TW201034982A - Isopipe material outgassing - Google Patents

Isopipe material outgassing Download PDF

Info

Publication number
TW201034982A
TW201034982A TW098139657A TW98139657A TW201034982A TW 201034982 A TW201034982 A TW 201034982A TW 098139657 A TW098139657 A TW 098139657A TW 98139657 A TW98139657 A TW 98139657A TW 201034982 A TW201034982 A TW 201034982A
Authority
TW
Taiwan
Prior art keywords
glass
particular embodiment
melt
exhaust
tube
Prior art date
Application number
TW098139657A
Other languages
Chinese (zh)
Other versions
TWI388519B (en
Inventor
Alex Usenko
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of TW201034982A publication Critical patent/TW201034982A/en
Application granted granted Critical
Publication of TWI388519B publication Critical patent/TWI388519B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

A method of reducing the length of time required to minimize defects in a sheet of glass made of a molten glass material introduced into an isopipe. The method includes the steps of heating the glass melt to a higher temperature and lower viscosity in the outgassing phase than in the normal operation phase, thus expediting the outgassing phase.

Description

201034982 六、發明說明: 【發明所屬之技術領域】 ’ 本發義_製造綱之纽聰。制是,本發明 係關於製造玻璃處理過程,其中玻璃溶融物必需接觸初始 排氣耐火材料。本發明有用於融合形成光學玻璃片以使用 作為LCD玻璃基板。 【先前技術】 ◎ 在製造賴物件的處理触包括料處理,容器孔抽拉 處理,衝壓處理,滾輪處理等,玻璃材料一般都是先溶融, 選擇性澄清和均勻化,接著輸送到形成裝置,在那裡形成所 需的形狀,接下來再冷卻。在炼融,澄清,均勻化,輸送和形 • 成期間,玻璃溶融物通常是在包含耐火材料的裝置或容5|中 進行處理。這種耐火材料特別是包括陶瓷材料,譬如锆石 為主的陶瓷,二氧化锆為主的陶瓷,鋁鈦酸鹽為主的陶瓷, 其他氧化物為主的陶瓷,貴重金屬等。很多這些材料是藉 〇 由燒結顆粒製成,可能產生空隙和粒界間隙的形成和存在 可能捕捉最後產品内像是空氣的氣體。更者,在首次安裝 到玻璃製造系統時,耐火材料的表面可能吸附/吸收某種量 的氣體。在玻璃生產週期的開始階段,耐火材料的表面暴 露到玻璃熔融物,氣體可能進入玻璃熔融物,形成令人討厭 的缺陷。對譬如LCD顯示器玻璃基板的光學玻璃產品而言 玻璃内氣泡的容限值是很低的。據此,在玻璃生產週期的 開始期間,因無法符合品質需求,玻璃產品通常必須要吾棄 或回收。受到耐火材料排氣影響的生產週期第一階段就是 3 201034982 所謂,排氣階段。不需多說,排氣階段會對玻璃製 的產量和生產率有很顯著的影響。 ,w、 制製造適合作為LGD齡11基㈣朗Μ所有玻璃 ,理中’ _發展和改善的_抽拉處理,由於產品的 间表面口口質,-致的厚度,和其他物理性質,不進、 下1 表面研磨或拋光步驟算是較佳的處理過程融合^ 過耘祝明於美國第3338696及3682609號專利中,亥專利 ❸說明在此加入作為參考。 …專利之 輯其他的玻造處理過程,姐融抽拉處理中玻 璃炫融,輸送’均勻化和形成期間,破璃溶融物會和開始排 • _财火材料接觸。尤其在形成期間,稱為等管的形成裝 置有相田大的表面區域,玻璃炼融物必須在玻璃片於根部 之前_其上。在生產週期期間,等管材料開始的排 讀被捕捉在其内部導致玻璃内氣泡的形成。在正常的玻 璃溶融條件下,排氣階段可能費時數個月之久,這是我們所 Q 不樂見的。 因匕’有必要在玻璃製造處理過程,縮短排氣的期間。 本發明可滿足此項需要。 【發明内容】 太本發明提供製造玻璃物件的處理過程,包括以開始排 ' f耐火材料表面接觸玻璃溶融物,包括在正規運作階段之 ,㈩的排ILPWx,其巾:⑴在排氣階段接觸耐火材料的玻璃 熔融物有7/1的平均黏滞係數,(ii)在正規運作階段接觸财 火材料的玻觀融物仏的平均黏滯係數,和(mb# 4 201034982 的比值至少1.G5,在特定實施例中至少為11(),在 例中至少為1. 20,在特定實施例中至少為丨.3(),在特: 例中至少為1. 4G,在特定實施例中至少為丨.5Q,在 例中至少為1. 60,在特定實施例中至少為丨.7(),在特 例中至少為1. 8G,在特定實施僧至少為丨 特 例中至少為2. 00。 隹特疋實施 ❹ Ο 明處理過程特定實施例中,接觸玻璃熔融物 火性材料包含陶兗。 1 物的=3理過程的特定實施範例中,接觸破魏融 s. ^ :聽自紙氧化結,職,⑽ i〇2, SiC,SiN,和其組合及混合物。 在本發明處理過程的特定實祕辦,處理過程 衣造玻璃&gt;;贼融抽拉處理過程,而耐火材料包括等管。 本I聰理過程的特定實施範例巾,排氣階段的持 、::’月?足夠使玻璃炫融物覆蓋耐火材料的整個表面區域, k也疋在JL規運作階段,接觸玻璃絲物的地方。 伽在ί發明處理触的特定實域射,排氣階段包括 而且正二:作階段的位置,傾斜等管的步驟,傾斜角度Θ, _5。&lt; $ 19 。在本發明處理過程特定實施例中 〈$3。在本發明處理過程特定實施例中_5。 。在本發明處理過程特定實施例中,排氣階段 =#傾斜步驟,其中— 5°‘θ$0。,以及第二傾斜 步驟,其中(Γ^θ$5。。 在本發明處理過輯定實關中,〃么1_泊,在特 5 201034982 定實施例中^22000泊,在特定實施例中泊, 在特定實施例中7^4000泊,在特定實施例中^5〇〇〇 泊,在特定實施例中7/2^6000泊,在特定實施例中^ .8000泊,在特定實施例中W-10000泊,在特定實施例中 ^^15000泊,在特定實施例中7?2218000泊,在特定實 施例中?72^20000泊。 在本發明處理過程特定實施例中,玻璃 0階卿財«平顺動料吼玻魏 作相過程中具有平均流動率為FR2,以及FR1/FR2比值為 〇. 2,在特定實施例中為〇. 3至〇. 7,在特定其他實施例中為 〇· 3 至 〇. 5。 • 在本發明處理過程特定實施例中,對應於玻璃熔融物 黏滯係數77 2之溫度T2至少為1〇酿,在特定實施例中至少 為1050°C,在特定實施例中至少為110(rc,在特定實施例中 至少為1200 C,在特定實施例中至少為125〇。〇。 〇 在本發明處理過程特定實施例中,對應於玻璃熔融物 黏滯係數^1之溫度T!至少為1 ooo°c,在特定實施例中至少 為1100°c,在特定實施例中至少為120(rc,在特定實施例中 至少為130(Tc,在特定實施例中至少為140(rc,在特定實施 例中至少為15〇〇°c,,在特定實施例中至少為16〇〇。^。 在本發明處理過程特定實施例中,對於玻璃熔融物,對 應於黏滯係數^ 1之溫度以及對應於黏滯係數7? 2之溫度 T2具有下列關係:Tl—T2g5(rc,在特定實施例中Ti—T2g 100C,在特定實施例中Ti T2g15〇°c,在特定實施例中Τι_ 6 201034982 T22200°C。 在本發明處理過程特定實施例中,排氣階段期間為ι〇 至800小時,在特定實施例中為2〇至8〇〇小時,在特定實施例 中為30至800小時,在特定實施例中為30至700小時,在特定 實施例中為30至_小時,在特定實施例中為3〇至_小時, 在特定實施例中為3Q至侧小時,在特定實施例中為洲至’ 300小時,在特定實施例中為5〇至7〇M、時,在特定實施例中 〇為50至_小時,在特定實施例中為50至500小時,在特定實 施例中為50至400小時,在特定實施例中為5〇至_小時,在 特定實施例中為50至250小時。 在本發明處理過程的特定實施範例中,在排氣階段玻 璃’溶融物的平均流速是刚,在正規運作階段玻璃炫融物的 平均流速是FR2,而FR1/FR2的比值從〇. 2到〇. 8。本發明的 -個或多個實施範例有一項或多項下列的優點。藉由在排 氣階段提升玻璃熔融物接觸耐火材料的溫度可以降低·玻璃 〇絲物的黏滯係數。玻璃溶融物的健滯係數容易潤濕耐 火材料表面,穿透玻璃溶融物到耐火材料開放的孔隙和空 隙,使耐火材侧捉到或魏/吸附的紐得轉出,飄浮, 驅離,和逃逸,因而減少可能會明顯降低玻璃產品產量的耐 火材料排氣_。基本上,在排氣階段,玻猶融物較高的 溫度和較低的黏滯係數會減少排氣時間,在提早的正規運 作階段開始運作,並增加玻璃製造系統的整個產量。更者, 藉著在排氣階段傾斜形成管,無論是往上,往下,或兩者都, 可以進一步增加耐火材料表面玻璃熔融物的濕度。此外, 201034982 在排氣階段,減少玻璃熔融物的流速比較不會浪費玻璃材 料可更進一步提升玻璃製造處理的產量。本發明在製造高 表面和體積品質光學玻璃片的熔融抽拉處理上特別有用。 本發明其他特性及優點揭示於下列說明,以及部份可 由說明清楚瞭解,或藉由實施下列說明以及申請專利範圍 以及附圖而明瞭。 【實施方式】 Ο 〇 如以上所提及,進入耐火材料内或在其表面上的氣體 可月b在玻璃製造處理期間進入接觸耐火材料表面的玻璃熔 體。經過一段時間,以玻璃熔融物取代氣體可能減少排氣 量。玻璃填滿耐火材料孔隙和空隙或取代耐火材料表面上 吸收/吸喊體崎率是雜玻雜融物的溫度和黏滞係 數以及耐火材料的溫度而定。玻麟融物_滯係數越低 或溫度越高,玻觀_流經表_輕雜,因此速度越 快的玻璃炫融物可以濕潤任何自由表面,包括孔隙和空隙 ,表面。4體的溫度越高,玻槪融物_滯係數就越低, 熔融物内的氣體可能越快飄浮,最終脫離玻魏融 :的表面。最好能減短魏階段的_,儘早進入正規運 里使_ ”正規運作階段”是指生產週期可以 排氣的階段以達到生產週期的目標產量。應 請作階段會根據 線的正規運作階段在稍微不同的運;:下不產玻 璃溶融物的流速等)生產完全-樣的:。(§皿度,玻 201034982 少以本發种,在生產週期的排氣階段,可以加熱玻璃和对 迹到比正規運作階段更高的溫度,使得排氣階段的玻 =融物平均黏滯係數低於正規運作階段的玻璃炫融 平均黏滞係數h其中W至少為1. 05。在特定實 施,中?? 2/❿;[.1〇,在特定實施例中以^12〇,在 疋實知例中C 2/ β^ 1. 3〇,在特定實施例中” 2/ π i^ Ο 1. 4〇,在特定實施例中以w 1 · 50,在特定實施例中π 2 / ^ ^ L 6〇,在特定實施例中^/ ?? Q1. 70,在特定實施 ,中1,80,在特定實施例中π ζ/π就9〇,在特 定實施例中?7 2/7^^2. 00。 ^在執行本發明時,可將玻璃熔融物輸送和形成系統全 =加熱到比特定實絲例正規運作溫度還高的溫度。這些 ,知範例在開始一個新系統的生產週期,所有的财火材料 第一次接觸玻璃熔融物是最好的。在其他實施範例中,最 好加熱部分玻璃製造系統以及和其接觸的玻璃熔融物到高 〇於正規運作溫度的減溫度,H轉祕其他部分的 溫度在正規運作溫度,或甚至低於正規運作溫度。這種實 施範例在產職之後,取代或重建玻補造系統一 邻分疋最好的。玻璃製造系統可包括多個裝有個別熱管理 裴置的區域,使得玻璃熔融物和系統在單一區域有差別的加 熱。在多個區域中也可能至少部份同時執行排氣階段,使 得那些區域階段對於錢運作溫度提升不雕度的溫度。 本發明在底下詳細說明製造玻璃片熔融抽拉處理過程 中等管的财火材料。然而,平常熟悉此項技術的人應該知 201034982 道本發明也可以運用在熔融抽拉玻璃製造系統的其他部分 ,或其他玻璃製造處理譬如浮式處理,容器孔抽拉處理,衝 壓處理,鑄造處理,滾輪處理等,只要是接觸玻璃熔融物耐 火材料的排氣會發生問題的處理。 參考圖1,顯示的是範例玻璃製造系統100的示意圖,使 用熔融抽拉處理來製造玻璃片102。玻璃製造系統1〇〇包括 熔融容器104,澄清容器1〇6,混合容器1〇8(即攪拌室1〇8), 0 輸送容器110(即容器池110),和形成容器112(即等管112) 。如前頭114所示,玻璃批次材料從熔融容器1〇4送進去,熔 融形成融態玻璃116。澄清容器106(即澄清器管1〇6)從熔 融容器104接收融態玻璃116(在_未顯示),並且從融態 f璃116移除氣泡。澄清容器1〇6經由澄清器到勝室連接 官118,連制混合容器108(即攪拌室1〇8)。混合容哭⑽ 經,拌室到容器池連接管120,連接到輸送容器^輸 运容器110輸送融態玻璃116,通過降流管122到入口 124,進 ❹入形成容器112(即等管112),形成玻璃片撤。形成容器’ 112(即等管112)是由錯耐火材料製成。 參考圖2,顯示的是使用在玻璃製造系統⑽的形成管 1^2透視圖。等管112包括一個開口(入口)13〇,接收流入溝 合益132的融態玻璃116,然後额從兩邊腿和往下 流,在所謂的根部136溶融在—起。根部136是兩邊_和 =4b會合的地方,在這裡兩道融態玻璃ιΐ6溢流牆在向下抽 減冷卻⑽成玻璃片1G2之前重新結合。應該要注意等 官112和玻璃製造系統⑽除了圖i及2所顯示的之外可以有 10 201034982 不同的設計和树,域_驳本翻的射。 玻璃=耐,如耐火嶋,火金屬製造形成 蓄其η二為破璃炫融物通常會加熱到提升的溫度 料作溫度下賴和賴雛以確保延 :二’㈣週期。等管材料的一項重要特性是熱潛變率 a會衫響經過-段時間後等管的下垂。由於等管是拉長 :::冓’經過—段時間後少量下垂的累積可能 Ο 降低。可使用譬如Zr〇2,z,抓,就,⑽, 2(Tl〇3)3,YP〇4等耐火陶究材料來製造等管。製造使用 在嫁融抽拉玻造處理等管的材料和處理過程提供在出 版日期為2_年7月13日的PCT專利出版W0 2_/〇73841, 以及出版日期為2002年6月6日的PCT專利出版wo 02/4觀 ,兩者的說明在這裡也全部併入參考。 虽-個新的或再拋光的等管首先進入生產週期,我們 希望在正規運作階段開始之前,先執行初始的排氣階段,以 〇持續和穩定生產具有氣泡内含物所需值的品f玻璃片。為 了達到此目的將放入等管的玻璃炫融物加熱到溫度T1而高 ,正規運作的溫度了2。等管最好藉著玻璃溶融物,等 管熱管理系統或兩者加熱到高於正規運作階段的溫度。如 以上所討論的,玻璃熔融物較低的黏滯係數可增進接觸玻 璃熔,物的形成管表面濕潤,填滿等管内開放孔隙和空隙, 陷入氣體的排除,等管的吸收或吸附都會造成較短的排氣 階段’減少正規運作階段產生的玻螭片内的氣泡缺陷。 我們希望在排氣階段玻璃炼融物可以接觸和濕潤等管 201034982 =整個表面,在正規運作階段接觸玻璃熔融物。在特定實 知範例中,玻璃溶融物越早完成整個表面濕潤,可以越早完 成排氣階段。因此,本發明除了加熱玻魏融物到更高的&amp; 5度和較錢㈣餘之収進—步包括各財式促進玻 璃溶融物在等管表面的流動。 Ο Ο -種促進_、職物在轉絲流_枝是有關在 ^規運作·,鱗正常位麗斜_。在蚊實施範例 中^我們高度希望在正規運作階段,等管的根部是真正水平 固定的,也就是真正垂直於重力向量的方向以產生具有一 =厚度和均勻性質的玻璃片。為了促進玻雜融物在等 官表面的流_及聰整鍊面,尤其是條物的表面最 =正規運作階段對於其水平位置傾斜等管的根部。可藉 =升或降低等管的—端達顺此間的傾斜。如果某一端 疋叹。十成固疋%,那麼彼此間(即使兩端都可針對第三參考 ,件移動)的另-端就設計成可傾斜端。在正規運作階段 L可傾斜端針對此位置是上升的傾斜角度Θ,也就是等管 根#水平線之_纽就觀為是 Γ降時則被認為是負的。因為等管可能很大型, 請最好是從_5。到3。。在特定實施例中, 荨吕為要施以第-傾斜步驟,其中_ 5、β〇。(向下傾 1),以及第二傾斜步驟,其中㈣部。(向上傾斜)。該 兩個步驟傾斜操作能夠加速等管兩側表面上之潤渔。 在排氣階段生產的玻璃,由轉氣_可能會有各種 、’而且比等管最佳運作條件少。然而,我們並不排除在 201034982 排氣階段尤其在最鶴段触麵玻璃可哺合特定應用 的品質需求。因此,在特定實施範例巾賊階段生產的玻 璃是較差品質的應該要盡量減量。為了這個目標,最好在 .排氣階段減少玻璃炼融物的平均流速(FR1)到正規運作階 段平均流速(FR2)的20-80%,在特定實施例中為3〇_7〇%,在 特定實施例中為30-50%。 ’ 正規運作階段玻璃溶融物的溫度㈤和黏滞係數u 2) ◎是根據很多種因素,尤其包括破璃成分,處理的生產率所需 的厚度和玻璃產品的其他特徵等。在本發明處理的特定實 施範例中,製造的玻凝用來作為LGD玻璃基板對應玻璃炫 融物黏性;7 2的溫度T2至少!00(rc,在特定實施例中至少為 105(TC,在特定實施例中至少為丨丨⑽。c,在特定實施例中至 少為1200 C,在特定實施例中至少為i25〇°c。 排氣階段玻璃熔融物的溫度(Τι)和黏滯係數(々〇是根 ,很多種因素尤其包括玻璃成分,玻璃輸送和形成装置的 〇最高容忍溫度等。本發明處理的特定實施範例中,對應玻 璃炫融物黏性^1的溫度I至少100(TC,在特定實施範例中 至少_t,在特定實施例中至少為12〇(rc,在特定實施例 中至少為1300X:,在特定實施例中至少為14〇〇ΐ,在特定實 施例中至少為15〇(rc,在特定實施例中至少為翻。C。由 於麵或其合金可耐高溫和抗氧化,通常獅纽產高品質 光學玻璃的玻魏_搬運裝置。假韻或齡金是用在 玻璃的輸送和搬運上,不能將玻璃溶融物加熱到翻或其合 金會失效的溫度以上。 ^ 201034982 排氣階段和正規運作階段之間較大的溫度差異可以更 促進排氣階段。林發明歧的較實絲辦,玻璃溶 融物對應黏滯係數π i的溫度Tl,和對應黏滯係細2的溫 度T2有以下的關係:Tl_T2讀c,在特定實施例tTi_T2 2100°C,在特定實施例中Tl - Tg15(rc,在特定實施例中201034982 VI. Description of the invention: [Technical field to which the invention belongs] ’ The present invention relates to the manufacture of a glass treatment process in which a glass melt must contact an initial exhaust refractory material. The present invention is useful for fusing to form an optical glass sheet for use as an LCD glass substrate. [Prior Art] ◎ In the processing of manufacturing materials, including material processing, container hole drawing, stamping, roller processing, etc., the glass materials are generally melted first, selectively clarified and homogenized, and then transported to the forming device. The desired shape is formed there and then cooled. During smelting, clarification, homogenization, transport and formation, glass melts are typically processed in a refractory-containing unit or vessel. Such refractory materials include ceramic materials, such as zircon-based ceramics, zirconia-based ceramics, aluminum titanate-based ceramics, other oxide-based ceramics, and precious metals. Many of these materials are made from sintered particles, which may create voids and grain boundary gap formation and presence that may trap gases like air in the final product. Moreover, the surface of the refractory material may adsorb/absorb some amount of gas when first installed in a glass manufacturing system. At the beginning of the glass production cycle, the surface of the refractory material is exposed to the glass melt and the gas may enter the glass melt, creating an annoying defect. For optical glass products such as LCD glass substrates, the tolerance of the bubbles in the glass is very low. As a result, glass products often have to be discarded or recycled during the beginning of the glass production cycle due to the inability to meet quality requirements. The first stage of the production cycle affected by refractory exhaust is 3 201034982, the so-called exhaust phase. Needless to say, the exhaust phase has a significant impact on glass production and productivity. , w, manufactured to be suitable as LGD age 11 base (four) recite all glass, rationale ' _ development and improvement _ extraction treatment, due to the product's surface surface oral quality, - thickness, and other physical properties, not The in-and-out 1 surface grinding or polishing step is a preferred process. The fusion process is disclosed in U.S. Patent Nos. 3,338,696 and 3,682,609, the disclosure of each of each of each of each of ...Patents of other glass-making processes, in the process of squeezing and squeezing, the glass is melted, and during the process of homogenization and formation, the broken glass melt will come into contact with the starting material. Especially during formation, the forming device called the equal tube has a large surface area of the phase, and the glass smelt must be before the glass piece is on the root. During the production cycle, the beginning of the alignment of the tube material is captured within it causing the formation of bubbles within the glass. Under normal glass melting conditions, the exhaust phase can take several months, which is something we are not happy with. Because it is necessary to shorten the period of exhaust gas during the glass manufacturing process. The present invention satisfies this need. SUMMARY OF THE INVENTION The present invention provides a process for manufacturing a glass article, including contacting the glass fused material at the beginning of the refractory surface, including in the normal operation stage, (10) of the row ILPWx, the towel: (1) contacting during the exhaust phase The refractory glass melt has an average viscosity coefficient of 7/1, (ii) the average viscosity coefficient of the glassy enthalpy of contact with the fossil material during the normal operation phase, and the ratio of (mb# 4 201034982 is at least 1. G, in a particular embodiment, at least 11 (), in the embodiment at least 1.20, in a particular embodiment at least 丨.3 (), in the special case: at least 1. 4G, in a particular embodiment At least 丨.5Q, in the example at least 1.60, in a particular embodiment at least 丨.7(), in the special case at least 1. 8G, at least 2 in a particular implementation, at least 2 00. 隹 疋 疋 疋 处理 处理 处理 处理 处理 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定Oxidation of paper, job, (10) i〇2, SiC, SiN, and combinations and mixtures thereof. The specific process of the process, the process of making glass > thief melt drawing process, and the refractory material including the tube. The specific implementation of the I process of the process, the exhaust phase of the holding, ::: Month? is enough to make the glass dazzle cover the entire surface area of the refractory, k is also in the JL gauge operation stage, where it touches the glass filament. The gamma is invented to deal with the specific real-field shot, the exhaust phase includes and the second: The position of the stage, the step of tilting the tube, the tilt angle Θ, _5. &lt; $19. In the specific embodiment of the process of the present invention <3. In the specific embodiment of the process of the present invention _5. In the present invention In a particular embodiment of the process, the exhaust phase = # tilt step, wherein - 5 ° 'θ $ 0., and the second tilt step, wherein (Γ ^ θ $ 5 . . . in the process of processing the real set, what? 1_Pool, in the specific embodiment of 2010 5,982, 2,22,000 poises, in particular embodiments, in the particular embodiment, 7 ^ 4000 poises, in a particular embodiment, 5 in some embodiments, in a particular embodiment 7 /2^6000 poise, in a particular embodiment ^ .8000 In a particular embodiment W-10000 poise, in certain embodiments ^1 15,000 poise, in a particular embodiment 7 - 22180 poise, in a particular embodiment - 72 ^ 20,000 poise. Specific embodiments of the process of the present invention In the process of glass 0th order, the average flow rate is FR2, and the ratio of FR1/FR2 is 〇. 2, in the specific embodiment, 〇. 3 to 〇. 7, in specific other In the embodiment, 〇·3 to 〇. 5. In a particular embodiment of the process of the invention, the temperature T2 corresponding to the glass melt viscosity coefficient 77 2 is at least 1 brewing, in a particular embodiment at least 1050 °C, in a particular embodiment, is at least 110 (rc, at least 1200 C in a particular embodiment, and at least 125 在 in a particular embodiment. Hey. In a particular embodiment of the process of the present invention, the temperature T! corresponding to the glass melt viscosity coefficient ^1 is at least 1 ooo °c, in a particular embodiment at least 1100 ° C, and in particular embodiments at least 120 (rc, in a particular embodiment at least 130 (Tc, in a particular embodiment at least 140 (rc, in a particular embodiment at least 15 〇〇 ° C, in a particular embodiment at least 16 〇〇) In a particular embodiment of the process of the present invention, for a glass melt, the temperature corresponding to the viscosity coefficient ^1 and the temperature T2 corresponding to the viscosity coefficient 7? 2 have the following relationship: Tl - T2g5 (rc, in In a particular embodiment Ti-T2g 100C, in a particular embodiment Ti T2g15〇°c, in a particular embodiment Τι_ 6 201034982 T22200 ° C. In a particular embodiment of the process of the invention, during the venting phase is ι〇 800 hours, in the particular embodiment 2 to 8 hours, in a particular embodiment 30 to 800 hours, in a particular embodiment 30 to 700 hours, in a particular embodiment 30 to _ hours, In a particular embodiment 3 〇 to _ hours, in a particular embodiment 3Q To the side hours, in the particular embodiment, from continent to '300 hours, in the particular embodiment from 5 to 7 〇M, 〇 is 50 to _ hours in a particular embodiment, and 50 in a particular embodiment. Up to 500 hours, in a particular embodiment, 50 to 400 hours, in a particular embodiment 5 to _ hours, in a particular embodiment 50 to 250 hours. In a particular embodiment of the process of the invention, The average flow rate of the smelting phase of the glass in the exhaust phase is just, the average flow rate of the glass fused material in the normal operation phase is FR2, and the ratio of FR1/FR2 is from 〇. 2 to 〇. 8. One or more of the present invention The embodiment has one or more of the following advantages: By increasing the temperature at which the glass melt contacts the refractory during the exhaust phase, the viscosity coefficient of the glass filament can be reduced. The hysteresis coefficient of the glass melt easily wets the surface of the refractory Through the glass fused to the open pores and voids of the refractory material, the refractory material side catches or the Wei/adsorbed neonates are transferred out, floated, driven away, and escaped, thereby reducing the fire resistance which may significantly reduce the yield of the glass product. Material exhaust Basically, during the exhaust phase, the higher temperature and lower viscosity coefficient of the glass melt will reduce the exhaust time, start operating in the early formal operation phase, and increase the overall production of the glass manufacturing system. By inclining the tube during the exhaust phase, either upwards, downwards, or both, the humidity of the glass melt on the refractory surface can be further increased. In addition, 201034982 reduces the glass melt during the exhaust phase. The flow rate comparison does not waste glass material and can further increase the yield of the glass manufacturing process. The present invention is particularly useful in the manufacture of melt draw processing of high surface and volume quality optical glass sheets. Other features and advantages of the invention will be apparent from the description and appended claims. [Embodiment] Ο 〇 As mentioned above, the gas entering or on the surface of the refractory may enter the glass melt contacting the surface of the refractory during the glass manufacturing process. Over time, replacing the gas with a glass melt may reduce the amount of exhaust. The glass fills the refractory pores and voids or replaces the refractory surface. The absorption/sucking body rate is determined by the temperature and viscosity coefficient of the hetero-glass matte and the temperature of the refractory. The lower the _ lag coefficient of the glass lining melt or the higher the temperature, the glass _ flow through the table _ light miscellaneous, so the faster the glass fused melt can wet any free surface, including pores and voids, the surface. The higher the temperature of the body 4, the lower the _ 滞 coefficient of the glass mash, and the faster the gas in the melt may float, eventually departing from the surface of the glass. It is best to shorten the Wei stage and enter the regular operation as soon as possible so that the “normal operation stage” refers to the stage in which the production cycle can be exhausted to achieve the target production of the production cycle. The stage should be produced in a slightly different way according to the regular operation phase of the line; the flow rate of the glass melt is not produced, etc.). (§ 皿 degree, glass 201034982 less than this type of seed, in the exhaust phase of the production cycle, can heat the glass and trace to a higher temperature than the normal operating stage, so that the glass phase of the exhaust phase = the average viscosity coefficient of the melt The glass viscous average viscous coefficient h below the normal operating stage, where W is at least 1.05. In a particular implementation, 2?❿; [.1〇, in a particular embodiment, ^12〇, in 疋In a specific example, C 2 / β^ 1. 3〇, in a particular embodiment " 2 / π i ^ Ο 1. 4〇, in a particular embodiment w 1 · 50, in a particular embodiment π 2 / ^ ^ L 6〇, in a particular embodiment ^/?? Q1. 70, in a particular implementation, medium 1, 80, in a particular embodiment π ζ / π is 9 〇, in a particular embodiment ??? 7 2 / 7^^2. 00. ^ In the practice of the present invention, the glass melt transport and formation system can be fully heated to a temperature higher than the normal operating temperature of a particular filament. These examples are beginning with a new system. During the production cycle, it is best that all of the fossil material is in contact with the glass melt for the first time. In other embodiments, it is preferred to heat part of the glass manufacturing system and the glass that is in contact with it. The melting point is reduced to a temperature higher than the normal operating temperature, and the temperature of the other part of the H is at a normal operating temperature, or even lower than the normal operating temperature. This embodiment replaces or rebuilds the glass-filling system after the birth. Preferably, the glass manufacturing system may include a plurality of regions with individual thermal management devices such that the glass melt and the system are differentially heated in a single region. It is also possible to perform at least partial simultaneous execution in multiple regions. The exhaust phase, which causes the temperature of the operating temperature to increase the temperature of the non-engraving of the money. The present invention details the material of the medium tube for manufacturing the glass sheet melt drawing process. However, those who are familiar with the technology should知201034982 The invention can also be applied to other parts of the melt drawing glass manufacturing system, or other glass manufacturing processes such as floating treatment, container hole drawing, stamping, casting, roller processing, etc., as long as the contact glass is melted. The exhaust of the refractory material may be problematic. Referring to Figure 1, the example glass manufacturing system is shown. The schematic diagram of the system 100 uses a melt drawing process to manufacture a glass sheet 102. The glass manufacturing system 1 includes a melting vessel 104, a clarification vessel 1〇6, a mixing vessel 1〇8 (i.e., a stirring chamber 1〇8), and a 0 conveying container. 110 (i.e., vessel 110), and forming vessel 112 (i.e., tube 112). As indicated by head 114, glass batch material is fed from molten vessel 1〇4 and melted to form molten glass 116. Clarification vessel 106 (i.e., The clarifier tube 1〇6) receives the molten glass 116 from the melting vessel 104 (not shown) and removes the bubbles from the molten glass 116. The clarification vessel 1〇6 passes through the clarifier to the win chamber connection officer 118, The mixing vessel 108 (i.e., the mixing chamber 1〇8) is prepared. Mixing and crying (10), the mixing chamber to the container pool connecting pipe 120, connected to the conveying container ^ transport container 110 to transport the molten glass 116, through the downcomer 122 to the inlet 124, into the container 112 to form the container 112 (ie, the tube 112 ), forming a glass piece to withdraw. The forming container '112 (i.e., the tube 112) is made of a wrong refractory material. Referring to Figure 2, there is shown a perspective view of the forming tube 1^2 used in the glass manufacturing system (10). The equal tube 112 includes an opening (inlet) 13A that receives the molten glass 116 flowing into the groove benefit 132, and then flows from both legs and down, and melts in the so-called root 136. The root portion 136 is where the two sides _ and = 4b meet, where the two molten glass ΐ6 overflow walls are recombined before the downward cooling (10) is cooled into the glass sheets 1G2. It should be noted that the official 112 and the glass manufacturing system (10) may have 10 201034982 different designs and trees in addition to those shown in Figures i and 2. Glass = resistant, such as refractory enamel, fire metal is formed to store its η two for the glass glaze, usually heated to the elevated temperature, and the temperature is measured at the temperature to ensure the extension: two '(four) cycles. An important characteristic of the isopipet material is the thermal creep rate. Since the equal pipe is elongated :::冓' after a period of time, the accumulation of a small amount of droop may be reduced. It is possible to manufacture isopipes using refractory ceramic materials such as Zr〇2, z, grab, (10), 2 (Tl〇3) 3, YP〇4. The materials and processes used in the manufacture of tubes for the processing of marshalling glass are provided in the PCT Patent Publication W0 2_/〇73841, published on July 13, 2, and published on June 6, 2002. The PCT patent publication is WO 02/4, and the description of both is incorporated herein by reference. Although a new or re-polished tube enters the production cycle first, we hope to perform the initial exhaust phase before the start of the formal operation phase to continuously and stably produce the product with the desired value of the bubble content. Glass piece. In order to achieve this, the glass smelting material placed in the equal tube is heated to a temperature T1 and is high, and the normal operating temperature is 2. The tubes are preferably heated by a glass melt, such as a thermal management system or both, to a temperature above the normal operating stage. As discussed above, the lower viscosity coefficient of the glass melt can increase the contact glass melting, the surface of the formed tube is wet, fills the open pores and voids in the tube, and is trapped in the gas, and the absorption or adsorption of the tube will cause The shorter exhaust phase reduces the bubble defects in the glass flakes produced during the normal operating phase. We hope that during the exhaust phase the glass smelt can be contacted and wetted, etc. 201034982 = the entire surface, in contact with the glass melt during the normal operating phase. In a specific practical example, the earlier the glass melt completes the wetness of the entire surface, the earlier the exhaust phase can be completed. Thus, in addition to heating the glass ferrite to a higher &amp; 5 degree and more money (four) remainders, the present invention includes various modes of promoting the flow of the glass melt on the isopipe surface. Ο Ο 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种In the mosquito practice example, we highly hope that during the normal operation phase, the root of the tube is truly horizontally fixed, that is, the direction perpendicular to the gravity vector to produce a glass sheet having a thickness and uniform properties. In order to promote the flow of the glassy melt on the surface of the surface of the aquifer, and the surface of the stalk, especially the surface of the strip, the root of the tube is inclined at the horizontal position. Can be used to raise or lower the tube - the end of the slope. If one end sighs. Ten percent is solidified, so the other end of each other (even if both ends can move for the third reference, the piece is moved) is designed to be tiltable. In the normal operation phase, the L tiltable end is the rising tilt angle 针对 for this position, that is, the equal value of the tube ## horizontal line is considered to be negative when it is lowered. Because the tube may be very large, please better from _5. To 3. . In a particular embodiment, the 荨 为 is to be subjected to a first-tilt step, wherein _ 5, β 〇. (tilt down 1), and a second tilting step, where (four) is. (tilt up). This two-step tilting operation accelerates the fishing on both sides of the tube. The glass produced during the venting phase may have a variety of venting _ possible, and less than optimal operating conditions. However, we do not rule out the quality requirements for specific applications in the 201034982 exhaust phase, especially in the most crane section. Therefore, the glass produced at the stage of the specific example of the thief is of a poor quality and should be minimized. For this purpose, it is preferred to reduce the average flow rate (FR1) of the glass smelt to 20-80% of the average operating flow rate (FR2) in the exhaust phase, in the particular embodiment 3 _7 〇 %, In a particular embodiment it is 30-50%. The temperature of the glass melt in the normal operation stage (5) and the viscosity coefficient u 2) are based on a variety of factors, including the thickness of the glass, the thickness required for the treatment, and other characteristics of the glass product. In a particular embodiment of the treatment of the present invention, the fabricated glass coagulum is used as a G352 glass substrate for glass viscous viscous; 7 2 temperature T2 is at least! 00 (rc, in a particular embodiment at least 105 (TC, in a particular embodiment at least 丨丨(10).c, at least 1200 C in a particular embodiment, and at least i25 〇 °c in a particular embodiment. The temperature (Τι) and viscosity coefficient of the glass melt in the venting stage (々〇 is the root, a variety of factors including, inter alia, the glass composition, the maximum tolerated temperature of the glass transport and forming device, etc.) In a particular embodiment of the treatment of the present invention, The temperature I corresponding to the glass viscous viscosity ^1 is at least 100 (TC, at least _t in a particular embodiment, at least 12 〇 in a particular embodiment (rc, in a particular embodiment at least 1300X:, at a particular In the embodiment, it is at least 14 〇〇ΐ, in a particular embodiment at least 15 〇 (rc, in a particular embodiment at least 翻. C. Since the face or its alloy is resistant to high temperatures and oxidation, usually the lion has a high yield Glass fiber _ handling device for quality optical glass. False rhyme or age gold is used in the transportation and handling of glass. It is not possible to heat the glass melt to a temperature above which the alloy or alloy will fail. ^ 201034982 Exhaust stage and regular operation Larger temperature between stages The difference can promote the exhaust phase. The temperature of the glass melt is corresponding to the temperature T1 of the viscosity coefficient π i, and the temperature T2 of the corresponding viscosity system 2 has the following relationship: Tl_T2 reads c, Specific embodiment tTi_T2 2100 ° C, in a particular embodiment Tl - Tg15 (rc, in a particular embodiment

Tl _ Μ〇(Γ〇然而’為了維持系統穩定性,特定實施範 例中,譬如等管的玻璃线或元件最好不要加制太高的 溫度。因而,有需要在特定實施例中T1K25(rc在特 定實施例中Tl - T2_(rc,在特定實施射Τι _ Τ2·0 °c,在特定實施例中Tl Ki〇(rc,在特定實施例中Τι _ T2^8(TC。 使用比正規運作階段溫度㈤還高溫度㈤可以被認 為縮短Μ階段對局面的排氣時間。因為Τι=Τ2的排氣^ 段可能很冗長(譬如超過5個星期),即使排氣時間小部^的 減少,都可能造成系統生產綱鴨的延長,改進整個生產 0.量。在本發明處理的特定實施範例中,排氣階段二續時 間從10到800小時,在特定實施例中從3〇到_小時, 實施例中30-700小時,在特定實施例中3〇,小時,在特 實施例中30-500小時,在特定實施例中3〇_4〇〇小時,在特 實施例中30-300小時,在特定實施例中5〇,〇小時,在特定 實施例中50—600小時,在特定實施例中50-500小時|在特定 實施例中50-400小時,在特定實施例中5〇_3〇〇小 實施例中50-250小時。 ’、 以下非限制性的範例更進一步說明申請專利範圍之本 14 201034982 發明。 因此’例如在特定實施範例巾,為了減少玻璃片内排氣 氣泡的量可在玻璃輸送到等管112之前,將等管112和輸送 .容器110加熱到正規運作溫度以上。接著在正規生產期間, 以大約50%的黏滯係數將融態玻璃輸送到等管112,一方面 將形成管112定位在圖3所示線刚的數值參考位置。這個 位置可稱為等管根部136的零參考位置,位在平行於水平線 〇或轉讀力拖拉的位置。 在特定實施例中,在排氣階段當玻璃、熔融物沖離等管 表面時’特定選擇玻璃成分的玻璃溶融物黏滯係數是約 8000 泊。 加熱黏滯係數玻璃以達最低液相黏度的上升溫度應該 不會造成等官和玻璃輸送系統令人不喜歡的傷害。例如, 當玻璃是以Pt系統輸送時,玻魏融物的最高溫度,因而是 玻璃炼融物的最低黏滯健受限於Pt可運作的溫度範圍。 〇 純定實施範辦,玻璃熔融物通過在等管—端的入 口進入等管。相反一端稱為壓縮端144。向下傾斜是指當 7成管的壓縮端144低於入口端146,或等管112的根部136 ^以一個負向角度相對於圖4所示的水平線。向上傾斜是 ‘當等管的壓縮端144高於人口端146。等管根部是以一個 正向角度相對於圖5所示的水平線。 g在正規運作階段,以大約50%的正規運作黏滯係數將熔 融破璃加熱並輸送到等管112時,等管112是向下傾斜到圖4 所示的向下傾斜位置。可使黏滯係數玻璃流動並覆蓋等管 15 201034982 特定區域需要12-48小時的時間。在向下傾斜的期間,朝向 相對於入口 13〇的端點144的一部份(譬如大約三分之一)°等 - 官可以被玻璃炫融物覆蓋住。在向下傾斜運作時_ 5。&lt; . 0 &lt;0°,在特定實施範例中,-3。^ 0 &lt; 〇。。 在向下傾斜的位置一段既定的時間之後,接著將等管 向上傾斜,增加溫度到大約66%的運作黏滯係數,經過d4 ,的時間,使得在玻璃輸送的端點13〇上,玻璃得以潤濕 ❹專ί的σ卩伤(譬如大約1/3)。在向上傾斜的位置,〇。〈θ $5°,在特定實施範例中,〇。&lt;0^3。。當等管丨a固定 在這個位置12到24小時時,剩餘的玻璃仍然會接觸等管開 始濕潤的表面,並繼續和等管丨12孔隙中的空氣交換。 在向上傾斜步驟的最後,讓等管來到運作位置,玻璃熔 融物和等管來到運作溫度。可_整玻璃熔融物的流速 使甘其適合正規運作階段的需要。這時可以開始正常的生產 ,提供包含最小化缺陷的玻璃片。 〇 雖然本發明在此已對特定實施例作說明,人們瞭解這 些實施例只作為說明本發明原理以及應用。因而人們瞭解 列舉性實施例能夠作許多變化以及能夠設計出其他排列而 並,會脫離下列中請專概圍界定出本發明精神及原理。 應該只受限於下列申請專利範圍。 【圖式簡單說明】 本發明各項制地參考下_圖制地加以說明,這 些附圖顯示出本發明之範舰實施例。 圖1為方塊圖,其顯示出本發明範例性玻璃製造系統。 16 201034982 圖2為製造平板玻璃片之 中等管透視示意圖。 蹄融合處理過程 圖3為圖2水平位置等管之示意透視圖。 =2第一傾斜位置等管之示意透視圖。 圖5為圖2第二傾斜位置等瞢 r^ ^ . L 号^之不意透視圖。 【主要兀件符號說明】 玻璃製造系統100;玻璃片1n9 a —1ΛΡ W l02;炫融容器104;澄清 Ο 谷裔⑽;混合容器職輸送容器U0;形成容器112;箭 頭m·,融態玻璃m;連接管m;連接管哪降流管 122;入口 124;開π 130;溝容器 132;兩邊 i34a i34b;根 部136;線140,142;壓縮端144;入口端146。Tl _ Μ〇 (Γ〇 ' ' 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了 为了In a particular embodiment Tl - T2_(rc, in a particular implementation Τι Τ2·0 °c, in a particular embodiment Tl Ki〇(rc, in a particular embodiment Τι _ T2^8 (TC. used more than regular The operating temperature (5) and the high temperature (5) can be considered as shortening the exhaust time of the situation in the Μ phase. Because the exhaust section of Τι=Τ2 may be very lengthy (for example, more than 5 weeks), even if the exhaust time is small Both may result in an extension of the system production duck, improving the overall production. In a particular embodiment of the process of the invention, the exhaust phase is continued for a duration of from 10 to 800 hours, in a particular embodiment from 3 to _ Hour, 30-700 hours in the examples, 3 Torr in a particular embodiment, 30-500 hours in a particular embodiment, 3 〇 4 〇〇 hours in a particular embodiment, 30- in a particular embodiment 300 hours, in a particular embodiment 5 〇, 〇 hours, in a particular embodiment 5 0-600 hours, 50-500 hours in a particular embodiment | 50-400 hours in a particular embodiment, 50-250 hours in a small embodiment in a particular embodiment. ', the following non-restricted The example of the nature further clarifies the invention of the present invention. The invention of the invention of the invention of the present invention, for example, is to be used for the purpose of reducing the amount of venting air bubbles in the glass sheet before the glass is conveyed to the equal tube 112, and the tube 112 and the conveying are carried out. The vessel 110 is heated above the normal operating temperature. Then, during normal production, the molten glass is conveyed to the equal tube 112 with a viscosity coefficient of about 50%, and on the one hand the tube 112 is positioned at the value of the line shown in Fig. 3. Reference position. This position may be referred to as the zero reference position of the equal tube root 136, in a position parallel to the horizontal line 转 or the transfer force drag. In a particular embodiment, the glass, melt rushed away, etc. during the venting phase When the surface is 'specifically selected glass composition, the viscosity coefficient of the glass melt is about 8000 poise. Heating the viscous coefficient glass to reach the minimum liquid viscosity rise temperature should not cause the official and glass delivery system order Do not like the damage. For example, when the glass is transported by the Pt system, the maximum temperature of the glass melt, and thus the minimum viscosity of the glass smelt is limited by the temperature range in which Pt can operate. The glass melt enters the equal tube at the inlet of the equal tube end. The opposite end is referred to as the compression end 144. The downward tilt means that when the compressed end 144 of the 7 tube is lower than the inlet end 146, or the root 136 of the tube 112 ^ is at a negative angle relative to the horizontal line shown in Figure 4. The upward tilt is 'when the compression end 144 of the equal tube is higher than the population end 146. The tube root is at a positive angle relative to the horizontal line shown in Figure 5. g In the normal operation phase, when the melted glass is heated and conveyed to the equal pipe 112 with a normal operating viscosity coefficient of about 50%, the pipe 112 is tilted downward to the downwardly inclined position shown in FIG. The viscous glass can be flowed and covered with equal tubes. 15 201034982 A specific area takes 12-48 hours. During the downward tilting, a portion (e.g., about one-third) of the end point 144 with respect to the inlet 13〇 can be covered by the glass swarf. _ 5 when working tilt down. &lt; . 0 &lt; 0°, in a particular embodiment, -3. ^ 0 &lt; 〇. . After a sloping position for a predetermined period of time, the equal tube is then tilted upwards, increasing the temperature to a working viscous coefficient of approximately 66%, and after d4, the glass is allowed to pass over the end of the glass transport. Wet ❹ 的 的 譬 譬 譬 譬 譬 譬 譬 譬 譬 譬 譬 譬In the position that is tilted upwards, hehe. < θ $5°, in a particular embodiment, 〇. &lt;0^3. . When the equal pressure tube a is fixed at this position for 12 to 24 hours, the remaining glass will still contact the surface where the tube starts to wet and continue to exchange air with the pores of the tube 12 . At the end of the upward tilting step, let the tubes come to the operating position, the glass melt and the tubes come to the operating temperature. The flow rate of the glass melt can be adapted to the needs of the regular operating phase. At this point, normal production can begin, providing a piece of glass containing minimal defects. Although the present invention has been described herein with respect to specific embodiments, these embodiments are understood to be illustrative of the principles and applications of the invention. Thus, it is understood that the exemplary embodiments are capable of various modifications and embodiments and It should be limited only to the scope of the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS The various embodiments of the present invention are described with reference to the following drawings, which show exemplary embodiments of the present invention. 1 is a block diagram showing an exemplary glass manufacturing system of the present invention. 16 201034982 Figure 2 is a schematic perspective view of a medium tube for the manufacture of flat glass sheets. Hoof fusion processing Fig. 3 is a schematic perspective view of the tube in the horizontal position of Fig. 2. = 2 is a schematic perspective view of the tube at the first tilt position. Figure 5 is a perspective view of the second inclined position of Figure 2, such as ^r^^.L. [Description of main components] Glass manufacturing system 100; glass sheet 1n9 a -1ΛΡ W l02; dazzling container 104; clarification Ο Gu (10); mixing container transport container U0; forming container 112; arrow m ·, molten glass m; connection tube m; connection tube which downflow tube 122; inlet 124; opening π 130; groove container 132; both sides i34a i34b; root 136; line 140, 142; compression end 144; inlet end 146.

1717

Claims (1)

201034982 七、申請專利範圍 1. 了種製造玻璃物件的處理触,其包括叫始排氣耐火 材^表©接觸麵細物,其包括在正騎作階段之前的 •排氣Μ又,其中.⑴在排氣階段接觸耐火材料的玻璃溶融 物有771的平均黏滞係數,⑴)在正規運作階段接觸耐火材 料的玻雜融物有㈣平均歸餘,和(i 比值至少為1.05。 2. 依據申請專利範圍第丨項之製造賴物件處理過程,其中 接觸玻璃炫融物之耐火材料包含陶瓷。 3. 依據申請專利範圍第丨或2項之製造玻璃物件處理過程, 其中接觸玻_轉謂火漏包含_,其祕石,氧化’ 錯,ΥΡ〇4, ΑΙΑ, Si〇2, Sic,SiN,和其組合及混合物選取出。 4·依射請專利細第丨或2項之製造朗物件處理過程 其中該處理過程為製造玻璃片融合向下抽拉處理過程,以’ 及财火材料包含等管。 〇 5•依射請專利範圍第丨或2項之製造玻璃物件處理過程, 其中排讀段之期間足以使玻璃炫融物覆蓋耐火材料表面 之全部面積,該面積為正規運作階段玻璃溶融物接觸之面 積。 6·依據中請專利翻第4項之製造_物件處理過程其中 排氣階段包含相對於正規運作階段位置傾斜等管之步驟、 其傾斜角度為Θ,其中-5°〈θ$5。。 々’ 7.依據申請專利範圍第6項之製造破璃物件處理過程,其中 -5°&lt;θ S3。。 ’、 18 201034982 8.依據申請專利範圍第6項之製造玻璃物件處理過程,其令 排氣階段包含第一傾斜步驟,其申-5°&lt;θ$〇。,以及第一 - 傾斜步驟,其中〇°&lt;θ$5°。 • 9.依據申請專利範圍第1或2項之製造玻璃物件處理過程, 其中7?21000泊。 ’ 10.依據申請專利範圍第1或2項之製造玻璃物件處理過程, 其中在排氣階段玻璃熔融物平均流動率為FR1,在正規運作 Q階段玻璃熔融物平均流動率為FR2,以及FR1/FR2比值為〇· 2 11.依據巾請專概_丨或2項之製造玻璃物件處理過程, 其中對應着玻璃炼融物黏滯係數π2之溫度Tz至少為麵 c。201034982 VII. Patent application scope 1. The processing touch for manufacturing glass objects, including the starting exhaust refractory material, the surface of the contact surface, including the exhaust gas before the riding stage, (1) The glass fused material in contact with the refractory during the exhaust phase has an average viscosity coefficient of 771, (1)) the glassy melt that contacts the refractory material during the normal operation phase has (4) average remnant, and (i ratio is at least 1.05. The manufacturing process of the article of the third paragraph of the patent application process, wherein the refractory material contacting the glass glaze comprises ceramics. 3. The process of manufacturing the glass object according to the scope of claim 2 or 2, wherein the contact glass is turned into a fire The leak contains _, its secret stone, oxidized 'wrong, ΥΡ〇4, ΑΙΑ, Si〇2, Sic, SiN, and its combination and mixture are selected. 4. According to the shot, please make a fine article or a second item. The process is a process of manufacturing a glass sheet fusion down-drawing process, and the tube and the fossil material contain the same tube. 〇5• According to the patent, the scope of the patent or the second item of the glass object processing process, The period of the middle reading section is sufficient for the glass dazzling to cover the entire area of the surface of the refractory material, which is the area of contact with the glass melt in the normal operation stage. 6. According to the patent application, the manufacture of the fourth item is _ the object processing process The exhaust phase includes a step of tilting the tube relative to the position of the normal operation phase, and the inclination angle thereof is Θ, where -5° < θ $5. 々 ' 7. According to the scope of the patent application, the manufacturing process of the glass article, Wherein -5 ° &lt; θ S3 . . , 18 201034982 8. The glass article processing process according to claim 6 of the patent application, wherein the exhaust phase comprises a first tilting step, which is -5° &lt; θ$ 〇., and the first-tilt step, where 〇° &lt;θ$5°. • 9. According to the scope of claim 1 or 2 of the manufacturing of glass articles, 7 to 21,000 poises. ' 10. Patent application The glass article processing process of the first or second aspect, wherein the average flow rate of the glass melt in the exhaust stage is FR1, and the average flow rate of the glass melt in the normal operation Q stage is FR2, and the ratio of FR1/FR2 is 〇· 2 11. According to the towel, please specialize in the manufacturing process of glass objects. The temperature Tz corresponding to the viscosity coefficient π2 of the glass smelting is at least c. 13·依據申請專利範圍第1 其中排氣階段_為1(^ 依據申請翻範圍第1或2項之製造玻無件處理過程, 其中對應於玻璃炫融物黏滯係數7? !之溫度Ti以及對應於 之溫度T2具有下列關係: 1或2項之製造玻璃物件處理過程, 至800小時。 1913. According to the scope of the patent application, the exhaust phase _ is 1 (^ according to the application of the range of the first or the second item of the glass processing process, which corresponds to the temperature of the glass viscous viscous coefficient 7? And corresponding to the temperature T2 has the following relationship: 1 or 2 of the process of manufacturing the glass article, up to 800 hours.
TW098139657A 2008-11-24 2009-11-20 Isopipe material outgassing TWI388519B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11726708P 2008-11-24 2008-11-24

Publications (2)

Publication Number Publication Date
TW201034982A true TW201034982A (en) 2010-10-01
TWI388519B TWI388519B (en) 2013-03-11

Family

ID=42322514

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098139657A TWI388519B (en) 2008-11-24 2009-11-20 Isopipe material outgassing

Country Status (4)

Country Link
JP (1) JP5424833B2 (en)
KR (1) KR101644645B1 (en)
CN (1) CN101774749B (en)
TW (1) TWI388519B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI565668B (en) * 2011-04-29 2017-01-11 康寧公司 Apparatus for making a glass article and methods

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101862764A (en) * 2010-04-07 2010-10-20 雷丙旺 Method for manufacturing large-diameter thick-wall seamless steel pipe
US8210001B2 (en) * 2010-11-10 2012-07-03 Corning Incorporated Method of producing uniform light transmission fusion drawn glass
US9073773B2 (en) * 2011-03-11 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US9174874B2 (en) 2011-03-30 2015-11-03 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process of forming and using the refractory object
MY185000A (en) 2011-04-13 2021-04-30 Saint Gobain Ceramics Refractory object including beta alumina and processes of making and using the same
EP2802543B1 (en) 2012-01-11 2019-06-05 Saint-Gobain Ceramics & Plastics, Inc. Refractory object
US9162919B2 (en) * 2012-02-28 2015-10-20 Corning Incorporated High strain point aluminosilicate glasses
KR20160107281A (en) * 2014-01-15 2016-09-13 코닝 인코포레이티드 Method of making glass sheets with gas pretreatment of refractory
WO2016138111A1 (en) 2015-02-24 2016-09-01 Saint-Gobain Ceramics & Plastics, Inc. Refractory article and method of making

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247647A (en) 1999-02-26 2000-09-12 Asahi Glass Co Ltd Furnace material for vacuum deaerating apparatus for molten glass and vacuum deaerating apparatus
CN1289416C (en) * 2001-12-21 2006-12-13 康宁股份有限公司 Process for producing sheet glass by the overflow downdraw fusion process
DE10203660A1 (en) 2002-01-30 2003-08-07 Schott Glas Component intended for a plant for the production or processing of glass melts
JP4977965B2 (en) * 2005-05-02 2012-07-18 旭硝子株式会社 Alkali-free glass and method for producing the same
KR20080036163A (en) * 2005-08-19 2008-04-25 니폰 덴키 가라스 가부시키가이샤 Heat resistant material for glass melting, glass article producing apparatus, and process for producing glass article
DE102005039919B9 (en) * 2005-08-24 2010-01-21 Schott Ag Process for refining a glass melt
CN101443284B (en) * 2006-05-10 2013-06-12 旭硝子株式会社 Float glass for display substrate and method for producing it
WO2008103250A1 (en) 2007-02-22 2008-08-28 Corning Incorporated Process to preserve isopipe during coupling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI565668B (en) * 2011-04-29 2017-01-11 康寧公司 Apparatus for making a glass article and methods

Also Published As

Publication number Publication date
KR20100058409A (en) 2010-06-03
KR101644645B1 (en) 2016-08-01
JP2010120845A (en) 2010-06-03
CN101774749B (en) 2014-06-18
CN101774749A (en) 2010-07-14
JP5424833B2 (en) 2014-02-26
TWI388519B (en) 2013-03-11

Similar Documents

Publication Publication Date Title
TW201034982A (en) Isopipe material outgassing
KR101968363B1 (en) Apparatus and Method for Forming Glass Sheets
TWI272257B (en) Glass smelting furnace and manufacturing method of glass
JP5121460B2 (en) Method for manufacturing molded article, closing member and molding apparatus including the same
US8033137B2 (en) Process to preserve isopipe during coupling
TW201040115A (en) Apparatus and method for reducing gaseous inclusions in a glass
JP2011505319A (en) Fire resistant creep resistant multilayers used in glass manufacturing systems
TW200918476A (en) Preform production apparatus for precision press molding, production method of a preform for precision press molding and production method of an optical element
KR20190095415A (en) Method and apparatus for managing glass ribbon cooling
JP6586096B2 (en) Glass sheet preparation method including gas pretreatment of refractory
JP2019518703A (en) Device and method for directing glass supply
TW201925109A (en) Apparatus and methods for producing glass
TW201141804A (en) Molten glass supply device
TW200844058A (en) A manufacturing apparatus of optical device and a method of manufacturing optical device
TW201728540A (en) Glass manufacturing method for reduced particle adhesion
JP2020520875A (en) Refractory articles, compositions for coating refractory articles, and methods of making refractory articles
JP6608308B2 (en) Method for heat treatment of glass substrate
JP7437606B2 (en) Manufacturing method of filament lamp
TWI826432B (en) Exhaust conduits for glass melt systems
CN112384480A (en) Apparatus and method for manufacturing glass article
JPH11343126A (en) Production of blank for press forming and production of optical element
JPH09194221A (en) Die for forming glass optical element and forming method
TW202417385A (en) Apparatus and method for manufacturing a glass article
TW202413298A (en) Glass scoring apparatus and method
TW202342382A (en) Glass melting furnaces and vessels with improved electrical resistivity