety, and individually create inspection articles - information, registration materials, and inspections with the respective inspection devices According to the conventional inspection condition data, the production of wow 妒 Α β Τ T T T T T Α Α — Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α T T The flow chart of the program is generated. First, the wafer appearance inspection 詈 詈 她 pick her # 一衣置1 is designed according to the specifications, the size of each part is determined in advance as the design value (S2〇i). Then, the device A is絮 you f ς 9 Π 9, reverse table (S202), use inspection device a to make pair #N (N = 1, 2, 3...) _: 乂 < mourning a check condition data #Na (N=l, 2, 3...) (S203) 〇 According to the inspection condition data (4) a, 贡 贡 抖 #Na uses the device Α to check the variety #Ν (S204), and is missing .... ..., silly, The other device is manufactured (S2 05), and the inspection condition data #Nb (for the device 成 # , , , , , λ 对 00 00 00 00 00 00 00 町 町 町 町 00 00 00 00 # # # N=1,2,3..,)(s2()6). — The root m checks the condition data #Nb, and uses the device b to perform the inspection of the variety #n - (S2〇7). Then the oblique smile is directed to the device C. Also make the same program Each specimen creating device used should save your health condition data contains a 'check (S208~S210).

如前述,即使禮勃A 々是数口的裝置根據相同的設計值被製 作’因有以前述公差A把田认地 馬起因的機差,故各自被以別的裝置 處理’在檢查同一品箱认a面山 #的日日圓中也各自進行檢查條件資料 5 201036082 的作成。As described above, even if the device is a number of devices, it is made according to the same design value. 'Because there is a difference in the cause of the field with the aforementioned tolerance A, each is treated by another device'. It is the making of inspection condition document 5 201036082 in the Japanese yen of the box.

因此,若成 A 台數增加,則需查對象的晶圓的品種數或檢查裝置的 檢查條件資料。—相同日日圓的 的時間與勞力。而且:檢查條件資料的登記作業需要很大 件資料喪失的情形產生k查裝置的系統故障等檢查條 乂,針對登記的品種全部 檢查條件資料。因…^ _ 丨^再度重新登記 ,檢查條件資料的再登印伟普命2 大的時間與勞力。 σ作業需要报 Ο 〇 本發明的目的為提供—種晶圓檢查 法’產生檢查形成於晶圓半〃生方 置的檢查條件資料处:牛導體曰曰片的外觀的檢查裝 …玫短時間產生考慮機差的每-F詈 的檢查條件資料之方法及檢查系統。 每裝置 為了解决以上的課題,申請專利範圍第 一種晶圓檢杳條件產生 ^ 項的發明是 導體曰… 查形成於晶圓上的半 導體曰曰片的外觀的複數個檢查裝置的檢 牛 每—晶圓檢查裝置算出對設計值的機包含: 差補正資料之機差補正資料登記步驟; $者登記機 在破選擇的任-台晶圓檢查裝置中 查條件資料之第-檢查條件資料產生步驟;3曰圓產生檢 由前述檢查條件資料與前述被選擇的任 裝置的前述機差補正資料產 η晶圓檢查 查條件資料產生步驟;以及 條件資料之共同檢 由前述共同檢查條件f料與每U檢 機差補正資料產生每一晶圓檢查 :敦置的前述 置條件資料之第 6 201036082 二檢查條件資料產生步驟。 申請專利範圍第2項的發明是在申請專利範圍第1項 的發明中,前述機差補正資料至少包含如下的任一個誤差 資料: 配設於晶圓檢查裝置之承載晶圓的台子(tab 1 e)的檢 查平台的原點位置,與檢查晶圓的檢查攝影機的中心位置 . 及承載於前述檢查平台的晶圓的中心位置的誤差資料; 檢查晶圓的檢查攝影機的對焦位置(focus position) 的誤差資料; 包含於前述檢查攝影機的透鏡的觀察倍率的誤差資 料;以及 包含於前述檢查攝影機的照明用光源的對所要亮度之 設定值的誤差資料。 申請專利範圍第3項的發明是一種晶圓檢查系統,產 生檢查形成於晶圓上的半導體晶片的外觀的複數個檢查裝 置的檢查條件資料,包含·. Q 每一晶圓檢查裝置算出對設計值的機差,接著登記機 差補正資料之機差補正資料登記手段; ' 在被選擇的任一台晶圓檢查裝置中,使用晶圓產生檢 - 查條件資料之第一檢查條件資料產生手段; 由前述檢查條件資料與前述被選擇的任一台晶圓檢查 裝置的前述機差補正資料產生共同檢查條件資料之共同檢 查條件資料產生手段;以及 由前述共同檢查條件資料與每一晶圓檢查裝置的前述 7 201036082 機差補正資料產生每一晶圓檢查裝置的檢查條件資料之第 二檢查條件資料產生手段。 申請專利範圍第4項的發明是在申請專利範圍第3項 的發明中,前述機差補正資料至少包含如下的任一個誤差 資料: - 配設於晶圓檢查裝置之承載晶圓的台子的檢查平台的 . 原點位置,與檢查晶圓的檢查攝影機的中心位置及承載於 前述檢查平台的晶圓的中心位置的誤差資料; 0 檢查晶圓的檢查攝影機的對焦位置的誤差資料; 包含於前述檢查攝影機的透鏡的觀察倍率的誤差資 料;以及 包含於前述檢查攝影機的照明用光源的對所要亮度之 設定值的誤差資料。 【發明的功效】 依照本發明的晶圓檢查條件產生方法及檢查系統,因 Q 由與對設計值的各晶圓檢查裝置的機差,每一晶圓檢查裝 置求出機差補正資料並登記,使用複數台晶圓檢查裝置的 ' 任一台作成檢查條件資料,故可產生可在其他的裝置使用 的共同的檢查條件資料,因由該共同的檢查條件資料與每 一晶圓檢查裝置的機差補正資料產生有每一晶圓檢查裝置 的檢查條件資料,故可節省再度重新作成檢查條件資料的 勞力時間。 據此,即使是使用複數台裝置檢查多數片晶圓的情 8 201036082 形,也能以短時間產生共同的複數品種的檢查條件資料, 可節省各自重新作成資料的時間與勞力。 【實施方式】 針對本發明的實施形態,一邊顯示於圖,一邊進行說明。 • 圖1是本發明的晶圓外觀檢查裝置之斜視圖。圖2是本 . 發明的晶圓外觀檢查裝置之構成圖,顯示主要機器的構成。 在各圖中以正交座標系的3軸為X、Y、Z,以XY平面為水 0 平面,以Z方向為鉛直方向。而且,設以Z方向為中心旋轉 的方向為0方向。 在本發明的晶圓外觀檢查裝置1包含有:承載成為檢查 對象的晶圓1 0並使其移動於XY方向之檢查平台部2 ;都載 設包含有拍攝晶圓1 0上的至少一部分的範圍之攝影光學單 元3,包含有為了統括控制檢查平台部2及攝影光學單元3, 連接於檢查平台部2與攝影光學單元3的機器之控制部4。 而且,在晶圓外觀檢查裝置1包含有為了將成為檢查對象的 Q 晶圓1 0承載於檢查平台部而運送至規定的位置,檢查後為 了搬出晶圓1 0的晶圓運送部5。而且,在晶圓外觀檢查裝 ' 置1並設有收納檢查前的晶圓或檢查後的晶圓之晶圓匣盒 - (cassette)61及晶圓匣盒承載台62。 其次,針對構成檢查裝置的各主要部詳細地說明。 [晶圓] 圖3是顯示圖案形成於晶圓1 0上的半導體晶片的一例 之圖。圖3(a)是顯示晶圓全體之圖,圖3(b)是擴大晶圓的 9 201036082 一部分之圖。如圖3(a)所示’在晶圓ι〇的一端有被稱為定 向平邊(orientation flat)ll的平坦部分,作為使晶圓10 的方向一致的基準而被使用。其他為了使晶圓10的方向一 致的基準除了前述定向平邊11外,也有使用被稱為缺口 (notch)的在附於晶圓圓周上的一部分的凹部的情形。 . 在晶圓1 〇之上圖案形成有:對準標記(a 1 ignment .mark) 1 2 ;半導體晶片的電氣配線或絕緣膜等的電路圖案 1 3。如圖3 (b )所示’在半導體晶片的電氣配線或絕緣膜等 ❹的電路圖案1 3包含有:每一晶片的對準標記j 2a ;電路部 14;電極部15,電路部14與電極部15在電路圖案13内 連接》 圖3(c)是顯示別的品種的晶圓全體之圖,圖3(d)是擴 大前述別的品種的晶圓的一部分之圖。在以圖3(c)顯示的 晶圓1 0之上圖案形成有:對準標記丨2 ;由複數個半導體晶 片的電氣配線或絕緣膜等構成的電路圖案群16。如圖3(d) 所示,在半導體晶片的電氣配線或絕緣膜等的電路圖案上3 ◎包含有:每一晶片的對準標記12a;電路部14;電極部15, 電路部14與電極部15在電路圖案13内連接。 . 在本發明的晶圓外觀檢查裝置1中檢查如前述的晶圓 -上的電路圖案13的電路部14或電極部15的外觀形狀。 對準標s己1 2成為顯示晶圓上的各晶片及電路圖案等 的位置座私的基準。晶圓1 〇上的對準標記丨2的位置及電 路圖案1 3對對準標記1 2的相對位置是每一品種預先規 定,成為決定的值。 10 201036082 [檢查平台部] 檢查平台部2是藉由如下構件構成:配置於裝置底座 21上的X軸平台22,配置於X軸平台22上的γ軸平台23; 配置於Y軸平台23上的0軸平台24;配置於0軸平台 24上的台子25。X軸平台22是在可使配置於其上的γ軸 平台23移動於X方向的狀態下被配置於裝置底座2i上。 • 而且,前述Y轴平台23是在可使配置於其上的0軸平台 24及台子25移動於Y方向的狀態下被配置於χ軸平台22 〇上。因此’台子25可在裝置底座21上移動於χγ0方向。 晶圓10被承載於台子25之上,檢查中不會因真空吸 附等的方法而位置偏移’另一方面,若檢查結束則真空吸 附被解除,可由台子25簡單地卸下。 X軸平台22與Y轴平台23與0軸平台24是與控制 部4的控制用電腦41連接,可使承載有晶圓1〇的台子25 移動至規定的位置或使其靜止。 [攝影光學單元] 〇 在攝影光學單元3包含有:與晶圓10具有一定的間 隔’被朝向晶圓10之物鏡31;與物鏡31接鄰而被載設, 使透過物鏡31觀察的晶圓10上的影像成像於檢查攝影機 -34之光學系統33 ;接鄰於光學系統33而被載設將拍攝 的影像轉換成電信號之檢查攝影機3 4。 物鏡3 1被準備複數個,俾可切換觀察晶圓1 〇時的倍 率被女裝於被稱為旋轉器機構(revolver mechanism)32 的旋轉切換機構,且被安裝於攝影光學單元3。 11 201036082 攝影光學單几驅動部35被載設於支柱部37,該支柱 部37被載設於載設有承載有晶圓1〇的檢查平台部2的裝 置底座21。在攝影光學單元驅動部35,攝影光學單元3 可移動於Z方向而被安襞。而且,在攝影光學單元3包含 有為了測定晶圓10與物鏡31的距離的測距感測器(未圖 . 示)。 • 在攝影光學單元3的光學系統33連接有照明,在前述 照明連接有妝明用光源3 6。藉由變更照明用光源3 6的亮 〇度設定’可調節晶圓1 〇的觀察時的亮度。 因晶圓外觀檢杳, > 規切一裝置1成這種裝置構成,故能以檢查 攝影機3 4拍攝晶圓1 〇的 ,a ^ 的至少一部分。光學系統33成為如 下的構造:包含有至少—y,、,^ 片以上的凸透鏡或凹透鏡,透過物 鏡3 1將來自照明用光诉q β认止丄 原3 6的先朝向晶圓1 〇,可使藉由晶 圓10反射的光由物鏡士 兄照射到檢查攝影機3 4。 [控制部] 在控制部4包含;έ· .、* , 有.連接於檢查平台部2的X軸平台 0 22與Υ軸平台23與a缸亚△ _ 轴千σ 24與攝影光學單元驅動部 3 5與照明用光源3 6的控制用雷腦 剌用電驷41 ,為了保存檢杳條件 -資料及檢查結果資料的資料管理用雷^ 一牛 -影機34與控制用電腦4I 8用電⑯42,·連接於檢查攝 用電腦43。 與身枓官理用電腦42的影像處理 在前述控制用電腦41連接 她努的搀制夕i*磁 為了记錄關於所連接的 46a。而且,在前述資料其雪腿、’斗的貝訊記錄媒體 資科官理用電腦42連接有為了記錄被 12 201036082 $件及檢查的結 在前述影像處理 核·或不合格用的 前述資訊記錄媒 ;^光碟(magneto 化為資料記錄的 稱為檢查條件資料的每一檢查對象的檢杳 果等的資料之資訊記錄媒體46b。而且了 用電腦43連接有為了記錄判定檢查的合 基準影像等的資料之資訊記錄媒體46e 體46a、46b、46C可舉例說明以礤磲或 optical disk)或光碟等的磁性或光的變 記錄媒體或半導體記憶體等。 在前述資訊記錄媒體46c登記有成 ❹合格或不合格的基準的影像,在影理'為了判定檢查的 忐Αf Α准认史你咖 處理用電腦43中比較 成為别述基準的影像與成為檢查對象 宕的划—a嘴必—认士 的衫像’依照預先規 疋的判疋基準進行檢查的合格或不合格的判定。 在前述控制用電腦41與前述資料營 & ° 理用電腦42,為 了顯不裝置的運轉狀況及異常履歷資 複歷貢訊、檢查條件資料的 值專的資訊顯示手段44a是透過顯示切換手段Me連接。 而且,在前述影像處理用電腦43連接有為了顯示在檢查時 拍攝的影像及檢查結果、不良處等的資訊顯示手段4社。 〇資訊顯示手段44a、44b可舉例說明使用布朗管(braun tube) 或液晶顯示器(liquid crystal display)或電衆顯示器 ' (plasma display)、有機 EL 或發光二極體(light emitting -d i ode )等的發光元件的顯示器等。 在前述控制用電腦41與前述資料管理用電腦42與前 述影像處理用電腦43 ’為了輸入或編輯檢查條件資料的設 定值的資訊輸入手段45是透過輸入切換手段45a連接。前 述資訊顯示手段44a、44b與前述顯示切換手段44c與前述 13 201036082 資訊輸人手段45與前述輪入切換手段❿與 媒體46a、46b、46c包含於控制部4。 °己錄 在控制部4的資料管理用電腦42包含有進行 置的資料存取之資料存取手段4 、 °裝 體46a、46b、46c的前述*同檢杳:::前述資訊記錄媒 ^ %冋檢查條件資料及前述檢杳停 件、則述基準影像等的各種資料可透過資料存取手^ 7 Ο 進行與其他的裝置的資料交&’或保存於裝置外以^ =:資料存取手段47可舉例說明使用可拆卸 : 亡導體5己憶體等的資料記錄媒體之手段或利用電信號或= k號或電波的資料通信的手段等。 [運送部/晶圓E盒/預對準裝置部(preal igner par 晶圓運送部5包含有:接鄰於檢查平台部2而被配置, 具備為了運送晶圓10的可動機構之機械手臂(r〇b〇t)5" 保持晶圓10的手部(hand part)52。 手部52與機械手f 51料動機構連結,在保持晶圓 10下或未保持晶圓1〇的狀態下可自在地移動於χγζ方 〇向。而且’在機械手臂51也具備移動於义方向的機構及使 手部旋轉於0方向的機構。 而且,晶圓運送部5也接鄰於為了承載收納晶圓i 〇 的晶圓S盒61的晶圓匣盒承載台62或預對準裝置部7而被 配,。預對準裝置部7具有重新對準晶圓1Q的中心位置於 規疋的位置,或使定向平邊u或缺口的方向於規定的方向 致之預對準功能。如前述,構成本發明的晶圓外觀檢查 裝置1。 一 14 201036082 其次,針對晶圓外觀檢查裝置1中的代表的檢查 程,依序說明。 [作成檢查條件資料] 在晶圓1 0的檢查之前,作成檢查條件資料。 檢查條件資料包含:為了管理檢查條件資料的管理 • 碼(品種,N=1、2、3·.·);晶圓10上的對準標記12的 . 置;前述對準標記1 2的影像;晶圓1 0上的座標;使用 第一個檢查的晶片的基準影像;攝影倍率;照明的亮度 0 定值;檢查開始位置;檢查途徑。更進一步對相同晶圓 再度變更觀察倍率並繼續檢查的情形包含:使用於 η (n = 2、3、4…)個檢查的晶片的基準影像;攝影倍率; 明的亮度設定值;檢查開始位置;檢查途徑。 接著,選擇包含有以良品處理的半導體晶片之晶 1 0。以預對準裝置部7使定向平邊的方向一致,將前述晶 10承載於晶圓外觀檢查裝置1的台子2 5上。其次,使 轴平台22與Y軸平台23移動到能以檢查攝影機34拍 0 圖案形成於前述晶圓1 0上的對準標記1 2的位置。接著 以檢查攝影機34觀察前述晶圓1 0上的對準標記1 2,由 ' 預先登記的基準位置的差計算ΧΥ0方向的位置偏移量, - 行定位動作,俾與前述基準位置匹配。 由圖案形成於前述晶圓10上的半導體晶片之中選 以良品處理的半導體晶片,使X軸平台22與Y轴平台 移動到能以檢查攝影機34拍攝該半導體晶片的位置。 透鏡倍率是由半導體晶片的大小與缺陷的大小的程 流 號 位 於 設 10 第 照 圓 圓 X 攝 與 進 擇 23 度 15 51由前述晶圓 被由晶圓匣盒61 的方向不定的狀態 201036082 適宜選擇決定。照明的赛麼a 刃儿度疋藉由所拍攝的影像亮度, 此是藉由半導體晶圓1〇 >6/!日 isA- -b 上的晶片圖案的反射率或對 (contrast)適宜調整決定。也〜 表政 次疋決定拍攝影像的透鏡倍率及 明的亮度設定值後,以該條株益山 _ π . 1市件糟由檢查攝影機34拍攝以 品處理的半導體晶片的影像。 • [選擇檢查條件資料] 接著,在晶圓外觀檢查裝置1中選擇對檢查的晶圓 的檢查條件資料。前述檢查條件資料是由預先登記的資 〇之中選擇使用。如果是前述檢查條件資料未被預先登記 情形則重新登記。 [運送晶圓/預對準/承載晶圓] 接著,使用晶圓運送部5的機械手臂 盒61抽出一片檢查的晶圓1 〇。此時, 出的晶圓10是在前述定向平邊或缺口 被收納於晶圓匣盒61内。 因檢查的晶圓10需預先使方向一致而進行檢查,故 〇先被運送到預對準裝置部7。在該預對準裝置部7中以晶 10的約略中央為旋轉中心,一邊使其旋轉於0方向,一 .檢測前述定向平邊或缺口,使晶圓1 0的中心位置一致, ' 規疋的方向保持前述定向平邊或缺口。 接著,使用晶圓運送部5的機械手臂51由預對準裝 部7將預對準結束的晶圓10運送到檢查平台部2的台 25。據此’可使晶圓的前述定向平邊或缺口的方向一彩 承載於台子2 5。 因 比 照 良 10 料 的 匣 抽 下 首 圓 邊 朝 置 子 201036082 [+示5己對準(mark alignment)] 檢::晶圓10被承載於台子25,朝對準標記讀取位置 ::。此:’根據預先登記的檢査條件資料藉由旋轉器機 構32切換物鏡31,調節來自 m , π尤源扣的光的亮度, 藉由攝衫光學單元驅動部35調節 離 標記1 2 妙a 丨阳圓1 〇與物鏡31的距 藉由攝影光學單元3的檢查攝影機34拍攝對準 〇 〇 一晶圓10雖然使用機械手臂51被承载於台子25上惟 在一連串的遞送動作中實際的承載位置會有-些滑動變 i匕;載位置的差的因素顯示有:預對準震置部7的定位 精又或機械手臂51的運送位置精度或㈣晶圓於台子 25時的側滑等。 :了補广前述晶圓的承載位置的差’在承載晶圓】◦於 摄,m目 ㈣旱標6己12的位置,算出檢查 攝影機34的視野内的基準點與前述對準標記12的基準位置 的相對位置的差分。由該被算出的值與拍攝對準標記 使用的物鏡31的攝影倍率盘采風备 攝影…攝影部:尺寸3的攝影倍率與檢查 多少呢。 p的尺寸’對正規的位置運算並算出偏移 晶圓10的承截啤% θ + i > 二…… 向的角度的差是藉由Θ轴平 σ 24補正角度。因此,即使晶圓1〇包含角度的 =於台子25上,在以檢查攝影機%拍攝的影像 有0方向的角度的差。 匕3 [取得/檢查晶片影像] 17 201036082 接著’使檢查的晶片1 0朝檢杳 ~開始位署銘紅 根據預先登記的檢查條件資Μ ^ 置秒助°此時, 貝杆切換物鏡31,, r Α 用光源3 6的光的亮度。 1 °周郎來自照明 檢查中的晶圓1 0的動作右 J 有像被稱為 andrepeat)之如下的方法.右| 、重複(step 以檢查攝影機34拍攝,攝影結束—:τ使曰曰圓I 0靜止, -置,再度使晶圓I 〇靜止,以拎的話移動到下-個檢查位 動到下-個位置,重複該等:〜機34拍冑’再度移 "―連串的動作。而且另 |Ρ^有一邊使晶圓10連續移動,一嗓 一方面’ 〇續續地使照明發光只有非常短光儀(伽bo)般斷斷 下拍攝的情形。 在疑似的靜止狀態 晶圓10的移動位置與使用的物鏡31的倍 亮度、物鏡31與晶圓10的距離_ ^ …、月的 樣且s己在檢查條件資料。 藉由如刚述的機構及手段使曰 干貧枓 于又1之日日圓1 0移動,袜 於晶圓10的半導體曰κ μ μ 7 A 跣圖案形成 干导體曰曰片上的任意的場 拍攝,以影像處理用電腦& —攝泰機34 用览驷43進行對所拍攝 〇不合格的判定。 僻扪汾俅之合格或 [搬出晶圓] 檢查結束的晶圓1〇在被Therefore, if the number of A units is increased, it is necessary to check the number of wafers to be inspected or the inspection condition data of the inspection device. - The time and labor of the same day. Moreover, the check operation of the inspection condition data requires a large amount of data loss, and a check system such as a system failure of the k inspection device is generated, and the condition data is checked for all the registered varieties. Because...^ _ 丨^ re-register again, check the condition data and reprint the time and labor of the great squad. The σ job needs to be reported. The purpose of the present invention is to provide a wafer inspection method. The inspection is performed on the inspection condition data of the semiconductor half-bath side: the inspection of the appearance of the beef conductor cymbal... A method and an inspection system for generating inspection condition data for each -F詈 considering the machine difference. In order to solve the above problems in each device, the invention of the first type of wafer inspection condition generation is a conductor. The inspection of a plurality of inspection devices for the appearance of a semiconductor wafer formed on a wafer is performed. - The wafer inspection device calculates the machine for the design value: the machine difference correction data registration step of the difference correction data; the $ registration machine checks the condition data in the broken selected wafer inspection device - the inspection condition data is generated Step 3: generating a check condition data generation step by the aforementioned inspection condition data and the aforementioned machine difference correction data of the selected device; and co-inspection of the condition data by the aforementioned common inspection condition Each U-test difference correction data is generated for each wafer inspection: the sixth conditional data generation step of the above-mentioned conditional data of Dunhuang. According to the invention of claim 2, in the invention of claim 1, the machine difference correction data includes at least one of the following error data: a table on which the wafer is mounted on the wafer inspection device (tab 1 e) the origin position of the inspection platform, the center position of the inspection camera for inspecting the wafer, and the error data of the center position of the wafer carried on the inspection platform; checking the focus position of the inspection camera of the wafer (focus position) Error data; error data included in the observation magnification of the lens of the inspection camera; and error data of a set value of the desired brightness included in the illumination light source of the inspection camera. The invention of claim 3 is a wafer inspection system that generates inspection condition data for a plurality of inspection apparatuses for inspecting the appearance of a semiconductor wafer formed on a wafer, including: Q. Each wafer inspection apparatus calculates a pair design The machine difference of the value, and then the machine difference correction data registration means for registering the machine correction data; 'In the selected wafer inspection device, the first inspection condition data generation means using the wafer generation inspection-inspection condition data And the common inspection condition data generation means for generating the common inspection condition data by the foregoing inspection condition data and the machine difference correction data of the selected one of the wafer inspection apparatuses; and the common inspection condition data and each wafer inspection The aforementioned 7 201036082 machine difference correction data of the device generates a second inspection condition data generation means for the inspection condition data of each wafer inspection device. The invention of claim 4 is the invention of claim 3, wherein the machine correction data includes at least one of the following error data: - inspection of a table carrying a wafer mounted on the wafer inspection device The position of the origin of the platform, the center position of the inspection camera for inspecting the wafer, and the error information of the center position of the wafer carried on the inspection platform; 0 checking the error data of the focus position of the inspection camera of the wafer; The error data of the observation magnification of the lens of the camera is checked; and the error data of the set value of the desired brightness included in the illumination light source of the inspection camera described above. [Effects of the Invention] According to the wafer inspection condition generation method and inspection system of the present invention, the difference between the Q and the wafer inspection device for the design value is obtained, and each wafer inspection device obtains the machine correction data and registers it. By using any of the plurality of wafer inspection devices to create inspection condition data, common inspection condition data that can be used in other devices can be generated, because the common inspection condition data and the machine for each wafer inspection device The difference correction data generates the inspection condition data of each wafer inspection device, so that the labor time for re-making the inspection condition data can be saved. According to this, even if a plurality of wafers are inspected using a plurality of devices, the inspection condition data of a plurality of common types can be generated in a short time, and the time and labor for re-creating the materials can be saved. [Embodiment] Embodiments of the present invention will be described with reference to the drawings. 1 is a perspective view of a wafer appearance inspection device of the present invention. Fig. 2 is a view showing the configuration of a wafer appearance inspection device according to the present invention, showing the configuration of a main machine. In each of the figures, the three axes of the orthogonal coordinate system are X, Y, and Z, and the XY plane is the water 0 plane, and the Z direction is the vertical direction. Further, it is assumed that the direction of rotation in the Z direction is the 0 direction. In the wafer appearance inspection device 1 of the present invention, the inspection platform unit 2 that carries the wafer 10 to be inspected and moves in the XY direction is included; both of them include at least a part of the imaging wafer 10; The photographic optical unit 3 of the range includes a control unit 4 for connecting the inspection platform unit 2 and the photographic optical unit 3 to the control inspection platform unit 2 and the photographic optical unit 3 in an integrated manner. In addition, the wafer visual inspection device 1 includes a wafer transport unit 5 that transports the wafer 10 to the predetermined position in order to carry the Q wafer 10 to be inspected to the inspection platform. Further, in the wafer visual inspection device, a wafer cassette 61 and a wafer cassette carrier 62 for storing the wafer before inspection or the wafer after inspection are provided. Next, each main part constituting the inspection apparatus will be described in detail. [Wafer] FIG. 3 is a view showing an example of a semiconductor wafer in which a pattern is formed on the wafer 10. Fig. 3(a) is a view showing the entire wafer, and Fig. 3(b) is a view showing a part of the expanded wafer 9 201036082. As shown in Fig. 3(a), a flat portion called a directional flattening layer 11 at one end of the wafer 被 is used as a reference for matching the directions of the wafers 10. Others in order to make the direction of the wafer 10 uniform, in addition to the above-described oriented flat side 11, there is also a case where a recess called a notch is attached to a part of the circumference of the wafer. On the wafer 1 图案, a pattern is formed: an alignment mark (a 1 ignment .mark) 1 2; a circuit pattern 13 of an electrical wiring or an insulating film of the semiconductor wafer. As shown in FIG. 3(b), the circuit pattern 13 of the electric wiring or the insulating film of the semiconductor wafer includes: an alignment mark j 2a of each wafer; a circuit portion 14; an electrode portion 15, a circuit portion 14 and The electrode portion 15 is connected in the circuit pattern 13. Fig. 3(c) is a view showing the entire wafer of another type, and Fig. 3(d) is a view showing a part of the wafer of the other type. On the wafer 10 shown in Fig. 3(c), an alignment mark 丨2 is formed in a pattern, and a circuit pattern group 16 composed of electric wirings or insulating films of a plurality of semiconductor wafers is formed. As shown in FIG. 3(d), on the circuit pattern of the electric wiring or the insulating film of the semiconductor wafer, the alignment mark 12a of each wafer, the circuit portion 14, the electrode portion 15, the circuit portion 14 and the electrode are included. The portion 15 is connected in the circuit pattern 13. In the wafer visual inspection device 1 of the present invention, the appearance of the circuit portion 14 or the electrode portion 15 of the circuit pattern 13 on the wafer as described above is examined. The alignment mark 1 2 serves as a reference for displaying the position of each wafer and circuit pattern on the wafer. The position of the alignment mark 丨 2 on the wafer 1 and the relative position of the circuit pattern 13 to the alignment mark 12 are predetermined for each type, and are determined values. 10 201036082 [Inspection platform unit] The inspection platform unit 2 is constituted by an X-axis stage 22 disposed on the apparatus base 21, a γ-axis stage 23 disposed on the X-axis stage 22, and a Y-axis stage 23 The 0-axis platform 24; the table 25 disposed on the 0-axis platform 24. The X-axis stage 22 is placed on the apparatus base 2i in a state where the γ-axis stage 23 disposed thereon can be moved in the X direction. Further, the Y-axis stage 23 is placed on the y-axis stage 22 状态 in a state in which the 0-axis stage 24 and the table 25 placed thereon can be moved in the Y direction. Therefore, the table 25 can be moved in the χγ0 direction on the device base 21. The wafer 10 is placed on the table 25 and is not displaced by vacuum suction or the like during inspection. On the other hand, when the inspection is completed, the vacuum suction is released, and the table 25 can be easily removed. The X-axis stage 22, the Y-axis stage 23, and the 0-axis stage 24 are connected to the control computer 41 of the control unit 4, and the table 25 carrying the wafer 1 can be moved to a predetermined position or left still. [Photographic Optical Unit] The photographing optical unit 3 includes an objective lens 31 that is directed to the wafer 10 at a constant interval from the wafer 10, and is placed adjacent to the objective lens 31 so as to be viewed through the objective lens 31. The image on the 10 is imaged on the optical system 33 of the inspection camera-34; adjacent to the optical system 33, an inspection camera 34 that converts the captured image into an electrical signal is placed. The objective lens 31 is prepared in plural, and the magnification at which the wafer 1 can be switched is observed by a rotation switching mechanism called a revolver mechanism 32, and is attached to the photographic optical unit 3. 11 201036082 The photographic optical unit drive unit 35 is placed on the column portion 37, and the column portion 37 is placed on the device base 21 on which the inspection platform unit 2 carrying the wafer 1 is mounted. In the photographic optical unit drive unit 35, the photographic optical unit 3 can be mounted in the Z direction and mounted. Further, the photographing optical unit 3 includes a distance measuring sensor (not shown) for measuring the distance between the wafer 10 and the objective lens 31. • Illumination is connected to the optical system 33 of the photographic optical unit 3, and a light source for makeup 34 is connected to the illumination. The brightness at the time of observation of the wafer 1 可 can be adjusted by changing the brightness setting of the illumination light source 36. Due to the inspection of the appearance of the wafer, > a device 1 is configured such that at least a portion of a ^ 1 of the wafer 1 can be imaged by the inspection camera 34. The optical system 33 has a structure including a convex lens or a concave lens of at least -y, y, or more, and passes through the objective lens 31 to align the first light toward the wafer 1 from the illumination light. The light reflected by the wafer 10 can be irradiated to the inspection camera 34 by the objective lens. [Control unit] includes in the control unit 4; έ· ., *, has an X-axis platform 0 22 connected to the inspection platform unit 2, and a shaft platform 23 and a cylinder sub-Δ _ axis σ 24 and photographic optical unit drive The part 3 5 and the illumination light source 36 are used for the control of the thunderbolt for the purpose of storing the inspection conditions - data and inspection results data management for the mine ^ a cow - camera 34 and the control computer 4I 8 The electric 1642 is connected to the inspection camera 43. The image processing with the computer 42 is connected to the control computer 41. Hernu's ii* magnetic is used to record the connected 46a. Moreover, in the above-mentioned information, the snow leg, the 'Bai's Beixun Record Media Counselor's Computer 42 is connected with the above information record for the record of 12 201036082 $ and the inspection of the image processing core or the failure. The medium is a video recording medium 46b which is a data recorded in the data recording, which is called a check result data of each inspection object, and a reference image for recording and recording inspection is connected to the computer 43. The information recording medium 46e bodies 46a, 46b, and 46C can be exemplified by magnetic or optical variable recording media or semiconductor memories such as optical disks or optical disks. The video recording medium 46c is registered with the image of the pass or fail standard, and the video of the video processing computer 43 is compared with the video of the video processing for the purpose of the determination. The object 宕 — a a a a a a a a a a 认 认 认 认 认 认 认 认 认 认 认 认 认 认 认 认 认 认 认 认In the above-mentioned control computer 41 and the above-mentioned data camping & ° computer 42, the information display means 44a for displaying the value of the operating condition and the abnormal history of the device and checking the condition data is a transmission display switching means. Me connection. Further, the image processing computer 43 is connected with an information display means 4 for displaying an image captured during the inspection, an inspection result, a defect, and the like. The information display means 44a, 44b can be exemplified by using a braun tube or a liquid crystal display or a plasma display, an organic EL or a light emitting-di ode. A display of a light-emitting element or the like. The information input means 45 for inputting or editing the setting value of the inspection condition data by the control computer 41 and the data management computer 42 and the image processing computer 43' are connected via the input switching means 45a. The information display means 44a, 44b and the display switching means 44c and the 13 201036082 information input means 45 and the round-trip switching means ❿ and the media 46a, 46b, 46c are included in the control unit 4. The data management computer 42 recorded in the control unit 4 includes the above-mentioned data of the data access means 4 and the packages 46a, 46b, and 46c for performing the data access:: the aforementioned information recording medium %冋Check condition data and various data such as the above-mentioned inspection and stoppages, and the reference image can be exchanged with other devices through the data accessor's data. The access means 47 can exemplify a means for recording a medium using a detachable data such as a dead conductor 5 or a material or a means for communicating by means of an electric signal or a k-number or radio wave. [Transportation Unit/Wafer E-Box/Pre-Alignment Device Unit (Preal igner par) The wafer transfer unit 5 includes a robot arm that is disposed adjacent to the inspection platform unit 2 and has a movable mechanism for transporting the wafer 10 ( R〇b〇t)5" Holds the hand part 52 of the wafer 10. The hand 52 is coupled to the robot f 51 feed mechanism, while holding the wafer 10 or not holding the wafer 1 〇 It is also free to move in the direction of χγζ. Moreover, the mechanical arm 51 also has a mechanism for moving in the sense direction and a mechanism for rotating the hand in the 0 direction. Further, the wafer transport unit 5 is also adjacent to the storage unit. The wafer cassette stage 62 or the pre-alignment unit 7 of the wafer S-box 61 of the circle i is arranged, and the pre-alignment unit 7 has a center position at which the wafer 1Q is realigned to the gauge position. Or the pre-alignment function of the orientation of the flat edge u or the notch in a predetermined direction. As described above, the wafer appearance inspection device 1 of the present invention is constructed. A 14 201036082 Next, for the wafer visual inspection device 1 The inspection process of the representative is described in order. [Making inspection condition data] On the wafer 10 Before the inspection, the inspection condition data is created. The inspection condition data includes: management (code, N=1, 2, 3·.·) for managing the inspection condition data; the alignment mark 12 on the wafer 10; The image of the alignment mark 1 2; the coordinate on the wafer 10; the reference image of the wafer used for the first inspection; the photographing magnification; the brightness of the illumination 0; the inspection start position; the inspection path. The case where the circle changes the observation magnification again and continues the inspection includes: the reference image of the wafer used for η (n = 2, 3, 4...) inspection; the photographing magnification; the brightness setting value of the brightness; the inspection start position; the inspection path. The crystal 10 including the semiconductor wafer processed by the good product is selected. The direction of the orientation flat sides is aligned by the pre-alignment device portion 7, and the crystal 10 is carried on the table 25 of the wafer visual inspection device 1. Secondly, The axis platform 22 and the Y-axis stage 23 are moved to a position where the alignment mark 1 2 formed on the wafer 10 can be inspected by the inspection camera 34. Then, the inspection camera 34 observes the pair on the wafer 10 Quasi-marker 1 2, the position shift amount in the ΧΥ0 direction is calculated from the difference of the pre-registered reference positions, and the line positioning operation is matched with the reference position. The semiconductor wafers patterned on the wafer 10 are selected as good products. The processed semiconductor wafer moves the X-axis stage 22 and the Y-axis stage to a position where the semiconductor wafer can be photographed by the inspection camera 34. The lens magnification is set by the number of the semiconductor wafer and the size of the defect. The circular X-shooting and the selection 23 degrees 15 51 are appropriately selected by the state in which the wafer is indefinitely in the direction of the wafer cassette 61. The illumination of the game is based on the brightness of the image taken, which is adjusted by the reflectivity or contrast of the wafer pattern on the semiconductor wafer 1〇>6/!day isA--b Decide. Also ~ Table Politics After determining the lens magnification and the brightness setting value of the captured image, the image of the semiconductor wafer processed by the inspection camera 34 is taken by the inspection machine 34. • [Selection of inspection condition data] Next, the inspection condition data of the wafer to be inspected is selected in the wafer visual inspection device 1. The aforementioned inspection condition data is selected and used among the pre-registered assets. If it is the case that the aforementioned inspection condition data is not pre-registered, it is re-registered. [Transport Wafer/Pre-Alignment/Loader Wafer] Next, a wafer 1 to be inspected is taken out using the robot case 61 of the wafer transfer unit 5. At this time, the wafer 10 to be discharged is accommodated in the wafer cassette 61 at the orientation flat or notch. Since the wafer 10 to be inspected is inspected in advance in order to be aligned, it is first transported to the pre-alignment unit 7. In the pre-alignment device portion 7, the center of rotation of the crystal 10 is rotated about the center of the crystal 10, and the orientation flat or notch is detected to make the center position of the wafer 10 coincide. The direction maintains the aforementioned directional flat or notched. Next, the pre-aligned wafer 10 is transported to the stage 25 of the inspection platform unit 2 by the pre-alignment mounting portion 7 using the robot arm 51 of the wafer transfer unit 5. Accordingly, the direction of the aforementioned directional flat or notched surface of the wafer can be carried on the stage 25 in a colored manner.比 抽 比 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 This: 'The brightness of the light from the m, π, and the source button is adjusted by the rotator mechanism 32 according to the pre-registered inspection condition data, and the backlight unit 1 is adjusted by the camera optical unit driving unit 35. The distance between the positive circle 1 and the objective lens 31 is taken by the inspection camera 34 of the photographic optical unit 3 to align the wafer 10 while being carried on the table 25 using the robot arm 51, only the actual carrying position in a series of delivery actions There may be some sliding changes, and the difference in the position of the load may be displayed by the positioning accuracy of the pre-alignment portion 7 or the conveyance position accuracy of the robot arm 51 or (4) the side slip of the wafer at the table 25. : The difference between the bearing position of the wafer is compensated, and the reference point in the field of view of the inspection camera 34 and the alignment mark 12 are calculated at the position of the m target (4). The difference in the relative position of the reference position. The photographed magnification of the objective lens 31 used for the calculated value and the photographing alignment mark is photographed. The photographing unit: the photographing magnification of the size 3 and the number of inspections. The size of p is calculated for a normal position and the offset is calculated. The intercepted beer of the wafer 10% θ + i > The difference between the angles of the directions is corrected by the Θ axis σ 24 . Therefore, even if the wafer 1 〇 includes the angle = on the stage 25, the image taken at the inspection camera % has a difference in the angle of the 0 direction.匕3 [Acquisition/Inspection of Wafer Image] 17 201036082 Then, 'Make the inspection wafer 1 0 toward inspection~ Start at Minghong according to the pre-registered inspection conditions. ^Secondary assistance. At this time, the boom shifts the objective lens 31, , r 亮度 The brightness of the light from the light source 36. 1 ° Zhou Lang from the wafer inspection 10 in the illumination check right J has the following method called "andrepeat". Right |, repeat (step to check camera 34, end of photography -: τ make round I 0 is stationary, - set, and once again, the wafer I 〇 is stationary, and if it is 拎, move to the next - check position to the next position, repeat the: 机 34 胄 再 're-shift> ― series Actions. And another | Ρ ^ has one side to make the wafer 10 continuously moving, one side of the ' 使 使 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 照明 疑 疑 疑 疑 疑 疑 疑 疑 疑The moving position of the circle 10 is the same as the magnification of the objective lens 31 used, the distance between the objective lens 31 and the wafer 10, the sample of the month, and the condition of the inspection. The information is as described by the mechanism and means just described. On the 1st day, the yen moves 10, and the semiconductor 曰κ μ μ 7 A 跣 pattern on the wafer 10 forms an arbitrary field shot on the dry conductor cymbal, and the image processing computer & 34 Use the menu 驷43 to judge the failure of the filming. Wafer] The end of the inspection wafer 1 is being

…|、料π、口千2 5上的情形下翱曰 -圓遞送位置移動。缺仏奸t ^ m BB 圓匡盒61。到此為、1曰’藉由機械手臂51搬出,收納於晶 為止疋晶圓外觀檢查裝置1中的代表的檢 查流程。 接者,針對檢查條件資料產生程序一邊使用圖,一邊 說明。圖4是龜 ”不本發明的檢查條件資料產生程序之流程 201036082 圖0 在裝置製作之前設計值被決 奘罟A姑匍於、疋(S101),根據該設計值’ 裝置A被製作(sl〇2)。製作 μ - #制π 〇的裝置的情形是根據相同 的§又什2裝作裝置Β與裝置C。(S103、sm) 接著,取得對設計值的裝置 • ^ ^ m ^ ^ 叼機差貝枓,算出設計值 與裝置A的機差(S105)。 該機差顯示有如下: ⑴、對為了使承載晶圓的台子移動到χ γ方向的規定的 〇位置的X軸平台及Υ轴平台的原點位置之檢查攝影機的視野 的中心位置與晶圓中心位置的相對位置的差。 (2) 、包含有拍攝晶圓的檢查攝影機的攝影單元中的檢 查攝影機的焦點位置調整機構的原點位置與檢查攝影機的 對焦位置的相對位置的差。 (3) 、包含於拍攝晶圓的檢查攝影機的物鏡或光學系統 的觀察倍率的差。 (4 )、包含於拍攝晶圓的檢查攝影機的照明用光源之對 〇晶圓攝影時的所要亮度的設定值的差。 由前述機差造成的前述差是當作誤差資料藉由後述的 程序算出’當作機差補正資料被登記於連接於裝置Α的控制 ' 用電腦41的資訊記錄媒體46a(S106)。 其次’關於裝置B及裝置C也以同樣的程序製作裝置, 算出與設計值的機差,登記機差補正資料(Sl〇7~sn〇)。 接者’在晶圓的檢查之則使用檢查裝置A作成對品種# N(N=卜2、3…)之裝置A的檢查條件資料# Na(N=i、2、 201036082 3 …)(SI 11)。 由在Sill作成的裝置A的檢查條件資料#^與装置A 固有的機差補正資料產生對品種# N(N=1、2、3...)之共同 檢查條件資料# N(N = 1、2、3…)(S112)。 然後’由共同檢查條件資料#N與裝置A固有的機差補 - 正資料產生對品種# N之裝置A用的檢查條件資料#In the case of ... π, π, and 千 2, the 递送-circle delivery position moves. Missing traitor t ^ m BB round box 61. Here, the inspection flow of the representative of the wafer visual inspection device 1 is carried out by the robot arm 51 and stored in the crystal. The receiver will explain the inspection condition data generation program while using the map. Fig. 4 is a flow chart of the inspection condition data generation program of the present invention 201036082. Fig. 0 The design value is determined by the 奘罟A, 疋(S101) before the device is manufactured, and the device A is produced according to the design value (sl 〇 2). The case of making a μ-# π 〇 device is based on the same § and even 2 as the device 装置 and device C. (S103, sm) Next, the device for obtaining the design value • ^ ^ m ^ ^ The machine difference is calculated, and the difference between the design value and the device A is calculated (S105). The machine difference display is as follows: (1) An X-axis platform for moving the stage carrying the wafer to a predetermined 〇 position in the χ γ direction And the difference between the center position of the field of view of the camera and the position of the center of the wafer at the origin position of the boring platform. (2) Adjusting the focus position of the inspection camera in the photographic unit including the inspection camera that images the wafer The difference between the origin position of the mechanism and the relative position of the focus position of the camera. (3) The difference in the magnification of the objective lens or optical system of the inspection camera included in the wafer. (4) Included in the wafer Check the camera The difference between the set values of the desired brightness at the time of the wafer photographing by the bright light source. The difference caused by the machine difference is calculated as an error data by a program described later, and the machine difference correction data is registered in the connection. The control of the device ' is recorded by the information recording medium 46a of the computer 41 (S106). Next, the device B and the device C are also created by the same program, and the machine difference from the design value is calculated, and the machine correction data is registered (Sl〇7). ~sn〇). In the inspection of the wafer, the inspection condition A is used to make the inspection condition data #A (N=i, 2, 201036082) of the device A of the variety #N (N=Bu 2, 3...). 3 ...) (SI 11) The common condition check for the variety # N (N = 1, 2, 3...) is generated from the inspection condition data #^ of the device A created in Sill and the machine difference correction data inherent to the device A. Conditional data # N (N = 1, 2, 3, ...) (S112). Then, 'the inspection condition for the device A of the product #N is generated by the common inspection condition data #N and the machine difference inherent to the device A. data#

Na(N=l 、 2 、 3…)(S113)。 根據前述檢查條件資料# N a,使用裝置A進行對品種 〇 #N 的檢查(S114)。 然後,由共同檢查條件資料# N與裝置B固有的機差 補正資料產生對品種# N之裝置B用的檢查條件資料#Na (N = l, 2, 3...) (S113). Based on the aforementioned inspection condition data # N a, the inspection of the variety 〇 #N is performed using the apparatus A (S114). Then, the inspection condition data for the device B of the product #N is generated by the common inspection condition data #N and the machine difference correction data inherent to the device B#

Nb(N=l、2、3…KS115)。 然後’根據前述檢查條件資料# Nb,使用裝置b進行 對品種#N的檢查(S116)。 •更進一步使用装置C的情形也一樣,由共同檢查條件 資料# N與裝置c固有的機差補正資料產生對品種# N之裝 ❹置C用的檢查條件資料# Nc(n=i、2、3…。 然後,根據前述檢查條件資料# Nc,使用裝置C進行 對品種# N的檢查(s 11 8)。 藉由經由前述的程序,由Nb (N = 1, 2, 3 ... KS115). Then, based on the aforementioned inspection condition data #Nb, the inspection of the item #N is performed using the device b (S116). • In the case where the device C is further used, the inspection condition data #Nc (n=i, 2) for the device C of the product #N is generated from the common difference condition data #N and the machine difference correction data inherent to the device c. Then, according to the above-mentioned inspection condition data # Nc, the inspection of the variety # N is performed using the device C (s 11 8).

的機差資料產生裝 由以裝置A作成的檢查條件資 資料產生在裝置B與裝置C也能使用的 由共同檢查條件資料與裝置B的機差 的檢查條件資料’由共同檢查條件資料與 枓產生裝置C的檢查條件資料。 20 201036082 在前述S1〇1~SU8中是顯示使用3台的裝置的例子。 裝置台數更增加的情形,可藉由對必要台數的裝置以同樣 的程序進行作業,使檢查條件資料的共有化具體化。 而且,即使是設置有複數台的裂置之内的任一台發生 故障的情形’若算出及登記蓑置固有的機差補正資料,則 ^其他敦置所具有的共同的檢查條件資料產生檢查條件 . 貢料。 ^邊㈣於圖’―邊針料機差詳細地說明。 0 L關於晶圓中心位置的機差] 機差因素之一可顯示如下 台…動於Π方向之X…载有晶圓B的 軸…的原點…30,與:裁曰:?位置22°與γ 圓1。的中心位置的相對位置的差。曰曰圓10的台子上的晶 被承載於晶圓外觀檢查褒置!的 的設計上的中心位置m是在 25上的晶圓1〇 機34的設計上的視野的中心位 ?定,與檢查攝影 〇被承載於台子25上的晶圓 :致。但是,實際上 的定位精度或機械手 置由於預對準裝置部7 載時會變化而不穩定。 故在晶圓1 0的承 因此,在晶圓外觀檢查裝置 測出晶圓10上的對準標記 W檢查攝影機34檢 用電腦41運算相對位置 J卩控制部4的控制 [使檢查時的晶圓二差調以 叩運行補正。 201036082 前述在晶圓10的0方向的角度的差被補正的狀態下 之檢查攝影機34的實際的中心位置341與晶圓10的實際 的中心位置1 0 1的相對位置的差需以機差算出,當作機差 補正資料。 圖5是顯示本發明的晶圓外觀檢查裝置1中的X軸平 - 台22與Y軸平台23與各部的位置關係之俯視圖。圖5(a) . 是顯示設計上的各部位置關係。 X軸平台2 2的原點位置2 2 0與Y軸平台2 3的原點位 0 置2 3 0是顯示該場所為XY平面中的[零點]的位置。設計值 是假設在由前述原點位置2 2 0使X軸平台2 2於X方向僅移 動X0的位置221,且在由前述原點位置23 0使Y軸平台23 於Y方向僅移動Y0的位置231之台子25的設計上的台子 中心位置2 5 0,與被承載於台子2 5的晶圓1 0的設計上的 中心位置1 0 0,與檢查攝影機3 4的設計上的視野的中心位 置3 4 0 —致。 圖5 (b)是顯示在實際被製作的裝置承載有晶圓的狀 Q 態中的各部位置關係之俯視圖。此時,顯示6»方向的角度 的差已經被補正,僅留下XY方向的位置的差的狀態。 在實際被製作的裝置中,X軸平台22的原點位置220 與Y軸平台23的原點位置230,與檢查攝影機34之在被 載設於實際被製作的裝置的狀態下的視野3 3 1的中心位置 34 1的距離因有公差造成的差,故與設計上的視野的中心 位置340的距離不一致。 設在由X軸平台22的原點位置220與Y軸平台23的 22 201036082 原點位置2 3 0使X軸平台2 2於X方向僅移動X1的 222,且在使Υ軸平台23於Υ方向僅移動Υ1的位置 之台子25的實際的台子中心位置,與檢查攝影機34 際的視野的中心位置341 —致。於是,變成檢查攝影; 的設計上的視野的中心位置3 4 0與實際的視野的中心 - 341的相對位置在X方向偏移XI,在Υ方向偏移Υ1。 . 實際上被承載於台子25上的晶圓10的位置由於 預對準裝置部7的定位精度或機械手臂51的運送位 ^ 度,更進一步由於承載晶圓1 0於台子25時的側滑等的 的變化,故在晶圓1 0的承載時會變化而不穩定。 因此,實際的台子中心位置與被承載的晶圓1 0的 的中心位置1 0 1不一致。因此,為了求對晶圓1 0的近也 以檢查攝影機3 4拍攝晶圓1 0的圓周上,使用影像處 電腦43,由所得到的晶圓1 0的外形位置資訊運算並 晶圓1 0的實際的中心位置1 0 1。 設此時的台子2 5上的晶圓1 0的實際的中心位置 q與檢查攝影機34的實際的視野331的視野中心位置 的差於X方向為Χ2,於Υ方向為Υ2。 ' 以前述差分XI、Yl、Χ2、Υ2當作關於攝影機中心 與晶圓中心位置的機差補正資料登記。 [攝影光學單元的原點與對焦位置的機差] 機差的因素之一可顯示攝影光學單元3中的攝影 單元驅動部 3 5之朝原點位置移動時的原點位置,與 31的對焦位置的距離的差。前述距離的差是意味著在 位置 232 的實 幾34 位置 產生 置精 位置 實際 4圓, 理用 算出 101 341 位置 光學 物鏡 Ζ方 23 201036082 向中顯示前述原點位置的[零,點]與到物鏡3 i斜隹 j〜_晶圓 10上的對焦位置的距離的差。 如果對焦位置偏移’影像不鮮明,就無法得 檢查結果。因此,使前述Z方向的[零點]與到對焦位 、 距離一致在觀察並檢查晶圓10上的情形下變的 的 里要。但 是’若前述原點位置與檢查攝影機3 4的對焦位置古 …、 开機差, 則在某裝置中即使是對焦位置的座標值,在其他 ^展置中 發出移動指令給晶圓,使晶圓移動到相同的對焦仿 '、、m置的座 Ο 檫值也不會對焦。 因此,需就Z方向的原點位置與檢查攝影機3 4的對 位置的距離算出設計上的值與實際的值的差,當作 ^ 關於攝 影光學單元上下位置的機差補正資料登記。 圖6是顯示本發明的晶圓外觀檢查裝置1中的 N攝影光 學單元3與各部的位置關係之側視圖。圖6 (a)是顯厂、# a 上的各部位置關係。前述攝影光學單元驅動部35的 J你點位 置350是顯示該場所為Z方向中的[零點]的位置。 Q 設計值是由前述原點位置朝Z方向向下僅使攝影光學 單元驅動部35移動Z0時,物鏡31對焦,以此時的攝影光 • 學單元驅動部35的位置當作設計上的透鏡對焦位置31〇。 - 設前述設計上的透鏡對焦位置3 1 〇與晶圓的設計上的表面 位置ΙΟΟζ的距離為DO。 圖6(b)是顯示實際被製作的裝置中的各部位置關係之 側視圖。在實際被製作的裝置中,設設計上的透鏡對焦位 置310與晶圓的實際的表面位置ιοίζ的距離為D1。在實 24 201036082 際被製作的襞置中’由於前述㈣與耵有因公差造成的差, 故不致因此,由前述攝影光學單元驅動部的原點位置 350朝Z方向向下僅狡 卜僅移動Z0的距離之在前述設計上的透鏡 對焦位置3 1 〇中不對焦。 假設晶圓的實際的表面位i 1〇lz對晶圓㈣計上的 表面位置ιοοζ是以朝z方向向上僅偏移ζι。此情形實 際的透鏡對焦位置311位於由設計上的透鏡對焦位置310 朝2方向向上僅移動Z1的距離的位置。亦即,DO與D1的 ◎差、Z1成為攝影光學單元上下位置的機差。 該Z1當使用複數個物鏡31時,在各個物鏡31實際的 透鏡對焦位置311不同。因此,就所有的 * ^ L , 的物鏡31的對焦位 置鼻出6又计上的值與實際的值的差,告 扪左田作關於攝影光學簟 元的原點與對焦位置的機差補正資料登記。 甲平 [物鏡或光學系統的觀察倍率的機差] 機差的因素之-可顯示攝影時使用的物鏡3 系統3 3或檢查攝影機3 4中的實際的倍率及 S予 ❹被使用於物鏡31或光學系統33的透鏡包含縱橫比。因在 裝時的尺寸誤差,故有因設計上的倍率及:有加工時或組 •倍率及縱橫比而產生差的情形。亦即,士 黃比與實際的 ’有影像Μ μ a . • rec〇Snition)以某裝置的檢查攝影機34拍 辦識(image 的已知尺寸的基準標記的情形的像素數,攝的晶圓1 0上 影像辨識前述基準標記的情形的像素數與在其他的裝置 此,需算出觀察規定尺寸時的設計上的::敎的情形。因 素數的差,當作關於觀察倍率的機差補正=數與實際的像 ㊂料登記。 201036082 圖7是顯示本發明的晶圓外觀檢查裝置中的光學系統 尺寸與各部尺寸的關係之俯視圖。圖7(a)是顯示在設計上 的晶圓外觀檢畫裝置1中使用攝影光學單元3拍攝已知尺 寸的前述尺寸基準標記1 7的狀態之俯視圖。 物鏡31與光學系統33往往是各自使用複數個透鏡而 .構成,惟在本說明中各自以一片透鏡圖化進行說明。 - 首先’選擇被圖案形成於晶圓10上的已知尺寸的前述 尺寸基準標記17°前述尺寸基準標記I?透過物鏡31與光 〇學系統33當作被拍攝於檢查攝影機34的設計上的視野 3〇a内的尺寸基準標記丄7〇被拍攝。此時,晶圓上的設計 上的視野330b成為以圖顯示的範圍。 前述尺寸基準; Λμπ v , 7的尺寸為已知’設X方向的尺寸 為MxO,Y方向的尺 π扪尺丁 330a内的尺寸基 ,、、、Υ 。此時,設被拍攝於前述視野 卡標記1 7 η & vThe machine difference data generation device is generated by the inspection condition data created by the device A. The inspection condition data of the machine condition B and the device B can also be used by the device B and the device C. The inspection condition data of the device C is generated. 20 201036082 In the above S1〇1 to SU8, an example in which three devices are used is displayed. In the case where the number of devices is increased, the sharing of the inspection condition data can be realized by operating the same program for the necessary number of devices. In addition, even if any one of the ruptures in which a plurality of slabs are installed is in a state of failure, if the machine correction data unique to the device is calculated and registered, the common inspection condition data generated by the other shoguns will be inspected. Conditions. Dividends. ^ Edge (four) is explained in detail in the diagram of the side of the needle. 0 L Machine difference in the center position of the wafer] One of the factors of the machine can be displayed as follows: X in the direction of the X direction... The origin of the axis of the wafer B... 30, and: Tailor:? Position 22° with γ circle 1. The difference in the relative position of the center position. The crystal on the table of the round 10 is carried on the wafer inspection inspection device! The central position of the design is the center of the field of view on the design of the wafer 1 on the wafer 34? Ding, and inspection photography 〇 is carried on the wafer on the table 25: Zhi. However, the actual positioning accuracy or the mechanical hand is unstable due to the change in the pre-alignment device portion 7 when it is loaded. Therefore, in the wafer 10, the wafer visual inspection device detects the alignment mark W on the wafer 10, and the camera 34 checks the computer 41 to calculate the relative position J. The control unit 4 controls [the crystal during inspection). The round difference is adjusted by 叩. 201036082 The difference between the actual center position 341 of the inspection camera 34 and the actual center position 1 0 1 of the wafer 10 in the state where the difference in the angle of the wafer 10 in the 0 direction is corrected is calculated by the machine difference. As a machine correction data. Fig. 5 is a plan view showing the positional relationship between the X-axis flat table 22 and the Y-axis stage 23 and the respective portions in the wafer appearance inspection device 1 of the present invention. Fig. 5(a) is a display of the positional relationship of each part of the design. The origin position 2 2 0 of the X-axis stage 2 2 and the origin position 0 of the Y-axis stage 2 3 are set to 2 3 0 to indicate that the position is the [zero point] in the XY plane. The design value is assumed to be a position 221 in which the X-axis stage 2 2 is moved by X0 only in the X direction by the aforementioned origin position 2 2 0, and the Y-axis stage 23 is moved only by Y0 in the Y direction by the aforementioned origin position 23 0 The center position of the table 25 of the table 25 of the position 231 is the center position of the design of the wafer 10 that is carried on the table 25, and the center of the visual field of the design of the camera 34. Position 3 4 0. Fig. 5 (b) is a plan view showing the positional relationship of each of the Q states in which the wafer is actually carried by the device to be fabricated. At this time, the difference in the angle indicating the 6» direction has been corrected, leaving only the state of the difference in the position in the XY direction. In the actually fabricated apparatus, the origin position 220 of the X-axis stage 22 and the origin position 230 of the Y-axis stage 23, and the field of view 3 3 of the inspection camera 34 in the state of being mounted on the actually fabricated apparatus 3 3 The distance from the center position 34 1 of 1 is inferior to the distance from the center position 340 of the design field of view due to the difference in tolerance. It is provided at the origin position 220 of the X-axis stage 22 and the 22 201036082 origin position 2 3 0 of the Y-axis stage 23 so that the X-axis stage 2 2 moves only X1 of X1 in the X direction, and the crucible platform 23 is placed on the side. The actual table center position of the table 25 in the direction in which only the position of the Υ 1 is moved is coincident with the center position 341 of the field of view of the inspection camera 34. Then, the relative position of the center position 340 of the design visual field to the inspection image is shifted by XI in the X direction and Υ1 in the X direction. The position of the wafer 10 actually carried on the stage 25 is further due to the positioning accuracy of the pre-alignment device portion 7 or the transport position of the robot arm 51, and further due to the side slip of the wafer 10 when the wafer 25 is loaded. The change in the like is so unstable and unstable when the wafer 10 is loaded. Therefore, the actual center position of the table does not coincide with the center position 1 0 1 of the wafer 10 to be carried. Therefore, in order to find the wafer 10 near the circumference of the wafer 10 by the inspection camera 34, the image computer 43 is used, and the obtained shape information of the wafer 10 is calculated and wafer 10 is calculated. The actual center position is 1 0 1. The difference between the actual center position q of the wafer 10 on the stage 25 at this time and the center of the field of view of the actual field of view 331 of the inspection camera 34 is Χ2 in the X direction and Υ2 in the Υ direction. ' Use the aforementioned differential XI, Yl, Χ2, Υ2 as the registration of the machine correction data for the center of the camera and the center of the wafer. [Major difference between the origin of the photographic optical unit and the in-focus position] One of the factors of the difference between the elements of the photographic unit 3 can be displayed at the origin position when the photographic unit driving unit 35 moves toward the origin position, and the focus position of 31 The difference in distance. The difference in the distance described above means that the actual position of the fine position is 4 circles at the position 34 of the position 232, and the calculation of the 101 341 position optical objective lens 23 201036082 shows the [zero, point] and the The difference between the distances of the focusing positions on the wafer 10 from the objective lens 3 i. If the focus position is shifted, the image cannot be checked. Therefore, the [zero point] in the Z direction is made to coincide with the focus position and the distance in the case where the wafer 10 is observed and inspected. However, if the position of the origin and the position of the camera 34 are inspected and the position of the camera is poor, the coordinate value of the focus position is issued in a certain device, and a movement command is issued to the wafer in the other display. The circle moves to the same focus, and the 置 value of the m-set will not focus. Therefore, it is necessary to calculate the difference between the design value and the actual value with respect to the distance between the origin position in the Z direction and the position of the inspection camera 34, and register as the difference correction data on the upper and lower positions of the photographing optical unit. Fig. 6 is a side view showing the positional relationship between the N imaging optical unit 3 and the respective portions in the wafer appearance inspection device 1 of the present invention. Figure 6 (a) shows the positional relationship of each part on the display factory and # a. The position of the photographic optical unit driving unit 35 at the position of the photographic optical unit 35 is a position indicating that the position is [zero point] in the Z direction. When the Q design value is such that the photographic optical unit driving unit 35 moves Z0 downward from the origin position toward the Z direction, the objective lens 31 is in focus, and the position of the photographic light unit driving unit 35 at this time is regarded as a design lens. The focus position is 31〇. - Set the distance between the lens focus position 3 1 前述 of the aforementioned design and the design surface position 晶圆 of the wafer to be DO. Fig. 6 (b) is a side view showing the positional relationship of each part in the device actually produced. In the actually fabricated apparatus, the distance between the lens focus position 310 of the design and the actual surface position ιοί of the wafer is set to D1. In the case of the production of the 24th 201036082, the difference between the above (4) and the 耵 is due to the tolerance, so that the origin position 350 of the photographic optical unit drive unit is only moved downward in the Z direction. The distance of Z0 is out of focus in the lens focus position 3 1 〇 of the aforementioned design. It is assumed that the actual surface position i 1〇lz of the wafer is on the wafer (four), and the surface position ιοο is offset by only ζι in the z direction. In this case, the actual lens focus position 311 is located at a position shifted by a distance of Z1 from the designed lens in-focus position 310 toward the two directions. That is, the difference between DO and D1 and Z1 become the difference between the upper and lower positions of the photographic optical unit. When a plurality of objective lenses 31 are used for this Z1, the actual lens focus position 311 of each objective lens 31 is different. Therefore, for all the *^L, the focus position of the objective lens 31 is the difference between the value of the nose and the actual value, and the left field is corrected for the difference between the origin and the focus position of the photographic optical unit. Registration of information. Jiaping [machine difference of observation magnification of objective lens or optical system] The factor of machine difference - can display the objective lens 3 used in photography 3 or the actual magnification in the inspection camera 34 and S to be used for the objective lens 31 Or the lens of optical system 33 includes an aspect ratio. Due to the dimensional error during loading, there is a case where the design has a magnification and a difference in processing or group magnification and aspect ratio. That is, the Shi Huang ratio and the actual 'image Μ μ a. • rec〇Snition) are taken by the inspection camera 34 of a certain device (the number of pixels of the image of the known size of the reference mark, the wafer taken The number of pixels in the case where the image is recognized by the image on the 10th and the other device are required to calculate the design: 敎 when the predetermined size is observed. The difference in the number of factors is taken as the difference correction with respect to the observation magnification. Fig. 7 is a plan view showing the relationship between the size of the optical system and the size of each part in the wafer visual inspection device of the present invention. Fig. 7(a) is a view showing the appearance of the wafer on the design. A plan view of a state in which the above-described size reference mark 17 of a known size is captured by the photographing optical unit 3 in the photographing apparatus 1. The objective lens 31 and the optical system 33 are often constituted by using a plurality of lenses, respectively, but in the present description, One lens is illustrated. - First, 'select the aforementioned size reference mark 17 of the known size patterned on the wafer 10. The size reference mark I is transmitted through the objective lens 31 and the optical system. 33 is taken as a size reference mark 丄7〇 in the field of view 3〇a of the design of the inspection camera 34. At this time, the design visual field 330b on the wafer is in the range shown in the figure. The size of Λμπ v , 7 is known as 'the size in the X direction is MxO, the size in the Y direction is the size base in the 扪 扪 330 330a, 、, Υ. At this time, the image is taken in the aforementioned field of view card mark 1 7 η & v

方向的像素數為Qy〇。 ’ 方向的像素數為Qx〇,Y 而且,若定義x方向 炎 a yo,則能以公式(1)、(2) 〇為α χ〇,γ方向的旦°的衫像解析度(image resolution) 表卜 衫像解析度為 [公式1 ] αχΟ =The number of pixels in the direction is Qy〇. The number of pixels in the direction is Qx〇, Y. If the x-direction inflammation is defined, the formula (1), (2) 〇 can be α χ〇, and the γ direction can be resolved. ) The resolution of the smock image is [Formula 1] αχΟ =

MxOMxO

QxOQxO

[公式2 ][Formula 2]

ayOayO

MyOMyO

Qy〇 Ο 201036082 前述影像解析度是意味著對 & 件1像素之被攝影物的設計上的尺;"機34的 圖7(b)是顯示在 寸。 马夯與罝-f際的曰曰圓外觀檢杳妒 々先學…拍攝前述尺寸基準 〜较置!中 晶圓10上的前述尺寸基準伊的狀態之命 系統㈣作被拍攝於檢查攝影:34:過物鏡31 内的尺寸基準標記丨7丨 、實際的視s 寸為已知,設X方向前述尺寸基準樑記] ,. 尺寸為, Y方向的兄 此時,設被拍攝於前述 门的尺寸為 内的尺寸基準標記171的y 士 J耳際的硯3 # . π 1 、Χ方向的像素數為QX卜γ 像素數為Qyl。而且,曰 B a日圓上的實際的視野331b成 顯示的範圍。 右设尺寸為未知的許#,^ 的I7a的X方向的尺寸為 方向的尺寸為My2,姑 、 破拍攝於前述檢查攝影機34的 視野331a内的尺寸為去心以』 了马未知的標記17a的實際的X方 素數為Qx2,Y方向的德各 Π的像素數為Qy2,則關係式能 〇 (3)〜(8)表示。 [公式3 ]Qy〇 Ο 201036082 The above image resolution means a design ruler for the object of 1 pixel of the &1; and Fig. 7(b) of the machine 34 is displayed. The appearance of the 夯 夯 罝 f f f 外观 外观 々 ... ... ... ... ... ... ... 拍摄 拍摄 拍摄 拍摄 拍摄 拍摄 拍摄 拍摄 拍摄The life system (4) of the above-mentioned size reference on the wafer 10 is taken for inspection photography: 34: the size reference mark 丨7丨 in the objective lens 31, the actual viewing size is known, and the X direction is set as described above. Dimensional reference beam] ,. Dimensions, in the Y direction, at this time, the y 3 of the size reference mark 171 taken within the size of the gate is #3 # . π 1 , the pixel in the Χ direction The number is QX and the number of gamma pixels is Qyl. Moreover, the actual field of view 331b on the 曰B a yen is in the range of display. The size of the X7 of the I7a whose size is unknown is the right, and the size of the direction of the I7a of the I7a is My2. The size of the image taken in the field of view 331a of the aforementioned inspection camera 34 is decentered. The actual X-square prime number is Qx2, and the number of pixels in the Y direction is Qy2, and the relationship can be expressed by (3) to (8). [Formula 3]

Mx2: Qx2 = MxO: Qxi [公式4 ]Mx2: Qx2 = MxO: Qxi [Formula 4]

My2: Qy2 = MyO: Qyl [公式5] Μχ2··2 攝影元 使用攝 ί·視圖。 與光學 f 331a 7的尺 ,My0 〇 f 331a 方向的 為以圖 Mx2,Y 實際的 向的像 以公式 201036082 [公式6 ]My2: Qy2 = MyO: Qyl [Equation 5] Μχ2··2 Photography Element Use the photo ί· view. With the angle of the optical f 331a 7 , the direction of My0 〇 f 331a is the image of the actual direction of the image Mx2, Y with the formula 201036082 [Formula 6]

My2 =My2 =

MyO QyT •Qy2 而且,若定義X方向的影像解析度為axl,Y方向的 影像解析度為a y 1,則能以公式(7 )、( 8 )表示。 [公式7 ] αχί =MyO QyT • Qy2 Moreover, if the image resolution in the X direction is defined as axl and the image resolution in the Y direction is a y 1, it can be expressed by equations (7) and (8). [Formula 7] αχί =

MxOMxO

QxlQxl

[公式8] oyl =[Formula 8] oyl =

MyO QyT 前述影像解析度是意味著對檢查攝影機34的攝影元 件1像素之被攝影物的實際的尺寸。該影像解析度是因物 鏡31或光學系統33的組合而不同。因此,在前述物鏡31 與前述光學系統33的全部的組合中算出觀察規定尺寸時 的設計上的像素數與實際的像素數的差,當作與觀察倍率 q有關的機差補正資料登記。 [照明用光源的亮度設定值與亮度的機差] ' 機差的因素之一可顯示使用於攝影的光源中的光量調 - 整用設定值與實際的亮度的差。 在晶圓外觀檢查裝置1中藉由來自控制用電腦41的控 制信號進行照明用光源3 6的亮度設定。在控制用電腦41 内因前述控制信號為數值,亦即數位信號,故不會產生機 差。 28 201036082 但是,來自控制用電腦41對照明f 明用光源3 6内的照明調光部是以類比 制。而且,即使亮度控制的類比信號的 各個的偏差或照明至物鏡的光的透身 fact or)或由物鏡經光學系統到檢查攝 - 而每一裝置成為機差。因此’在複數台 • 1中即使令以控制用電腦4 1設定的亮度 會有實際的亮度產生機差的情形。 U 因此,需使用預先成為基準的晶圓 照明的亮度的設定值,一邊測定實際的 規定的亮度之設計上的設定值與實際的 關於亮度與設定值的機差補正資料登記 圖8 ( a )是顯示照明用光源的亮度設 度的關係之圖表。縱軸成為亮度B,橫 的亮度設定值A。 若設以當作暗點的亮度設定值D A 0 DP0,以當作明點的亮度設定值BA0 i ΒΡΟ,則照明用光源的亮度設定值與設計 ' BC0圖示的以公式(9 )、( 1 0 )表示的關係 [公式9]MyO QyT The above-described image resolution means the actual size of the object to be photographed for one pixel of the photographing element of the inspection camera 34. This image resolution differs depending on the combination of the objective lens 31 or the optical system 33. Therefore, in the combination of the objective lens 31 and the optical system 33, the difference between the number of pixels on the design and the actual number of pixels when the predetermined size is observed is calculated, and the difference correction data registration is performed as the observation magnification q. [The difference between the brightness setting value of the light source for illumination and the brightness] One of the factors of the machine difference indicates the amount of light used in the light source for photography - the difference between the set value and the actual brightness. In the wafer visual inspection device 1, the brightness of the illumination light source 36 is set by a control signal from the control computer 41. In the control computer 41, since the control signal is a numerical value, that is, a digital signal, no difference is generated. 28 201036082 However, the illumination dimming unit in the illumination source 36 from the control computer 41 is analogous. Moreover, even if the deviation of the analog signal of the brightness control or the illumination of the light to the objective lens is transposed or by the objective lens to the inspection by the optical system - each device becomes a machine difference. Therefore, even if the brightness set by the control computer 4 1 is set in the plurality of units 1 , there is a case where the actual brightness is poor. U Therefore, it is necessary to use the set value of the brightness of the wafer illumination to be used as a reference, and to measure the actual set value of the predetermined brightness and the actual difference correction data about the brightness and the set value. FIG. 8 ( a ) It is a graph showing the relationship of the brightness setting of the light source for illumination. The vertical axis is the brightness B and the horizontal brightness setting value A. If the brightness setting value DA 0 DP0 is used as the dark point, as the brightness setting value BA0 i 明 of the bright point, the brightness setting value of the illumination source is the formula (9), which is designed as 'BC0', 1 0 ) indicates the relationship [Equation 9]

B:Bp〇-DpO Λ BaO - DaO 亦即 [公式10] g光源3 6或者對照 信號進行亮度的控 值相同’也因照明 [率(transmission 影機的光的透射率 晶圓外觀檢查裝置 的設定值相同’也 ,-邊慢慢地改變 亮度算出為了得到 設定值的差,當作 〇 定值與設計上的亮 軸成為照明用光源 的設計上的亮度為 的設計上的亮度為 上的亮度變成如以 式0 29 201036082 .BaO-DaO uB: Bp〇-DpO Λ BaO - DaO is also [Equation 10] g light source 3 6 or control signal for the same brightness control 'also due to illumination [rate (transmission of the light transmittance of the film, the wafer appearance inspection device The set value is the same 'also, and the brightness is gradually changed. In order to obtain the difference between the set values, the brightness of the design as the brightness value of the lighting source is set as the brightness of the design. The brightness becomes as in the equation 0 29 201036082 .BaO-DaO u

A ---BA ---B

BpO - DpO 使用前述公式(10),可算出對所要的亮度B之 的照明用光源的亮度設定值A。 圖8 (b )是顯示照明用光源的亮度設定值與實際 - 的關係之圖表。縱軸成為亮度B,橫軸成為照明用 . 党度設定值A。 如當作暗點的亮度DP0的實際的照明用光源的 0 定值成為DA1,如當作明點的亮度BP0的實際的照 源的亮度設定值成為 B A1。因此,照明用光源的亮 值與實際的亮度變成如以BC1圖示的以公式(11)、 示的關係式。 [公式11 ] B = BpO-DpO A Bal-Dal 亦即 Q [公式12] A Bal-Dal ^BpO - DpO Using the above formula (10), the brightness setting value A of the illumination light source for the desired brightness B can be calculated. Fig. 8(b) is a graph showing the relationship between the brightness setting value of the illumination light source and the actual -. The vertical axis is the brightness B, and the horizontal axis is used for illumination. The value 0 of the actual illumination light source of the luminance DP0 which is regarded as the dark spot is DA1, and the luminance setting value of the actual source of the luminance BP0 which is the bright point is B A1. Therefore, the light value of the illumination light source and the actual brightness become the relationship expressed by the formula (11) as shown by BC1. [Formula 11] B = BpO-DpO A Bal-Dal That is Q [Formula 12] A Bal-Dal ^

A =--BA =--B

BpO - DpO 使用前述公式(12),可算出對所要的亮度B之 照明用光源的亮度設定值A。 在前述公式(10)、(12)中,成為所要的亮度之 的設定值與實際的設定值的差為每一實際製作的 同,成為機差。而且,會因使用的物鏡31或光學系 設計上 的亮度 光源的 党度設 明用光 度設定 (12)表 實際的 設計上 裝置不 統3 3、 30 201036082 檢查攝影機34的組合而 檢笪攝影機的却·节、而不同。 因此,在使用的物鏡31 i 3 4全部的組合中’算出對所| 現31或光學系統33、檢查攝影機 對所要的亮度之設計上的亮度設定 的差,當作關於照明亮度的機差補BpO - DpO Using the above formula (12), the brightness setting value A of the illumination light source for the desired brightness B can be calculated. In the above formulas (10) and (12), the difference between the set value of the desired brightness and the actual set value is the same for each actual production, and becomes a machine difference. Moreover, due to the use of the objective lens 31 or the brightness of the optical system, the brightness of the light source is set by the illuminance setting (12). The actual design of the device is not integrated. 3 3, 30 201036082 Check the combination of the camera 34 to check the camera. But the festival is different. Therefore, in the combination of all the objective lenses 31 i 3 4 used, the difference between the brightness setting of the desired brightness of the camera 31 or the optical system 33 and the inspection camera is calculated as a difference in the brightness of the illumination.

正資料登記。Positive data registration.

生可在其他的裝置使用的共同檢查條件資料。然後在其 〇他的裝置中,由前述機差補正資料與前述共同檢查條件資 料產生有該裝置用的檢查條件資料。 因此,無須如以習知的裝置進行的以全部的裝置進行 作成每一品種的檢查條件資料的作業,也無須在發生系統 故障等的情形下進行的檢查條件資料的再登記作業。 _其結果,能以短時間產生共同的複數品種的檢查條件 資料’可節省各自重新作成資料的時間與勞力。 〇 【圖式簡單說明】 圖1是本發明的晶圓外觀檢查裝置之斜視圖。 圖2是本發明的晶圓外觀檢查裝置之構成圖。 ' 圖3是顯示圖案形成於晶圓上的半導體晶片的一例之 圖4是顯示本發明的檢查條件資料產生程序之流程圖。 圖5是顯示本發明的晶圓外觀檢查裝置中的X軸平a 與Y軸平台與各部的位置關係之俯視圖。 201036082 圖6是顯示本發明的晶圓外觀檢查裝置中的攝影光學 單元3與各部的位置關係之側視圖。 圖7是顯示本發明的晶圓外觀檢查裝置中的光學系統 尺寸與各部尺寸的關係之俯視圖。 圖8是顯示本發明的晶圓外觀檢查裝置中的照明用光 源的設定值與亮度的關係之圖表。 . 圖9是顯示習知的檢查條件資料產生程序之流程圖。 0 【主要元件符號說明】 1 :晶圓外觀檢查裝置 2 :檢查平台部 3 :攝影光學單元 4 :控制部 5 :晶圓運送部 I 0 :晶圓 II :定向平邊 Q 1 2 :對準標記 12a:每一晶片的對準標記 - 13:半導體晶片電路圖案 . 1 4 ·.半導體晶片電路部 1 5 :半導體晶片電極部 1 6 :半導體晶片群 17、17a:已知尺寸的尺寸基準標記 21 :裝置底座 32 201036082 2 2 : X軸平台 23: Y軸平台 24 : 0軸平台 25 :台子 3 1 :物鏡 32:旋轉器機構 3 3 :光學系統 34:檢查攝影機 0 35:攝影光學單元驅動部 36:照明用光源 37:支柱部 41 :控制用電腦 4 2 :資料管理用電腦 4 3 :影像處理用電腦 4 4 a、4 4 b :資訊顯示手段 4 4 c :顯示切換手段 q 4 5 :資訊輸入手段 4 5 a :輸入切換手段 - 46a、46b、46c :資訊記錄媒體 . 47:資料存取手段 5 1 :機械手臂 52:手部 6 1 :晶圓匣盒 62:晶圓匣盒承載台 33 201036082 1 0 0 :晶圓的設計上的中心位置 1 0 0 Z :晶圓的設計上的表面位置 1 0 1 :晶圓的實際的中心位置 101z:晶圓的實際的表面位置 170:被拍攝於檢查攝影機的設計上的視野内的尺寸基 - 準標記 171:被拍攝於檢查攝影機的實際的視野内的尺寸基準 標記 2 2 0 : X軸平台的原點位置 22 1 :由原點位置使X軸平台於X方向僅移動X0的位置 2 2 2 :由原點位置使X軸平台於X方向僅移動X1的位置 2 3 0 : Y軸平台的原點位置 231:由原點位置使Y軸平台於Y方向僅移動Y0的位置 232:由原點位置使Y軸平台於Y方向僅移動Y1的位置 2 5 0 :設計上的台子中心位置 3 1 0 :設計上的透鏡對焦位置 3 11 :實際的透鏡對焦位置 330、 330a、330b:檢查攝影機的設計上的視野 331、 331a、331b:檢查攝影機的實際的視野 340 :檢查攝影機的設計上的視野的中心位置 341 :檢查攝影機的實際的視野的中心位置 3 5 0 :攝影光學單元驅動部的原點位置 34Common inspection condition data that can be used in other devices. Then, in the device of the other device, the inspection condition data for the device is generated from the aforementioned difference correction data and the aforementioned common inspection condition data. Therefore, it is not necessary to perform the operation of creating the inspection condition data for each item by all the devices as in the conventional device, and there is no need to re-register the inspection condition data in the event of a system failure or the like. _ As a result, the inspection condition data of a common plural variety can be generated in a short period of time, and the time and labor for re-creating the materials can be saved. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view of a wafer appearance inspection device of the present invention. Fig. 2 is a view showing the configuration of a wafer appearance inspection device of the present invention. Fig. 3 is a view showing an example of a semiconductor wafer in which a pattern is formed on a wafer. Fig. 4 is a flow chart showing a procedure for generating an inspection condition data of the present invention. Fig. 5 is a plan view showing a positional relationship between an X-axis flat a and a Y-axis stage and respective portions in the wafer appearance inspection device of the present invention. 201036082 Fig. 6 is a side view showing the positional relationship between the photographing optical unit 3 and the respective portions in the wafer appearance inspection device of the present invention. Fig. 7 is a plan view showing the relationship between the size of the optical system and the size of each part in the wafer appearance inspection device of the present invention. Fig. 8 is a graph showing the relationship between the set value of the illumination light source and the brightness in the wafer appearance inspection device of the present invention. Fig. 9 is a flow chart showing a conventional inspection condition data generating program. 0 [Description of main component symbols] 1 : Wafer visual inspection device 2 : Inspection platform unit 3 : Photographic optical unit 4 : Control unit 5 : Wafer transport unit I 0 : Wafer II : Oriented flat edge Q 1 2 : Aligned Mark 12a: alignment mark of each wafer - 13: semiconductor wafer circuit pattern. 1 4 · semiconductor wafer circuit portion 1 5 : semiconductor wafer electrode portion 1 6 : semiconductor wafer group 17, 17a: size reference mark of known size 21: device base 32 201036082 2 2 : X-axis platform 23: Y-axis platform 24: 0-axis platform 25: table 3 1 : objective lens 32: rotator mechanism 3 3 : optical system 34: inspection camera 0 35: photographic optical unit drive Part 36: illumination light source 37: pillar portion 41: control computer 4 2: data management computer 4 3 : image processing computer 4 4 a, 4 4 b : information display means 4 4 c : display switching means q 4 5 : Information input means 4 5 a : Input switching means - 46a, 46b, 46c: Information recording medium. 47: Data access means 5 1 : Robot arm 52: Hand 6 1 : Wafer cassette 62: Wafer cassette Carrier 33 201036082 1 0 0 : Center position of the wafer design 1 0 0 Z : Wafer design Surface position 1 0 1 : actual center position of the wafer 101z: actual surface position of the wafer 170: size base taken in the field of view of the design of the inspection camera - reference mark 171: taken at the inspection camera Dimensional reference mark in the actual field of view 2 2 0 : Origin position of the X-axis platform 22 1 : Position of the X-axis platform moving only X0 in the X direction from the origin position 2 2 2 : X-axis platform from the origin position Position X1 that moves only in the X direction 2 3 0 : Origin position 231 of the Y-axis platform: Position 232 where the Y-axis platform moves only Y0 in the Y direction from the origin position: The Y-axis platform is in the Y direction from the origin position Move only the position of Y1 2 5 0 : Design the center position of the table 3 1 0 : Design the lens focus position 3 11 : Actual lens focus position 330, 330a, 330b: Check the visual field of view 331 , 331a of the camera 331b: Checking the actual field of view 340 of the camera: Checking the center position of the visual field of the camera design 341: Checking the center position of the actual field of view of the camera 3 5 0 : Origin position 34 of the imaging optical unit drive unit

Claims (1)

201036082 七、申請專利範圍: 1、 一種晶圓檢查條件產生方法,產生檢查形成於晶圓 上的半導體晶片的外觀的複數個檢查裝置的檢查條件資 料,包含: 每一晶圓檢查裝置算出對設計值的機差,接著登記機 - 差補正資料之機差補正資料登記步驟; 在被選擇的任一台晶圓檢查裝置中,使用晶圓產生檢 查條件資料之第一檢查條件資料產生步驟; ^ 由該檢查條件資料與該被選擇的任一台晶圓檢查裝置 〇 的該機差補正資料產生共同檢查條件資料之共同檢查條件 資料產生步驟;以及 由該共同檢查條件資料與每一晶圓檢查裝置的該機差 補正資料產生每一晶圓檢查裝置的檢查條件資料之第二檢 查條件資料產生步驟。 2、 如申請專利範圍第1項之晶圓檢查條件產生方法, 其中該機差補正資料至少包含如下的任一個誤差資料: Ο 配設於晶圓檢查裝置之承載晶圓的台子的檢查平台的 原點位置,與檢查晶圓的檢查攝影機的中心位置及承載於 • 該檢查平台的晶圓的中心位置的誤差資料; . 檢查晶圓的檢查攝影機的對焦位置的誤差資料; 包含於該檢查攝影機的透鏡的觀察倍率的誤差資料; 以及 包含於該檢查攝影機的照明用光源的對所要亮度之設 定值的誤差資料。 35 201036082 3、 一種晶圓檢查系統,產生檢查形成於晶圓上的半導 體晶片的外觀的複數個檢查裝置的檢查條件資料,包含: 每一晶圓檢查裝置算出對設計值的機差,接著登記機 差補正資料之機差補正資料登記手段; 在被選擇的任一台晶圓檢查裝置中,使用晶圓產生檢 • 查條件資料之第一檢查條件資料產生手段; 由該檢查條件資料與該被選擇的任一台晶圓檢查裝置 的該機差補正資料產生共同檢查條件資料之共同檢查條件 資料產生手段;以及 由該共同檢查條件資料與每一晶圓檢查裝置的該機差 補正資料產生每一晶圓檢查裝置的檢查條件資料之第二檢 查條件資料產生手段。 4、 如申請專利範圍第3項之晶圓檢查系統,其中該機 差補正資料至少包含如下的任一個誤差資料: 配設於晶圓檢查裝置之承載晶圓的台子的檢查平台的 原點位置,與檢查晶圓的檢查攝影機的中心位置及承載於 q該檢查平台的晶圓的中心位置的誤差資料; 檢查晶圓的檢查攝影機的對焦位置的誤差資料; - 包含於該檢查攝影機的透鏡的觀察倍率的誤差資料; 以及 包含於該檢查攝影機的照明用光源的對所要亮度之設 定值的誤差資料。 36201036082 VII. Patent application scope: 1. A wafer inspection condition generation method, which generates inspection condition data of a plurality of inspection devices for inspecting the appearance of a semiconductor wafer formed on a wafer, comprising: each wafer inspection device calculates a pair design The machine difference of the value, followed by the registration machine-difference correction data difference correction data registration step; in any of the selected wafer inspection devices, the first inspection condition data generation step of using the wafer to generate inspection condition data; And generating, by the inspection condition data and the machine difference correction data of the selected one of the wafer inspection devices, a common inspection condition data generation step of the common inspection condition data; and checking the common inspection condition data and each wafer The machine difference correction data of the device generates a second inspection condition data generation step of the inspection condition data of each wafer inspection device. 2. The method for generating wafer inspection conditions according to item 1 of the patent application scope, wherein the machine difference correction data includes at least one of the following error data: Ο an inspection platform of the wafer carrying device supporting the wafer inspection device The origin position, the center position of the inspection camera for inspecting the wafer, and the error data of the center position of the wafer carried on the inspection platform; . Checking the error data of the focus position of the inspection camera of the wafer; included in the inspection camera The error data of the observation magnification of the lens; and the error data of the set value of the desired brightness included in the illumination light source of the inspection camera. 35 201036082 3. A wafer inspection system for generating inspection condition data for a plurality of inspection devices for inspecting an appearance of a semiconductor wafer formed on a wafer, comprising: each wafer inspection device calculating a machine difference from a design value, and then registering The machine difference correction data registration means for the machine difference correction data; the first inspection condition data generation means for using the wafer generation inspection condition data in any of the selected wafer inspection apparatuses; and the inspection condition data and the The machine difference correction data of the selected wafer inspection device generates a common inspection condition data generation means for the common inspection condition data; and the common inspection condition data and the machine difference correction data of each wafer inspection device are generated The second inspection condition data generating means of the inspection condition data of each wafer inspection device. 4. The wafer inspection system of claim 3, wherein the difference correction data includes at least one of the following error data: an origin position of the inspection platform of the wafer carrying device of the wafer inspection device And an error data of the center position of the inspection camera for inspecting the wafer and the center position of the wafer carried on the inspection platform; checking the error data of the focus position of the inspection camera of the wafer; - included in the lens of the inspection camera Observing the error data of the magnification; and error data of the set value of the desired brightness included in the illumination light source of the inspection camera. 36
TW99100171A 2009-03-31 2010-01-06 Method and inspection system for inspection conditions of semiconductor wafer appearance inspection device TWI402927B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087456A JP5193112B2 (en) 2009-03-31 2009-03-31 Inspection condition data generation method and inspection system for semiconductor wafer appearance inspection apparatus

Publications (2)

Publication Number Publication Date
TW201036082A true TW201036082A (en) 2010-10-01
TWI402927B TWI402927B (en) 2013-07-21

Family

ID=42827704

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99100171A TWI402927B (en) 2009-03-31 2010-01-06 Method and inspection system for inspection conditions of semiconductor wafer appearance inspection device

Country Status (4)

Country Link
JP (1) JP5193112B2 (en)
CN (1) CN102349142B (en)
TW (1) TWI402927B (en)
WO (1) WO2010113386A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI560441B (en) * 2011-03-25 2016-12-01 Toray Eng Co Ltd
US10001774B2 (en) 2013-03-22 2018-06-19 Kabushiki Kaisha Toshiba Manufacturing supporting system, manufacturing supporting method, and manufacturing supporting program for electronic device
TWI665438B (en) * 2014-03-28 2019-07-11 Toray Engineering Co., Ltd. Method for generating inspection condition data of wafer inspection device and inspection condition data generation system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854501B2 (en) * 2011-11-17 2016-02-09 東レエンジニアリング株式会社 Automatic visual inspection equipment
JP5818651B2 (en) * 2011-11-22 2015-11-18 株式会社キーエンス Image processing device
CN102937594B (en) * 2012-11-02 2015-01-21 上海华力微电子有限公司 Defect detecting system and method
JP6142655B2 (en) * 2013-05-09 2017-06-07 株式会社島津製作所 Appearance inspection apparatus and appearance inspection method
CN103489817B (en) * 2013-09-30 2016-01-27 上海华力微电子有限公司 defect detecting system and method
KR20150114795A (en) 2014-04-02 2015-10-13 삼성전자주식회사 A method of testing a semiconductor memory device, a test device, and compurter readable recording media recording test program for a semiconductor memory device
JP6802081B2 (en) * 2017-02-10 2020-12-16 東レエンジニアリング株式会社 Wafer type chip tray and visual inspection equipment
JP6337179B2 (en) * 2017-05-10 2018-06-06 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Apparatus and method for determining alignment error
JP6777604B2 (en) 2017-08-28 2020-10-28 ファナック株式会社 Inspection system and inspection method
JP6740288B2 (en) * 2018-07-13 2020-08-12 ファナック株式会社 Object inspection apparatus, object inspection system, and method for adjusting inspection position
CN115346904A (en) * 2022-08-08 2022-11-15 魅杰光电科技(上海)有限公司 Wafer conveying and measuring system
WO2024053198A1 (en) * 2022-09-06 2024-03-14 株式会社ジャパンディスプレイ Method for inspecting luminescent elements

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048148A (en) * 1996-08-05 1998-02-20 Sony Corp Object inspection apparatus
JP2002353104A (en) * 2001-05-24 2002-12-06 Hitachi Ltd Exposure method of semiconductor device, aligner and program thereof
JP4812318B2 (en) * 2004-10-29 2011-11-09 株式会社日立ハイテクノロジーズ Method for measuring pattern dimensions using a scanning electron microscope
US7408154B2 (en) * 2004-10-29 2008-08-05 Hitachi High-Technologies Corporation Scanning electron microscope, method for measuring a dimension of a pattern using the same, and apparatus for correcting difference between scanning electron microscopes
JP4534025B2 (en) * 2004-11-30 2010-09-01 ルネサスエレクトロニクス株式会社 Appearance inspection apparatus and conveyance section for appearance inspection apparatus
JP4638800B2 (en) * 2005-10-27 2011-02-23 株式会社日立ハイテクノロジーズ Machine difference management system and method in scanning electron microscope apparatus
JP4998854B2 (en) * 2006-02-03 2012-08-15 株式会社ニコン Substrate processing method, substrate processing system, program, and recording medium
JP2008128651A (en) * 2006-11-16 2008-06-05 Olympus Corp Pattern alignment method, and pattern inspecting device and system
JP5264118B2 (en) * 2007-07-31 2013-08-14 株式会社日立ハイテクノロジーズ Electron microscope and sample management method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI560441B (en) * 2011-03-25 2016-12-01 Toray Eng Co Ltd
US10001774B2 (en) 2013-03-22 2018-06-19 Kabushiki Kaisha Toshiba Manufacturing supporting system, manufacturing supporting method, and manufacturing supporting program for electronic device
TWI665438B (en) * 2014-03-28 2019-07-11 Toray Engineering Co., Ltd. Method for generating inspection condition data of wafer inspection device and inspection condition data generation system

Also Published As

Publication number Publication date
TWI402927B (en) 2013-07-21
WO2010113386A1 (en) 2010-10-07
JP5193112B2 (en) 2013-05-08
CN102349142B (en) 2013-07-03
CN102349142A (en) 2012-02-08
JP2010239041A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
TW201036082A (en) Inspection condition data generation method and inspection system of semiconductor wafer appearance inspection apparatus
TWI485628B (en) A re-registration method for locating a target object, and a recording medium for recording the method
JP4997127B2 (en) Inspection method and program recording medium recording this inspection method
JP2008128651A (en) Pattern alignment method, and pattern inspecting device and system
WO2019163275A1 (en) Contact accuracy assurance method, contact accuracy assurance mechanism, and inspection device
US7369237B2 (en) Substrate processing apparatus and substrate processing system
JP2016061779A (en) Stick inspection device and stick inspection method
JP4289961B2 (en) Positioning device
JP4560898B2 (en) Inspection apparatus and inspection method
JP2022061127A (en) Exterior appearance inspection device and method
KR100820752B1 (en) Probe test apparatus of flat pannel display and probe test method using it
JP2009074849A (en) Inspection method of line width measuring device
WO2019102890A1 (en) Substrate inspection device, inspection position correction method, position correction information generation method, and position correction information generation system
CN115628685A (en) Method and equipment for measuring critical dimension and method for positioning critical dimension in grading manner
JPH08327658A (en) Inspection equipment for substrate
JP2002057197A (en) Method and device for probe
JP2000021769A (en) Aligning method and apparatus
US7274471B2 (en) Systems and methods for measuring distance of semiconductor patterns
CN110998815A (en) Inspection apparatus, inspection method, and storage medium
JP2010283243A (en) Exposure device and device manufacturing method
JP2007292683A (en) Sample measuring apparatus and sample stage adjusting method of sample measuring apparatus
JP2000180152A (en) Method and apparatus for surface inspection
JP2003148930A (en) Substrate inspection device
CN117012688A (en) Wafer detection positioning correction method and system
KR20060020150A (en) Jig for teaching overlay alignment and manufacturing equipment of semiconductor device