TW202417385A - Apparatus and method for manufacturing a glass article - Google Patents

Apparatus and method for manufacturing a glass article Download PDF

Info

Publication number
TW202417385A
TW202417385A TW112140365A TW112140365A TW202417385A TW 202417385 A TW202417385 A TW 202417385A TW 112140365 A TW112140365 A TW 112140365A TW 112140365 A TW112140365 A TW 112140365A TW 202417385 A TW202417385 A TW 202417385A
Authority
TW
Taiwan
Prior art keywords
melting furnace
connecting conduit
conduit
glass
heating element
Prior art date
Application number
TW112140365A
Other languages
Chinese (zh)
Inventor
拉席德 阿杜爾拉曼
金振洙
布萊恩邁克爾 帕爾默
Original Assignee
美商康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商康寧公司 filed Critical 美商康寧公司
Publication of TW202417385A publication Critical patent/TW202417385A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/02Forehearths, i.e. feeder channels
    • C03B7/06Means for thermal conditioning or controlling the temperature of the glass
    • C03B7/07Electric means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • C03B5/1672Use of materials therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • C03B5/1672Use of materials therefor
    • C03B5/1675Platinum group metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/26Outlets, e.g. drains, siphons; Overflows, e.g. for supplying the float tank, tweels

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

An apparatus and method for manufacturing a glass article include a glass melting furnace in fluid communication with a connecting conduit, a first annular sealing element circumferentially surrounding the connecting conduit at an interface of the glass melting furnace and the connecting conduit, and an annular heating element circumferentially surrounding the connecting conduit and separated from the first annular sealing element by a predetermined distance along an axial length of the connecting conduit.

Description

用於製造玻璃製品的設備和方法Apparatus and method for manufacturing glass products

相關申請的交叉引用Cross-references to related applications

本專利申請案請求2022年10月25日申請的美國臨時申請序號63/419122在專利法下的優先權權益,所述美國臨時申請的內容被依賴並且以引用方式整體併入本文中。This patent application claims the benefit of priority under patent law to U.S. provisional application Serial No. 63/419122, filed on October 25, 2022, the contents of which are relied upon and incorporated herein by reference in their entirety.

本案內容一般而言涉及用於製造玻璃製品的設備和方法,並且更具體而言涉及具有改進的熔融玻璃輸送特性的用於製造玻璃製品的設備和方法。The present invention relates generally to apparatus and methods for making glass products, and more particularly to apparatus and methods for making glass products having improved molten glass delivery characteristics.

在諸如用於包括電視和掌上型裝置,諸如電話和平板電腦的顯示應用的玻璃板片的玻璃製品的生產中,熔融材料通常藉由一或多個導管運輸,所述一或多個導管諸如由諸如鉑的貴金屬組成的導管。此類導管可例如藉由電動法蘭直接加熱,所述電動法蘭包含沿圓周包圍導管的金屬材料。在此加熱期間,導管腐蝕可導致各種不希望的後果,諸如玻璃洩漏、功率法蘭故障、程序停機和熔融玻璃污染。In the production of glass products such as glass sheets for display applications including televisions and handheld devices such as phones and tablet computers, molten material is often transported through one or more conduits, such as conduits composed of a precious metal such as platinum. Such conduits may be directly heated, for example, by an electric flange comprising a metal material that circumferentially surrounds the conduit. During this heating, corrosion of the conduit can lead to various undesirable consequences, such as glass leaks, power flange failures, process downtime, and contamination of the molten glass.

本文公開的實施方式包括用於製造玻璃製品的設備。所述設備包括與連接導管流體連通的玻璃熔化爐。所述設備還包括第一環形密封元件,所述第一環形密封元件在所述玻璃熔化爐和所述連接導管的介面處沿圓周包圍所述連接導管。另外,所述設備包括環形加熱元件,所述環形加熱元件沿圓周包圍所述連接導管並且沿所述連接導管的軸向長度與所述第一環形密封元件分開預定距離。Embodiments disclosed herein include an apparatus for manufacturing glass products. The apparatus includes a glass melting furnace in fluid communication with a connecting conduit. The apparatus also includes a first annular sealing element circumferentially surrounding the connecting conduit at an interface between the glass melting furnace and the connecting conduit. In addition, the apparatus includes an annular heating element circumferentially surrounding the connecting conduit and separated from the first annular sealing element by a predetermined distance along the axial length of the connecting conduit.

本文公開的實施方式還包括製造玻璃製品的方法。所述方法包括將熔融玻璃從玻璃熔化爐流動至連接導管,其中第一環形密封元件在所述玻璃熔化爐和所述連接導管的介面處沿圓周包圍所述連接導管。所述方法還包括用環形加熱元件加熱所述連接導管,所述環形加熱元件沿圓周包圍所述連接導管並且沿所述連接導管的軸向長度與所述第一環形密封元件分開預定距離。Embodiments disclosed herein also include methods of making glass articles. The method includes flowing molten glass from a glass melting furnace to a connecting conduit, wherein a first annular sealing element circumferentially surrounds the connecting conduit at an interface of the glass melting furnace and the connecting conduit. The method also includes heating the connecting conduit with an annular heating element, the annular heating element circumferentially surrounds the connecting conduit and is separated from the first annular sealing element by a predetermined distance along the axial length of the connecting conduit.

本文公開的實施方式的額外特徵和優點將在以下詳細描述中加以闡述,並且部分地將為本領域技術技藝人士根據描述顯而易見的,或藉由實踐如本文描述的包括以下詳細描述、申請專利範圍,以及附圖的所公開實施方式辨別。Additional features and advantages of the embodiments disclosed herein will be set forth in the following detailed description, and in part will be apparent to those skilled in the art from the description, or discernible by practicing the disclosed embodiments as described herein, including the following detailed description, the scope of the claims, and the accompanying drawings.

將理解,先前一般描述和以下詳細描述兩者呈現意圖提供用於理解所要求的實施方式的屬性和特性的概述或框架的實施方式。附圖被包括來提供進一步理解並且併入且構成本說明書的一部分。附圖例示本案內容的各種實施方式,並且與描述一起用來解釋其原理和操作。It will be understood that both the foregoing general description and the following detailed description are presented to provide an overview or framework for understanding the nature and characteristics of the claimed embodiments. The accompanying drawings are included to provide a further understanding and are incorporated into and constitute a part of this specification. The accompanying drawings illustrate various embodiments of the present invention and together with the description serve to explain its principles and operation.

現將詳細地參考本案內容的優選實施方式,其示例例示於附圖中。在任何可能的情況下,相同元件符號將貫穿附圖用來代表相同或類似部分。然而,本案內容可以許多不同形式加以體現並且不應被視為限於本文闡述的實施方式。Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numerals will be used throughout the drawings to represent the same or similar parts. However, the present invention may be embodied in many different forms and should not be considered limited to the embodiments described herein.

範圍可在本文中表達為從「約」一個特定值,及/或至「約」另一特定值。當此範圍被表達時,另一實施方式包括從一個特定值及/或至另一特定值。類似地,當值表達為近似值時,例如藉由使用先行詞「約」,將理解,特定值形成另一實施方式。將進一步理解,範圍中的每一個的端點為相對於另一端點,並且獨立於另一端點顯著的。Ranges may be expressed herein as from "about" one particular value, and/or to "about" another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, such as by use of the antecedent "about," it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant relative to the other endpoint, and independently of the other endpoint.

如本文中所使用的方向術語——例如上、下、右、左、前、後、頂部、底部——僅參考如所圖示的附圖進行,並且決不意圖暗示絕對定向。Directional terms as used herein—eg, up, down, right, left, front, back, top, bottom—are made with reference only to the drawings as illustrated and are in no way intended to imply an absolute orientation.

除非另有明確陳述,否則本文中闡述的任何方法決不意圖視為要求其步驟以特定循序執行,也不欲要求任何設備特定的定向。因此,在方法請求項未實際敘述將由其步驟遵循的順序,或任何設備請求項未實際敘述單獨部件的順序或定向,或未在申請專利範圍或描述中以其他方式明確陳述步驟將限於特定順序,或設備的部件的特定順序或定向未被敘述的情況下,決不意圖在任何方面推斷順序或定向。這適用於任何可能的非表達的解釋基礎,包括:關於步驟的配置、操作流程、部件的順序,或部件的定向的邏輯問題;源自語法組織或標點的普通意義,和說明書中描述的實施方式的數目及類型。Unless expressly stated otherwise, any method described herein is in no way intended to require that its steps be performed in a particular order, nor is it intended to require any particular orientation of any apparatus. Thus, in the event that a method claim does not actually state an order to be followed by its steps, or any apparatus claim does not actually state an order or orientation of individual components, or is not otherwise expressly stated in the claims or description that the steps are to be limited to a particular order, or a particular order or orientation of components of an apparatus is not stated, no order or orientation is intended to be inferred in any respect. This applies to any possible non-expressive basis for interpretation, including: logical matters regarding the arrangement of steps, operational flow, sequence of components, or orientation of components; plain meaning derived from grammatical organization or punctuation, and the number and type of implementations described in the specification.

如本文中所使用,單數形式「一」、「一種」及「所述」包括複數指示物,除非上下文另有清楚地規定。因而,例如,對「一」部件的涉及包括具有兩個或更多個此類部件的態樣,除非上下文另外清楚地指示。As used herein, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a" component includes aspects having two or more such components unless the context clearly dictates otherwise.

圖1中示出的是示範性玻璃製造設備10。在一些示例中,玻璃製造設備10可包括玻璃熔化爐12,所述玻璃熔化爐可包括熔化容器14。除熔化容器14之外,玻璃熔化爐12可任選地包括諸如加熱元件(例如,燃燒器或電極)的一或多個額外部件,所述加熱元件加熱原材料並且將原材料轉換成熔融玻璃。在進一步示例中,玻璃熔化爐12可包括熱管理裝置(例如,隔熱部件),所述熱管理裝置降低來自熔化容器附近的熱損失。在更進一步示例中,玻璃熔化爐12可包括電子裝置及/或機電裝置,所述電子裝置及/或機電裝置促進原材料熔融成玻璃熔體。更進一步,玻璃熔化爐12可包括支撐結構(例如,支撐底盤、支撐構件等)或其他部件。Shown in FIG. 1 is an exemplary glass manufacturing apparatus 10. In some examples, the glass manufacturing apparatus 10 may include a glass melting furnace 12, which may include a melting vessel 14. In addition to the melting vessel 14, the glass melting furnace 12 may optionally include one or more additional components such as heating elements (e.g., burners or electrodes) that heat the raw materials and convert the raw materials into molten glass. In a further example, the glass melting furnace 12 may include a thermal management device (e.g., an insulation component) that reduces heat loss from the vicinity of the melting vessel. In a further example, the glass melting furnace 12 may include electronic devices and/or electromechanical devices that promote the melting of the raw materials into a glass melt. Furthermore, the glass melting furnace 12 may include a support structure (eg, a support base, support members, etc.) or other components.

玻璃熔化容器14通常由耐火材料組成,所述耐火材料諸如耐火陶瓷材料,例如包含氧化鋁或氧化鋯的耐火陶瓷材料。在一些示例中,玻璃熔化容器14可由耐火陶瓷磚構造。以下將更詳細地描述玻璃熔化容器14的特定實施方式。The glass melting vessel 14 is typically composed of a refractory material, such as a refractory ceramic material, for example, a refractory ceramic material containing alumina or zirconia. In some examples, the glass melting vessel 14 can be constructed of refractory ceramic bricks. Specific embodiments of the glass melting vessel 14 will be described in more detail below.

在一些示例中,玻璃熔化爐可作為玻璃製造設備的部件併入,以製造玻璃基板,例如連續長度的玻璃帶。在一些示例中,本案內容的玻璃熔化爐可作為玻璃製造設備的部件併入,所述玻璃製造設備包括槽拉(slot draw)設備、浮法浴設備、下拉設備(諸如熔合程序)、上拉設備、壓軋設備、拉管設備或將受益於本文公開的態樣的任何其他玻璃製造設備。例如,圖1示意性地例示作為用於將用於後續處理的玻璃帶熔合拉拔成單獨玻璃板片的熔合下拉玻璃製造設備10的部件的玻璃熔化爐12。In some examples, a glass melting furnace can be incorporated as a component of a glass manufacturing apparatus to produce glass substrates, such as continuous lengths of glass ribbon. In some examples, a glass melting furnace of the present invention can be incorporated as a component of a glass manufacturing apparatus, including a slot draw apparatus, a float bath apparatus, a down draw apparatus (such as a fusion process), an up draw apparatus, a roll apparatus, a tube drawing apparatus, or any other glass manufacturing apparatus that would benefit from the aspects disclosed herein. For example, FIG. 1 schematically illustrates a glass melting furnace 12 as a component of a fusion down draw glass manufacturing apparatus 10 for fusion drawing a glass ribbon for subsequent processing into individual glass sheets.

玻璃製造設備10 (例如,熔合下拉設備10)可任選地包括上游玻璃製造設備16,所述上游玻璃製造設備相對於玻璃熔化容器14定位於上游。在一些示例中,上游玻璃製造設備16的一部分或整個上游玻璃製造設備可作為玻璃熔化爐12的部分併入。The glassmaking apparatus 10 (e.g., fusion down-draw apparatus 10) may optionally include an upstream glassmaking apparatus 16 positioned upstream relative to the glass melting vessel 14. In some examples, a portion of the upstream glassmaking apparatus 16 or the entire upstream glassmaking apparatus may be incorporated as part of the glass melting furnace 12.

如所示的示例中所示,上游玻璃製造設備16可包括儲料倉18、原材料輸送裝置20和連接至原材料傳送裝置的馬達22。儲料倉18可被設置以儲存一定數量的原材料24,所述原材料可被進料至玻璃熔化爐12的熔化容器14中,如藉由箭頭26所指示。原材料24通常包含一或多個玻璃形成金屬氧化物和一或多個改性劑。在一些示例中,原材料輸送裝置20可藉由馬達22提供動力,使得原材料輸送裝置20將預定量的原材料24從儲料倉18輸送至熔化容器14。在進一步示例中,馬達22可對原材料輸送裝置20提供動力,以基於在熔化容器14下游感測的熔融玻璃的位凖來以控制的速率引入原材料24。熔化容器14內的原材料24此後可被加熱以形成熔融玻璃28。As shown in the illustrated example, the upstream glass manufacturing equipment 16 may include a storage bin 18, a raw material delivery device 20, and a motor 22 connected to the raw material delivery device. The storage bin 18 may be configured to store a certain amount of raw material 24, which can be fed into the melting vessel 14 of the glass melting furnace 12, as indicated by arrow 26. The raw material 24 typically includes one or more glass-forming metal oxides and one or more modifiers. In some examples, the raw material delivery device 20 may be powered by the motor 22 so that the raw material delivery device 20 delivers a predetermined amount of raw material 24 from the storage bin 18 to the melting vessel 14. In a further example, the motor 22 may power the raw material delivery device 20 to introduce the raw material 24 at a controlled rate based on the position of the molten glass sensed downstream of the melting vessel 14. The raw material 24 within the melting vessel 14 may then be heated to form a molten glass 28 .

玻璃製造設備10可還任選地包括相對於玻璃熔化爐12定位於下游的下游玻璃製造設備30。在一些示例中,下游玻璃製造設備30的一部分可作為玻璃熔化爐12的部分併入。在一些情況下,以下討論的第一連接導管32,或下游玻璃製造設備30的其他部分,可作為玻璃熔化爐12的部分併入。下游玻璃製造設備的元件,包括第一連接導管32,可由貴金屬形成。合適的貴金屬包括選自由鉑、銥、銠、鋨、釕和鈀或其合金組成的金屬組的鉑族金屬。例如,玻璃製造設備的下游部件可由包括以重量計約70%至約90%的鉑和以重量計約10%至約30%的銠的鉑銠合金形成。然而,其他合適的金屬可包括鉬、鈀、錸、鉭、鈦、鎢和其合金。The glassmaking apparatus 10 may further optionally include a downstream glassmaking apparatus 30 positioned downstream relative to the glass melting furnace 12. In some examples, a portion of the downstream glassmaking apparatus 30 may be incorporated as part of the glass melting furnace 12. In some cases, the first connecting conduit 32 discussed below, or other portions of the downstream glassmaking apparatus 30, may be incorporated as part of the glass melting furnace 12. Elements of the downstream glassmaking apparatus, including the first connecting conduit 32, may be formed of a precious metal. Suitable precious metals include a platinum group metal selected from the group of metals consisting of platinum, iridium, rhodium, zirconium, ruthenium, and palladium, or alloys thereof. For example, downstream components of glass manufacturing equipment may be formed from a platinum-rhodium alloy including about 70% to about 90% by weight platinum and about 10% to about 30% by weight rhodium. However, other suitable metals may include molybdenum, palladium, rhodium, tantalum, titanium, tungsten, and alloys thereof.

下游玻璃製造設備30可包括第一調節(即,處理)槽,諸如澄清槽34,所述第一調節槽位於熔化容器14下游並且藉由以上涉及的第一連接導管32耦接至熔化容器14。在一些示例中,熔融玻璃28可藉由第一連接導管32從熔化容器14重力進料至澄清槽34。例如,重力可使熔融玻璃28通過第一連接導管32的內部路徑從熔化容器14傳送至澄清槽34。然而,應理解,其他調節槽可定位於熔化容器14下游,例如在熔化容器14與澄清槽34之間。在一些實施方式中,調節槽可使用在熔化容器與澄清槽之間,其中來自初級熔化容器的熔融玻璃被進一步加熱以繼續熔融程序,或在進入澄清槽之前冷卻至低於熔化容器中的熔融玻璃的溫度的溫度。The downstream glassmaking equipment 30 may include a first conditioning (i.e., processing) tank, such as a clarification tank 34, located downstream of the melting vessel 14 and coupled to the melting vessel 14 via the first connecting conduit 32 referred to above. In some examples, the molten glass 28 may be gravity fed from the melting vessel 14 to the clarification tank 34 via the first connecting conduit 32. For example, gravity may cause the molten glass 28 to be transferred from the melting vessel 14 to the clarification tank 34 through the internal path of the first connecting conduit 32. However, it should be understood that other conditioning tanks may be located downstream of the melting vessel 14, such as between the melting vessel 14 and the clarification tank 34. In some embodiments, the conditioning tank may be used between the melting vessel and the clarification tank, where the molten glass from the primary melting vessel is further heated to continue the melting process, or cooled to a temperature lower than the temperature of the molten glass in the melting vessel before entering the clarification tank.

氣泡可藉由各種技術從澄清槽34內的熔融玻璃28移除。例如,原材料24可包括諸如氧化錫的多價化合物(即澄清劑),所述多價化合物當加熱時,經歷化學還原反應並且釋放氧。其他合適的澄清劑無限制地包括砷、銻、鐵和鈰。澄清槽34被加熱至大於熔化容器溫度的溫度,因此加熱熔融玻璃和澄清劑。藉由澄清劑(多個)的溫度誘導化學還原產生的氧氣泡藉由澄清槽內的熔融玻璃上升,其中在熔化爐中產生的熔融玻璃中的氣體可擴散或聯合至藉由澄清劑產生的氧氣泡中。增大的氣泡然後可上升至澄清槽中的熔融玻璃的自由表面並且此後被排放出澄清槽。氧氣泡可進一步誘導澄清槽中的熔融玻璃的機械混合。Bubbles can be removed from the molten glass 28 in the clarifier 34 by various techniques. For example, the raw material 24 may include a polyvalent compound (i.e., a clarifier) such as tin oxide, which, when heated, undergoes a chemical reduction reaction and releases oxygen. Other suitable clarifiers include, without limitation, arsenic, antimony, iron, and barium. The clarifier 34 is heated to a temperature greater than the temperature of the melting vessel, thereby heating the molten glass and the clarifier. Oxygen bubbles generated by chemical reduction induced by the temperature of the clarifier (multiple) rise through the molten glass in the clarifier, where gases in the molten glass generated in the melting furnace can diffuse or combine into the oxygen bubbles generated by the clarifier. The enlarged bubbles can then rise to the free surface of the molten glass in the clarifier and thereafter be discharged out of the clarifier. The oxygen bubbles can further induce mechanical mixing of the molten glass in the fining tank.

下游玻璃製造設備30可進一步包括諸如用於混合熔融玻璃的混合槽36的另一調節槽。混合槽36可位於澄清槽34下游。混合槽36可用來提供同質玻璃熔體組成物,因此減少否則可存在於退出澄清槽的澄清熔融玻璃內的化學或熱非同質性的索狀物。如所示,澄清槽34可藉由第二連接導管38耦接至混合槽36。在一些示例中,熔融玻璃28可藉由第二連接導管38從澄清槽34重力進料至混合槽36。例如,重力可使熔融玻璃28通過第二連接導管38的內部路徑從澄清槽34傳送至混合槽36。應注意,雖然混合槽36示出為在澄清槽34下游,但是混合槽36可定位於澄清槽34上游。在一些實施方式中,下游玻璃製造設備30可包括多個混合槽,例如澄清槽34上游的混合槽和澄清槽34下游的混合槽。這多個混合槽可具有相同設計,或它們可具有不同設計。The downstream glassmaking equipment 30 may further include another conditioning tank such as a mixing tank 36 for mixing the molten glass. The mixing tank 36 may be located downstream of the clarification tank 34. The mixing tank 36 may be used to provide a homogenous glass melt composition, thereby reducing chemical or thermal inhomogeneities that may otherwise exist in the clarified molten glass exiting the clarification tank. As shown, the clarification tank 34 may be coupled to the mixing tank 36 by a second connecting conduit 38. In some examples, the molten glass 28 may be gravity fed from the clarification tank 34 to the mixing tank 36 by the second connecting conduit 38. For example, gravity may cause the molten glass 28 to be transferred from the clarification tank 34 to the mixing tank 36 through the internal path of the second connecting conduit 38. It should be noted that although the mixing tank 36 is shown as being downstream of the clarification tank 34, the mixing tank 36 may be positioned upstream of the clarification tank 34. In some embodiments, the downstream glassmaking facility 30 may include multiple mixing tanks, such as a mixing tank upstream of the clarification tank 34 and a mixing tank downstream of the clarification tank 34. The multiple mixing tanks may have the same design, or they may have different designs.

下游玻璃製造設備30可進一步包括諸如可位於混合槽36下游的輸送槽40的另一調節槽。輸送槽40可調節熔融玻璃28以被進料至下游成型裝置中。例如,輸送槽40可充當蓄能器及/或流量控制器以調整且/或藉由出口導管44將熔融玻璃28的一致流量提供至成型主體42。如所示,混合槽36可藉由第三連接導管46耦接至輸送槽40。在一些示例中,熔融玻璃28可藉由第三連接導管46從混合槽36重力進料至輸送槽40。例如,重力可藉由第三連接導管46的內部路徑將熔融玻璃28從混合槽36驅動至輸送槽40。The downstream glassmaking apparatus 30 may further include another regulating tank such as a delivery tank 40 that may be located downstream of the mixing tank 36. The delivery tank 40 may regulate the molten glass 28 to be fed into the downstream forming device. For example, the delivery tank 40 may act as an accumulator and/or a flow controller to regulate and/or provide a consistent flow of molten glass 28 to the forming body 42 via an outlet conduit 44. As shown, the mixing tank 36 may be coupled to the delivery tank 40 via a third connecting conduit 46. In some examples, the molten glass 28 may be gravity fed from the mixing tank 36 to the delivery tank 40 via the third connecting conduit 46. For example, gravity may drive the molten glass 28 from the mixing tank 36 to the delivery tank 40 via the internal path of the third connecting conduit 46.

下游玻璃製造設備30可進一步包括成型設備48,所述成型設備包括以上涉及的成型主體42和入口導管50。出口導管44可被定位以將熔融玻璃28從輸送槽40輸送至成型設備48的入口導管50。例如,在示例中,出口導管44可套疊在入口導管50內並且與入口導管50的內表面間隔開,因此提供定位於出口導管44的外表面與入口導管50的內表面之間的熔融玻璃的自由表面。熔合下拉玻璃製造設備中的成型主體42可包括定位於成型主體的上表面中的溝槽52和沿著成型主體的底部邊緣56在拉拔方向上收斂的收斂成形表面54。藉由輸送槽40、出口導管44和入口導管50輸送至成型主體的熔融玻璃溢出溝槽的側壁並且作為熔融玻璃的分離流量沿著收斂成形表面54下降。熔融玻璃的分離流量在底部邊緣56以下並沿著底部邊緣56接合以產生單個玻璃帶58,在玻璃冷卻並且玻璃的黏度降低時,所述單個玻璃帶藉由諸如藉由重力、邊緣輥72和拉拔輥82將張力施加至玻璃帶從底部邊緣56沿拉拔或流動方向60拉拔,以控制玻璃帶的尺寸。因此,玻璃帶58經歷黏彈性轉變並且獲得給予玻璃帶58穩定尺寸特性的機械性質。在一些實施方式中,玻璃帶58可藉由玻璃帶的彈性區域中的玻璃分離設備100分成單獨玻璃板片62。機器人64然後可使用抓取工具65將單獨玻璃板片62傳遞至輸送機系統,因此單獨玻璃板片可被進一步處理。The downstream glassmaking apparatus 30 may further include a forming apparatus 48 including the forming body 42 and an inlet conduit 50 referred to above. The outlet conduit 44 may be positioned to convey the molten glass 28 from the delivery trough 40 to the inlet conduit 50 of the forming apparatus 48. For example, in an example, the outlet conduit 44 may be nested within the inlet conduit 50 and spaced apart from the inner surface of the inlet conduit 50, thereby providing a free surface of molten glass positioned between the outer surface of the outlet conduit 44 and the inner surface of the inlet conduit 50. The forming body 42 in the fusion down-draw glassmaking apparatus may include a groove 52 positioned in the upper surface of the forming body and a converging forming surface 54 converging in the drawing direction along a bottom edge 56 of the forming body. Molten glass delivered to the forming body by the delivery trough 40, the outlet conduit 44, and the inlet conduit 50 overflows the side walls of the trough and descends along the converging forming surface 54 as separate flows of molten glass. The separate flows of molten glass join below and along the bottom edge 56 to produce a single glass ribbon 58 that is drawn from the bottom edge 56 in a drawing or flow direction 60 to control the size of the glass ribbon as the glass cools and the viscosity of the glass decreases by applying tension to the glass ribbon, such as by gravity, edge rolls 72, and drawing rolls 82. Thus, the glass ribbon 58 undergoes a viscoelastic transition and acquires mechanical properties that give the glass ribbon 58 stable dimensional characteristics. In some embodiments, the glass ribbon 58 can be separated into individual glass sheets 62 by the glass separation device 100 in the flexible region of the glass ribbon. The robot 64 can then use a gripper 65 to transfer the individual glass sheets 62 to a conveyor system so that the individual glass sheets can be further processed.

圖2示出包括導管32的玻璃製造設備10的一部分的示意性透視側視圖,所述導管與圖1中所示的第一連接導管32相同。連接導管32在下游玻璃製造設備30內延伸,並且與玻璃熔化爐12的玻璃熔化容器14流體連通。具體而言,連接導管32與熔化爐導管114流體連通,所述熔化爐導管在玻璃熔化爐12的熔化容器14內延伸。環形加熱元件132在玻璃熔化爐12和連接導管32的介面處沿圓周包圍連接導管32,所述環形加熱元件與環形密封元件116耦接,所述環形密封元件在玻璃熔化爐12和連接導管32的介面處沿圓周包圍熔化爐導管114。環形加熱元件132與環形密封元件116的耦接作用來減輕或防止玻璃熔化爐12與下游玻璃製造設備30之間的熔融玻璃28的洩漏。另外,環形加熱元件132加熱連接導管32中的熔融玻璃28。FIG2 shows a schematic perspective side view of a portion of the glassmaking apparatus 10 including a conduit 32, which is identical to the first connecting conduit 32 shown in FIG1 . The connecting conduit 32 extends within the downstream glassmaking apparatus 30 and is in fluid communication with the glass melting vessel 14 of the glass melting furnace 12. Specifically, the connecting conduit 32 is in fluid communication with a melting furnace conduit 114, which extends within the melting vessel 14 of the glass melting furnace 12. An annular heating element 132 circumferentially surrounds the connecting conduit 32 at the interface of the glass melting furnace 12 and the connecting conduit 32, the annular heating element being coupled to an annular sealing element 116, which circumferentially surrounds the melting furnace conduit 114 at the interface of the glass melting furnace 12 and the connecting conduit 32. The coupling of the annular heating element 132 and the annular sealing element 116 acts to reduce or prevent leakage of the molten glass 28 between the glass melting furnace 12 and the downstream glass manufacturing equipment 30. In addition, the annular heating element 132 heats the molten glass 28 in the connecting conduit 32.

圖3為根據本文公開的實施方式的包括導管32的玻璃製造設備10的一部分的示意性透視側視圖。連接導管32與圖1中所示的第一連接導管32相同。連接導管32在下游玻璃製造設備30內延伸,並且與玻璃熔化爐12的玻璃熔化容器14流體連通。具體而言,連接導管32與熔化爐導管120流體連通,所述熔化爐導管在玻璃熔化爐12的熔化容器14內延伸。第一環形密封元件134在玻璃熔化爐12和連接導管32的介面處沿圓周包圍連接導管32。第一環形密封元件134與第二環形密封元件118耦接,所述第二環形密封元件在玻璃熔化爐12和連接導管32的介面處沿圓周包圍熔化爐導管120。另外,環形加熱元件132沿圓周包圍連接導管32,並且沿連接導管32的軸向長度與第一環形密封元件134分開預定距離(圖3中的雙箭頭「D」)。第一環形加熱元件134與第二環形密封元件118的耦接作用來減輕或防止玻璃熔化爐12與下游玻璃製造設備30之間的熔融玻璃28的洩漏。另外,環形加熱元件132加熱連接導管32中的熔融玻璃28。FIG. 3 is a schematic perspective side view of a portion of a glassmaking apparatus 10 including a conduit 32 according to an embodiment disclosed herein. The connecting conduit 32 is identical to the first connecting conduit 32 shown in FIG. The connecting conduit 32 extends within the downstream glassmaking apparatus 30 and is in fluid communication with the glass melting vessel 14 of the glass melting furnace 12. Specifically, the connecting conduit 32 is in fluid communication with a melting furnace conduit 120 extending within the melting vessel 14 of the glass melting furnace 12. A first annular sealing element 134 circumferentially surrounds the connecting conduit 32 at the interface of the glass melting furnace 12 and the connecting conduit 32. The first annular sealing element 134 is coupled to the second annular sealing element 118, which circumferentially surrounds the melting furnace conduit 120 at the interface of the glass melting furnace 12 and the connecting conduit 32. In addition, the annular heating element 132 circumferentially surrounds the connecting conduit 32 and is separated from the first annular sealing element 134 by a predetermined distance along the axial length of the connecting conduit 32 (double arrow "D" in Figure 3). The coupling of the first annular heating element 134 and the second annular sealing element 118 acts to reduce or prevent leakage of molten glass 28 between the glass melting furnace 12 and the downstream glass manufacturing equipment 30. In addition, the annular heating element 132 heats the molten glass 28 in the connecting conduit 32.

如圖3中所示,熔化爐導管120包括擴口區域122,所述擴口區域包括在朝向玻璃熔化爐12和連接導管32的介面的方向上沿其軸向長度增加的外圓周。如圖3中另外所示,熔化爐導管120的外圓周與玻璃熔化爐12和連接導管32的介面處的連接導管32的外圓周相同。As shown in Fig. 3, the melting furnace conduit 120 includes a flared region 122 including an outer circumference that increases along its axial length in a direction toward the interface between the glass melting furnace 12 and the connecting conduit 32. As also shown in Fig. 3, the outer circumference of the melting furnace conduit 120 is the same as the outer circumference of the connecting conduit 32 at the interface between the glass melting furnace 12 and the connecting conduit 32.

在某些示範性實施方式中,擴口區域122具有在朝向玻璃熔化爐12和連接導管32的介面的方向上增加的橫截面,使得其最上縱向延伸表面相對於垂直於重力方向(在圖3中藉由箭頭「G」示出)的參考平面以角度Θ 1傾斜,並且連接導管32也具有相對於垂直於重力方向的參考平面以角度Θ 2傾斜的最上縱向延伸表面。在某些示範性實施方式中,Θ 1和Θ 2中的每一個範圍從約10度至約40度,諸如從約20度至約30度。在某些示範性實施方式中,Θ 1在Θ 2的約10度內,諸如在Θ 2的約5度內,並且進一步地諸如在Θ 2的約2度內,包括大體上與Θ 2相同並且包括在Θ 2的約10度至約0度內,並且進一步包括在Θ 2的約5度至約1度內。 In certain exemplary embodiments, the expansion region 122 has a cross-section that increases in a direction toward the interface of the glass melting furnace 12 and the connecting conduit 32, such that its uppermost longitudinally extending surface is inclined at an angle θ1 relative to a reference plane perpendicular to the direction of gravity (indicated by arrow "G" in FIG. 3), and the connecting conduit 32 also has an uppermost longitudinally extending surface inclined at an angle θ2 relative to a reference plane perpendicular to the direction of gravity. In certain exemplary embodiments, each of θ1 and θ2 ranges from about 10 degrees to about 40 degrees, such as from about 20 degrees to about 30 degrees. In certain exemplary embodiments, θ1 is within about 10 degrees of θ2 , such as within about 5 degrees of θ2 , and further such as within about 2 degrees of θ2 , including substantially the same as θ2 and including within about 10 degrees to about 0 degrees of θ2 , and further including within about 5 degrees to about 1 degree of θ2 .

在某些示範性實施方式中,預定距離「D」範圍從約1釐米至約10釐米,諸如從約2釐米至約6釐米,包括從約3釐米至約5釐米。In certain exemplary embodiments, the predetermined distance "D" ranges from about 1 cm to about 10 cm, such as from about 2 cm to about 6 cm, including from about 3 cm to about 5 cm.

圖4示出沿圓周包圍導管32的一部分的環形加熱元件132的示意性透視剖面圖。具體而言,圖4示出沿圓周包圍連接導管32 (所述連接導管與圖1中所示的第一連接導管32相同)的一部分的圖2的環形加熱元件132。環形加熱元件132與功率輸入136耦接,所述功率輸入在平行於重力方向(如圖4中的箭頭「G」所示)的方向上將來自功率源(未示出)的功率導向至環形加熱元件132。FIG4 shows a schematic perspective cross-sectional view of an annular heating element 132 circumferentially surrounding a portion of a conduit 32. Specifically, FIG4 shows the annular heating element 132 of FIG2 circumferentially surrounding a portion of a connecting conduit 32 (the connecting conduit being the same as the first connecting conduit 32 shown in FIG1). The annular heating element 132 is coupled to a power input 136 that directs power from a power source (not shown) to the annular heating element 132 in a direction parallel to the direction of gravity (as shown by arrow "G" in FIG4).

圖5示出根據本文公開的實施方式的沿圓周包圍導管32的一部分的環形加熱元件132的示意性透視剖面圖。具體而言,圖5示出沿圓周包圍連接導管32 (所述連接導管與圖1中所示的第一連接導管32相同)的一部分的圖3的環形加熱元件132。環形加熱元件132與兩個功率輸入,具體而言第一功率輸入136A和第二功率輸入136B耦接,所述功率輸入相對於環形加熱元件132的外圓周以預定距離間隔開。具體而言,第一功率輸入136A和第二功率輸入136B在相對於環形加熱元件132的外圓周的相對位置處(即,在3點鐘和9點鐘位置處)與環形加熱元件132耦接,其中第一功率輸入136A和第二功率輸入136B中的每一個在垂直於重力方向(如圖5中的箭頭「G」所示)的方向上將功率導向至環形加熱元件132。並且雖然圖5示出環形加熱元件132與兩個功率輸入的耦接,但是本文公開的實施方式包括環形加熱元件與額外功率輸入(未示出)耦接的那些。另外,雖然連接導管32在圖5中示出為具有圓形橫截面,但是本文公開的實施方式包括連接導管32具有包括但不限於橢圓形或多邊形橫截面的其他橫截面的那些。FIG5 shows a schematic perspective cross-sectional view of an annular heating element 132 circumferentially surrounding a portion of a conduit 32 according to an embodiment disclosed herein. Specifically, FIG5 shows the annular heating element 132 of FIG3 circumferentially surrounding a portion of a connecting conduit 32 (the connecting conduit being the same as the first connecting conduit 32 shown in FIG1 ). The annular heating element 132 is coupled to two power inputs, specifically a first power input 136A and a second power input 136B, which are spaced apart at a predetermined distance relative to the outer circumference of the annular heating element 132. Specifically, the first power input 136A and the second power input 136B are coupled to the annular heating element 132 at relative positions relative to the outer circumference of the annular heating element 132 (i.e., at the 3 o'clock and 9 o'clock positions), wherein each of the first power input 136A and the second power input 136B directs power to the annular heating element 132 in a direction perpendicular to the direction of gravity (as shown by arrow "G" in FIG. 5). And although FIG. 5 shows the coupling of the annular heating element 132 to two power inputs, embodiments disclosed herein include those in which the annular heating element is coupled to additional power inputs (not shown). Additionally, although the connecting conduit 32 is shown in FIG. 5 as having a circular cross-section, embodiments disclosed herein include those in which the connecting conduit 32 has other cross-sections including, but not limited to, an elliptical or polygonal cross-section.

功率輸入136A和136B可連接至功率源(未示出),諸如電氣功率源,如本領域中的一般技藝人士已知的。這繼而可引起環形加熱元件132的電阻加熱,所述環形加熱元件繼而可將導管32以及流過導管32的熔融玻璃28加熱至所要的溫度。The power inputs 136A and 136B may be connected to a power source (not shown), such as an electrical power source, as known to those skilled in the art. This in turn may cause resistive heating of the annular heating element 132, which in turn may heat the conduit 32 and the molten glass 28 flowing through the conduit 32 to a desired temperature.

在某些示範性實施方式中,環形加熱元件132包含金屬或金屬合金,所述金屬或金屬合金包含鎳、銅、鈀或鉑中的至少一種。In certain exemplary embodiments, the annular heating element 132 comprises a metal or a metal alloy comprising at least one of nickel, copper, palladium, or platinum.

圖6示出充滿變化溫度的熔融玻璃28的導管32的示意性透視剖面圖。具體而言,圖6示出接近於圖4的環形加熱元件132的圖2的導管32的橫截面,其中相對較熱的熔融玻璃28在相對較暗的陰影中示出並且相對較冷的熔融玻璃28在相對較淺的陰影中示出。如可在圖6中看出的,熔融玻璃28溫度沿平行於重力方向(如圖6中的箭頭「G」所示)的方向下降,其中導管內的最高區域為最熱的並且導管內的最低區域為最冷的。Fig. 6 shows a schematic perspective cross-sectional view of a conduit 32 filled with molten glass 28 of varying temperature. Specifically, Fig. 6 shows a cross-section of the conduit 32 of Fig. 2 close to the annular heating element 132 of Fig. 4, wherein relatively hot molten glass 28 is shown in relatively dark shading and relatively cold molten glass 28 is shown in relatively light shading. As can be seen in Fig. 6, the temperature of the molten glass 28 decreases in a direction parallel to the direction of gravity (as shown by the arrow "G" in Fig. 6), wherein the highest area in the conduit is the hottest and the lowest area in the conduit is the coldest.

圖7示出根據本文公開的實施方式的充滿變化溫度的熔融玻璃28的導管32的示意性透視剖面圖。具體而言,圖7示出接近於圖5的環形加熱元件132的圖3的導管32的橫截面,其中相對較熱的熔融玻璃28在相對較暗的陰影中示出並且相對較冷的熔融玻璃28在相對較淺的陰影中示出。如可在圖7中看出的,熔融玻璃28溫度沿垂直於重力(如圖7中的箭頭「G」所示)的方向下降,其中導管內的最左和最右區域為最熱的。Fig. 7 shows a schematic perspective cross-sectional view of a conduit 32 filled with molten glass 28 of varying temperature according to an embodiment disclosed herein. Specifically, Fig. 7 shows a cross-section of the conduit 32 of Fig. 3 close to the annular heating element 132 of Fig. 5, wherein relatively hot molten glass 28 is shown in relatively dark shading and relatively cold molten glass 28 is shown in relatively light shading. As can be seen in Fig. 7, the molten glass 28 temperature decreases in a direction perpendicular to gravity (as shown by arrow "G" in Fig. 7), wherein the leftmost and rightmost regions in the conduit are the hottest.

如可藉由比較圖6和圖7看出的,圖6的導管32的最熱區域中的熔融玻璃28溫度高於圖7的導管32的最熱區域中的熔融玻璃28溫度。相反地,圖6的導管32的最冷區域中的熔融玻璃28溫度低於圖7的導管32的最冷區域中的熔融玻璃28溫度,使得圖6中的熔融玻璃28的溫差(即,最高溫度與最低溫度之間的差異)大於圖7中的熔融玻璃28的溫差。As can be seen by comparing Figures 6 and 7, the temperature of the molten glass 28 in the hottest region of the conduit 32 of Figure 6 is higher than the temperature of the molten glass 28 in the hottest region of the conduit 32 of Figure 7. Conversely, the temperature of the molten glass 28 in the coldest region of the conduit 32 of Figure 6 is lower than the temperature of the molten glass 28 in the coldest region of the conduit 32 of Figure 7, so that the temperature difference (i.e., the difference between the highest temperature and the lowest temperature) of the molten glass 28 in Figure 6 is greater than the temperature difference of the molten glass 28 in Figure 7.

維持導管32內的更均勻橫截面熔融玻璃28溫度分佈,諸如圖7中所示,導致將熔融玻璃28加熱至所要的平均熔融玻璃28溫度範圍內,而防止熔融玻璃28的最熱區域高於所要的溫度。例如,導管32內的熔融玻璃28的最熱區域通常接近於環形加熱元件132,並且若這個區域變得太熱,則此情況可例如導致若干不希望的後果,包括但不限於導管32及/或環形加熱元件132的氧化腐蝕,這繼而可導致加熱元件132的變形及/或熔融玻璃28從導管32的洩漏。此情況可還藉由導管32及/或加熱元件132氧化反應產物至熔融玻璃28中的引入導致熔融玻璃28污染。Maintaining a more uniform cross-sectional molten glass 28 temperature distribution within the conduit 32, as shown in FIG7, results in heating the molten glass 28 to a desired average molten glass 28 temperature range while preventing the hottest region of the molten glass 28 from being above a desired temperature. For example, the hottest region of the molten glass 28 within the conduit 32 is typically proximate to the annular heating element 132, and if this region becomes too hot, this situation may, for example, result in several undesirable consequences, including but not limited to oxidative corrosion of the conduit 32 and/or the annular heating element 132, which in turn may result in deformation of the heating element 132 and/or leakage of the molten glass 28 from the conduit 32. This situation may also result in contamination of the molten glass 28 by the introduction of oxidation reaction products of the conduit 32 and/or the heating element 132 into the molten glass 28.

本文公開的實施方式可藉由例如沿導管32的軸向長度將加熱元件132與第一環形密封元件134間隔預定距離、將環形加熱元件132與相對於環形加熱元件的外圓周以預定距離間隔開的至少兩個功率輸入耦接,及/或包括在朝向玻璃熔化爐12和連接導管32的介面的方向上沿其軸向長度增加的熔化爐導管120中的擴口區域122來減輕或防止此情況。在這方面,這些特徵的組合可在將熔融玻璃28加熱至所要的平均熔融玻璃28溫度範圍內中提供協同效應,而防止熔融玻璃28的最熱區域高於所要的溫度。另外,第一環形密封元件134與環形加熱元件132之間的間隔減輕或防止密封和加熱功能性的同時故障。Embodiments disclosed herein can mitigate or prevent this situation by, for example, spacing the heating element 132 and the first annular sealing element 134 a predetermined distance along the axial length of the conduit 32, coupling the annular heating element 132 to at least two power inputs spaced a predetermined distance apart relative to the outer circumference of the annular heating element, and/or including a flared region 122 in the melting furnace conduit 120 that increases along its axial length in a direction toward the interface of the glass melting furnace 12 and the connecting conduit 32. In this regard, the combination of these features can provide a synergistic effect in heating the molten glass 28 to a desired average molten glass 28 temperature range while preventing the hottest region of the molten glass 28 from being above a desired temperature. Additionally, the spacing between the first annular sealing element 134 and the annular heating element 132 reduces or prevents simultaneous failure of the sealing and heating functionalities.

雖然以上實施方式已參考熔合下拉程序加以描述,但是將理解,此類實施方式也適用於其他玻璃成型程序,諸如浮法程序、槽拉程序、上拉程序、拉管程序和壓軋程序。Although the above embodiments have been described with reference to a fusion down-draw process, it will be understood that such embodiments are also applicable to other glass forming processes, such as a float process, a trough draw process, an up-draw process, a tube draw process, and a press roll process.

本領域技藝人士將顯而易見,可在不脫離本案內容的精神和範圍的情況下對本案內容的實施方式做出各種修改和變化。因而,本案內容意圖涵蓋此類修改和變化,只要它們歸入所附申請專利範圍和其均等物的範圍內。It will be obvious to those skilled in the art that various modifications and changes can be made to the implementation of the content of this case without departing from the spirit and scope of the content of this case. Therefore, the content of this case is intended to cover such modifications and changes as long as they fall within the scope of the attached application patent and its equivalents.

10:玻璃製造設備 12:玻璃熔化爐 14:熔化容器 16:上游玻璃製造設備 18:儲料倉 20:原材料輸送裝置 22:馬達 24:原材料 26:箭頭 28:熔融玻璃 30:下游玻璃製造設備 32:第一連接導管 34:澄清槽 36:混合槽 38:第二連接導管 40:輸送槽 42:成型主體 44:出口導管 46:第三連接導管 48:成型設備 50:入口導管 52:溝槽 54:收斂成形表面 56:底部邊緣 58:玻璃帶 60:拉拔或流動方向 62:單獨玻璃板片 64:機器人 65:抓取工具 72:邊緣輥 82:拉拔輥 100:玻璃分離設備 114:熔化爐導管 116:環形密封元件 118:第二環形密封元件 120:熔化爐導管 122:擴口區域 132:環形加熱元件 134:第一環形密封元件 136:功率輸入 136A:第一功率輸入 136B:第二功率輸入 10: Glass manufacturing equipment 12: Glass melting furnace 14: Melting vessel 16: Upstream glass manufacturing equipment 18: Storage bin 20: Raw material conveying device 22: Motor 24: Raw material 26: Arrow 28: Molten glass 30: Downstream glass manufacturing equipment 32: First connecting conduit 34: Clarifying tank 36: Mixing tank 38: Second connecting conduit 40: Conveying trough 42: Forming body 44: Outlet conduit 46: Third connecting conduit 48: Forming equipment 50: Inlet conduit 52: Groove 54: Converging forming surface 56: Bottom edge 58: Glass ribbon 60: Drawing or flow direction 62: Individual glass sheets 64: Robot 65: gripping tool 72: edge roller 82: drawing roller 100: glass separation device 114: melting furnace conduit 116: annular sealing element 118: second annular sealing element 120: melting furnace conduit 122: expansion area 132: annular heating element 134: first annular sealing element 136: power input 136A: first power input 136B: second power input

圖1為示例性熔合下拉玻璃製造設備和程序的示意圖;FIG. 1 is a schematic diagram of an exemplary fusion down-draw glass manufacturing apparatus and process;

圖2為包括導管的玻璃製造設備的一部分的示意性透視側視圖;FIG. 2 is a schematic perspective side view of a portion of a glass manufacturing apparatus including a conduit;

圖3為根據本文公開的實施方式的包括導管的玻璃製造設備的一部分的示意性透視側視圖;FIG. 3 is a schematic perspective side view of a portion of a glass manufacturing apparatus including a conduit according to embodiments disclosed herein;

圖4為沿圓周包圍導管的一部分的環形加熱元件的示意性透視剖面圖;FIG4 is a schematic perspective cross-sectional view of an annular heating element circumferentially surrounding a portion of a conduit;

圖5根據本文公開的實施方式的沿圓周包圍導管的一部分的環形加熱元件的示意性透視剖面圖;FIG5 is a schematic perspective cross-sectional view of an annular heating element circumferentially surrounding a portion of a conduit according to embodiments disclosed herein;

圖6為充滿變化溫度的熔融玻璃的導管的示意性透視剖面圖;並且FIG6 is a schematic perspective cross-sectional view of a conduit filled with molten glass of varying temperature; and

圖7根據本文公開的實施方式的充滿變化溫度的熔融玻璃的導管的示意性透視剖面圖。7 is a schematic perspective cross-sectional view of a conduit filled with molten glass of varying temperature according to an embodiment disclosed herein.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date, and number) None Foreign storage information (please note in the order of storage country, institution, date, and number) None

10:玻璃製造設備 10: Glass manufacturing equipment

12:玻璃熔化爐 12: Glass melting furnace

14:熔化容器 14: Melting container

30:下游玻璃製造設備 30: Downstream glass manufacturing equipment

32:第一連接導管 32: First connecting conduit

118:第二環形密封元件 118: Second annular sealing element

120:熔化爐導管 120: Melting furnace guide tube

122:擴口區域 122: Expansion area

132:環形加熱元件 132: Ring heating element

134:第一環形密封元件 134: First annular sealing element

Claims (22)

一種用於製造一玻璃製品的設備,該設備包括: 一玻璃熔化爐,與一連接導管流體連通; 一第一環形密封元件,在該玻璃熔化爐和該連接導管的一介面處沿圓周包圍該連接導管;及 一環形加熱元件,沿圓周包圍該連接導管並且沿該連接導管的一軸向長度與該第一環形密封元件分開一預定距離。 An apparatus for manufacturing a glass product, the apparatus comprising: a glass melting furnace in fluid communication with a connecting conduit; a first annular sealing element circumferentially surrounding the connecting conduit at an interface between the glass melting furnace and the connecting conduit; and an annular heating element circumferentially surrounding the connecting conduit and separated from the first annular sealing element by a predetermined distance along an axial length of the connecting conduit. 如請求項1之設備,其中該設備包括一熔化爐導管,該熔化爐導管在該熔化爐內延伸並且與該連接導管流體連通。An apparatus as claimed in claim 1, wherein the apparatus comprises a melting furnace conduit extending within the melting furnace and being fluidly connected to the connecting conduit. 如請求項2之設備,其中一第二環形密封元件在該玻璃熔化爐和該連接導管的該介面處沿圓周包圍該熔化爐導管。An apparatus as claimed in claim 2, wherein a second annular sealing element circumferentially surrounds the glass melting furnace conduit at the interface between the glass melting furnace and the connecting conduit. 如請求項3之設備,其中該熔化爐導管包括一擴口區域,該擴口區域包括在朝向該玻璃熔化爐和該連接導管的該介面的一方向上沿其軸向長度增加的一外圓周。An apparatus as claimed in claim 3, wherein the melting furnace conduit includes a flared region, the flared region including an outer circumference that increases along its axial length in a direction toward the interface between the glass melting furnace and the connecting conduit. 如請求項4之設備,其中該熔化爐導管的該外圓周與該玻璃熔化爐和該連接導管的該介面處的該連接導管的一外圓周相同。An apparatus as claimed in claim 4, wherein the outer circumference of the melting furnace conduit is the same as an outer circumference of the connecting conduit at the interface between the glass melting furnace and the connecting conduit. 如請求項1之設備,其中該環形加熱元件與相對於該環形加熱元件的一外圓周以一預定距離間隔開的至少兩個功率輸入耦接。An apparatus as claimed in claim 1, wherein the annular heating element is coupled to at least two power inputs spaced a predetermined distance apart relative to an outer circumference of the annular heating element. 如請求項6之設備,其中該至少兩個功率輸入中的一第一功率輸入和一第二功率輸入在相對於該環形加熱元件的一外圓周的相對位置處與該環形加熱元件耦接。An apparatus as claimed in claim 6, wherein a first power input and a second power input of the at least two power inputs are coupled to the annular heating element at relative positions relative to an outer circumference of the annular heating element. 如請求項7之設備,其中該至少兩個功率輸入中的該第一功率輸入和該第二功率輸入各自在垂直於一重力方向的一方向上將功率導向至該環形加熱元件。An apparatus as in claim 7, wherein the first power input and the second power input of the at least two power inputs each direct power to the annular heating element in a direction perpendicular to a direction of gravity. 如請求項1之設備,其中該預定距離範圍從約1釐米至約10釐米。An apparatus as claimed in claim 1, wherein the predetermined distance ranges from about 1 cm to about 10 cm. 如請求項1之設備,其中該環形加熱元件包含一金屬或金屬合金,該金屬或金屬合金包含鎳、銅、鈀或鉑中的至少一種。An apparatus as claimed in claim 1, wherein the annular heating element comprises a metal or a metal alloy comprising at least one of nickel, copper, palladium or platinum. 一種製造一玻璃製品的方法,該方法包括以下步驟: 將熔融玻璃從一玻璃熔化爐流動至一連接導管,其中一第一環形密封元件在該玻璃熔化爐和該連接導管的一介面處沿圓周包圍該連接導管;及 用一環形加熱元件加熱該連接導管,該環形加熱元件沿圓周包圍該連接導管並且沿該連接導管的一軸向長度與該第一環形密封元件分開一預定距離。 A method for manufacturing a glass product, the method comprising the following steps: Flowing molten glass from a glass melting furnace to a connecting conduit, wherein a first annular sealing element circumferentially surrounds the connecting conduit at an interface between the glass melting furnace and the connecting conduit; and Heating the connecting conduit with an annular heating element, the annular heating element circumferentially surrounds the connecting conduit and is separated from the first annular sealing element by a predetermined distance along an axial length of the connecting conduit. 如請求項11之方法,其中該設備包括一熔化爐導管,該熔化爐導管在該熔化爐內延伸並且與該連接導管流體連通。A method as claimed in claim 11, wherein the apparatus comprises a melting furnace conduit extending within the melting furnace and being fluidly connected to the connecting conduit. 如請求項12之方法,其中一第二環形密封元件在該玻璃熔化爐和該連接導管的該介面處沿圓周包圍該熔化爐導管。A method as claimed in claim 12, wherein a second annular sealing element circumferentially surrounds the melting furnace conduit at the interface between the glass melting furnace and the connecting conduit. 如請求項13之方法,其中該熔化爐導管包括一擴口區域,該擴口區域包括在朝向該玻璃熔化爐和該連接導管的該介面的一方向上沿其軸向長度增加的一外圓周。A method as claimed in claim 13, wherein the melting furnace conduit includes a flared area, the flared area including an outer circumference that increases along its axial length in a direction toward the interface between the glass melting furnace and the connecting conduit. 如請求項14之方法,其中該熔化爐導管的該外圓周與該玻璃熔化爐和該連接導管的該介面處的該連接導管的一外圓周相同。A method as claimed in claim 14, wherein the outer circumference of the melting furnace conduit is the same as an outer circumference of the connecting conduit at the interface between the glass melting furnace and the connecting conduit. 如請求項11之方法,其中該環形加熱元件與相對於該環形加熱元件的一外圓周以一預定距離間隔開的至少兩個功率輸入耦接。A method as claimed in claim 11, wherein the annular heating element is coupled to at least two power inputs separated by a predetermined distance relative to an outer circumference of the annular heating element. 如請求項16之方法,其中該至少兩個功率輸入中的一第一功率輸入和一第二功率輸入在相對於該環形加熱元件的一外圓周的相對位置處與該環形加熱元件耦接。A method as in claim 16, wherein a first power input and a second power input of the at least two power inputs are coupled to the annular heating element at relative positions relative to an outer circumference of the annular heating element. 如請求項17之方法,其中該至少兩個功率輸入中的該第一功率輸入和該第二功率輸入各自在垂直於一重力方向的一方向上將功率導向至該環形加熱元件。A method as in claim 17, wherein the first power input and the second power input of the at least two power inputs each direct power to the annular heating element in a direction perpendicular to a direction of gravity. 如請求項11之方法,其中該預定距離範圍從約1釐米至約10釐米。A method as claimed in claim 11, wherein the predetermined distance ranges from about 1 cm to about 10 cm. 如請求項11之方法,其中該環形加熱元件包含一金屬或金屬合金,該金屬或金屬合金包含鎳、銅、鈀或鉑中的至少一種。A method as claimed in claim 11, wherein the annular heating element comprises a metal or a metal alloy, wherein the metal or the metal alloy comprises at least one of nickel, copper, palladium or platinum. 一種玻璃製品,該玻璃製品藉由請求項11的方法製造。A glass product manufactured by the method of claim 11. 一種電子裝置,包括如請求項21之玻璃製品。An electronic device comprising the glass product of claim 21.
TW112140365A 2022-10-25 2023-10-23 Apparatus and method for manufacturing a glass article TW202417385A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263419122P 2022-10-25 2022-10-25
US63/419,122 2022-10-25

Publications (1)

Publication Number Publication Date
TW202417385A true TW202417385A (en) 2024-05-01

Family

ID=90767216

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112140365A TW202417385A (en) 2022-10-25 2023-10-23 Apparatus and method for manufacturing a glass article

Country Status (3)

Country Link
CN (1) CN117923756A (en)
TW (1) TW202417385A (en)
WO (1) WO2024091384A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003054954A (en) * 2001-08-07 2003-02-26 Matsushita Electric Ind Co Ltd Manufacturing method of glass for press molding, manufacturing method of glass substrate and manufacturing method of magnetic recording medium
US7475568B2 (en) * 2005-04-27 2009-01-13 Corning Incorporated Method of fining glass
JP6821603B2 (en) * 2015-06-10 2021-01-27 コーニング インコーポレイテッド Equipment and methods for adjusting molten glass
TWI746726B (en) * 2016-12-15 2021-11-21 美商康寧公司 Methods and apparatuses for controlling glass flow into glass forming machines
TWI840469B (en) * 2019-01-08 2024-05-01 美商康寧公司 Glass manufacturing apparatus and methods

Also Published As

Publication number Publication date
WO2024091384A1 (en) 2024-05-02
CN117923756A (en) 2024-04-26

Similar Documents

Publication Publication Date Title
CN110291049B (en) Method and apparatus for thermal control of glass ribbon
TWI774715B (en) Method and apparatus for managing glass ribbon cooling
JP2019518703A (en) Device and method for directing glass supply
TWI761524B (en) Methods for reconditioning glass manufacturing systems
TWI756290B (en) High temperature glass melting vessel
TW202417385A (en) Apparatus and method for manufacturing a glass article
CN111032586A (en) Method and apparatus for adjustable glass ribbon heat transfer
CN216918999U (en) Glass manufacturing apparatus with leakage mitigation features
JP7535529B2 (en) Conduit heating apparatus and method with improved corrosion resistance - Patents.com
US20230120775A1 (en) Apparatus and method for reducing defects in glass melt systems
CN116639863A (en) Glass melting furnace and melting vessel with improved thermal properties
TW202335982A (en) Conveyance apparatus and method with adjustable fluid flow
TW202222713A (en) Glass forming body and method of making a glass article using the same
TW202342382A (en) Glass melting furnaces and vessels with improved electrical resistivity
CN118529919A (en) Apparatus and method for controlling characteristics of a glass ribbon