KR101818610B1 - Metal carbon oxide film comprising carbon, oxygen, and metal and fabrication method thereof - Google Patents

Metal carbon oxide film comprising carbon, oxygen, and metal and fabrication method thereof Download PDF

Info

Publication number
KR101818610B1
KR101818610B1 KR1020150159154A KR20150159154A KR101818610B1 KR 101818610 B1 KR101818610 B1 KR 101818610B1 KR 1020150159154 A KR1020150159154 A KR 1020150159154A KR 20150159154 A KR20150159154 A KR 20150159154A KR 101818610 B1 KR101818610 B1 KR 101818610B1
Authority
KR
South Korea
Prior art keywords
thin film
metal
carbon
precursor
oxygen
Prior art date
Application number
KR1020150159154A
Other languages
Korean (ko)
Other versions
KR20170056093A (en
Inventor
정동근
반원진
권성률
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020150159154A priority Critical patent/KR101818610B1/en
Priority to PCT/KR2016/013037 priority patent/WO2017082695A2/en
Publication of KR20170056093A publication Critical patent/KR20170056093A/en
Application granted granted Critical
Publication of KR101818610B1 publication Critical patent/KR101818610B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • H01L21/205
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • H01L21/31122Etching inorganic layers by chemical means by dry-etching of layers not containing Si, e.g. PZT, Al2O3

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 탄소; 산소; 및 알루미늄, 티타늄, 하프늄, 탄탈륨, 지르코늄 및 텅스텐으로 구성된 군으로부터 선택되는 금속;을 포함하는 박막으로서, 총 중량을 기준으로 5 내지 85중량%의 탄소, 5 내지 60중량%의 산소; 및 5 내지 40중량%의 금속을 포함하는 금속탄화산화물 박막에 관한 것이다.
본 발명의 금속탄화산화물 박막은 반응 전구체의 단일 주입공정을 통해 증착되어 형성되므로 박막 두께를 축소화할 수 있어 공정의 단순화 및 제조 원가의 절감이 가능해지며 이를 통해 생산성 향상에 기여할 수 있다. 또한, 본 발명의 금속탄화산화물 박막을 제조하는 방법은 증착 조건을 변화시켜 박막 중의 각 성분의 함량비를 조절할 수 있고 이에 따라 제조되는 박막의 강도, 내식각성, 전도도 등의 물성을 조절할 수 있으므로, 사용하고자 하는 용도에 맞는 성질을 갖는 박막을 제조하기에 유리하다.
The present invention relates to a carbon- Oxygen; And a metal selected from the group consisting of aluminum, titanium, hafnium, tantalum, zirconium, and tungsten, wherein the thin film comprises 5 to 85 wt% carbon, 5 to 60 wt% oxygen, And 5 to 40% by weight of a metal.
Since the metal carbide oxide thin film of the present invention is formed by being deposited through a single implantation process of the reaction precursor, the thickness of the thin film can be reduced, simplifying the process and reducing the manufacturing cost, thereby contributing to productivity improvement. In addition, the method for producing the metal carbide oxide thin film of the present invention can control the content ratio of each component in the thin film by changing the deposition conditions and can control physical properties such as strength, corrosion resistance, and conductivity of the thin film, It is advantageous to produce a thin film having properties suitable for the intended use.

Description

탄소, 산소, 및 금속을 포함하는 금속탄화산화물 박막 및 그의 제조방법{Metal carbon oxide film comprising carbon, oxygen, and metal and fabrication method thereof}TECHNICAL FIELD [0001] The present invention relates to a thin film of metal carbide oxides including carbon, oxygen, and metals, and a method of manufacturing the same.

본 발명은 탄소; 산소; 및 알루미늄, 티타늄, 하프늄, 탄탈륨, 지르코늄 및 텅스텐으로 구성된 군으로부터 선택되는 금속;을 포함하는 박막으로서, 총 중량을 기준으로 5 내지 85중량%의 탄소, 5 내지 60중량%의 산소; 및 5 내지 40중량%의 금속을 포함하는 금속탄화산화물 박막에 관한 것이다.The present invention relates to a carbon- Oxygen; And a metal selected from the group consisting of aluminum, titanium, hafnium, tantalum, zirconium, and tungsten, wherein the thin film comprises 5 to 85 wt% carbon, 5 to 60 wt% oxygen, And 5 to 40% by weight of a metal.

금속산화물 박막 및 탄화수소 박막은 반도체 공정에서 절연막(insulator layer)으로 널리 사용되며, 하드마스크(Hardmask)로도 유용하게 이용되는 박막으로서, 원자층 증착 방식(ALD), 스퍼터링 방식(sputtering) 또는 플라즈마 원자층 증착 방식(PEALD)에 의해 증착되어 형성되는 것으로 알려져 있다(대한민국 공개특허공보 제2007-0049927호). 대표적인 금속산화물 박막인 Al2O3 박막은, 트리메틸알루미늄(TMA)과 물을 이용하여 원자층 증착 방식으로 증착시켜 형성하거나, 플라즈마 원자층 증착 방식을 이용하여 트리메틸알루미늄과 산소 플라즈마로부터 형성시킨다. 또한, TiO2 박막의 경우에는 스퍼터링 방식으로 티타늄 타겟(Ti target) 및 산소 반응기체를 이용하여 박막을 증착시킨다.The metal oxide thin film and the hydrocarbon thin film are widely used as an insulator layer in a semiconductor process and are also useful as a hard mask. The thin film may be an atomic layer deposition (ALD), a sputtering or a plasma atomic layer (PEALD) (Korean Patent Publication No. 2007-0049927). The Al 2 O 3 thin film, which is a typical metal oxide thin film, is formed by deposition using atomic layer deposition using trimethyl aluminum (TMA) and water, or formed from trimethyl aluminum and oxygen plasma using a plasma atomic layer deposition method. Further, TiO 2 In the case of a thin film, a thin film is deposited by sputtering using a Ti target and an oxygen reactive gas.

반도체 소자의 특성 개발 연구가 진행됨에 따라, 패턴의 미세화가 필수 불가결하며 이를 위해 하드마스크는 필수적인 박막으로 인식되고 있다. 반도체 공정용 하드마스크는 하부의 24단 또는 32단 이상으로 적층된 박막을 제거하는 동안 상부에서 마스크 역할을 수행할 수 있을 정도의 물리적, 화학적 특성이 요구된다(대한민국 공개특허공보 제2006-0030205호). 예컨대, 24단 이상의 적층 구조의 식각이 가능하면서 마스크 필름의 리프팅(lifting) 및 휘어짐(warpage)이 발생하지 않으며 임계치수(critical dimension; CD) 균일성을 향상시킬 수 있는 특성이 필요하다. 또한, 패터닝 공정의 단순화 및 하드마스크 두께의 축소화를 위해, 에칭 가스(예를 들어, 불소 가스 계열(CF4, F2, NF3 등))에 대해 우수한 화학적, 물리적 특성을 지닌 마스크 필름을 구현하기 위한 연구가 필요한 실정이다.As the development of semiconductor device characteristics has progressed, miniaturization of the pattern is indispensable, and a hard mask is recognized as an essential thin film for this purpose. The hard mask for semiconductor processing is required to have such physical and chemical properties as to be able to serve as a mask at the top during the removal of the deposited thin film in the lower 24 or 32 stages (Korean Patent Laid-Open Publication No. 2006-0030205 ). For example, it is necessary to have a characteristic capable of improving the critical dimension (CD) uniformity without causing lifting and warpage of the mask film while enabling etching of a multilayer structure of 24 stages or more. Further, in order to simplify the patterning process and to reduce the thickness of the hard mask, a mask film having excellent chemical and physical properties for the etching gas (for example, fluorine gas series (CF 4 , F 2 , NF 3, etc.) Research is needed to do this.

최근, 반도체 공정에서는 탄화수소로부터 형성되는 비정질 탄소막(Amorphous carbon layer; ACL)이 하드마스크 박막으로 사용되고 있다. 상기 ACL은 CxHy 성분으로 이루어져 있어 마스크 공정 이후 산소 에싱(ashing) 처리로 용이하게 제거되나, 32단 이상의 적층 박막을 제거하기 위한 마스크로의 적용이 어려운 단점이 있다.Recently, amorphous carbon layer (ACL) formed from hydrocarbons has been used as a hard mask thin film in a semiconductor process. Since the ACL is composed of C x H y components, it is easily removed by oxygen ashing treatment after the masking process, but it is difficult to apply the mask as a mask for removing the laminated thin film of 32 stages or more.

본 발명자들은 절연 박막 특성을 나타내면서 물리적, 화학적 성능이 우수한 하드마스크용 박막을 개발하기 위해 예의 연구 노력한 결과, 탄화수소 성분에 금속이 추가로 포함되도록 박막을 제조함으로써, 박막의 물리적, 화학적 에칭 특성이 향상되고 후속 공정에서의 제거가 용이한 단일층의 박막 형성이 가능함을 발견하고 본 발명을 완성하였다.The inventors of the present invention have made extensive efforts to develop a thin film for a hard mask having excellent physical and chemical performance while exhibiting insulating thin film characteristics. As a result, it has been found that by improving the physical and chemical etching properties of a thin film by manufacturing a thin film containing a metal in addition to a hydrocarbon component And it is possible to form a single layer of a thin film which is easy to be removed in the subsequent process, thus completing the present invention.

본 발명의 제1양태는 탄소; 산소; 및 알루미늄, 티타늄, 하프늄, 탄탈륨, 지르코늄 및 텅스텐으로 구성된 군으로부터 선택되는 금속;을 포함하는 금속탄화산화물 박막으로서, 총 중량을 기준으로 5 내지 85중량%의 탄소, 5 내지 60중량%의 산소; 및 5 내지 40중량%의 금속을 포함하는 박막을 제공한다.A first aspect of the present invention relates to a process for the preparation of a compound of formula Oxygen; And a metal selected from the group consisting of aluminum, titanium, hafnium, tantalum, zirconium and tungsten, wherein the metal carbide oxide thin film comprises 5 to 85 wt% carbon, 5 to 60 wt% oxygen, And 5 to 40% by weight of a metal.

본 발명의 제2양태는 전구체를 이용하여 플라즈마 화학 기상 증착방식으로 기재 상에 박막을 형성하는 단계를 포함하는, 금속탄화산화물 박막의 제조방법에 있어서, 상기 전구체는 탄소, 산소 및 금속을 모두 포함하는 단일물질, 또는 1종 이상의 유기물 전구체 및 1종 이상의 무기물 전구체의 혼합물인 것인 제조방법을 제공한다.In a second aspect of the present invention, there is provided a method for producing a thin film of metal carbide oxide, comprising the step of forming a thin film on a substrate by a plasma chemical vapor deposition method using a precursor, wherein the precursor contains both carbon, oxygen and metal Or a mixture of at least one organic precursor and at least one inorganic precursor.

이하, 본 발명을 자세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 플라즈마 화학 기상 증착 방법을 이용하여 탄소, 산소 및 금속을 모두 포함하는 단일전구체, 또는 유기물 전구체 및 무기물 전구체 혼합물을 증착시켜 박막을 제조함으로써 박막 내에 탄화수소 성분과 함께 금속이 추가로 포함된 단일층의 박막을 형성할 수 있음을 최초로 발견하였다. 또한, 금속탄화산화물 박막에 탄소, 산소 및 금속이 모두 포함되도록 제조함으로써 절연 박막 특성을 나타내면서 물리적, 화학적 에칭 특성이 강화된 박막을 형성할 수 있음을 확인하였다. 본 발명은 이에 기초한다.The present invention relates to a method for producing a thin film by depositing a single precursor containing all of carbon, oxygen and metal, or an organic precursor and an inorganic precursor by using a plasma chemical vapor deposition method, Lt; RTI ID = 0.0 > layer. ≪ / RTI > Also, it has been confirmed that a thin film enhanced in physical and chemical etching characteristics can be formed while exhibiting insulating thin film characteristics by manufacturing the metal carbon oxide thin film to include both carbon, oxygen and metal. The present invention is based on this.

예컨대, 금속산화물 박막이나 탄화수소 박막은 반도체 소자 등의 제조에 있어서 미세한 구조를 형성하기 위하여 수행되는 에칭(etching)공정을 위한 하드마스크로 사용될 수 있으며, 상기 하드마스크는 그 목적상 에칭(etching)공정이 끝난 후 에싱(ashing)공정을 통해 완전히 제거되는 것이 바람직하다. 그러나, 금속산화물을 단독으로 사용하여 형성한 박막을 하드마스크로 사용한 경우, 에싱(ashing)공정을 수행한 후에도 완전히 제거되기 어려운 단점이 있다. 한편, 탄화수소를 단독으로 사용하여 형성한 박막을 하드마스크로 사용한 경우에는 물성이 약해 하부 박막을 깊게 에칭하기 어려운 단점이 있다. 따라서, 상기 각각의 박막의 단점을 보완하기 위하여 2개 층을 적층하여 사용하고자 하였으나, 전술한 단점이 복합적으로 발생할 뿐 이를 해결하기에는 역부족이다.For example, a metal oxide thin film or a hydrocarbon thin film can be used as a hard mask for an etching process performed to form a fine structure in the manufacture of semiconductor devices and the like, It is preferable to be completely removed through an ashing process. However, when a thin film formed using a metal oxide alone is used as a hard mask, it is difficult to completely remove the thin film even after the ashing process is performed. On the other hand, when a thin film formed by using hydrocarbons alone is used as a hard mask, its physical properties are weak and it is difficult to etch the underlying thin film deeply. Therefore, in order to compensate for the disadvantages of the respective thin films, it has been attempted to use two layers to be stacked. However, the above-described drawbacks occur only in a complex manner.

본 발명은 탄소; 산소; 및 알루미늄, 티타늄, 하프늄, 탄탈륨, 지르코늄 및 텅스텐으로 구성된 군으로부터 선택되는 금속;을 포함하는 금속탄화산화물 박막으로서, 총 중량을 기준으로 5 내지 85중량%의 탄소, 5 내지 60중량%의 산소; 및 5 내지 40중량%의 금속을 포함하는 것을 특징으로 한다.The present invention relates to a carbon- Oxygen; And a metal selected from the group consisting of aluminum, titanium, hafnium, tantalum, zirconium and tungsten, wherein the metal carbide oxide thin film comprises 5 to 85 wt% carbon, 5 to 60 wt% oxygen, And 5 to 40% by weight of the metal.

본 발명에 따른 '금속탄화산화물 박막'은 탄소, 산소 및 금속을 일정 비율로 모두 포함하는 박막으로서, 예컨대, 탄화수소에 금속산화물이 균일하게 분포되어 있으며, 증착 공정의 조건 변화에 따라 탄소:산소:금속의 조성비율이 제어되어 다양한 물리적, 화학적 특성을 나타낼 수 있다. 상기 본 발명에 따른 금속탄화산화물의 개략적인 구조를 도 1에 나타내었다. 구체적으로, 탄화수소 필름에 금속산화물이 고르게 분포하여 매립된 형태로, 전체 박막에서 각 원소 예컨대, 탄소, 금속 및 산소의 존재비는 이를 형성하는 반응 조건에 따라 전술한 범위 이내에서 상대적으로 변화할 수 있다. 예컨대, 박막 증착에 사용한 플라즈마 파워가 증가함에 따라 금속 및 산소의 비율은 증가하는 동시에 탄소의 비율은 감소할 수 있다. 한편, 증착 압력의 변화에 대해서도 플라즈마 파워에 대해서와 유사한 패턴으로 각 성분의 존재비가 변화할 수 있다. 따라서, 이들 반응 조건을 적절히 조합하여 원하는 성분비를 갖는 박막을 제조할 수 있다.The 'metal carbonized oxide thin film' according to the present invention is a thin film containing all of carbon, oxygen and metal in a predetermined ratio, for example, metal oxide is uniformly distributed in hydrocarbon, and carbon: oxygen: The composition ratio of the metal can be controlled to exhibit various physical and chemical characteristics. The schematic structure of the metal carbide oxide according to the present invention is shown in Fig. Specifically, in the form in which the metal oxide is uniformly distributed in the hydrocarbon film, the ratio of the presence of the respective elements such as carbon, metal and oxygen in the entire thin film can be relatively changed within the above-mentioned range according to the reaction conditions for forming the metal oxide . For example, as the plasma power used in thin film deposition increases, the ratio of metal and oxygen increases, while the ratio of carbon decreases. On the other hand, the abundance ratio of each component may vary in a similar pattern to the plasma power, even with respect to the change in the deposition pressure. Therefore, a thin film having a desired component ratio can be produced by suitably combining these reaction conditions.

이에 본 발명의 제조방법은 특정 금속:탄소:산소의 조성비율로 제어하기 위해 플라즈마 화학 기상 증착방식의 증착 압력, 플라즈마 파워, 증착 온도를 선택하는 단계를 더 포함할 수 있다.Therefore, the manufacturing method of the present invention may further include a step of selecting the deposition pressure, the plasma power, and the deposition temperature of the plasma chemical vapor deposition (CVD) method for controlling the specific metal: carbon: oxygen composition ratio.

상기 박막은 플라즈마 화학 기상 증착(Plasma enhanced chemical vapor deposition; PECVD) 방식에 의해 형성될 수 있으며, 상기 플라즈마 화학 기상 증착 방식의 증착 압력, 플라즈마 파워, 증착 온도에 따라 금속탄화산화물 박막의 금속:탄소:산소의 조성비율이 제어될 수 있다.The thin film may be formed by plasma enhanced chemical vapor deposition (PECVD), and the metal of the metal carbonized oxide thin film may be formed of a metal: carbon: The composition ratio of oxygen can be controlled.

플라즈마 화학 기상 증착 방법은, 진공을 이루는 챔버 내부에 증착시 필요한 반응가스를 주입하여 원하는 증착 압력과 기판 온도가 설정되면 전원장치를 통해 전극에 초고주파를 인가함으로써 반응가스를 플라즈마 상태로 만들고, 전구체를 이온화시켜 이온화된 전구체와 플라즈마 상태의 반응가스 중 일부가 물리적 또는 화학적 반응을 하여 기판에 증착되게 함으로써 박막을 형성하는 방법이다. In the plasma chemical vapor deposition method, a reaction gas necessary for deposition is injected into a vacuum chamber, and when a desired deposition pressure and a substrate temperature are set, a reactive gas is made into a plasma state by applying a very high frequency to the electrode through a power supply device, Ionized precursor and a part of the reaction gas in a plasma state are physically or chemically reacted to deposit on the substrate, thereby forming a thin film.

상기 플라즈마 화학 기상 증착 방법의 증착 조건 변화, 예컨대 증착 압력, 플라즈마 파워 또는 증착 온도에 따라 생성되는 박막의 화학적 조성이 상이해질 수 있으며, 또한 박막 내의 탄소 비율의 조절이 가능하여 후속 공정에서 용이하게 제거될 수 있다. 본 발명의 일 실시예의 금속탄화산화물 박막은, 증착 압력, 플라즈마 파워 또는 증착 온도가 증가함에 따라 박막 내에 포함된 금속(예컨대, 알루미늄) 및 산소의 비율은 증가하는 반면에 탄소의 비율은 감소하는 양상을 나타내었으며, 상기 증착 조건에 따라 상이한 조성 비율의 박막이 형성되었다(표 3, 도 3 및 도 4).The chemical composition of the thin film can be varied depending on the deposition conditions such as the deposition pressure, the plasma power, or the deposition temperature of the plasma CVD method. Further, the carbon ratio in the thin film can be controlled, . In the metal carbide oxide thin film of the embodiment of the present invention, as the deposition pressure, the plasma power, or the deposition temperature is increased, the proportion of the metal (for example, aluminum) and oxygen contained in the thin film increases while the ratio of carbon decreases And thin films having different composition ratios were formed according to the deposition conditions (Table 3, FIG. 3, and FIG. 4).

따라서, 증착 조건을 조절하여 금속:탄소:산소를 25 내지 40% : 15 내지 40% : 45 내지 50%로 함유하도록 제조된 박막은 하드마스크에 유용하게 사용할 수 있다. 한편, 금속:탄소:산소를 30 내지 40% : 5 내지 20% : 45 내지 50%로 함유하도록 제조된 박막은 유기전자소자용 봉지박막으로 활용할 수 있으나, 구체적인 본 발명의 금속탄화산화물 박막의 적용예는 이에 제한되는 것은 아니다.Therefore, a thin film prepared by adjusting the deposition conditions to contain metal: carbon: oxygen in an amount of 25 to 40%: 15 to 40%: 45 to 50% can be usefully used in a hard mask. On the other hand, a thin film prepared so as to contain metal: carbon: oxygen in an amount of 30 to 40%: 5 to 20%: 45 to 50% can be used as an encapsulating thin film for an organic electronic device, The examples are not limited thereto.

반도체 공정용 하드마스크는 하부의 24단 또는 32단 이상으로 적층된 박막을 제거하는 동안 상부에서 마스크 역할을 수행할 수 있을 정도의 물리적, 화학적 특성이 요구된다. 예컨대, 24단 이상의 적층 구조의 식각이 가능하면서 마스크 필름의 리프팅(lifting) 및 휘어짐(warpage)이 발생하지 않으며 임계치수(critical dimension; CD) 균일성을 향상시킬 수 있는 특성이 필요하다. 또한, 패터닝 공정의 단순화 및 하드마스크 두께의 축소화를 위해, 에칭 가스(예를 들어, 불소 가스 계열(CF4, F2, NF3 등))에 대해 우수한 화학적, 물리적 특성을 지닌 박막이 필수적이다.A hard mask for a semiconductor process requires physical and chemical properties such that it can act as a mask at the top while removing thin films deposited at the lower 24 or 32 stages. For example, it is necessary to have a characteristic capable of improving the critical dimension (CD) uniformity without causing lifting and warpage of the mask film while enabling etching of a multilayer structure of 24 stages or more. Further, in order to simplify the patterning process and to reduce the thickness of the hard mask, a thin film having excellent chemical and physical properties is required for etching gas (for example, fluorine gas series (CF 4 , F 2 , NF 3, etc.) .

본 발명의 금속탄화산화물 박막은 탄소; 산소; 및 알루미늄, 티타늄, 하프늄, 탄탈륨, 지르코늄 및 텅스텐으로 구성된 군으로부터 선택되는 금속을 포함하는 박막으로서, 탄화수소 성분에 금속이 추가로 포함됨으로써 에칭 가스에 대해 우수한 화학적 특성을 나타낼 수 있다. 구체적으로, 본 발명의 일 실시예에 의해 형성된 금속탄화수소 박막 중에 금속(예컨대, 알루미늄):탄소:산소의 조성비율이 1:1:1.5로 포함된 경우, 금속이 포함되지 않은 탄화수소 박막에 비해 1.5배 하드마스크 에칭 특성이 강화됨을 확인하였다.The metal carbide thin film of the present invention may be formed of carbon; Oxygen; And a metal selected from the group consisting of aluminum, titanium, hafnium, tantalum, zirconium, and tungsten, and the hydrocarbon component may further include a metal, thereby exhibiting excellent chemical characteristics with respect to the etching gas. Specifically, when the composition ratio of the metal (for example, aluminum): carbon: oxygen is 1: 1: 1.5 in the metal hydrocarbon thin film formed according to one embodiment of the present invention, It is confirmed that the hard mask etching property is enhanced.

또한, 본 발명은 전구체를 이용하여 플라즈마 화학 기상 증착방식으로 기재 상에 박막을 형성하는 단계를 포함하는 금속탄화산화물 박막의 제조방법에 있어서, 상기 전구체는 탄소, 산소 및 금속을 모두 포함하는 단일물질, 또는 1종 이상의 유기물 전구체 및 1종 이상의 무기물 전구체의 혼합물인 것인 제조방법을 제공한다.The present invention also provides a method for producing a thin film of metal carbide oxide comprising the steps of forming a thin film on a substrate by a plasma chemical vapor deposition method using a precursor, wherein the precursor is a single substance containing all of carbon, oxygen and metal , Or a mixture of one or more organic precursors and one or more inorganic precursors.

본 발명의 금속탄화수소 박막은 플라즈마 화학 기상증착 장비의 PECVD 진공 챔버 내에, 기화시킨 반응 전구체 및 아르곤 수송 가스를 주입시킨 후, 플라즈마 에너지를 인가하여 기판상에 박막으로 증착시켜 형성할 수 있다. 구체적으로, 본 발명의 금속탄화수소 박막의 제조방법은, 반응 전구체로서 금속탄화산화물의 원소를 모두 포함하는 단일전구체를 사용하거나, 또는 유기물 전구체 및 무기물 전구체를 혼합하여 동시에 사용함으로써, 한번의 전구체 주입 및 증착 과정을 통해 박막 형성이 이루어질 수 있으며, 이에 따라 탄소, 산소 및 금속이 모두 포함된 단일층의 박막을 제조할 수 있다. The metal hydrocarbon thin film of the present invention can be formed by injecting a vaporized reaction precursor and an argon transport gas into a PECVD vacuum chamber of a plasma chemical vapor deposition apparatus, and then depositing the thin film on a substrate by applying plasma energy. Specifically, the method for producing a metal hydrocarbon thin film according to the present invention is a method for producing a metal hydrocarbon thin film by using a single precursor including all elements of a metal carbide oxide as a reaction precursor, or using an organic precursor and an inorganic precursor in combination, Thin film formation can be performed through the deposition process, and thus a single layer thin film including carbon, oxygen and metal can be produced.

또한, 상기 금속탄화수소 박막은 탄화수소에 금속산화물이 균일하게 분포된 단일층으로 형성될 수 있으며, 형성된 박막의 두께는 400 내지 5000Å일 수 있다. In addition, the metal hydrocarbon thin film may be formed as a single layer in which a metal oxide is uniformly distributed in a hydrocarbon, and the thickness of the thin film formed may be 400 to 5000 angstroms.

또한, 본 발명의 금속탄화산화물 박막의 제조방법은, 플라즈마 화학 기상 증착 방식의 증착 압력, 플라즈마 파워, 증착 온도에 따라 박막의 금속:탄소:산소 조성비율을 제어할 수 있다. In addition, the metal carbon oxide thin film of the present invention can control the metal: carbon: oxygen composition ratio of the thin film according to the deposition pressure, the plasma power, and the deposition temperature of the plasma chemical vapor deposition system.

상기 증착 압력은 200 내지 800 mTorr의 범위에서, 상기 증착 온도는 25℃ 내지 600℃의 범위에서, 그리고 상기 플라즈마 파워는 50 내지 150W의 범위 내에서 수행될 수 있다. The deposition pressure may be in the range of 200 to 800 mTorr, the deposition temperature may be in the range of 25 [deg.] C to 600 [deg.] C, and the plasma power may be in the range of 50 to 150W.

상기 금속탄화산화물 박막은 반도체 소자 또는 유기전자 소자 중 패턴을 형성하기 위한 층, 또는 절역막 또는 봉지박막이 요구되는 부분 상에 증착시켜 형성할 수 있으나, 이에 제한되지 않는다. The metal carbon oxide thin film may be formed by depositing a layer for forming a pattern in a semiconductor device or an organic electronic device, or a part where a vacuum film or a sealing film is required, but the present invention is not limited thereto.

본 발명의 금속탄화산화물 박막의 제조방법에 사용되는 단일물질은 탄소, 산소, 및 금속을 모두 포함할 수 있으며, 구체적으로, 디메틸알루미늄 이소프로폭사이드(dimethylaluminium isopropoxide; DMAI)일 수 있으나, 이에 제한되는 것은 아니다.The single substance used in the method for producing the metal carbonized oxide thin film of the present invention may include all of carbon, oxygen, and metal, and specifically may be dimethylaluminium isopropoxide (DMAI) It is not.

또한, 상기 유기물 전구체의 비제한적인 예로는 아세틸렌, 프로판, 사이클로헥산, 헥센, 메틸사이클로헥산 또는 이들의 혼합물일 수 있으며, 상기 무기물 전구체는 알루미늄, 티타늄, 하프늄, 탄탈륨, 지르코늄 및 텅스텐으로 구성된 군으로부터 선택되는 금속을 포함하는 전구체일 수 있으나, 이에 제한되는 것은 아니다.In addition, non-limiting examples of the organic precursor may be acetylene, propane, cyclohexane, hexene, methylcyclohexane or mixtures thereof, and the inorganic precursor may be selected from the group consisting of aluminum, titanium, hafnium, tantalum, zirconium and tungsten But is not limited to, a precursor comprising the metal to be selected.

예컨대, 금속을 포함하는 전구체는 금속의 알킬 화합물, 알콕사이드 화합물, 테트라키스(디알킬아미도) 화합물 또는 이들의 혼합물일 수 있다.For example, the precursor comprising the metal may be an alkyl compound, an alkoxide compound, a tetrakis (dialkylamido) compound, or a mixture thereof, of the metal.

구체적으로, 본 발명의 알루미늄을 포함하는 전구체는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 디메틸알루미늄 이소프로폭사이드, 디이소부틸알루미늄 하이드라이드 또는 이들의 혼합물일 수 있으나, 이에 제한되는 것은 아니다.Specifically, the aluminum-containing precursor of the present invention can be, but is not limited to, trimethylaluminum, triethylaluminum, triisobutylaluminum, dimethylaluminum isopropoxide, diisobutylaluminum hydride or mixtures thereof .

또한, 본 발명의 티타늄을 포함하는 전구체는 티타늄 테트라이소프로폭사이드일 수 있으며, 하프늄을 포함하는 전구체는 하프늄 이소프로폭사이드, 테트라키스(디메틸아미도)하프늄 또는 이들의 혼합물일 수 있으나, 각각 이에 제한되는 것은 아니다.In addition, the precursor containing titanium of the present invention may be titanium tetraisopropoxide, and the precursor containing hafnium may be hafnium isopropoxide, tetrakis (dimethylamido) hafnium, or a mixture thereof, But is not limited thereto.

본 발명의 탄탈륨을 포함하는 전구체는 탄탈륨 펜톡사이드, 탄탈륨 테트라이소프로폭사이드, 테트라키스(디메틸아미도)탄탈륨 또는 이들의 혼합물일 수 있으나, 이에 제한되는 것은 아니다.The precursor comprising tantalum of the present invention can be, but is not limited to, tantalum pentoxide, tantalum tetraisopropoxide, tetrakis (dimethylamido) tantalum, or mixtures thereof.

본 발명의 지르코늄을 포함하는 전구체는 지르코늄 이소프로폭사이드, 테트라키스(디메틸아미도)지르코늄, 지르코늄 디옥사이드, 또는 이들의 혼합물일 수 있으나, 이에 제한되는 것은 아니다.The zirconium-containing precursor of the present invention may be, but is not limited to, zirconium isopropoxide, tetrakis (dimethylamido) zirconium, zirconium dioxide, or mixtures thereof.

또한, 본 발명의 텅스텐을 포함하는 전구체는 텅스텐 트리옥사이드, 옥소텅스텐 또는 이들의 혼합물일 수 있으나, 이에 제한되는 것은 아니다.In addition, the precursor containing tungsten of the present invention may be tungsten trioxide, oxotungsten, or a mixture thereof, but is not limited thereto.

또한, 본 발명은 상기 금속탄화산화물 박막으로 형성된 반도체 공정용 하드마스크를 제공한다. 상기 금속탄화산화물 박막은 탄화수소 성분에 금속이 추가로 포함됨으로써 에칭 가스에 대해 우수한 화학적 특성을 나타내므로, 반도체 공정중의 32층 이상 적층 구조의 식각 과정에 있어 하드마스크 박막으로서 사용될 수 있다. 또한, 본 발명의 금속탄화산화물 박막은 절연 박막으로서의 특성을 나타내므로 반도체 공정용 절연막 또는 유기전자 소자의 봉지박막(encapsulation)으로 적용될 수 있으나, 그 적용분야는 이에 제한되지 않는다.The present invention also provides a hard mask for a semiconductor process formed of the above-described metal carbon oxide thin film. The metal carbide oxide thin film can be used as a hard mask thin film in an etching process of 32 layers or more in a semiconductor process because the metal carbide oxide thin film exhibits excellent chemical characteristics with respect to an etching gas by additionally containing a metal in a hydrocarbon component. In addition, since the metal carbon oxide thin film of the present invention exhibits characteristics as an insulating thin film, it can be applied as an encapsulation of an insulating film for a semiconductor process or an organic electronic device, but its application is not limited thereto.

본 발명의 금속탄화산화물 박막은 반응 전구체의 단일 주입공정을 통해 증착되어 형성되므로 박막 두께를 축소화할 수 있어 공정의 단순화 및 제조 원가의 절감이 가능해지며 이를 통해 생산성 향상에 기여할 수 있다. 또한, 본 발명의 금속탄화산화물 박막을 제조하는 방법은 증착 조건을 변화시켜 박막 중의 각 성분의 함량비를 조절할 수 있고 이에 따라 제조되는 박막의 강도, 내식각성, 전도도 등의 물성을 조절할 수 있으므로, 사용하고자 하는 용도에 맞는 성질을 갖는 박막을 제조하기에 유리하다.Since the metal carbide oxide thin film of the present invention is formed by being deposited through a single implantation process of the reaction precursor, the thickness of the thin film can be reduced, simplifying the process and reducing the manufacturing cost, thereby contributing to productivity improvement. In addition, the method for producing the metal carbide oxide thin film of the present invention can control the content ratio of each component in the thin film by changing the deposition conditions and can control physical properties such as strength, corrosion resistance, and conductivity of the thin film, It is advantageous to produce a thin film having properties suitable for the intended use.

도 1은 하드마스크로 사용 가능한 종래 단일성분의 박막 및 본 발명의 금속탄화산화물 박막의 구조를 개략적으로 나타낸 도이다.
도 2는 본 발명의 금속탄화산화물 박막 형성방법에 사용되는 단일전구체인 디메틸알루미늄 이소프로폭사이드(Dimethylaluminum isopropoxide; DMAI)의 특성을 나타낸 도이다.
도 3은 본 발명의 금속탄화산화물 박막의 X-선 광전자 분광기(XPS) 분석 결과로서, 플라즈마 파워에 따른 금속탄화산화물 박막의 화학적 조성 변화를 나타낸 도이다.
도 4는 본 발명의 금속탄화산화물 박막의 X-선 광전자 분광기(XPS) 분석 결과로서, 기판 온도에 따른 금속탄화산화물 박막의 화학적 조성 변화를 나타낸 도이다.
도 5는 본 발명의 금속탄화산화물 박막의 전류 밀도 특성을 나타낸 도이다. 도면 상에 표시된 시료 번호는 실시예 1의 표 1에 개시된 시료 번호와 일치한다.
FIG. 1 schematically shows a structure of a conventional single component thin film usable as a hard mask and a metal carbonized oxide thin film of the present invention. FIG.
FIG. 2 is a graph showing the characteristics of dimethylaluminum isopropoxide (DMAI), which is a single precursor used in the method of forming a metal carbide thin film of the present invention.
FIG. 3 is a graph showing an X-ray photoelectron spectroscopy (XPS) analysis of the metal carbide oxide thin film of the present invention, showing a change in the chemical composition of the metal carbide oxide thin film according to the plasma power.
FIG. 4 is a graph showing changes in the chemical composition of the metal carbide oxide thin film according to the substrate temperature as a result of X-ray photoelectron spectroscopy (XPS) analysis of the metal carbonized oxide thin film of the present invention.
5 is a graph showing current density characteristics of the metal carbide thin film of the present invention. The sample number shown on the drawing corresponds to the sample number disclosed in Table 1 of Example 1. [

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. These embodiments are only for describing the present invention more specifically, and the scope of the present invention is not limited by these examples.

실시예Example 1: 단일전구체를 사용한  1: using a single precursor 플라즈마plasma 화학  chemistry 기상증착법에In the vapor deposition method 의한 금속탄화산화물 박막의 형성 Of metal carbide oxide thin films by

플라즈마 화학 기상증착 장비의 PECVD(Plasma enhanced chemical vapor deposition) 진공챔버에 실리콘 웨이퍼(Si-wafer)를 기판홀더에 놓고 금속 원소와 산소 원소를 포함하는 단일 전구체인 디메틸알루미늄 이소프로폭사이드(dimethylaluminum isopropoxide; DMAI)가 담긴 버블러를 85도로 열을 가하여, 전구체를 기화시켜 아르곤 수송 가스와 함께 챔버로 주입시킨 후, 플라즈마를 이용하여 금속탄화산화물 박막을 형성하였다. 증착 온도는 상온(25℃) 내지 600℃, 증착 파워는 50 내지 150W, 및 증착 압력은 200 내지 500 mTorr에서 수행하였다. 상기 전구체로 사용한 DAMI의 특성은 도 2에 나타내었다.Plasma enhanced chemical vapor deposition (PECVD) of a plasma chemical vapor deposition apparatus A silicon wafer (Si-wafer) is placed in a vacuum chamber, and dimethylaluminum isopropoxide (PECVD), which is a single precursor containing a metal element and an oxygen element, DMAI) was heated to 85 ° C. to vaporize the precursor. Then, the precursor was injected into the chamber together with the argon transport gas, and then the metal carbide oxide thin film was formed by using plasma. The deposition temperature was from room temperature (25 캜) to 600 캜, the deposition power was from 50 to 150 W, and the deposition pressure was from 200 to 500 mTorr. The characteristics of the DAMI used as the precursor are shown in FIG.

나아가 상기 금속탄화산화물 박막 형성을 위한 플라즈마 화학 기상증착법을 하기 표 1에 나타난 바와 같이, 기판 온도, 플라즈마 파워 등의 조건을 변화시키면서 수행하여 다양한 두께 및/또는 물성을 갖는 박막을 제조하였다(시료 1 내지 9).Furthermore, the plasma chemical vapor deposition method for forming the metal carbonized oxide thin film was carried out by changing the substrate temperature, the plasma power, etc. as shown in the following Table 1 to produce thin films having various thicknesses and / or physical properties (Sample 1 9).


시료

sample
DMAI
DMAI
증착 압력Deposition pressure 증착 시간Deposition time 기판 온도Substrate temperature 플라즈마 파워Plasma power 박막 두께
(THK)
Thin film thickness
(THK)
증착 속도Deposition rate 굴절률
(R.I)
Refractive index
(RI)
(mTorr)(mTorr) (s)(s) (℃)(° C) (W)(W) (Å)(A) (Å/s)(Å / s) (n)(n) 1One ArAr
15sccm15 sccm
440-300440-300 600600 3030 5050 1123.41123.4 1.8721.872 1.59331.5933
22 7575 869.1869.1 1.4491.449 1.60781.6078 33 100100 820.33820.33 1.3671.367 1.62881.6288 44 125125 785.75785.75 1.311.31 1.65611.6561 55 300300 5050 634.79634.79 1.0581.058 1.62371.6237 66 100100 463.72463.72 0.7730.773 1.64771.6477 77 150150 478.39478.39 0.7970.797 1.65971.6597 88 400400 100100 533.57533.57 0.8890.889 1.661.66 99 500500 100100 640.47640.47 1.0671.067 1.67571.6757

실시예Example 2: 유기물 전구체 및 무기물 전구체를 사용한  2: Using organic precursor and inorganic precursor 플라즈마plasma 화학  chemistry 기상증착법에In the vapor deposition method 의한 금속탄화산화물 박막의 형성 Of metal carbide oxide thin films by

단일 전구체로서 디메틸알루미늄 이소프로폭사이드(dimethylaluminum isopropoxide; DMAI) 이외에 유기물 전구체인 사이클로헥산과 무기물 전구체인 트리메틸알루미늄(TMA)를 사용하는 것을 제외하고는 실시예 1과 동일한 방법으로 금속탄화산화물 박막을 제조하였다. 이때 사용한 실험조건은 하기 표 2에 나타낸 바와 같다.Except that the organic precursor, cyclohexane, and the inorganic precursor, trimethyl aluminum (TMA) were used in addition to dimethylaluminum isopropoxide (DMAI) as a single precursor, and the metal carbide oxide thin film was prepared in the same manner as in Example 1 Respectively. The experimental conditions used were as shown in Table 2 below.

사이클로헥산Cyclohexane TMATMA 플라즈마
파워
plasma
Power
기판 온도Substrate temperature 압력
(사이클로헥산)
pressure
(Cyclohexane)
압력
(TMA)
pressure
(TMA)
압력
(전체)
pressure
(all)
탄소carbon 산소Oxygen 알루미늄aluminum
sccmsccm sccmsccm (W)(W) (℃)(° C) (mTorr)(mTorr) (mTorr)(mTorr) (mTorr)(mTorr) (%)(%) (%)(%) (%)(%) Ar 20Ar 20 Ar 10Ar 10 100100 300300 300300 100100 400400 70.8970.89 12.0912.09 17.0217.02 300300 200200 500500 83.2983.29 7.037.03 9.689.68 300300 300300 600600 54.0754.07 23.0323.03 22.8922.89

실험예Experimental Example 1: 금속탄화산화물 박막의 특성 분석 1: Characterization of metal carbide thin films

1-1. 금속탄화산화물 박막의 광학적, 화학적 특성 분석1-1. Optical and chemical characterization of metal carbide thin films

상기 실시예 1 및 2의 금속탄화산화물 박막의 제조 공정에서의 증착 조건 변화에 따른 박막의 특성 변화를 측정하였다. 구체적으로, 기판 온도, 증착 압력 및 플라즈마 파워를 달리함으로써, 증착 조건을 변화시켜 일련의 시료를 제조하고 광학적 특성 및 화학적 특성을 확인하였다. 구체적인 증착 조건은 상기 표 1 및 2에 나타난 바와 같다. 증착 조건 변화에 의한 금속탄화산화물 박막의 광학적 특성은 엘립소미터(Ellipsometer, M-2000 Ellipsometer, J.A. Woollam Co.)를 이용하여 분석하였으며(표 1), X-선 광전자 분광기(XPS, ESCALAB 250, Thermo Scientific)를 이용하여 박막의 화학적 조성을 분석하였다(표 2 및 표 3, 도 3 및 도 4). The characteristics of the thin film were measured according to the variation of the deposition conditions in the manufacturing process of the metal carbonized oxide thin films of Examples 1 and 2. Specifically, by varying the substrate temperature, the deposition pressure and the plasma power, a series of samples were prepared by varying the deposition conditions, and optical and chemical properties were confirmed. The specific deposition conditions are as shown in Tables 1 and 2 above. The optical characteristics of the thin film of metal carbide oxide by the deposition conditions were analyzed using an ellipsometer (M-2000 Ellipsometer, JA Woollam Co.) (Table 1), X-ray photoelectron spectroscopy (XPS, ESCALAB 250, Thermo Scientific) to analyze the chemical composition of the film (Tables 2 and 3, Figures 3 and 4).

상기 표 1 및 하기 표 3은 단일 전구체인 DMAI를 이용하여 제조한 박막의 광학적 특성 및 화학적 조성을 나타내며, 유기물 전구체인 사이클로헥산과 무기물 전구체인 트리메틸알루미늄(TMA)의 혼합물을 이용하여 제조한 금속탄화산화물 박막의 XPS 분석 결과는 상기 표 2에 함께 나타내었다.Table 1 and Table 3 below show the optical characteristics and chemical composition of a thin film prepared using DMAI as a single precursor. The optical characteristics and the chemical composition of the thin film prepared using a single precursor, DMAI, were measured using a metal carbon oxide XPS analysis results of the thin films are shown together in Table 2 above.

시료sample 알루미늄(%)aluminum(%) 탄소(%)carbon(%) 산소(%)Oxygen(%) 1One 9.629.62 62.0462.04 28.3428.34 1-etch*1-etch * 17.1117.11 48.3548.35 34.5434.54 22 8.888.88 63.5263.52 27.627.6 2-etch2-EtCH 16.2516.25 50.0750.07 33.6833.68 33 9.819.81 61.2261.22 28.9628.96 3-etch3-etch 17.3917.39 47.0647.06 35.5535.55 44 10.910.9 58.2258.22 30.8830.88 4-etch4-etch 18.1418.14 44.9544.95 36.9136.91 55 22.4322.43 3535 42.5742.57 5-etch5-etch 32.3732.37 13.8113.81 53.8253.82 66 27.2427.24 27.4227.42 45.3445.34 6-etch6-etch 35.9435.94 8.318.31 55.7555.75 77 27.2127.21 26.9826.98 45.845.8 7-etch7-etch 34.7134.71 11.5311.53 53.7653.76 88 29.2529.25 23.1323.13 47.6347.63 8-etch8-etch 35.8135.81 9.569.56 54.6354.63 99 29.1929.19 23.3223.32 47.4947.49 9-etch9-etch 36.236.2 8.58.5 55.355.3 * etch로 표시된 시료는 표면을 아르곤 sputtering을 2분간 진행한 후 측정한 결과임.* Etch samples were measured after 2 minutes of argon sputtering on the surface.

증착 조건 변화에 따른 박막의 XPS 분석 결과, 플라즈마 파워가 증가할수록 박막의 금속(Al) 및 산소(O)의 비율은 증가하고, 탄소(C)의 비율은 감소하는 양상을 나타내었다. 또한, 기판 온도가 증가함에 따라 금속(Al) 및 산소(O)의 비율은 증가하는 반면, 탄소(C)의 비율은 감소하는 경향을 나타내었다(표 3, 도 3 및 도 4). As a result of XPS analysis, the ratio of metal (Al) and oxygen (O) was increased and carbon (C) ratio was decreased with increasing plasma power. Also, the ratio of metal (Al) and oxygen (O) increased with increasing substrate temperature, while the ratio of carbon (C) tended to decrease (Table 3, FIG. 3 and FIG. 4).

또한, 유기물 전구체 및 무기물 전구체를 이용한 경우에도, 증착 압력의 증가에 따라 금속(Al) 및 산소(O)의 비율은 증가하나 탄소(C)의 비율은 감소하는 결과를 나타내었다(표 2).In addition, even when the organic precursor and the inorganic precursor were used, the ratio of metal (Al) and oxygen (O) increased with increasing deposition pressure, but the ratio of carbon (C) decreased.

상기 결과로부터 본 발명의 금속탄화산화물 박막 형성 방법의 증착 조건에 따라 금속:탄소:산소 비율이 상이한 박막의 형성이 가능함을 확인하였다. 이는 상기와 같은 변화 패턴을 고려하여 증착 압력, 온도 및 플라즈마 파워를 적절히 조합하여 선택함으로써 원하는 조성의 박막을 형성할 수 있음을 시사하는 것이다.From the above results, it was confirmed that it is possible to form a thin film having different metal: carbon: oxygen ratios according to the deposition conditions of the metal carbon oxide thin film forming method of the present invention. This suggests that a thin film having a desired composition can be formed by properly selecting the combination of the deposition pressure, the temperature and the plasma power in consideration of the above-described change pattern.

1-2. 금속탄화산화물 박막의 에칭 특성 분석1-2. Analysis of etching characteristics of metal carbide thin films

대조군으로서 금속이 포함되지 않은 탄화수소 박막과 상기 실시예 1의 표 1에 나타난 시료 6번의 조건으로 약 5000Å 두께로 증착시킨 본 발명의 금속탄화산화물 박막의 에칭 특성을 확인하였다. 10분 동안 상기 2종의 박막에 C4F8/Ar/CH2F2/O2 에칭가스를 이용하여 플라즈마 에칭을 수행하되, 에칭 전/후 박막의 두께를 FE-SEM으로 측정하였다. 산화물 박막(oxide film)의 경우 상기 에칭조건에서 130 nm/min 속도로 에칭되며, 금속이 포함되지 않은 탄화수소 박막은 산화물 박막 대비 4.5의 선택비를 가지며, 금속탄화산화물 박막의 경우 6.6의 선택비를 나타내었다. 금속탄화산화물의 경우 금속이 포함되지 않은 탄화수소 박막에 비해 약 1.5배 에칭특성이 강화됨을 확인하였다. 상기 2종 박막에 대한 측정값을 하기 표 4에 정리하였다.As a control, the etching characteristics of the hydrocarbon thin film of the present invention deposited at a thickness of about 5000 Å under the conditions of the hydrocarbon thin film containing no metal and the sample 6 shown in Table 1 of Example 1 were confirmed. Plasma etching was performed using C 4 F 8 / Ar / CH 2 F 2 / O 2 etching gas on the two kinds of thin films for 10 minutes, and the thickness of the thin films before and after the etching was measured by FE-SEM. The oxide film is etched at a rate of 130 nm / min under the above etching conditions. The hydrocarbon thin film not including the metal has a selectivity ratio of 4.5 compared to the oxide thin film, and the selectivity ratio of the metal carbon oxide thin film is 6.6 Respectively. In the case of the metal carbide oxide, it was confirmed that the etching property was enhanced about 1.5 times as compared with the hydrocarbon thin film containing no metal. The measured values for the two kinds of thin films are summarized in Table 4 below.

탄화수소 박막Hydrocarbon thin film 알루미늄 산화물 탄화수소 박막Aluminum oxide hydrocarbon thin film 에칭 전 두께 (Å)Thickness before etching (A) 54805480 50405040 에칭 후 두께 (Å)Thickness after etching (Å) 26202620 30603060 에칭량 (Å)The etching amount (A) 28602860 19801980 에칭속도 (Å/min)Etching rate (Å / min) 28.628.6 19.819.8 에칭 선택성 (@ 산화물 박막)Etch selectivity (@ oxide thin film) 4.54.5 6.66.6 Al2p (%)Al2p (%) -- 30.1730.17 C1s (%)C1s (%) 97.297.2 24.6524.65 O1s (%)O1s (%) 2.82.8 45.1845.18

예컨대, 상기 실시예 1의 표 1에 나타난 시료 6번의 조건으로 약 5000Å 두께로 증착시켜 제조한 금속탄화수소 박막에 알루미늄:탄소:산소의 조성비율이 1:1:1.5로 포함된 경우, 금속이 포함되지 않은 탄화수소 박막에 비해 하드마스크 에칭 특성이 1.5배 강화됨을 확인하였다.For example, when the composition ratio of aluminum: carbon: oxygen is 1: 1: 1.5 in a metal hydrocarbon thin film prepared by depositing the metal thin film to a thickness of about 5000 Å under the condition of Sample No. 6 shown in Table 1 of Example 1, It is confirmed that the hard mask etching property is enhanced 1.5 times as compared with the non-hydrocarbon thin film.

1-3. 금속탄화산화물 박막의 전기적 특성 분석1-3. Electrical characterization of metal carbide oxide thin films

evaporation 장비를 이용하여 상기 실시예 1의 표 1에 나타난 다양한 조건으로 증착시켜 제조한 금속탄화수소 박막(시료 1 내지 9) 위에 알루미늄 도트를 증착시켰다. 증착이 완료되면 유리 위에 실퍼 페이스트를 바르고 실리콘 웨이퍼를 부착시켰다. 이와 같이 금속-절연체-금속(metal-insulator-metal; MIM) 구조를 형성한 후 전류-전압 측정장치(Keithley, 6517A)를 사용하여 1V씩 전압을 가하면서 박막의 전류밀도를 측정하였다.aluminum dots were deposited on the metal hydrocarbon thin films (Samples 1 to 9) prepared by evaporation under various conditions shown in Table 1 of Example 1 using the evaporation equipment. When the deposition was completed, a silper paste was applied onto the glass and the silicon wafer was attached. After forming the metal-insulator-metal (MIM) structure, the current density of the thin film was measured while applying a voltage of 1 V using a current-voltage measuring device (Keithley, 6517A).

상기 실시예 1에서 제조된 시료 1 내지 9의 금속탄화산화물 박막의 전기적 특성을 분석한 결과, 전기장 2 MV/cm에서 전류밀도 10-6 내지 10-7A/cm2의 값을 갖는 절연 박막 특성을 나타내었다(도 5). 상기 결과로부터, 상기 실시예 1에서 제조된 금속탄화산화물 박막이 반도체 공정에서의 절연박막으로서 이용 가능함을 확인하였다.As a result of analyzing the electrical characteristics of the metal carbide thin films of the samples 1 to 9 prepared in Example 1, it was found that the insulating thin films having a current density of 10 -6 to 10 -7 A / cm 2 at an electric field of 2 MV / (Fig. 5). From the above results, it was confirmed that the metal carbide oxide thin film produced in Example 1 can be used as an insulating thin film in a semiconductor process.

Claims (15)

탄소; 산소; 및 알루미늄, 티타늄, 하프늄, 탄탈륨, 지르코늄 및 텅스텐으로 구성된 군으로부터 선택되는 금속;을 포함하는 금속탄화산화물 박막으로서,
총 중량을 기준으로 5 내지 85중량%의 탄소, 5 내지 60중량%의 산소; 및 5 내지 40중량%의 금속을 포함하고,
상기 금속탄화산화물 박막은 탄소, 산소 및 금속을 모두 포함하는 단일물질 전구체, 또는 1종 이상의 유기물 전구체 및 1종 이상의 무기물 전구체의 혼합물 전구체를 이용한 플라즈마 화학 기상 증착방식(Plasma enhanced chemical vapor deposition; PECVD)에 의해 형성된 것이고,
상기 박막은 탄화수소에 금속산화물이 균일하게 분포된 단일층인 것인,
금속탄화산화물 박막.
carbon; Oxygen; And a metal selected from the group consisting of aluminum, titanium, hafnium, tantalum, zirconium, and tungsten,
5 to 85 wt% carbon, 5 to 60 wt% oxygen based on the total weight; And 5 to 40 wt% metal,
The metal carbide thin film may be formed by plasma enhanced chemical vapor deposition (PECVD) using a single material precursor including all of carbon, oxygen and metal, or a mixture precursor of one or more organic precursors and one or more inorganic precursors. Respectively,
Wherein the thin film is a single layer in which a metal oxide is uniformly distributed in a hydrocarbon.
Metal carbide oxide thin film.
삭제delete 삭제delete 제1항에 있어서,
상기 박막의 두께는 400 내지 5000Å인 것인 금속탄화산화물 박막.
The method according to claim 1,
Wherein the thin film has a thickness of 400 to 5000 ANGSTROM.
전구체를 이용하여 플라즈마 화학 기상 증착방식으로 기재 상에 박막을 형성하는 단계를 포함하는, 제 1 항에 따른 금속탄화산화물 박막의 제조방법에 있어서,
상기 전구체는 탄소, 산소 및 금속을 모두 포함하는 단일물질, 또는 1종 이상의 유기물 전구체 및 1종 이상의 무기물 전구체의 혼합물인 것인, 제 1 항에 따른 금속탄화산화물 박막의 제조방법.
A method for manufacturing a metal carbide oxide thin film according to claim 1, comprising a step of forming a thin film on a substrate by a plasma chemical vapor deposition method using a precursor,
The method of claim 1, wherein the precursor is a single material comprising all of carbon, oxygen and metal, or a mixture of at least one organic precursor and at least one inorganic precursor.
제5항에 있어서,
금속:탄소:산소의 조성비율로 제어하기 위해 플라즈마 화학 기상 증착방식의 증착 압력, 플라즈마 파워, 증착 온도를 선택하는 단계를 더 포함하는 것인 제조방법.
6. The method of claim 5,
Further comprising the step of selecting a deposition pressure, a plasma power, and a deposition temperature of the plasma chemical vapor deposition method to control the composition ratio of metal: carbon: oxygen.
제6항에 있어서,
상기 증착 압력은 200 내지 800 mTorr의 범위인 것인 제조방법.
The method according to claim 6,
Wherein the deposition pressure is in the range of 200 to 800 mTorr.
제6항에 있어서,
상기 증착 온도는 25℃ 내지 600℃의 범위인 것인 제조방법.
The method according to claim 6,
Wherein the deposition temperature is in the range of 25 [deg.] C to 600 [deg.] C.
제6항에 있어서,
상기 플라즈마 파워는 50 내지 150W의 범위인 것인 제조방법.
The method according to claim 6,
Wherein the plasma power is in the range of 50 to 150W.
제5항에 있어서,
상기 단일물질은 디메틸알루미늄 이소프로폭사이드(dimethylaluminium isopropoxide; DMAI)인 것인 제조방법.
6. The method of claim 5,
Wherein the single substance is dimethylaluminium isopropoxide (DMAI).
제5항에 있어서,
상기 유기물 전구체는 아세틸렌, 프로판, 사이클로헥산, 헥센 및 메틸사이클로헥산으로 구성된 군으로부터 선택되는 것인 제조방법.
6. The method of claim 5,
Wherein the organic precursor is selected from the group consisting of acetylene, propane, cyclohexane, hexene and methylcyclohexane.
제5항에 있어서,
상기 무기물 전구체는 알루미늄, 티타늄, 하프늄, 탄탈륨, 지르코늄 및 텅스텐으로 구성된 군으로부터 선택되는 금속을 포함하는 전구체인 것인 제조방법.
6. The method of claim 5,
Wherein the inorganic precursor is a precursor comprising a metal selected from the group consisting of aluminum, titanium, hafnium, tantalum, zirconium, and tungsten.
제5항에 있어서,
상기 박막은 탄화수소에 금속산화물이 균일하게 분포된 단일층인 것인 제조방법.
6. The method of claim 5,
Wherein the thin film is a single layer in which a metal oxide is uniformly distributed in a hydrocarbon.
제5항에 있어서,
상기 박막은 반도체 소자 또는 유기전자 소자 중 패턴을 형성하기 위한 층, 또는 절역막 또는 봉지박막이 요구되는 부분 상에 형성되는 것인 제조방법.
6. The method of claim 5,
Wherein the thin film is formed on a layer for forming a pattern of a semiconductor element or an organic electronic element, or on a part where a transverse film or a sealing film is required.
제1항 또는 제4항에 따른 금속탄화산화물 박막으로 형성된 반도체 공정용 하드마스크.A hard mask for semiconductor processing formed from the thin metal carbide oxide film according to any one of claims 1 to 4.
KR1020150159154A 2015-11-12 2015-11-12 Metal carbon oxide film comprising carbon, oxygen, and metal and fabrication method thereof KR101818610B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020150159154A KR101818610B1 (en) 2015-11-12 2015-11-12 Metal carbon oxide film comprising carbon, oxygen, and metal and fabrication method thereof
PCT/KR2016/013037 WO2017082695A2 (en) 2015-11-12 2016-11-11 Metal-carbide-oxide thin film comprising carbon, oxide, and metal, and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150159154A KR101818610B1 (en) 2015-11-12 2015-11-12 Metal carbon oxide film comprising carbon, oxygen, and metal and fabrication method thereof

Publications (2)

Publication Number Publication Date
KR20170056093A KR20170056093A (en) 2017-05-23
KR101818610B1 true KR101818610B1 (en) 2018-01-16

Family

ID=58695793

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150159154A KR101818610B1 (en) 2015-11-12 2015-11-12 Metal carbon oxide film comprising carbon, oxygen, and metal and fabrication method thereof

Country Status (2)

Country Link
KR (1) KR101818610B1 (en)
WO (1) WO2017082695A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020141850A1 (en) * 2018-12-31 2020-07-09 충남대학교산학협력단 Hydrocarbon thin film, method of preparing hydrocarbon thin film, and semiconductor device comprising hydrocarbon thin film
CN112914561B (en) * 2021-01-25 2023-06-20 深圳大学 Mixed metal carbon nano-film hydrogel flexible bending sensing unit, preparation method thereof and flexible bending sensor
US20240142870A1 (en) * 2022-10-26 2024-05-02 Applied Materials, Inc. Aluminum oxide carbon hybrid hardmasks and methods for making the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573030B1 (en) * 2000-02-17 2003-06-03 Applied Materials, Inc. Method for depositing an amorphous carbon layer
JP5551681B2 (en) * 2008-04-16 2014-07-16 エーエスエム アメリカ インコーポレイテッド Atomic layer deposition of metal carbide films using aluminum hydrocarbon compounds
KR100948770B1 (en) * 2008-06-27 2010-03-24 주식회사 에스앤에스텍 Blankmask, Photomask and it's Manufacturing Method
KR101384111B1 (en) * 2009-01-09 2014-04-10 주식회사 에스앤에스텍 A Blank Mask, A Photomask using the Same and Method of Fabricating the Same
JP5739375B2 (en) * 2012-05-16 2015-06-24 信越化学工業株式会社 Halftone phase shift mask blank and method of manufacturing halftone phase shift mask

Also Published As

Publication number Publication date
WO2017082695A2 (en) 2017-05-18
KR20170056093A (en) 2017-05-23
WO2017082695A3 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
US20200111669A1 (en) Method for depositing oxide film by peald using nitrogen
US6649540B2 (en) Organosilane CVD precursors and their use for making organosilane polymer low-k dielectric film
JP6845252B2 (en) Compositions for depositing silicon-containing membranes and methods using them
Lim et al. Low‐Temperature Growth of SiO2 Films by Plasma‐Enhanced Atomic Layer Deposition
US20090011145A1 (en) Method of Manufacturing Vanadium Oxide Thin Film
TWI525658B (en) Engineering boron-rich films for lithographic mask applications
TW200937517A (en) Plasma etching carbonaceous layers with sulfur-based etchants
TWI482219B (en) Dielectric barrier deposition using nitrogen containing precursor
TWI737612B (en) Deposition methods for uniform and conformal hybrid titanium oxide films
WO2009111395A2 (en) Method for depositing an amorphous carbon film with improved density and step coverage
KR20080002642A (en) Method for depositing an amorphous carbon film with improved density and step coverage
JP6920427B2 (en) Method for manufacturing composite membrane
KR101818610B1 (en) Metal carbon oxide film comprising carbon, oxygen, and metal and fabrication method thereof
Lin et al. Selective atomic layer etching of HfO2 over silicon by precursor and substrate-dependent selective deposition
CN109811329A (en) A kind of low temperature ald method of sull
KR101881534B1 (en) Method for formation of carbon layer including metal-oxide using plasmas
US6316055B1 (en) Near-room temperature thermal chemical vapor deposition of oxide films
KR100734854B1 (en) Method of manufacturing thin film of vanadiun di-oxide
KR101752059B1 (en) Enhanced Electric Device for MOS Capacitor and Manufacturing Method thereof
KR100780650B1 (en) Capacitor in semiconductor device and method for using the same
KR101152390B1 (en) Dielectric layer in capacitor and fabricating using the same and capacitor in semiconductor device and fabricating using the same
KR102268492B1 (en) Method of Manufacturing Composite Layer
Lin et al. Selective atomic layer etching of HfO
US20230143678A1 (en) Method and system for depositing boron nitride using pulsed chemical vapor deposition
KR20180072363A (en) Fabrication Method for Insulation Layer of Semiconductor Device by ECR-ALD

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant