TW201035674A - Blank mask and photomask fabricated using it - Google Patents

Blank mask and photomask fabricated using it Download PDF

Info

Publication number
TW201035674A
TW201035674A TW099100354A TW99100354A TW201035674A TW 201035674 A TW201035674 A TW 201035674A TW 099100354 A TW099100354 A TW 099100354A TW 99100354 A TW99100354 A TW 99100354A TW 201035674 A TW201035674 A TW 201035674A
Authority
TW
Taiwan
Prior art keywords
layer
metal layer
metal
blank
mask
Prior art date
Application number
TW099100354A
Other languages
Chinese (zh)
Other versions
TWI420236B (en
Inventor
Kee-Soo Nam
Han-Sun Cha
Sin-Ju Yang
Chul-Kyu Yang
Original Assignee
S&S Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S&S Tech Co Ltd filed Critical S&S Tech Co Ltd
Publication of TW201035674A publication Critical patent/TW201035674A/en
Application granted granted Critical
Publication of TWI420236B publication Critical patent/TWI420236B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/50Mask blanks not covered by G03F1/20 - G03F1/34; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/46Antireflective coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment

Abstract

Provided is a blank mask. The blank mask comprises a metal layer, a hard mask layer, and a photoresist, which are sequentially stacked on a transparent substrate. The metal layer may be a silicide having a thickness of less than about 60 nm, and Si content may range about 30 at% to about 80 at% to obtain a superior flatness. When the metal layer is dry-etched, a loading effect occurring by a distance different between the metal layer and etching radical ions may be reduced to obtain a high-quality blank mask.

Description

201035674 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種空白罩幕及利用其所製Ί * 罩、與空白罩幕的製造方法,尤指一種應用於線寬,造的光 nm ’特別是小於45 nm的空白罩幕、利用該空白复 ^ 造的光罩與該空白罩幕的製造方法。 幕所製 【先前技術】 Ο201035674 VI. Description of the Invention: [Technical Field] The present invention relates to a blank mask, a manufacturing method using the same, and a blank mask, especially a light applied to a line width. Nm 'especially a blank mask of less than 45 nm, a reticle using the blank, and a method of manufacturing the blank mask. Curtain system [prior art] Ο

Q 為了達成電路圖樣的微型化以提高積體電路 度(integration),在雜半導體元件中,製作微積體密 技術被視為最重要的技術之一。在積體電路中1 /、圖樣的 得更微小化以實現低功率消耗與高速運算丨而為。路線變 述要求,對於使用在微影製程的光罩而言,可製二滿^上 度且微小的線路圖案的技術是必須的。 出高精 在一般製作空白罩幕的方法中,一今屬 層與一光阻係依序地成型於一透明_上; 2幕 ^、顯影、㈣及清洗等製程以形成圖樣;該金屬居可^ 遮先層。然而上述傳統的製作方法中 = 化時,巨觀負載效應與微負载效應即可能發生。== 然於光阻上執行曝光製程而形成相同尺寸 ,的尺寸仍會關樣密度的Μ而出現差異。當 阻為#刻光罩钱刻較低《脖 Μ加旦驗 對於相同顯影劑、相同兹刻 率與單位*積的移除率會 I 5 (critical dimension ^ CD) 、 亦即,在圖樣密度高的區域,用以_金屬層 3/27 201035674 之敍刻自由基濃度(etching radical concentration)會往金屬 層的較低部分呈現逐漸遞減;故,在金屬圖樣的上臨界尺 寸與下臨界尺寸就會產生差異。相反地,在圖樣密度低的 區域’例如一被隔絕的圖樣區域,由於被蝕刻的區域較小, 蝕刻自由基濃度就相對較大,結果造成底切現象(undercut phenomenon)’使金屬圖樣的上臨界尺寸與下臨界尺寸之間 產生相當大的差距。 當光阻具有一薄的厚度時,負載效應(l〇ading effects )、細微圖樣之線性度(ijnearity )與精確度(沉❹ 可被提升;然而,當較下層被圖樣化時,光阻之圖樣可能 被毀壞而使其外觀(configuration)變形。更嚴重的是,由 於較下層可能被破壞,所以就無法精確地將原光阻的圖樣 轉製於較下層。 此外,當光阻的圖樣變得微小化,但光阻並未變薄, 會造成個別光阻圖樣的深寬比(aspectrati〇)增加;一般而 當光阻圖樣的深寬比增加’光阻圖樣的外觀較易被破 壞。因此’當使用上述受到破壞的光阻為光罩來圖樣化較 下層時’圖樣轉製的精確度可能會下降。以一個極端的情-況為例’光罩的-部分崩壞或是彼此層疊,將造成無法轉 製圖樣的情況(missingpattem)。綜上所述,隨著圖樣微小 化時,必細彡成—未麵大深纽的薄光阻。 而,罩幕層的厚度則如同上述光阻的厚度必須加以縮 小疋若硬罩幕層的厚度到達超薄(ultra-thin)等級,在 圖樣化該較下料’硬罩幕層與光阻可能會制猶,因 此,須進-步考慮硬轉層的厚度與其材質。 化學增幅型光阻劑(comically amplifled _)可用 4/27 201035674 以提高空白罩幕的解析度,化 化予牦巾田型先阻劑可在曝光製 Μ產生^ (H 曝錢 exposure bake,ΡΕΒ )所烊 ψ3,,、,你儿组 巧衣狂 易被顯影。二1航子增幅型光阻劑更容 易l Μ說金屬層巾可添加fc(n 反射特性、伽彳特性及光財;細,纟光 劑所產生的_會魏騎私,峨彼此所導 致化學㈣縣_紐被齡彡。若化 法被顯影,則很難達成莴艇姑疮.4 i尤I且別…Q In order to achieve miniaturization of circuit patterns to improve integrated circuit integration, in micro-semiconductor components, the fabrication of micro-compound technology is considered to be one of the most important technologies. In the integrated circuit, the pattern is further miniaturized to achieve low power consumption and high-speed operation. The route description requires that for a reticle that uses a lithography process, a technique that can produce two full and small line patterns is necessary. In the method of generally making a blank mask, a current layer and a photoresist are sequentially formed on a transparent _; 2 screens, development, (4) and cleaning processes to form a pattern; Can ^ cover the first layer. However, in the above conventional manufacturing method, the giant load effect and the micro load effect may occur. == Although the exposure process is performed on the photoresist to form the same size, the size will still differ depending on the density of the film. When the resistance is #刻光光, the lower the amount of the same developer, the same rate and the unit of the product, the removal rate will be I 5 (critical dimension ^ CD), that is, in the pattern density In the high region, the etching radical concentration of the metal layer 3/27 201035674 will gradually decrease toward the lower part of the metal layer; therefore, the upper critical dimension and the lower critical dimension of the metal pattern are There will be differences. Conversely, in a region where the pattern density is low, such as an isolated pattern region, since the etched region is small, the etching radical concentration is relatively large, resulting in an undercut phenomenon 'on the metal pattern'. There is a considerable gap between the critical dimension and the lower critical dimension. When the photoresist has a thin thickness, l〇ading effects, linearity (ijnearity) and accuracy of the fine pattern (the sinking can be improved; however, when the lower layer is patterned, the photoresist The pattern may be destroyed to deform its configuration. More seriously, since the lower layer may be destroyed, it is impossible to accurately convert the pattern of the original photoresist to the lower layer. In addition, when the pattern of the photoresist becomes Miniaturization, but the photoresist is not thinned, which will increase the aspect ratio of individual photoresist patterns; generally, when the aspect ratio of the photoresist pattern increases, the appearance of the photoresist pattern is more easily destroyed. 'When the above-mentioned damaged photoresist is used as a reticle to pattern the lower layer, the accuracy of the pattern conversion may decrease. In an extreme case, the reticle-part collapses or laps each other. This will result in a situation in which the pattern cannot be converted (missingpattem). In summary, as the pattern is miniaturized, it must be thinned into a thin photoresist that does not have a large depth. However, the thickness of the mask layer is like the thickness of the above-mentioned photoresist. It must be reduced. If the thickness of the hard mask layer reaches the ultra-thin level, the hard mask layer and the photoresist may be formed in the patterning. Therefore, it is necessary to consider the hard turn. The thickness of the layer and its material. Chemically amplified photoresist (comically amplifled _) can be used 4/27 201035674 to improve the resolution of the blank mask, and the chemical film can be produced in the exposure system. Exposure bake, ΡΕΒ) 烊ψ 3,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,彳Characteristics and light; fine, 纟光剂 produced by _ will Wei ride private, 峨 峨 峨 峨 ( 四 四 四 纽 纽 纽 纽 彡 彡 彡 彡 彡 彡 彡 彡 彡 彡 彡 彡 彡 彡 彡 彡 彡 彡 彡 彡 彡 彡 彡 彡 彡 彡 彡Especially I and don't...

的光罩。難達成·,故也就難以製作高品質 【發明内容】 本發明之主要目的在於提供—触白罩幕,其可應用 於線寬小於90 nm,特別是應用於線寬小於45 _,、且^空 白罩幕具有lid圭的可靠度;本發明更提種用該空白罩 幕所製成的光罩及製造上述空白罩幕的方法。 根據本發明之實施例,—種製造空白罩幕的方法,該 方法包含以下步驟:形成一相位移層、一金屬層、一硬罩 幕層及一光阻於透明基材上。當對比該金屬層尚未成型之 該透明基材的平坦麟,該金屬層的平坦度(flatness)係 在小於lum的範圍中變化。 當該空白罩幕為一種雙光強度空白罩幕(binary intensity blank mask)時,該方法包括: al)提供一透明基材; bl)形成一金屬層於步驟al)所提供之透明基材上; cl)形成一硬罩幕層於步驟bl)所形成製作之金屬層 上;以及 dl)形成一光阻於步驟ci)所形成之硬罩幕層上。 5/27 201035674 maskί Ϊ空白罩幕為—種相位移空白罩幕(⑽Shi_ank k) 4,該方法包括·· hi)提供一提供一透明基材; U),形成一相位移層於步驟hl)所提供之透明基材上; J1)形成-_停止層於步驟η)所形成之相位移層上,· U形成一金屬層於步驟ji)所形成之蝕刻停止層上; U)形成-硬罩幕層於步驟kl)所形成之金屬層3上; 以及Photomask. Difficult to achieve, so it is difficult to produce high quality [invention] The main purpose of the present invention is to provide a white mask, which can be applied to line widths less than 90 nm, especially for line widths less than 45 _, and ^The blank mask has the reliability of the lid; the invention further illuminates the mask made of the blank mask and the method of manufacturing the blank mask. In accordance with an embodiment of the present invention, a method of making a blank mask includes the steps of forming a phase shifting layer, a metal layer, a hard mask layer, and a photoresist on a transparent substrate. When comparing the flat lining of the transparent substrate to which the metal layer has not been formed, the flatness of the metal layer varies in a range smaller than lum. When the blank mask is a binary intensity blank mask, the method comprises: al) providing a transparent substrate; bl) forming a metal layer on the transparent substrate provided in step a) ; cl) forming a hard mask layer on the metal layer formed in step bl); and dl) forming a photoresist on the hard mask layer formed in step ci). 5/27 201035674 maskί Ϊ Blank mask is a phase shift blank mask ((10) Shi_ank k) 4, the method includes: providing a transparent substrate; U), forming a phase shift layer in step hl) Provided on the transparent substrate; J1) forming a - stop layer on the phase shift layer formed in step η), forming a metal layer on the etch stop layer formed in step ji); U) forming - hard a mask layer on the metal layer 3 formed in step k1);

功1)形成一光阻於步驟U)所形成之硬罩幕層上。 接下來’根縣發明之實施例,更乡的製作方法及才 關條件係揭露如下:Work 1) forming a photoresist on the hard mask layer formed in step U). Following the example of the invention of the “Gen County County”, the production methods and conditions of the township are disclosed as follows:

在步驟al)肖hi)中,該透明基材可包括納妈玻璃 s,allme)、合成石英(syntheticquartz)或氣化約等材料 2衣成。在I線(I_lme)波長(為365nm)至氬氣(⑽) 雷射波長(為193nm)之範圍下,該透明基材係具有大於 ,少85%的穿透率(transmissivity),其中上述範圍係主要 是微影製朗綠波長。另外,在·式微影(immersi〇n lithography)的條件下,該透明基材具有小於5 nm/6 35臟 的雙折射率(birefring ence) 〇 在步驟al)與hi)中,透明基材的平坦度之絕對值小 於 lum。 在步驟M)與kl)巾,金屬層可為單層結構或兩層結 構’亦或是多層結構。 在步驟bl)與kl)中,若該金屬層為單層結構,該單 層結構可Μ遮蔽光線。再者,若該金屬層為單層結構, 該金屬層則由該單層結構之表面至—基材具有連續的組 6/27 201035674 ί成fif ΐ包括珍及—個或多個由下列金屬或化合物所 == 斤選擇之村料:鉬(Μ。),㈤、鶴(W)、 化物上if入厘Cr)、及上述金屬之氧化物、上述金屬之碳 屬之氮化物、上述金屬之氧碳化物、上述^ 上述金屬之氧碳氮化物。料量係由該單 層、、,σ構之表面朝該透明基材逐漸(gmdu·)增加。 Ο 〇 今八⑷與⑴中,若該金屬層為兩層或多層結構, 反^戶二^以?為遮蔽光線之遮光層及減少光反射之抗 S W订乾敍刻製程時’一姓刻停止層可額外地被 :=償臨界尺寸的差異,而該差異係由於:二 3:1=所造_°_刻停止層具有比該上^更 反光層(即談具有三層結構的金屬層可包括抗 ,s 上層)、蝕刻停止層與遮光層。當執杆#斜如 =時:發生在抗反光層的負載效應而造成臨界尺V的 負載可補償該臨界尺寸的差異’接著,由於 負載效應’戟層可被制以補償該 至二中,該金心二 用的化時’在金屬層成型後所使 ^的,子4導致化學阻抗特性的下降,進而改變 :二含量大於叫金屬層的應力會隨著石夕含量的 上升而i曰加。因此,該金屬層中之矽含 密度^^^下,該金屬層的光 在步驟M)#kl)中,該金屬層與該硬罩幕層之触刻 7/27 201035674 選擇性大於5。 在步驟Μ )與kl)中’該金屬層的厚度係介於2〇 nm至 60 nm。當金屬層的厚度小於20麵時,光密度甚差;當金 屬層的厚度大於60 nm時,因負載效應的發生,微影的臨 界尺寸變得難以控制。 在步驟bl)與kl)中,該金屬層係為一氮化層,氮含 量係佔Oat%至80at%。當氮含量大於8〇at%,薄膜的消光 係數(extinction coefficient)會上升,而導致光密度特性的 惡化。 在步驟bl )與kl )中,該金屬層在成型後之應力絕對 值係小於5,000 MPa。上述應力絕對值可由以下公式所求 得: 應力值可由金屬層在成型前與成型後,由該基材的曲 率半徑的差異所求得。當該金屬層之應力絕對值大於5,〇〇〇 MPa時’該基板就會呈現明顯的弯曲,使得在定義臨界尺 寸時出現影像位移誤差,故使臨界尺寸難以控制。 在步驟Μ )與kl )中,該金屬層中可含有鈕(Ta), 用以控制該金屬層的應力。在薄膜成型後時,成型條件與 材料的組成會影響該應力;而钽(Ta)不易受到外在製程 變化之影響。 在步驟M )與kl )中,該金屬層可用直流濺鍍製程(DC sputtering process )、射頻濺鍍製程(r f叩働咖 P )或離子束丨儿積製程所製作(i〇n-beam deposition 8/27 201035674In step a), the transparent substrate may comprise a material such as Namma glass, synthetic quartz or gasification. The transparent substrate has a transmissivity greater than, and less than 85%, in the range of the I line (I_lme) wavelength (from 365 nm) to the argon ((10)) laser wavelength (193 nm), wherein the above range The main system is the lithographic green wavelength. In addition, under the condition of immersi〇n lithography, the transparent substrate has a birefringence of less than 5 nm/6 35 dirty, in steps a) and hi), of the transparent substrate The absolute value of flatness is less than lum. In the step M) and the k1), the metal layer may be a single layer structure or a two layer structure 'or a multilayer structure. In steps bl) and kl), if the metal layer is a single layer structure, the single layer structure can block light. Furthermore, if the metal layer is a single layer structure, the metal layer has a continuous group from the surface of the single layer structure to the substrate. 6/27 201035674 ί fi fif ΐ 珍 及 — — — — Or compound == jin selected village material: molybdenum (Μ.), (5), crane (W), compound on the PCT, and the oxide of the above metal, the carbon of the above metal, the above metal An oxycarbide, an oxycarbonitride of the above metal. The amount of the material is gradually increased (gmdu·) from the surface of the single layer and the σ structure toward the transparent substrate. 〇 〇 〇 ( (8) and (1), if the metal layer is a two-layer or multi-layer structure, the anti-^ households are used as a shading layer for shielding light The stop layer can additionally be: = compensated for the difference in critical dimensions, and the difference is due to: 2:3 = created _°_etch stop layer has a more reflective layer than the upper layer (ie, a metal having a three-layer structure) The layer may include an anti-, s upper layer), an etch stop layer, and a light shielding layer. When the handle # oblique as =: the load effect of the anti-reflective layer occurs and the load of the critical dimension V can compensate for the difference in the critical dimension. Then, due to the load effect, the layer can be compensated for the second to the second. When the gold core is used for the second time, after the metal layer is formed, the sub-four causes the chemical impedance characteristic to decrease, and then the change: the second content is greater than the stress of the metal layer, and the content of the metal layer increases. plus. Therefore, the germanium in the metal layer contains a density, and the light of the metal layer is in step M) #kl), and the contact between the metal layer and the hard mask layer is more than 5 in selectivity. In steps Μ) and kl), the thickness of the metal layer is between 2 〇 nm and 60 nm. When the thickness of the metal layer is less than 20, the optical density is very poor; when the thickness of the metal layer is larger than 60 nm, the critical dimension of the lithography becomes difficult to control due to the load effect. In steps bl) and kl), the metal layer is a nitride layer, and the nitrogen content is from Oat% to 80 at%. When the nitrogen content is more than 8 〇 at%, the extinction coefficient of the film rises, resulting in deterioration of the optical density characteristics. In steps bl) and kl), the absolute value of the stress of the metal layer after molding is less than 5,000 MPa. The above absolute value of the stress can be obtained by the following formula: The stress value can be obtained from the difference in the radius of curvature of the substrate before and after molding of the metal layer. When the absolute value of the stress of the metal layer is greater than 5, 〇〇〇 MPa, the substrate exhibits a significant curvature, so that the image displacement error occurs when the critical dimension is defined, so that the critical dimension is difficult to control. In steps Μ) and kl), the metal layer may contain a button (Ta) for controlling the stress of the metal layer. When the film is formed, the molding conditions and the composition of the material affect the stress; and the tantalum (Ta) is not easily affected by the external process variation. In steps M) and kl), the metal layer can be fabricated by a DC sputtering process, an RF sputtering process (rf叩働P) or an ion beam enthalpy process (i〇n-beam deposition). 8/27 201035674

Process);而為了確保金屬層的均句性,可使用長距離抛鍍 製程來製作金屬層。當使用長距離拋鍍製程時可易於控制 金屬層的均勻性,進而可製造出具有良好臨界尺寸之高品 質空白罩幕。 在步驟bl )與kl)中,在波長為193 nm下,該金屬 層之表面反射率(surface reflectance )係為25 %。 在步驟cl)與il)中,硬罩幕層具有金屬;硬罩幕層Process); and to ensure the uniformity of the metal layer, a long-distance polishing process can be used to make the metal layer. When a long-distance polishing process is used, the uniformity of the metal layer can be easily controlled, and a high-quality blank mask having a good critical dimension can be manufactured. In steps bl) and kl), the surface reflectance of the metal layer is 25% at a wavelength of 193 nm. In steps cl) and il), the hard mask layer has a metal; the hard mask layer

可包括選自由金屬、金屬氧化物、金屬碳化物、金屬氮化 物、金屬碳氧化物、金屬碳氮化物、及金屬碳氧氮化物所 組成之群組中之一材料。 在步驟cl)與il)中,硬罩幕層之金屬可包括選自由 鈦(Ti)、鈒(V)、鉻(Cr)、猛(Mn)、鐵(Fe)、録(c〇)、 鎳(Ni)、銅(〇〇、鋅(Zn)、鎵(Ga)、錯(Ge)、錯(Zr)、 鈮(Nb)、錮(Mo)、釕(Ru)、鍺(Rh)、鉛(pd)、銀 (Ag)、锅(Cd)、銦(ln),(Sn)、給(Hf)、組(Ta)、 鎢(w)、婀(0s)、銥(Ir)、鉑(pt)及金(Au)所組成 之群組中之至少一材料。 在步驟cl)與il)中,硬罩幕層不被含敦氣體所敍刻,A material selected from the group consisting of a metal, a metal oxide, a metal carbide, a metal nitride, a metal carbon oxide, a metal carbonitride, and a metal carbon oxynitride may be included. In steps cl) and il), the metal of the hard mask layer may be selected from the group consisting of titanium (Ti), ruthenium (V), chromium (Cr), sensitized (Mn), iron (Fe), recorded (c〇), Nickel (Ni), copper (germanium, zinc (Zn), gallium (Ga), mal (Ge), mal (Zr), niobium (Nb), antimony (Mo), antimony (Ru), rhenium (Rh), Lead (pd), silver (Ag), pot (Cd), indium (ln), (Sn), (Hf), group (Ta), tungsten (w), bismuth (0s), iridium (Ir), platinum At least one of the group consisting of (pt) and gold (Au). In steps cl) and il), the hard mask layer is not engraved by the gas containing the gas.

但其可被含缝體所爛;辦,制與該硬罩幕声 之蝕刻選擇性大於5。 S 在步驟cl)與il)中,硬罩幕層之厚度較佳地在3nm 至30 nm。當硬罩幕層之厚度小於3 _,硬罩幕層可能益 法作為硬罩幕層岭成金屬層m硬罩幕層之厚产 大於3〇麵’银刻時間大幅拉長而降低生產性,且在钱刻製 =中有可月匕毛生負载效應’故超出上述範圍可能 ‘ 製作高精度的臨界尺寸。 9/27 201035674 ^驟el)與il}中’硬罩幕層成型之後,該金屬層 之應力絕對值小於5,000 MPa。 屬声或步驟Cl)㈣中,在成型金 ί二罩幕層之後,熱處理、閃光(齡_)、雷射或 ’处理等均可被執行,崎低應力絕對值至5,000 MPa =:、為。了控制薄膜應力’表面處理可在薄膜沉積之前、 中或/儿積之後進行;—種如降溫製程(㈣㈣ 1本i的方去和—翻射卜接能源的方法可被使用來作 :理之方法;而上述應力控制可在金屬層成型後或 疋硬罩幕層成型後進行。 在步驟cl li)中,硬罩幕層之片電阻為ι〇 ω/□至 lOkD/□之間。 在步驟Cl)與η)中,硬罩幕層藉由直流減鑛製程、 =頻(RF)賤鍍製程、或離子束沉積製程所製作;而為了 確保硬罩幕層的均勻性與生紐,可❹長距離抛鑛製 私。在長距離拋鑛製程令,乾材與基板之間的距離係大於 200 mm,以確保較佳的均勻性。 、 在步驟cl)與η)中,硬罩幕層較佳地可包含有雜質 離子’即含有NV之二鹽基雜f離子,_f離子之濃产 係小於! PPnw。該二鹽基_離何與強_合,: 光阻中之強酸;由於被中和之強酸,光阻可能出現基板相 依性(substrate dependency )而導致光阻特性的下降。^ 為了控制上述基板相依性,雜質離子(特別是二 ’ 離子)的濃度係較佳地在小於lppmv。 | 土滩身 在步驟cl)與Π)令,為了控制上述基板相依性 罩幕層可進行表面處理。均絲處料包純速熱處理更 10/27 201035674 (rapidly thermal processing,RTP)、熱板熱處理(h〇t-piate thermal treatment)、電漿處理或真空烘烤處理。 在步驟cl)與il)中,硬罩幕層之表面處理可在真空 度小於5 mtorr下操作。 在步驟cl)與il)中’無曝光之可顯影下抗反射塗佈 層(DBARC)可附加地成型在硬罩幕層與光阻之間,以改 善由硬罩幕層所控制之基板相依性及硬罩幕層與光阻之間 的黏著性。可顯影下抗反射塗佈層之組成可類似於光阻之 〇 組成,以提升黏著性及減少因基板相依性而出現的膜渣 (scum)。再者,由於可顯影下抗反射塗佈層可在不經曝光 的條件下被顯影劑溶解,故不需額外的清洗步驟(strip process)° 在步驟cl)與il) t,當可顯影下抗反射塗佈層係成 型於硬罩幕層之上,可顯影下抗反射塗佈層之厚度較佳地 係小於50 nm,明確地係為30 nm。若可顯影下抗反射塗佈 層過厚時,因可顯影下抗反射塗佈層的反射性,導致光阻 ❹ 《光雜的下降;或可㈣之T抗觸塗佈層在清洗過程 中無法被完全移除。因此,上述殘留即可能造成缺陷。當 可顯影下抗反射塗佈層之厚度小於3〇nm,基板相依性就不 易控制。 在々驟cl)與U)中,當可顯影下抗反射塗佈層成型 罩幕層之上時’可㈣下抗反射㈣層可含有強酸(如 顯影化學增幅型雜。由於可顯影之下抗反射 =1含有強酸,其可補償化學增幅型光阻中被中和而流 失的強酸,故可降低基板相依性。 在步驟cl)與i〇中,當可顯影下抗反射塗佈層成型 11/27 201035674 於硬罩幕層之上時,可顯影下抗反射塗佈層的軟烤溫度係 大於光阻之軟烤溫度。 [有益效果] 本發明之空白罩幕之金屬層中的矽含量佔3〇at%至 80at%,且當對比於金屬層尚未成型之該透明基材的平坦度 時,該金屬層之平坦度係被控制在小於lum。因此,當在 金屬層上執行乾蝕刻時,發生的自由基離子(radical i〇n) 的密度差異可被縮減到最小,藉此,即可製成具有較小的 負載效應之高品質空白罩幕及光罩;故,高精度的圖樣與 較佳的圖樣轉印可被實現,以得到具有較佳臨界尺寸線性 度(CD linearity)、臨界尺寸製程指標(mean吣, MTT)、臨界尺寸均勻性及線邊緣的粗糙程度_ nniglmess,LER)等特性之空白罩幕及光罩。 【實施方式】 為使能更進一步瞭解本發明之特徵及技術内容,請參 閱以下有關本發明之詳細說明與附圖,然而所附圖式僅提 供參考與說明用,並非用來對本發明加以限制者。 (實施例一) 請參考第-圖,本發明之實施例一之空白罩幕ι〇ι可 由透明基材卜含有銦㈣料之金屬層7、硬罩幕層5及光 阻6所構成。該金屬層7中之斜量係在—預定範圍。 該含有辦(MoSi)材料之金屬層7係利用_材質⑽ 子百分比(at_ 1G:9())之姆所製作,轉其成型於透明 基材1上,而反應性氣體可包括氬氣(Ar)、氮氣(n)、甲 烷(〇ί4)、及/或氧氣(0)。該金屬層7可為銷石夕⑽⑹)材料、 師石炭(MoSiC)材料、師氮(MQSi晴料、卿氧(μ〇_ 12/27 201035674 材料、鉬矽碳氮(MoSiCN)材料、鉬矽碳氧(MoSiCO)材料、 鉬矽氧氮(MoSiON)材料或鉬矽碳氧氮(MoSiCON)材料。請 參考表一所示,為預估金屬層7之光學與化學電阻特性 (chemical-resistant),金屬層7係經過O.D.清洗劑、加熱至 90°C之硫酸及標準清潔製程(SC)-l兩小時,以觀察光透射 率變異性(transmissivity variation)。另外,金屬層7中之石夕 含置係利用歐傑電子能譜儀(Auger Electron Spectrometer, AES)進行分析。藉由利用平坦度量測儀(f|atinaster)分析金 〇 屬層7之平坦度(flatness)。 〇 材料 O.D @139 nm 實施例Γ MoSi 3.1 實施例2 MoSiN 2.9 實施例3 MoSiO 2.6 實施例4 H MoSiC 2.9 ' 實施例5 MoSiON 3.0 —— 實施例6 1 MoSiCO 2.8 實施例7 MoSiCN —-— 2.7 實施例8 MoSiCON 2.9 ' 比較例1 MoSi 3.2 ' 比較例2 MoSi 3.2 化學電阻特性 (Delta T%@ 193 nm)However, it can be smashed by the seam containing body; the etching selectivity of the sound and the hard mask is greater than 5. S In steps cl) and il), the thickness of the hard mask layer is preferably from 3 nm to 30 nm. When the thickness of the hard mask layer is less than 3 _, the hard mask layer may be used as a hard mask layer to form a metal layer. The hard mask layer has a thicker than 3 〇 surface. The silver engraving time is greatly elongated and the productivity is reduced. And in the money engraving = there is a monthly load effect of the moon, so it is possible to make a high-precision critical dimension beyond the above range. 9/27 201035674 ^ el el) and il} After the hard mask layer is formed, the metal layer has an absolute value of less than 5,000 MPa. In the sound or step Cl) (4), heat treatment, flash (age _), laser or 'treatment” can be performed after forming the gold layer, and the absolute value of the low stress is 5,000 MPa =: . The control of the film stress 'surface treatment can be carried out before, during or after the deposition of the film; - such as the cooling process ((4) (four) 1 i to go and - reticle energy source can be used for: The above stress control can be performed after the metal layer is formed or after the hard mask layer is formed. In step cl li), the sheet resistance of the hard mask layer is between ι 〇 ω / □ to 10 kD / □. In steps C1) and η), the hard mask layer is fabricated by a DC ore reduction process, a frequency (RF) 贱 plating process, or an ion beam deposition process; and in order to ensure the uniformity of the hard mask layer and the new bond It can be used for long-distance mining. In the long-distance ore casting process, the distance between the dry material and the substrate is greater than 200 mm to ensure better uniformity. In steps cl) and η), the hard mask layer may preferably contain impurity ions, i.e., two-salt hetero-f ions containing NV, and the concentrated system of _f ions is smaller than! PPnw. The dibasic base is separated from the strong one, and the strong acid in the photoresist; due to the strong acid neutralized, the photoresist may have a substrate dependency which causes a decrease in the photoresist characteristics. In order to control the substrate dependence described above, the concentration of impurity ions (especially the two ions) is preferably less than 1 ppmv. | The mud beach body In steps cl) and Π), in order to control the substrate dependence, the mask layer can be surface treated. The homogenized wire is coated with a pure speed heat treatment 10/27 201035674 (rapidly thermal processing, RTP), hot plate heat treatment (h〇t-piate thermal treatment), plasma treatment or vacuum baking treatment. In steps cl) and il), the surface treatment of the hard mask layer can be operated at a vacuum of less than 5 mtorr. In step cl) and il), the 'non-exposure developable anti-reflective coating layer (DBARC) can be additionally formed between the hard mask layer and the photoresist to improve the substrate dependence controlled by the hard mask layer. The adhesion between the scratch and the photoresist layer. The composition of the antireflective coating layer under development can be similar to the composition of the photoresist to improve adhesion and reduce scum due to substrate dependence. Furthermore, since the anti-reflective coating layer can be developed by the developer without exposure, no additional strip process is required. In steps cl) and il) t, when developable The antireflective coating layer is formed over the hard mask layer, and the thickness of the antireflective coating layer that can be developed is preferably less than 50 nm, specifically 30 nm. If the anti-reflective coating layer is too thick under development, the reflectivity of the anti-reflective coating layer can be developed, resulting in a photoresist ❹ "light drop"; or (4) T anti-touch coating layer in the cleaning process Cannot be completely removed. Therefore, the above residue may cause defects. When the thickness of the antireflection coating layer under development is less than 3 Å, the substrate dependency is not easily controlled. In steps cl) and U), the (four) lower anti-reflective (four) layer may contain a strong acid (such as a developing chemically amplified type of impurities) due to development under the anti-reflective coating layer forming mask layer. Anti-reflection = 1 contains a strong acid, which can compensate for the strong acid that is neutralized and lost in the chemically amplified photoresist, so the substrate dependence can be reduced. In steps cl) and i, when the anti-reflective coating layer can be developed under development 11/27 201035674 When over the hard mask layer, the soft-bake temperature of the anti-reflective coating layer that can be developed is greater than the soft-bake temperature of the photoresist. [Advantageous Effects] The content of germanium in the metal layer of the blank mask of the present invention accounts for 3 〇 at% to 80 at%, and when compared with the flatness of the transparent substrate on which the metal layer has not been formed, the flatness of the metal layer The system is controlled to be less than lum. Therefore, when dry etching is performed on the metal layer, the difference in density of radical ions occurring can be minimized, whereby a high-quality blank mask having a small load effect can be produced. Screen and reticle; therefore, high-precision patterns and better pattern transfer can be achieved to achieve better critical linearity (CD linearity), critical dimension process index (mean 吣, MTT), critical dimension uniformity And the roughness of the edge of the line _ nniglmess, LER) and other features of the blank mask and mask. BRIEF DESCRIPTION OF THE DRAWINGS The detailed description and the accompanying drawings of the present invention are intended to provide a By. (Embodiment 1) Referring to Fig. 1, a blank mask ι〇ι of the first embodiment of the present invention may be composed of a transparent substrate containing a metal layer 7 of indium (iv) material, a hard mask layer 5, and a photoresist 6. The amount of slope in the metal layer 7 is within a predetermined range. The metal layer 7 containing the MoSi material is made of _ material (10) sub-percent (at_1G: 9 ()), which is formed on the transparent substrate 1, and the reactive gas may include argon ( Ar), nitrogen (n), methane (〇ί4), and/or oxygen (0). The metal layer 7 can be Pinshixi (10) (6)) material, Shishi carbon (MoSiC) material, Shishi nitrogen (MQSi clear material, Qing oxygen (μ〇_ 12/27 201035674 material, molybdenum niobium carbonitride (MoSiCN) material, molybdenum niobium) Carbon-oxygen (MoSiCO) material, molybdenum-niobium-oxygen-nitrogen (MoSiON) material or molybdenum-niobium carbonitride (MoSiCON) material. Please refer to Table 1 for the prediction of the optical and chemical resistance of the metal layer 7. The metal layer 7 is subjected to OD cleaning agent, sulfuric acid heated to 90 ° C and a standard cleaning process (SC) -1 for two hours to observe the light transmittance variability. In addition, the metal layer 7 The inclusion system was analyzed using an Auger Electron Spectrometer (AES). The flatness of the enamel layer 7 was analyzed by using a flatness measuring instrument (f|atinaster). 139 nm Example Γ MoSi 3.1 Example 2 MoSiN 2.9 Example 3 MoSiO 2.6 Example 4 H MoSiC 2.9 'Example 5 MoSiON 3.0 - Example 6 1 MoSiCO 2.8 Example 7 MoSiCN —-— 2.7 Example 8 MoSiCON 2.9 'Comparative Example 1 MoSi 3.2 'Comparative Example 2 MoSi 3.2 Chemical Resistance Of (Delta T% @ 193 nm)

性及平坦度 姐胜广’在經_酸及標準清潔製程後,化學電 阻特性係根據金屬層7 于电 為30峨至80at%,該含而變化;當石夕含量範圍 的化學電阻特性,例如在屬層7具有較佳 性小於5%;另-方面,〜3波長下,其光透射率變異 田石夕含夏小於30at%(如比較例2), 】3/27 201035674 該含有鉬矽材料之金屬層7之化學電阻特性較差,例如在 硫酸處理下,其光透射率變異性為2.34% ;而在標準清潔製 程處理下,其光透射率變異性為5.59%。 同樣地,金屬層7之平坦度係根據金屬層7中之矽含 量而變化。當矽含量範圍為30at%至80at%,該金屬層7 具有較佳的平坦度’其值小於lum ;另一方面,當石夕含量 大於80at%(如比較例2),該金屬層7具有較差的平坦度, 其值小於1.23 um。 (實施例二) 請參考第二圖,本發明之實施例二之空白罩幕102可 由透明基材1、含有鉬矽材料之金屬層7、硬罩幕層5及光 阻6構成。臨界尺度(Critical Dimension,CD)的變化係 根據貫施例一之平坦度的不同而有所差異。該金屬層7可 進一步包括一遮光層(light shielding layer) 2及—抗反光層 (antireflection layer) 4,上述係疊層於該透明基材】上^ 且在金屬層7尚未成型於該透明基材丨上時,該透明基材工 具有一張應力(tensile stress)及一為〇 32um之平坦度丁瓜 值;含有鉬矽材料之遮光層2具有28nm之厚度;而^有鉬 矽氮(MoSiN)材料之抗反光層4具有17nm之厚度,且上 述兩結構層雜序疊層於該透縣材i JLj^彡^金屬層 7。含有鉻碳氧氮(CrCON)材料之硬罩幕層5具有咖二 之厚度’並沈積於該金屬層7上;硬罩幕層5具有一壓應 力(compressive stress),且其表面平坦度為 〇 i7um。 型號為FEP-m的化學增幅光阻6係塗佈於硬罩幕層5上, 其厚度為15Gmn ;接著進行曝光、顯影、曝光後烘烤 exp讎e bake,腦)及钕刻製程以形成一光罩逝。相對 14/27 201035674 於一個預設為70nm之臨界尺度,光罩的臨界尺度變化係在 中心部分與邊緣部分的四點上被量測;結果,光罩具有較 ㈣臨界尺度值’即在中^部分低於臨界尺度2nm (臨界 尺度為68 nm),而邊緣部分低於臨界尺度5nm。 (比較例二) 為了與上述之實施例二進行比較,形成一厚度為45〇 i矢(A)之含鉬矽材料之單一金屬層7,然後形成一含有鉻 碳氧氮(CrCON)材料之硬罩幕層5,硬罩幕層5之表面平 〇 坦度為ΙΟ—,另外,金屬層7之石夕含量係81.02at%。一 種型號為FEP-171經化學增幅型光阻劑係、塗成厚度為 150nm ’接著進行曝光、顯影、曝光後烘烤及蝕刻製程以製 造一光罩。如同實施例二,相對於一個預設為7〇nm之臨界 尺度,光罩的臨界尺度變化係中心部分與邊緣部分被量 測;結果,光罩在中心部分低於臨界尺度lnm,而在邊緣 4分低於臨界尺度12nm。因此’當平坦度越大時,臨界尺 度的變化就越大。 ❹ (實施例三) 請參考第三圖,本發明之實施例三之空白罩幕1〇3可 由金屬層7、硬罩幕層5及化學增幅型光阻6所組成,而上 述結構均依序堆疊於透明基材1上。 該金屬層7係為-種三層結構,可包括遮光層2、侧 停止層(etch stop layer)3及一抗反光層(amireflecti〇n丨吖沉) 4。在該抗反光層4進行蝕刻期間,該蝕刻停止層3係用以 減少負載效應(loading effect)。 製作條件具體如下:在鉬矽靶材(鉬:矽的比例為 20:80at%)、及1〇〇 scem的氬氣(Arg〇n)之氣體條件下, 15/27 201035674 利用直流濺鍍製程(DC sputtering process)沈積一含有鉬 矽材料之遮光層2於透明基材i上,且該遮光層2之厚度 係為30nm,而在曝光波長為i93nm的條件下,該遮光層2 之光密度(optical density)為2,82,該遮光層2之反射率 為52%。在翻矽靶材(鉬:矽的比例為1〇:9〇at%)、及氬氣 (Argon):氮氣為95 seem : 5 seem之氣體條件下,利用直 流濺鍍(DC sputtering)沈積一含有鉬矽氮材料之蝕刻停止 層3於遮光層2上,且該蝕刻停止層3之厚度係為5nm。 ,鉬矽靶材(鉬:矽的比例為20:80at%)、及氬氣(Arg〇n):Sex and flatness Sister Sheng Guang's chemical resistance characteristics after the acid-based and standard cleaning process are based on the metal layer 7 at 30 峨 to 80 at% of the electricity, which varies; when the chemical resistance characteristics of the shixi content range, For example, the genus layer 7 has a preference of less than 5%; on the other hand, at a wavelength of 〜3, the light transmittance variation is less than 30 at% in summer (as in Comparative Example 2), 】 3/27 201035674 The metal layer 7 of the tantalum material has poor chemical resistance characteristics, for example, the sulfur transmittance variability is 2.34% under sulfuric acid treatment, and the light transmittance variability is 5.59% under standard cleaning process. Similarly, the flatness of the metal layer 7 varies depending on the amount of germanium in the metal layer 7. When the niobium content ranges from 30 at% to 80 at%, the metal layer 7 has a better flatness 'the value is smaller than lum; on the other hand, when the Shi Xi content is more than 80 at% (as in Comparative Example 2), the metal layer 7 has Poor flatness, which is less than 1.23 um. (Embodiment 2) Referring to Fig. 2, the blank mask 102 of the second embodiment of the present invention may be composed of a transparent substrate 1, a metal layer 7 containing a molybdenum crucible material, a hard mask layer 5, and a photoresist 6. The change in Critical Dimension (CD) varies according to the flatness of Example 1. The metal layer 7 may further include a light shielding layer 2 and an antireflection layer 4 laminated on the transparent substrate and not formed on the transparent layer in the metal layer 7. When the material is on the substrate, the transparent substrate tool has a tensile stress and a flatness of um32um; the light-shielding layer 2 containing the molybdenum-bismuth material has a thickness of 28 nm; and the molybdenum-niobium nitrogen (MoSiN) The anti-reflective layer 4 of the material has a thickness of 17 nm, and the two structural layer matrices are laminated on the metal layer 7 of the permeable material. A hard mask layer 5 containing a chromium carbon oxynitride (CrCON) material has a thickness of the second layer and is deposited on the metal layer 7; the hard mask layer 5 has a compressive stress and a surface flatness thereof is 〇i7um. A chemically amplified photoresist 6 of the type FEP-m is applied on the hard mask layer 5 and has a thickness of 15 Gmn; followed by exposure, development, post-exposure exp雠e bake, brain) and engraving process to form A light mask passed away. Relative to 14/27 201035674 at a critical dimension of 70nm, the critical dimension change of the reticle is measured at four points of the central part and the edge part; as a result, the reticle has a (four) critical dimension value 'that is in the middle ^ The portion is below the critical dimension of 2 nm (the critical dimension is 68 nm), while the edge portion is below the critical dimension of 5 nm. (Comparative Example 2) In order to compare with the above-mentioned Example 2, a single metal layer 7 of a molybdenum-containing material having a thickness of 45 Å (A) was formed, and then a chromium-containing carbon oxynitride (CrCON) material was formed. The hard mask layer 5, the surface of the hard mask layer 5 is flat and flat, and the metal layer 7 has a stone content of 81.02 at%. A type of FEP-171 chemically amplified photoresist is applied to a thickness of 150 nm and then subjected to exposure, development, post-exposure bake and etching processes to produce a mask. As in the second embodiment, the critical dimension variation of the reticle is measured at the central portion and the edge portion relative to a critical dimension of 7 〇 nm; as a result, the reticle is lower than the critical dimension lnm at the center portion, and at the edge 4 points below the critical dimension of 12 nm. Therefore, the greater the flatness, the greater the change in the critical dimension. ❹ (Embodiment 3) Referring to the third figure, the blank mask 1〇3 of the third embodiment of the present invention may be composed of a metal layer 7, a hard mask layer 5 and a chemically amplified photoresist 6, and the above structures are all The stack is stacked on the transparent substrate 1. The metal layer 7 is a three-layer structure and may include a light shielding layer 2, an etch stop layer 3, and an anti-reflective layer 4 . During the etching of the anti-reflective layer 4, the etch stop layer 3 is used to reduce the loading effect. The production conditions are as follows: under the condition of a molybdenum-bismuth target (molybdenum: yttrium ratio of 20:80 at%) and a 〇〇scem of argon (Arg〇n), 15/27 201035674 using a DC sputtering process (DC sputtering process) depositing a light-shielding layer 2 containing a molybdenum-rhenium material on the transparent substrate i, and the thickness of the light-shielding layer 2 is 30 nm, and the optical density of the light-shielding layer 2 under the condition of an exposure wavelength of i93 nm The optical density was 2,82, and the reflectance of the light shielding layer 2 was 52%. Deposited by DC sputtering under the condition of turning the target (molybdenum: yttrium ratio: 1〇: 9〇at%) and argon (Argon): nitrogen gas of 95 seem : 5 seem An etch stop layer 3 containing a molybdenum niobium nitride material is on the light shielding layer 2, and the thickness of the etch stop layer 3 is 5 nm. , molybdenum bismuth target (molybdenum: bismuth ratio of 20:80at%), and argon (Arg〇n):

氮氣為80sccm: 20 sccm之氣體條件下,利用直流濺鍍(DC sputtermg)沈積一含有鉬矽氮材料之抗反光層4於蝕刻停 止層3上,且該抗反光層4之厚度係為1〇nm。藉此,在曝 光波長為193nm的條件下,該蝕刻停止層3之光密度 (optical density)為3.〇,該蝕刻停止層3之反射率= 19.=%。之後’在鉻(Cr)靶材、及氯氣(Arg〇n):氧氣: 氮亂.曱院為4〇sccm: 5sccm: 1〇sccm: 3似爪的氣體條 件下矛用反應f生直流錢錢(Dc SpUttering )沈積一含有鉻 碳氧氮(CrCON)材料之硬罩幕層5,且該硬罩幕層$之厚 度係為15nm。 利用歐傑電子能譜儀(a_eleetn)n speet_et^ AES)進減份分析,結果如下:遮光層2之!目:㈣比例 為32:68 at% ;㈣停止層3之銦:梦:氣的比例為ΐ2:72:ι6 心;抗反光層4之銷:石夕:氮的比例為19:49:32 at%。 接著,利用四點探針方法量測片電阻,以觀察遮光層 2、敍刻停止層3、抗反光層4與硬罩幕層5疊層後之表面 在電子束(E-Beam)照射下是否有電荷殘S (charge up) 16/27 201035674 Ο 的現象。結果如下:平均片電阻為326 Ω/□,且並沒有發 生電荷殘留的情況。 種型號為FEP_m❾化學增幅雜舰塗佈成型, 其厚度為15Gnm,__係針對電子轉光機台所使 用,接者,經過13〇。(:、15分鐘之軟烤製程後,即可成 空白罩幕1〇3。 /亥空白罩幕1G3係經過電子束曝光機台進行曝光,並 顯,出光阻圖樣。以該光阻圖樣為侧遮罩,藉由乾姓刻 衣矛王(條件為C12:〇2 = 8〇sccm:5sccm,功率4⑻W,壓力1 Pa)圖樣化該硬罩幕層5,以形成硬罩幕圖樣。移除該光阻 圖樣’然後,以該硬罩幕圖樣為侧遮罩,藉乾钱刻製成 (條件為CF4 = 8〇SCCm,功率400 W,壓力! Pa)蝕刻遮光 層2、餘刻停止層3與抗反光層4。接著,细型號為 之鉻的蝕刻液移除該硬罩幕層5以製作光罩。 另一方面,當空白罩幕1〇3並不包括蝕刻停止層3時, 其製程与jg产上文所述。_ ❹ 評估項目 50 I目的臨界^度之尺度[nm: 蝕刻停止層 (存在) 精確度 (Fidelity) 0.96 0.97 0.99 100 密集圖樣 (Dense pattern) 單一圖樣 (Single pattern) 0.8 0.4 0.6 0.5 0,3 0.2 0.1 0.4 0.3 0.1 0.1 蝕刻停止層 (不存在) 精確度 (Fidelity) 0.93 0.95 0.95 0.97 1 密集圖樣 (Dense pattern) 1,6 1.5 1.5 1.3 單一圖樣 (Single pattern) 0.7 0.7 0.6 0.5 0.3 0.5 0.2 <表二> 依據蝕刻停止層的有無,所進行臨界尺度的 量 17/27 201035674 測數據 ,二係顯示一種依據蝕刻停止層的有無而進行臨界尺 度的里測數據之結果。其中,當餘刻停止層3存在時,精 確度(Mdity)相對較高’且在密集圖樣(d_ Μ—)之 間的臨界尺度的線性度(linearity)與臨界尺度變化(CD bms)相對較小;再者,當蝕刻停止層3存在時,在單一圖 樣(shigle pattern)與密集圖樣(如· pattem )之間的臨界 ^度變化(CD bias)亦會明顯的下降。換言之,藉由侧 各止層3的功效,精確度(丘如1办)、臨界尺度的線性度 (linearity)與臨界尺度變化(CDbias)均有所提升。 (實施例四) 請參考第二圖,本發明之實施例四之空白罩幕1〇2可 包括遮光層2、抗反光層4與硬罩幕層5,該些結構層係依 序疊層_透明毅m乾烟之娜被評估,其係 用以在,、有上述遮光層2與抗反光層4之該金屬層7上製 作垂直圖樣。 藉由銦组石夕補(翻:组:石夕之比例為15:5:8〇at%), 沈積含有鉬鈕矽(MoTaSi)材料之遮光層2,其厚度為 25um ;以及藉由㈣旦石夕乾材(|目:组:石夕之比例為:烟 at%),沈積含有她錢(M〇TaSiN)材料之抗反光層4 被成型,其厚度為l4um,該遮光層2 _抗反光層4則構 成金屬層7。藉由鉻(〇·)树,沈積含有鉻碳氧氮(CrC〇N) 材料之硬罩幕層5,且該硬罩幕層5之厚度係為池m。在 曝光波長為193nm的條件下,該抗反光層4之光密度 (―汐)為2.9,該抗反光層4之反射率為2〇2%, 故抗反光層4之光密度與反射率相對較佳。另外,該遮光 J8/27 201035674 層2與該抗反光層4的組成比例係利用化學分析電子儀 (ESCA)進行分析1光層2之鉬_的纪成比例為 15:5:80 at%,而抗反光層4之鉬鈕矽氮的組成比例為 9:4:60:27 at%。再者,上述結構之密度利用χ_Γ#反射儀 (X-ray reflectometry,XRR)進行分析。遮光層2之密度 為3.2克/平方公分(gram/cm2);抗反光層4之密度為3 6 克/平方公分。一種型號為FEP-171的化學增幅光阻(CAR) 6係塗佈於硬罩幕層5上’其厚度為i5〇nm,並利用乾蝕刻 © 在其上製作圖樣;含有鉬鈕矽材料之遮光層2與含有鉬鈕 石夕氮材料之抗反光層4上之圖樣外觀係利用場發射掃瞄電 子顯微鏡(field emission scanning dectron micr〇sc〇pe, FE-SEM)進行觀察:量測結果顯示蝕刻圖樣之角度為89 度,且並未出現橫切(undercut)或底腳(f〇〇ti )錄 其結果相當優良。 濺鍍條件被改變,以製作含有鉬鈕矽材料之遮光層2 與含有鉬鈕矽氮材料之抗反光層4。遮光層2之鉬鈕矽氮的 ❹ 組成比例為&5:62:27 at%,且抗反光層4之鉬鈕矽氮二組 成比例為9:4:60:27 at% ;而遮光層2之密度為3 8克/平方 =刀,抗反光層4之薄膜密度為3.6克/平方公分。根據遮 光層2及抗反光層4的圖樣外觀觀察結果,圖樣外觀角度 測量為82度,此外,具有梯形(trapez〇idal)形狀的圖樣 外觀被觀察到。結果,蝕刻率會隨著薄膜密度而改變;又 _⑧含量穌度骑沿著深度財向喊小,自由基離 子熟刻反應基的數量會增加,因此,在?罙度的方向就可 獲得較佳的圖樣外觀;反之,當沿著深度的方向而具有相 同矽含量與密度,就較難獲得垂直的圖樣,此原因在於, 19/27 201035674 薄膜與負載效應(loading effect)會導致連續性的自由基離 子的破壞。 (實施例五) 請參考第四圖,本發明之實施例五之空白罩幕丨〇4可 由相位移層(phase shift layer) 8、金屬層7、硬罩幕層5、 具有可顯影下抗反射塗佈層(developable bottom antireflective coating,DBARC )之低阻值層(1〇·Γ 奶以 layer) 9及光阻6所組成,而上述結構均依序堆疊於透明基 材1上。 含有鉬矽材料之相位移層8係成型於透明基材丨上。 相位移層8之穿透率(transmissivity)在氟化氬(ArF)或 氣化氪(KrF)之曝光波長下為2%至25 %,而該相位移層 8之厚度為6Gnm至1 。相位移層8係包括選自由鉬石夕 氧(MoSiO)、鉬石夕氮(MoSiN)、銦石夕碳(M〇sic)、翻石夕 氧氮(M〇Si〇N )、鉬石夕氧碳(MoSi〇c )、翻石夕碳氮(施⑽) 及鉬矽碳氧氮(MoSiCON)所組成之族群中之—材料,且 相位移層8可為單層❹層結構,而多層結構中存在有介 =即使介面不存在,在上層與τ層的組成差異大於2心 層:_加以區分。可利用沈積方法 之間的距離大於2。〇 mm的長距 :才二= sputter,LTS}製程係被加以應用。 、ng throw (uniformity) 她ct腿)。當相位移層8係為_材料時,乂 = 氣(一㈣㈣,而含有鉻或 二 201035674 層al可設置於相位移層8與透明基材1之間,該第一蝕刻 停止層al可被含氯氣體(Cl-containing) #刻,但不被含 氟氣體(fluorine -containing)蝕刻,故第一蝕刻停止層al 可提升相位移層8與合成石英玻璃材質之透明基材1之間 的蝕刻選擇性。另外,第一蝕刻停止層al可用以做為—透 明層與一相位移層。Under the gas condition of nitrogen gas of 80 sccm: 20 sccm, a anti-reflective layer 4 containing a molybdenum and niobium nitrogen material is deposited on the etch stop layer 3 by DC sputtering, and the thickness of the anti-reflective layer 4 is 1 〇. Nm. Thereby, the optical density of the etch-stop layer 3 was 3. 〇, and the reflectance of the etch-stop layer 3 = 19. = % under the condition that the exposure wavelength was 193 nm. After 'in the chromium (Cr) target, and chlorine (Arg〇n): oxygen: nitrogen chaos. The brothel is 4 〇 sccm: 5sccm: 1 〇 sccm: 3 claw-like gas conditions under the spear reaction f Dc SpUttering deposits a hard mask layer 5 containing chromium carbon oxynitride (CrCON) material, and the thickness of the hard mask layer is 15 nm. Using the Auger electron spectrometer (a_eleetn) n speet_et^ AES), the results are as follows: the light-shielding layer 2! The target: (4) the ratio is 32:68 at%; (4) the stop layer 3 of indium: dream: gas The ratio is ΐ2:72:ι6 heart; the anti-reflective layer 4 is sold: Shi Xi: the ratio of nitrogen is 19:49:32 at%. Next, the sheet resistance is measured by a four-point probe method to observe the surface of the light shielding layer 2, the stop layer 3, the anti-reflective layer 4 and the hard mask layer 5 laminated under an electron beam (E-Beam) irradiation. Is there a phenomenon of charge up S (charge up) 16/27 201035674 Ο. The results were as follows: the average sheet resistance was 326 Ω/□, and no charge residue occurred. The model is FEP_m❾ chemically amplified miscellaneous ship coating, its thickness is 15Gnm, __ is used for the electronic light machine, and after 13,. (:, after 15 minutes of soft baking process, it can be a blank mask 1〇3. / 1 blank mask 1G3 is exposed by electron beam exposure machine, and the light resistance pattern is displayed. The photoresist pattern is The side mask is patterned by the dry name of the Spear King (condition C12: 〇 2 = 8 〇 sccm: 5 sccm, power 4 (8) W, pressure 1 Pa) to form a hard mask pattern. In addition to the photoresist pattern 'then, the hard mask pattern is used as a side mask, and it is made by dry money (condition CF4 = 8〇SCCm, power 400 W, pressure! Pa) etching the light shielding layer 2, and the rest is stopped. Layer 3 and anti-reflective layer 4. Next, the etchant of a fine model of chromium removes the hard mask layer 5 to make a photomask. On the other hand, when the blank mask 1〇3 does not include the etch stop layer 3 , the process and jg production described above. _ ❹ Evaluation item 50 I target criticality scale [nm: etch stop layer (present) accuracy (Fidelity) 0.96 0.97 0.99 100 dense pattern (Dense pattern) single pattern ( Single pattern) 0.8 0.4 0.6 0.5 0,3 0.2 0.1 0.4 0.3 0.1 0.1 Etch stop layer (not present) Accuracy (Fidelity) 0.93 0 .95 0.95 0.97 1 Dense pattern 1,6 1.5 1.5 1.3 Single pattern 0.7 0.7 0.6 0.5 0.3 0.5 0.2 <Table 2> Depending on the presence or absence of the etch stop layer, the amount of critical dimension is 17 /27 201035674 The measured data, the second series shows the result of a critical dimension of the measured data based on the presence or absence of the etch stop layer. Among them, when the residual stop layer 3 is present, the accuracy (Mdity) is relatively high' and intensive The linearity between the pattern (d_ Μ—) and the critical dimension change (CD bms) are relatively small; further, when the etch stop layer 3 is present, in the shigle pattern and the dense pattern The CD bias between (such as pattem) also drops significantly. In other words, the accuracy of the side stop layer 3, the accuracy (Qiu Ru 1), the criticality linearity (linearity) And the critical dimension change (CDbias) is improved. (Embodiment 4) Referring to the second figure, the blank mask 1〇2 of the fourth embodiment of the present invention may include a light shielding layer 2, an anti-reflective layer 4 and a hard cover. Curtain layer 5, the structural layers are _ Transparent laminate of Na Yi m dry smoke is evaluated, which is used in the line ,, has the light shielding layer 2 and the antireflection layer 7 made of the metal layer 4 vertically pattern. Depositing a light-shielding layer 2 containing MoMoSi material with a thickness of 25 um by indium group Shi Xibu (flip: group: Shi Xizhi ratio of 15:5:8 〇 at%); and by (4) Danshi Xi dry material (|目: group: Shi Xizhi ratio: smoke at%), deposited anti-reflective layer 4 containing her money (M〇TaSiN) material is formed, its thickness is l4um, the light shielding layer 2 _ The anti-reflective layer 4 constitutes a metal layer 7. A hard mask layer 5 containing chromium carbon oxynitride (CrC〇N) material is deposited by a chromium (〇·) tree, and the thickness of the hard mask layer 5 is the pool m. The optical density (―汐) of the anti-reflective layer 4 is 2.9, and the reflectance of the anti-reflective layer 4 is 2〇2% under the condition of an exposure wavelength of 193 nm, so the optical density of the anti-reflective layer 4 is opposite to the reflectance. Preferably. In addition, the composition ratio of the light-shielding J8/27 201035674 layer 2 and the anti-reflective layer 4 is analyzed by a chemical analysis electronic instrument (ESCA), and the ratio of the molybdenum_ of the optical layer 2 is 15:5:80 at%. The composition ratio of the molybdenum button nitrogen of the anti-reflective layer 4 is 9:4:60:27 at%. Further, the density of the above structure was analyzed by X-ray reflectometry (XRR). The light-shielding layer 2 has a density of 3.2 g/cm 2 and the anti-reflective layer 4 has a density of 3 6 g/cm 2 . A chemically amplified photoresist (CAR) 6 model of the type FEP-171 is applied to the hard mask layer 5, which has a thickness of i5 〇 nm, and is patterned by dry etching ©; it contains a molybdenum button material. The appearance of the pattern on the anti-reflective layer 4 of the light-shielding layer 2 and the molybdenum-containing Nitrogen material was observed by field emission scanning dectron micr〇sc〇pe (FE-SEM): the measurement results showed The angle of the etched pattern was 89 degrees, and the undercut or foot (f〇〇ti) did not appear to be quite good. The sputtering conditions were changed to produce a light-shielding layer 2 containing a molybdenum button material and an anti-reflective layer 4 containing a molybdenum button nitrogen material. The molybdenum button niobium nitrogen has a 组成 composition ratio of & 5:62:27 at%, and the anti-reflective layer 4 has a molybdenum button niobium nitrogen composition ratio of 9:4:60:27 at%; The density of 2 was 380 g/square = knife, and the film density of the anti-reflective layer 4 was 3.6 g/cm 2 . According to the appearance observation of the pattern of the light-shielding layer 2 and the anti-reflection layer 4, the appearance angle of the pattern was measured to be 82 degrees, and the appearance of the pattern having a trapezoidal shape was observed. As a result, the etching rate will change with the density of the film; and the _8 content will be small along the depth of the financial direction, and the number of reactive radicals will increase. Therefore, it can be obtained in the direction of the twist. The appearance of the preferred pattern; conversely, when having the same tantalum content and density along the depth, it is more difficult to obtain a vertical pattern because 19/27 201035674 film and loading effect lead to continuity Destruction of free radical ions. (Embodiment 5) Referring to the fourth figure, the blank mask 4 of the fifth embodiment of the present invention may be composed of a phase shift layer 8, a metal layer 7, a hard mask layer 5, and a developable lower resist. A low-resistance layer of a developable bottom antireflective coating (DBARC) (layer 1) and a photoresist 6 are formed, and the above structures are sequentially stacked on the transparent substrate 1. A phase shifting layer 8 containing a molybdenum crucible material is formed on a transparent substrate. The transmissivity of the phase shifting layer 8 is 2% to 25% at an exposure wavelength of argon fluoride (ArF) or vaporized krypton (KrF), and the phase shift layer 8 has a thickness of 6 Gnm to 1. The phase shifting layer 8 comprises a layer selected from the group consisting of molybdenum (MoSiO), molybdenum (MoSiN), indium ferrocene (M〇sic), fluorite oxygen (M〇Si〇N), molybdenum a material in the group consisting of oxycarbon (MoSi〇c), tumyl carbonitride (Shi (10)), and molybdenum lanthanum carbon oxynitride (MoSiCON), and the phase shifting layer 8 may be a single layer ❹ layer structure, and multiple layers There is a medium in the structure = even if the interface does not exist, the composition difference between the upper layer and the τ layer is greater than 2 core layers: _ to distinguish. The distance between the available deposition methods is greater than two.长 mm long distance: only two = sputter, LTS} process system is applied. , ng throw (uniformity) her ct leg). When the phase shifting layer 8 is a material, 乂 = gas (one (four) (four), and the layer containing chrome or two 201035674 a may be disposed between the phase shifting layer 8 and the transparent substrate 1, the first etch stop layer a1 may be The chlorine-containing gas (Cl-containing) is not etched by the fluorine-containing gas, so that the first etch stop layer a1 can enhance the phase shift layer 8 and the transparent substrate 1 made of synthetic quartz glass. Etching selectivity. In addition, the first etch stop layer a1 can be used as a transparent layer and a phase shift layer.

含有铜石夕材料之金屬層7係成型於該相位移層8上, 金屬層7可為單層或多層結構,且該金屬層7可具有至少 兩層或更多層結構,以用做為相位移層或抗反光層。此時, 马了將金屬層7當作成相位移層或抗反光層,金屬層7具 有劃分相位移層與抗反光層的介面,或金屬層7在垂直 方向上具有組成差異大於2 at%的條件,以使金屬層7可視 為f層、=構。較佳地,金屬層7之厚度大約為6G nm。具體 而5,當有介面存在於相位移層與抗反光層之間,相位移 層之厚度大約為4Gmn,而抗反光層之厚度大約為2〇nm ; 在一曝光波長下,抗反光層之衫度(邮㈣densky)較 ,地大於約2.5。她料與抗反光層可包括—由以下所組 二,'且中所選擇者:( MoSi)'鉬石夕氧(MoSiO )、銦 相 t-MGSlN)、辦碳(M°SiC)、辦氧氮(MGSi0N)、 小於20 ^波長下,抗反光層4之反射率係 80 at。/之0、屬層7中之石夕含量調整至範圍為30 at%至 的庫:金屬層7具有最小之應力。金屬層7 金二==,程魏當相位移層8與 可被氟氣所偏j 質’相位移層8與金屬層7 3有鉻或鈕材料之第二蝕刻停止層a2 21/27 201035674 置㈣層8與金屬層7之間,該第二_停止層 Π 3虱軋體蝕刻’但不被含氟氣體蝕刻,該第二蝕刻 =2可提升相位移層8與金屬層7之間的心 -相位移層紅侧停止亦可用以做為-透明層與另 么思1有絡(c〇或组(Ta)材料之硬罩幕層5係成型於 金屬θ 7之上;硬罩幕層5不易被含氟氣體所_,但含 氟氣體可用以_金屬層7;較佳地,硬罩幕層5的厚度小 於20 nm,且該硬罩幕層5係利用濺鑛製程,尤以長距離抛 鍍製程所製作;該硬罩幕層5可為含有鉻⑼或鈕㈤ 材料’以及由町顺成之群組中所選擇之—㈣:氧化 物層&化物層、氮化物層、氧石炭化合物層、氧氣化合物 層、碳氮化合物層及氧碳氮化合物層。 低阻值層9之主要組成物係為一聚合物(p〇iymer),低 阻值層9係成型於硬罩幕層5上。低阻值層9可用以減少 化學增幅縣阻6在成型隨時的絲減性(substme dependency)、亦可減少電子束曝光製程時的霧化效應 (fogging effect )、以及鈾向散射(f〇rward scattei^ng )與後 向散射(back scattering);此外,低阻值層9可用以減少光 阻6之厚度。低阻值層9可利用旋轉塗佈(spin _)、 掃描(scan)或喷塗(spray)製程所製成;低阻值層9之 厚度係3 nm至50 nm。低阻值層9可提供反射調整 (reflectance adjustment function)的功能,且其含有強酸。 藉由上述強酸的作用,低阻值層9可用以減少化學增幅型 光阻的基板相依性;且由於低阻值層9具有反射調整功能, 故可提升臨界尺度之特性,其原因在於雷射曝光時之減小 22/27 201035674 劑量(dose reduction)與駐波效應請£細) 的減小,但電子束曝祕被操作。低阻值層9可被具有氯 氧化四甲銨(Tetramethylamm〇niumHydr〇xide,TMAH)之 顯影劑所㈣’而不需經過糾擁;該低阻值層9亦可 被去離子水所㈣。該低_層9較佳地具有較光阻6為 面之軟烤溫m阻值層9之軟烤溫度小於光阻6之軟 烤’皿度時’低阻值層9被會光阻塗佈後的軟烤製程影響;A metal layer 7 containing a copper stone material is formed on the phase shift layer 8. The metal layer 7 may be a single layer or a multilayer structure, and the metal layer 7 may have at least two or more layers for use as Phase shift layer or anti-reflective layer. At this time, the metal layer 7 is regarded as a phase shifting layer or an anti-reflective layer, and the metal layer 7 has an interface for dividing the phase shifting layer and the anti-reflective layer, or the metal layer 7 has a composition difference of more than 2 at% in the vertical direction. The condition is such that the metal layer 7 can be regarded as an f layer or a = structure. Preferably, the thickness of the metal layer 7 is approximately 6 G nm. Specifically, 5, when an interface exists between the phase shift layer and the anti-reflective layer, the thickness of the phase shift layer is about 4 Gmn, and the thickness of the anti-reflective layer is about 2 〇 nm; at an exposure wavelength, the anti-reflective layer The shirt (post (four) densky) is larger than the ground. Her material and anti-reflective layer may include - consisting of the following two, 'and selected among them: (MoSi) 'molybdenum oxide (MoSiO), indium phase t-MGSlN), carbon (M°SiC), Oxygen nitrogen (MGSi0N), at a wavelength of less than 20 ^, the reflectance of the anti-reflective layer 4 is 80 at. /0, the Shishi content in the genus layer 7 is adjusted to a range of 30 at% to: the metal layer 7 has the smallest stress. Metal layer 7 Jin 2 ==, Cheng Wei when phase shift layer 8 and can be biased by fluorine gas phase shift layer 8 and metal layer 7 3 have chrome or button material second etch stop layer a2 21/27 201035674 Between the (four) layer 8 and the metal layer 7, the second _ stop layer 虱 3 虱 etched ' but not etched by the fluorine gas, the second etch = 2 can enhance the phase shift layer 8 and the metal layer 7 The red-side stop of the heart-phase-shift layer can also be used as a transparent layer and a layer of other layers (a hard mask layer of c- or group (Ta) material is formed on the metal θ 7; The curtain layer 5 is not easily used by the fluorine-containing gas, but the fluorine-containing gas may be used as the metal layer 7; preferably, the thickness of the hard mask layer 5 is less than 20 nm, and the hard mask layer 5 is subjected to a sputtering process. In particular, it is made by a long-distance polishing process; the hard mask layer 5 may be a material containing chromium (9) or button (5) and selected from the group of Machi Shuncheng - (4): oxide layer & layer, nitrogen a chemical layer, an oxycarbonaceous compound layer, an oxygen compound layer, a carbonitride layer, and an oxycarbonitride layer. The main component of the low-resistance layer 9 is a polymer (p〇iymer), low The value layer 9 is formed on the hard mask layer 5. The low resistance layer 9 can be used to reduce the chemical growth rate of the 6 resistance at the time of molding, and also reduce the atomization effect during the electron beam exposure process. (fogging effect), and uranium scatter and back scattering; in addition, the low resistance layer 9 can be used to reduce the thickness of the photoresist 6. The low resistance layer 9 can be rotated The coating (spin _), scan (scan) or spray (spray) process; the thickness of the low-resistance layer 9 is 3 nm to 50 nm. The low-resistance layer 9 can provide a reflection adjustment function Function, and it contains a strong acid. By the action of the above strong acid, the low resistance layer 9 can be used to reduce the substrate dependence of the chemically amplified photoresist; and since the low resistance layer 9 has a reflection adjustment function, the critical dimension can be improved The reason for this is that the decrease in 22/27 201035674 dose reduction and the standing wave effect is reduced when the laser is exposed, but the electron beam exposure is operated. The low-resistance layer 9 can be made of a developer (tetra) of tetramethylammonium hydride (TMAH) without being subjected to reinforcement; the low-resistance layer 9 can also be deionized water (d). The low-layer 9 preferably has a soft baking temperature of the photoresist 6 and a soft baking temperature of the layer 9 is less than the soft baking of the photoresist 6 when the low-resistance layer 9 is photoresist coated. The effect of soft baking process after cloth;

^-方面,纽阻值層9之軟烤溫度小於光阻之軟烤溫度 時,在光阻上進行軟烤製程,該軟烤製㈣同時施加於光 阻6與低阻值層9。 化學增幅型光阻6係成型於低阻值層9之上;由於低 阻值層9,光阻6的厚度小於1〇〇 nm。雖然應用於相位移 層8之工白光罩已姻於實施例五,但說明於實施例五的 技術亦可扁於不具有她移層8之雙拉白罩幕(恤町 ank mask )及雙光硬質空白罩幕(恤町―純恤业 mask)。 接著,可應用上述空白罩幕以製作一光罩。 藉由使用電子束设備來曝光光阻,並以具有I%% TMAH之顯㈣’在恤上執行顯影製程;此時,低阻值 f 9可侧影製程所移除,而不需進行另外的曝光製程, 藉此即可利用典型之光罩製程製作一光罩。 綜上所述,可藉由調整金屬層與硬罩幕層之矽含量, 以形成較低應力之薄膜,以及較佳臨界尺度特性、較佳登 錄性(registration)與較佳缺陷(defect)特性之光罩。另 外,由於應用了低阻值層,且低阻值層可在不進行曝光製 程的情況下被顯影,故化學增幅型光阻劑的基板相依性可 23/27 201035674 被減少,且轨之厚度亦可減少。藉此, 小化’巧有較佳臨界尺度特性、較佳缺陷特“可^ 用於線寬小於45 nm與32 nm的光罩即可被製作。 【圖式簡單說明】 第一圖係為本發明實施例一之具有單層結構金屬層的 空白罩幕的側視圖。 第二圖係為本發明實施例二與實施例四之具有兩層結 構金屬層的空白罩幕的側視圖。On the other hand, when the soft baking temperature of the resistance layer 9 is lower than the soft baking temperature of the photoresist, the soft baking process is performed on the photoresist, and the soft baking (4) is simultaneously applied to the photoresist 6 and the low resistance layer 9. The chemically amplified photoresist 6 is formed over the low resistance layer 9; due to the low resistance layer 9, the thickness of the photoresist 6 is less than 1 〇〇 nm. Although the white mask applied to the phase shifting layer 8 is in the fifth embodiment, the technique described in the fifth embodiment can also be applied to the double-white mask (the ank mask) and the double without the layer 8 Light hard blank cover (shirts - pure shirt mask). Next, the above blank mask can be applied to make a mask. The photoresist is exposed by using an electron beam device, and the development process is performed on the shirt with I%% TMAH; at this time, the low resistance value f 9 can be removed by the silhouette process without additional The exposure process allows a mask to be fabricated using a typical mask process. In summary, by adjusting the germanium content of the metal layer and the hard mask layer to form a film with lower stress, and better critical dimension characteristics, better registration and better defect characteristics. Photomask. In addition, since a low-resistance layer is applied and the low-resistance layer can be developed without performing an exposure process, the substrate dependence of the chemically amplified photoresist can be reduced by 23/27 201035674, and the thickness of the rail is reduced. Can also be reduced. Therefore, it is possible to make a mask with a line width of less than 45 nm and 32 nm, which can be fabricated with a better critical dimension characteristic and better defect. [Simple description] The first picture is A side view of a blank mask having a single-layer structure metal layer according to Embodiment 1 of the present invention. The second figure is a side view of a blank mask having a two-layer metal layer according to Embodiment 2 and Embodiment 4 of the present invention.

第三圖係為本發明實施例三之具有三層結構金屬層的 空白罩幕的側視圖。 第四圖係為本發明實施例五之空白罩幕的側視圖。 【主要元件符號說明】 101、102、103、104 空白罩幕 1 透明基材 2 遮光層 3 蝕刻停止層The third figure is a side view of a blank mask having a three-layered metal layer in accordance with a third embodiment of the present invention. The fourth figure is a side view of the blank mask of the fifth embodiment of the present invention. [Main component symbol description] 101, 102, 103, 104 blank mask 1 transparent substrate 2 light shielding layer 3 etching stop layer

4 抗反光層 5 硬罩幕層 6 光阻 7 金屬層 8 相位移層 9 低阻值層 al 第一蝕刻停止層 a2 第二餘刻停止層 24/274 anti-reflective layer 5 hard mask layer 6 photoresist 7 metal layer 8 phase shift layer 9 low resistance layer al first etch stop layer a2 second residual stop layer 24/27

Claims (1)

201035674 七、申請專利範圍: 1. 一種空白罩幕,包含: 一透明基材; -設於該透明基材上之金屬層; -設於該金屬層上之硬罩幕層;以及 一设於該硬罩幕層上之光阻, 2 ί 中之石夕含量係3〇at%(原子百分比)至。 Ο 〇 .Μ專利乾圍第1項所述之空白罩幕,其更包括— 透明基材與該金屬層之間的相位移層。 δ 又於該 3. 2請專利範圍第2項所述之空白罩幕,其更包括一制停 祕胁止層係設於該透明基材與該相位移層之間、 s雜胁止層係設於該她移層與該金屬層之間。 如申明專利範圍第1至3項中任—項所述之空白罩幕,其中 對比於金屬層尚未成型之該透明基材的平坦度時,該金屬層 之平坦度係在小於lum的範圍中變化。 .如申明專利範圍第1至3項中任—項所述之空白罩幕,其中 該金屬層包括石夕,以及該金屬層係更包括選自於翻(偷)、 鈕㈤、鎢(W)、鈦㈤、及鉻(⑺及上述材料之化 合物所組成之群組中之至少一金屬材料。 6. 如申明專利範圍第1至3項中任一項所述之空白罩幕,其中 該金屬層,係、包括選自於遮光層,刻停止層及抗反光層所 組成之群組中之至少一結構層。 7. 如申明專利範圍第1至3項中任一項所述之空白罩幕,其中 5亥金屬層具有—光密度,而在—曝光波長下,該光密度之範 圍係介於2.5至3.5。 8. 如申印專利範圍第〗至3項中任—項所述之空白罩幕,其中 25/27 201035674 該金屬層與該硬罩幕層具有一侧選擇率,其值係大於5。 9.如申明專利知圍第i至3項中任—項所述之空白罩幕,其中 該孟屬層之石夕含量係從該金屬層之表面至該透明基材逐漸 增加。 1〇.如申明專利範圍第1至3項中任-項所述之空白罩幕,其中 该金屬層所具有之氮含量係〇at%(原子百分比)至8〇娜。 U.如申請專利朗第1至3項中任-項所述之空白罩幕,其中 該金屬層具有-應力絕對值,其值係小於5,〇〇〇MPa。 12·如申凊專利範圍第1至3項中任一項所述之空白罩幕,其中 該金屬層中具有钽(Ta)元素。 ’、 13. 如申凊專利範圍第1至3項中任一項所述之空白罩幕,其中 在波長為193 nm的條件下,該金屬層具有一反射率,其值 係小於25 %。 八 14. 如申請專利範圍第1至3項中任一項所述之空白罩幕,其中 §亥硬罩幕層係選自於金屬、金屬氧化物、金屬碳化物、金屬 氮化物、金屬碳氧化物、金屬碳氮化物、及金屬碳氧氮化物 所組成之群組中之一材料。 15·如申請專利範圍第1至3項中任一項所述之空白罩幕,其中 含氯氣體乾蝕刻該硬罩幕層,但含氟氣體無法乾蝕刻該硬罩 幕層。 16·如申請專利範圍第1至3項中任一項所述之空白罩幕,其中 該硬罩幕層具有一厚度,其值在3 nm至30 nm。 17·如申請專利範圍第1至3項中任一項所述之空白罩幕,其中 該硬罩幕層中之含有氨(νη3)的雜質離子小於i ppmv。 18.如申請專利範圍第1至3項中任一項所述之空白革幕,其更 包括一設於該硬罩幕層與該光阻之間的低阻值層。 26/27 201035674 範圍第18項所述之空白罩幕,其 之厚度係3nm至5〇nm。 20. 如申清專利範圍第1 & 可被人f員所述之空白罩幕,其中該低阻值層 了被3鹼之頑影劑所溶解。 21. ^空白罩幕的製作方法,包含以下步驟: 棱供一透明基材; 形成—金屬層於該透明基材上; Ο Ο 形成-硬罩幕層於該金屬層上;以及 形成一光阻於該硬罩幕層上, 金屬層中巧含量係30峨㈣:原子百分比)至 22.2凊專利範圍第21項所述之空白罩幕的製作方法,其更 匕。又於該透明基材與該金屬層之間的相位移層。 23.=申請專利範㈣22項所述之空白罩幕的製作方法,其更 匕括αχ於該透明基材與該相位移層之間、或者設於該相位 移層與該金屬層之__停止層。 从如申請專利難第2^3射任—項所述之空白罩幕的製 作方法’其中該相位移層、該姓刻停止層與該硬罩幕層係利 用長距離抛鍍製程(1〇ng throw sputtering process )所製作。 25·,申請專利範圍第24項所述之空白罩幕的製作方法,其中 该透明基材錄材之間的轉係大於 200 mm。 26. 如申5月專利圍第21至23項中任-項所述之空白罩幕的製 作方法’其更包括形成一設於該硬罩幕層與該光阻之間的低 阻值層。 27. 種利用申叫專利範圍第1至3項中任一項所述之空白罩幕 進行曝光與顯影製程所製造的光罩。 27/27201035674 VII. Patent application scope: 1. A blank mask comprising: a transparent substrate; a metal layer disposed on the transparent substrate; a hard mask layer disposed on the metal layer; and a The photoresist on the hard mask layer, the content of the stone in 2 ί is 3〇at% (atomic percent).空白 〇 Μ Μ Μ Μ Μ Μ Μ Μ Μ 空白 空白 空白 空白 空白 空白 空白 空白 空白 空白 空白 空白 空白 空白 空白 空白 空白 空白 空白 空白 空白 空白 空白 空白The blank mask according to the second aspect of the invention, further comprising a system of stopping the threat layer between the transparent substrate and the phase shifting layer, and the damming layer It is disposed between the transfer layer and the metal layer. The blank mask according to any one of claims 1 to 3, wherein the flatness of the metal layer is in a range smaller than lum when compared to the flatness of the transparent substrate on which the metal layer has not been formed. Variety. The blank cover according to any one of claims 1 to 3, wherein the metal layer comprises a stone eve, and the metal layer further comprises a touch (stolen), a button (five), and a tungsten (W). And a blank mask of any one of the group of the above-mentioned materials, wherein the blank mask is any one of the group of the above-mentioned materials. The metal layer, comprising at least one structural layer selected from the group consisting of a light shielding layer, an inscription stop layer and an anti-reflective layer. 7. The blank according to any one of claims 1 to 3. The mask, wherein the 5 ohm metal layer has an optical density, and at the exposure wavelength, the optical density ranges from 2.5 to 3.5. 8. As described in the pp. Blank mask, wherein 25/27 201035674 The metal layer and the hard mask layer have a side selectivity, the value of which is greater than 5. 9. As stated in the patent item ii to item 1-3 a blank mask in which the content of the Meng dynasty layer is gradually increased from the surface of the metal layer to the transparent substrate 1. A blank mask as claimed in any one of clauses 1 to 3, wherein the metal layer has a nitrogen content of 〇at% (atomic percent) to 8 〇. U. The blank cover according to any one of the above-mentioned items, wherein the metal layer has an absolute value of -stress, the value of which is less than 5, 〇〇〇 MPa. 12 · Patent Application Nos. 1 to 3 A blank mask according to any one of the preceding claims, wherein the metal layer has a ruthenium (Ta) element, wherein the blank mask according to any one of claims 1 to 3, wherein The metal layer has a reflectance of less than 25% at a wavelength of 193 nm. The blank mask according to any one of claims 1 to 3, wherein The hard mask layer is selected from the group consisting of metals, metal oxides, metal carbides, metal nitrides, metal oxycarbides, metal carbonitrides, and metal carbon oxynitrides. A blank mask according to any one of claims 1 to 3, wherein the hard mask layer is dry etched by a chlorine-containing gas The blank mask according to any one of claims 1 to 3, wherein the hard mask layer has a thickness of 3 nm. The blank mask according to any one of claims 1 to 3, wherein the impurity layer containing ammonia (νη3) in the hard mask layer is less than i ppmv. The blank leather curtain of any one of claims 1 to 3, further comprising a low resistance layer disposed between the hard mask layer and the photoresist. 26/27 201035674 Scope 18 The blank mask is described as having a thickness of 3 nm to 5 〇 nm. 20. As claimed in the patent scope 1 & a blank mask as described by the staff member, wherein the low resistance layer is dissolved by the alkalinity agent of the alkali. 21. The method of fabricating a blank mask comprises the steps of: providing a transparent substrate; forming a metal layer on the transparent substrate; forming a hard mask layer on the metal layer; and forming a light Blocking the hard mask layer, the metal layer has a content of 30 峨 (4): atomic percentage to 22.2 凊 patent range, the method of making the blank mask described in item 21, which is even more embarrassing. And a phase shifting layer between the transparent substrate and the metal layer. 23. The method for fabricating the blank mask described in claim 22, wherein the method further comprises: χ between the transparent substrate and the phase shifting layer, or between the phase shifting layer and the metal layer. Stop the layer. The method for manufacturing a blank mask as described in the application of the patent, the phase shifting layer, the surname stop layer and the hard mask layer are processed by a long-distance polishing process (1〇) Ng throw sputtering process ). 25. The method of fabricating the blank mask of claim 24, wherein the transfer between the transparent substrate materials is greater than 200 mm. 26. The method of fabricating a blank mask according to any one of clauses 21 to 23 of the fifth aspect of the invention, further comprising forming a low resistance layer disposed between the hard mask layer and the photoresist . 27. A reticle manufactured by performing exposure and development processes using a blank mask as set forth in any one of claims 1 to 3. 27/27
TW099100354A 2009-01-09 2010-01-08 Blank mask and photomask fabricated using it TWI420236B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20090002083 2009-01-09

Publications (2)

Publication Number Publication Date
TW201035674A true TW201035674A (en) 2010-10-01
TWI420236B TWI420236B (en) 2013-12-21

Family

ID=42642738

Family Applications (2)

Application Number Title Priority Date Filing Date
TW099100354A TWI420236B (en) 2009-01-09 2010-01-08 Blank mask and photomask fabricated using it
TW099108286A TWI460530B (en) 2009-01-09 2010-03-22 A blank mask, a photomask using the same and method of fabricating the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW099108286A TWI460530B (en) 2009-01-09 2010-03-22 A blank mask, a photomask using the same and method of fabricating the same

Country Status (2)

Country Link
KR (1) KR101384111B1 (en)
TW (2) TWI420236B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323578B1 (en) * 2010-08-13 2013-11-01 주식회사 에스앤에스텍 Photomask blank, Binary photomask and Phase shift photomask
KR101407230B1 (en) 2012-05-14 2014-06-13 주식회사 에스앤에스텍 Blankmask, Photomask and method for fabricating the same
KR101991396B1 (en) * 2012-10-22 2019-06-20 삼성전자주식회사 Photomask and method of forming the same
KR101579848B1 (en) * 2014-08-29 2015-12-23 주식회사 에스앤에스텍 Phase Shift Blankmask and Photomask
US10294359B2 (en) 2014-12-30 2019-05-21 Rohm And Haas Electronic Materials Llc Copolymer formulation for directed self assembly, methods of manufacture thereof and articles comprising the same
US10011713B2 (en) 2014-12-30 2018-07-03 Dow Global Technologies Llc Copolymer formulation for directed self assembly, methods of manufacture thereof and articles comprising the same
US11021630B2 (en) 2014-12-30 2021-06-01 Rohm And Haas Electronic Materials Llc Copolymer formulation for directed self assembly, methods of manufacture thereof and articles comprising the same
TWI627219B (en) 2015-02-26 2018-06-21 羅門哈斯電子材料有限公司 Copolymer formulation for directed self-assembly, methods of manufacture thereof and articles comprising the same
TWI669337B (en) 2015-02-26 2019-08-21 美商羅門哈斯電子材料有限公司 Copolymer formulation for directed self-assembly, methods of manufacture thereof and articles comprising the same
TWI588200B (en) * 2015-02-26 2017-06-21 羅門哈斯電子材料有限公司 Copolymer formulation for directed self-assembly, methods of manufacture thereof and articles comprising the same
TWI612379B (en) 2015-02-26 2018-01-21 Rohm And Haas Electronic Materials Llc Copolymer formulation for directed self-assembly, methods of manufacture thereof and articles comprising the same
KR101818610B1 (en) * 2015-11-12 2018-01-16 성균관대학교산학협력단 Metal carbon oxide film comprising carbon, oxygen, and metal and fabrication method thereof
CN114609856A (en) * 2016-08-26 2022-06-10 Hoya株式会社 Mask blank, transfer mask, and method for manufacturing semiconductor device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4163331B2 (en) * 1999-07-14 2008-10-08 アルバック成膜株式会社 Phase shifter film manufacturing method, phase shift mask blank manufacturing method, and phase shift mask manufacturing method
US20020106297A1 (en) 2000-12-01 2002-08-08 Hitachi Metals, Ltd. Co-base target and method of producing the same
TW544549B (en) * 2000-12-26 2003-08-01 Hoya Corp Half-tone type phase shift mask blank, process for prodncing half-tone type phase shift mask, pattern transfer method, laminate and method of forming pattern
US7713663B2 (en) * 2003-03-31 2010-05-11 Hoya Corporation Mask blank, manufacturing method of mask blank, manufacturing method of transfer mask and manufacturing method of semiconductor device
TW200528915A (en) * 2004-01-22 2005-09-01 Schott Ag Phase shift mask blank, process for preparation of phase shift mask blank, phase shift photomask and manufacturing method thereof
US7348106B2 (en) * 2004-05-07 2008-03-25 Taiwan Semiconductor Manufacturing Co., Ltd. Method for repairing a phase shift mask
US7208414B2 (en) * 2004-09-14 2007-04-24 International Business Machines Corporation Method for enhanced uni-directional diffusion of metal and subsequent silicide formation
KR100720334B1 (en) * 2005-05-13 2007-05-21 주식회사 에스앤에스텍 Half-tone type phase shift blank mask and manufacturing method of the same
KR100864375B1 (en) * 2006-01-03 2008-10-21 주식회사 에스앤에스텍 Blank mask and manufacturing method of Photo-mask using the same
TWI342037B (en) * 2006-08-24 2011-05-11 United Microelectronics Corp Stacked structure and patterning method using the same
CN101438386B (en) * 2007-05-11 2012-03-07 Lg伊诺特有限公司 Intermediate tone mask with a plurality of semi-permeation parts and method of manufacturing the same
JP2009086382A (en) * 2007-09-29 2009-04-23 Hoya Corp Gray tone mask blank and method for manufacturing the same, method for manufacturing gray tone mask and gray tone mask, and pattern transfer method
TWI409580B (en) * 2008-06-27 2013-09-21 S&S Tech Co Ltd Blankmask, photomask and method for manufacturing the same
CN201311546Y (en) * 2008-11-17 2009-09-16 中芯国际集成电路制造(上海)有限公司 Photo mask

Also Published As

Publication number Publication date
TW201124794A (en) 2011-07-16
KR20100082718A (en) 2010-07-19
TWI460530B (en) 2014-11-11
TWI420236B (en) 2013-12-21
KR101384111B1 (en) 2014-04-10

Similar Documents

Publication Publication Date Title
TW201035674A (en) Blank mask and photomask fabricated using it
KR101269062B1 (en) Blankmask and method for fabricating photomask using the same
KR101204632B1 (en) Photomask-blank, photomask and fabrication method thereof
KR102198731B1 (en) Phase shift mask blank and phase shift mask
TWI409580B (en) Blankmask, photomask and method for manufacturing the same
JP6666951B2 (en) Phase inversion blank mask and photomask
TWI584057B (en) Phase shift blankmask and photomask
TWI657481B (en) Substrate with multilayer reflective film, reflective reticle substrate for EUV lithography, reflective reticle for EUV lithography, method of manufacturing the same, and method of manufacturing semiconductor device
KR100885636B1 (en) Blank mask and manufacturing method of Photo-mask using the same
TWI683174B (en) Mask blank, phase shift mask, method of manufacturing a phase shift mask and method of manufacturing a semiconductor device
TW201730663A (en) Substrate for mask blank, substrate with attached multilayer reflection film, reflective mask blank, reflective mask, and method for manufacturing semiconductor device
TWI641900B (en) Photomask blank, making method, and photomask
TW200909999A (en) Photomask blank, photomask manufacturing method and semiconductor device manufacturing method
JP2017027006A (en) Blank mask and photo mask using the blank mask
KR20210038360A (en) Substrate with multilayer reflective film, reflective mask blank, reflective mask and method of manufacturing the same, and method of manufacturing semiconductor device
KR20170043858A (en) Blankmask and Photomask using the same
KR101624995B1 (en) Phase shift blankmask and Photomask using the Flat Panel Display
KR101934860B1 (en) Phase Shift Blankmask and Photomask
KR101323578B1 (en) Photomask blank, Binary photomask and Phase shift photomask
TW202028876A (en) Mask blank, transfer mask, and method of manufacturing semiconductor device
TW202028875A (en) Mask blank, transfer mask, and method of manufacturing semiconductor device
KR102653352B1 (en) Multilayer reflective film-attached substrate, reflective mask blank and reflective mask, and manufacturing method of semiconductor device
CN113515006A (en) Reflective mask blank, method for manufacturing the same, and reflective mask
KR20110105520A (en) A blank mask, a photomask using the same and method of fabricating the same
KR20110016727A (en) Blank mask and photo mask fabricated using it